00 CAMPUS ARISTÓTELES CALAZANS SIMÕES (CAMPUS A. C. SIMÕES) IF - INSTITUTO DE FÍSICA Dissertações e Teses defendidas na UFAL - IF
Use este identificador para citar ou linkar para este item: http://www.repositorio.ufal.br/jspui/handle/123456789/13259
Tipo: Dissertação
Título: Estudo do fenômeno de espalhamento acústico por meio do Método de Elementos Finitos FEM
Autor(es): Santos, Antonio Evandro dos
Primeiro Orientador: Leão Neto, José Pereira
metadata.dc.contributor.referee1: Andrade, José Henrique Araújo Lopes de
metadata.dc.contributor.referee2: Costa, Alex Emanuel Barros
Resumo: A propagação de ondas acústicas em partículas é um fenômeno complexo que envolve a interação Onda-Partícula, resultando em reflexão, transmissão e espalhamento da energia acústica. O estudo do espalhamento acústico envolve a análise das soluções da equação de Helmholtz, considerando condições de contorno e a expansão em ondas parciais , essa análise nos permite compreender como partículas interagem com ondas acústicas e contribuem para a propagação e espalhamento da energia acústica. A maioria das análises teóricas sobre espalhamento e força de radiação acústica Frad (força estacionária causada pela mudança linear do fluxo de momento durante o espalhamento de uma onda acústica por uma partícula) em fluidos assume que as partículas têm forma esférica, mas, essa simplificação não representa todas as situações da realidade. A forma esférica é considerada uma forma geométrica idealizada, onde a partícula é simétrica em todas as direções, essa suposição simplifica o problema ao permitir que equações matemáticas mais simples sejam aplicadas para descrever o comportamento da partícula em resposta à radiação acústica. Ao considerar partículas com formas não esféricas, as técnicas analíticas exatas podem se tornar impraticáveis. Nesses casos, são necessárias abordagens numéricas mais sofisticadas, como métodos de elementos finitos, métodos de diferenças finitas ou métodos de elementos de contorno, para resolver o problema de espalhamento e obter resultados precisos e realistas. Aqui, uma abordagem semianalítica é introduzida para lidar com partículas axissimétricas de subcomprimento de onda (limite de espalhamento de Rayleigh) imersas em um fluido ideal isotrópico. Os coeficientes de espalhamento que refletem os modos monopolo e dipolo são determinados por meio da resolução numérica do problema de espalhamento. Nosso método é comparado com o resultado exato para uma esfera rígida de subcomprimento de onda em água, uma esfera fluida e um sólido viscoelástico, além disso estendemos nossa análise para um esferoide, geometria que se aproxima da esfera, porém envolve complicações analíticas que tornam as soluções exatas mais complicadas. Esses estudos são fundamentais para diversas aplicações Biomédicas, que usam técnicas como aprisionamento de partículas, levitação e pinças acústica, entre outras. Técnicas para imobilizar partículas e células em sistemas microfluídicos são muitas vezes necessários no conceito da tecnologia de laboratório dentro de um chip (Lab-On-Chip) onde é comum partículas com dimensões muito menores do que o comprimento de onda acústica , conhecido como regime de espalhamento Rayleigh, encontrado em dispositivos de Acustofluídica.
Abstract: The propagation of acoustic waves in particles is a complex phenomenon that involves the interaction between waves and particles, resulting in the reflection, transmission, and scattering of acoustic energy. The study of acoustic scattering involves analyzing the solutions of the Helmholtz equation, considering boundary conditions and the expansion into partial waves. This analysis allows us to understand how particles interact with acoustic waves and contribute to the propagation and scattering of acoustic energy. Most theoretical analyses on scattering and acoustic radiation force Frad (the stationary force caused by the linear change of momentum flux during the scattering of an acoustic wave by a particle) in fluids assume that particles have a spherical shape, but this simplification does not represent all real-world situations. The spherical shape is considered an idealized geometric form, where the particle is symmetrical in all directions. This assumption simplifies the problem by allowing simpler mathematical equations to describe the particle’s behavior in response to acoustic radiation. However, when considering particles with non-spherical shapes, exact analytical techniques can become impractical. In such cases, more sophisticated numerical approaches are required, such as finite element methods, finite difference methods, or boundary element methods, to solve the scattering problem and obtain precise and realistic results. Here, we introduce a semi-analytical approach to deal with axially symmetric particles of sub-wavelength size (Rayleigh scattering limit) immersed in an ideal isotropic fluid. The scattering coefficients that reflect the monopole and dipole modes are determined through the numerical resolution of the scattering problem. Our method is compared with the exact result for a rigid sub-wavelength sphere in water, a fluid sphere, and a viscoelastic solid. Additionally, we extend our analysis to an spheroid, a geometry that approximates a sphere but involves analytical complications that make exact solutions more challenging. These studies are fundamental for various biomedical applications, which utilize techniques such as particle trapping, levitation, and acoustic tweezers, among others. Techniques for immobilizing particles and cells in microfluidic systems are often necessary in the concept of Lab-On-Chip technology, where particles with dimensions much smaller than the acoustic wavelength are common, known as the Rayleigh scattering regime, found in Acoustofluidic devices.
Palavras-chave: Acustofluídica
Espalhamento de Rayleigh
Método de elementos finitos
Ondas acústica
Acoustofluidics
Rayleigh Scattering
Finite Element Method
Acoustic waves
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
Idioma: por
País: Brasil
Editor: Universidade Federal de Alagoas
Sigla da Instituição: UFAL
metadata.dc.publisher.program: Programa de Pós-Graduação em Física
Citação: SANTOS, Antonio Evandro dos. Estudo do Fenômeno de Espalhamento Acústico por meio do Método de Elementos Finitos FEM. 2024. 106 f. Dissertação (Mestrado em Física ) – Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal de Alagoas, Maceió, 2023.
Tipo de Acesso: Acesso Aberto
URI: http://www.repositorio.ufal.br/jspui/handle/123456789/13259
Data do documento: 6-set-2023
Aparece nas coleções:Dissertações e Teses defendidas na UFAL - IF

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Estudo do Fenômeno de Espalhamento Acústico por meio do Método de Elementos Finitos FEM.pdf3.49 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.