Use este identificador para citar ou linkar para este item:
http://www.repositorio.ufal.br/jspui/handle/riufal/1055| Tipo: | Dissertação |
| Título: | Difeomorfismos que preservam volumee problemas elípticos |
| Autor(es): | Almeida, Julio Cesar de Souza |
| Primeiro Orientador: | Fernández, Adán José Corcho |
| metadata.dc.contributor.referee1: | Barros, Amauri da Silva |
| metadata.dc.contributor.referee2: | Souto, Marco Aurelio Soares |
| metadata.dc.contributor.referee3: | Oliveira, Krerley Irraciel Martins |
| Resumo: | O fato de que o problema de Neumann possui solução única quando estudo em adequados espaços de Holder, nos permite resolver problemas elípticos até agora tratados com dados iniciais infinitamente diferenciáveis. De posse da existência e da unicidade da solução do problema de Neumann, encontra-se uma função que se anula na fronteira do conjunto onde esta função está definida e cujo divergente é igual a uma função dada. Esta ultima afirmação nos permite determinar um difeomorfismo que preserva a fronteira e tal que o determinante da diferencial é igual a uma função inicial. A partir daí, dados um domínio limitado do espaço euclidiano de dimensão n e duas n-formas tais que suas funções coeficientes são positivas, então, sob algumas hipóteses de regularidade, existe um difeomorfismo definido nesse domínio tal que o pull-back de uma das formas por esse difeomorfismo é proporcional à segunda forma. A constante de proporcionalidade vem dada pelo quociente das integrais das formas, calculadas em todo o domínio. O resultado acima pode ser escrito em uma forma mais analítica. Após essa reformulação, verifica-se que o mesmo é uma conseqüência do resultado descrito a seguir. Dados um domínio limitado e uma função positiva definida no fecho deste de forma tal que a integral da mesma neste domínio seja igual ao volume do mesmo, então, adicionando algumas hipóteses de regularidade, existe um difeomorfismo tal que, para todo ponto do interior do conjunto, o determinante da derivada desse difeomorfismo é igual à função dada. Além disso, esse difeomorfismo preserva pontualmente a fronteira do conjunto. Como conseqüência podemos construir difeomorfismos que preservam volume com valor de fronteira dado. |
| Palavras-chave: | Análise funcional Equações elípticas |
| CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| Idioma: | por |
| País: | BR |
| Editor: | Universidade Federal de Alagoas |
| Sigla da Instituição: | UFAL |
| metadata.dc.publisher.department: | Análise; Geometria Diferencial; Sistemas dinâmicos; Computação gráfica |
| metadata.dc.publisher.program: | Programa de Pós-Graduação em Matemática |
| Citação: | ALMEIDA, Julio Cesar de Souza. Difeomorfismos que preservam volumee problemas elípticos. 2007. 78 f. Dissertação (Mestrado em Análise; Geometria Diferencial; Sistemas dinâmicos; Computação gráfica) - Universidade Federal de Alagoas, Maceió, 2007. |
| Tipo de Acesso: | Acesso Aberto |
| URI: | http://repositorio.ufal.br/handle/riufal/1055 |
| Data do documento: | 15-fev-2007 |
| Aparece nas coleções: | Dissertações e Teses defendidas na UFAL - IM |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Dissertacao_Julio_Cesar_2007.pdf | 594.92 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.