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Abstract

Dozens of algorithms have been proposed for anomaly detection, and, when ap-
plied to intrusion detection, they can detect suspect attacks whenever relevant
deviations from the expected behavior are observed. The research commu-
nity still lacks a universal comparative evaluation as well as standard publicly
available datasets. It is in general challenging to provide a description that
suffices in details, and that is easy to understand and compare. It may often
appear that valuable solutions are presented and specially tested in such a
way that re-implementation by a third party or comparison with others solu-
tions is difficult, time-consuming and the result might not even be the same.
For example, a step in the algorithm might say: "We pick an element from the
frontier set" but which element do you pick? Will the first one do? Why will
any element suffice? As another example, the author may probably want to
give more implementation details but is constrained by the paper page limit.
Additionally, sometimes the author’s description in-lines other algorithms or
data structures that perhaps only that author is familiar. In general, it is a
common struggle to research and show a quantitative comparison that gives
evidence of the quality of a solution. While this is undoubtedly essential for
further researches and improvements in the topic, it is challenging to create a
quantitative comparison which allows a fair comparison of different anomaly
detection techniques. Thus, a public quantitative analysis for anomaly detec-
tion algorithms, which can be used by anyone and eventually allow anyone to
contribute to, implying that the tests are in a standard format, is much needed.

Keywords: Anomaly Detection, Intrusion Detection, Unsupervised Algorithms,
Attacks Datasets, Attack Model
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Resumo

Dezenas de algoritmos foram propostos para detecção de anomalias e, quando
aplicados à detecção de intrusão, eles podem detectar ataques suspeitos sem-
pre que forem observados desvios relevantes do comportamento esperado. A
comunidade de pesquisa ainda carece de uma avaliação comparativa universal,
bem como de conjuntos padrão de dados disponíveis ao público. É geralmente
um desafio fornecer uma descrição que seja suficiente em detalhes e que seja
fácil de entender e comparar. Pode parecer que soluções valiosas são apresen-
tadas e especialmente testadas de forma que a reimplementação por terceiros
ou a comparação com outras soluções é difícil, demorada e o resultado pode
nem ser o mesmo. Por exemplo, uma etapa do algoritmo pode dizer: "Escolhe-
mos um elemento do conjunto de fronteiras", mas qual elemento você escolhe?
O primeiro fará? Por que algum elemento é suficiente? Como outro exemplo,
o autor provavelmente pode querer fornecer mais detalhes de implementação,
mas está restrito pelo limite de páginas de um artigo. Além disso, às vezes a
descrição do autor alinha outros algoritmos ou estruturas de dados que talvez
apenas esse autor esteja familiarizado. Em geral, é uma problema comum
pesquisar e mostrar uma comparação quantitativa que evidencie a qualidade
de uma solução. Embora isso seja, sem dúvida, essencial para novas pesquisas
e melhorias no tema, é um desafio criar uma comparação quantitativa que per-
mita uma comparação justa de diferentes técnicas de detecção de anomalias.
Portanto, é necessária uma análise comparativa para algoritmos de detecção
de anomalias, que possa ser usado por qualquer pessoa e, eventualmente, per-
mitir que alguém contribua com esses testes estando em um formato padrão.

Palavras-chave: Detecção de Anomalias, Detecção de Intrusão, Algoritmos
Não Supervisionados, Conjuntos de Dados de Ataques, Modelo de Ataque
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1

Introduction

The size and complexity of computer-intensive systems have grown dramat-
ically during the past decade, and the trend will undoubtedly continue in the
future. The demand for complex hardware/software systems has increased
more rapidly than the ability to design, implement, test, and maintain them.
After all, when the requirements and dependencies on computers increase,
the possibility of crises due to computer failures also increases. Examples of
consequences are an inconvenience (e.g., malfunctions of home appliances),
economic damage (e.g., interruptions of banking systems) and loss of life (e.g.,
failures of flight systems or medical software).

The reliability defined as the probability that a system (component) will func-
tion over a while [1] has become a significant concern for our society. Although
in dependable and secure systems often is mandatory to deploy monitoring so-
lutions of the system and it is services to timely detect an unexpected behavior
that may differ from the norm and can lead to failures, such process is known
as anomaly detection, and these patterns are called anomalies. Even though
anomalous events infrequently occur, when they do occur, such consequences
can be quite dramatic, often in a negative way.

In order to avoid cyber-attacks in systems and networks, amongst protec-
tion countermeasures, Intrusion Detection Systems (IDSs, [2]) were proposed to
enhance network and system security. IDSs collect and analyze data from net-
works and systems indicators to detect malicious or unauthorized activities,
based on the hypothesis that an ongoing attack has distinguishable effects on
such indicators. Most of enterprise IDSs adopt signature-based detection al-
gorithms [2], which consist of looking for predefined patterns (or "signatures")
in the monitored data in order to detect an ongoing attack. Data is usually
seen as a flow of data points, which represent observations of the values of the
indicators at a given time. Signature-based approaches usually score high de-
tection capabilities and low false positive rates when experimenting known at-
tacks [?], but they cannot effectively adapt their behavior when systems evolve
or when their configuration is modified. As an additional consequence, they
are not meant to detect zero day attacks, which are novel attacks that cannot
be matched to any known signature [3]. Moreover, when a zero-day attack that
exploits newly added or undiscovered system vulnerabilities are identified, its
signature needs to be derived and added as a new rule to the IDS [4].

To mitigate the problem above, Anomaly-based IDSs rely on anomaly de-
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tection algorithms. Anomaly detection has received much attention in the last
decade, and numerous detectors have been proposed. Despite that, opera-
tors often discredit the alarms reported by anomaly detectors due to several
drawbacks discrediting them [5, 6]. Anomaly detection techniques are often
applied on unlabeled data, In contrast to standard classification tasks, tak-
ing only the structure of the data set into account and the reason why is that
given the ever-increasing scale coupled with the high complexity of software,
applications and workloads patterns, anomaly detection methods must operate
automatically at runtime without the need for prior knowledge about normal
or anomalous behavior [7]. Without prior knowledge of the system behavior,
unsupervised anomaly detection is addressed in much practical application,
for example, in fraud detection, network intrusion detection as well as in the
life science and medical domain. It assumes that anomalies are much less
common than the normal data in the dataset.

Different anomaly detection algorithms usually exhibit different rates of
missed (False Negatives) and wrong detection (False Positives) and, consequently,
have different detection capabilities. Although most of such algorithms have
a generic, context-independent formulation, they are often more effective to
detect specific attacks on specific systems or applications. Moreover, the man-
ifestation of the anomaly is usually different from attack to attack and from
system to system. Consequently, selecting the correct detection algorithm rep-
resents a crucial decision when defining an anomaly-based IDS. A wrong choice
of the algorithm will decrease the attack detection capabilities of the IDS, con-
sequently reducing the ability to secure the target system and network. With
that in mind, we aim to present a framework for a methodology for quanti-
tative comparison of anomaly detection algorithms applied to multiple attack
datasets.

1.1 Proposal
In general, it is a common struggle to research and show a quantitative

comparison that gives evidence of the quality of a solution. While this is un-
doubtedly essential for further researches and improvements in the topic, it is
challenging to create a robust comparison. Thus, a public quantitative com-
parison for anomaly detection algorithms, which can be used by anyone and
eventually allow anyone to contribute to, implying that the tests are in a stan-
dard format, is much needed

Therefore, this work aims to provide the following contributions:

• A comparative experimental evaluation between the execution of unsu-
pervised anomaly detection algorithms targeting the different data sets.
This will offer a first identification of how the different algorithms behave
under the different workload and faultload offered by the different data
sets. A categorical classification of different anomaly detection algorithm-
swill allow organizing different algorithms in classes so that comparison
between algorithms (of the same, similar or even different classes) can be
evaluated appropriately accordingly to their;
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• A methodology and a related environment, more precisely a framework
that allows a quantitative comparison of different anomaly detection al-
gorithms. The methodology and environment are devised, starting from
the experience acquired in the previous steps. The objective is to cre-
ate a way to compare the different algorithms in a fair and reproducible
way. This will require the identification of the target workloads and fault-
loads, under which each of the different algorithms can be classified. A
set of different datasets will be defined, each one representing the data
collected of a different kind of software. A selection of the metrics used
for the comparison between the algorithms is needed and shall be applied
consistently.

1.2 Relevance
Summarizing, there are no extensive comparisons of unsupervised anomaly

detection algorithms for intrusion detection systems. The works [8] and [9] con-
sidered multiple aspects, but they do not mainly focus on aspects of security
and intrusion detection systems; in fact, they used datasets from multiple do-
mains. Moreover, in [10] the authors considered a single proprietary dataset,
while the work in [11] uses two datasets and four algorithms, without taking
into account all the main families of algorithms defined in [12] and refined in
[8]. Similarly, in [13] the authors used 3 algorithms on 2 datasets, while, [14]
uses 3 unsupervised algorithms on 2 datasets. As a final remark, none of the
reviewed papers organizes the results according to a unified attack model, that
categorizes attacks from the different datasets.

To fill this gap, in this work it will be i) defined a pool of algorithms, selected
from the families of unsupervised algorithms identified in [12], [8], ii) selection
of publicly available attacks datasets, iii) define an unified attack model which
categorizes attacks from the datasets above, iv) adopt the most used scoring
metrics [15].

1.3 Structure
The structure of the remainder of this thesis is organized as follows. In

chapter 2 presents the problem, some definition about the theme of anomaly
detection with background anomaly detection techniques and the limitations
of the related work. Chapter 3 presents the study design and the methodology
used to compare different anomaly detection algorithms. Chapter 4 presents
the structure and execution of the framework for anomaly detection. Chapter
5 presents some preliminary results obtained by experiments and shown as
research questions. Chapter 6 concludes the thesis with some discussions
about the results, methodology, and future works.



2

Background and Related Work

2.1 The Anomaly Detection Problem
There always been a great interest in detecting "not-normal" instances within

the dataset. In machine learning, this process is commonly known as anomaly
detection or outlier detection. Probably, the first definition was given by Grubbs
in 1969 [16]: An outlying observation, or outlier, is one that appears to deviate
considerably of other instances of the sample in which it occurs. At the time,
the main reason for the detection was to remove the outliers ultimately from
the training data once pattern recognition algorithms were quite sensitive to
outliers in the data; a procedure called data cleansing. The development of
more robust classifiers decreased interest in anomaly detection. Nevertheless,
the interest of researchers in anomalies itself started to grow around the year
2000, since they are often associated with particular events that may lead to
suspicious data records. Since then, many new algorithms were developed.
The definition of anomalies was extended such that today, they are known to
have two essential characteristics:

1. Anomalies are different from the norm with respect to their features and

2. They are rare in a dataset compared to normal instances.

Other several topics are related to anomaly detection. Noise detection which
focuses on processing the data for the removal of noises which would turn
difficult the study patterns in the data, this deviates from anomaly detection
in the sense that in anomaly detection, it considers more critical finding those
records rather than just filtering them. Moreover, Novelty Detection refers to
the detection of new patterns that were previously absent or overlooked. The
normal model is usually modified by those patterns, which is the significant
disparity between it and anomaly detection. The approaches used to solve
those topics are often similar to outlier detection.

The traditional rule-based systems are often enhanced in many application
domains by the use of anomaly detection algorithms. Several challenges make
the anomaly detection problem increasingly obscure. To begin with, the bor-
derline between normal and anomalous behavior is often imprecise. Intrusion
detection is probably the most well-known application of anomaly detection
[17, 18]. In this scenario, occurs the monitoring of network traffic and server
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application. Potential intrusion attempts and exploits should then be identi-
fied using anomaly detection techniques. In this domain, the normal behavior
is constantly evolving, such that those changes are mistakenly identified as
outliers. Moreover, the anomaly detection techniques need to be adapted to
different application domains. Also, the scarcity of labeled data for training
and validation imposes limitations on results and conclusions reached.

2.2 Definitions
According to [19] authors classify anomalies into either:

• Point anomalies are when single data records deviate from the remainder
of the dataset. This is the simplest kind and most addressed by existing
algorithms.

• Contextual anomalies are when the record has behavioral and contextual
attributes. The same behavioral attributes could be considered normal in
a giving context and anomalous in another.

• Collective anomalies are when a group of similar data are deviating from
the remainder of the data set. This can only occur in data sets where
records are related to each other. They can be converted into point anoma-
lies by aggregating over the context.

At this research all implemented algorithms explicitly handle point anomalies.

Depending on the system, data can be stored in different ways. The way the
data is stored strongly influences the data analysis strategy that turns out to
be suitable for such a case study. More in details, some datasets provide one or
more labels associated with a data instance, denoting if that instance of data
corresponds to an unstable state of the system, e.g., an attack was performed
at the time instant in which the data instance was collected. It should be noted
that to obtain labeled data which is accurate and representative for all types
of behaviors is often prohibitively expensive. The activity of labeling the data
is often done manually by a human expert and hence requires a substantial
effort to obtain the labeled training dataset. Basically, the anomaly detections
setup depends on the labels available in the dataset, and we can distinguish
between the following three modes [20].

1. Supervised Anomaly Detection describes the setup where the data com-
prises of fully labeled training and test data sets. An ordinary classifier
can be trained first and applied afterwards. This scenario is very similar
to traditional pattern recognition with the exception that classes are typi-
cally strongly unbalanced. Not all classification algorithms suit therefore
perfectly for this task. There are two major issues that arise in supervised
anomaly detection. First, the anomalous instances are far fewer compared
to the normal instances in the training data. Issues that arise due to im-
balanced class distributions have been addressed in the data mining and
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machine learning literature [21]. Second, obtaining accurate and repre-
sentative labels, especially for the anomaly class is usually challenging.
A number of techniques that inject artificial anomalies in a normal data
set to obtain a labeled training data set have been proposed [22, 23].

2. Semi-supervised Anomaly Detection also uses training and test datasets,
whereas training data only consists of normal data without any anoma-
lies. The basic idea is, that a model of the normal class is learned and
anomalies can be detected afterwards by deviating from that model. Since
they require less labels, their range of applicability is wider than super-
vised techniques.

3. Unsupervised Anomaly Detection is the most flexible setup which does
not require any labels. Furthermore, there is also no distinction between
a training and a test dataset. The idea is that an unsupervised anomaly
detection algorithm scores the data solely based on intrinsic properties
ofthe dataset. Typically, distances or densities are used to give an esti-
mation what is normal and what is an outlier. This article only focuses
on this unsupervised anomaly detection setup.

2.3 Anomaly Detection Techniques

2.3.1 Distance-based
The notion of distance-based outliers was introduced in the study of databases

[24]. According to this notions, a point P, in a multidimensional data set is
anomalous if there are less than p points from the data in the ε-neighborhood
of P, where p is a user-specified constant. Ramaswamy et al. [24] described an
approach that is based on computing the Euclidian distance of the k th nearest
neighbor from a point O.

There are three major approaches:

• Neighbor-based;

• Density-based;

• Clustering-based.

Neighbor-based

The neighbor-based algorithms consider anomalies as point most distant
from other points, it classifies points by assigning them to the class that ap-
pears most frequently among the k nearest neighbors. Therefore, for a given
point O, dk(O) denotes the Euclidian distance from the point O to its K th near-
est neighbor and can be considered as the "degree of outlierness" of O. If one
is interested in the top n outlier, if the distance to its K th nearest neighbor is
smaller than the corresponding valor for no more than (n− 1) other points. In
other words, the top n outliers with the maximum dk(O) values are considered
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as outliers. While the advantage of the K th nearest neighbors approach is that
it is robust to noisy data, the approach suffers from the drawback that it is
very difficult to choose an optimal value for k in practice.

Several papers [25, 26] have proposed using K th nearest neighbor outlier
detection algorithms for the purpose of anomaly detection.

Density-based

Density-based anomaly detection techniques estimate the density of the
neighborhood of each data instance. An instance that lies in a neighborhood
with low density is declared to be anomalous while an instance that lies in a
dense neighborhood is declared to be normal.

For a given data instance, the distance to its K th nearest neighbor is equiva-
lent to the radius of a hypersphere, centered at the given data instance, which
contains K other instances. Thus the distance to the K th nearest neighbor for
a given data instance can be viewed as an estimate of the inverse of the density
of the instance in the data set and the basic nearest neighbor-based technique
can be considered as a density-based anomaly detection technique.

There are three major approaches:

• Local Outlier Factor (LOF);

• Connectivity Outlier Factor (COF);

• Multi-Granularity Deviation Factor (MDEF).

Breunig et al. [27] assign an anomaly score to a given data instance, known
as Local Outlier Factor (LOF). For any given data instance, the LOF score is
equal to ratio of average local density of the K nearest neighbors of the instance
and the local density of the data instance itself.

These are the steps in order to compute LOF:

For each data point q compute the distance to the K th nearest neighbor (k-
distance).

Compute reachability distance (reachdist) for each data example q with re-
spect to data example p as:

reachdist(q, p) = max{k − distance(p), d(q, p)} (2.1)

Compute local reachability density (lrd) of data example q as inverse of the
average reachability distance based on the MinPts, which is the number of
nearest neighbors used in defining the local neighborhood of the data example
q

lrd(q) =
MinPts∑

p reachdistMinPts(q, p)
(2.2)

Compute LOF(q) as ratio of average local reachability density of q’s k-nearest
neighbors and reachability density of the data record q
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LOF(q) =
1

MinPts
.
∑

p

lrd(p)
lrd(q)

(2.3)

In the example show in the figure 2.1, int the neighbor-based approach, p2

in not considered as outlier, while the LOF approach find both p1 and p2 as
outliers. The K th nearest neighbor-based approach may consider p3 as outlier,
but LOF approach doesn’t.

Figure 2.1: Advantages of density-based techniques.

Tang et al. [28] discuss a variation of the LOF, which they call Connectivity-
based Outlier Factor (COF). The difference between LOF and COF is the
manner in which the k neighborhood for an instance is computed. In LOF,
the k-nearest-neighbors are selected based on Euclidean distance. This in-
directly assumes, that the data is distributed in a spherical way around the
instance. If this assumptions is violated, for example if features have a direct
linear correlation, the density estimation is incorrect. COF wants to compen-
sate this shortcoming and estimates the local density for the neighborhood
using a shortest-path approach, called the chaining distance.

In COF outliers are points p where average chaining distance acdistkNN(p)(p) is
larger than the average chaining distance (acdist ) of their k-nearest neighbor-
hood kNN(p). COF identifies outliers as points whose neighborhoods is sparse
than the neighborhoods of their neighbors.

This leads to the following formula:

acdistG(p) ≡
r∑

i=1

2(r − i)
r(r − 1)

dist(ei) (2.4)

The smaller acdist, the more compact is the neighborhood G of p. COF is
computed as the ratio of the acdist (average chaining distance) at the point and
the mean acdist at the point’s neighborhood.

Similar idea as LOF approach:

A point is an outlier if its neighborhood is less compact than the neighbor-
hood of its neighbors
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COFk(p) ≡
acdistNk(p)∪p(p)

1
k

∑
o∈Nk(p) acdistNk(o)∪o(o)

(2.5)

COF is able to capture transition like in figure 2.2.

Figure 2.2: Difference between the neighborhoods computed by LOF and COF.

A simpler version of LOF was proposed by Hautamaki et al. [25], which cal-
culates a quantity called Outlier Detection using In-degree Number (ODIN)
for each data instance. For a fiven data instance, ODIN is equal to the number
of k nearest neighbors of the data instance which have the given data instance
in their k nearest neighbor list.

Papadimitriou et al. [29] propose a measure called Multi-Granularity De-
viation Factor (MDEF), which is a variation of LOF. MDEF for given data in-
stance is equal to the standard deviation of the local densities of the nearest
neighbors of the given data instance (including the data instance itself). The
inverse of the standard deviation is the anomaly score for the data instance.
The anomaly detection technique presented in the paper is called LOCI, which
not only finds anomalous instances but also anomalous micro-clusters.

Clustering-based

Clustering-based anomaly detection techniques rely on the process of build-
ing similar objects into clusters and assume that anomalous points lie in sparse
and small clusters, or that they are not assigned to nay cluster, or that they lie
far from their cluster centroid. Clustering is primarily an unsupervised tech-
nique though semi-supervised clustering has also been explored lately [30].
Clustering-based anomaly detection techniques can be grouped into three cat-
egories.

The first category of clustering-based techniques relies on the following as-
sumption:

Assumption 1. Normal data instances belong to a cluster in the data, while
anomalies do not belong to any cluster.

Assumption 2. Normal data instances lie close to their closest cluster cen-
troid, while anomalies are far away from their closest cluster centroid.
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Assumption 3. Normal data instances belong to large and dense clusters,
while anomalies either belong to small or sparse clusters.

k-means clustering (K-means) [31] is an algorithm that groups data points
into K clusters by their feature values. First, the K cluster centroids are ran-
domly initialized. Then, each data record is assigned to the cluster with the
nearest centroid, and the centroids of the modified clusters are re-calculated.
This process stops then the centroids are not changing anymore. Data points
are put in the same cluster when they have similar feature values according
to a given distance function. Finally, scores of each data point inside a cluster
are calculated as the distance to its centroid. Data points which are far from
the centroid of their clusters are labeled as anomalies.

Local Density Cluster-based Outlier Factor (LDCOF) [32] estimates the
density of clusters assuming a spherical distribution of the data points. The
clusters are generated using the K-means clustering algorithm; then, the clus-
ters are separated into small and large groups following the procedure of [14].
For each cluster, the average distance of all its data points to the centroid is
calculated, normalized by the average distance of the data points of this clus-
ter to its centroid, and used as anomaly score. Therefore, expected data points
result in smaller scores, i.e., close to 1.0, because their densities are as big as
the densities of their cluster neighbors. Instead, anomalies will result in larger
scores, since their densities are smaller than the densities of their neighbors.

2.3.2 Statistical
The underlying principle of any statistical anomaly detection technique is:

“An anomaly is an observation which is suspected of being partially or wholly
irrelevant because it is not generated by the stochastic model assumed” [33].
Statistical anomaly detection techniques are based on the following key as-
sumption:

Assumption. Normal data instances occur in high probability regions of a
stochastic model, while anomalies occur in the low probability regions of the
stochastic model.

The Histogram-based Outlier Score (HBOS) is a statistical approach [34]
that generates an histogram for each independent feature of the given dataset.
The values of the features of all the available data points are first used to build
histograms; at a later stage, for each data point, the anomaly score is calculated
as the multiplication of the inverse heights of the columns in which each of its
features fall. When features are dependent, these dependencies need to be
neglected, leading to possible errors. Indeed, the assumption of independence
between features makes HBOS a fast algorithm even when dealing with large
datasets [8].

The Robust Principal Component Analysis (rPCA) technique [35] is based
on the Principal Component Analysis (PCA), a popular technique used for di-
mensionality reduction. PCA is used to detect subspaces in a dataset and has
been applied to anomaly detection to identify deviations from the ’expected’
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subspaces, which may indicate anomalous data points. The principal compo-
nents of PCA are the eigenvectors of the covariance matrix, which is computed
twice to improve robustness.

2.3.3 Classification
Classification [36, 37] is used to learn a model (classifier) from a set of la-

beled data instances (training) and then, classify a test instance into one of
the classes using the learnt model (testing). Classification based anomaly de-
tection techniques operate under the general assumption that a classifier can
be learnt from a given feature space that can distinguish between normal or
anomalous classes.

The One-class Support Vector Machine (one-class SVM) [38] algorithm,
differently from the supervised support vector machines (SVMs), is a commonly
used method for semi-supervised anomaly detection [12], that aims to learn a
decision boundary to group the data points [39]. However, one-class SVMs can
be used for unsupervised anomaly detection: the one-class SVM is trained with
the dataset and then each data point is classified considering the normalized
distance of the data point from the determined decision boundary [38].

Isolation Forest (IF) [40] is based on the concept of isolation by structuring
data points as nodes of a tree, assuming that anomalies are rare events with
feature values that differ a lot from expected data points. Therefore, anomalies
are more susceptible to isolation than the expected data points, since they are
isolated closer to the root of the tree instead of the leaves. It follows that a data
point can be isolated and then classified according to its distance from the root
of the tree.

2.3.4 Angle-based
To alleviate the drawbacks of distance-based models in high-dimensional

spaces, a relatively stable metric in high-dimensional spaces, angle, was used
in anomaly detection [41, 42].

The Angle-Based Outlier Detection (ABOD) [43] measures de variance in
angle between the difference vectors of a datapoint to the other points and
using it as anomaly score with good scalability. Each data point in the dataset
is used as the middle point p2 of a polygonal chain (p1, p2, p3), while p1 and p3

are any two different values of the dataset, p1 6= p2 6= p3. Then, all the possible
angles p1 p̂2p3 are measured, and their variance is used to calculate the Angle-
Based Outlier Factor (ABOF). Expected data points have a large ABOF, while
anomalies typically result in very small variance in the angles from couples of
points.

The Fast Angle-Based Outlier Detection (FastABOD) [43], similarly to
ABOD, detects anomalous data points depending on the variance of angles
between pairs of distance vectors to other points. However, it works in sub-
quadratic time by considering only angles between pairs of neighbours. For
each data point, the algorithm first calculates the ABOF to its k-nearest neigh-
bor as the normalized scalar product of the difference vectors of any pair of
neighbors. Then, FastABOD ranks the data points according to their ABOF.
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The smaller the ABOF, the bigger the probability that the data point is anoma-
lous.

2.4 Comparing Anomaly Detectors
Different anomaly detection algorithms usually exhibit different rates of

missed (False Negatives) and wrong detections (False Positives) and, conse-
quently, have different detection capabilities. Although most of such algo-
rithms have a generic, context-independent formulation, they are often more
effective to detect specific attacks on specific systems or applications. More-
over, the manifestation of the anomaly is usually different from attack to attack
and from system to system.

On comparing anomaly detection algorithms, the authors of [10] used seven
algorithms on a single proprietary dataset containing HTTP traffic and provid-
ing an open-source intrusion detection system. Similarly, in [44], authors eval-
uate four algorithms on a single dataset, focusing more on feature selection.
Instead, in [11], authors presented a comparative study for intrusion detec-
tors where k-Nearest Neighbors (kNN), Mahalanobis-based, Local Outlier Factor
(LOF) and one-class Support Vector Machines (SVM) were evaluated using only
the DARPA 98 dataset [45] and real network data (for a total of 2 datasets).

Similarly, in [13] authors compared three unsupervised anomaly detection
algorithms for intrusion detection: Cluster-based Estimation, kNN and one-
class SVM using network records stored in the KDD Cup 99 dataset and system
call traces from the 1999 Lincoln Labs DARPA evaluation. The evaluation of four
algorithms in [9] presents a review of novelty detection methods that are classi-
fied into semi-supervised and unsupervised categories. The algorithms are ex-
ercised on ten different datasets regarding medical and general-purpose data.
Some of these datasets were also used in [8], where authors presented a com-
parison of anomaly detection algorithms for multivariate data points. In this
case, 19 anomaly detection methods were evaluated in 10 different datasets
from different domains, ranging from brain cancer to satellite activity; how-
ever, the only attacks dataset is the KDD Cup 99.

Lastly, in [14] the authors compared six supervised and unsupervised algo-
rithms for system log analysis using two datasets: the HDFS logs from Amazon
EC2 platform and the BGL BlueGene/L supercomputer system at Lawrence
Livermore National Labs (LLNL). In [10] seven anomaly detectors for intrusion
detection systems are tested on HTTP traffic using a proprietary dataset.

In order to protect systems and networks, security specialists are continu-
ously researching mechanisms and strategies that aim at neutralizing attacks
or, if not possible, mitigating their adverse effects. The more complex the sys-
tem is, the more ways and techniques an attacker has to conduct attacks by
exploiting vulnerabilities [2]. Different attacks may have common characteris-
tics, that allow organizing the attacks into attack categories. In the literature,
several standards [46], [47], open source libraries [48], and research articles
[49, 50], [51, 46], provide taxonomies of cyber-attacks that are largely adopted
by topic-related studies. As an additional example, in [52], authors classify at-
tacks depending on accountability of users’ actions. Depending on audit trails,
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they defined strategies to face either external or internal penetrators, masquer-
aders and clandestine users. In [8] it’s shown a comparative evaluation of 19
different unsupervised algorithms on 10 datasets from different application
domains, not focusing in intrusion detection and type of attacks, also it’s not
considered a infrastructure to perform the experiments. The ELKI [53] is a en-
vironment for developing KDD-Applications supported by index-structures but
it’s not considering groups of metrics and dataset, or evaluation of metrics. In
[54] it’s reported on contemporary unsupervised outlier detection techniques
for multiple types of datasets and provide a taxonomy framework and two de-
cision trees to select the most suitable technique based on datasets but it’s not
focusing on the analysis of types of attacks in intrusion detection systems.



3

Study Design

The anomaly-based detectors characterize an expected behavior of the sys-
tem to be protected, and generate an alert when the current state of the system
does not conform with such expectations [12], which are often characterized
as an expected value or trend of some indicators, e.g., rate of ICMP requests,
number of TCP packages received. Such indicators are monitored through
time, generating time series composed by different data points. These data
points contain information that is used by the algorithms to represent their
notion of expected behavior and, consequently, to detect anomalies.

There is no need for any label information in practice for unsupervised
anomaly detection, however they are needed for evaluation and comparison.

Before running initial experiments, each dataset is partitioned to create
sub-datasets that contain only a single type of attack labelled in the data.

First, we surveyed the literature to select the most relevant state-of-the-art
contributions on anomaly-based intrusion detectors, prioritizing both the most
cited works and recent trends. Each work was analysed to extract common
elements such as:

• the proposed algorithm;

• the considered dataset(s);

• attack model;

• data filtering or refinement strategies to improve data quality;

• metrics used to scoring performance.

These elements became the dimensions of analysis, with the exception of
data filtering. In fact, filtering or refinement of datasets is usually algorithm-
specific [55]. Figure 3.1 summarizes the process with the three dimensions
mentioned above.
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Figure 3.1: Methodology to select, transform and aggregate surveyed data. We
show the three dimensions of analysis selection of the algorithms, selection of
the datasets, unified attack model, and selection of the metrics.

3.1 Datasets
First, the datasets were selected to match the following criteria:

1. They shall contain enough data points to ensure statistical evidence when
evaluating the algorithms, e.g., DARPA 1999 dataset [56] was discarded
since it contains only 201 data points related to attacks.

2. They shall be labeled on the basis of actual attack activities, i.e., all at-
tacks that occurred should be correctly labeled. Following this criteria,
we disregard datasets as MAWI [57], CAIDA [58] or DEFCON [58], that are
constituted of sniffed data that is labeled applying detection algorithms:
consequently, the labeling may include false positives and negatives.

3. Data points should be complete for all the features in the datasets, to
avoid the application of feature recovery strategies [59] that may burden
our study by adding another parameter to our analysis.

The table 3.1 summarizes the 5 datasets selected according to the criteria.
These datasets are shortly described below, ordered by ascending publication
date. Each dataset is matched to an acronym that will be used to refer to it.

[KC] KDD Cup 99 (1999) [60]. This is the most popular dataset in the
anomaly-based intrusion detection area, being used in recent experiments and
surveys [61], [8] and works prior the release of the updated NSL-KDD [62].
Fore this reason, we could not ignore it despite being almost 20-years-old. The
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Dataset Size Attacks % Attacks Features

KDD Cup 99 (KC) 311,028 223,298 71.79 41

NSL-KDD (NK) 22,542 12,832 48.05 42

ISCX2012 (IX) 571,698 66,813 11.68 17

ADFA-LD (AL) 2,122,085 238,160 11.22 1

UNSW-NB15 (UN) 175,341 119,341 68.06 46

Table 3.1: Description of the Selected Data sets

dataset contains the following attacks: DoS (Denial of Service), R2L (unautho-
rized access from a remote machine), U2R (unauthorized access to superuser
or root functions) and Probing (gather information about a network).

[NK] NSL-KDD (2009) [63]. This intrusion detection data set was created
to solve problems in the KDD Cup 99 dataset as i) the presence of redundant
records in train sets, and ii) duplicates in test sets. The attacks are the same
as KC.

[IX] ISCX (2012) [58]. It is generated in a controlled testbed environment
based on a realistic network and traffic, to depict the real effects of attacks
over the network and the corresponding responses of workstations. The data
points are labeled in a controlled and deterministic environment that allows
distinguishing anomalous activities from expected traffic. Four different attack
scenarios are simulated: infiltration, HTTP denial of service, a distributed denial
of service by using an IRC botnet, and SSH bruteforce login attempts.

[AL] ADFA-LD (2013) [64]. Released by the Australian Defence Force Academy,
this dataset contains expected and anomalous Linux system call traces gen-
erated by emulation. The occurrence of AddUser, Java, Meterpreter, Hydra
SSH-FTP, and Web attacks is labelled, although not detailed.

[UN] UNSW-NB15 (2015) [65]. As ADFA-LD, this dataset was also released by
the Australian Defence Force Academy in the University of New South Wale. Au-
thors used the IXIA PerfectStorm tool [66] to generate expected and anomalous
network traffic. The following attacks can be simulated by the tool. Exploits:
the attacker exploits a generic vulnerability, DoS: a (Distributed) Denial of Ser-
vice, Worms: a script that replicates itself to spread to other networked com-
puters, Generic: a technique that works against all block-ciphers, with a given
block and key size, Reconnaissance: attack that gather information, Shellcode:
a small piece of code used as the payload in exploits, and Backdoors; a security
mechanism is stealthily bypassed to access functionality or data).

3.2 Unified Attack Model
The types of attacks for each dataset are classified according to an unified at-

tack model. Each dataset uses inconsistent naming and grouping of categories
of attacks, so it’s defined an attackmodel that is generic enough to aggregate all
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the attacks in the different datasets. In [49] the authors partition the attacks
defined in the NIST 800-53 [46] standard into i) Communication: attacks di-
rected to network interfaces, ii) Host: malware or malicious code injected in a
target host exploiting vulnerabilities of the operating system, iii) Application:
attacks that exploits vulnerabilities of (web)services, and iv) Generic, which
contains everything that is not related to the first three categories. The work
[49] provides a simplified abstraction of the existing NIST attack list, which we
can use as a starting point to build our generic attack model.

None of the specific attacks falls into the Generic category of [49], which is
discarded. However, the datasets contain data related to several attacks that
mainly involve the communication chanel with different means and purporses.
To differenciate among these attacks, the Communication category was split-
ted as defined in [49] into two separated catagories (see rows 1 and 2 of table
3.2). The subcategories are i) communication passive, that represents at-
tacks directed to gather or steal data through the passive observation of the
communication channel, and ii) communication active, which represents at-
tacks which use the communication channel as a way to send malicious data
or requests to the target system. This ultimately results in an attack model
composed of four catagories, and is show in table 3.2. Along with the descrip-
tion of the attacks, the last column of Table 3.2 maps all the different attacks
referenced in the datasets to our attack categories. As example, Exploits at-
tacks of UNSW-15 fall into the Application category, as it can be observed at
the bottom right cell of the table. Attacks with different labels, or reported
in different datasets, that resemble the same attack are merged into a unique
attack, e.g., DoS attacks, which can be found in both NK and IX datasets.

3.3 Metrics for Evaluation
Comparing the anomaly detection performance of unsupervised anomaly

detection algorithms in not as straight forward. In contrast to simply compare
as accuracy value or precision/recall. Here the metrics described in [15] that
were used more frequently in the surveyed studies and that are applied in the
evaluation. It’s not take into account the time-related metrics as the execu-
tion time and the detection time, because they are usually dependent on the
hardware resources available for a given system and on the specific implemen-
tation of the algorithm. The selected algorithms to understand if and how they
are able to identify anomalies due to attacks, without including metrics that
may be dependent on the quality of the implementation and on the available
resources.

• Precision. Considering T P (true positives) as the amount of detected
anomalies that corresponds to manifestations of attacks and FP (false
positives) as the amount of detected anomalies that do not, Precision is
defined as the fraction of T P among the whole set of true and false posi-
tives.

Precision : P =
T P

T P + FP
(3.1)
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Attack Category Source [49] Category Description Mapping of (Dataset) Attack

Communication - Passive Communication
Attacks which targets the communication channel

to gather information without active damage

(KD - NK) Probing,

(IX) Infiltration,

(UN) Reconnaissance,

(UN) Analysis

Communication - Active Communication

Attacks that are conducted through the

communication channel to actively damage

the system

(IX) Bruteforce,

(KD - NK - IX - UN) DoS,

(IX) DDoS,

(UN) Fuzzers,

(UN) Backdoors

Host Host
Attacks which targets a given host by installing

malicious code into it

(KD - NK) U2R,

(KD - NK) R2L,

(UN) Worms,

(UN) Shellcode,

(UN) Malware

Application Application
Attacks which targets a given application aiming at

executing malicious code by penetrating interfaces

(UN) Exploits,

(UN) Generic,

(AL) AddUser

(AL) Java,

(AL) Meterpreter,

(AL) Web,

(AL) Hydra

Table 3.2: The Unified Attack Model developed to categorize attacks from the
five datasets.

• Recall. Usually presented together with Precision. It is defined as the
ratio of T P over the union of T P and the undetected anomalies (false neg-
atives, FN) .

Recall : R =
T P

T P + FN
(3.2)

• F-Score and F-Measure. The F-Score(β ) metric combines both Precision
and Recall by using a parameter β : when β > 1, Recall is weighted more
than Precision, as shown in the equation below.

F-Score(β ) : Fβ = (1 + β
2) · P · R

β 2 · P + R
(3.3)

More in detail, F-Measure, or rather F1 Score, is defined as the balanced
mean of Precision and Recall [15]. This metric is adopted when data an-
alysts evaluate FPs and FNs as equally undesired.

F-Measure : F1 = 2 · P · R
P + R

(3.4)

• Accuracy. Defined as the ratio of correct detections (both true positives
and true negatives) among the total amount of examined data points. This
is a way to aggregate the positive and negative scores into a unique metric.
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Accuracy : ACC =
T P + T N

T P + FP + T N + FN
(3.5)

• Area Under ROC curve (AUC). ROC curve is a graphical plot that rep-
resents the performance of binary classifiers when their discrimination
thresholds vary: the curve is depicted by plotting R against the false pos-
itive rate. A high value of the area underlying the ROC curve usually
indicates that the identified algorithm suits the target dataset [15], [67].

3.4 Anomaly Detection Techniques

3.4.1 Selection of the Algorithms
Considering the amount of existing anomaly detection algorithms out there

described in the literature, and focusing on dependable and security systems.
The first step was to start looking for some of the most relevant anomaly de-
tection algorithms through the literature survey. This required to devise a ra-
tionale for the selection of algorithms, the datasets, metrics in order to define
a benchmark.

The selection of anomaly detection algorithms was a systematic process
where the state of art algorithms were analyzed. Several well-known anomaly
detection algorithms of different categories and intended to detect different
anomalies in different kinds of systems were analyzed. Algorithms were se-
lected according to the following criteria:

• Unsupervised algorithms were selected. There are many approaches such
as Supervised Anomaly Detection which describes the setup where the
data is composed by fully labeled training and test data sets. Semi-
supervised Anomaly Detection also uses training and test datasets, whereas
training data only consists of normal data without any anomalies. The ba-
sic idea is, that a model of the normal class is learned and anomalies can
be detected afterwards by deviating from that model, but the approaches
that are more widely applicable are the unsupervised approaches as they
do not require labeled data used as a training data for either normal or
anomalous populations;

• Several unsupervised anomaly detection algorithms were identified dur-
ing the survey activity. A total of 12 algorithms.

• The selection consists of only algorithms that were applied in dependable
or secure systems and based on the 3.2 categorization:
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Figure 3.2: A taxonomy of unsupervised anomaly detection techniques.
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4

The Framework for Quantitative
Comparison of Anomaly Detection
Techniques

In this section, it’s presented the main design principles as well as the struc-
ture of the framework for current evaluation and execution of anomaly detec-
tion techniques. Also, it’s describes eachmodule that composes the framework.

4.0.1 General Concepts About Frameworks
Frameworks are tools used to generate applications for a family of related

problems in a specific domain [68]. The choice to use an existing framework or
developing new application generator reflects on whether the framework can of-
fer design and code reuse. Frameworks contain fixed and flexible points known
as frozen spots and hot spots, respectively. Hot spots are extension points
that allow developers to create a new application from the framework process of
instantiating. In this case, developers should create specific application code
for each hot spot through the implementation of abstract classes and meth-
ods defined in the framework. Frozen spot consist of the framework’s kernel,
corresponding to all the fixed parts, previously implemented that would hardly
change.

In addition to the characteristics cited from the definitions above, others
should be listed as the extension technique [69]:

• White box framework: They are strongly linked to the characteristics
of the languages, to make the customization they use inheritance. It re-
quires a good understanding of the framework for creating an application;

• Black box framework: They are instantiated from some kind of config-
uration, such as an XML file for example. These frameworks rely pri-
marily on composition (classes or components) and delegation to perform
customization. It does not require understanding of internal details to
produce an application;

• Gray Box Framework: These frameworks are designed to avoid the dis-
advantages presented by the white box and black box framework, allowing
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Figure 4.1: The architecture with its three layers.

some degree of flexibility and extensibility without exposing unnecessary
internal information.

4.1 Designing a Framework for Anomaly Detection
Techniques

The problem dealt with in this work has many points of variability, so a
framework would better address this problem. The development was focused
on white box framework and the advantage of developing such kind of frame-
work is that the user has more control of the details of the code to create an
application and at the same time is not "stuck" to what is already defined (as in
this case, black box). The framework consists of three layers: the data layer,
the detector layer and the evaluator layer, each one with its well-defined func-
tionality 4.1.

The layer L1 and L2 are composed of hot spots where the data collector fo
L1 will indicate what’s the input data for the analysis, as seen in table 3.1
including some of the datasets most used in the literature, but the inclusion
of others datasets can be done. The same happens for layer L2 where we can
see in figure 3.2 the trend algorithms for anomaly detection implemented so
that this set of algorithms can be used in the literature for the quantitative
analysis even with other ones implemented for a specif category described in
L2. The frozen spots in L3 can be extended by hot spots composing metrics for
evaluation.

The data layer is responsible to manage information about the datasets to be
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analysed and insert into a database with a grouped data from different sources
of labeled datasets based on intrusion detection intended to be used by the
anomaly detector layer which will have some implemented anomaly detection
algorithms and will provide an infrastructure to implement new ones for further
analysis and comparison between them, and a module responsible to collect
all the results of the algorithms performed and showing the calculated metrics
seen in 3.3 grouped and processed to generate the graphs.

4.1.1 The Data Layer
Here, the data module reads the datasets for the analysis in principle a

format of CSV or ARRF files, each dataset is partitioned in order to create sub-
datasets, isolating single types of attacks, for example, in the file 4.2 the attack
name is fuzzers and the dataset is the UNSW-NB15, generating datasets as
seen in figure 4.3 and 4.4 for the dataset UNSW-NB15 which will be described
in section 3.1) and creating a unlabeled version of the dataset with the normal
data for algorithm execution and the faulty dataset which is labeled for the
future comparison with the output of the algorithm executed.

Figure 4.2: Sequences of time series inputs for the fuzzers type of attack.
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Figure 4.3: Creation of the sub-datasets, isolating single types of attacks for
KDD-CUP-99 and NSL-KDD datasets.

Figure 4.4: Creation of the sub-datasets, isolating single types of attacks for
UNSW-NB15 dataset.

4.1.2 The Detector Layer
The operator module includes a set of anomaly detectors which is basically

the implementation of a set of algorithms for anomaly detection. An anomaly
detector is assigned to a given data series, and evaluates if the current value of
the selected data series is anomalous or expected following a set of given rules.
More anomaly checkers can be created for the same data series: indicators
data related to the same time instant is aggregated in a snapshot, given a
snapshot as input, each anomaly checker produces an anomaly score. The
individual outcomes of each selected anomaly detector is then combined to
decide if an anomaly is suspected for the current snapshot. The structure of
the detector layer is shown in the class diagram in 4.5. All anomaly detector
implements the method detect() from AlgorithmDetector and are subclasses
of its respective families, the attribute k means the number of clusters as a
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input for an algorithm such as KMeansDetector or t for the number of trees
when using IsolationForestDetector.

The classDetectionConfig is responsible for defining the configuration needed
to perform the execution of an algorithm detector with the following parame-
ters: the String describing the algorithm required by the user, the String de-
scribing the path to the input dataset, if the header of the file is present it’s true
and false otherwise, the String with the path for the output file and the num-
ber of attributes to select from the dataset in dimensionality reduction/feature
selection:

1 // Create the detection configuration and detection mode with the given
parameters

2 DetectionConfig detectionConfig = new DetectionConfig ( algorithm , inputDir ,
isHeaderPresent , scoresDir , attributesNum ) ;

Afterthat the detectionConfig is used by the class DetectionMode as an input
which will be responsible to execute the anomaly detectors and collection of
information, these classes are shown in diagram in 4.6.

Figure 4.5: Class Diagram of Algorithm Detectors the Detector Module.
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Figure 4.6: Class Diagram of the Algorithm Detectors Execution at Detector
Layer.

4.1.3 The Evaluator Layer
In this layer, the output indicating how the anomaly detection algorithms

performed in used and these metrics are mainly based on boolean anomaly/-
expected labels assigned to a given data point. However, when providing an
output, algorithms may not provide a boolean answer: instead, algorithms
usually provide a numeric anomaly score, which indicates how anomalous a
data point is about the others. In our study, we define such thresholds relying
on the Interquartile Range, that is the difference of the two quantiles Q3 and Q1
that was extensively studied in [70], and adopted as a recommended practice
when dealing with numerical data, as in [35]. Besides, we do not account for
time-related metrics as the execution time and the detection time, because they
are usually dependent on the hardware resources available for a given system
and on the specific implementation of the algorithm.

4.2 Execution Sequence
The framework works as follows, starting at the data layer, the first part is

to read the dataset, normally an ARRF or CSV file, filter the type of intrusion
attacks as shown in section 3.2 to be detected, the optional part to perform the
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feature selection attributes by reducing the features that don’t change values
over time and are not important for the evaluation as shown in the figure bellow:

Figure 4.7: First step: data layer

The next step 4.8 is in the detector layer, run the anomaly detection algo-
rithms, and generate the scores for each algorithm in respect to each of the
datasets for the evaluation.

Figure 4.8: Second step: data layer and detector layer

Lastly, the third step 4.9 in the evaluator layer where the scores computed
to metrics seen in section 3.3, in the detector layer these metrics will be saved
into some collection in MongoDB [71] database for fast analytics, such as com-
paring metric scores. Ultimately, metric scores are used to plot ROC curves,
and then to calculate the Area under the Curve (AUC).
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Figure 4.9: Final step. data layer, detector layer and evaluator layer
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5

Results and Discussion

For this first experiment it was retrieved available public implementations
of the selected algorithms. KMeans, kNN, ODIN, LOF, COF, ABOD, FastABOD
and OneClass SVM are extracted from the ELKI framework [53]. The other
implementations of algorithms come from RapidMiner [72]. The 5 datasets are
processed by converting - where needed - nominal variables to numerical to
increase the amount of usable features, without affecting the semantics of the
datasets.

Parameters tuning are employed to find an optimal setup of the algorithm.
Tuning is performed by i) first, running different combinations of parame-
ters; ii) then, comparing results for the different parameters. For example,
we run KNN and KNN-dependent algorithms, i.e., ODIN, FastABOD, with k ∈
{1, 2, 3, 5, 10, 20, 50, 100}. The discussion in the following sections will also elab-
orate on the relevance of the choice of parameters.

The data generated during the execution of the algorithms was initially
stored in CSV files, and successively in a MongoDB [71] database for fast ana-
lytics, such as comparing metric scores. Ultimately, metric scores are used to
plot ROC curves, and then to calculate the Area under the Curve (AUC).

The algorithms, the database and the Mongo analytics are executed on on
three Intel Core i7, 32GB of RAM and 256GB of SSD storage servers. Overall,
computing all the scores required approximately one month of 24 hours of
execution. Due to known computational complexity problems [43], ABOD and
FastABOD algorithms are ran only on a portion of the datasets. The portions
are chosen considering the biggest subset of the dataset that do not escalate
in heap memory errors, i.e., 4% for KC, 53% for NK, 24% for AL, 5% for IX, 6%
for UN.

5.1 Experiment Comparison and Previous Results
Here is presented a previous comparison between algorithms relying on

publicly available datasets and implementations.
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Algorithm # Setups Family AUC (ROC) Precision Recall Accuracy F1
Isolation Forest [40] 8 Classification 37.2± 0.4 99.9± 0.3 99.3± 0.4 99.7± 0.3 99.6± 0.3

One-Class SVM [38] 1 Classification 53.4± 2.9 96.6± 3.2 99.3± 0.0 96.2± 3.2 98.0± 1.9

COF [73] 8 Density-Based 48.8± 1.7 93.6± 3.4 97.8± 0.1 91.7± 3.1 95.7± 2.0

ODIN [62] 8 Neighbour-Based 49.9± 1.7 96.6± 2.4 99.9± 0.4 89.8± 1.6 94.6± 1.1

HBOS [34] 1 Statistical 57.8± 5.5 92.6± 5.8 99.5± 4.3 89.2± 4.7 94.3± 4.8

rPCA [35] 1 Statistical 55.0± 4.0 97.5± 3.4 95.0± 1.0 83.1± 3.2 90.6± 2.0

LOF [74] 8 Density-Based 50.0± 1.3 96.6± 3.5 88.0± 1.1 81.3± 3.1 89.6± 2.1

LDCOF [72] 8 Clustering 49.9± 2.3 82.4± 1.8 94.4± 0.2 77.9± 1.5 87.4± 0.7

KNN [3] 8 Neighbour-Based 35.9± 6.7 91.9± 5.8 75.1± 3.4 71.4± 4.0 82.8± 4.3

K-Means [31] 8 Clustering 54.4± 8.9 95.7± 5.3 68.5± 2.8 65.6± 3.4 78.3± 3.5

ABOD [43] 8 Angle-Based 90.5± 7.8 69.2± 8.1 92.4± 8.3 90.0± 1.8 75.5± 10.2

FastABOD [43] 15 Angle-Based 86.4± 9.2 90.6± 7.8 77.4± 5.3 67.6± 3.2 74.7± 6.1

Table 5.1: Metric scores (median±std) for the 12 algorithms, ordered by F1 score

RQ1: Is there an algorithm (or a family) that performs better
than the others?

Table 5.1 shows the results obtained by running all the 12 algorithms in
our 5 datasets, ranked by F1 scores. We report the median and the standard
deviation scores for each metric, and we aggregate the data by considering
each algorithm on all the attacks and all the datasets separately. We observe
that the first two algorithms belong to the classification family. In fact, both
Isolation Forest and OneClass SVM show good scores for anomaly detection:
Precision, Recall and Accuracy scores are above 96%. Opposed to classifica-
tion algorithms, angle-based algorithms show poor results for the F1 scores
on our datasets. This could be partially explained considering that training of
such algorithms was performed by using just a portion of the datasets, nega-
tively affecting their ability to characterize an expected behavior and highlight
anomalies.

RQ2: Is there an algorithm (or a family) that is less dependent
on the choice of parameters?

This RQ is related to the choice of the optimal parameters of the algorithms,
and it can be explained with the aid of Table 5.1 and Figure 5.1. In particu-
lar, the scores used to build the table and to plot the graph refer to the me-
dian scores related to the best parameter setup for a given algorithm. Each
algorithm has its own parameters, e.g., the size of neighbourhood k in KNN,
ODIN and FastABOD. Such parameters have to be explored to find an optimal
setup, in order to use the algorithms at the best of their detection capability.
To evaluate the impact of such parameters it repeats the experiments using
the same algorithm, but with different parameters values. The number of pos-
sible setups are reported in Table 5.1. The scores obtained by using each of
these setups are used to build the ROC Curve and the AUC Score. As ex-
pected, such score is low for classification algorithms (see Figure 5.1), which
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Figure 5.1: Results on all the datasets and all the attacks, grouped by algo-
rithms families. Columns report median scores, while error bars depict the
standard deviation

have several configurable parameters. This has strong consequences on our
analysis: despite the se algorithms shown a very low number of false positives
and false negatives, i.e, accuracy and F1 are almost perfect, but classification
algorithms stronly depend on their parameters values, and therefore cannot
be always considered as an optimal solution.

Surprisingly, it turns out that angle-based scores are not heavily influenced
by the choice of such parameters, showing very high AUC scores, i.e., an aver-
age of 85%, compared to the others which are instead mostly around 50%. This
remarkable difference can be explained as a combination of two factors. First,
and more important, such algorithms have few configurable parameters, and
the way the ABOF is calculated makes them structurally ’robust’ to a wrong
choice. Second, such big difference could also be linked to the selection of
possible parameters values: the AUC scores is high if changing the value of a
parameter does not significantly impact on the outcome of the analysis.

RQ3: Is there an attack (or a category of attacks) that is more
difficult to detect than the others?

Differently from Table 5.1 and Figure 5.1, the results can be aggregated by
considering the attacks, or the attack categories, as dimensions of the anal-
ysis. This allows discussing the median scores of our 12 algorithms, for the
anomalies generated by each specific attack. Figure 5.2 shows Precision, Re-
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Figure 5.2: Median metric scores for all the datasets and algorithms, grouped
by attacks.

call, Accuracy and F1 scores related to each of the attacks in the considered
datasets. From left to right of Figure 5.2, it is possible to observe attacks with
decreasing metric scores. On the right of the figure, we depict the attacks
that turned out to be tricky to identify, and that generated the higher amount
of false positives and false negatives. More in detail, it is possible to observe
that anomalies generated by the generic and exploits attacks are difficult to
detect. In fact, these attacks have heterogeneous characteristics: it is not triv-
ial to define an expected behaviour, and consequently it is difficult to define
what is not expected, i.e., anomalous. Another interesting observation regards
DoS and DDoS attacks: Figure 5.2 shows that median scores for DDoS are
higher than DoS, implying that the anomalies generated by DDoS attacks are
detected with higher probability. When multiple malicious hosts are trying to
flood the target system with network packets, the packets arrival rate raises
significantly, and therefore it is noticeably different from the expected rate. On
the other side, anomalies due to Meterpreter, AddUser, Web and Java attacks
are detected with excellent Recall scores (100%), implying that no false nega-
tives were generated. We can conclude that most of the Application attacks are
on average easily detected by the algorithms considered in this study, while it
is more difficult to detect generic and exploit attacks, probably because they
introduce minimal - and not homogeneous - perturbations of the system and
network behaviour.

RQ4: Is there a dataset that offers better detection scores
than others?

The question is mostly related to the intrinsic difficulties of correctly defin-
ing an expected behaviour, that must be defined relying on the available data
points of a given dataset. Since anomalies are supposed to be rare events, our
conjecture is that in datasets with a low ratio of attacks it should be easier to
define the expected behaviour and, consequently, to detect anomalies. Table
5.2 aggregates the results of all the algorithms for all the attacks contained in
each dataset, partially confirming this conjecture. From the top of the table, we
can see that the higher F1 scores are related to the AL and the IX datasets: ac-
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Table 5.2: Metric scores (median± std) for the datasets considered in the study

Dataset AUC (ROC) Recall Precision Accuracy F1
KDDCup99 44.1± 8.2 95.3± 11.4 86.2± 4.9 80.0± 7.2 88.8± 8.4

NSLKDD 48.7± 8.6 87.6± 3.2 88.2± 2.5 75.3± 2.6 84.6± 2.2

ISCX2012 45.8± 3.4 97.4± 0.5 88.6± 1.5 86.0± 1.4 92.4± 0.7

ADFALD 49.9± 1.4 97.6± 1.0 100.0± 0.7 97.5± 1.4 98.8± 0.5

UNSWNB15 49.8± 3.2 84.8± 3.5 90.2± 3.1 74.0± 3.3 84.5± 2.6

cording to Table 3.1, these contain respectively 11.22% and 11.68% of attacks.
However, this reasoning does not apply to the KC and NK datasets: KC has an
higher ratio of attacks than NK, but it has better scores than NK. This may also
be related to the specific attacks logged in the datasets: some of them may be
easier to detect, because they generate point anomalies that significantly differ
from the expectations. In addition, it is worth noticing that the AUC metric
resulted in very similar and quite low scores (between 40% and 50%) across
all the datasets, meaning that parameters of the algorithms should be tuned
carefully before conducting anomaly detection on the datasets we selected for
this study.
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Conclusion and Future Work

Generally, the vast majority of research works on anomaly detection, and on
anomaly-based intrusion detection systems, propose a novel technique for in-
trusion detection and then compare it with a small set of different algorithms
executing on a single dataset. Valuable examples are cited, especially [43],
[34], [62]. This structure is very effective in presenting a novel algorithm and
showing how it performs compared to a few existing ones. However, the ex-
perimental comparison of the target algorithm with algorithms from state of
the art is often limited to proof-of-concept samples or a few target datasets. A
question that is often left open is if an algorithm that is proven effective for a
given case study or dataset has a similar behavior when applied to a different
- although similar - context, or when it is evaluated using a different metric.

An extensive evaluation of algorithms by considering different categories
of attacks, target systems (datasets), and scoring metrics would be beneficial.
Being aware that the "silver bullet" algorithm, or rather an algorithm which
always performs better than others, does not exist (yet?), we think that an in-
depth comparison among anomaly detection algorithms for intrusion detection
is needed to understand which (family of) algorithm is recommended when
dealing with a specific class of attacks and systems.

The results suggest that many works may be built on this baseline, con-
tributing to anomaly-based intrusion detection. In particular, our current and
future works aim at understanding if some algorithms may cover large sets
of attacks, while the uncovered at-tacks may be detected by using other algo-
rithms in conjunction with the primary strategy. Then, we will investigate if
specific algorithms or algorithms families are particularly effective in detecting
either point, contextual, or collective anomalies. The analysis may be comple-
mented by deriving which kind of anomaly our (category of) attacks are more
likely to generate.

Therefore this work aims at providing a framework for a quantitative com-
parison of anomaly-based intrusion detectors for critical distributed systems,
which may be used by researchers and practitioners when designing and as-
sessing anomaly-based intrusion detection systems. The previous results of
this work considering the quantitative comparison of the anomaly detection
algorithms in intrusion detection systems has a publication in [75].

Future works would include improving the possible weakness of themethod-
ology for comparing anomaly detection algorithms by considering sliding win-
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dow algorithms and even supervised and semi-supervised ones, automating
more parts of the framework, and establish possible guidelines to suggest al-
gorithms to build intrusion detection systems.
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