
Tiago Peixoto da Silva Lobo

Gap soliton transparency switching and defect
mode formation in one-dimensional

Kerr-metamaterial superlattices and strips

Brazil

November 2017



Tiago Peixoto da Silva Lobo

Gap soliton transparency switching and defect mode
formation in one-dimensional Kerr-metamaterial

superlattices and strips

Thesis presented to the Program de Pós Grad-
uação em Materiais in partial fulfillments of
the requirements for the degree of Doutor em
Ciências.

Universidade Federal de Alagoas – UFAL

Programa de Pós-Graduação em Materiais

Supervisor: Solange Bessa Cavalcati

Brazil
November 2017



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Catalogação na fonte 
Universidade Federal de Alagoas 

Biblioteca Central 
Bibliotecária Responsável: Janaína Xisto de Barros Lima 

         

               L799g        Lobo, Tiago Peixoto da Silva. 

  Gap soliton transparency switching and defect mode formation in one-

dimensional Kerr-metamaterial superlattices and strips / Tiago Peixoto da Silva 

Lobo. – 2017. 

      93 f.  

   Orientadora: Solange Bessa Cavalcanti. 

              Tese (doutorado em Materiais) – Universidade Federal de Alagoas. Centro 

                                  de Tecnologia. Programa de Pós-Graduação em Materiais. Maceió, 2017.  

 

    Bibliografia: f. 87-93. 

    1.  Metamaterial. 2. Material Kerr. 3. Alternância de transmissão. 4. 

Solitons. I. Título.                   

           

             CDU: 620.1:535.32 

 

 

 

 

 





Acknowledgements

For the faculty members of UFAL: Glauber Tomaz, Leonardo Viana, Eliana Almeida,
Eduardo Nobre, Eduardo Fonseca, Adeildo Ramos, Fabiane Caxico and Eduardo Setton.
Thank you for contributing to my academic formation.

Solange, thank you for everything you did for me, staying by me side when almost
everyone didn’t. Your guidance was invaluable to me.

Oliveira, thanks for the advice, the pep talk and the eagle eye. You were a funda-
mental part of this journey.

To my parents, Margarida and Romualdo, for always believing in me. Thank you!
Without both of you I would never become the person I am today.

To my soon to be wife, Raissa, for the continuous support, for the patience to listen
to the same complains over and over again and everything else. Thank you!

To my friends: Ricardo, Diogo, Luciana, Alex, Lucas, Catarina, and Romildo for
the support and aid during this period. Thanks!

To Fred and Vilker, thanks for the long talks about life, the universe and everything.

Finally, I would like to thank Capes for the financial support.



Abstract
Plasmon-polariton gap soliton formation and transparency switching in one-dimensional
nonlinear layered systems composed of alternate layers of a Kerr material and a dispersive
linear metamaterial are theoretically studied. The behavior of the electric field profile
inside the layered system is shown for different values of nonlinear power, linking the
localized modes of the electric field with complete transparency states of the system. A
detailed investigation on the influence of a defocusing nonlinearity on the transmission
switching phenomenon, in the frequency range where the linear dispersion predicts the
photon-plasmon coupling, is made, revealing different effects in the top and bottom edges
of the plasmon-polariton gap. Specifically, we found a broadening of the plasmon-polariton
gap when increasing the nonlinear power. In addition, a switching from very low to high
transmission states is obtained and localized plasmon-polariton gap solitons of various
orders are found for various values of frequencies and nonlinear strength.

Defect modes in a reduced lattice composed of a regular material sandwiched by a bilayer
Kerr/dispersive metamaterial are also studied. The behavior of the electric profile inside
the strips is studied for varying defect layer size and for an increasing focusing nonlinearity,
linking each transparency point to a defect mode. In addition, the transmission function is
found to be periodic in the linear regime and this periodicity is not affected by a focusing
nonlinearity. Furthermore, each defect mode is linked to a n-peak electric field profile and
a well defined parity. By choosing consecutive defect modes we have shown that the parity
is switched and the electric field profile gets a new peak added to it, in the linear regime.
Moreover, by fixing a defect layer size and studying the effects of an increasing focusing
nonlinearity we found multistability, hysteresis and observed parity switch and new peaks
being added to the electric profile as one chooses consecutive transparency points.

Keywords: Solitons, Transparency switching, Kerr material, Metamaterial, Band-gap,
Plasmon-polariton, Parity Switch, Defect Modes.



Resumo
A formação de sólitons no gap plasmon-polariton e alterações no estado de transmissão
de uma rede não linear unidimensional composta de camadas alternadas de um material
Kerr e um metamaterial dispersivo linear são estudados teoricamente. O comportamento
do perfil do campo elétrico dentro da estrutura estratificada é mostrado para diferentes
valores da potência não-linear, conectando os modos localizados do campo elétrico com
estados de transmissão total do sistema. Uma investigação detalhada da influência de
uma não-linearidade desfocalizadora no fenômeno de alternância de transmissão, na
faixa de frequência onde a dispersão linear prediz o acoplamento fóton-plasmon, é feita,
revelando diferentes efeitos para as bordas inferiores e superiores do gap plasmon-polariton.
Especificamente, nós achamos um alargamento do gap plasmon-polariton com o aumento
da potência não-linear. Em adição, uma alternância dos estados de trânsmissão de muito
baixos para muito altos foi observado e gap sólitons plasmon-polaritons de várias ordens
foram achados para vários valores de frequência e potência não linear.

Modos defeito em uma rede reduzida composta de um material regular entre bicamadas
Kerr/metamaterial dispersivo também são estudados. O comportamento do perfil do
campo elétrico dentro das camadas é estudado para variáveis valores da camada defeito e
para uma não linearidade focalizadora crescente, ligando cada ponto de transparência a
um modo defeito. Em adição, achamos que a função transmissão é periódica no regime
linear, e que essa periodicidade não é afetada por uma não linearidade focalizadora. Além
disso, cada ponto defeito é ligado à um perfil do campo elétrico de n-picos e possuem
paridade bem definida. Ao escolher modos defeito consecutivos mostra-se que a paridade é
alternada e que o perfil do campo elétrico tem um novo pico adicionado a ele, no regime
linear. Ademais, ao fixar o tamanho da camada defeito, o estudo dos efeitos de uma não
linearidade focalizadora revela um perfil multiestável, histerese e alternância de paridade e
novos picos sendo adicionados ao perfil do campo elétrico quando pontos de transparência
consecutivos são observados.

Palavras-chave: Solitons, Alternância de transparência, Material Kerr, Metamaterial,
Band-gap, Plasmon-polariton
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1 Introduction

In the last few decades, researchers all over the world have managed to produce
artificial complex materials widely used to shape and manipulate light (VALENTINE et
al., 2008; VALENTINE et al., 2009). The remarkable flexibility of high-quality optical
materials has allowed the fabrication of nanostructures (VESELAGO, 1968; SHELBY;
SMITH; SCHULTZ, 2001), where one may tailor the electromagnetic dispersion and mode
structures at one’s choice, providing new phenomena for further investigations and new
device applications. In addition, such new materials have given a refreshing flavor to old
subjects as nonlinear wave propagation through one-dimensional (1D) layered systems
(LI et al., 2003; JIANG et al., 2003). In particular, systems containing metamaterials,
which exhibit electric and magnetic negative responses to an optical field within the same
frequency range, provide excellent man-made materials for a number of areas of intense
interest (PARAZZOLI et al., 2004; WILTSHIRE et al., 2001). Recently, the merging of
plasmonic and metamaterial areas has opened up a new perspective toward achieving the
ultimate control of light in the nanoscale dimension (FANG; KOSCHNY; SOUKOULIS,
2010; XIAO et al., 2010a).

Plasmon-polaritons (PPs) are elementary excitations due to the resonant coupling
of plasmons with light. Recent work on the dispersion relation of a layered system composed
by bilayers AB of a dispersive metamaterial (A) and air (B) has demonstrated that, under
oblique incidence of light, a resonant coupling between a plasmon and a photon gives rise
to a non-Bragg bulk-like PP gap at the plasmonic frequency (REYES-GÓMEZ et al., 2009;
CARVALHO et al., 2011). As photons and plasmons have different dispersion relations,
there is an anticrossing region evidencing the photon-plasmon coupling. Outside this
region there is no coupling and therefore, plasmons and photons retrieve their individual
character. By substituting the air layers by a nonlinear Kerr material, and choosing a
particular frequency within the anticrossing region, multistability, transmission switch
and resonant formation of soliton waves seem to occur at particular values of nonlinearity
intensities for which total transmission (T = 1) is possible. Various layer arrangements
were studied such as periodic, quasi-periodic and disordered arrangements, with absorption
included, indicating that nonlinear switching with soliton formation is a robust phenomenon
(REYES-GÓMEZ; CAVALCANTI; OLIVEIRA, 2014; REYES-GÓMEZ; CAVALCANTI;
OLIVEIRA, 2015; REYES-GÓMEZ; CAVALCANTI; OLIVEIRA, 2016).

In this work we extend these previous findings on layered systems, to understand the
role of nonlinearity on the dispersion relation around the anticrossing region. To this end,
we investigate the transmission properties of incident light, under oblique incidence, upon
a layered system composed of bilayers nonlinear/metamaterial in a periodic arrangement.
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A thorough investigation on the influence of nonlinearity on the transparency-switching
phenomenon is made, by sweeping the frequency region where the photon-plasmon coupling
occurs in the case of a self-defocusing Kerr nonlinearity. It should be noted here that it
has been previously shown (REYES-GÓMEZ; CAVALCANTI; OLIVEIRA, 2014) that
the transparency switching phenomenon is robust with respect to absorption and could be
observed even in the case of a single bilayer and relatively high levels of absorption. As
expected, there are no total transmission states as those now have lower intensity, however
the overall behavior is the same with or without absorption. For this reason, we neglect
absorption and focus on the influence of the nonlinearity on the transparency switching
phenomenon by sweeping the frequency region where the photon-plasmon coupling occurs
in the case of a self-defocusing nonlinearity. We find that the detuning, that is, the
depart of the frequency investigated from the resonant frequency, does not hinder soliton
formation. Actually, we find that within the whole range of frequencies between the
resonant points of total transmission (T = 1), lower intensity solitons of all orders are still
formed. Furthermore, we show that in the self-defocusing case, the top edge of the PP
gap is shifted to higher frequencies proportionally to the nonlinearity intensity while the
lower PP gap edge essentially does not change in frequency. Thus, the "nonlinear PP gap"
becomes larger than the linear one.

We also investigate defect modes in small one-dimensional photonic lattices com-
posed of a regular material (with nondispersive permittivity and permeability) sandwiched
between two bilayers made of Kerr/dispersive metamaterial. The regular material can be
seen as a defect to a periodic lattice, raising the question of how the light propagates when
the lattice has a local defect? For this reason, we theoretically analyze the linear defect
modes in the linear and nonlinear regime for frequencies where the plasmon-polariton
occurs, linking these modes to resonant modes of the system and to a parity switching
phenomenon. Furthermore, we also show that the presence of a focusing Kerr nonlinearity
does not change the periodicity of the transmission, linking the resonant modes in the
presence of a focusing nonlienarity to a geometrical property of the system. Moreover, we
show that consecutive defect modes increase the number of peaks of the electric profile and
always have different parity. By choosing one defect mode and studying the influence of a
focusing nonlienarity on its properties we also observe that consecutive resonant modes
also present an increase in the number of peaks of the electric profile and possess different
parity, linking the increase in the defect layer size to an increase in the light intensity.

We present our investigations on the role of the nonlinearity in the transparency
switching phenomenon and in the defect modes of a nonlinear lattice as follows: chapter 2 is
devoted to give an overview on metamaterials and plasmonic metamaterials, talking about
some recent advances on the design and fabrication of materials with near zero permittivity
or permeability; chapter 3 talks about the mathematical formalism necessary to study
linear optical lattices, starting from Maxwell’s equations we obtain the equation describing
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light propagation in one-dimensional lattices, talk about the transfer matrix formulation,
the Kronig-Penney model, and photonic band gaps; chapter 4 introduces the subject of
nonlinear light propagation in media with a center of symmetry, reviewing some effects
that stems from this: optical switching, multistability, hysteresis and soliton formation;
chapter 5 gives an overview of the subject of gap-soliton formation; in chapter 6 we outline
the computational program developed, and explain some new techniques designed in order
to visualize our results, as well point out the main differences between our methodology
and the literature; in chapter 7 we present our results on the defect modes of a nonlinear
system for frequencies near the PP-gap edge; chapter 8 deals with the characterization of
the transmission properties and the electric field profile of a lattice composed 32 bilayers
of a linear dispersive metamaterial and a Kerr material for a defocusing nonlinearity and
for frequencies near the PP gap; finally, in chapter 9 we present our conclusions and talk
about future works.
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2 Plasmonic metamaterials

In general, all materials are composites, even if they are made up by lots of
small elements like atoms and molecules (for the naturally occurring ones). The way
these elements are arranged changes the electromagnetic response of the material. In
particular, two classifications are often used related to the spatial symmetries of the
elements: amorphous, i.e., the elements are arranged in a random fashion; and crystalline,
meaning that its constituents are in a periodical ordered arrangement. In order to calculate
the electromagnetic properties of a homogeneous medium one needs to define (or describe)
its permittivity ε and its permeability µ, both which depends on the spatial properties
and the constituents of the material. This chapter aims to: give a brief overview on some
theories used to describe optical materials; talk about recent advances in the desing and
use of metamaterials and plasmonic materials.

2.1 Initial considerations
The focus of this thesis is in the interplay between electromagnetic waves and matter

using only classical tools. Quantum effects will be disregarded unless explicited otherwise.
Under these assumptions, two theories are dominant when studying electromagnetic wave
propagation in matter: Bragg scattering (ASHCROFT; MERMIN, 1976) and the effective-
medium approximation (LANDAUER, 1952; BRUGGEMAN, 1935). Bragg effects are
important when the wavelength of the incident wave is comparable with the distance
between elements in the material. When this happens, each constituent of the material in
question reflects the wave. The way this reflected waves interact with other reflected waves
and with the incident wave dictates the propagation of an electromagnetic wave through
this kind of media. We call a Bragg reflection when the waves reflected by the elements
interfere constructively reflecting most of the incident power. Consider a crystal made out
of parallel planes of ions with spacing d. The condition for a peak in the reflection of the
incident power of an incoming wave with wavelength λ is that the waves are specularly
reflected (meaning that the incidence angle equals the angle of reflection) and that the
reflected waves interfere constructively. The difference in the path of the waves reflected
by two different planes is 2d sin θ, where θ is the angle of incidence. To have a constructive
interference this difference must be equal to an integer number of wavelengths, leading to
the Bragg condition:

nλ = 2d sin θ; (2.1)

where n is an integer.
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The second effect of interest is given when the wavelength of the electromagnetic
radiation is much larger than the lattice period. There is no considerable reflection
or diffraction as the electromagnetic wave travels through the material, but they are
still substantially affected. When this happens, the fine detail of the structure may be
disregarded and replaced by a homogeneous and continuous material. Thus, one can find
effective parameters, like the electric permittivity and magnetic permeability, to represent
the material. This is known as the effective-medium approximation. This theory is the
one we are interested in. When talking about materials we will talk about their effective
permittivity and permeability, allowing mixtures, man-made materials and alloys, for
example, to be studied under the same set of mathematical equations.

These effects (Bragg reflections, and the possibility of using effective values for
the permittivity and permeability) are still of considerable importance when dealing with
man-made materials, where the atoms and molecules are replaced by macroscopic elements,
bigger than the molecules that normally constitute a material, but small enough that
the effective medium approximation is still valid. By controlling the constituents of a
material one can tailor its permittivity and permeability allowing a variety of effects that
were impossible to obtain on ordinary materials (optical cloaking (CAI et al., 2007) and
double negative materials (VESELAGO, 1968) for example). These man-made materials
are called metamaterials. Huge attention has been given to this area in order to study,
develop and design new metamaterials to a wide range of applications. Despite this, a
more concise definition of what is a metamaterial is still hard to pinpoint. Here we will
quote two definitions in current use (SOLYMAR; SHAMONINA, 2009):

• Metamaterials are engineered composites that exhibit superior properties not found
in nature and not observed in the constituent materials.

• A metamaterial is an artificial material in which the electromagnetic properties, as
represented by the permittivity and permeability, can be controlled. It is made up of
periodic arrays of metallic resonant elements. Both the size of the element and the
unit cell are small relative to the wavelength.

Both definitions have their flaws, the first one is not specific enough (mixtures,
in general, are not metamaterials and fits the definitions), while the second one is too
restrictive (the non-naturality of the assertion can be questioned). We will use the term
metamaterial as a mix of the two definitions, engineered composites in which its permittivity
and permeability can be controlled. A more curious header can find an extensive discussion
about the meaning of the word metamaterial in (SIHVOLA, 2007).

Metamaterials are constituted of small macroscopic elements embedded in linear
or nonlinear media in a specific arrangement (periodic, or not). The first double negative
metamaterial was obtained by a periodic array of inter-spaced split ring resonators (SRR)
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and continuous wires (SMITH et al., 2000). Since then, a great amount of research has been
dedicated to the design of new metamaterials, for example: huge nonlinearities are found
by using arrays of SRRs and cut wires as the unit cell (BAI et al., 2015); the development
of a low-profile aperture capable of microwave imaging without lenses (HUNT et al., 2013);
an invisibility cloak (SCHURIG et al., 2006).

When designing metamaterials one needs a theory to describe the materials, i.e.,
a way to find both permittivity and permeability of a material constituted of small
macroscopic elements is necessary. In the effective-medium approximation specific models
are used to obtain a more detailed understanding of both µ and ε. The Lorentz model
provide a very good approximation for the electromagnetic response of dielectrics using only
classical physics and the Drude model is remarkably accurate for metals and semiconductors.
Despite being still used today these methods have their shortcomings. For example, the
Lorentz model attributes a single resonance frequency to each atom. In comparison, the
quantum description, which is detailed in (BOYD, 2008), allows more than one resonance
frequency. The next section is devoted to briefly explain the Lorentz model and the Drude
model.

2.2 Lorentz and Drude Model
In 1900, prior to development of quantum mechanics, Hendrik Lorentz described,

using only classical mechanics, the interaction of light with matter in terms of Maxwell’s
equations. Even with only classical tools, the Lorentz oscillator model is able to describe
accurately some materials and is still an important tool today. Lorentz developed a theory
capable of accounting for both the complex dielectric constant of materials and its variation
with the frequency of light. The model proposed treats the atom as a damped harmonic
oscillator, i.e., electrons are considered bound to the nucleus of the atom with a spring-like
force. This theory can be extended to treat nonlinear media by adding nonlinearities in
the damped harmonic oscillator (BOYD, 2008). Following the Lorentz theory, the motion
of an electron with position x(t) is found by solving the following equation:

d2

dt2
x(t) + 2γ d

dt
x(t) + ω2

0x
2(t) + N (x(t)) = −eE(t)

m
; (2.2)

where E(t) is an applied electric field, −e is the charge of the electron, m is the electron
mass, γ is the dipole damping rate, ω0 is the resonance frequency and N(x(t)) is a
nonlinear function of the electron position. The terms in eq. 2.2 have a physical meaning,
−2mγdx(t)/dt is the damping force, while the term −mω2

0x(t) +N(x(t)) is the restoring
force. This restoring force corresponds to a potential energy function of the form:

U(x(t)) = −
∫
−mω2

0x(t) +N(x(t))dx = 1
2mω

2
0x

2(t)−
∫
N(x)dx. (2.3)



Chapter 2. Plasmonic metamaterials 23

Assuming an applied optical field of the form:

E(t) =
∑
n

Ene
−iωnt (2.4)

and that no nonlinerities are present (N(x) = 0), one obtain the usual Lorentz model
result

x(t) =
∑
n

x̂(ωn)e−iωnt (2.5)

where:
x̂(ωn) = − 1

m

eEn(ωn)
ω2

0 − ω2
n − 2iωnγ

. (2.6)

The polarization contribution (to the frequency ωn) of all the dipoles generated by
the incident field is given by P (1)(ωn) = −nex(ωn) (JACKSON, 1999), where n is the
number density of atoms, while the linear susceptibility χ(1) is defined as P (1)(ωn) =
ε0χ

(1)(ωn)E(ωn). Thus, one can find that the linear susceptibility is given by:

χ1(ωn) = ne2/m

ε0 (ω2
0 − ω2

n − 2iωnγ) . (2.7)

Despite its simplicity, the Lorentz model is still used to this day to study the
properties of dielectrics (KATS et al., 2011; BAI et al., 2015). In addition, it can also
be used to find higher order susceptibilities. To do so, one may replace N(x) with the
appropriate expression for the type of nonlinearity being treated and use a procedure
similar to that of Rayleigh-Schrodinger perturbation theory in quantum mechanics to
find the values of χ(n) (BOYD, 2008). As of now, we will restrain our analysis to linear
materials, i.e., materials where χ(n) = 0 for n > 1.

Despite all its advantages, the Lorentz model is not suitable to treat materials
containing free charge carriers, like metals and semiconductors. The spring like force is not
present because, in metals and semiconductors, electrons in the valency band can move
freely. The Drude model address these problems by not including the restoring force into
the electron equation of motion:

dp(t)
dt

= −p(t)
τ
− eE(t) (2.8)

where p(t) is the electron momentum and τ is the mean free time (the time interval which,
in average, an electron picked at random will wait until its next collision). Assuming a
steady-state solution of the form p(t) = p(ω)e−iωt and E(t) = E(ω)e−iωt, one may find:

p(ω) = − eE(ω)
1
τ
− iω

. (2.9)

Since the current density j in a metal can be written as, assuming time harmonic behavior,
j(ω) = −nep(ω)/m = σ(ω)E(ω), the AC conductivity σ(ω) can be defined as:

σ(ω) = ne2τ

1− iωτ . (2.10)
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The complex dielectric constant can be shown to be (ASHCROFT; MERMIN, 1976):

ε(ω) = 1 + iσ(ω)
ω

; (2.11)

thus, the electric permittivity in the Drude model is:

ε(ω) = 1−
ω2
p

ω2 + iγω
; (2.12)

where we replaced the term containing the mean free time for an absorption coefficient γ,
as it is more common in the literature; ωp =

√
ne2/ε0m is the plasma frequency.

Together, the Drude and the Lorentz models are able to describe the electric
response of matter. Both of them allow a negative response of the material, as one can
see in figure 1(a). Physically, this means that the electric polarization of the medium and
the polarization of the external field have opposite signs. Here we have assumed that the
material response would be due to free electrons only, but the magnetic permeability also
has negative value when the material response is due to bound magnetic moments and
the frequency is smaller than the plasmonic frequency.
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Figure 1 – (a) The real part of the electric permittivity for ωp = 3 and resonance frequency
of ωo = 2.45 (for the Lorentz model only) (in arbitrary units). The dashed lines
corresponds to the plasmonic frequency and to the zero value of the permittivity.
Both models exhibit negative response. (b) The imaginary part of the electric
permittivity. The inset shows the Drude model in detail, as its goes to 0 very
fast.

The negative behavior of the permittivity is actually very common. Most metals
(gold, silver and aluminum, for example) (PENDRY; SMITH, 2005) have a negative
permittivity for frequencies around 400 − 790 THz, i.e., in the visible range and near
the ultraviolet. A problem arises when dealing with lower frequencies, from the infrared
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downwards. In this limit the dissipation is very large, making the permittivity function
practically imaginary (as one can easily see from fig. 1(b)). Negative permeability, on the
other hand, exists for some ferromagnetic and antiferromagnetic systems (PIMENOV et al.,
2005) in the microwave and far infrared region. Furthermore, the range of frequency that
a material exhibits negative response is normally very narrow, making naturally occurring
materials with simultaneous negative values for both permeability and permittivity very
hard to find.

2.2.1 Plasmas

Figure 2 – Simple model of a plasma oscillation. An electron gas displaced in respect
to a background ionic lattice. This generates a surface area, that creates an
electromagnetic field of magnitude 4πσ. This leads to an oscillation of the
electron gas at the plasma frequency.

Plasmas is an old topic in physics started by Langmuir in the 1920s. They are
are the object of study of lots of fields, as for example: radio broadcasting, which led
to the discovery of the ionosphere, explaining why radio waves were reflected back to
Earth; magnetohydrodynamics, which treats plasma as a conducting fluid, and is used
in astrophysics and geophysics; laser plasma physics; high energy physics (aiming to
use plasma acceleration to reduce the size of particle accelerators). Furthermore, surface
plasma is often found when dealing with negative index materials. As one can see, this
subject is very big and very important. In this thesis, we show that, when treating the
propagation of light though one-dimensional lattices containing plasmonic materials, the
light excites a bulk plasmon in the lattice. The excited plasmonic mode excited is very
important, as it is responsible for the creation of a region where the light propagation is
forbidden (a photonic band gap, the plasmon-polariton gap) and considerably effects how
to zero-< n > gap behaves.



Chapter 2. Plasmonic metamaterials 26

Plasma oscillations can be seemed as collective oscillations of the electron density.
The fluctuations in the electron density can be split into two parts: one related to the
thermal motion of each electron, which shows no collective behavior; other related to the
organized oscillation of the whole system, the plasma oscillation. Normally studied in
dense electron gases, these oscillations are also common in metals and semiconductors.
The quanta of this oscillation are known as plasmons (KITTEL, 2005).

A very simple and crude model can be built to explain plasma oscillations(ASHCROFT;
MERMIN, 1976). Imagine an electron gas being displaced a distance d with respect to a
fixed positive background of ions (as in fig. 2). The result surface charge density creates
a field inside the material that will make the electron gas oscillate between the charged
surfaces. The solution of the motion of the electron gas is a function that oscillates exactly
at the plasma frequency. The dispersion of such wave, a plasma wave, is ω(k) = ωp = const.,
ω being a constant independent of the wave number k. Moreover, in a plasma, the wave
number can assume any value while the frequency is fixed to the plasma frequency.

These oscillations present themselves mostly when treating materials with negative
epsilon. For example, if one cuts a metal wire in half, the two surfaces created will show
surface plasmons: oscillations restrained to the surface of the metal whose frequency obeys:

ε1(ωs) + ε2(ωs) = 0; (2.13)

where ε1 is the permittivity of the metal and ε2 is the permittivity of the surrounding
medium. If we choose vacuum and a metal with Drude response one may find that the
surface plasmon will have frequency ωs = ωp/

√
2. If one changes the surface to another

shape a variety of other plasmonic surface modes appear.

Another example of plasma oscillation presents itself in the case of a medium where
the magnetic permeability is given by a Drude like response. Consider an electromagnetic
wave of the form ei(ωt−k·r). Such magnetic wave, when travelling through a magnetizable
medium, induces a magnetization that modifies the wave, coupling the electromagnetic
wave with the medium. This is a hybrid mode, as it is the result of the interaction of the
electromagnetic wave with the medium (the electromagnetic wave excites a plasmonic
mode inside the medium that strongly interacts with the light beam). The dispersion
relation of such wave can be obtained by noting that its wave number satisfies k = ω/c

√
µε.

Thus, its dispersion relation is found to be ω2k2
0 = ωk2 + ωpk

2
0, where ωp is the plasma

frequency. In fig. 3 one can see the dispersion curve of the bulk plasmon polariton. It
shows that there is no longer a pure plasma wave, or a pure electromagnetic wave, the
dispersion relation is a mix of the two. The strong interaction of the plasma wave with
the light results in the bulk plasmon polariton. As one can easily see, when k tends to ∞
the bulk plasmon polariton has a light-like behavior, and as k gets smaller the line moves
away from the light dispersion relation and reaches the cut-off plasma frequency.
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Figure 3 – The dispersion of a bulk plasmon-polariton is plotted in blue. The plasmon-
polariton is a hybrid mode that stems from the coupling of the light beam
(purple dashed line) with the plasmonic oscillation of the medium (orange
dashed line).

2.3 Double negative materials

Figure 4 – Pictorial view of the material proposed by Pendry et al. in order to achieve
negative electric permittivity. The material is a cubic lattice composed of
nonmagnetic infinite wires (black lines). The unit cell of the material is in blue.

In 1968 Veselago published a paper where he suggested a hypothetical material
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where both electric permittivity and magnetic permeability were simultaneously negative.
He called the material a left-hand material as the wave vector, electric field and magnetic
field makes a left-hand set in these materials. In studying this hypothetical material,
he found a variety of new phenomena like the reversal of both the Doppler shift and
Cherenkov radiation and anomalous refraction, all arising due to the reversal of the group
velocity in the left-handed materials. Veselago’s work remained in the hypothetical world
for more than thirty years, when a material with both µ and ε negative was discovered in
the 2000’s by Smith et al. (SHELBY; SMITH; SCHULTZ, 2001; SHELBY et al., 2001;
SMITH et al., 2000).

Figure 5 – Pictorial view of the material proposed by Pendry et al. in order to achieve
negative magnetic permeability. The structure showed in (a) is called Split
Ring Resonator (SRR), two concentric rings with smalls splits on them, placed
with a very small distance from each other. (b) An array of SRR mimicking
the behavior of a cylinder. Such structure would have an anisotropic behavior.
(c) Unit cell of an isotropic material which exhibits negative permeability.

Up until Smiths work in the 2000’s, it was known that a material consisting of
metallic rods could produce negative ε, as demonstrated by Pendry et al. (PENDRY et
al., 1996). To achieve such feat, it was proposed a periodic structure (fig. 4) composed of
infinite very thin wires, with low magnetic response, arranged in a cubic lattice. The large
self-inductance of the structure increases the electron momentum, mimicking the effect of
a larger electron mass. Together with the much smaller electron density, due to the new
packing, this greater effective mass is able to lower the plasmonic frequency considerably.
This was quite an accomplishment as we can theoretically construct the wires of aluminum
and end up with a plasmonic frequency of approximately 8.2 GHz, with practically no
losses, in contrary to the naturally occurring epsilon negative materials (ENG) which have
the plasmonic frequency in the THz range and losses so big that the material becomes
unsuited for most of its applications. This structure was fabricated and experiments found
it to have the predicted behavior, as it was shown latter by Pendry (PENDRY et al.,
1998).

In a similar fashion, Pendry (PENDRY et al., 1999) designed a split ring resonator
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(SRR), fig. 5, specifically to achieve negative permeability in a isotropic material. As a
first try the article uses array of cylinders, but ends up with a highly anisotropic structure.
To solve this problem the SRR is suggested 5(a). If one stacks the SRR only in the z
direction, as in fig. 5(b), the response would still be the same as the cylinders. But if one
stacks the SRR in a unit cell as in fig. 5(c), the response is isotropic. In short, the SRR act
like a magnetic dipole, with a resonant response resulting from internal inductance and
capacitance. Its magnetic response obeys a Lorentz type material, thus, near the resonance
frequency the SRR produces a field that is opposite to the incident magnetic field. For
copper the predicted resonance frequency is around 14 GHz. The SRRs are almost essential
to the existence of negative permeability, being the basis of most metamaterials with such
characteristic.

2.4 Plasmonic metamaterials

Figure 6 – Pictorial view of the classification of some materials in respect to their interband
losses, carrier concentration and mobility. As the goal is to achieve negative
permittivity with losses as small as possible one wants materials in the far right
of the horizontal axis, i.e., high carrier mobility, zero interband losses and small
carrier concentration. Source: (BOLTASSEVA; ATWATER, 2011)

When plasmonics and metamaterials are combined we can exploit problems in
photonics where the features of photonics and electronics are mixed. In this case, the
photon interacts with an excited plasmon in the medium, giving rise to propagating surface
and bulk waves or localized excitations, depending on the problem. Plasmon-polaritons (the
mixed mode arising from the interaction of the plasmonic modes with light) are normally
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studied in materials formed of copper, silver, or gold because their plasmon frequency
lies near the visible region. Furthermore, small noble metal particles, whose size is in the
nanometers, also support localized plasmons, enables the interaction of plasma waves with
light even in the nanoscale (LAL; LINK; HALAS, 2007). However, the integration of these
particles to plasmonic materials and devices is still an open, and hot, topic.

Plasmonic metamaterials are still doomed by high losses, damping the plasmon-
polariton oscillations. A workaround to this problem is to combine the plasmonic metama-
terial with a gain medium, balancing the metallic losses. Xiao et al. (XIAO et al., 2010b)
were able to create a metamaterial with a negative index of refraction of −1.017 in the
visible wavelength range of 722 to 738 nm. Nonetheless, when approaching zero response
(near zero values for permittivity or permeability) not even the gain from the highest
gain materials are enough to balance the losses. An alternate approach to circumvent the
problem of high losses is to investigate other elements to dope existing metallic structures
(WEST et al., 2010). Moreover, a closer look to what makes a material a good candidate
to build a plasmonic material is necessary. For this, the main properties we are looking
for are: carrier mobility, carrier concentration and interband losses. To achieve negative
permittivity one wants: the carrier concentration to be tunable and high; the carrier
mobility to be high to offset losses; and the interband transitions to be as small as possible,
as high interband transitions greatly increases the losses (KHURGIN; SUN, 2010). Figure
6 shows a materials map using this three categories (figure taken from (BOLTASSEVA;
ATWATER, 2011)). These ’new’ materials may enable new plasmonic materials with more
interesting properties than low losses, providing a refreshing new take into the subject
(BOLTASSEVA; ATWATER, 2011; KHURGIN; SUN, 2010).

2.4.1 Near zero refractive index structures

Another important characteristic that we are interested in (the first one being to
find a metamaterial capable of achieving negative permeability and permittivity) is the
actual realization of a zero-refractive index metamaterial. This has been a very hot topic in
the literature, and continues to be a fertile field of research. Mostly three categories stems
from near zero refractive index materials: metamaterials where the permittivity near zero
(epsilon-near-zero (ENZ)); metamaterials where the permeability is near zero (mu-near-
nezo (MNZ); and metamaterials where both the permittivity and the permeability are near
zero (epsilon-and-mu-near-zero (EMNZ)). When any of these conditions is achieved the
phase velocity v of the wave goes to infinity, recall that v = 1/√εµ, making the wavelength
approach very high values, effectively leading to small phase variation over large regions.
Many interesting phenomena arises when dealing with these materials: supercoupling
(SILVEIRINHA; ENGHETA, 2006; MARCOS; SILVEIRINHA; ENGHETA, 2015), the
tunneling of a electromagnetic wave through a very narrow channel filled with ENZ or
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MNZ metamaterial between two waveguides; and, as we shall see with more detail later,
the opening of a non-Bragg gap around the frequency of ENZ or MNZ metamaterials, the
plasmon-polariton gap (REYES-GÓMEZ et al., 2009).

These metamaterials are being designed and characterized experimentally in the
last few years. Conducting oxides (indium-tin-oxide, aluminum-zinc-oxide and gallium-
zinc-oxide (WEST et al., 2010)) have the real part of the permittivity approaching
zero at telecommunications wavelength (1260 to 1675 nm). Eric Mazur et al. have been
developing on-chip integrated metamaterials in the optical regime (LI et al., 2015), and
recently (RESHEF et al., 2017) developed a waveguide with zero-crossing region around a
wavelength of 1625 nm. A review of some advances in the experimental area can be found
in (RAMAKRISHNA, 2005).
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3 Linear optical lattices

The main goal of this chapter is to give the reader a brief overview on the subject of
wave propagation in one-dimensional stratified medium composed of linear metamaterials.
For that, a brief introduction of the theories involved must be given. The subject of wave
propagation in linear layered media is extensively treated on the literature and the focus
of some books (YEH, 2005; BORN; WOLF, 2013; SOLYMAR; SHAMONINA, 2009).
Moreover, the contents of this chapter aims to make this work entirely reproducible by
itself and to give a general overview of the topic. A detailed explanation of all the concepts
treated here can be easily found in the literature and a more curious reader is encouraged
to pursue it if he, or she, needs a more detailed approach.

3.1 Maxwell Equations
As a first remark we start stating that, throughout this thesis, we will work with

the interaction of electromagnetic radiation with matter within a macroscopic framework,
i.e., the spatial variation of the electromagnetic field is way larger than the size of the
constituents of the material of interest. Under these assumptions, we may study the
solutions of Maxwell’s equations (in SI units):

∇ ·B = 0, (3.1)

∇ ·D = 0, (3.2)

∇× E + ∂B
∂t

= 0, (3.3)

∇×H− ∂D
∂t

= 0; (3.4)

where it was assumed that no sources are present, so the electric charge density ρ = 0 and
the electric current density J = 0.

3.2 Constitutive equations
To proceed, and to allow a unique determination of the field vectors, a set of

constitutive relations must be given to describe the influence of the fields on the behavior
of the media they propagate. Mathematically, one can show that there are only three
independent equations in the Maxwell’s equations, a number smaller than the number of
unknowns, and thus, they are in an indefinite form. To obtain a definite set of equations,
one must provide constitutive relations between the field quantities. In this thesis, it will
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only be considered materials where (JACKSON, 1999):

D = ε0E + P (3.5)

H = 1
µ0

B + M (3.6)

where ε0 and µ0 are the electric permittivity and magnetic permeability of the vacuum; P
and M are the polarization and magnetization, respectively. The analysis presented from
here on out will be restrained to the cases where the magnetization is related linearly to
the magnetic field. This assumption holds true for isotropic diamagnetic and paramagnetic
substances, and can be achieved by a relation of the form B = µ0µH, where µ is the
magnetic permeability of the material, and can be a function of the frequency.

For the electric part, it is customary to expand the polarization as a power series
in the electric field (MILLS, 1998). This can be done because the fields of interest (applied
to the substances) are small compared to the electric fields experienced by the electrons in
the material, i.e., fields encountered in laboratories are of the order of 106 V/cm while the
fields experienced by electrons due to the atoms or molecules are of the order of 109 V/cm.
For a dispersionless and lossless system, with instantaneous response, one can obtain the
polarization P (t) as a power series in the field strength E(t):

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
. (3.7)

When the field strength is small the linear relation P (t) = ε0χ
(1)E(t), where χ(1) is known

as the linear susceptibility, is recovered. The term ε0χ
(2)E2(t) is often referred as the

second-order nonlinear polarization P (2)(t) and ε0χ(3)E3(t) as the third-order nonlinear
polarization P (3)(t). In this expansion the Polarization P (t) and the field strength E(t)
were treated as scalar quantities for simplicity. This is actually not true, and both χ(3)

and χ(2) are n-rank tensor quantities, but treating the polarization, electric field and
susceptibilities as scalar quantities is a valid approximation because of the nature of the
problem it will be treated: the propagation of an electromagnetic wave in a one dimensional
lattice.

A specific model is needed to obtain a more detailed understanding of both µ

and χ(n). The previous chapter gave us an overview of the different theories and which
materials they describe. The Lorentz and Drude models are suitable to describe most of
the metamaterials of interest, and will be the ones used in this thesis. With this in mind,
we are able to determine both D and H and continue with the analysis of the Maxwell
equations. Some calculations will be made in order to simplify the Maxwell equations for an
one-dimensional layered system composed of alternate layers of dispersive metamaterials.
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3.3 Maxwell equations for one-dimensional supperlattices
Assume time harmonic e−iωt dependence, from which an arbitrary solution by

Fourier superposition can be built. Using D(r, t) = D(r)e−iωt and H(r, t) = H(r)e−iωt on
the Maxwell’s equations, one can obtain:

∇ ·B = 0, (3.8)

∇ ·D = 0, (3.9)

∇× E− iωB = 0, (3.10)

∇×H + iωD = 0. (3.11)

Using linear relations for both the electric displacement D and magnetic field B,
eqs. 3.1:3.4 can be written as:

∇ ·H = 0, (3.12)

∇ · E = 0, (3.13)

∇× E− iωµ0µH,= 0 (3.14)

∇×H + iωε0εE = 0. (3.15)

When studying reflected and transmitted waves on layered media one can show
that every problem can be decomposed into two independent problems (BORN; WOLF,
2013), one where all components of the electric field are perpendicular to the plane of
incidence, and one where all the components of the magnetic field are perpendicular to the
plane of incidence. To the first kind of problem we shall refer as transverse E (TE) and to
the latter transverse H (TM). Despite being independent, both problems are remarkably
similar, to the point where just a simple swap in the electric permittivity and magnetic
permeability is enough to find the reflection and transmission coefficients (to be defined
latter) of both TE and TM configurations (BORN; WOLF, 2013). From here on out only
the problem of a TE configuration will be treated as the differences between TE and TM
configurations, from a mathematical viewpoint, are minor.

For a TE wave, in a configuration where the yz plane is the plane of incidence,
z being the direction of stratification (fig. 3.3), Ey = Ez = 0, and Hx = 0. These
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simplifications, when applied to the Maxwell equations, lead to:
∂Ex
∂z
− iωµ0µHy = 0, (3.16)

∂Ex
∂y

+ iωµ0µHz = 0, (3.17)

∂Hz

∂y
− ∂Hy

∂z
+ iωε0εEx = 0, (3.18)

∂Hz

∂x
= 0, (3.19)

∂Hy

∂x
= 0. (3.20)

Figure 7 – Pictorial view of the configuration this thesis is dealing with. In (a) we show a
three-dimensional view of the system, as an example of a periodic heterostruc-
ture composed of two types of materials (in blue and in yellow) was chosen.
We have assumed that a TE wave is inciding upon a heterostructure with the
z direction as the direction of the stratification, and the plane of incidence is
the yz plane (figure (b)).

As the partial derivatives of Hy, Hz (eqs. 3.19,3.20) in relation to x are both 0,
they are only functions of y and z, and as Ex is proportional to a function of y and z

only (eq. 3.18), the same is valid for it. By differentiating 3.16 in relation to x and 3.17 in
relation to y and replacing both in 3.18, we can eliminate both Hz and Hy:

∂2Ex
∂y2 + ∂2Ex

∂z2 + ω2

c2 εµEx = d log µ
dz

∂Ex
∂z

; (3.21)

where ε and µ are functions of z, as shown in fig. 3.3. The solution of this equation
can be found using the method of separation of variables. The product of two functions
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Ex(y, z) = Y (y)U(z), Y (y) being a function of y only and U(z) a function of z only, can
be used as trial solution. Thus:

1
Y

∂2Y

∂y2 = − 1
U

∂2U

∂z2 −
ω2

c2 εµ+ d log µ
dz

1
U

∂U

∂z
. (3.22)

The term on the left depends only on y and the term on the right only on z. Hence the
above equation can hold only if each side is equal to a constant (let’s call it −K2):

∂2Y

∂y2 = −K2Y ; (3.23)

∂2U

∂z2 −
d log µ
dz

∂U

∂z
+ ω2

c2 εµU = K2U. (3.24)

Eq. 3.23 gives Y (y) = const.eiKy, and consequently Ex is of the form:

Ex(y, z) = Ex(z)eiKy (3.25)

where Ex(z) = const.U(z). For clarity, let’s rewrite here the Maxwell equations for Hy,
Hz and Ex:

∂Ex
∂z
− iωµ0µHy = 0; (3.26)

∂Ex
∂y

+ iωµ0µHz = 0; (3.27)

∂Hz

∂y
− ∂Hy

∂z
+ iωε0εEx = 0. (3.28)

From the above equations one can see that Hy(y, z) and Hz(y, z) are given by expressions
of the same form:

Hy(y, z) = Hy(z)eiKy; (3.29)

Hz(y, z) = Hz(z)eiKy. (3.30)

By replacing the above equations into the Maxwell equations, one can obtain:
dHy(z)
dz

= iKHz(z) + iωε0εEx(z), (3.31)

ωµ0µHz(z) +KEx(z) = 0, (3.32)
dEx(z)
dz

= iωµ0µHy(z). (3.33)

Eliminating Hz(z) from the equations above, we have a pair of simultaneous first-order
differential equations for Ex(z) and Hy(z):

dEx(z)
dz

= iωµ0µHy(z), (3.34)

dHy(z)
dz

=
(
iωε0ε−

iK2

ωµ0µ

)
Ex(z).; (3.35)

or, by replacing eq. 3.34 into 3.35, we find a differential equation for Ex(z):
∂2Ex(z)
∂z2 + ω2

c2 εµEx(z) = K2Ex(z). (3.36)

This equation uniquely determines the problem of a wave propagating in a one-dimensional
slab, being the slab any linear material (dispersive, metamaterial, etc...).
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3.3.1 Generalized Snell’s Law

To solve equation 3.36 we still need to determine its boundaries conditions and
a way to determine K. The constant K can be determined by looking at eq. 3.23. This
equation clearly shows that K is equal to the component of the wave vector of the incident
plane wave in the y direction. Moreover, all the assumptions made up until now about the
incident field can be resumed in the following statement:

E(x, y, z, t) = Ex(z)e(ik0βy−iωt)x̂, (3.37)

i.e., we are restricting the discussion to monochromatic TE-polarized fields. Despite the
correct determination of K being already known, an important generalization of a fairly
known law can be obtained with a little math.

The surfaces with constant phase of a plane wave, eq. 3.37, are:

F (z, y) = φ(z) +Ky = constant; (3.38)

where φ(z) is the phase of Ex(z). The normal to this plane is given by the gradient of
F (z, y), i.e., n = ∂φ

∂z
ẑ +Kŷ. Let θ be the angle that this normal makes with OZ, then:

tan θ = K
∂φ
∂z

(3.39)

For a plane wave we have that φ = k0nz cos θ, where k0 = ω
c
, c is the light’s speed in

vacuum and ω is the frequency of the plane wave. This leads to K = k0n sin θ. As K is a
constant, one can find that β = n sin θ is also constant in every slab of a supperlattice,
regardless of µ and ε. Hence the relation K = const. may be regarded as a generalization
of Snell’s law of refraction to stratified media.

3.3.2 Normalized wave equation for one-dimensional supperlattices

Replacing K = k0n sin θ into eq. 3.36 we have:

∂2Ex(z)
∂z2 + k2

0

(
εµ− εµ sin2 θ

)
Ex(z) = 0 (3.40)

By introducing a dimensionless position (ζ = k0z), the equation for the amplitude of the
electric field may be rewritten as:

d2

dζ2Ex + (εµ− β2)Ex = 0; (3.41)

this is the equation that will be used to model our problems. With it we can determine
Hy and Hz and have a complete description of the electromagnetic phenomena inside the
material (be it a metamaterial or a nonlinear Kerr material).
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3.4 Transfer matrix
Equation 3.41 can be easily solved if no nonlinearities are present. The method

normally used to solve this equation in the linear regime is the transfer matrix formulation
(YEH, 2005). The deduction of the method will not be shown here, but if one has the
values of both Ex and Hy at one interface (let’s say at z = 0), the transfer matrix method
allows you to find the values of Ex and Hy at any point of the slab by using: Ex(z)

cµ0Hy(z)

 =
 cos qz i

p
sin qz

ip sin qz cos qz

 Ex(0)
cµ0Hy(0)


where p = qc

ωµ
and q = ω

c

√
εµ− β2. The matrix

M(z) =
 cos qz i

p
sin qz

ip sin qz cos qz


is called the transfer matrix. This procedure can be applied to find the field for multiple
layers by multiplicating the matrix of each layer. For example, let’s consider a stratified
media composed of two adjacent slabs, the first one extending from z = 0 to z = z1 and
the second from z = z1 to z = z2. If M1 and M2 are the transfer matrix of the two media,
respectively, then: Ex(z2)

cµ0Hy(z2)

 = M2(z2 − z1)M1(z1)
 Ex(0)
cµ0Hy(0)

 .
The transfer matrix formalism can also be used to find the dispersion relation of an

infinite lattice composed of only linear materials (this is analogous to the Kronig-Penney
model in quantum mechanics) . This will be quite useful because we can compare the
results of a finite lattice with its infinite counterpart. The dispersion relation for an infinite
lattice composed of two different materials, A and B, with widths a and b, magnetic
permeability µA,B and electric permittivity εA,B for layers A,B, can be written as:

cos(Sd) = cos (qAa) cos (qBb)−
1
2

(
pB
pA

+ pA
pB

)
sin (qAa) sin (qBb) (3.42)

where S is the Bloch wave vector along the z direction, qA,B = ω
c

√
εA,BµA,B − β2 and

pA,B = qA,Bc

ωµA,B
. The details of the algebra to find the dispersion relation of an infinite lattice

composed of two linear metameterials can be find in appendix A.
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3.5 Reflectance and Transmittance

Figure 8 – View of the plane of incidence of a TE-wave upon an one-dimensional het-
erostructure (depicted in green) sandwiched between media with electric permit-
tivity ε1, ε2 and magnetic permeability µ1, µ2 in the left and right, respectively;
Ex,i is the amplitude of the incident field, Ex,r is the amplitude of the reflected
field and Ex,t is the amplitude of the transmitted field.

When treating the problem of wave propagation in one-dimensional lattices one
usually wants to know, besides the field profile inside the structure, how much of the
incident wave was reflected and how much was transmitted through the lattice. To find
out how much of the incident wave energy is reflected from the boundary and transmitted
to the second medium, the ratios of the Poynting power flow of the reflected and the
transmitted waves to that of the incident wave must be considered. Again, the problem being
the propagation of waves in a one-dimensional lattice allows a very good simplification:
the power flow parallel to the boundary surface does not change through the lattice.
Therefore, only the normal component of the time averaged Poynting’s vector needs to be
considered when the transmission and reflection are being calculated. Thus, reflectance
and transmittance can be defined as:

R =
∣∣∣∣∣ ẑ · Srẑ · Si

,

∣∣∣∣∣ , (3.43)

T =
∣∣∣∣∣ ẑ · Stẑ · Si

∣∣∣∣∣ , (3.44)
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where the time averaged Poynting’s vector is:

S = 1
2E×H∗. (3.45)

For the problem proposed (a one-dimensional lattice, as show in fig. 3.5):

Si = 1
2

√
ε1√
µ1
|Ex,i|2 nz,1ẑ (3.46)

Sr = 1
2

√
ε1√
µ1
|Ex,r|2 nz,1ẑ (3.47)

St = 1
2

√
ε2√
µ2
|Ex,t|2 nz,2ẑ (3.48)

where nz,1 and nz,2 are the z components of the normalized wave vector k in the first
medium and in the medium immediately after the last slab, respectively; ε1 and µ1 are
the electric permittivity and magnetic permeability in the first medium; ε2 and µ2 are the
electric permittivity and magnetic permeability in the last medium.

Moreover, the transmittance T and reflectivity R are given by:

R = |Ex,r|
2

|Ex,i|2
; (3.49)

T =
√
ε2
√
µ1nz,2√

ε1
√
µ2nz,1

|Ex,t|2

|Ex,i|2
. (3.50)

The formulas given here for the transmittance and reflectivity are general, and can
be used independently of the nature of the material of the slabs, with the only constraint
being that the medium that in which the lattice is embedded is linear. This is useful
because these formulas are unaffected by the inclusion of nonlinear layers (independent of
the kind of the nonlinearity).

3.6 Numerical calculations of the Incident and Transmitted fields
A procedure to solve eq. 3.41 has already been pointed out, the transfer matrix

formalism. However, this method, while exact, can’t solve the problem when a nonlinear
material is present. As the main goal of this thesis is to simulate the wave propagation
in supperlatticies composed of linear dispersive metamaterials and Kerr materials, a way
to solve the eq. 3.41 that accounts for nonlinear terms is necessary. In order to do so, we
resort to a Runge-Kutta integration scheme, specifically we use the Dormand-Prince pair
formulas. This single-step solver uses a fifth and a fourth order Runge-Kutta (BUTCHER,
2016) integration scheme to create an adaptive algorithm. We will not describe in detail
here this integration method, as a very detailed description of the algorithm is given in
(DORMAND; PRINCE, 1980). The Dromand-Prince pair formulas are implemented in
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MATLAB via the ode45 function and in Fortran via the DOPRI15 package. The results
obtained here were made with our own implementation of the algorithm in C++ and in
MATLAB.

3.6.1 Boundary Conditions

The mathematical equations presented up until now (eq. 3.41 in conjunction with
the specific mathematical formulas for the permittivity and permeability for all the layers)
are sufficient to solve the problem wave propagation in an electromagnetic media. To
extend this formalism to a layered system one must use the boundary conditions at
interfaces between different media derived from the Maxwell equations (JACKSON, 1999).
The boundary conditions necessary for a one-dimensional layered system are simply the
continuity of the tangential components of E and H across each interface. This means
that we have to guarantee the continuity of Ex and 1

µ
∂Ex

∂z
in every interface between two

different materials.

3.6.2 Integration scheme for the supperlattice

The procedure outlined here for the numerical integration of Eq. 3.41 is an extension
of the work of Trutschel and Lederer (TRUTSCHEL; LEDERER, 1988) and Peschel et al.
(PESCHEL et al., 1988). While they numerically solve Eq. 3.41 for nonmagnetic media,
we proceed by showing the calculations for materials where µ 6= 1. Normally one would
provide the algorithm with an incident field, integrate eq. 3.41 and find the transmitted
and reflected fields. By integrating from the incident field to the transmitted field one
would hinder bistability, as most of the unstable branches would not be shown by using
this approach. Because of this, we choose to integrate the problem in a inverse way. We
provide the fields at the slab were the transmitted field is measured, and integrate this
value up to the media where the incident and transmitted fields are encountered. The
integration we mention here is the use of the Dormant-Prince pair scheme to solve eq. 3.41.

Begin by choosing E(k0Li) and its derivative d
dζ
E(k0Li), and integrating Eq. 3.41

using the Dormant-Prince integration formulas from ζ = k0Li to ζ = k0(Li − di), where
Li is the position of the outer surface of the i-th layer. At the end of the integration we
end up with E(k0(Li − di)) and d

dζ
E(k0(Li − di)). The field in the remaining layers are

integrated in a similar fashion, but the initial values E and d
dζ
E, for each new integration,

are now obtained by ensuring the continuity of both E and 1
µ
d
dζ
E through each interface.

To obtain reflection and transmission coefficients, one needs to calculate the incident
Ei, reflected Er and transmitted Et electric fields, which are obtained by the imposition
of boundary conditions at the surfaces between the lattice and the embedded medium
regions. The electric field for ζ < 0 is formed by a superposition of the incident and the
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reflected field whereas the electric field for ζ > k0L is given by the transmitted field:

E(ζ) =

Eie
iQ1ζ + Ere

−iQ1ζ if ζ < 0

Ete
iQ2(ζ−k0L) if ζ > k0L

(3.51)

where Qi =
√
εjµj − β2, with j = 1, 2 if ζ < 0 or ζ > k0L respectively. By assuring the

continuity of both E and 1
µ
dE
dζ

at ζ = k0L, one may assign a value for the electric-field
amplitude Et in the outer interface and obtain the values of both E(k0L) = Et and
d
dζ
E(k0L) = iQµBEt/µ2. Then, by integrating equation 3.41 for each internal layer, as

described before, one may find E(0) and d
dζ
E(0). By imposing the continuity of both E

and 1
µ
dE
dζ

in ζ = 0 one may find the incident and reflected fields as a function of E(0) and
dE(0)
dζ

,

Ei = 1
2

[
E(0)− iµ1

QµA

dE(0)
dζ

]
(3.52)

Er = 1
2

[
E(0) + iµ1

QµA

dE(0)
dζ

]
(3.53)

Moreover, the transmittance T and reflectivity R are given by

T =
√
ε2
√
µ1nz,2√

ε1
√
µ2nz,1

∣∣∣∣EtEi
∣∣∣∣2 (3.54)

R =
∣∣∣∣ErEi

∣∣∣∣2 . (3.55)

3.7 Photonic Crystals
The type of structure we have been talking about in this chapter, the superlattices,

are very well known and have some properties that are encountered when studying
the propagation of electrons in solids or crystals. While the propagation of electrons is
governed by the Schroedinger’s equation, photons obeys the Maxwell equations. Although
different, when studying the propagation of light through periodic structures (with varying
permittivity and permeability) one may cast the Maxwell’s equations in a form very similar
to the Schroedinger equation. Following this parallel, a periodic array of dielectrics can be
described in terms of a band structure, as it is the case for electrons propagating in a Bravais
lattice. Furthermore, the appearance of band gaps is also expected for the propagation
of light beams, i.e., forbidden frequency bands in which light cannot propagation in
any direction. Usually the structures studied are not isotropic, allowing one direction of
propagation to reflect all incident light while other directions still transmit light.

An extensive review of naturally occurring photonic crystals, as an analysis of their
band-gaps, was published by Simonis and Vigneron (VIGNERON; SIMONIS, 2012). They
show that insects, spiders, birds, fishes, plants and some marine animals have some kind
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of natural photonic crystal-type structure that is highly optimized. These structures can
be used as inspiration to the fabrication of artificial photonic crystals. One of the first
band gaps was observed by Yablonovitch (YABLONOVITCH, 1993) in a silicon crystal
with tetrahedral geometry and millimetric holes drilled on it. New techniques are being
continuously developed to build better photonic crystals (INOUE; OHTAKA, 2013).

3.7.1 Photonic Band Gaps

The band-gaps presented by photonic crystals can be divided into three categories:
Bragg gaps, the zero-<n> gap and the plasmon-polariton gap. These gaps have different
natures and react differently to varying parameters (lattice size, incidence angle, frequency).

3.7.1.1 Bragg gap

Figure 9 – (a) Pictorial view of the photonic crystal under consideration. The crystal is
composed of unit cells consisting of layers A with refractive index na = 1.4142
and layers B with refractive index nb = 1.2649. (b) Band diagram for the
photonic crystal depicted in (a). The red lines are the frequencies where the
theory predicts the opening of the Bragg gap (integer multiples of the 6.59 GHz
frequency), and as one can see there is no intersection between the red and
blue lines, meaning that there is no allowed states around the Bragg resonances
given by eq. 3.56.

Bragg gaps are formed by interference of the reflected wave from different layers of
the system, much like the Bragg reflections occurs in a metal (as explained earlier). When
these reflections combine constructively they act as a reflector (which is why the name
Bragg reflector was coined to these structures), creating a forbidden region of propagation
of light. One single structure may have many different gaps due to these reflections. The
Bragg gap occur under the following condition (LIANG; HE; CHEN, 2003) for an optical
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crystal composed of two materials A and B stacked along the z direction (fig. 9(a)):

2πν
c

(cos(θA)nAdA + cos(θB)nBdB) = pπ. (3.56)

where θA,B, is the angle in which the wave propagates through layers A,B; ν is the
frequency of the wave; nA,B is the index of refraction of media A,B and dA,B is the size
of layer A,B. To exemplify this gap we plot (fig. 9(b)) the band diagram of a crystal
composed of one material with nA = 1.4142, nB = 1.2649 and incidence angle equal to
π/6. As it’s expected, we have the Bragg gap opening up for frequencies obeying eq. 3.56
(integer multiples of 6.59 GHz) .

3.7.1.2 Zero-< n > Gap

Figure 10 – (a) Pictorial view of the photonic crystal under consideration. The crystal is
composed of unit cells consisting of layers A (a linear ordinary nondispersive
material) with permittivity εA = 3 and permeability µA = 1, and layers B (a
linear dispersive metamaterial) with permittivity and permeability given by
eqs. 3.58, 3.59. (b) Band diagram for the photonic crystal described in (a). In
blue are the allowed states of the crystal. The red line in 3.37 GHz is where
eq. 3.57 predicts the opening up of the zero-< n > gap. The second red line,
in 5.08 GHz, corresponds to the magnetic plasmonic frequency. As the theory
predicts, a band gap also opens up around this frequency.

Another important gap appears when the crystal is composed of regular materials
(with both permittivity and permeability having positive values) and left-hand materials
(materials exhibiting a negative index of refraction). The mechanism that opens this gap
is completely different from the Bragg reflections. While the regular material propagates
the phase of the wave in one direction, the negative material propagates it in the opposite
direction, effectively making the phase velocity equal to zero inside the crystal, hindering
the propagation. Differently from the Bragg gap, the zero-< n > gap is invariant upon
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change of scale length and to disorder. The mathematical condition for this gap to open
up is to equate the volumetric average of the index of refraction to zero (LI et al., 2003):

nA(ω)dA + nB(ω)dB = 0; (3.57)

where nA,B is the index of refraction of layers A,B and dA,B is the size of layers A,B. To
exemplify this gap, consider a photonic lattice (fig. 10(a)) composed of a right-hand A
material where εA = 3, µA = 1 and a left-hand B metamaterial

εB = 1.6 + 40
0.81− ν2 ; (3.58)

µB = 1.0 + 25
0.814− ν2 . (3.59)

As it is predicted by eq. 3.57 the zero-< n > gap opens up around the frequency 3.37 GHz.

3.7.1.3 Plasmon Polariton Gap

The last gap we will talk about is the Plasmon Polariton Gap. In a TE configuration,
and for oblique incidence, there is a component of the magnetic field in the direction of
the stratification, which couples to the bulk-like longitudinal magnetic plasmon mode,
giving origin to the PP gap (CARVALHO et al., 2011; REYES-GÓMEZ et al., 2009), the
zero-transmittance region around the magnetic plasma frequency. The same is true for the
TM configuration, but instead the gap opens up around the electric plasma frequency. This
plasmon-polariton is a hybrid mode resulted from the coupling of light with the matter
oscillation. As the electromagnetic wave propagates through the polarizable medium,
the induced polarization modifies the wave, coupling it to the plasmonic induced mode,
hindering the propagation around the plasmonic frequency. This gap can be seen in the
same system studied in the previous section (the zero-< n > gap). If one looks in the
magnetic plasmon frequency µmp = 5.08 GHz in fig. 10(b) there’s a gap due to the plasmonic
interaction with the light wave, as predicted by theory. This gap can be seen as a property
of the plasmonic material rather than of the layered system as it exists even when there is
only one plasmonic material slab.
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4 Light propagation in centrosymmetric me-
dia

All the math presented up to here is valid when the wave propagation in matter
is independent of the intensity of the electromagnetic field, i.e., we restrained ourselves
to the linear theory. In this chapter we will provide an introduction to the topic of light
propagation in nonlinear centrosymmetric media, in other words, we will study isotropic
linear materials where the Polarization can be written as the sum of two terms: one linear
in the electric field and another one proportional to the cubic power of the electric field.

4.1 Third order nonlinear susceptibility
In a previous chapter we showed how to calculate the linear susceptibility using

the Lorentz model. The nonlinear susceptibilities are found on a similar fashion, but
with N(x) arranged accordingly. As in this thesis only third order nonlinearities will be
considered, the analysis presented here will be resumed and limited to centrosymmetric
media because no second order nonlinearities can exist in such materials. In media with
a center of symmetry the potential energy of the system described by eq. 2.2 has to be
symmetric under the operation x→ −x. This means that no second order nonlinearity
can exist, otherwise

∫
N(x)dx will result in an odd function and the potential given by eq.

2.3 will not describe a centrosymmetric material. A more detailed approach explaining the
different phenomena caused by second and third order nonlinearities using the Lorentz
model, as well the explanation for the origin of χ(3) using first principles, can be found in
(OWYOUNG, 1972) and we will not engage in such detailed explanation here. Instead, we
will focus on the effects that the system this thesis is proposing to study exhibits.

The response studied here, χ(3), is not particularly large when studying the interac-
tion of dielectrics with optical fields, but it is very important because it is presented in all
dielectric materials. The nonlinear response is usually nonresonant (meaning that optical
frequencies are normally very small compared to the resonant frequency of dielectrics),
and are typically approximately χ(3) ≈ 10−22m2/V 2. However recent works have shown
third-order susceptibilities as large as 10−17m2/V 2, and by using epsilon-near zero mate-
rials Argyropoulos et al. (ARGYROPOULOS et al., 2012) were able to boost nonlinear
effects far beyond the traditional Fabry-Pérot resonant gratings. Moreover, by boosting
the intensity of the field inside the material one can mimic a material with a higher χ(3)

as the increase of the material nonlinearity and the increase of field strength leads to the
same problem aside from a multiplicative constant. This seems to be the trend in some
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recent works, as for them the nature of the nonlinearity is less important than the effects
it causes.

Consider the third-order nonlinear polarization P (3)(t) = ε0χ
(3)E(t)3. In general,

E(t) is made up of several frequency components, however this work is interested in an
effect presented when the electric field is monochromatic and is given by:

E(t) = E cosωt. (4.1)

Using the identity cos3 ωt = 1
4 cos 3ωt+ 3

4 cosωt one can find the following expression for
the third-order nonlinear polarization:

P (3)(t) = 1
4ε0χ

(3)E3 cos 3ωt+ 3
4ε0χ

(3)E3 cosωt. (4.2)

The first term corresponds to a frequency generation, more specifically the third-harmonic
generation. The second term describes a contribution at the same frequency of the incident
field. A contribution that can be seen as a nonlinear contribution to the refractive index.
This is the contribution we are interested in studying.

4.2 Optical Kerr effect
As just discussed, a third order nonlinearity causes a nonlinear contribution in

the refractive index. Thus, we can write the refractive index of such materials (with a
third-order nonlinearity) as:

n = n0 + n̄2
〈
E(t)2

〉
(4.3)

where n0 is the usual linear refractive index, n̄2 the second-order index of refraction, E(t)
is the optical field and 〈·〉 means a time average. The second-order index of refraction
can be seen as the rate which the refractive index varies with the optical intensity. Let’s
suppose that the optical field is monochromatic, we can write it as E(t) = E(ω)e−iωt, then:

〈
E(t)2

〉
= 2E(ω)E(ω)∗ = 2|E(ω)|2, (4.4)

and
n = n0 + 2n̄2|E(ω)|2. (4.5)

The effect of the change in the refractive index in response to the electric field is called the
optical Kerr effect and the material that possess this effect is often called a Kerr material.
In this thesis we use the term Kerr material to describe a material where the refractive
index depends on the intensity of the electric field.

This effect can also be seen in terms of the electric permittivity. One can write the
electric permittivity of a nonlinear Kerr medium as

εNL = ε(ω) + a|E|2 (4.6)
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where ε0 is a constant (the linear electric permittivity), and a is a nonlinear parameter that
characterizes the Kerr medium (related to the third-order susceptibility). This relation, eq.
4.6, is the one we are going to use to describe a Kerr medium. We are assuming that in a
Kerr medium the magnetic permeability is given by a constant, thus, it doesn’t depend on
the frequency of the incident wave or on the intensity of the magnetic field.

4.2.1 Self-focusing and self-defocusing

When an intense beam of light is propagating in a medium with a third-order
nonlinearity, the medium modifies the index of refraction of the material in a way that the
beam comes to a focus within the material. Think of this in terms of the beam intensity,
the refractive index will be larger at the center of the beam than at its periphery (for
this to happen we are assuming that n̄2, or a, is positive). In this case, the rays of the
light beam propagating inside the material curves towards each other, focusing on a point
inside the material. This is equivalent to say that the material acts as a positive lens. The
beam of light modifies the medium, making the medium a positive lens, and focusing
itself, hence the name self-focusing attributed to this effect. The beam is modifying the
medium that modifies the beam itself, so the light modifies its own propagation trough
the nonlinear response of the material. An interesting consequence of the self-focusing
is the self-trapping effect, an effect that occurs when the beam of light propagates with
constant diameter due to a balance between self-focusing and diffraction.

While self-focusing occurs when n̄2, or a, is positive, self-defocusing occurs when
n̄2, or a, is negative. The same line of thought can be used here. The medium now acts as
a negative lens, making the rays of light to repel each other, defocusing the beam. The
beam modifies the medium, transforming in in a negative lens, that modifies the beam
itself, hence the name self-defocusing.

4.2.2 Optical bistability

Another important effect due to a third-order nonlinearity is bistability, or mul-
tistability. These nonlinear effects refer to systems where a single input state is linked
to more than one output state. Thus, optical bistability happens when two different
transmitted waves are possible for the same incident wave (when considering the case of a
wave propagating through a nonlinear slab).

The relation between the input intensity and the output intensity when bistability
occurs is better shown by looking at fig. 4.2.2. A good explanation of the behavior of
a system presenting multistable behavior is given by Boyd (BOYD, 2008). The dashed
portion of the curve shows that in this branch the output intensity increases as the input
intensity decreases. This branch is unstable, meaning that if the system is initially in this
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state, point g, a perturbation will make it rapidly switch to one of the two other possible
solutions. If one blocks (momentarily) the light the system will transit to the lower part
of the curve. For clarity, let’s call Ib and If the intensity on points b and f , respectively.
To obtain a transition to the upper part of the curve one needs to probe a pulse of light
making the intensity of the incident field bigger than Ib. An experiment that possess this
behavior can be seem as displaying hysteresis: if one increases the intensity input from
0 to Ib the result obtained would be the segment going from a to b. If the intensity is
now increased to a value greater than Ib the system will jump to the point c and follow
the segment labelled c-d. Now, if the intensity is lowered, the system will remain in the
upper branch of the curve, the segment c-e, and when the intensity is lowered to values
smaller than If the system will make a jump to the lower end of the curve, the segment
f -a. Gibbs and Lugiato offer some insightful explanation of mulstistable behavior (GIBBS,
2012) and (LUGIATO, 1984).
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Figure 11 – Pictorial view of bistability. This graph shows the transmission as a function of
the incident field intensity, showing hysteresis. The solid blue lines correspond
to stable branches of the system under consideration, while the blue dashed
line corresponds to an unstable region. The arrows show the direction of the
transmission as one varies the intensity field and a more detailed explanation
can be found in text.

4.2.3 Optical switching

Another important effect that is observed because of a refractive index that is a
function of the intensity of the light is optical switching. The incident beam intensity can
change the refractive index from a zero-transmission state to a full transparency mode,
by adding a nonlinear phase shift around π radians (with the higher contrast happening
when the nonlinear phase shift is exactly π radians).
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4.2.4 Solitons

To give a proper explanation about solitons it is important to have the concept
of diffraction fresh. When a beam of light travels through air, or a crystal, it broadens
with the distance traveled, this is the diffraction. Diffraction occurs even in the absence of
dissipation and it’s the analogous of the dispersion phenomenon seen in waves traveling in
water. The thing is, in 1834 Scott Russell observed a wave that did not disperse. Here is
his description of the phenomenon:

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass
of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving
it behind, rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth, and well-defined heap of water, which
continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling on
at a rate of some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of
the channel. Such, in the month of August 1834, was my first chance interview
with that singular and beautiful phenomenon which I have called the Wave of
Translation. (RUSSELL, 1844)

This effect puzzled scientists for a long time because it can’t be explained by the
linear theory. In fact, it wasn’t until 1895 that Korteweg and Gustav de Vries explained it.
They theorized that while dispersion causes a wave to spread, nonlinear effects (specifically
self-focusing) may cause it to steepen. When these effects balance each other, this solitary
wave propagates with no change in its shape (the wave of translation Russel talked about).

Solitons are encountered in photonic systems as well (Russel observed them in
water). Let’s describe a case where solitons are encountered in optical media. When
considering propagation of light in a nonmagnetic medium with a Kerr nonlinearity, in a
steady-state, the paraxial wave equation can be written as (BOYD, 2008):

2ik0
∂E

∂z
+ ∂2E

∂x2 = −3χ(3)ω
2

c2 |E|
2E, (4.7)

where E is the electric field profile inside the medium, a function of z and x only, and we
have considered that the medium is allowed to vary in only one transverse dimension (a
wave propagating in a planar wave-guide); ω is the frequency of the incident wave, c is the
speed of light and k0 = ω/c. This equation possesses a solution of the form:

E(x, z) = E0 sech(x/x0)eiγ̄z; (4.8)



Chapter 4. Light propagation in centrosymmetric media 51

where x0, the width of the field, is given by:

x0 = 1
k0

√
n0/2n̄2|E0|2; (4.9)

and
γ̄ = k0n̄2|E0|2/n0. (4.10)

This solution, eq. 4.8, is the one that is normally referred as spatial soliton. It describes a
field that propagates with an invariant transverse profile. This solution describes a first
order soliton. Higher order solitons are also known as soliton trains in the literature and
can be seen as the sum of various out of phase first order solitons added. These soliton
trains are a characteristic of optical lattices containing a Kerr nonlinearity and can be
observed for almost all frequencies, as we will show in the results of this thesis.

4.3 Maxwell equations for Kerr materials
The Maxwell equations doesn’t change much when adding a nonlinear term in the

polarization. The nonlinear polarization has to be added to the constitutive equation of
D, in this case D = ε0εE + ε0P(3). If one carries out the calculation, the only difference
between the linear and the nonlinear case is that eq. 3.40 has a new term added (the
second time derivative of the nonlinear polarization P (3) = a|E|2E multiplied by µ

ε0c2 ) on
the right side. As before, assume that the nonlinear polarization is time-harmonic, as the
electric field, which yields:

∂2Ex(z)
∂z2 + k2

0

(
εµ−K2

)
Ex(z) = −µk2

0a|Ex|2Ex(z); (4.11)

in which some algebra leads to:
∂2Ex(z)
∂z2 + k2

0

(
εNLµ−K2

)
Ex(z) = 0. (4.12)

The constant K was defined in last chapter when discussing the generalized Snell’s law for
stratified media. This law, as shown before, is still valid for nonlinear media, thus one may
write K2 = k2

0β
2. After the introduction of a dimensionless position ζ = k0z we end up

with the same equation as eq. 3.41:
d2

dζ2Ex + (εNLµ− β2)Ex = 0; (4.13)

but with the linear epsilon replaced by its nonlinear counterpart. To simulate an linear
medium one just needs to set a = 0 and the results of eq. 3.41 for linear media are
recovered. It is important to notice that the same boundary conditions are applied here
and the same integrator used for the linear equation can be used here too. Thus, when
dealing with superlattices composed of Kerr materials and linear dispersive metamaterials
one can still use the same procedure outlined in section 3.6. Furthermore, there is no need
to repeat ourselves here. The same algorithm is used, but now the electric permittivity is
set to be a function of the intensity of the electric field.
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5 Gap-Solitons Materials

It has been a trend in telecommunications to try to replace the electronics for its
optical counterparts. Electronics has been the groundstone of information processing for
a long time, and has been experiencing tremendous advances in the past several years,
managing to follow Moore’s law to this day (which states that the transistor density on
a chip doubles approximately every two years). However, as electronics gets closer to its
physical limitations (power dissipation, heating, problems processing at high frequencies)
photonics is getting more attention. Unfortunately, photonics is still not suitable to replace
electronics because of its inherent limitations that make manipulation of signals in the
optical domain unfeasible. Photonic crystals have since emerged as a promising solution
for these problems. With the addition of nonlinear media into the photonic crystals they
can enhance nonlinearities, extend phase-matching abilities aid in the design of optical
diodes and switches, compact pulse compressors and frequency converters.

Light pulses propagating in nonlinear photonic crystals can result in sum and differ-
ence frequency generation, soliton formation, harmonic generation, parametric oscillation,
etc. In particular, we are interested in the soliton formation process in one-dimensional
nonlinear photonic lattices where the nonlinear material is Kerr like. These systems exhibit
bistable behavior that can be explained by the nonlinear phase-shift modulation of the
light beam (GIBBS, 2012). Furthermore, transparency switching is observed and these
modes are linked with the solitonic structures found in the system. Transparency-switching
phenomenon is observed even in frequencies where the band diagram of the system predicts
a gap to exist, coining the name of the solitons found in these regions as gap solitons.

This chapter aims to give a brief historical background of gap solitons, overviewing
the seminal works of Mills and Chen (CHEN; MILLS, 1987) and Winful et al. (WINFUL;
MARBURGER; GARMIRE, 1979), and explaining the gap-soliton phenomenon in one-
dimensional lattices.

5.1 Historical Background
The field of light propagation in nonlinear photonic crystals emerged from the

experimental (GIBBS; MCCALL; VENKATESAN, 1976) and theoretical (MARBURGER;
FELBER, 1978) demonstration of bistability and hysteresis in a Fabry-Perot interferometer.
When filled with a nonlinear material, whose refractive index depends on the intensity,
the Fabry-Perot interferometer can be used as an optical transistor, pulse shaper, memory
element and differential amplifier. Following these results Winful et al. (WINFUL; MAR-
BURGER; GARMIRE, 1979) showed that the bistable behavior and hysteresis presented
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in the Fabry-Perot resonator can be replicated by distributed feedback structures, the name
given to what we now call photonic lattice. Winful explained that the mechanism behind
bistability is related to changes in the Bragg conditions due to the nonlinearity, modifying
the wavelength of the waves, which alters the frequencies for the Bragg resonances when
one varies the intensity of the electromagnetic field. The same is true for the other gaps,
despite the reasoning not being the change in Bragg conditions, but the nonlinear phase
shift and the nonlinear dependence of the refractive index.

In 1987 Chen and Mills (CHEN; MILLS, 1987) published a seminal work on gap
solitons. Normally, when a dielectric is illuminated with light whose frequency lies within a
stop gap, the amplitude of the light will decay exponentially with increasing distance. Chen
and Mills have theoretically shown that if one illuminates a finite superlattice consisting
of unit cells composed of a linear dielectric and a Kerr material a Bragg gap will partially
close with increasing power. This superlattice will exhibit transparency switching, i.e.,
the system switches from very low transmitting state to a completely transparent state.
The powers that allows transparency switch are linked to a partial close of the band gap,
shifting the band edge to a previously forbidden frequency. These transparency switching
points are always linked to resonant states of the electric field inside the structure, though
the specific power needed to achieve the switching varies with frequency. The resonant
modes of the electric field are actually soliton-like structures, and they exist for frequencies
where the linear theory predicts a band-gap. Chen and Mills coined the term gap solitons
to describe these resonant modes of the electric field. Mills and Trullinger have shown in
(MILLS; TRULLINGER, 1987), by analytical methods, that when treating frequencies
near the band edge the envelope function of the electric field obeys a double-sine Gordon
equation (with some considerations made about the index of refraction and the wavelength
of the incident field). The sine-Gordon equation allows soliton solutions and they are
readily available in the literature. Thus, the soliton-like modes found in superlattices are
actually finite representations of the real solitons predicted for the infinite superlattice
analog.

The study of the nonlinear response of nonlinear one-dimensional superlattices
continued showing significant progress, finding, for example: multistability and optical
solitons (KAHN; ALMEIDA; MILLS, 1988), defect modes in nonlinear lattices(LIDORIKIS
et al., 1997) and soliton formation and transparency switch in quasiperiodic superlattices
(KAHN; HUANG; MILLS, 1989). Trustchel and Lederer (TRUTSCHEL; LEDERER, 1988)
studied the effects of a saturable nonlinearity into a superlattice, showing that it hinders
bistability and the formation of solitons for high input powers. When considered together
with absorption, the saturable nonlinearity makes the hysteresis like behavior of the system
to practically vanish. To obtain their results they used a standard Runge-Cutta procedure,
similar to the one used in this paper 1.
1 All the methods used in previous researches to solve equation 4.13 presented some kind of problem: too
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A new theory was developed in 1996 by Soukoulis et al. (LI et al., 1996) where
an analytical solution for the transmission spectra of a superlattice consisting of unit
cells (linear/Kerr) provided that the size of the Kerr layers are infinitesimal and that the
impedance is near infinity. These simplifications allowed the numerical calculations of the
transmission via a nonlinear map, giving the behavior of the gap-edges with increasing
incident power (despite only one of the sides of the gap being studied, as one of them is
always locked due to errors inherent to their proposed method).

Discrete solitons is another class of nonlinear phenomena that has received attention
in the last few years (SUKHORUKOV; KIVSHAR, 2002; CHRISTODOULIDES; JOSEPH,
1988). In fact, the field of optical solitons has increased dramatically from the one-
dimensional photonic crystals we described. Aceves and Wabnitz (ACEVES; WABNITZ,
1989) extended the gap solitons to a more general traveling wave form. Seven years later
Eggleton et al. (EGGLETON et al., 1996) experimentally demonstrated the Bragg gap
solitons, by propagating a nonlinear optical pulse in a Bragg grating. This soliton arises
from the balancing of the high dispersion of the lattice and the self-phase modulation
induced by the Kerr type nonlinearity. A good survey of the latest accomplishments in the
field of optical gap solitons is presented in (ACEVES, 2000).

5.2 Bragg and Zero-< n > Gap Solitons
The solitons we talked about in the last section were all found in Bragg gaps. When

studying a superlattice composed of bilayers (Kerr/dispersive linear metamaterial), one
encounter soliton formation near the edges of the Bragg gap. These solitons have the
interesting property of having the minima of the electric field nearly zero in the surface
of each bilayer. This happens because of the Bragg condition of interference, the phase
traveled across each bilayer has to be π. An example of Bragg soliton can be seen in fig.
12.

In 2005 Hedge and Winful (HEGDE; WINFUL, 2005b) showed that gap solitons
are also found around the edges of the zero-< n > gap. This gap has different behavior
than the Brag gap soliton. For starters, the electric profile for the solitonic solution does
not goes to zero, instead local maxima and minima occurs at the interface between the
layers. Moreover, this soliton is robust in relation to the angle of incidence, while the Brag
gap soliton is very sensitive to the angle of incidence (the change in the incidence angle,
changes the position of the Bragg gap, which changes the position of the Brag gap soliton).

computationally expensive to present a complete analysis; not enough accuracy to study the desired
effects and simplifications in the formulation handicapping the study. The numerical method proposed
in this thesis makes no simplification to eq. 4.13, has the advantage of using computers way faster
than the ones available to the previous authors, and is accurate enough to show all the relevant effects
presented in the problem.
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Figure 12 – The Bragg gap soliton observed in a lattice consisting of 32 bilayers of a
Kerr material and a dispersive linear metamaterial for normal incidence. The
electric field minima is nearly zero because of the phase shift of approximately
π across each bilayer. Source: (HEGDE; WINFUL, 2005b)

A more detailed characterization of both gap solitons, as well the transparency
switching phenomenon is in progress and partial results are shown in another chapter.

5.3 PP Gap Soliton
The formation of gap solitons are also observed for frequencies in the vicinity of

the PP gap, as shown in (CAVALCANTI et al., 2014). These solitons are very robust and
will be the subject of study in chapter 8.
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Figure 13 – The zero-< n > gap soliton observed in a lattice consisting of 32 bilayers of a
Kerr material and a dispersive linear metamaterial for normal incidence. For
this soliton, each bilayer advances the phase of the electric field for a value of
approximately 0 (as the average refractive index is near 0). Source: (HEGDE;
WINFUL, 2005b)
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6 Computational system

To solve the problem of wave propagation in a multilayered system a computer
program was developed using MATLAB (MATLAB, 2017). The program uses an adaptive
Runge-Kutta formula, the Dormant-Prince pair, to integrate equation 4.13 through the
lattice. The lattice can be composed of any number of layers, with each layer having its
own material with any equation for the magnetic permeability and electric permittivity.
Moreover, the program is also able to have slabs of a nonlinear Kerr material with magnetic
permeability and electric permittivity as described in equation 4.6. Due to the nature of the
numerical method used, it is straightforward to study nonlinear wave propagation through
one-dimensional lattices composed of other types of materials (polaritonic materials,
materials with a second-order nonlinearity, etc.) than the ones this thesis aims to study.

The program developed receives as input the embedded material parameters, the
number of different materials the layered system has and their respective equations (their
magnetic permeability and electric permittivity can be any function of the frequency or a
Kerr metamaterial); and the positions of the layers. With these (the initial conditions),
the program can give a variety of results (fig. 14): transmittance, reflectivity or the band
diagram of its respective linear problem; transmittance or reflectivity versus nonlinear
power; electric field profile versus distance versus nonlinear power; transmittance or
reflectivity versus nonlinear power versus frequency. Thus, the mathematical formalism
and the program developed here can be used to run a variety of other cases, leaving room
to contributions beyond the ones presented here.

The program was developed both in MATLAB and in C++. Despite MATLAB’s
own implementation of the Dormant-Price integration scheme (the ode45 function), some
optimizations were needed to tailor the program to our specific problem.

One problem with our integration procedure arises when the frequencies get closer to
the gap center. When approaching such frequencies, the transmission becomes a very rapidly
varying function of the nonlinear power. In conjunction with the unevenly distribution of
the nonlinear power, this creates a sampling problem. To integrate eq. 4.13 we provide
the value of both the transmitted field and it’s derivative, and then calculate the incident
and the reflected fields. This uncertainty in the incident field creates a somewhat random
distribution for the nonlinear power a|Ei|2 as a is linearly spaced and |Ei| is a function
of a (for our integrator). Furthermore, the increments of a have to be carefully chosen
as a small increase in its value can lead to a loss of information of the nonlinear power.
This problem is still being tackled and the workaround used in this thesis was to manually
check the continuity of a|Ei|2 and to set the values of a accordingly. Despite exhibiting
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Figure 14 – Schematic of the computer program. The program, coded in matlab (b), uses
a input file containing the information about the lattice (a) and is capable of
providing the outputs in (c). In particular, the outputs wanted are outlined in
the input file (a).

good results, this methodology is not suitable to deal with big frequency discretizations,
as for each value of the frequency the values of a have to be adjusted. One strategy we
believe will be suitable is to use an adaptive integration algorithm to choose the values of
a, but as we do not have an equivalent of the Courant-Frederichs-Lewys condition (as a
is not really an integration parameter, it just behaves like one), it is still a challenge to
pinpoint the increment of a in order to obtain a continuous nonlinear power function and
to not lose any information with the discretization. More work is still needed to find a
methodology able to overcome this limitation.

We also build three dimensional surfaces in our results. To the best of our knowledge,
this type of visualization technique was yet to be applied to show the multistable behavior
of the transmission (fig. 15). Because of the multistable behaviour, and the quasi chaotic
nature of the function near the center of the gaps, the 3D surface we want to plot is
normally not convex, making usual triangulation techniques, like Delaunay, to not depict
the real surface (hiding multistability, different solitonic modes are merged, noise, etc.).
Instead, we changed the way the data was stored and the triangulation. To create a 3D
plot we first determine the axis of the plot. Consider the case of a transmission vs nonlinear
power vs frequency plot, as in fig. 15. The code will fix a value for frequency and calculate
the transmission and nonlinear power for such value. Consider that the frequency assume
discrete values ν = ndν, where n is the discretization parameter and dν is the frequency
increment. We then proceed to calculate the transmission function T (νn, aj|Ei(aj)|2) for
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Figure 15 – Pictorial view of the types of 3-dimensional graphics we construct. One can
observe a multistable behavior, nonconvex surfaces and very high curvatures
(leading to bigger point densities).
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Figure 16 – Schematic of the triangulation procedure used to generate surfaces: (a) shows
two functions that are going to form a surface. These functions have to be
similar to each other; (b) shows the triangulated surface between the curves,
with a procedure explained in the text.
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varying nonlinear power (with a fixed n we vary j and store T ), considering that aj is
now a discrete variable. To generate the surface we get two consecutive values of n (n+ 1,
n + 2) and plot the curves for these parameters (T (νn+1, aj|Ei(aj)|2 for all j) as in fig.
16(a). The next step is to create the surface that these curves spans. The building blocks
of the surface were chosen as triangles. The procedure to create the triangles is as follows:
the first two points of the n+ 1 curve and the second point of the n+ 2 curve are linked
to form a triangle, then the third and fourth points are linked to the fourth point of the
n+ 2 curve forming another triangle. This procedure is repeated and the same is done for
the second curve: the first and second points of this curve (n + 2) is linked to the first
point of the n+ 1 curve. In the end, we end up with a surface as in fig 16(b). The same
algorithm is applied to the construction of the electric field as a function of the lattice and
the nonlinear power.

In conclusion, we created a program that is capable of dealing with the highly
varying nature of the transmission when one sweeps frequencies closer to the center of a
band gap. Our program has an error that is sufficiently small to deal with these variations
and is capable of extracting huge amounts of data and present them correctly. Some of the
3D surfaces shown in this thesis are composed of more than one million triangles and some
of the 2D curves have more than 100000 points. The increasing performance encountered
in today computers allowed the numerical simulation of eq. 4.13 to be done without major
trade-offs and to run the analysis of complete frequency bands rather than a specific values
of frequency (as this is the common procedure encountered in the literature).
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7 Defect modes in a nonlinear strip

The study of light propagation in photonic lattices are a hot topic these days due to
the advances in the development of metamaterials. Being able to create photonic lattices
composed of plasmonic materials, regular materials and negative refractive index materials
enabled the creation of better waveguides (BROENG et al., 1999), light-emitting diodes
(BORODITSKY et al., 1999) and 3D mirrors (CHENG; SCHERER, 1995). Moreover,
these periodic structures exhibit frequency regions where no light can pass, the photonic
band-gaps. As shown in earlier chapters, different band gaps may appear when considering
linear lattices composed of alternate layers of different linear dispersive metamaterials.
The addition of a defect layer into these lattices creates localized resonant modes inside
the photonic band gap. These resonant modes can be interpreted as the creation of a pass
band inside a previously forbidden frequency band and are usually called defect modes.
The study of these defect modes are important because it enables the custom design of
optical devices such as witches, filters, and modulators.

In the linear regime, the study of defect modes in lattices composed of single-
negative (permittivity or permeability negative) with multiple single-negative defects
were carried out by Chen (CHEN, 2008). Similar studies were realized in (CHEN, 2009;
OUCHANI et al., 2009; LU, 2011) and proved to be of great importance in the design of
optical filters. Moreover, even systems composed of just three layers were shown to present
resonant modes depending of the size of the middle layer (KANG et al., 2013; COJOCARU,
2011; BROVENKO et al., 2009). Inspired by these works, Costa et al. (COSTA; MEJÍA-
SALAZAR; CAVALCANTI, 2016) showed that defect modes in superlattices can be seem
as tunneling resonances in trilayers structures.

Nonlinear defects were also studied by the literature. The response of a single
nonlinear dielectric layer sandwiched between two linear dielectric structures were studied
by Soukoulis et al. (LIDORIKIS et al., 1997). He used the Kronig-Penney δ-function
model to model the problem and found gap soliton formation, multistability and showed
that the defect mode changes parity with increasing nonlienarity. Mejia-Salazar (GÓMEZ;
MEJÍA-SALAZAR, 2015) studied the formation of gap solitons in the defect mode inside
the PP-gap, concluding that the transparency switching phenomenon does not occur for a
increasing defosucing nonlinearity if the lattice is asymmetric.

This chapter aims to study the effects of a linear defect mode in a nonlinear strip.
As a starting point we consider a reduced system as in fig. 17. Layers B are a Kerr material:

εB = 2 + a|E|2; (7.1)

µB = 1. (7.2)
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Figure 17 – Pictorial view of the lattice under consideration.

Layers A are a dispersive linear metamaterial:

εA = 1.6 + 40
0.81− ν2 − iνγ

(7.3)

µA = 1.0 + 25
0.814− ν2 − iνγ

(7.4)

where ν is the frequency in GHz and γ accounts for absorption. Layers C are a linear
nondispersive material where:

εC = 3; (7.5)

µC = 1. (7.6)

We chose the dimensions of layers A and B to be dA = dB = 0.01 m. Layer C size, dC , will
be a parameter studied in this article. We aim here to study the effect of a defect layer
into a lattice composed of a nonlinear Kerr material and a linear dispersive metamaterial
embedded by vacuum.

7.1 Defect modes in the plasmon polariton gap in the absence of
nonlinearity
As a starting point we choose the defect layer size dC equal to the size of layers

A and B, 0.01 m, and study the effects of the incidence angle θi into the transmission
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Figure 18 – Transmission as a function of frequency and incidence angle in the absence of
nonlinearity, a = 0, and absorption, γ = 0. We chose dC to be equal 0.01, 0.02
m for (a) and (b), respectively. One can see that depending on the size of dc a
defect mode may appear inside the bandgap.

Figure 19 – Transmission as a function of frequency and defect layer size in the absence
of nonlinearity, a = 0, and absorption, γ = 0 for three different incidence
angles: (a) θ = π/10; (b) θ = π/15 and (c) θ = π/20. Black arrows indicates
the defect modes in each figure.

properties of the lattice in the absence of nonlinearity (a = 0). Figure 18(a) shows the
transmission of the lattice as a function of the incidence angle θi and frequency ν in the
absence of nonlinearity. The plasmon-polariton (PP) gap opens up with increasing θi,
as its expected. By increasing the defect layer size, dC , to twice the size of the layers
A and B one can see the creation of a defect mode inside the PP gap, as shown in fig.
18(b). The creation of this mode, indicated by arrows in fig. 18(b), is not specific to a
single value of the defect layer size. By sweeping the frequencies around the plasmonic
frequency νp = 5.08 GHz for any θi > 0 one can show that these defect modes occurs
for specific values of (θi, ν, dC). If fig. 19(a), we plot the transmission as a function of
frequency and defect size for θi = π/10. Defect modes appear for every value of frequency
inside the PP gap, and the same occurs for different values of θi, as seen in figs. 19(b)
and (c). Costa et al. (COSTA; MEJÍA-SALAZAR; CAVALCANTI, 2016) have shown
this periodic characteristic of the defect mode for normal incidence on a Bragg gap. To
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Figure 20 – (d) Transmission as a function of defect layer size dC , in the absence of
nonlinearity (a = 0), and absorption, (γ = 0) for θ = π/10 and ν = 5.07
GHz. Three transparency points are found (dC = 0.0014, 0.018, 0.036). The
transparency points are periodic (with period 0.0173) and more can be obtained
by expanding the defect layer size axis. (a), (b) and (c) show the normalized
electric field profile for the transparency points (T = 1) shown in (d). Each
transparency point is linked to a n-peak electric profile, and as one increases
the defect layer size, one can see the switching in the parity of the functions,
as shown by the insets.

do so, they used the effective medium theory to treat each lattice surrounding the defect
as a single layer when the incidence angle is zero. Furthermore, they have compared the
problem of light propagation through a trilayer to the quantum problem of a particle in a
finite potential. Using the bound state model, they have shown that the resonant states in
the quantum problem are equivalent to the defect modes found in the photonic lattices.
However, the oblique incidence problem has not yet been addressed in the literature, as
far as we know. We believe that the only change between oblique and normal incidence in
the bound state model is a normalization constant, and that the incidence angle plays no
role in the period of the defect mode. In fig. 19 we plot the transmission as a function
of frequency and defect layer size in the absence of nonlinearity and absorption for three
different incidence angles. As one can see the period of the defect mode is not affected
by the change in the incidence angle. The main difference between figures (a), (b) and
(c) is the gap size. The PP gap shrinks in size with decreasing incidence angle, and this
behavior is expected due to the nature of the plasmon polariton gap. As the incidence
angle increases there is a greater component of the magnetic field in the direction of the
stratification, inducing a stronger plasmon, and increasing the PP gap size.

Figure 20(d) shows the transmission as a function of the defect size for a ν = 5.07
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Figure 21 – Electric filed profile as a function of defect layer size (dC). The axis labeled
as distance is the z distance inside the strip.

GHz. One can clearly see that the transparency points (T = 1) are periodic, as discussed
earlier, with a period of 0.0173 m. Each transparency point is linked to a resonant mode of
the lattice under consideration, being the first defect mode linked to the one peak electric
field profile shown in fig. 20(a), the second to the two peak electric field profile (fig. 20(b))
and the third linked to the three peak electric field profile shown in fig. 20(c). Furthermore,
the resonant modes exhibit a definite parity, that is switched as one choose consecutive
resonant modes, as shown in the insets of the figures. The one- and three-peak modes
are even, while the two-peak mode is odd. This trend continuous for higher values of the
defect layer size: as one chooses the immediately next defect mode the electric field profile
will undergo a parity switch and have its number of peaks increased by one. Another
characteristic is that these modes are highly localized around one value of the defect layer
size. As one chooses values of the frequency closer to the center of the plasmon polariton
gap the peaks on the transmission approaches a delta function, as one can see from figs.
20(d). In addition, the electric field profile decays very rapidly for values of the defect layer
moving away of the resonant mode, and increases very rapidly for values of the defect
layer approaching the resonant mode (fig. 21).
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Figure 22 – (d) Transmission as a function of an increasing focusing nonlinearity for
dC = 0.0014 m in the absence of absorption for θ = π/10 and ν = 5.07 GHz.
Three transparency points are found (a|Ei|2 = 0, 0.097 and 0.725) and one
resonant mode not linked to a transparency point is found between the peaks
indicated by the arrows (b) and (c). Plots (a), (b) and (c) show the normalized
electric field profile for the transparency points (T = 1) shown in (d). Each
transparency point is linked to a n-peak electric profile, and as one increases
the nonlinear power, each consecutive transparency point gets its electric field
solution number of peaks increased by 1.

7.2 Defect modes in the presence of nonlinearities
We will now proceed to study the effects of an increasing focusing (a > 0) nonlin-

earity in the defect modes of the system. Before sweeping all values of the defect layer
size, it is necessary to study more carefully the defect modes for a fixed frequency. We
here choose ν = 5.07 GHz as this system was already studied last section in the absence
of nonlinearity (fig. 20), and now the effects of a focusing nonlinearity will be studied in
the defect modes (the peaks indicated by the arrows in fig. 20). The first defect mode
occurs when dC = 0.0014 m, and fig. 22(d) presents the transmission of the system as a
function of a focusing nonlinearity. One can see that we observe full transparency (T = 1)
for specific values of nonlinear power (a|Ei|2| = 0.000, 0.097 and 0.725). The system
also shows multistable behavior, as it is expected for a Kerr material. Each transparency
point is connected to a resonant state of the system. Figure 22(a) is connected to the
first transparency point (0.000) and presents a single peak in the electric field profile;
figure 22(b) is connected to the second transparency point (a|Ei|2 = 0.097), presenting
two peaks in this mode; and figure 22(c) is connected to the third transparency point
(a|Ei|2 = 0.725), presenting three peaks. This shows that increasing the intensity of the
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Figure 23 – (d) Transmission as a function of an increasing focusing nonlinearity for
dC = 0.018 m in the absence of absorption for θ = π/10 and ν = 5.07 GHz.
Three transparency points are found (a|Ei|2 = 0, 0.097 and 0.725) and one
resonant mode not linked to a transparency point is found between the peaks
indicated by the arrows (b) and (c). Plots (a), (b) and (c) show the normalized
electric field profile for the transparency points (T = 1) shown in (d). Each
transparency point is linked to a n-peak electric profile, and as one increases
the nonlinear power, each consecutive transparency point gets its electric field
solution number of peaks increased by 1.

incident beam causes the number of peaks in the electric field profile to increase. This
happens because as we increase the nonlinear power the electric permittivity of the system
also increases, effectively increasing the index of refraction of the layers (and consequently,
of the system). This increase in the index of refraction effectively extends the optical
path length, allowing resonant modes of higher order to be achieved for the same linear
parameters of the system, including the size of the defect layer.

For the second defect mode (dC = 0.018) shown in fig. 20(d), we plot the effects of
a focusing nonlinearity in its transmission properties and electric field profile in fig. 23. We
observe full transparency (T = 1) for specific values of nonlinear power (a|Ei|2| = 0.000,
0.097 and 0.725), the exact same values of the first defect mode (fig. 22). In fact, the whole
transmission function is identical, and this will be addressed latter. The main difference
between the two defect modes shown (figs. 22 and 23) is the electric field profile for the
transparency points. While for the first defect mode (dC = 0.0014 m) the first, second
and third transparency points are linked to the one, two and three peaks electric field
profile, the second defect mode (dC = 0.018 m) has no one peak electric field profile.
Instead the first transparency point is linked to the two peak electric profile mode (fig.
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Figure 24 – (d) Transmission as a function of an increasing focusing nonlinearity for
dC = 0.036 m in the absence of absorption for θ = π/10 and ν = 5.07 GHz.
Three transparency points are found (a|Ei|2 = 0, 0.097 and 0.725) and one
resonant mode not linked to a transparency point is found between the peaks
indicated by the arrows (b) and (c). Plots (a), (b) and (c) show the normalized
electric field profile for the transparency points (T = 1) shown in (d). Each
transparency point is linked to a n-peak electric profile, and as one increases
the nonlinear power, each consecutive transparency point gets its electric field
solution number of peaks increased by 1.

23(a)), the second transparency point is linked to the three peak electric profile mode
(fig. 23(b)) and the third transparency point is linked to the four peak electric profile
mode (fig. 23(c)). The lack of one peak electric profile mode is explained in the linear
theory, which shows that for this size of the defect layer the electric profile solution has
two peaks. The obvious place to look for the one peak solution would be in negative values
of nonlinear power (a defocusing nonlinearity). Unfortunately, the transmission decays
exponentially for negative values of nonlinear power, and no one peak solution is excited.
Furthermore, the same explanation as before can be given for the increase in the number of
peaks with nonlinear power, the increase in the optical path length: as the nonlinear power
increases, the transparency points associated with the defect mode will have a bigger mean
optical path length, allowing more peaks to exist in the electric profile. Figure 24 shows
the behavior of the third defect mode shown in fig. 20(d). As expected, each transparency
point is linked to a n-peak electric profile, starting from three (as this is the solution of
the linear case). Again, the transparency points are exactly the same as the previous two
defect modes, as is the whole transmission as a function of the nonlinear power.

In short, an increasing focusing nonlinearity increases the number of peaks in the
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Figure 25 – The real part of the electric profile for ν = 5.07 GHz, dC = 0.0014 m and
a|Ei|2 = 0.00, 0.097 and 0.725, for figures (a), (b) and (c), respectively. Figure
(a) corresponds to the real part of the electric field profile depicted in fig.
22(a), (b) corresponds to 22(b) and (c) corresponds to 22(c). One can clearly
see the parity of each function just by looking at these graphics.
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Figure 26 – The real part of the electric profile for ν = 5.07 GHz, dC = 0.018 m and
a|Ei|2 = 0.00, 0.097 and 0.725, for figures (a), (b) and (c), respectively. Figure
(a) corresponds to the real part of the electric field profile depicted in fig.
23(a), (b) corresponds to 23(b) and (c) corresponds to 23(c). One can clearly
see the parity of each function just by looking at these graphics.
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electric field profile of the defect modes, mimicking the effect of a larger defect layer. With
a higher intensity one can achieve a similar result as one would achieve by increasing the
defect layer size (disregarding the multistable behavior exhibited by the nonlinear strip, a
signature of nonlienarity). This analogy is very accurate, as it also predicts the change
in parity of the electric profile. In the linear case, as the defect layer size increases, the
parity of the functions associated with each consecutive defect mode switches (as shown
in the insets of figs. 20(a), (b) and (c)). The same is valid for the resonant modes found
when we increase the nonlinear power (depicted by the arrows in figs. 22, 23 and 24). Each
consecutive transmission point for a specific defect mode changes its respective electric
field profile parity. In fig. 25 we plot the real part of the electric field profile associated
with each arrow of fig. 22. As one can see, the first and third peaks (figs. 25(a) and (c))
are associated with pair electric profiles while the second peak (fig. 25(b)) is even. This
parity change can also be seem in for the second defect mode (dC = 0.018), shown in fig.
26, and for the third defect mode (dC = 0.036), not shown here to avoid redundancy.

In the previous analysis we also encountered periodicity in the transmission functions
with increasing nonlinear power. Figures 22(d), 23(d) and 24(d) have the same exact
values (as checked by subtracting their values). To investigate this further we plot the
transmission as a function of nonlinear power and defect layer size (for ν = 5.07 GHz) in
fig. 27. This figure shows that the transmission is periodic even for values of nonlinear
power different from zero (the linear case). The black line corresponds to the defect mode
associated with the size dC = 0.014 m. This result suggests that the resonant modes of the
bound state model are still present even in the presence of nonlinearity (and the addition
of a nonlinearity in the system doesn’t change the periodicity of occurrence of the resonant
modes). Moreover, one can probably still define an effective permittivity and effective
permeability even in the presence of a nonlinearity, possibly allowing a nonlinear lattice to
be viewed as a linear lattice with adjusted permeability and permittivity (now functions
of the nonlinear power and frequency), although the mathematical formalism to do so is
still unclear.

The red lines in fig. 27 represent the n-peak electron profile solutions (the resonant
modes). These modes exist for every value of dC and vanishes for a specific values of
the defect layer size dnC . The vanishing values dnC corresponds to the defect modes in
the absence of nonlinearity. In this case d2

C = 0.018m, d3
C = 0.036 m, and so forth. The

arrows in fig. 27 shows the number of peaks that the electric profile associated with that
line have. Another interesting phenomenon occurs, and we highlight it in fig. 28. The
defect modes in this lattice presents a resonant mode that is not linked to a transparency
point. This resonant mode was shown in the previous figures as a peak on the intensity
between the second and third peaks of the transmission in figures 22(d), 23(d) and 24(d).
This resonant mode merges with the full transparency point mode for a specific value of
nonlinear power and defect layer size, forming a pattern reminding a fork (as shown if fig.
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Figure 27 – Transmission as a function of nonlinear power and defect layer size. The
black line indicates the defect mode (dC = 0.018 m) encountered in the linear
problem. Each transparency curve (in red) corresponds to a n-peak electric
profile solution, as indicated by the arrows (where the number in the top of
each arrow corresponds to the n in the n-peak electric profile).

28). This behavior is repeated for every defect mode, and this fork appears twice for each
resonant mode (for the 4 electric field profile mode one can see one fork around dC = 0.03
m and another one for dC = 0.019 m. As of now, we have no explanation for this fork
shape, nor for the merging (or splitting) behavior.

We proceed to study the behavior of one the transmission for a specific value of
defect layer size (dC = 0.014 m), varying frequency and nonlinear power (fig. 29). Figure 29
shows that the defect mode is excited for smaller frequencies as one increases the nonlinear
power, and vanishes at a specific value of frequency (ν = 5.07 GHz, corresponding to the
defect mode observed in the linear regime).

In conclusion, we have observed that a strip consisted of a regular right handed
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Figure 28 – Detail of the fork like curve obtained for all the n-peak electric profile solutions
of the system discussed in figure 27.

material (RHM) sandwiched between bilayers Kerr/metamaterial presents somewhat
similar results in the nonlinear and linear regime. In the linear regime, there are several
transparency states (defect modes) of the system that are periodic with the size of the RHM
layer size. By studying consecutive defect modes of the system, one observes parity switch
and an increase in the number of peaks in the electric profile of that mode. Furthermore,
a focusing nonlinearity excites finite transparency points that presents a similar behavior.
Consecutive resonant modes in the nonlinear power presents parity switch and an increase
in the number of peaks in the electric filed profile of that mode. Moreover, we believe
that the results outlined here are still present when the number of bilayers embedding the
RHM layer is increased.
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Figure 29 – Transmission as a function of frequency and nonlienar power for a fixed value
of defect layer size dC = 0.014 m.
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8 Gap soliton transparency switch in one-
dimensional Kerr-metamaterial superlat-
tices

8.1 Kerr-Metamaterial superlattice
The geometry of the problem discussed in this chapter is shown in fig. 30, where

the z-direction is chosen as the stacking direction of the lattice. The heterostructure, with
length L, is sandwiched between vacuum on the left and right side, and is composed of
N = 32 unit cells AB formed by a Kerr medium (layers A) and a metamaterial (layers B)
whose widths are dA = 10 mm and dB = 10 mm, respectively. In this study, layers A are
characterized by a magnetic permeability µA and an electric permittivity εA = ε0A + a|E|2,
where E = E(z) is the electric-field amplitude of the electromagnetic field inside the
superlattice. The slabs B are characterized by a metamaterial with magnetic permeability
and electric permittivity defined as in (HEGDE; WINFUL, 2005a):

εB = 1.6 + 40
0.81− ν2 − iνγ

(8.1)

µB = 1.0 + 25
0.814− ν2 − iνγ

(8.2)

where ν is the frequency in GHz and γ accounts for absorption. Despite having the
possibility of choosing any desired absorption in the metamaterial considered, we set γ = 0
as a first approximation.

The PP-gap, the one we are most interested in, and the zero-< n > gap have
already been proved to exist in any frequency range. We choose materials with GHz
plasma frequency because it is the easier to find in the literature for materials achieving
negative refraction. Even a naturally occurring material was proved to have a negative
refraction response in the GHz regime (PIMENOV et al., 2007). Nonlinear materials are
also reported in the literature, for example Shih et al. (SHIH et al., 1990) measured n2

(the nonlinear index of refraction) equal to 2.6× 10−4 at 94 GHz in a liquid suspension
of elongated microparticles. The advances in the construction of plasmonic materials has
also boosted the values of n2 and we believe that the materials proposed here are possible
to be reproduced in an experiment.

We begin by discussing the transmission of the heterostructure in the absence
of absorption (γ = 0) and nonlinearity (a = 0). In Figs. 31(a) and (d) we show the
transmission as a function of the incoming wave frequency for normal incidence (θ = 0)
and oblique incidence (θ = π/24), respectively. The first band gap one sees is the gap -
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Figure 30 – Pictorial view of the z-growth photonic superlattice with A and B alternated
layers in a periodic arrangement, for TE-like incident electromagnetic waves.
The following parameters were chosen: both layers have the same size a =
b = 10 mm; for the linear RHM layer ε0A = εA = 2, µA = 1, and, for the linear
LHM, the parameters are the same as given by Eqs. (8.1) and (8.2).

< n >= 0, a photonic band bag corresponding to zero volume averaged refractive index.
This gap was first discovered by Li in 2003 (LI et al., 2003). In their paper they show
that this gap only exists in structures composed of materials with both positive refractive
index and negative refractive index. The gap is inherently different from the Bragg gaps,
as it is invariant with respect to the length scale and insensitive to randomness of the
lattice (as long the averaged volume refractive index continues to be zero). For the lattice
we are working with, described in fig. 30, the gap appears around ν = 3.5518 GHz (both
for oblique and normal incidence, as shown in figs. 31(a) and (d)), as the average value of
the refractive index is 0 for this frequency because nA = 1.4142 and nB = −1.4142, and
both materials slabs have the same size (eq.3.57).

When the magnetic permeability is given by eq. 8.2 and an electromagnetic wave
of the form ei(ωt−k·r) travels to it the electromagnetic wave induces a magnetization on the
medium that modifies itself, coupling the electromagnetic wave with the medium. This
is a hybrid mode, as it is the result of the interaction of the electromagnetic wave with
the medium (the electromagnetic wave excites a plasmonic mode inside the medium that
strongly interacts with the light beam). There is no longer a pure plasma wave or a pure
electromagnetic wave inside the material, the dispersion relation is a mixture of the two.
The strong interaction of the plasma wave with the light results in the bulk plasmon
polariton. The second band gap we see only shows itself in fig. 31(d) when the incidence
is oblique. When the frequency is near νpm, the bulk-like longitudinal plasmon frequency
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Figure 31 – Transmission coefficient as a function of the wave frequency in a heterostructure
composed of 32 AB layers in the absence of absorption and nonlinearity (γ = 0
and a = 0 respectively), for (a) normal, θ = 0, and (d) TE oblique incidence,
θ = π/24. Panels (b) and (c) depict the dispersion relation corresponding
to the infinite heterostructure for normal (θ = 0) and oblique (θ = π/24)
incidence, respectively. The following parameters were chosen: for the linear
RHM layer ε0A = εA = 2, µA = 1, and, for the linear LHM, the parameters
are the same as given by Eqs. (8.1) and (8.2). In panel (b) we also indicate
by a dotted line the νpm = 5.08 GHz bulk-like longitudinal magnetic plasmon
frequency.

(µB = 0 at ν = νpm = 5.0807 GHz), there is a region of zero-transmittance when treating
the case of oblique incidence, the plasmon-polariton (PP) gap. In a TE configuration,
and for oblique incidence, there is a component of the magnetic field in the direction of
the stratification, which couples to the bulk-like longitudinal magnetic plasmon mode,
giving origin to the PP gap (CARVALHO et al., 2011), (REYES-GÓMEZ et al., 2009),
the zero-transmittance region around νpm.

We also plot the dispersion relation for an infinite-layered system (Figs. 31(b) and
(c)), and one may observe that the PP gap opens up around the magnetic plasmon frequency
νpm for the case of oblique incidence, predicting the behavior of the finite superlattice used
in Fig. 31(c). It should be noted that the system studied in this work (N = 32) also shows
good agreement with the infinite-layered superlattice (Figs. 31(b) and (c)) with respect to
the zero-n gap.
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Figure 32 – Transmission through the same structure and linear parameters as in Fig 31,
for θ = π/24, in the case of TE incidence in the vicinity of the lower edge of
the PP gap. The red vertical line is at ν = 5.0662 GHz, for which T ≈ 0.0056,
and the green vertical line is at ν = 5.0660 GHz, for which T ≈ 0.2174.

8.2 PP gap solitons
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Figure 33 – Transmission as a function of increasing power of a defocusing nonlinearity for
θ = π/24 in the case of TE incidence. We show several transparency (trans-
mission T = 1) points for ν = 5.0662 GHz, for values (see arrows) of a|Ei|2
equal to −0.0002,−0.0044,−0.022,−0.063,−0.1354,−0.2397 and −0.3579.
The results were calculated for the same structure and linear parameters as in
Fig 31.
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Figure 34 – Spatial profile for the electric field for θ = π/24 and ν = 0.5662 GHz in the case
of TE incidence. Figure (a) shows that a|Ei|2 equal to −0.0002, the first arrow
in fig. 33, corresponds to the one-soliton mode. Similarly, (b) shows that a|Ei|2
equal to −0.0044, the second arrow in fig. 33, corresponds to the two-soliton
mode. Also, we illustrated in (a), the red line, the fitting of a one-soliton mode
envelope to a sech(αz) function (α being a fitting parametter).

We now proceed to study the influence of the nonlinearity in the properties of
the lattice described in fig. 30, specifically on the behavior of the transmission and the
electromagnetic field profile inside the lattice. To do so, we will analyze these quantities
when submitted to different values of the nonlinear power a|Ei|2. In Fig. 32 we plot
the transmission of the structure for θ = π/24 at the lower edge of the PP gap and
absence of nonlinearity (a = 0). Before swiping all the frequencies around the band
gap lets choose two frequencies to get an idea of how a defocusing nonlinearity affects
the transmission of the system. As a starting point we choose ν = 5.0660 GHz and
ν = 5.0662 GHz and study the influence of a defocusing nonlinearity (a < 0) on the
electric field profile inside the structure and in its transmission properties. For ν =
5.0662 GHz one finds T ≈ 0.0056 when a = 0. A defocusing nonlinearity gives rise to
a multistable behavior of the transmission (Fig. 33) and there are seven transparency
(T = 1) points in the nonlinear power range shown. Specifically, one obtains T = 1 when
a|Ei|2 = −0.0002,−0.0044,−0.022,−0.063,−0.1354,−0.2397,−0.3579. In Fig. 34 we plot
the spatial profile for the electric field for a|Ei|2 = −0.0002 (a) and a|Ei|2 = −0.0044 (b)
revealing that the transparency points are connected to stable branches of the electric
field. In addition, the envelope function of the one mode branch is fitted accurately by the
function f(x) = EM(sechαx) (as seen in 34(a)), where EM is the maximum value of E
and α is a fitting parameter, which suggests that these modes mimic the behavior of true
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Figure 35 – Spatial profile for the electric field versus the nonlinear power, with ν = 5.0662
GHz. Outlined in black and highlighted by the arrows are the places where full
transparency is found (T=1). There are (see arrows) one-soliton, two-soliton
and three-soliton modes in the nonlinear power range shown that corresponds
to the arrows shown in Fig. 33. The results were calculated for the same
structure and linear parameters as in Fig 31.

solitons despite being located in finite lattices, as commented by Chen (CHEN; MILLS,
1987).

In fig. 35 we plot the spatial profile for the electric field versus the nonlinear power,
revealing that each transparency point is connected to a stable branch of the electric field,
as shown by the arrows. One might find strange that the nonlinear power range shown in
this figure is significantly smaller than in fig. 33. The cutoff in the nonlinear power axis
happens because as the nonlinear power increases, the maximum value of the electric field
gets smaller. Thus, the graphic tends to get a very high contrast in its height, making
almost impossible to spot in it the profiles corresponding to the higher order soliton-like
modes. For example: the one mode branch has a maximum value of |E/Ei| of 15, while
the four mode branch has a maximum value of 0.1. Thus, it’s better to visualize a small
range of the nonlinear power than to visualize a big range. In addition, the behavior is
repeated, each transparency point is connected to a n-mode branch of the electric field,
where n is the position of the peak. Figure 34 can be seen as slices of the surface showed
in 35, specifically arrows 1 and 2 correspond to Figs. 35 (a) and (b), respectively.

For ν = 5.0660 GHz we have T ≈ 0.2174 when a = 0 and Fig. 36 shows that
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Figure 36 – Calculated results for the same structure and linear parameters as in Fig 31:
(a) Transmission as a function of increasing power of a defocusing nonlinearity
for θ = π/24 in the case of TE incidence. We show several transparency
(transmission T = 1) points for ν = 5.0660 GHz, for values (see arrows)
of a|Ei|2 equal to −0.00062,−0.016 and −0.055; (b) Corresponding spatial
profile for the electric field versus the nonlinear power, with ν = 5.0660 GHz.
Outlined in black and highlighted by the arrows are the places where full
transparency is found (T=1). There are (see arrows) two-soliton, three-soliton
and four-soliton modes in the nonlinear power range shown.

the nonlinearity creates three transparency points in the nonlinear power range shown
(a|Ei|2 = −0.00062,−0.016,−0.055). The electric field versus the nonlinear power plot
[cf. Fig. 36(b)] shows that each transparency point is connected to a stable branch of the
electric field, as shown by the arrows, the same behavior encountered for ν = 5.06624
GHz. However, there is no one-mode soliton branch for this frequency, i.e, no value of
the nonlinear power, for a defocusing nonlinearity, is associated with a one-soliton like
profile of the electric field. This stems from the fact that as we consider smaller frequencies,
driving away from the PP gap lower frequency edge, in the nonlinear regime, the otherwise
stable soliton-like modes disappear. There is a cut-off frequency value ν1 below which
there is no fundamental soliton mode and the same occurs for each of the n-soliton modes
observed, as they disappear for frequencies smaller than νn. In Fig. 37(b) we plot the
transmission as a function of the nonlinear power and frequency, to illustrate this fact.
Each T = 1 curve is associated with a n-soliton like mode, where n is outlined by numbers
and arrows. Note that these curves appear around the edge of the PP gap and vanish for
specific values νn of the frequency. Figure 37(a) shows the same data as 37(b) but viewed
from a different angle, showing that even these plots are capable of accounting for the
whole behavior of the system (showing multistability and transparency switching).
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Figure 37 – Color plot of the transmission coefficient for different values of the nonlinear
power and frequencies in the vicinity of the lower edge of the PP gap, for the
system considered in Fig. 31, and θ = π/24 in the TE configuration. (a) A
view of the full plot in a tilted angle, showing that the multistability is still
found, even for frequencies far away of the PP gap. (b) The same plot as (a)
but viewed from the top. In red are the regions where we find transparency
and soliton modes (see arrows). The n = 1,2,...,7 arrow numbers indicate the
n-soliton modes in the nonlinear power range shown.

ν (GHz)
5.096 5.0965 5.097 5.0975 5.098 5.0985 5.099 5.0995 5.1

tr
an

sm
is

si
on

10-4

10-3

10-2

10-1

100

Figure 38 – TE Transmission through the same structure and linear parameter as in Fig
31, for θ = π/24, and for frequencies in the vicinity of the top edge of the PP
gap. The green vertical line is at ν = 5.09820 GHz, for which T ≈ 0.07, and
the red vertical line is at ν = 5.09791 GHz, for which T ≈ 0.02.
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Figure 39 – Calculated results for the same structure and linear parameters as in Fig 31:
(a) Transmission as a function of increasing power of a defocusing nonlinearity
for θ = π/24 in the case of TE incidence. Only one transparency (T = 1)
point is found for ν = 5.09791 GHz, at a value of a|Ei|2 (see arrow) equal
to −0.00007; (b) Corresponding spatial profile for the electric field versus
the nonlinear power. Outlined in black and highlighted by the arrow is the
place where full transparency is found (T = 1), at a value of a|Ei|2 equal to
−0.00007. There are (see arrow) only one-soliton like modes in the nonlinear
power range shown.

Figure 40 – (Color online) Calculated results for the same structure and linear parameters
as in Fig 31: (a) Transmission as a function of increasing power of a defocusing
nonlinearity for θ = π/24 in the case of TE incidence. Only one transparency
(T = 1) point is found for ν = 5.0982 GHz, at a value of a|Ei|2 (see arrow)
equal to −0.00028.; (b) Corresponding spatial profile for the electric field for
the two-soliton like mode.
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Figure 41 – Color plot of the transmission coefficient for different values of the nonlinear
power and frequencies in the vicinity of the top edge of the PP gap, for the
system considered in Fig. 31, with θ = π/24 and TE incidence. In red are the
regions where we find transparency and soliton modes (see arrows). The n
= 2,3,4 arrow numbers indicate the n-soliton modes in the nonlinear power
range shown.

We proceed by extending the study to the top edge of the TE PP gap, turning to
Fig. 38 which shows the transmission as a function of the incident frequency when there
is no nonlinearity (a = 0), with θ = π/24. We choose two frequency points (ν = 5.0982
GHz, 5.09791 GHz) to observe the effects of an increasing defocusing nonlinearity in the
transmission properties and electric field profiles inside the structure. The effects on the
transmission properties due to a defocusing nonlinearity are depicted in Figs. 39(a) and
40(a), for ν = 5.09791 GHz and ν = 5.0982 GHz, respectively. Transparency switching is
observed for both frequencies but while for ν = 5.09791 GHz the first transparency point is
associated with the one-soliton mode [cf. Fig. 39(a)], we observe that the first transparency
point for ν = 5.0982 GHz is associated with a two-soliton mode and no one-soliton mode is
observed for this frequency. As shown before for frequencies near the lower edge of the PP
gap, Fig. 41 indicates that by choosing frequencies deviating from the top edge of the PP
gap, the T = 1 curves associated with the n-soliton branch (as illustrated by the arrows)
vanish for a frequency νn. However, the behavior of the system is dramatically different
when comparing the transmission around the lower edge or top edge of the PP gap, as
shown in Fig. 42. The top PP gap edge moves to higher frequencies as the nonlinear power
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Figure 42 – Color plot for the transmission coefficient for different values of nonlinear
power and frequency for the system considered in Fig. 31, for θ = π/24 and
TE incidence. For greater clarity, the T = 0 gap region is shown in white.

increases whereas the bottom PP edge remains essentially unchanged and, therefore, the
’nonlinear gap’ becomes larger with increasing self-defocusing nonlinearity. We suspect
that the reason for this interesting phenomenon to be due to a combination of the Kerr
material and the dispersive metamaterial. If we overlook the spatial variation of the light
intensity inside the nonlinear slabs, we can define an average permittivity for the nonlinear
slabs as ε̄B = 2 + a|Ē|2, where Ē is the average value of the electric field inside the slab. A
defocusing nonlinearity would then reduce the permittivity of the Kerr material, decreasing
its refractive index. The resulting system would have a smaller optical path and a smaller
average refractive index. Then, we can compare the nonlinear system with a linear one
where the permittivity of the layers B are getting smaller. If one define layers B to have
ordinary values permittivity and permeability and use layers A as before (given by eqs.
8.1 and 8.2), we can plot the transmission properties of this system for varying frequency
and varying permittivity of layers B (fig. 43). This shows excellent agreement with our
nonlinear system, showing that our analogy is, at least, in the right path. While the top
edge of the PP gap shifts to higher frequencies, the bottom edge of the PP gap can not
do the same because the PP gap is not a property of the lattice, it is a property of the
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Figure 43 – Color plot of the transmission for a system described as in fig. 30, but with
a = 0. We vary the values of the permittivity of layers B to compare the
effects of a defocusing nonlinearity in the system, to the effects of a varying
permittivity in a linear system.

dispersive plasmonic metamaterial. The plasmonic metamaterial induces a plasma wave
inside itself that blocks the flow of light. Thus, a shift of the bottom edge of the PP gap to
higher frequencies is not allowed due to the plasmonic material, making the bottom edge
of the PP-gap independent of the intensity of the field (for a defocusing nonlinearity).

The line of thought used to explain the different behavior between the top and
bottom edges of the PP gap, predicts that the bottom and top edge of the PP gap for a
focusing nonlinearity will behave in a similar manner. The top edge would remain pratically
constant due to the plasmonic material, while the bottom edge would shift to smaller
frequencies. The linear analog is showed in fig. 44. Despite having its linear counterpart,
to simulate the nonlinear problem with the focusing nonlinearity is still a challenge. The
transmission as a function of a focusing nonlinearity needs more than 1 million points per
frequency value to have a continuous representation, add to this the lack of an adaptive
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Figure 44 – Color plot of the transmission for a system described as in fig. 30, but with
a = 0. We vary the values of the permittivity of layers B to compare the
effects of a focusing nonlinearity in the system, to the effects of a varying
permittivity in a linear system.

algorithm to increase the values of nonlinear power continuously and the problem gets
even more computationally intensive. Further work is necessary to address this problem.
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9 Conclusions

In summary, we have presented a detailed study on the nonlinear transmission
switching phenomenon in 1D Kerr/metamaterial heterostructures in the vicinities of
both top and bottom edges of the PP-gap under the influence of a self-defocusing Kerr
nonlinearity. Moreover, we also theoretically analyzed the defect modes of a photonic strip
composed of a regular nondispersive RHM sandwiched by two Kerr/dispersive metamaterial
bilayers for frequencies in the edges of the PP-gap in the linear and nonlinear regime.

As expected, in the study of the superlattice without defects, we find multi stability,
and resonant n-soliton modes. By sweeping the frequency regions around the edges of the
PP gap where the linear dispersion relation exhibits a plasmon-polariton coupling, we
find a different behavior depending on whether the frequency range belongs to the top or
bottom edge of the PP gap. The top edge of the gap is shifted to higher frequencies for
higher nonlinearities, while the bottom edge remains unchanged. We have found cut-off
frequency values νn below which there are no n-soliton modes. Furthermore, we find that
the depart from the resonant (T = 1) transmission frequencies does not hinder soliton
formation, although the detuned solitons exhibit smaller amplitudes. Finally, we also
presented a physical argument to explain the differences in behavior of the gap edges
with an increasing nonlinearity, linking the nonlinear system to a linear one (making
a parallel between the nonlinearity to a varying permittivity), and explaining why the
bottom edge of the PP-gap is unaffected by the defocusing nonlinearity (stemming from
the material properties of the layers rather than an emerging property of the photonic
structure). Finally, we would like to point out that, in all cases studied in the present
work, the transparency-switching phenomenon is still observable at low levels of loss and
absorption in the heterostructure.

The defect modes were also meticulously characterized. A link between the trans-
mission and electric field profile properties exhibited when increasing the defect layer size
in the linear regime and an increasing focusing nonlinearity was established. We also find
transparency switching, hysteresis and multistable behavior, as it is expected in lattices
with a focusing Kerr nonlinearity. Moreover, we also find parity switch and an increase
in the number of peaks of the electric field profile for consecutive defect/resonant modes
(in the linear and nonlinear regime). We found that every value of defect layer size has a
defect mode linked to it in the nonlinear regime.

The metamaterials and Kerr materials presented are justified recent by investiga-
tions on the experimental fabrication of gain-enhanced metamaterials, which may open new
perspectives to overcome high levels of absorption (PUSCH et al., 2012; HESS et al., 2012).
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Thus, we hope that the present theoretical results will be of interest in future experimental
work on nonlinear-heterostructure systems. Moreover, the study presented here can be
easily replicated to characterize the zero-< n > gap and the Bragg gap (for defect modes
and gap-soliton formation), making these straightforward future works. However, despite
having the mathematical formulation laid out completely, a computational problem arises
for some systems where the transmission becomes a very rapidly function of nonlinear
power. In general, this problem arises when treating focusing nonlinearities near gap edges,
which require a greater refinement of the nonlinear power for these frequencies (which
makes the problem more computationally intensive). A refined version of the adaptive
algorithm cited in chapter 6 has to be developed to better address this problem, so that
we can verify our conjecture on the nonlinear system and its linear counterpart.
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APPENDIX A – Dispersion relation

A.1 Dispersion relation
This appendix is devoted to show the derivation of the dispersion relation for an

infinite lattice composed of two materials, A and B, with widths a and b respectively, as
the figure A.1 shows.

Figure 45 – Infinite periodic lattice composed of two materials A and B.

Assume, in this chapter, that:

Φ(z) =
 Ex(z)
cµ0Hy(z)


.

If we want to know the fields on the point z = a/2 we have:

Φ
(
a

2

)
= MA

(
a

2

)
Φ (0) (A.1)

where:

MA(z) =
 cos qAz i

pA
sin qAz

ipA sin qAz cos qAz


with qA = ω

c

√
εAµA − β2, pA = qAcµ0

ωµA
.

Doint the same procedure for z = (a+ b)/2, one can find:

Φ
(
a+ b

2

)
= MB

(
b

2

)
Φ
(
a

2

)
(A.2)

which, by replacing eq. A.1, gives:
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)
= MB

(
b

2

)
MA

(
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2

)
Φ (0) (A.3)
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where:

MB( b2) =
 cos qBb

2
i
pB

sin qBb
2

ipB sin qBb
2 cos qBb

2


with qB = ω

c

√
εBµB − β2 and pB = qBcµ0

ωµB
. Making:

T(a, b) = MB
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b

2

)
MA
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a

2
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=
 p q

r s

 (A.4)

in which:

p = cos
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Using the same formalism, one can obtain for the oposite direction (z = −(a+b)/2):

Φ
(
−a+ b

2

)
= MB

(
− b2

)
MA

(
−a2

)
Φ (0) ; (A.9)

thus:
Φ
(
−a+ b

2

)
= T(−a,−b)Φ (0) . (A.10)

From eq. A.3, one can find:

T(−a,−b) = MB

(
− b2

)
MA

(
−a2

)
=
 p −q
−r s

 (A.11)

To proceed with this demonstration the use of Bloch’s theorem will be needed
(ASHCROFT; MERMIN, 1976). Bloch’s theorem is very important in periodic media
because it permitts one to write the fields of interest to be written as a plane wave
modulated by a periodic function (with the periodicity of the lattice). For our case, one
could write the Bloch’s theorem as:

Φ
(
a+ b

2

)
= eiSdΦ

(
−a+ b

2

)
(A.12)

where S is the bloch wave vector along the z direction. By replacing equations A.3 and
A.10 into eq. A.12 (and by making use of the T matrix), one can obtain: p q

r s

Φ(0) = eiSd

 p −q
−r s

Φ(0)
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. Some trivial algebra leads to: p(1− eiSd) q(1 + eiSd)
r(1 + eiSd) s(1− eiSd)

Φ(0) = 0

. Equation A.1 has a nontrivial solution if and only if:∣∣∣∣∣∣ p(1− e
iSd) q(1 + eiSd)

r(1 + eiSd) s(1− eiSd)

∣∣∣∣∣∣ = 0

thus:
ps(1− eiSd)2 − qr(1 + eiSd)2 = 0. (A.13)

One can show that ps − qr = 1 just by using eqs. A.5 to A.8 and some trigonometric
relations. Some algebra now is necessary to find the dispersion relation, it follows from
A.13:

cos(Sd) = ps+ qr; (A.14)

Using eqs. A.5 to A.8 one can obtain:

cos(Sd) = cos (qAa) cos (qBb)−
1
2

(
pB
pA

+ pA
pB

)
sin (qAa) sin (qBb) (A.15)

This equation allows us to obtain the dispersion relations ω = ω(K) commonly
used in optical lattices and solid state physics. A more detailed explanation about this
derivation and some insightfull applications can be found in (CAVALCANTI et al., 2006)
and (CAVALCANTI et al., 2007), for example.
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Abstract

Plasmon-polariton gap soliton formation and transparency switching in one-dimensional nonlinear layered systems
composed of alternate layers of a Kerr material and a dispersive linear metamaterial are theoretically studied. The
behavior of the electric field profile inside the layered system is shown for different values of nonlinear power, linking
the localized modes of the electric field with complete transparency states of the system. A detailed investigation
on the influence of a defocusing nonlinearity on the transmission switching phenomenon, in the frequency range
where the linear dispersion predicts the photon-plasmon coupling, is made, revealing different effects in the top and
bottom edges of the plasmon-polariton gap. Specifically, we found a broadening of the plasmon-polariton gap when
increasing the nonlinear power. In addition, a switching from very low to high transmission states is obtained and
localized plasmon-polariton gap solitons of various orders are found for various values of frequencies and nonlinear
strength.

Keywords: Science, Publication, Complicated

1. Introduction

In the last few decades, researchers all over the world
have managed to produce artificial complex materials
widely used to shape and manipulate light [1, 2]. The re-
markable flexibility of high-quality optical materials has
allowed the fabrication of nanostructures [3, 4], where
one may tailor the electromagnetic dispersion and mode
structures at one’s choice, providing new phenomena
for further investigations and new device applications.
In addition, such new materials have given a refresh-
ing flavor to old subjects as nonlinear wave propaga-
tion through one-dimensional (1D) layered systems [5].
In particular, systems containing metamaterials, which
exhibit electric and magnetic negative responses to an
optical field within the same frequency range, provide
excellent man-made materials for a number of areas of
intense interest [6, 7]. Recently, the merging of plas-
monic and metamaterial areas has opened up a new per-

spective toward achieving the ultimate control of light
in the nanoscale dimension [8, 9].

Plasmon-polaritons (PPs) are elementary excitations
due to the resonant coupling of plasmons with light. Re-
cent work on the dispersion relation of a layered sys-
tem composed by bilayers AB of a dispersive meta-
material (A) and air (B) has demonstrated that, under
oblique incidence of light, a resonant coupling between
a plasmon and a photon gives rise to a non-Bragg bulk-
like PP gap at the plasmonic frequency [10]. As pho-
tons and plasmons have different dispersion relations,
there is an anticrossing region evidencing the photon-
plasmon coupling. Outside this region there is no cou-
pling and therefore, plasmons and photons retrieve their
individual character. By substituting the air layers by
a nonlinear Kerr material, and choosing a particular
frequency within the anticrossing region, multistabil-
ity, transmission switch and resonant formation of soli-
ton waves seem to occur at particular values of nonlin-
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earity intensities for which total transmission (T = 1)
is possible. Various layer arrangements were studied
such as periodic, quasi-periodic and disordered arrange-
ments, with absorption included, indicating that non-
linear switching with soliton formation is a robust phe-
nomenon [11, 12, 13].

In this work we extend these previous findings on
layered systems, to understand the role of nonlinear-
ity on the dispersion relation around the anticross-
ing region. To this end, we investigate the transmis-
sion properties of incident light, under oblique inci-
dence, upon a layered system composed of bilayers
nonlinear/metamaterial in a periodic arrangement. A
thorough investigation on the influence of nonlinear-
ity on the transparency-switching phenomenon is made,
by sweeping the frequency region where the photon-
plasmon coupling occurs in the case of a self-defocusing
Kerr nonlinearity. It should be noted here that we have
previously shown [11] that the transparency switching
phenomenon is robust with respect to absorption and
could be observed even in the case of a single bilayer
and relatively high levels of absorption. As expected,
there are no total transmission states as those now have
lower intensity, however the overall behavior is the same
with or without absorption. For this reason here, we
neglect absorption and focus on the influence of the
nonlinearity on the transparency switching phenomenon
by sweeping the frequency region where the photon-
plasmon coupling occurs in the case of a self-defocusing
nonlinearity. We find that the detuning, that is, the de-
part of the frequency investigated from the resonant fre-
quency, does not hinder soliton formation. Actually, we
find that within the whole range of frequencies between
the resonant points of total transmission (T = 1), lower
intensity solitons of all orders are still formed. Further-
more, we show that in the self-defocusing case, the top
edge of the PP gap is shifted to higher frequencies pro-
portionally to the nonlinearity intensity while the lower
PP gap edge essentially does not change in frequency.
Thus, the ”nonlinear PP gap” becomes larger than the
linear one. We present our investigations on the role
of the nonlinearity in the transparency switching phe-
nomenon as follows: Section 2 consists of the theoret-
ical development and basic definitions. Section 3 deals
with the transmission switching due to gap soliton for-
mation in the neighborhood of the non-Bragg PP gap.
Finally, in Section 4 we present our conclusions.

2. Theoretical framework

The geometry of the problem discussed in this paper
is shown in fig 1(a), where the z-direction is chosen as

the stacking direction of the lattice. The heterostruc-
ture, with length L, is sandwiched between vacuum on
the left and right side, and is composed of N = 32
unit cells AB formed by a Kerr medium (layers A) and
a metamaterial (layers B) whose widths are dA = 10
mm and dB = 10 mm, respectively. To accommodate a
more general class of problems, we assume throughout
this section that the superlattice is sandwiched by media
with magnetic permeability µ1, µ2 and electric permit-
tivity ε1, ε2 in the left and right sides, respectively [cf.
Fig. 1(a)]. In this study, layers A are characterized by
a magnetic permeability µA and an electric permittivity
εA = ε0

A + a|E|2, where E = E(z) is the electric-field
amplitude of the electromagnetic field inside the super-
lattice. The slabs B are characterized by a metamaterial
with magnetic permeability and electric permittivity de-
fined as [14]

εB = 1.6 +
40

0.81 − ν2 − iνγ
(1)

µB = 1.0 +
25

0.814 − ν2 − iνγ
(2)

where ν is the frequency in GHz and γ accounts for ab-
sorption. Throughout this paper only cases where there
is no absorption (γ = 0) are studied. Considering the
oblique incidence of TE waves polarized along the x-
axis direction, the electric-field amplitude, inside the su-
perlattice, satisfies the differential equation

−
d
dz

1
µ(z)

d
dz

E(z) =

[
ω2

c2 ε(z) −
ω2β

c2µ(z)

]
E(z) (3)

where ω = 2πν, β = n sin θ with n being the refractive
index, θ is the incidence angle, and ε(z) and µ(z) are the
electric permittivity and magnetic permeability of the
heterostructure which are given by εA(εB) and µA(µB),
respectively, in layer A(B). As dictated by Snell’s law, β
is constant throughout the heterostructure. By introduc-
ing a dimensionless position (ζ = k0z), with k0 = ω/c,
the equation for the amplitude of the electric field within
the slab i may be rewritten as

d2

dζ2 E + (εiµi − β
2)E = 0 (4)

where i = A, B.
The procedure outlined here for the numerical inte-

gration of Eq. 4 is an extension of the work of Trutschel
and Lederer [15] and Peschel et al. [16]. While they nu-
merically solve Eq. 4 for nonmagnetic media, we pro-
ceed by showing the calculations for materials where
µ , 1. Let us then begin by choosing E(k0Li) and its
derivative d

dζ E(k0Li), and integrating Eq. 4 using an

2



Figure 1: (a)(Color online) Pictorial view of the z-growth photonic superlattice with A and B alternated layers in a periodic arrangement, for TE-like
incident electromagnetic waves; transmission coefficient as a function of the wave frequency in a heterostructure composed of 32 AB layers, with
a = b = 10 mm, in the absence of absorption and nonlinearity (γ = 0 and a = 0 respectively), for (b) normal, θ = 0, and (e) TE oblique incidence,
θ = π/24. Panels (c) and (d) depict the dispersion relation corresponding to the infinite heterostructure for normal (θ = 0) and oblique (θ = π/24)
incidence, respectively. The following parameters were chosen: for the linear RHM layer ε0

A = εA = 2, µA = 1, and, for the linear LHM, the
parameters are the same given by Eqs. (1) and (2). In panel (c) we also indicate by a dotted line the νp

m = 5.08 GHz bulk-like longitudinal magnetic
plasmon frequency.
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adapted fourth-order Runge-Kutta method from ζ = kLi

to ζ = k(Li−di), where Li is the position of the outer sur-
face of the i-th layer. The field in the remaining layers
are integrated in a similar fashion, but the initial val-
ues E and d

dζ E, for each new integration, are now ob-
tained by ensuring the continuity of both E and 1

µ
d
dζ E

through each interface. To obtain reflection and trans-
mission coefficients, one needs to calculate the incident
Ei, reflected Er and transmitted Et electric fields, which
are obtained by the imposition of boundary conditions
at the vacuum regions. The electric field for ζ < 0 is
formed by a superposition of the incident and the re-
flected field whereas the electric field for ζ > k0L is
given by the transmitted field

E(ζ) =

EieiQ1ζ + Ere−iQ1ζ if ζ < 0
EteiQ2(ζ−k0L) if ζ > k0L

(5)

where Qi =
√
ε jµ j − β2, with j = 1, 2 if ζ < 0 or

ζ > k0L respectively. By assuring the continuity of
both E and 1

µ
dE
dζ at ζ = k0L, one may assign a value

for the electric-field amplitude Et in the outer inter-
face and obtain the values of both E(k0L) = Et and
d
dζ E(k0L) = iQµBEt/µ2. Then, by integrating equation
4 for each internal layer, as described before, one may
find E(0) and d

dζ E(0). By imposing the continuity of
both E and 1

µ
dE
dζ in ζ = 0 one may find the incident and

reflected fields as a function of E(0) and dE(0)
dζ ,

Ei =
1
2

[
E(0) −

iµ1

QµA

dE(0)
dζ

]
(6)

Er =
1
2

[
E(0) +

iµ1

QµA

dE(0)
dζ

]
(7)

Moreover, the transmittance T and reflectivity R are
given by

T =

√
ε2
√
µ1nz,2

√
ε1
√
µ2nz,1

∣∣∣∣∣Et

Ei

∣∣∣∣∣2 (8)

R =

∣∣∣∣∣Er

Ei

∣∣∣∣∣2 (9)

where nz,1 and nz,2 are the z components of the normal-
ized wave vector k in the vacuum regions.

3. Results and Discussion

We begin by discussing the transmission of the het-
erostructure in the absence of absorption (γ = 0) and
nonlinearity (a = 0). In Figs. 1(b) and (e) we show the
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Figure 2: (Color online) Transmission through the same structure and
linear parameter as in Fig 1, for θ = π/24, and TE incidence in the
vicinity of the lower edge of the PP gap. The red vertical line is at
ν = 5.0662 GHz, for which T ≈ 0.0056, and the green vertical line is
at at ν = 5.0660 GHz, for which T ≈ 0.2174.

transmission as a function of the incoming wave fre-
quency for normal incidence (θ = 0) and oblique inci-
dence (θ = π/24), respectively, showing that when the
frequency is near νp

m, the bulk-like longitudinal plasmon
frequency (µB = 0 at ν = ν

p
m = 5.0807 GHz), there is

a region of zero-transmittance when treating the case
of oblique incidence. In a TE configuration, and for
oblique incidence, there is a component of the magnetic
field in the direction of the stratification, which couples
to the bulk-like longitudinal magnetic plasmon mode,
giving origin to the PP gap [10], the zero-transmittance
region around ν

p
m. It is also plotted the dispersion re-

lation for an infinite-layered system (Figs. 1(c) and
(d)), and one may observe that the PP gap opens up
around the magnetic plasmon frequency νp

m for the case
of oblique incidence, predicting the behavior of the fi-
nite superlattice used in Fig. 1(e). It should be noted
that the system studied in this work (N = 32) also
shows good agreement with the infinite-layered super-
lattice (Figs. 1(c) and (d)) with respect to the zero-n
gap.

Here we focus our attention within the frequency re-
gions around the edges of the longitudinal bulk-like PP
gap for the finite heterostructure described in Fig. 1,
and investigate the behavior of the transmission and the
electromagnetic field profile by increasing the nonlin-
ear power a|Ei|

2. In Fig. 2 we plot the transmission
of the structure for θ = π/24 at the lower edge of the
PP gap and absence of nonlinearity (a = 0). As a
starting point we choose two frequencies (ν = 5.0660
GHz, 5.0662 GHz) and study the influence of a defo-
cusing nonlinearity (a < 0) on the electric field pro-
file inside the structure and in its transmission proper-

4



Figure 3: (Color online) Calculated results for the same structure and linear parameters as in Fig 1: (a) Transmission as a function of increasing
power of a defocusing nonlinearity for θ = π/24 in the case of TE incidence. We show several transparency (transmission T = 1) points for
ν = 5.0662 GHz, occurring at values (see arrows) of a|Ei |

2 equal to −0.0002,−0.0044,−0.022 and −0.063; the inset illustrates the fitting of a
one-soliton mode envelope to a sech(αz) function (α as the fitting parameter) indicating that we do have essentially a soliton-like solution. (b)
Spatial profile for the electric field versus the nonlinear power, with ν = 5.0662 GHz. Outlined in black and highlighted by the arrows are the places
where full transparency is found (transmission T=1), for values of a|Ei |

2 equal to −0.0002,−0.0044,−0.022. There are (see arrows) one-soliton,
two-soliton and three-soliton modes in the nonlinear power range shown.

Figure 4: (Color online) Calculated results for the same structure and linear parameters as in Fig 1: (a) Transmission as a function of increasing
power of a defocusing nonlinearity for θ = π/24 in the case of TE incidence. We show several transparency (transmission T = 1) points for
ν = 5.0660 GHz, for values (see arrows) of a|Ei |

2 equal to −0.00062,−0.016 and −0.055; (b) Corresponding spatial profile for the electric field
versus the nonlinear power, with ν = 5.0660 GHz. Outlined in black and highlighted by the arrows are the places where full transparency is found
(T=1). There are (see arrows) two-soliton, three-soliton and four-soliton modes in the nonlinear power range shown.
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Figure 5: (Color online) Color plot of the transmission coefficient for
different values of the nonlinear power and frequencies in the vicinity
of the lower edge of the PP gap, for the system considered in Fig. 1,
and θ = π/24 in the TE configuration. In red are the regions where
we find transparency and soliton modes (see arrows). The n = 1,2,...,7
arrow numbers indicate the n-soliton modes in the nonlinear power
range shown.
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Figure 6: (Color online) TE Transmission through the same structure
and linear parameter as in Fig 1, for θ = π/24, and for frequencies in
the vicinity of the top edge of the PP gap. The green vertical line is at
ν = 5.09820 GHz, for which T ≈ 0.07, and the red vertical line is at
ν = 5.09791 GHz, for which T ≈ 0.02.

ties. For ν = 5.0662 GHz one finds T ≈ 0.0056 when
a = 0. A defocusing nonlinearity gives rise to a mul-
tistable behavior of the transmission (Fig. 3(a)), and
there are four transparency (T = 1) points in the nonlin-
ear power range shown. Specifically one obtains T = 1
when a|Ei|

2 = −0.0002,−0.0044,−0.022,−0.063. In
Fig. 3(b) we plot the spatial profile for the electric field
versus the nonlinear power, revealing that each trans-
parency point is connected to a stable branch of the elec-
tric field, as shown by the arrows. In addition, the en-
velope function of the one mode branch is fitted accu-
rately by the function f (x) = EM(sechαx), where EM

is the maximum value of E, and α is a fitting parame-
ter, which suggests that these modes mimic the behav-
ior of true solitons, as commented by Chen [17]. For
ν = 5.0660 GHz we have T ≈ 0.2174 when a = 0
and Fig. 4 shows that the nonlinearity creates three
transparency points in the nonlinear power range shown
(a|Ei|

2 = −0.00062,−0.016,−0.055). The electric field
versus the nonlinear power plot [cf. Fig. 4(b)] shows
that each transparency point is connected to a stable
branch of the electric field, as shown by the arrows,
the same behavior encountered for ν = 5.06624 GHz.
However, there is no one-mode soliton branch for this
frequency, i.e, no value of the nonlinear power, for a de-
focusing nonlinearity, is associated with a one-soliton
like profile of the electric field. This stems from the fact
that as we consider smaller frequencies, driving away
from the PP gap edge, in the nonlinear regime, the oth-
erwise stable soliton-like modes disappear. There is a
cut-off frequency value ν1 below which there is no fun-
damental soliton mode, and the same occurs for each of
the n-soliton modes observed, as they disappear for fre-
quencies smaller than νn. In Fig. 5 we plot the transmis-
sion as a function of the nonlinear power and frequency,
to illustrate this fact. Each T = 1 curve is associated
with a n-soliton like mode, where n is outlined by num-
bers and arrows. Note that these curves appear around
the edge of the PP gap and vanish for specific values νn

of the frequency.
We proceed by extending the study to the top edge of

the TE PP gap, turning to Fig. 6 which shows the trans-
mission as a function of the incident frequency when
there is no nonlinearity (a = 0), with θ = π/24. We
choose two frequency points (ν = 5.0982 GHz, 5.09791
GHz) to observe the effects of an increasing defocus-
ing nonlinearity in the transmission properties and elec-
tric field profiles inside the structure. The inclusion
of nonlinearity is depicted in Figs. 7(a) and 8(a), for
ν = 5.09791 GHz and ν = 5.0982 GHz, respectively.
Transparency switching is observed for both frequen-
cies but while for ν = 5.09791 GHz the first trans-
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Figure 7: (Color online) Calculated results for the same structure and linear parameters as in Fig 1: (a) Transmission as a function of increasing
power of a defocusing nonlinearity for θ = π/24 in the case of TE incidence. Only one transparency (T = 1) point is found for ν = 5.09791 GHz,
at a value of a|Ei |

2 (see arrow) equal to −0.00007; (b) Corresponding spatial profile for the electric field versus the nonlinear power. Outlined in
black and highlighted by the arrow is the place where full transparency is found (T = 1), at a value of a|Ei |

2 equal to −0.00007. There are (see
arrow) only one-soliton like modes in the nonlinear power range shown.

Figure 8: (Color online) Calculated results for the same structure and linear parameters as in Fig 1: (a) Transmission as a function of increasing
power of a defocusing nonlinearity for θ = π/24 in the case of TE incidence. Only one transparency (T = 1) point is found for ν = 5.0982 GHz, at
a value of a|Ei |

2 (see arrow) equal to −0.00028.; (b) Corresponding spatial profile for the electric field for the two-soliton like mode.
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Figure 9: (Color online) Color plot of the transmission coefficient for
different values of the nonlinear power and frequencies in the vicinity
of the top edge of the PP gap, for the system considered in Fig. 1,
with θ = π/24 and TE incidence. In red are the regions where we find
transparency and soliton modes (see arrows). The n = 2,3,4 arrow
numbers indicate the n-soliton modes in the nonlinear power range
shown.

Figure 10: (Color online) Color plot for the transmission coefficient
for different values of nonlinear power and frequency for the system
considered in Fig. 1, for θ = π/24 and TE incidence. For greater
clarity, the T = 0 gap region is shown in white.

parency point is associated with the one-soliton mode
[cf. Fig. 7(a)], we observe that the first transparency
point for ν = 5.0982 GHz is associated with a two-
soliton mode and no one-soliton mode is observed for
this frequency. As shown before for frequencies near
the lower edge of the PP gap, Fig. 9 indicates that
by choosing frequencies deviating from the top edge of
the PP gap, the T = 1 curves associated with the n-
soliton branch (as illustrated by the arrows) vanish for
a frequency νn. However, the behavior of the system
is dramatically different when comparing the transmis-
sion around the lower edge or top edge of the PP gap, as
shown in Fig. 10. The top PP gap edge moves to higher
frequencies as the nonlinear power increases whereas
the bottom PP edge remains essentially unchanged and,
therefore, the ’nonlinear gap’ becomes larger with in-
creasing self-defocusing nonlinearity.

4. Conclusions

In summary, we have presented a detailed study on
the nonlinear transmission switching phenomenon in
1D Kerr/metamaterial heterostructures in the vicinities
of both top and bottom edges of the PP-gap under the
influence of a self-defocusing Kerr nonlinearity. As ex-
pected, we find multi stability, and resonant n-soliton
modes. By sweeping the frequency regions around the
edges of the PP gap where the linear dispersion relation
exhibits a plasmon-polariton coupling, we find differ-
ent behavior depending on whether the frequency range
belongs to the top or bottom edge of the PP gap. The
top edge of the gap is shifted to higher frequencies for
higher nonlinearities, while the bottom edge remains
unchanged. We have found cut-off frequency values
νn below which there are no n-soliton modes. Further-
more, we find that the depart from the resonant (T = 1)
transmission frequencies does not hinder soliton forma-
tion, although the detuned solitons exhibit smaller am-
plitudes. Finally, we would like to point out that, in
all cases studied in the present work, the transparency-
switching phenomenon is still observable at low lev-
els of loss and absorption in the heterostructure. Re-
cent investigations on the experimental fabrication of
gain-enhanced metamaterials may open new perspec-
tives to overcome high levels of absorption [18, 19] so
that we hope that the present theoretical results will be
of interest in future experimental work on nonlinear-
heterostructure systems.
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