Use este identificador para citar ou linkar para este item: http://www.repositorio.ufal.br/handle/riufal/3190
Tipo: Dissertação
Título: Análise computacional da biomecânica corneal para diagnóstico de ceratocone
Título(s) alternativo(s): Computational analysis of corneal biomechanics for diagnosis of Keratoconus
Autor(es): Jacinto, Kempes
Primeiro Orientador: Machado, Aydano Pamponet
Primeiro Membro da Banca: Lyra, João Marcelo de Almeida Gusmão
Segundo Membro da Banca: Coelho, Jorge Artur Peçanha de Miranda
Terceiro Membro da Banca: Ambrósio Júnior, Renato
Resumo: O objetivo do corrente estudo foi encontrar e modelar representações de características da biomecânica corneal a partir de imagens de exames geradas pelo Corvis ST, a fim de realizar sua aplicação a técnicas de aprendizagem de máquina para o diagnóstico precoce de ceratocone. As imagens foram segmentadas para identificação e conversão em vetores para representação das superfícies anterior, superfície posterior aparente, paquimetria aparente e composição dos dados anteriores. Os vetores foram encadeados (imagens em lote), simplificados com Wavelet e submetidos a MLP, k-NN, Regressão Logística, Naïve Bayes e Fast Large Margin, além do arranjo dos vetores como histogramas 2D para aplicação em rede neural com Deep Learning. A avaliação das classificações foi feita com o escore igual ao produto da sensibilidade multiplicado pela especificidade, com intervalo de confiança entre 0,7843 e 1 e nível de significância 0,0157. Foram usados exames de 686 olhos normais e 406 olhos com ceratocone em graus de I a IV, provindos de bases de exames da Europa e do Brasil, para treinamento e validação dos dados aplicados. Os melhores modelos identificados ocorreram com paquimetria aparente de imagens em lote, com aplicação de wavelet nível 4 e processada com fast large margin na base de dados da Europa, com escore 0,8247, sensibilidade de 89,5% e especifidade de 92,14%; e histograma 2D da paquimetria aparente, com LeNET5, na base do Brasil, com escore 0,8361, sensibilidade de 88,58% e especificidade de 94,39%. Conclui-se que os modelos da biomecânica podem ser usados para diagnosticar ceratocone.
Abstract: keratoconus. The images were segmented for identification and conversion into vectors for representation of the anterior surface, apparent posterior surfaces, apparent pachymetry and composition of the previous data. The vectors were chained (batch images), simplified with Wavelet and submitted to MLP, k-NN, Logistic Regression, Naïve Bayes and Fast LargeMargin, in addition the vectors were rearranged as 2D histograms for neural network application with Deep Learning. The evaluation of the classifications was done with the score equal to the product of the sensitivity multiplied by the specificity, with confidence interval between 0.7843 and 1 and level of significance 0.0157. Exams of 686 normal eyes and 406 eyes with keratoconus in degrees from I to IV, from exam bases from Europe and Brazil, were used for training and validation of applied data. The best models identified were apparent pachymetry on batch images, with wavelet level 4 and processed with fast large margin in the European database, with a score of 0.8247, sensitivity of 89.5% and specificity of 92.14%; and 2D histogram of apparent pachymetry, with LeNET5, at the Brazilian database, with a score of 0.8361, sensitivity of 88.58% and specificity of 94.39%. It is concluded that biomechanical models can be used to diagnose keratoconus.
Palavras-chave: Ceratonone.
Biomecânica
Diagnóstico
Inteligência artificial
Segmentação
Keratoconus
Biomechanics
Diagnosis
Artificial Intelligence
Segmentation
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Alagoas
Sigla da Instituição: UFAL
metadata.dc.publisher.program: Programa de Pós-Graduação em Modelagem Computacional de Conhecimento
Citação: JACINTO, Kempes. Análise computacional da biomecânica corneal para diagnóstico de ceratocone. 2018.80 f. Dissertação (Mestrado em Modelagem Computacional do Conhecimento) – Instituto de Computação, Programa de Pós Graduação em Modelagem computacional do Conhecimento, Universidade Federal de Alagoas, Maceió, 2018.
Tipo de Acesso: Acesso Aberto
URI: http://www.repositorio.ufal.br/handle/riufal/3190
Data do documento: 13-Abr-2018
Aparece nas coleções:Dissertações e Teses defendidas na UFAL - IC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Análise computacional da biomecânica corneal para diagnóstico de ceratocone.pdf5,53 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.