
Federal University of Alagoas

Computing Institute

Graduate Program in Informatics

Atoms of Confusion Do Really Cause Confusion? A
Controlled Experiment Using Eye Tracking

Master Student
Benedito Fernando Albuquerque de Oliveira

Advisor
Márcio de Medeiros Ribeiro

Maceió, AL
October - 2020



Benedito Fernando Albuquerque de Oliveira

Atoms of Confusion Do Really Cause Confusion? A
Controlled Experiment Using Eye Tracking

Defense of dissertation for the title of Master
in Informatics by the Computing Institute of
the Federal University of Alagoas.

Federal University of Alagoas – UFAL

Computing Institute

Graduate Program in Informatics

Supervisor: Márcio de Medeiros Ribeiro

Maceió
2020



Catalogação na fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecária: Taciana Sousa dos Santos – CRB-4 – 2062 

 
  O48a      Oliveira, Benedito Fernando Albuquerque de.
                      Atoms of confusion do really cause confusion? A controlled experiment 
                  using eye tracking / Benedito Fernando Albuquerque de Oliveira. – 2020.
                      57 f. : il., figs. e tabs. color.

                      Orientador: Márcio de Medeiros Ribeiro.
                      Dissertação (Mestrado em Informática) – Universidade Federal de 
                 Alagoas. Instituto de Computação. Maceió, 2021.
      
                      Bibliografia: f. 55-57.

                      1. Compreensão de código. 2. Átomos de confusão (Códigos). 3. 
                   Rastreamento visual. I. Título.

                                                                                                           CDU: 004.4’ 4
               





I dedicate this work to everyone
who helped me along this journey.



Acknowledgements

I thank my family for all the support during this journey. Thank you for having supported
me in times of difficulty and encouraged me to face this challenge.

I am grateful to my wife, Sarah Oliveira. She always supported me at all times,
especially on the countless times that I thought about giving up and felt unable to overcome
the obstacles that appeared along the way. Thank you for never have given up on me.

I thank my advisor Márcio Ribeiro, for his dedication, advice, guidance, and
patience. This patience has been put to the test too many times. Although he had reasons
for that, he never gave up. He remained available and active so that I could complete this
stage. Without him, this work would not be possible. Thank you.

I am grateful to the friend and research colleague José Aldo. He helped decisively
in several moments, sharing knowledge and techniques necessary for the improvement of
the work.

I thank my friend Guilherme Volney for the support and great help given during
the experiment’s construction.

I thank Professor Alessandro Garcia for the guidance, support, and welcome at his
institution during the experiment’s execution.

I would also like to thank all the other teachers who somehow added something to
my research, such as Baldoino Fonseca, Rohit Gheyi, and Thiago Cordeiro.

I would also like to thank the EASY lab friends who have always supported me on
this journey. Thanks for encouraging me not to give up and contribute to improving this
work, including Fernando Kenji, Leonardo Fernandes, Pedro Matheus, Marcio Augusto,
Elvys, Francisco Dalton. Rodrigo Lima, among others.

I am also grateful to my job’s colleagues for their comprehension of the moments I
have been absent to work on this research.

Finally, I would like to thank all the people who directly and indirectly contributed
to accomplishing this work; I apologize to those that the names are not here.

Thank you to professors, employees, and students at UFAL and PUC-RIO.



“When everything seems to be going against you,
remember that the airplane takes off against the wind,

not with it” – Henry Ford



Resumo
Compreensão de código é crucial nas atividades de manutenção de software, entretanto
ela pode ser prejudicada por mal-entendidos e padrões código confusos, ou seja, átomos
de confusão. Eles são pequenos trechos de código usando construções específicas de uma
linguagem de programação, como Operadores Condicionais e Operadores Vírgula. Um
estudo anterior mostrou que os átomos de confusão afetam o desempenho dos desenvolve-
dores, ou seja, o tempo e a precisão, e aumentam os mal-entendidos com relação ao código.
No entanto, o conhecimento empírico do impacto de tais átomos na compreensão do
código ainda é escasso, especialmente quando se trata de analisar esse impacto na atenção
visual dos desenvolvedores. O presente estudo avalia se os desenvolvedores interpretam
mal o código na presença de átomos de confusão com um rastreador ocular. Para isso,
medimos o tempo, a precisão e analisamos a distribuição da atenção visual. Conduzimos
um experimento controlado com 30 alunos e profissionais de software. Pedimos aos su-
jeitos que especifiquem a saída de três tarefas com átomos e três sem átomos designados
aleatoriamente usando um Quadrado Latino. Usamos uma câmera de rastreamento ocular
para detectar a atenção visual dos participantes enquanto resolvemos as tarefas. De uma
perspectiva agregada, observamos um aumento de 43,02% no tempo e 36,8% nas transições
de olhar em trechos de código com átomos. Além disso, observamos um aumento de
163,06% no número de regressões quando o átomo está presente. Para precisão, nenhuma
diferença estatisticamente significativa foi observada. Também confirmamos que as regiões
que recebem mais atenção foram as regiões com átomos. Nossas descobertas reforçam que
os átomos atrapalham o desempenho e a compreensão dos desenvolvedores. Portanto, os
desenvolvedores devem evitar escrever código com eles.

Palavras-Chave: Átomos de Confusão, Rastreamento Visual.



Abstract
Code comprehension is crucial in software maintenance activities, though it can be hindered
by misunderstandings and confusion patterns, namely, atoms of confusion. They are small
pieces of code using specific programming language constructs, such as Conditional Opera-
tors and Comma Operators. A previous study showed that these atoms of confusion impact
developers’ performance, i.e., time and accuracy, and increase code misunderstandings.
However, empirical knowledge of the impact of such atoms on code comprehension is still
scarce, especially when it comes to analyzing that impact on developers’ visual attention.
The present study evaluates whether developers misunderstand the code in the presence
of atoms of confusion with an eye tracker. For this purpose, we measure time, accuracy,
and analyze the distribution of visual attention. We conduct a controlled experiment with
30 students and software practitioners. We ask the subjects to specify the output of three
tasks with atoms and three without atoms randomly assigned using a Latin Square design.
We use an eye-tracking camera to detect the visual attention of the participants while
solving the tasks. From an aggregated perspective, we observed an increase by 43.02% in
time and 36.8% in gaze transitions in code snippets with atoms. Also, we observed an
increase of 163.06% in the number of regressions when the atom is present. For accuracy,
no statistically significant difference was observed. We also confirm that the regions that
receive most of the eye attention were the regions with atoms. Our findings reinforce that
atoms hinder developers’ performance and comprehension. So, developers should avoid
writing code with them.

Keywords: atoms of confusion, eye-tracking.



List of Figures

Figure 1 – A transformation removing an atom of confusion (Conditional Operator). 19
Figure 2 – Design of the experiment using Latin squares. . . . . . . . . . . . . . . 22
Figure 3 – Structure of the experiment in terms of experimental units. We have

two Set of Tasks (ST1 and ST2) the comprehend Tasks 1 to 6 (T1, T2,
.., T6). Half of the tasks are with atoms (WA) and half with no atoms
(NA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4 – Code snippets with the three types of atoms evaluated in this study. At
the left-hand side, we have the atom of confusion (treatment group) and
at the right-hand side we have the same code with no atoms (control
group). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 5 – Admin area - List of Experiments. . . . . . . . . . . . . . . . . . . . . . 27
Figure 6 – Admin area - List of Experiments. . . . . . . . . . . . . . . . . . . . . . 28
Figure 7 – List of experiments registered in the tool. . . . . . . . . . . . . . . . . . 28
Figure 8 – User information (These information are optional). . . . . . . . . . . . 29
Figure 9 – Task presented to the participant. . . . . . . . . . . . . . . . . . . . . . 29
Figure 10 – Task Paused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11 – Task Response Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12 – Time to conclude the tasks. Aggregate = aggregation of all tasks; AV

= Assignment as Value; CO = Conditional Operator ; LACF = Logic as
Control Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 13 – Number of trials to conclude all tasks. Aggregate = aggregation of all
tasks; AV = Assignment as Value; CO = Conditional Operator ; LACF
= Logic as Control Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 14 – Logic as Control Flow - With atom vs. No atom. . . . . . . . . . . . . 35
Figure 15 – Assignment as Value - With atom vs. No atom. . . . . . . . . . . . . . 36
Figure 16 – Conditional Operator - With atom (top) vs. No atom. (bottom) . . . . 37
Figure 17 – AOI permanence graph and regressions for a Conditional Operator with

no atom (graph at the top) and with atom (graph at the bottom) of
one specific user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 18 – AOI permanence graph and regressions for a Assignment as Value with
no atom (graph at the top) and with atom (graph at the bottom) of
one specific user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 19 – AOI permanence graph and regressions for a Logic as Control Flow with
no atom (graph at the top) and with atom (graph at the bottom) of
one specific user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Figure 20 – AOI permanence graph and regressions for the first task with an Assign-
ment as Value (graph at the top) and another with this atom removed
with the execution of all subjects. The plots of all subjects are overlapped. 41

Figure 21 – AOI permanence graph and regressions for the second task with an
Assignment as Value (graph at the top) and another with this atom
removed with the execution of all subjects. The plots of all subjects are
overlapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 22 – AOI permanence graph and regressions for the first task with an Condi-
tional Operator (graph at the top) and another with this atom removed
with the execution of all subjects. The plots of all subjects are overlapped. 43

Figure 23 – AOI permanence graph and regressions for the second task with an
Conditional Operator (graph at the top) and another with this atom
removed with the execution of all subjects. The plots of all subjects are
overlapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 24 – AOI permanence graph and regressions for the first task with an Logic
as Control Flow (graph at the top) and another with this atom removed
with the execution of all subjects. The plots of all subjects are overlapped. 45

Figure 25 – AOI permanence graph and regressions for the second task with an
Logic as Control Flow (graph at the top) and another with this atom
removed with the execution of all subjects. The plots of all subjects are
overlapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



List of Tables

Table 1 – Examples of atoms of confusion. . . . . . . . . . . . . . . . . . . . . . . 18
Table 2 – Participants Characterization . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 3 – Summarizing Metrics. Bold font denotes a significant statistical difference

with a significance level of 5%. Signal ↑ corresponds to an increase with
atom while ↓ corresponds to a reduction. . . . . . . . . . . . . . . . . . 34



Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 BACKGROUND AND MOTIVATING EXAMPLE . . . . . . . . . . 17
2.1 Code Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Atoms of Confusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Eye Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 STUDY: CONTROLLED EXPERIMENT . . . . . . . . . . . . . . . 21
3.1 Study Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Experimental Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Execution and Data Analysis Procedures . . . . . . . . . . . . . . . . 24
3.3.1 Tool to collect the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . 31
4.1 RQ1: To what extent do atoms of confusion affect task completion

time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 RQ2: To what extent do atoms of confusion affect task accuracy? . 33
4.3 RQ3: To what extent do atoms of confusion affect the focus of

attention? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . 54

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



14

1 Introduction

Code comprehension is a critical activity in software development, especially in the
maintenance and evolution processes. Developers often have to deal with maintaining or
improving code that they did not write. To perform any modification in the code, first,
developers have to understand it. Indeed, a previous study showed that most of their time
is spent on code comprehension activities [1]. However, the comprehension process can
be hindered by aspects of the code that cause misunderstandings. For instance, previous
works [2–4] have successfully identified a set of tiny code patterns that contribute to the
increase of the time and effort necessary to understand the code correctly. Examples of
these small code patterns in imperative languages like C and C++, namely atoms of
confusion, include Conditional Operators, Comma Operators, Logic as Control Flow, among
others, and are often found in source code bases [5].

In a previous study [4], researchers conducted a controlled experiment to compare
the performance, i.e., time and accuracy, of participants when dealing with code with and
without atoms of confusion. They have shown that the presence of atoms of confusion makes
the code understanding more time-consuming and that, by removing them, participants
could understand the code with less effort. However, empirical knowledge on the impact of
such atoms on code comprehension is still scarce, given the difficulties in measuring code
comprehension [6]. On the other hand, the code comprehension field has been gaining new
insights from other dimensions besides time and accuracy with eye-tracking devices [6].
For instance, knowing which parts of the code receive more or less attention would give us
insights on the extent of the impact of such atoms on visual effort, which is a dimension not
considered before [4] or in any other study we are aware of. Although time and accuracy
are good estimators of code confusion, knowing precisely the regions that participants
paid attention allows us to have an even better estimation of their real effects. This way,
by adding this dimension, we can now triangulate it with the conventional measures time
and accuracy.

Given this scenario, we evaluate whether developers misunderstand the code in
the presence of atoms of confusion with an eye tracker. For this purpose, we measure
time, accuracy, and distinctly from other studies, we also analyze the visual effort given to
specific regions in the code. The triangulation of these dimensions allows us to understand
better the real effects of atoms of confusion in code comprehension and whether these code
snippets can make a difference in software maintenance tasks. Our research is inspired
by previous works that contact actual developers using source code repositories (e.g.,
GitHub) [7, 8] and by the aforementioned experiment [9]. Understanding the advantages
and disadvantages of removing atoms of confusion from the code is essential to guide the



Chapter 1. Introduction 15

development of new tools and improve programming practices on this front.

In this controlled experiment, we selected six functions from real open-source C/C++
systems of different domains containing atoms of three different types (Assignment as
Value, Conditional Operator, and Logic as Control Flow), being two functions for each type
of atom. We selected these atoms types because they are commonly found in industrial
practice [5]. We then manually refactored the code to remove the atoms from the functions
and to build our tasks. We also changed the function to remove several internal code
dependencies so that the function can get more straightforward, but we keep its primary
structure. We executed the experiment with 30 developers, including master and doctoral
students, and also with programmers already working in industry. The developers were
asked to read, understand, and specify the six tasks’ output, three of them with atoms and
three with no atoms. We used the Latin Square design to assign the tasks randomly and
minimize learning effects. We then measure the completion time of tasks, as well as the
number of incorrect answers. Besides, through the eye tracker, we captured the developers’
eyes coordinates while looking at the screen. This allowed us to build heatmaps, measure
the number of times that participants enter in a certain area of the code, measure the
number of gaze transitions, which are the transitions of the eyes from one location of
the code to another, and measure the number of regressions, which are the number of
times that the participant’s visual attention moves to previous code areas. To analyze the
regressions, we separated the code into three different areas, upper the area of interest, area
of interest, and lower area of interest; we have a regression any time the visual attention
gets back to an upper area in the code.

When analyzing all tasks together, we found that the presence of atoms of confusion
statistically significantly increased the time required to understand the code by 43.02%.
We could not find a statistically significant difference for accuracy. When analyzing the
tasks individually, two of the three analyzed atoms allowed us to observe a statistically
significant increase in time. Regarding accuracy, none of them showed statistically signifi-
cant differences. The heatmap analysis allowed us to confirm that the regions that receive
most of the attention are precisely the regions where the atoms are placed. The regions
with atoms have an increase of 36.8% gaze transitions. We also found that the regression
to the area of interest has an increase of 163.06% when analyzing functions that contain
atoms. These results confirm and add a new perspective to the previous study [4].

In conclusion, our findings reinforce that atoms of confusion cause confusion by
hindering developers’ performance and code comprehension. They make the maintenance
activity more time-consuming and require more visual effort. We also show that the
eye-tracking methodology seems to be promising, revealing a new perspective not seen in
previous works.

In summary, this study provides the following contribution: An empirical controlled



Chapter 1. Introduction 16

experiment to evaluate whether developers misunderstand the code in the presence of atoms
of confusion with the use of an eye tracker.

We organized this study as follows: Chapter 2 presents the background, covering
topics such as code comprehension and atoms of confusion. In this same chapter, we
present some motivating examples presenting snippets of code with atoms of confusion
that occurred in real projects. Chapter 4 presents the controlled experiment along with
results, discussion, threats to validity, and implications. Chapter 5 presents the related
work. Finally, Chapter 6 presents the conclusion and future works.



17

2 Background and Motivating Example

2.1 Code Comprehension
Code comprehension is one of the most critical tasks in software maintenance, mainly
due to the high costs associated with this task. In this work, we aim to bring another
perspective to analyze code comprehension. We hypothesize that the presence of atoms
of confusion has a negative impact on code comprehension, and to measure this, we
introduce the use of an eye-tracking camera. Program understanding is crucial in software
maintenance and evolution of [10] processes. As Rajlich mentions in [11]: “software that is
not comprehended cannot be changed.” Software comprehension is also essential in other
areas like documentation, visualization, program design, and other areas. In [12], Lakhotia
mentions an interesting thing about the code comprehension process. Software developers
do not need to know the entire program to work on a maintenance or improvement task.
They only need to understand the parts that make it possible for him to complete his task.
In this work, we provide a study on code comprehension regarding the named atoms of
confusion, which could be some of the “parts” mentioned by Lakhotia.

2.2 Atoms of Confusion
Gopstein [4] defines atoms of confusion as the smallest patterns in code that can cause
misunderstanding in programmers. He also defines the term confusion when a person and
a machine read the same piece of code and they come to different conclusions about its
output. Medeiros [5] named these patterns as Misunderstanding Patterns and show that
the majority of the patterns that they have analyzed are used in practice by developers in
open-source projects.

Table 2.2 shows 15 atoms of confusion found by Gopstein [3]. He mentions that
there is a significant increase in misunderstandings when they are present in code:

In another study [13], Gopstein performed an experiment and a qualitative analysis
to study why and how these atoms cause confusion, in addition to understanding whether
atoms cause confusion. Although atoms of confusion were first studied and cataloged using
the C programming language, there are some other studies focused on analyzing the atoms
of confusion in different programming languages.



Chapter 2. Background and Motivating Example 18

Atom Name Atom Example Transformed

Change of Literal Encoding printf("%d",013)
Encoding printf("%d",11)

Preprocessor in Statement int V1 = 1
#define M1 1 + 1;

#define M1 1 int
int V1 = 1 + 1;

Macro Operator Precedence #define M1 64-1
2*M1 2*64-1

Assignment as Value V1 = V2 = 3; V2 = 3; V1
V1 = V2;

Logic as Control Flow V1 && F2(); if (V1) F2();

Post-Increment/Decrement V1 = V2++; V1 = V2; V2
V2 += 1;

Type Conversion (double)(3/2) trunc(3.0/2.0)
Reversed Subscripts 1["abc"] "abc"[1]

Conditional Operator V2 = (V1==3)?2:V2 if (V1 == 3)
V2 = 2;

Operator Precedence 0 && 1 || 2 (0 && 1) || 2
Comma Operator V3 = (V1 += 1, V1) V1 += 1;

Pre-Increment/Decrement V1 = ++V2; V2 += 1;
V1 = V2;

Implicit Predicate if (4 % 2) if (4 % 2 != 0)
Repurposed Variables argc = 7; int V1 = 7;
Omitted Curly Braces if(V) F(); G(); if(V){F();}G(); V1

Table 1 – Examples of atoms of confusion.

2.3 Eye Tracking
Eye-tracking cameras are capable of tracking the exact position on the screen that the
user is looking at. Some studies have used such cameras in researches on different domains,
including program comprehension [14] [15] [16] [17].

Carpenter [18] studied reading comprehension tasks using an eye-tracking camera
and have drawn some interesting conclusions. For instance, he has found that “readers
make longer pauses at points where processing loads are greater,” and that “greater loads
occur while readers are accessing infrequent words, integrating information from important
clauses, and making inferences at the ends of sentences.” With this conclusion, he showed
that indeed there is a relation between text comprehension and visual attention. Regarding
code comprehension, Busjahn [19] conducted a study, also using an eye-tracking camera,
with 15 programmers in order to understand what influences the dwell time on source
code reading. He showed that developers focus most of their attention on understanding
identifiers, operators, keywords, and literals. Another critical point identified [19] is that
the fixation duration is highly influenced by word length, predictability, and frequency.
For instance, the less frequent a word is in the text, the longer the readers stay focused.



Chapter 2. Background and Motivating Example 19

2.4 Motivating Examples
Atoms of confusion frequently appear in open source repositories. A previous study on
their prevalence on 50 projects found more than 109 thousand occurrences of 11 out of 12
atoms types considered, including the ones we focus on this study: Assignment as Value,
Conditional Operator, and Logic as Control Flow [5].

Previous studies indicate that Atoms of Confusion can lead to code misunderstand-
ings. These misunderstandings, in turn, may lead to the introduction of bugs. In particular,
these problems may get worse when performing maintenance tasks on code [5].

Figure 1 – A transformation removing an atom of confusion (Conditional Operator).

Figure 1 illustrates two code snippets from functions printf written in C program-
ming language. The left-hand side snippet contains a function with an example of the
atom of confusion called Conditional Operator.1 Notice the two nested ternary operators.
At the right-hand side, a developer refactored the function to remove the Conditional
Operator atom by replacing it with a regular if-else statement.2

According to Gopstein et al. [3], there is empirical evidence that atoms of confusion
such as this one impact developers’ performance, causing misunderstanding, and that
their removal makes code easier to understand. However, to have an even more realistic
understanding of the impact of such atoms on code comprehension, we need to assess
other dimensions besides time and accuracy to draw more insights. In this scenario, eye
tracking devices come at hand to allow us to locate where and for how long subjects are
looking at the screen, in other words, which elements on the code drive their attention [17].
These devices have been used before in the code comprehension field (e.g., conditional
compilation with #ifdefs) along with time and accuracy to provide additional information
related to visual effort [16,20].
1 https://github.com/narnat/printf/commit/6b4f1fe6ef454f1a2c820e88582844151dcb8e6c
2 https://github.com/narnat/printf/commit/385233be85dd400fc17be255b529e5b0cf14e29b

https://github.com/narnat/printf/commit/6b4f1fe6ef454f1a2c820e88582844151dcb8e6c
https://github.com/narnat/printf/commit/385233be85dd400fc17be255b529e5b0cf14e29b


Chapter 2. Background and Motivating Example 20

Thus, to gather more information on how atoms impact code comprehension, we
use an eye-tracking camera to analyze how those atoms influence attention distribution.
By triangulating the time, accuracy, and focus of the developers, we can better understand
the atoms’ impact. For instance, it helps us to confirm whether the regions of the code
that receive most of the attention are the places where the atoms are positioned, how the
focus of attention changes interacting with code elements, and whether removing those
patterns alleviates developers’ effort from a visual perspective not considered in previous
works.



21

3 Study: Controlled Experiment

We now present our controlled experiment. We present the settings, experimental units,
and the discussion of results.

3.1 Study Settings
In this experiment, we analyze programs written in C with atoms of confusion and with no
atoms of confusion using an eye-tracking camera to investigate the effects of the presence
of the atoms concerning time, accuracy, and focus of attention in solving “specify correct
output” tasks from the point of view of developers in the context of code comprehension.

We focus on the following research questions:

• RQ1: To what extent do atoms of confusion affect task completion time? To answer
this question, we measure the total time developers need to solve each task. Thus,
our first null hypothesis (H10) is: there is no significant difference between time
required to understand code with no atoms of confusion (the control treatment) and
code with atoms of confusion (the treatment under investigation);

• RQ2: To what extent do atoms of confusion affect task accuracy? To answer this
question, we measure the number of errors committed by developers while solving
the task. Thus, our second null hypothesis (H20) is: there is no significant difference
in the number of errors committed by developers when understanding code with no
atoms of confusion (the control treatment) and code with atoms of confusion (the
treatment under investigation).

• RQ3: To what extent do atoms of confusion affect the focus of attention? We measure
the number of gaze points captured using an eye tracking system and generate
heatmaps. The heatmaps of the aggregated tasks solved by the developers help us to
visualize possible differences on attention. Our third null hypothesis (H30) is: there
is no significant difference in the number of gaze points when analyzing code with no
atoms of confusion (the control treatment) and code with atoms of confusion (the
treatment under investigation). In addition, we measure the number of gaze points
inside the area of the atom of confusion and compare it with the number of points
in the region modified to remove the atom.

Since we are comparing two treatments (with atom vs. no atom), in case we reject
the null hypothesis, we only have to compare the mean value of the control and treatment



Chapter 3. Study: Controlled Experiment 22

observations to estimate the effect of the atoms of confusion on code comprehension tasks.

We use a latin square design of order two with replicas [21] in our experiment, mainly
because our goal is to compare two treatments and block two variables: (a) participant
skill and engagement; and (b) two sets of comprehension tasks. This design is widely used
for experiments with these characteristics because it blocks the two sources of variability
and each treatment appears in each Latin Square line. Using this design, we control or
eliminate these two variability sources [21]. All participants will perform all treatments,
each in a different and randomized order. In other words, this design helps us to avoid,
for example, the effects of the different subjects’ knowledge and background experience.
Each Latin Square replica comprises two participants (randomly assigned to the rows
of the squares) and two sets of comprehension tasks (representing the columns of each
square, i.e., ST1 and ST2). Each set of tasks has three tasks, one containing a Logic as
Control Flow, one containing an Assignment as Value, and one containing a Conditional
Operator. Figure 2 presents the design of our experiment. These three kinds of atoms
were chosen due to their big prevalence in open source repositories. All of them are part
of the Gopstein [4] catalog and were also analyzed by Medeiros [5]. Still, according to
Medeiros [5] all of these three atoms appear at least in more then 50% of the repositories
analyzed by him. He found occurrences of Conditional Operator in 98% of the repositories,
Assignment as Value in 94%, and Logic as Control Flow in 50%.

Figure 2 – Design of the experiment using Latin squares.

We also randomly set the treatments that each participant should use in ST1 and
ST2. For example, the fourth participant of Figure 2 should analyze ST1 functions with
atoms of confusion (WA) and ST2 functions with no atoms of confusion (NA) in this order.

This design uses randomization to assign the participants to the squares and assign
the treatments to the cells of each square. Each treatment appears once in each row and
column. This way, we block the two sources of variability: the participants and the two
sets of tasks [22,23]. The design also leads to one replica for each Latin Square (increasing
the number of errors’ degrees of freedom) [24].



Chapter 3. Study: Controlled Experiment 23

3.2 Experimental Units
In total, 30 subjects participated in the experiment. Among them, masters and doctoral
students at the Pontifical Catholic University of Rio de Janeiro and other software
development practitioners working on projects at different sectors of the same university.
Although we have used code structures common to most programming languages, one
of the criteria for participating in this experiment was that the participant had prior
knowledge in at least one of the following programming languages: C, C++, or Java,
regardless of the level of expertise. In table 2 we show the number of participants by
academic degree and their range of experience by years and number of projects.

Table 2 – Participants Characterization

Subjects (n = 30)
Academic degree Count Percentage
Undergraduated 9 30
Master 17 56,6
Doctor 4 13,3
Experience Range Median
Years 1 - 40 6
Number of Projects 0 - 50 7,5

Initially, we recruited 33 subjects. These subjects were randomly organized in an
initial set of 17 Latin Squares. However, we had to discard 3 of them. First, we discarded
the last square because we could not run the experiment with one more subject to complete
the last square. Then, we discarded another subject because he answered the cell phone
while participating in the experiment. This way we also had to discard the other participant
on his Latin Square.

For the experiment execution, we have prepared a laptop with a system that was
developed to control the experiment’s execution flow. The system is a web application
written in Python using the Django Web Framework. All captured data was stored in a
PostgreSQL database to posterior analysis. Each task was also stored on that database,
and the system showed the functions to the participants automatically when they finish a
task based on the previous Latin Squares randomization. Figure 3 illustrates our setup. It
shows the two possible configurations depending on the Latin Squares randomization. The
first configuration should be presented to the participants who (a) solve the first set of
tasks (ST1) comprising code with atoms of confusion; and (b) solve the second set of tasks
(ST2) comprising code with no atoms of confusion. Both sets contain three tasks: that is,
ST1 contains the tasks T1, T2, and T3, while ST2 contains the tasks T4, T5, and T6. In
the second configuration, we invert our treatments, according to the Latin square design
(Figure 3).



Chapter 3. Study: Controlled Experiment 24

T1 Assignment as a Value

With Atom
(WA)T2 Conditional Operator

T3 Logic as Control Flow

T4 Assignment as a Value

No Atom
(NA)T5 Conditional Operator

T6 Logic as Control Flow

WA NA

NA WA

ST1 ST2

T1 Assignment as a Value

No Atom
(NA)T2 Conditional Operator

T3 Logic as Control Flow

T4 Assignment as a Value

With Atom
(WA)T5 Conditional Operator

T6 Logic as Control Flow

Figure 3 – Structure of the experiment in terms of experimental units. We have two Set
of Tasks (ST1 and ST2) the comprehend Tasks 1 to 6 (T1, T2, .., T6). Half of
the tasks are with atoms (WA) and half with no atoms (NA).

To create the tasks for the experiment, we mined the code of open source projects
to find functions containing atoms of confusion. The selected functions were adapted and
simplified to make them self-contained and fit them to the scope of our research, as well
as to reduce the time required for completion by participants. We have tasks with three
different types of atoms (see Figure 4): Assignment as Value, Conditional Operator, and
Logic as Control Flow. Each task has one or more printf statements; the assignment for
each participant is to specify the correct output to be printed on the standard output when
the function is executed. We have selected six functions in total, and for each selected
function, we created a refactored version to remove the atom of confusion and use it as a
control treatment group. Altogether, we have prepared 12 comprehension tasks: six with
atoms of confusion and six with no atoms of confusion.

3.3 Execution and Data Analysis Procedures
We first randomly assigned the treatments (With Atom × with No Atom) to the 15 Latin
square replicas. This assignment was done automatically by the previously mentioned
system. We created a script to generate the Latin Squares and assign the treatments ran-
domly. When a new participant starts the experiment execution, the system automatically
assigns him to the next available row in the Latin Square’s list. Before starting the tasks,
for each participant, the eye-tracking device is re-calibrated in order to make it as accurate
as possible. This procedure is required because the calibration varies according to both the
physical characteristics of the participant and other external characteristics such as the
use of glasses, positioning, and distance of the chair relative to the computer, participant’s
height, among others. We have plugged the device at the bottom of the laptop’s screen



Chapter 3. Study: Controlled Experiment 25

int flag = c1 = c2 = c3 != 1;
c2 = (c3 != 1);
c1 = c2;
int flag = c1;

Assignment as Value Atom No Atom

int number4 = number1 < 1 ? number1 : 
(number2 > 5 ? number2 : number3);

if (number2) {
   if (number1 < 1) {
       number4 = number1;
   } else {
       if (number2 > 5) {
           number4 = number 2;
       } else {
           number4 = number3;
       }
   }
}

Conditional Operator Atom No Atom

if (number && is_even(number)) {
   printf (“Sim: %d”, number);
} else {
   printf (“Não: %d”, number);
}

int isEven = is_even(number);
if (number && isEven) {
   printf (“Sim: %d”, number);
} else {
   printf (“Não: %d”, number);
}

Logic as Control Flow Atom No Atom

Figure 4 – Code snippets with the three types of atoms evaluated in this study. At the
left-hand side, we have the atom of confusion (treatment group) and at the
right-hand side we have the same code with no atoms (control group).

to capture the points where the participant is looking on the screen. Then, the captured
eye gaze points were stored in a database. Before executing the two sets of tasks, each
participant completed a Warm-Up with just two very simple and straightforward functions
that did not contain any atom of confusion to understand how the flow of the experiment
works and get acquainted with the eye tracker equipment setup.

Once the Warm-Up is successfully done, the system allows the participant to
execute the main tasks. When a participant believes to have a correct answer, he or she
should click anywhere on the screen, and the system will pause the experiment and show
a screen that allows him or her to submit the answer.

If the participant’s answer is wrong, the system increments the error count for this
execution and allows the user to get back to the task or enter a new answer. Once the
participant provides the correct answer, the system allows him or her to go to the next
task. During the execution of the tasks, the participants are allowed to pause anytime
by clicking anywhere on the screen. The system collects the start and end time for the



Chapter 3. Study: Controlled Experiment 26

execution of each task as well as for the complete experiment. It also stores the number of
wrong answers, the number of pauses and their duration, each provided answer, and the
points collected by the eye tracker device. We considered the execution completed only
when all tasks are correctly solved.

We proceeded with an exploratory data assessment and tested the hypotheses
introduced in Section 3.1. Since our dataset does not follow a normal distribution, we
used the Kruskal-Wallis test. Kruskal-Wallis is a nonparametric test that can be used to
determine if there are statistically significant differences between two or more groups of
an independent variable on a continuous or ordinal dependent variable, as we detail in the
next section.

We analyzed the eye gaze perspective using a graphical representation, namely
the heatmaps, and measured the number of gaze transitions, along with other metrics
associated with how gaze points are located inside or move between regions of the code.
Heatmaps are static graphical representations in colors, and the intensity of the color
represents the concentration of gaze points over a particular area. We aggregated the
heatmaps of the same task performed by 15 distinct participants. The number of gaze
transitions adds a more dynamic perspective of analysis, expressing how many transitions
of the focus of attention occurred in the code. The eye tracker camera captures about
80 sample points per second, and tasks took from a few seconds to a few minutes to be
answered. To ease the analysis, we computed the median of the coordinates x and y of
these 80 points in one second. This coordinate is the focus of attention per second. The
transitions of the eyes from one focus to another is the gaze transition. We analyzed the
chronological sequence of the focus points in the code lines of all participants in the same
task. To simplify the analysis, we considered only transitions that occur at least 1/3 times.
That is, at least 1/3 of the participants must have performed the same transition allowing
us to observe a pattern.

3.3.1 Tool to collect the data

To perform this experiment, we developed a web application in Python using the Django
Framework. This application controls the flow of the experiment and collects all the
necessary data to extract our metrics. This tool collects the duration of each task and the
duration of pauses done by the participant, the number of responses given and whether
they were correct or incorrect, and the points on the screen where the participant looked
during the execution of the experiment. The tool includes an administration area that
allows us to set up all the experiments and tasks. Figure 5 and Figure 6 show the list of
experiments and the details of an experiment respectively in this admin area.

It is also responsible for randomizing the Latins Squares. When a new experiment
is created in the tool, a default quantity of Latin Square is informed, and the tool creates



Chapter 3. Study: Controlled Experiment 27

Figure 5 – Admin area - List of Experiments.

the structure for them. When a participant starts the experiment, the tool allocates him
in a row in the next Latin Square with available space. If we perform the experiment
with a number of participants higher than expected, the tool automatically creates a new
randomized Latin Square to allocate the new participants.

Figure 7 shows the first screen of the tool. This screen shows a list of all existing
experiments to allow the participant to select the experiment that he is going to perform.

Figure 8 show the next screen, where we ask the name and email of the participant.
We clarify to the participant that these information is optional and that he does not need
to inform if he does not want to.

After the participant informs his name and email, we start the tasks. Figure 9 is
an example of the screen with a task from our warm-up tasks. We tried to show the code
that looks as similar as possible as the participant is used to work in their day-to-day.

When the participant thinks he knows the right answer, he can click on any point
of the screen, and the tool will pause the execution as showed in Figure 10. We collect the
start and end time of each pause to remove this duration from the execution’s total time
and remove the collected eye tracking points on this interval. On this screen, the user has
two options: getting back to the task or providing an answer.

If the participant clicks to provide an answer, we show a modal screen (Figure 11)
to collect his answer. If the participant provides the correct answer, we show him the next



Chapter 3. Study: Controlled Experiment 28

Figure 6 – Admin area - List of Experiments.

Figure 7 – List of experiments registered in the tool.

task until he answers all the tasks allocated for him. If he provides the wrong answer, we
allow him to get back to the task and provide a new answer anytime. All answers are
stored in the database, whether they are correct or incorrect.



Chapter 3. Study: Controlled Experiment 29

Figure 8 – User information (These information are optional).

Figure 9 – Task presented to the participant.

Figure 10 – Task Paused.



Chapter 3. Study: Controlled Experiment 30

Figure 11 – Task Response Form.



31

4 Results and Discussion

In this section, we present the results of our research questions along with a discussion.1

4.1 RQ1: To what extent do atoms of confusion affect task com-
pletion time?

We analyze our data under two perspectives: from an aggregated perspective, i.e., all the
three types of atoms together, and individual perspective, i.e., each atom type separately.
The boxplots of Figure 12 shows some descriptive statistics related to the total time spent
by the participants to conclude the different tasks on both perspectives. We perform a
comparison between the control group, i.e., with No Atom, and treatment group, i.e., With
Atom. Some relevant information could be drawn from this figure.

The Aggregate boxplot represents an aggregation of the tasks, either with atoms or
with no atoms. Under the aggregated perspective, the total time median when analyzing
code with atoms of confusion (294.5 seconds) is 65.4% greater than the median when
analyzing code with no atoms of confusion (178 seconds). The observations related to
the total time to conclude all tasks, when analyzing code with no atoms of confusion, lie
between 74 and 778 seconds; in contrast, the observations when analyzing code with atoms
of confusion lie between 91 and 736 seconds. There is only a small overlapping between
the two “boxes”, which leads to some evidence that understanding code with atoms of
confusion is more time consuming than understanding code with no atoms of confusion.

We tested our first null hypothesis and found evidences for rejecting it (p−value =
0.001972 < 0.05 = α). This leads to the first conclusion of this study.

Under an individual perspective, considering the hypothesis test for each type
of atom of confusion separately, we found diverging results. Two atoms of confusion
allowed us to reject the null-hypothesis H10, particularly, the atoms Assignment as Value
(p-value = 0.008) and Logic as Control Flow and (p−value = 0.0001). In both cases, they
favored the code with no atoms.

Even though the size of the code can interfere in time, making it longer to look at
more elements is not necessarily true. For instance, in Figure 4, the number of elements
added to remove the atoms is considerably higher, especially in the Conditional Operator.
The code with atom usually has longer lines with more operations, but its corresponding
version with no atom has a higher number of lines. These results suggest that, by removing
1 All results are available at the GitHub repository website: https://github.com/

easy-software-ufal/Atoms-of-Confusion-Experiment-Data

https://github.com/easy-software-ufal/Atoms-of-Confusion-Experiment-Data
https://github.com/easy-software-ufal/Atoms-of-Confusion-Experiment-Data


Chapter 4. Results and Discussion 32

Figure 12 – Time to conclude the tasks. Aggregate = aggregation of all tasks; AV =
Assignment as Value; CO = Conditional Operator ; LACF = Logic as Control
Flow.

the atom, the developers tend to achieve slightly higher productivity, even in longer-code
with more elements. The slight increase in the time for the Conditional Operator with no
atom can be explained by the relatively large amount of code added to remove such atom
(see Figure 4b).

All the three evaluated atoms were present in the catalog of Gopstein et al. [4]
and were evaluated by them. The only atom that showed distinct results from theirs was
the Conditional Operator, which in their work showed to be confusing with statistical
differences, but we could not observe such effect. The discrepancy might be due to other
factors involved, such as methodology. Our methodology is distinct from theirs in some
aspects. For instance, we have used code from real projects, we assigned fewer tasks to
participants, and the participants were not exposed to the same code with atom and with
no atom. Besides, in our case, there is also a possibility that both codes with and with
no atoms are confusing due to nesting. The fact is that in the version with no atom, for
Conditional Operator, we have many more lines of code, which can affect time.

Previous studies have investigated the prevalence of atoms on real projects. Among
the investigated atoms, Conditional Operator, Logic as Control Flow, and Assignment
as Value were on the top seven of the most frequent atoms in projects according to
Gopstain et al. [3]. On Medeiros et al. [5], Conditional Operator and Assignment as Value
were found on the top three most commonly used. Given that Conditional Operator is
commonly used on both evaluations, and we found contrasting results with Gopstain et
al. [4] regarding its real effects, we need more studies on this topic. According to Medeiros
et al. [5], participants accepted patches to remove the three evaluated atoms in this study.



Chapter 4. Results and Discussion 33

However, at least a patch of each atom was also rejected.

Finding 1. The presence of atoms of confusion increases 43.02% in time required to
understand code correctly.

4.2 RQ2: To what extent do atoms of confusion affect task accu-
racy?

We followed a similar approach to investigate the second hypothesis, which relates to
answers correctness or accuracy when analyzing code with atoms of confusion. We first
carry out an exploratory data analysis. Figure 13 shows boxplots that present some
descriptive statistics related to the number of submitted answers to conclude all tasks
under an aggregated and individual perspective. Under an aggregated perspective, which
is the Aggregate boxplot, the median number of answers when analyzing code with atoms
of confusion is the same when analyzing code with no atoms of confusion, which is 1. This
result means getting the task solved on the first try. They only differ in terms of discrepant
values. The same applies to the atoms individually. Consequently, we cannot infer a sound
conclusion about our second hypothesis H20 by only observing accuracy alone.

Figure 13 – Number of trials to conclude all tasks. Aggregate = aggregation of all tasks;
AV = Assignment as Value; CO = Conditional Operator ; LACF = Logic as
Control Flow.

One main reason why conclusive results could not be obtained by analyzing accuracy
alone may rely on the fact that we have used very simple tasks, with small pieces of code
with a few operations. Thus, the number of submitted answers did not vary so much. In



Chapter 4. Results and Discussion 34

Gopstein et al [4], for instance, even though the tasks were also small, the number of tasks
answered by participants was higher.

Finding 2. The presence of atoms of confusion does not impact on accuracy, differently
from a previous study [4].

4.3 RQ3: To what extent do atoms of confusion affect the focus
of attention?

By the distribution of visual attention of the developers and how the focus of attention
change over distinct code elements, we can infer whether a particular code element is
confusing. The distribution of attention can be assessed by the analysis of heatmaps. The
colors in the heatmap represent the relative concentration of gaze points over an area, and
the higher the amount of points on it, the more intense the color gets. In other words: if
the participant spotted a region for too long, that region is likely to get an intense color,
which is an indication that the attention was directed to that area. Previous works have
showed that atoms can cause confusion [4, 5]. Thus, if the atom of confusion areas require
more attention from the participants, those areas are likely to appear on more intense
colors on the heatmaps, which is a phenomena we are interested in investigating. Most
importantly, we aim to verify the extent of the impact of the atoms on the attention of
the participants. To get more insights on this matter, we separated the areas of interest
to perform a more specific analysis. We have defined these Areas Of Interest (AOI) as
the lines of code where the atom of confusion is present, and correspondingly, lines of the
version with no atom. In Figure 4, we present the areas of interest in the code, which are
the areas in which both codes differ.

Table 3 – Summarizing Metrics. Bold font denotes a significant statistical difference with
a significance level of 5%. Signal ↑ corresponds to an increase with atom while ↓
corresponds to a reduction.

Atoms Time Errors Points in AOI Entries in AOI Gaze Trans.
AV ↑ 66.05% ↑ 46.7% ↓ 34.5% ↑ 17.9% ↑ 15.7%
CO ↓ 28.9% ↓ 9.3% ↑ 85.0% ↑ 121.2% ↑ 93.7%
LACF ↑ 91.7% ↑ 16.3% ↑ 26.2% ↑ 36.7% ↑ 22.7%
Aggregated ↑ 43.0% ↑ 16.2% ↑ 20.6% ↑ 49.3% ↑ 36.8%

In Figures 14, 15, and 16, we see a comparison of the three heatmaps, one of
each evaluated atom, showing how the attention is distributed over different parts of the



Chapter 4. Results and Discussion 35

program relative to time spent by the developers. In the heatmaps, blue (cold) areas are
areas of the code that did not receive much attention while red (hot) areas represent the
areas that received most of the attention. Each heatmap is an aggregation of individual
heatmaps of the participants who performed the same task.

In Figure 14, we have a more clear distinction in the heatmaps for Logic as Control
Flow atom. We observe that the attention is mainly focused on one main region where the
atom is located while when the atom is refactored, the developers directed their attention
to two main regions, causing a higher distribution of attention over distinct parts. With
atom, the total time was increased by 91.7% and, in it, participants focused the area of
the atom with 26.2% more points. Participants also needed to enter the atom area 36.7%
more and performed 22.7% more transitions. Those numbers give us and indication that
code with atom is more confusing.

Figure 14 – Logic as Control Flow - With atom vs. No atom.

In Figure 15, we could not observe so much difference in the heatmaps for the
Assigment as a Value atom. The developers tend to focus their attention on the atom
region. When the atom is refactored, the developers focus on the relative lines of code
that are extracted. However, we observe that the attention is more restricted and focused
on a relatively smaller area at the right-hand side of the heatmap compared to a more
sparse at the left-hand side. It is important to emphasize that the color intensity is relative
to the amount of time to solve the code. However, according to Table 3, with atom, the
time spent in the code increases along with errors. Gopstein et al. [4] have showed that
this atom causes confusion, and by intense color on the atom area, we conclude that the
participants are focusing on it because they are confused. However, in our results, the



Chapter 4. Results and Discussion 36

number of points in this area is actually decreased by 34.5% which means that other parts
of the same code were also confusing. This conclusion is supported by that fact that we
have 17.9% more entries in atom area and 15.7% more transitions in the code.

Figure 15 – Assignment as Value - With atom vs. No atom.

In Figure 16, at the top, we observe that the attention is distributed more hori-
zontally while at the bottom, vertically, given the disposition of the refactored code. The
visual difference is not so clear, however, in terms of the concentration of points in the
area of interest, there is a clear difference. Gopstein et al. [4] showed that the atom causes
confusion but, in our results, time and accuracy did not support those results. However,
the eye gaze metrics indeed support those results. There is a higher concentration of points
on the atom region, 85% more points, according to Table 3, which means that the atom
region requires more attention. In addition, there is a statistically significant increase by
121.2% in entries in the atom area, which supports confusion associated with that area.
It also does not seem to help understanding other parts of the code since we have 93.7%
more transitions with atom.

Now, we compare the entries and exits in AOI for one specific user executing the
tasks for the same kind of atom and their corresponding refactored version. Figure 17
compares the execution performed by such user considering the task with a Conditional
Operator and its corresponding refactored version. The x-axis is the timeline in percentage



Chapter 4. Results and Discussion 37

Figure 16 – Conditional Operator - With atom (top) vs. No atom. (bottom)

and the y-axis represents the critic region, basically with three points: upper the critical
region, inside the critical region, and lower the critical region. We perform the same analysis
for Assignment as a Value in Figure 18, and for Logic as Control Flow in Figure 19.

The code with the Conditional Operator atom required, on average, less time to be
solved but more visual effort due to some reasons. We analyze the focus of visual attention
and code regressions. These transitions represent the inputs and outputs in the atom area,
the AOI (see Figure 17). With no atom, the participant makes fewer transitions, going up
and down less often, with about 5 long peaks, and 2 of them touching the AOI in about
20 seconds. However, when considering the code with an atom, the participant stays in the
AOI for about 41 seconds against only 22 seconds for the function with no atom. We can
see that for the code with atom the participant needs to make much more transitions going
back and forth more often, with about 5 long picks in the area of interest. The increased
number of transitions may indicate the need for a higher visual effort. We call regression
the number of times the user needs to get back to some previous code part. The high
number of regressions is also an indication of confusion since the participant had to get
back to parts of the code already read many times. Thus, the permanence analysis in the
AOI, such as the number of regressions, may indicate a symptom of confusion introduced



Chapter 4. Results and Discussion 38

by the atom.

Figure 17 – AOI permanence graph and regressions for a Conditional Operator with no
atom (graph at the top) and with atom (graph at the bottom) of one specific
user.

Figure 18 shows the inputs and outputs in AOI for a user performing the tasks with
an Assignment as Value. This figure shows a similar pattern when compared to Figure 17,
where the participant needs to make much fewer transitions when performing the task
with no atom. It also has about 5 long peaks, and 2 touching the area of interest less than
20 seconds. When comparing to the same task when the atom is present, although the
participant keeps his visual attention in AOI, he had to go back and forth many times,
which might indicate confusion, since the subject had to get back to code already read
some times.

In Figure 19 we perform the same analysis presented in Figure 17 and Figure 18.
However, at this time, we focus on the Logic as Control Flow atom. Again we can see the
same pattern where we have fewer transitions and regressions for the task with no atom
and a higher number of transitions and regressions for the task with an atom. We can also
see that, in this case, the subject spent twice as much time to perform the task with atom
than the task with no atom. The user also keeps his visual attention much more time at
the AOI.



Chapter 4. Results and Discussion 39

Figure 18 – AOI permanence graph and regressions for a Assignment as Value with no
atom (graph at the top) and with atom (graph at the bottom) of one specific
user.

After analyzing the executions of one specific user, we now analyze all the executions
(from all participants together) for every single task. To do so, we consider the execution
of each subject and plot all the graphs on top of each other (i.e., we overlap all plots). As
in the previous graphs, the x-axis is the time in percentage and the y-axis represents the
critic region.

Figure 20 shows this analysis for the first task containing an Assignment as Value
(graph at the top) and its corresponding refactored task (graph at the bottom). The
smaller number of blank areas indicates the greater number of entries and exits in the
critical area, confirming the previous graphs’ pattern, presented in Figures 17, 18, and 19.
We can see that the graph with code data without an atom has more blank areas than the
graph of code analysis with an atom. The same pattern can be observed in Figure 21 that
shows the entries and exits in AOI for the second task of this same atom (Assignment as
Value). We can observe that in the graph for the code with no atom, a higher number of
blank spaces indicates a smaller number of entries and exits from the critic region.

Figures 22 and 23 present the same analysis for the tasks containing the Conditional
Operator atom. In Figure 22 we can see the pattern found in the previous ones more



Chapter 4. Results and Discussion 40

Figure 19 – AOI permanence graph and regressions for a Logic as Control Flow with no
atom (graph at the top) and with atom (graph at the bottom) of one specific
user.

clearly, where the participants performed much more transitions and regressions to the
area of interest when analyzing code with an atom. The graph with no atoms has some
significant blank spaces between the transitions entering and leaving the critic region. In
contrast, the graph for the task with atoms contains smaller blank spaces.

We now analyze the Logic as Control Flow atom (see Figures 24 and 25). For the
first task, we cannot see the same pattern from the other tasks. We have fewer significant
blank spaces, and both graphs look similar. However, for the second task (Figure 25), the
graphs are different, and we can see that the task with atom has more entries in the critic
region.

Finding 3. The presence of atoms of confusion increases in 36.8% the number of gaze
transitions, 49.3% the number of entries in AOI, 163.06% the number of regressions to
AOI, and 20.6% the number of points in AOI.



Chapter 4. Results and Discussion 41

Figure 20 – AOI permanence graph and regressions for the first task with an Assignment
as Value (graph at the top) and another with this atom removed with the
execution of all subjects. The plots of all subjects are overlapped.



Chapter 4. Results and Discussion 42

Figure 21 – AOI permanence graph and regressions for the second task with an Assignment
as Value (graph at the top) and another with this atom removed with the
execution of all subjects. The plots of all subjects are overlapped.



Chapter 4. Results and Discussion 43

Figure 22 – AOI permanence graph and regressions for the first task with an Conditional
Operator (graph at the top) and another with this atom removed with the
execution of all subjects. The plots of all subjects are overlapped.



Chapter 4. Results and Discussion 44

Figure 23 – AOI permanence graph and regressions for the second task with an Conditional
Operator (graph at the top) and another with this atom removed with the
execution of all subjects. The plots of all subjects are overlapped.



Chapter 4. Results and Discussion 45

Figure 24 – AOI permanence graph and regressions for the first task with an Logic as
Control Flow (graph at the top) and another with this atom removed with
the execution of all subjects. The plots of all subjects are overlapped.



Chapter 4. Results and Discussion 46

Figure 25 – AOI permanence graph and regressions for the second task with an Logic as
Control Flow (graph at the top) and another with this atom removed with
the execution of all subjects. The plots of all subjects are overlapped.



Chapter 4. Results and Discussion 47

4.4 Threats to Validity
We now discuss potential threats to the validity of our controlled experiment. We distinguish
between the threats using the classification of Wohlin et al. [25].

Conclusion Validity. Since our data do not follow a normal distribution, our
hypotheses tests are based on a nonparametric test named Kruskal-Wallis. The Kruskal-
Wallis test can be used to determine if there are statistically significant differences between
two or more groups of an independent variable on a continuous or ordinal dependent
variable. Regarding the reliability of our measurements, the participant’s eyes can gaze
over areas out of the screen or out of the code, and the eye tracker can still capture those
points. We observed, by analyzing the generated heatmap, that some participants tend to
look into emptiness sometimes when they are thinking. However, this situation is likely
to occur in both treatments, i.e., with atoms and with no atoms. Regarding the points
captured, techniques are commonly employed to reduce their number, which the literature
refers to as fixations. We did not reduce their number, but the raw data points can also
be used to generate the heatmaps once they show the density of concentration of such
points over distinct areas.

Internal Validity. There were some other threats to validity in this study that
we realized during the experiment execution, such as the rotating chair used by the
participants. This rotating chair can lead the eye tracker device to lose contact with the
participants’ eyes. Nevertheless, we minimized this threat because we calibrated the eye
tracker device for each participant right before the execution of the experiment. The
potential different luminosity between the two rooms environments we used to execute
the experiment can also be considered a threat, since they can change the sensibility of
eye-tracking and expose different conditions to participants. To minimize this threat, we
closed all curtains in both rooms to avoid the external luminosity. In addition, the size of
the font and style might have an influence on the participant’s attention. To mitigate this
threat, we have chosen a popular font style as well as a size that fits the screen. All tasks
are displayed in the same font size, highlighted with a light theme, and no bold font, to
mitigate possibles effects. The time duration of the whole experiment can also influence
visual effort if it is too long. We mitigated it by using simple and only a few tasks to not
let participants tired.

Construct Validity. Our controlled study can involve threats regarding mono-
operation bias or possible effects of interaction between treatments. To deal and control
these threats, we employed in our experiment the Latin Square design.

External Validity. In our experiment we have used programs written in the C
language, which might restrict the generalization capacity to other languages. However, we
used simple code snippets with constructs incorporated in several programming languages,



Chapter 4. Results and Discussion 48

such as variable declarations and assignments and if-else statements. Additionaly, we
cannot generalize the results of our experiment to other code comprehension scenarios—
although we explored three different types of atoms of confusion: Assignment as Value,
Conditional Operator, and Logic as Control Flow. Moreover, we cannot generalize our results
to the population of professional developers since most of our experiment participants
were graduate students. However, some studies argue in favor of using students to conduct
controlled experiments [2, 26]. Our strategy in this study was to conduct an empirical
experiment that initially consisted of a seek on open source repositories to find candidate
functions to the experiment; then we created a complete environment to make it possible
to execute the experiment with the least possible interaction, and then the experiment
allowed us to better understand some causal relationships of code comprehension of code
containing atoms of confusion. This work aims to validate preexisting works favoring
internal validity.



Chapter 4. Results and Discussion 49

4.5 Implications
Our results reveal and reinforce what a previous study has been claiming. From an
additional perspective which includes eye tracking, the presence of atoms can confuse,
affecting developers’ productivity, making them to spend more time and to misjudge code
behavior, and bringing effects to their attention, which makes them to focus on the atom
regions.

The catalogs of atoms of confusion created by previous works are not yet widespread
among software developers. Thus, developers need to be aware of any possible atoms of
confusion which appear as bottlenecks in code comprehension. This way, we invite and
suggest the community to give a greater diffusion of these atoms and the negative effects
of their presence on the code.

These results also motivate the development of plugins and tools in IDEs and code
editors that can make it easier for programmers to detect and refactor atoms of confusion
in the code. A good practice is also to make project managers and senior developers more
concerned about these atoms to be more restrictive when doing code reviews and accepting
contributions (e.g., merging pull requests in GitHub) from other developers.

The methodology we adopted by using an eye tracker to assess visual attention has
shown to be a promising alternative to analyzing code comprehension in the presence of
atoms of confusion. It reveals how a particular atom can change the amount or direction
of the attention, its distribution, and on this perspective, we have a more realistic idea of
the impact of atoms on the code. The eye perspective is not explored by previous works in
the context of atoms of confusion.

Last but not least, in this work, we have found empirical evidence that atoms
of confusion can cause code misunderstandings and that some types of atoms are more
prejudicial than others. Thus, we encourage researchers, the academic community, and
practitioners to conduct more controlled experiments, specially considering types of atoms
of confusion not explored in this study.



50

5 Related Work

Code comprehension is a frequently explored domain in computer science, particularly
in the software engineering field, since a significant portion of the maintenance effort is
dedicated to understanding existing software. A considerable amount of effort to properly
understand code can be a problem not only for the business environment but also for
education since code comprehension tasks are widely used in assessments, mainly in the
first years of graduation [27,28].

Regarding code comprehension, some prior works [3–5] have studied some particular
small code patterns which have a big potential to make the code harder to understand,
leading to code misunderstandings. These code patterns were named atoms of confusion [3,
4], or misunderstanding patterns [5]. Such code patterns can even lead to the introduction
of bugs [3, 5]. Medeiros et al. [5] have exposed a case of bug introduction related to the
atom of confusion Dangling Else in a function used on a codec library called OpenH264
for which they have submitted a pull request removing this bug.

Gopstein et al. [4] have performed an experiment with 73 participants and showed
empirically that these atoms of confusion could lead to a significantly increased rate
of misunderstanding when compared with code without atoms of confusion. As they
affirmed [4], people and machines often draw different conclusions about the behavior of
a piece of code. These different conclusions can naturally lead to bugs. Still, according
to Gopstein et al. [4], atoms of confusion can also cause diminished productivity, faulty
products, and higher costs. They have also cataloged 15 atoms of confusion and provided
a methodology for empirically deriving these complex atoms. In their study [4], they
have conducted two experiments. One of them is similar to ours. However, we use an eye
tracker device to assess the impact of atoms of confusion on the attention of the developers
while they are trying to understand the code. We observed an increase by 36.8% of gaze
transitions in code snippets with atoms.

Other works [14, 15, 18, 19, 29] have studied the correlation and effectiveness of
visual attention tracking on code and text understanding. They have shown that a longer
fixation on any specific part of the code can indicate a higher cognitive workload trying
to understanding the text meaning. They also found that the more frequent the word is
in the text, the less difficult it is to understand. However, to the best of our knowledge,
no studies with eye tracking were performed to investigate the impact of atoms in code
comprehension.

In their experiment, Gopstein et al. [4] instructed subjects to step through the
program as if they were the computer, execute each instruction in their mind, and to



Chapter 5. Related Work 51

record the standard output of the program. They also modified the experimental programs
to include a printf after every control flow operation and otherwise frequently enough to
gather information from the subject. Our experiment followed a similar approach, but we
instructed the subjects to record the outputs of each function directly in our system. The
system only allows the subject to move to the next function when he or she provides the
right answer. This approach was mixed with the use of an eye tracker device to record the
subjects’ eyes movements.

Gospstein et al. [3] showed that there is a strong correlation between atoms of
confusion and bug fix commits as well as a tendency for atoms of confusion to be commented.
They also observed a higher rate of security vulnerabilities in projects with more atoms.
They did it by selecting 14 of the most representative and popular open-source C and C++
repositories to measure the prevalence and significance of atoms of confusion. They correlate
the occurrence of these atoms on the selected projects with some external factors like bugs
and comment rates. They showed that projects with more atoms tend to have more CVEs
(Common Vulnerabilities and Exposures) and bugs by domain. In this experiment, they did
not analyze developers’ performances or asked them about difficulties in understanding the
code; they searched for atoms of confusion in existing code. They analyzed the correlation
between the rate of atoms on these repositories with the presence of bugs and if these
codes were refactored, and the atoms were removed from the code, among other questions.
In our study, we include the measurement of how long developers take to understand code
extracted from real open-source projects and which part of the code they fix their eyes to
have more accurate data about the difference in code understanding with and with no
atoms.

Another study conducted by Medeiros et al. [5] tried to better understand the
occurrence and relevance of atoms of confusion by mining some repositories seeking for the
occurrence of these atoms and also applied a survey with 93 developers. They found that
the atoms studied (92%) are highly used in practice and that developers agreed that 6 of the
studied atoms hinder code understanding, representing 50% of the 12 atoms studied. They
also showed that the atoms are not frequently cited on guidelines, only a few guidelines
cite rules related explicitly to atoms. Our experiment tests three types of atoms and allows
us to compare if they cause code misunderstanding in practice. Moreover, it allows us to
catalog which atoms cause confusion and propose a tool to indicate and refactor them.
Besides, this study uses the perception of developers to know if the atom confuses, but
if the developer is confused about the meaning of code, he or she can also be confused
about the rate of confusion in the code; in order words, he or she can misunderstand the
correct behavior of the atoms. The use of eye-tracker allows us to compare the perception
of programmers with quantitative data about real confusion generated by the atoms.

More recently, Gopstein [13] conducted an experiment aiming to understand not



Chapter 5. Related Work 52

only if developers misunderstand some confusing code but also why and how this happens.
They experimented both with professionals and students, and they did a qualitative
analysis using the think-aloud methodology. One crucial finding of their study regarding
atoms of confusion is that there are reasons other than atoms that can lead to errors
when analyzing code with atoms of confusion. This means that misunderstandings are not
the only reason for confusing code. To better understand this phenomenon, they divided
confusion into four categories that lead developers to confuse code, such as unfamiliarity,
misunderstanding, language transfer, and attention. They showed that when a programmer
misinterprets a code with an atom, the region of the code with the atom of confusion is
not always responsible for that misunderstanding; in most situations, the confusion was
caused partially or totally by some other factor, such as another atom or potential atom.
This opens a new perspective to investigate to what level the atoms cause confusion or
if they only confuse the presence of other constructors. In our experiment, we did not
include multiple atoms on the tasks. We make the functions as straightforward as possible
to avoid many distractions outside the areas of interest.

Most works on atoms of confusion have been investigating the impact of these code
snippets in C programs. Castor [30] expanded the investigation to the Swift programming
language and used different investigation methods from the previously used by Gopstein [4],
such as measuring the infrequency of occurrence in large codebases and expert opinions.
Castor identified in the Swift language some sources of confusion that exists in the
Gopstein [4] original catalog and presented a preliminary atoms of confusion catalog for
Swift. Our work does not try to catalog or find new kinds of atoms; we selected three
kinds of atoms present in the first Gopstein’s catalog [4] and used an eye-tracking camera
to better understand the impact of atoms of confusion during code comprehension tasks.

Regarding the use of an eye-tracking camera, Carter [31] mentions that it is a
common method for observing the focus of visual attention. A previous work [32] has
shown that visual attention starts mental processes. The greater the cognitive processing,
the greater the visual effort employed. Carter [31], mentions that it is possible to have
insights on the mental processing through eye activity, regardless of where the subject is
looking. For that reason, eye tracking is important to be applied in works that analyze
and try to map mental processes.

In another study, Begel [33] investigates the code review process using an eye-
tracking camera. He has found that an eye-tracking device can help to discover precisely
how engineers scan through source code, looking for suspicious patterns of code. The
authors also found that when a particular part of the code catches the person’s attention,
he/she will slow down to read it more carefully, what reinforces that developers tend to
spend more time in some parts of the code, especially when the code catches his/her
attention. Begel’s work is similar to our work since he analyzed code reviews that is,



Chapter 5. Related Work 53

at a high level, a comprehension task. However, they analyzed different things such as
reading rate. Although they measure time, they could not measure tries because their
analysis focuses on giving a code review instead of understanding the output. In our
study, in addition to analyzing a specific construct (atoms of confusion), we also collected
how often the participant provided the wrong answer to have a metric with respect to
misunderstanding. We also provide some further analysis, such as heatmaps and the analysis
of gaze transitions entering and exiting in the AOI. The eye-tracking methodologies have
been widely used in other some different domains, such as mental health, education, and
many other areas where the mental and perception process is involved [14] [15] [16] [17].

Jbara [16] executed an experiment similar to ours, but the authors investigated
what they called regular code and non-regular code. He defines regular as code containing
regularities. Regularity is the repetition of code segments (patterns), where instances of
these patterns are usually successive. He showed that although it is common to identify
larger code, with more code lines or greater cyclomatic complexity as a more difficult to
understand code, this is not always true. Regular codes usually have a higher number of
lines. The study showed that this type of code does not lead to a worsening of understanding.
This happens because developers tend to need less time to understand a block of code
since they have just read a similar block. They have also used an eye-tracking device on
his experiment. His experiment is similar to ours since the code with an atom of confusion
is usually smaller than code with no atom. Although similar, their work has some design
differences. Their subjects had to analyze only 1 function, some of them with regular
code and others without regular code. In our experiment, we have 12 functions, and each
participant had to analyze 6 of them, 3 with atoms and 3 with no atoms. The question
the subjects had to answer was almost the same What does the program do?, but we
developed a system to gather the answers and control all the experiment executions. They
were interested in the same metrics (they called correctness, completion time, and visual
effort). Besides, they did some qualitative questions to know the participants’ opinion on
the effort needed to understand the presented programs.



54

6 Concluding Remarks

In this study, we presented a controlled experiment with an eye tracker with 30 participants
to investigate the effects of atoms of confusion on code comprehension. In particular, we
analyzed the effects of the atoms on time, accuracy, and participants’ attention while
specifying the output of six code tasks adapted from real open-source systems. We found
evidence that code with atoms of confusion is more time-consuming, unlike code with no
atoms of confusion, leading the participants to code misunderstandings. We also learned
that developers tend to focus their attention on the particular areas of the atoms more
often. We observed an increase by 36.8% of gaze transitions in code snippets with atoms.

In a previous work, Gopstein et al. [4] showed that the presence of these patterns
in the code affects developers’ performance, i.e., time and accuracy, and increase code
misunderstandings. We showed that other aspects related to code comprehension besides
time and accuracy, namely attention, should also be taken into consideration being affected
by the presence of atoms. This was clear by the increase in the number of points in AOI,
entries in AOI, and the number of gaze transitions, indicating more effort when analyzing
code with atoms of confusion. These nuances would not be possible without an analysis
from the eye perspective. Therefore, we presented a perspective of analysis that contributes
to more insights on the impact of the atoms on the attention.

For the developers’ community, we recommend that they should avoid writing code
with atoms of confusion since they can hamper their code comprehension.

For the research community, we encourage more empirical studies investigating
the impact of other particular types of atoms of confusion, since we have seen that some
atoms can cause more negative effects than others. Other comprehension code scenarios
and activities should also be explored, and other eye-tracking metrics should also be
investigated. We believe that more empirical studies on this subject can contribute to
widespread catalogs of atoms of confusion among software developers. We also recommend
them to propose and implement refactorings in IDEs to remove atoms of confusion
automatically.



55

Bibliography

[1] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer-an investigation
of how developers spend their time,” in Proceedings of the International Conference
on Program Comprehension, 2015, pp. 25–35.

[2] M. Yeh, Y. Yan, D. Gopstein, and Y. Zhuang, “Detecting and comparing brain activity
in short program comprehension using eeg,” in Frontiers in Education Conference,
2017, pp. 1–5.

[3] D. Gopstein, H. H. Zhou, P. Frankl, and J. Cappos, “Prevalence of confusing code
in software projects: Atoms of confusion in the wild,” in Proceedings of the Mining
Software Repositories, 2018, pp. 281–291.

[4] D. Gopstein, J. Iannacone, Y. Yan, L. A. Delong, Y. Zhuang, M. K.-C. Yeh, and
J. Cappos, “Understanding misunderstandings in source code,” in Proceedings of the
Foundations of Software Engineering, 2017, pp. 129–139.

[5] F. Medeiros, G. Lima, G. Amaral, S. Apel, C. Kästner, M. Ribeiro, and R. Gheyi, “An
investigation of misunderstanding code patterns in C open-source software projects,”
Empirical Software Engineering, vol. 24, no. 4, pp. 1693–1726, 2019.

[6] J. Siegmund, “Program comprehension: Past, present, and future,” in Proceedings of
the Software Analysis, Evolution, and Reengineering, vol. 5, 2016, pp. 13–20.

[7] K. Narasimhan and C. Reichenbach, “Copy and paste redeemed (T),” in International
Conference on Automated Software Engineering. IEEE/ACM, 2015, pp. 630–640.

[8] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi, “The love/hate relation-
ship with the C preprocessor: An interview study,” in Proceedings of the 29th European
Conference on Object-Oriented Programming (ECOOP’15). Schloss Dagstuhl, 2015,
pp. 999–1022.

[9] S. Schulze, J. Liebig, J. Siegmund, and S. Apel, “Does the discipline of preprocessor
annotations matter?: A controlled experiment,” in Proceedings of 12th International
Conference on Generative Programming: Concepts and Experiences (GPCE), 2013,
pp. 65–74.

[10] A. Von Mayrhauser and A. M. Vans, “Program comprehension during software
maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–55, 1995.



Bibliography 56

[11] V. Rajlich and N. Wilde, “The role of concepts in program comprehension,” in
Proceedings 10th International Workshop on Program Comprehension, 2002, pp. 271–
278.

[12] A. Lakhotia, “Understanding someone else’s code: An analysis of experience", the,”
Journal of Systems and Software, pp. 269–275, 1993.

[13] A. Gopstein, Fayard and Cappos, “Thinking aloud about confusing code: A qualitative
investigation of program comprehension and atoms of confusion,” 11 2020.

[14] P. Gordon, R. Hendrick, M. Johnson, and Y. Lee, “Similarity-based interference
during language comprehension: Evidence from eye tracking during reading.” 2006,
pp. 1304–1321.

[15] R. Bednarik and M. Tukiainen, “An eye-tracking methodology for characterizing
program comprehension processes,” in Proceedings of the Symposium on Eye Tracking
Research &Amp; Applications, 2006, pp. 125–132.

[16] A. Jbara and D. G. Feitelson, “How programmers read regular code: a controlled
experiment using eye tracking,” Empirical software engineering, vol. 22, no. 3, pp.
1440–1477, 2017.

[17] Z. Sharafi, T. Shaffer, B. Sharif, and Y.-G. Guéhéneuc, “Eye-tracking metrics in soft-
ware engineering,” in Proceedings of the Asia-Pacific Software Engineering Conference,
2015, pp. 96–103.

[18] M. Just and P. Carpenter, “A theory of reading: From eye fixations to comprehension.
psychological review,” 1965, pp. 329–354.

[19] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif,
and S. Tamm, “Eye movements in code reading: Relaxing the linear order,” in
Proceedings of the International Conference on Program Comprehension, 2015, pp.
255–265.

[20] J. Melo, F. Narcizo, D. Hansen, C. Brabrand, and A. Wasowski, “Variability through
the eyes of the programmer,” in Proceedings of the International Conference on
Program Comprehension, 2017, pp. 34–44.

[21] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design,
innovation, and discovery. Wiley-Interscience, 2005.

[22] M. Ribeiro, P. Borba, and C. Kästner, “Feature maintenance with emergent interfaces,”
in Proceedings of the International Conference on Software Engineering, 2014, pp.
989–1000.



Bibliography 57

[23] R. Malaquias, M. Ribeiro, R. Bonifácio, E. Monteiro, F. Medeiros, A. Garcia, and
R. Gheyi, “The discipline of preprocessor-based annotations does #ifdef tag n’t #endif
matter,” in Proceedings of the International Conference on Program Comprehension,
2017, pp. 297–307.

[24] D. C. Montgomery, Design and Analysis of Experiments. John Wiley & Sons, 2006.

[25] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

[26] D. Sjoberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen, A. Karahasanovic, E. F.
Koren, and M. Vokác, “Conducting realistic experiments in software engineering,” in
Proceedings of the International Symposium on Empirical Software Engineering, 2002,
pp. 17–26.

[27] C. Schulte, T. Clear, A. Taherkhani, T. Busjahn, and J. H. Paterson, “An introduction
to program comprehension for computer science educators,” in Proceedings of the
ITiCSE Working Group Reports, 2010, pp. 65–86.

[28] L. A. Sudol-DeLyser, M. Stehlik, and S. Carver, “Code comprehension problems
as learning events,” in Proceedings of the Innovation and Technology in Computer
Science Education, 2012, pp. 81–86.

[29] J. Melo, C. Brabrand, and A. Wkasowski, “How does the degree of variability affect
bug finding?” in Proceedings of the International Conference on Software Engineering,
2016, pp. 679–690.

[30] F. Castor, “Identifying confusing code in swift programs,” 09 2018.

[31] B. T. Carter and S. G. Luke, “Best practices in eye tracking research,” International
Journal of Psychophysiology, vol. 155, pp. 49 – 62, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167876020301458

[32] A. T. Duchowski, Eye Tracking Methodology: Theory and Practice, 3rd ed. Springer
Publishing Company, Incorporated, 2017.

[33] A. Begel and H. Vrzakova, “Eye movements in code review,” in Proceedings
of the Workshop on Eye Movements in Programming, ser. EMIP ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3216723.3216727

http://www.sciencedirect.com/science/article/pii/S0167876020301458
https://doi.org/10.1145/3216723.3216727

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Background and Motivating Example
	Code Comprehension
	Atoms of Confusion
	Eye Tracking
	Motivating Examples

	Study: Controlled Experiment
	Study Settings
	Experimental Units
	Execution and Data Analysis Procedures
	Tool to collect the data


	Results and Discussion
	RQ1: To what extent do atoms of confusion affect task completion time?
	RQ2: To what extent do atoms of confusion affect task accuracy?
	RQ3: To what extent do atoms of confusion affect the focus of attention?
	Threats to Validity
	Implications

	Related Work
	Concluding Remarks
	Bibliography

