

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA DISSERTAÇÃO DE MESTRADO

A DESIGUALDADE DE MICHAEL E SIMON EM SUBVARIEDADES DO ESPAÇO EUCLIDIANO

MARIA RANILZE DA SILVA

Maceió Maio de 2017

MARIA RANILZE DA SILVA

A DESIGUALDADE DE MICHAEL E SIMON EM SUBVARIEDADES DO ESPAÇO EUCLIDIANO

Dissertação de Mestrado na área de Geometria Diferencial, submetida à banca examinadora, designada pelo Programa de Mestrado em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários à obtenção do grau de Mestra em Matemática.

Orientador:

Prof. Dr. Feliciano Marcílio Aguiar Vitório

Maceió

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central

Divisão de Tratamento Técnico

Bibliotecária responsável: Helena Cristina Pimentel do Vale

S586d Silva, Maria Ranilze da.

A desigualdade de Michael e Simon em subvariedades do espaço euclidiano / Maria Ranilze da Silva. - 2017.

41 f.

Orientador: Feliciano Marcílio Aguiar vitório.

Dissertação (mestrado em Matemática) - Universidade Federal de Alagoas. Instituto de Matemática. Maceió, 2017.

Bibliografia: f. 41

1 Matemática - Estudo e ensino. 2. Desigualdade de Sobolev. 3. Funções (Matemática) - Subharmônicas. 4. Subvariedades euclidianas. I. Título.

CDU: 514.76

A DESIGUALDADE DE MICHAEL E SIMON EM SUBVARIEDADES DO ESPAÇO EUCLIDIANO

MARIA RANILZE DA SILVA

Dissertação de Mestrado na área de Geometria Diferencial, submetida em 10 de maio de 2017 à banca examinadora, designada pelo Programa de Mestrado em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários à obtenção do grau de Mestra em Matemática.

Banca Examinadora

Prof. Dr. Feliciano Marcílio Aguiar Vitório - Orientador - UFAL

Prof. Dr. Carlos Gonçalves do Rei Filho - UFAL

larlos Concelles do Rei Filho

Prof. Dr. Jorge Herbert Soares de Lira - UFC

17

A grade cimentos

Agradeço primeiramente a Deus por mais essa conquista!

Aos meus irmãos Ranilson, pela forte frase que me disse num momento que eu precisava muito, e Ranilton, por se orgulhar das minhas conquistas. Aos meus pais pelo apoio. Amo vocês!

Ao meu orientador, Prof. Feliciano Vitório, pela dedicação e paciência e, acima de tudo, por enxergar que eu poderia ir além e me dar a honra de trabalhar com ele.

A Karenn Melo por me ouvir sempre que precisava desabafar sobre as dificuldades do curso e pelas palavras de encorajamento. A Ana Maria e Ewerton Roosevelt, secretários da pós-graduação, pela atenção e conselhos dados durante o curso.

Ao Leon Lima que foi como um irmão, esteve presente em todos os momentos do curso, tanto bons como ruins, um amigo que o mestrado me deu e vou levar pra vida toda!

Aos professores, em especial ao Prof. Isnaldo, e aos colegas Myrla, Robson, Iury, entre outros, que se colocaram à disposição e tiveram paciência em tirar minhas dúvidas.

A todos os amigos da graduação, mestrado e doutorado que nos primeiros momentos do mestrado tiveram a preocupação em demonstrar que estavam felizes comigo, me fazendo acreditar que não estava sozinha; e aos que estiveram dando apoio até o último momento do curso.

Aos avaliadores, Prof. Jorge Lira e Prof. Carlos Gonçalves que separaram um pouco do seu tempo para dividir comigo esse momento tão importante e pelas sugestões dadas.

A CAPES pelo apoio financeiro durante todo o mestrado.

Às vezes as palavras não conseguem expressar quão grata sou a todos que, direta ou indiretamente, contribuíram para a realização deste sonho, mas saibam que levarei para sempre essa gratidão em meu peito! Obrigada!

Resumo

Neste trabalho apresentaremos uma desigualdade geral de Sobolev. Estabelecida por Michael e Simon, essa desigualdade é obtida em subvariedades generalizadas do espaço euclidiano. Um caso especial desse resultado é a desigualdade clássica de Sobolev. Provaremos também uma desigualdade do valor médio para funções subharmônicas.

Palavras chave: Subvariedades; desigualdade de Sobolev; funções subharmônicas.

Abstract

In this work we will prove a general Sobolev inequality. Established for Michael and Simon, this inequality is obtained on the generalized manifolds of the euclidian space. A special case of the result is the ordinary Sobolev inequality. We proved too a mean-value inequality for subharmonic functions.

Keywords: Submanifolds; Sobolev inequality; subharmonic functions.

Sum'ario

Introdução			p. 11	
1	Preliminares			
	1.1	Tensor Métrico e Gradiente Tangencial	p. 12	
	1.2	Área da superfície de uma subvariedade	p. 16	
	1.3	Curvatura	p. 17	
		1.3.1 Vetor tangente e vetor curvatura de uma curva	p. 17	
		1.3.2 Segunda forma fundamental, curvatura normal e curvatura média .	p. 18	
2 Desigualdades de Michael e Simon			p. 22	
	2.1	A desigualdade de Sobolev em subvariedades do \mathbb{R}^n	p. 22	
	2.2	Uma Desigualdade do Valor Médio para Funções Subharmônicas	p. 33	
\mathbf{R}_{0}	Referências			

Introdução

As desigualdades de Sobolev desempenham um papel muito importante na teoria das Equações Diferenciais Parciais. Sua forma clássica afirma que

"Dados $1 \le p < n$ e p^* tais que $p^* = \frac{np}{n-p}$, existe uma constante $C = C_n(p)$ tal que

$$\left(\int |\varphi|^{p^*} d\sigma\right)^{\frac{1}{p^*}} \le C \left(\int |\nabla \varphi|^p d\sigma\right)^{1/p}$$

para toda função $\varphi \in C^1(\mathbb{R}^n)$ com suporte compacto."

Em 1967, Miranda (em [6]) obteve uma desigualdade de Sobolev para gráficos mínimos.

No primeiro capítulo introduzimos alguns conceitos de geometria diferencial, mais especificamente de subvariedades do \mathbb{R}^n , que serão utilizados no desenvolvimento deste trabalho.

No segundo capítulo deste trabalho apresentaremos, no teorema 2.1.1, uma desigualdade geral de Sobolev estabelecida por Michael e Simon, essa desigualdade é obtida em subvariedades generalizadas do espaço euclidiano. Um caso especial desse resultado é a desigualdade clássica de Sobolev.

Inspirados nesse resultado, Hoffman e Spruck em [3] provaram uma desigualdade de Sobolev e uma desigualdade isoperimétrica para subvariedades M de uma variedade riemanniana \overline{M} satisfazendo restrições geométricas envolvendo o volume de M e a curvatura seccional e o raio de injetividade de \overline{M} . Simon em [7] discute a aplicação da desigualdade geral de Sobolev (em subvariedades do espaço euclidiano) para o problema de estimativas do gradiente limitado para equações elípticas quase-lineares. Em [4], Medeiros prova uma desigualdade de Michael e Simon em variedades ponderadas, isto é, em variedades da forma $M_f = (M, g, dv_f)$, onde (M, g) é uma variedade riemanniana, $f: M \to \mathbb{R}$ é uma função suave em M, e $dv_f = e^{-f}dv$ é a medida ponderada, onde dv denota a medida riemanniana em (M, g).

Concluímos o segundo capítulo com a discussão de uma desigualdade do valor médio para funções fracamente sub-harmônicas descrita no teorema 2.2.1.

1 Preliminares

Neste capítulo veremos alguns fatos da geometria diferencial, mais especificamente sobre subvariedades do \mathbb{R}^n , que são requisitos necessários para a compreensão do resultado principal.

1.1 Tensor Métrico e Gradiente Tangencial

Definição 1.1.1 Seja $n \geq m \geq 1$. Um conjunto $M \subset \mathbb{R}^n$ é uma subvariedade m-dimensional de classe C^2 de \mathbb{R}^n se dado um ponto $x_0 \in M$ existem conjuntos abertos $D \subset \mathbb{R}^m$, $\Omega \subset \mathbb{R}^m$ e uma aplicação C^2

$$x:$$
 $D \longrightarrow \Omega$
$$t = (t_1, ..., t_m) \longmapsto x(t) = (x_1(t), ..., x_n(t))$$

tal que

$$x_0 \in \Omega \cap M = x(D),$$

e tal que os vetores $\frac{\partial x}{\partial t_i}(t)$, i=1,...,m, são linearmente independentes para cada $t\in D$. A aplicação x é chamada uma parametrização de M em x_0 e o espaço vetorial gerado por $\frac{\partial x}{\partial t_i}(t)$, i=1,...,m, onde $x(t_0)=x_0$, é chamado o espaço tangente $T_{x_0}M$ de M em x_0 .

Definição 1.1.2 Seja $n \geq m \geq 1$. Dada uma subvariedade m-dimensional $M \subset \mathbb{R}^n$ de classe C^2 , a primeira forma fundamental ou tensor métrico de M é a função de valores na matriz $(g_{ij})_{i,j=1,\dots,m}$ definida para $t \in D$ por

$$g_{ij}(t) = \frac{\partial x(t)}{\partial t_i} \cdot \frac{\partial x(t)}{\partial t_j} = \sum_{k=1}^n \frac{\partial x_k(t)}{\partial t_i} \cdot \frac{\partial x_k(t)}{\partial t_j}.$$

É fácil ver que dado $x_0 = x(t_0) \in M$ a relação

$$g(v,w) = \sum_{i,j=1}^{m} g_{ij}(t_0)v_i w_j,$$
(1.1)

onde $v = \sum_{i=1}^{m} v_i \frac{\partial x}{\partial t_i}(t_0)$ e $w = \sum_{j=1}^{m} w_j \frac{\partial x}{\partial t_j}(t_0)$ são dois vetores arbitrários de $T_{x_0}M$, define um produto interno. Além disso, g não depende da parametrização x. Usando um abuso de notação, também escreveremos $g = det(g_{ij})$, enquanto $(g^{ij}) = (g_{ij})^{-1}$ denota a matriz inversa de (g_{ij}) .

Graças a métrica g, podemos facilmente calcular a projeção ortogonal (com respeito ao produto interno usual) de um vetor em \mathbb{R}^n no espaço tangente $T_{x_0}M$.

Proposição 1.1.1 Seja $n \geq m \geq 1$. Dada uma subvariedade m-dimensional $M \subset \mathbb{R}^n$ de classe C^2 e um ponto $x_0 = x(t_0) \in M$, a matriz $\widetilde{G}(x_0) = (\widetilde{g}^{ij}(x_0))_{i,j=1,\dots,n}$ definida por

$$\tilde{g}^{ij}(x_0) = \sum_{r,s=1}^{m} g^{rs}(t_0) \frac{\partial x_i(t_0)}{\partial t_r} \cdot \frac{\partial x_j(t_0)}{\partial t_s}$$

representa a projeção ortogonal em $T_{x_0}M$ na base canônica de \mathbb{R}^n , isto é,

$$\widetilde{G}(x_0).v = \begin{cases} v, & \forall v \in T_{x_0}M, \\ 0, & \forall v \in (T_{x_0}M)^{\perp}. \end{cases}$$

Em particular, $\forall x \in M$,

$$\sum_{i=1}^{n} \tilde{g}^{ii}(x) = m,$$

$$0 \le \sum_{i,j=1}^{n} \tilde{g}^{ij}(x)v_iv_j \le |v|^2, \quad \forall v = (v_1, ..., v_n) \in \mathbb{R}^n$$

$$\tilde{g}^{ij}(x) = \tilde{g}^{ji}(x), \quad \forall i, j = 1, ..., n.$$

Demonstração. Para todo $v \in T_{x_0}M$, temos que $v = \sum_{i=1}^n v_i \frac{\partial x}{\partial t_i}$. Assim,

$$\widetilde{G}(x_0).v = \sum_{i=1}^n v_i \frac{\partial x}{\partial t_i}.$$
 (1.2)

Fazendo o produto interno com $\frac{\partial x}{\partial t_s}$, obtemos

$$\left\langle \widetilde{G}(x_0)v, \frac{\partial x}{\partial t_s} \right\rangle = \left\langle \sum_{i=1}^m v_i \frac{\partial x}{\partial t_i}, \frac{\partial x}{\partial t_s} \right\rangle = \sum_{i=1}^m v_i \left\langle \frac{\partial x}{\partial t_i}, \frac{\partial x}{\partial t_s} \right\rangle = \sum_{i=1}^m v_i g_{is}.$$

Multiplicando por g^{rs} , obtemos

$$g^{rs}\left\langle \widetilde{G}(x_0)v, \frac{\partial x}{\partial t_s} \right\rangle = \sum_{i=1}^n v_i g_{is} g^{rs}.$$

Somando em s,

$$\sum_{s=1}^{m} g^{rs} \left\langle \widetilde{G}(x_0) v, \frac{\partial x}{\partial t_s} \right\rangle = \sum_{i,s=1}^{m} v_i g_{is} g^{rs} = \sum_{i=1}^{n} v_i \delta_{ir} = v_r.$$

Substituindo em (1.2), teremos

$$\widetilde{G}(x_0).v = \sum_{r=1}^{m} \left(\sum_{s=1}^{m} g^{rs} \left\langle \widetilde{G}(x_0)v, \frac{\partial x}{\partial t_s} \right\rangle \right) \frac{\partial x}{\partial t_r}$$

$$= \sum_{r,s=1}^{m} g^{rs} \left\langle v, \frac{\partial x}{\partial t_s} \right\rangle \frac{\partial x}{\partial t_r}$$

$$= \sum_{r,s=1}^{m} g^{rs} \left\langle v, \frac{\partial x}{\partial t_s} \right\rangle \sum_{i=1}^{n} \frac{\partial x_i}{\partial t_r} \cdot e_i.$$

Assim, na base canônica do \mathbb{R}^n , temos

$$\widetilde{G}(x_0).e_j = \sum_{i=1}^n \sum_{r,s=1}^m g^{rs} \left\langle e_j, \frac{\partial x}{\partial t_s} \right\rangle \frac{\partial x_i}{\partial t_r} \cdot e_i = \sum_{i=1}^n \sum_{r,s=1}^m g^{rs} \frac{\partial x_j}{\partial t_s} \frac{\partial x_i}{\partial t_r} \cdot e_i. \tag{1.3}$$

Portanto, na base canônica do \mathbb{R}^n , a matriz $\widetilde{G}(x_0)$ é representada por

$$\tilde{g}^{ij}(x_0) = \sum_{r,s=1}^m g^{rs}(t_0) \frac{\partial x_j(t_0)}{\partial t_s} \cdot \frac{\partial x_i(t_0)}{\partial t_r}.$$

Em particular, temos

$$\sum_{i=1}^{n} \tilde{g}^{ii}(x) = \sum_{i=1}^{n} \sum_{r,s=1}^{m} g^{rs}(t) \frac{\partial x_i(t)}{\partial t_s} \cdot \frac{\partial x_i(t)}{\partial t_r} = \sum_{r,s=1}^{m} g^{rs}(t) \sum_{i=1}^{n} \frac{\partial x_i(t)}{\partial t_s} \cdot \frac{\partial x_i(t)}{\partial t_r}$$
$$= \sum_{r,s=1}^{m} g^{rs}(t) \cdot g_{sr}(t) = \sum_{r,s=1}^{m} \delta_{rs} = \sum_{r=1}^{m} \delta_{rr} = m.$$

Observe que $\sum_{i,j=1}^{n} \tilde{g}^{ij}(x) v_i v_j$ é o produto interno de $\widetilde{G}(x_0).v$ com v, assim

$$0 \le \sum_{i,j=1}^{n} \tilde{g}^{ij}(x)v_{i}v_{j} = \langle \tilde{G}(x_{0}).v, v \rangle \le |\tilde{G}(x_{0}).v||v| \le |v||v| = |v|^{2}.$$

Agora, usando a matriz de projeção, podemos definir o gradiente tangencial como a projeção do gradiente sobre o espaço tangente.

Proposição 1.1.2 Seja $n \geq m \geq 1$. Dados uma subvariedade m-dimensional $M \subset \mathbb{R}^n$ de classe C^2 , um ponto $x_0 = x(t_0) \in M$, um conjunto aberto $\Omega \subset \mathbb{R}^n$, com $x_0 \in \Omega$, e uma função $\varphi \in C^1(\Omega, \mathbb{R})$. O gradiente tangencial de φ em x_0 é definido como a projeção ortogonal de $\nabla \varphi$ em $T_{x_0}M$. E, temos

$$\nabla_T \varphi(x_0) := \widetilde{G}(x_0) \cdot \nabla \varphi(x_0) = \sum_{r=1}^m \left(\sum_{s=1}^m g^{rs}(t_0) \frac{\partial \varphi}{\partial t_s}(t_0) \right) \frac{\partial x}{\partial t_r}(t_0)$$

Demonstração. Sabemos que o gradiente pode ser escrito como $\nabla \varphi(x_0) = \sum_{k=1}^n \frac{\partial \varphi}{\partial x_k}(x_0)e_k$, onde $\{e_i\}_{i=1,\dots,n}$ é a base canônica de \mathbb{R}^n . Assim, por (1.3),

$$\nabla_{T}\varphi(x_{0}) = \widetilde{G}(x_{0}).\nabla\varphi(x_{0}) = \widetilde{G}(x_{0}) \cdot \left(\sum_{k=1}^{n} \frac{\partial \varphi}{\partial x_{k}}(x_{0})e_{k}\right)$$

$$= \sum_{k=1}^{n} \frac{\partial \varphi}{\partial x_{k}}(x_{0}).\widetilde{G}(x_{0})e_{k}$$

$$= \sum_{k=1}^{n} \frac{\partial \varphi}{\partial x_{k}}(x_{0}) \sum_{i=1}^{n} \sum_{r,s=1}^{m} g^{rs} \frac{\partial x_{k}}{\partial t_{s}}(t_{0}) \frac{\partial x_{i}}{\partial t_{r}}(t_{0}) \cdot e_{i}$$

$$= \sum_{k,i=1}^{n} \sum_{r,s=1}^{m} g^{rs} \frac{\partial \varphi}{\partial x_{k}}(x_{0}) \frac{\partial x_{k}}{\partial t_{s}}(t_{0}) \frac{\partial x_{i}}{\partial t_{r}}(t_{0}) \cdot e_{i}$$

$$= \sum_{r,s=1}^{m} g^{rs} \frac{\partial \varphi}{\partial t_{s}}(t_{0}) \frac{\partial x_{k}}{\partial t_{r}}(t_{0}).$$

H

1.2 Área da superfície de uma subvariedade

Seja $x:D\subset\mathbb{R}^m\longrightarrow\Omega$ uma parametrização de uma subvariedade m-dimensional $M\subset\mathbb{R}^n$ de classe C^2 . Dado um subdomínio $\omega\subset\subset D$ suavemente limitado, a imagem de ω em M tem área m-dimensional igual a

$$\int_{x(\omega)} d\sigma = \int_{\omega} \sqrt{g} \, dt_1 ... dt_m.$$

Usando a partição da unidade, podemos usar a fórmula acima para calcular a integral sobre M de uma função que é contínua em uma vizinhança de M.

A seguinte propriedade elementar do elemento de área será útil na sequência.

Lema 1.2.1 Seja $1 \le m \le n$. Seja M uma subvariedade m-dimensional de classe C^2 do espaço euclidiano \mathbb{R}^n e denote por $d\sigma = \sqrt{g} dt_1...dt_m$ o elemento de volume. Seja ω_m a medida de Lebesgue da bola unitária em \mathbb{R}^m . Então, para todo $x_0 \in M$,

$$\lim_{\rho \to 0^+} \frac{\sigma(S_\rho(x_0))}{\rho^m} = \omega_m$$

onde

$$S_{\rho}(x_0) = \{x \in M : |x - x_0| \le \rho\}.$$

Demonstração. Seja x uma parametrização de M em $x_0 = x(t_0)$. Pela fórmula de Taylor,

$$x(t) = x_0 + \sum_{i=1}^{m} (t - t_0)_i \frac{\partial x}{\partial t_i}(t_0) + o(|t - t_0|).$$
(1.4)

Suponhamos, sem perda de generalidade, que a base canônica de \mathbb{R}^m é ortonormal para o produto interno $g(t_0)$, isto é, existem $\lambda_1, ..., \lambda_m > 0$ tais que $g_{ij}(t_0) = \lambda_i \delta_{ij}$. Assim, usando (1.4), obtemos

$$|x - x_0|^2 = \sum_{i,j=1}^m (t - t_0)_i \frac{\partial x}{\partial t_i} (t_0) (t - t_0)_j \frac{\partial x}{\partial t_j} (t_0) + o(|t - t_0|^2)$$

$$= \sum_{i,j=1}^m g_{ij}(t_0) (t - t_0)_i (t - t_0)_j + o(|t - t_0|^2)$$

$$= \sum_{i=1}^m \lambda_i (t - t_0)_i^2 + o(|t - t_0|^2).$$

Agora, dado $\varepsilon > 0$, deduzimos que para ρ suficientemente pequeno, temos

$$\left\{ t \in \mathbb{R}^m : \sum_{i=1}^m \lambda_i (t - t_0)_i^2 \le (1 - \varepsilon) \rho^2 \right\} \subset x^{-1}(S_\rho(x_0))$$

$$\subset \left\{ t \in \mathbb{R}^m : \sum_{i=1}^m \lambda_i (t - t_0)_i^2 \le (1 + \varepsilon) \rho^2 \right\}.$$

Assim, usando a mudança de variáveis $s_i = \sqrt{\lambda_i}(t-t_0)_i, i=1,...,m$, obtemos

$$\lim_{\rho \to 0^{+}} \frac{\sigma(S_{\rho}(x_{0}))}{\rho^{m}} = \lim_{\rho \to 0^{+}} \frac{\int_{S_{\rho}(x_{0})} d\sigma}{\rho^{m}}$$

$$= \lim_{\rho \to 0^{+}} \frac{\int_{\{t : \sum_{i=1}^{m} \lambda_{i}(t-t_{0})_{i}^{2} \leq \rho^{2}\}} \sqrt{g} dt_{1}...dt_{m}}{\rho^{m}}$$

$$= \lim_{\rho \to 0^{+}} \frac{\int_{\{t : \sum_{i=1}^{m} \lambda_{i}(t-t_{0})_{i}^{2} \leq \rho^{2}\}} \sqrt{\lambda_{1}...\lambda_{m}} dt_{1}...dt_{m}}{\rho^{m}}$$

$$= \lim_{\rho \to 0^{+}} \frac{\int_{\{s : \sum_{i=1}^{m} s_{i}^{2} \leq \rho^{2}\}} ds_{1}...ds_{m}}{\rho^{m}}$$

$$= \omega_{m}.$$

1.3 Curvatura

1.3.1 Vetor tangente e vetor curvatura de uma curva

Uma curva regular em uma subvariedade M é uma aplicação $x: I = (\alpha, \beta) \to M$ de classe C^1 tal que $|x'(\tau)| > 0$, $\forall \tau \in I$. Denote por $t_1(\tau), ..., t_m(\tau)$ as coordenadas de $x(\tau)$ em alguma parametrização de M. Então,

$$|x'(\tau)|^2 = \sum_{i,j=1}^m g_{ij}t'_i(\tau)t'_j(\tau)$$

e o comprimento da curva $x(\tau)$ é dado por

$$L = \int_{\alpha}^{\beta} |x'(\tau)| d\tau.$$

Agora, seja $s(\tau) = \int_{\alpha}^{\tau} |x'(\tau)| d\tau$. Então, sendo a curva $x(\tau)$ regular, a aplicação $s:(\alpha,\beta) \to (0,L)$ é invertível. s é chamado o parâmetro de comprimento de arco e a aplicação

$$\begin{cases} (0, L) & \to \mathbb{R}^n \\ s & \mapsto x(\tau(s)), \end{cases}$$

onde $\tau(s)$ é a aplicação inversa de $s(\tau)$, a parametrização da curva pelo comprimento de arco. O vetor tangente unitário da curva é dado por

$$T = \frac{dx}{ds} = \frac{x'(\tau)}{s'(\tau)}$$

e o vetor curvatura

$$K = \frac{dT}{ds} = \frac{d^2x}{ds^2}.$$

Note que $|T|^2=1 \Rightarrow T\cdot \frac{dT}{ds}=0$, isto é, o vetor tangente unitário é ortogonal ao vetor curvatura.

1.3.2 Segunda forma fundamental, curvatura normal e curvatura média

Dados uma subvariedade M e um ponto $x_0 \in M$, o complemento ortogonal do espaço tangente $N_{x_0}(M) = (T_{x_0}(M))^{\perp}$ é chamado o *Espaço Normal* de M em x_0 .

Dada uma curva regular x(s) parametrizada pelo comprimento de arco, os vetores tangente e curvatura podem ser escritos nas coordenadas de uma parametrização na forma:

$$\frac{dx}{ds} = \sum_{i=1}^{m} \frac{dt_i}{ds} \frac{\partial x}{\partial t_i}$$

e

$$\frac{d^2x}{ds^2} = \sum_{i=1}^m \frac{d^2t_i}{ds^2} \frac{\partial x}{\partial t_i} + \sum_{i,j=1}^m \frac{dt_i}{ds} \frac{dt_j}{ds} \frac{\partial^2 x}{\partial t_i \partial t_j}.$$

Tomando um vetor normal $N \in N_{x_0}M$, obtemos

$$\frac{d^2x}{ds^2} \cdot N = \sum_{i,j=1}^m \left(\frac{\partial^2 x}{\partial t_i \partial t_j} \cdot N \right) \frac{dt_i}{ds} \frac{dt_j}{ds},$$

que pode ser visto como uma forma quadrática agindo sobre o vetor $T = \frac{dx}{ds}$, essa forma

quadrática é chamada a segunda forma fundamental de M com respeito ao vetor normal N e é representada na base $\left(\frac{\partial x}{\partial t_i}\right)$ de $T_{x_0}M$ pela matriz

$$B_{ij} = B_{ij}(N) = \frac{\partial^2 x}{\partial t_i \partial t_i} \cdot N.$$

Essa matriz também pode ser expressa como

$$B_{ij} = -\frac{\partial N}{\partial \tau_i} \cdot \tau_j,$$

onde $\tau_i = \frac{\partial x}{\partial t_i}$. De fato,

$$\frac{\partial N}{\partial \tau_i} \cdot \tau_j = \sum_{k=1}^n \frac{\partial N_k}{\partial \tau_i} \frac{\partial x_k}{\partial t_j} = \sum_{k=1}^n (\nabla N_k \cdot \tau_i) \frac{\partial x_k}{\partial t_j} = \sum_{k=1}^n \frac{\partial N_k}{\partial x_l} \frac{\partial x_l}{\partial t_i} \frac{\partial x_k}{\partial t_j} = \sum_{k=1}^n \frac{\partial N_k}{\partial t_i} \frac{\partial x_k}{\partial t_j} = \frac{\partial N_k}{\partial t_i} \cdot \frac{\partial x_k}{\partial t_j}$$

enquanto

$$0 = \frac{\partial}{\partial t_i} (N \cdot \tau_j) = \frac{\partial N}{\partial t_i} \cdot \frac{\partial x}{\partial t_j} + N \cdot \frac{\partial^2 x}{\partial t_j \partial t_i} = \frac{\partial N}{\partial t_i} \cdot \frac{\partial x}{\partial t_j} + B_{ij},$$

pois $N.\tau_j = 0$, o que implica que

$$B_{ij} = -\frac{\partial N}{\partial t_i} \cdot \frac{\partial x}{\partial t_j} = -\frac{\partial N}{\partial \tau_i} \cdot \tau_j.$$

Sendo T = dx/ds, a segunda forma fundamental calculada em T, isto é,

$$k(N,T) = \frac{d^2x}{ds^2} \cdot N$$

é chamada a curvatura normal de M na direção de T com respeito a N.

Tome uma base ortonormal de $T_{x_0}M$ e seja (B_{ij}) a matriz da segunda forma fundamental nesta base. Então, os autovalores $k_i = k_i(N), i = 1, ..., m$ de (B_{ij}) são chamados as curvaturas principais de M com respeito ao normal N. A média aritmética deles

$$H(N) = \frac{k_1(N) + \dots + k_m(N)}{m}$$

é a curvatura média de M com respeito a N. Como H(N) é linear em N, existe um único

vetor $\mathbf{H} \in N_{x_0}M$ tal que

$$H(N) = \mathbf{H} \cdot N.$$

H é chamado vetor curvatura média.

Observação 1.3.1 Não havendo problemas de confusão usaremos simplesmente $\nabla \varphi$ para representar o gradiente tangencial de φ .

Proposição 1.3.1 Seja $x:D\subset\mathbb{R}^m\longrightarrow\Omega$ uma parametrização de uma subvariedade m-dimensional $M\subset\mathbb{R}^n$ de classe C^2 . Então, o vetor curvatura média de M satisfaz

$$H = \Delta_M x$$
.

Demonstração. Vamos mostrar a igualdade nas coordenadas. Dado um campo $X \in \chi(M)$, temos que $Xx_i = X\langle x, e_i \rangle = \langle X, e_i \rangle = \langle X, e_i^T \rangle$, daí $\nabla x_i = e_i^T$. Assim,

$$\begin{split} \Delta_{M}x_{i} &= \operatorname{div}_{M} \nabla x_{i} = \operatorname{div}_{M} e_{i}^{T} \\ &= \sum_{j} \langle \nabla_{v_{j}} e_{i}^{T}, v_{j} \rangle = \sum_{j} \langle D_{v_{j}} e_{i}^{T}, v_{j} \rangle \\ &= \sum_{j} \langle D_{v_{j}} (e_{i} - e_{i}^{\perp}), v_{j} \rangle = - \sum_{j} \langle D_{v_{j}} e_{i}^{\perp}, v_{j} \rangle \\ &= - \sum_{j} (v_{j} \langle e_{i}^{\perp}, v_{j} \rangle - \langle e_{i}^{\perp}, D_{v_{j}} v_{j} \rangle) \\ &= \sum_{j} \langle e_{i}^{\perp}, D_{v_{j}} v_{j} \rangle = \sum_{j} \langle e_{i}^{\perp}, \nabla_{v_{j}} v_{j} + \alpha(v_{j}, v_{j}) \rangle \\ &= \sum_{j} \langle e_{i}^{\perp}, \alpha(v_{j}, v_{j}) \rangle = \langle e_{i}^{\perp}, H \rangle = \langle e_{i}, H \rangle = H_{i} \end{split}$$

Como consequência imediata da proposição 1.3.1, obtemos o seguinte lema:

Lema 1.3.1 Seja $1 \leq m \leq n$. Seja $x : D \subset \mathbb{R}^m \longrightarrow \Omega$ uma parametrização de uma subvariedade m-dimensional $M \subset \mathbb{R}^n$ de classe C^2 . Então, para toda $\varphi \in C^1_c(\Omega)$, temos

$$\int_{M} (\nabla \varphi + H\varphi) \ d\sigma = 0.$$

Demonstração. Pela Proposição anterior, temos $H_i = div_M e_i^T$. Multiplicando por φ e integrando, obtemos

$$\int_{M} H_{i}\varphi \, d\sigma = \int_{M} \varphi div_{M} e_{i}^{T} \, d\sigma = \int_{M} div_{M}(\varphi e_{i}^{T}) \, d\sigma - \int_{M} \langle \nabla \varphi, e_{i}^{T} \rangle \, d\sigma
= \int_{\partial M} \langle \varphi e_{i}^{T}, \nu \rangle \, d\sigma - \int_{M} \langle \nabla \varphi, e_{i}^{T} \rangle \, d\sigma
= -\int_{M} \langle \nabla \varphi, e_{i}^{T} \rangle \, d\sigma = -\int_{M} \langle \nabla \varphi, e_{i} \rangle \, d\sigma$$

2 Desigualdades de Michael e Simon

Nesta capítulo apresentaremos a desigualdade de Sobolev em subvariedades do \mathbb{R}^n e uma desigualdade do valor médio para funções subharmônicas.

2.1 A desigualdade de Sobolev em subvariedades do \mathbb{R}^n

O Teorema a seguir é o resultado principal deste trabalho.

Teorema 2.1.1 (Michael e Simon) Seja $1 \leq m \leq n$. Sejam $x : D \subset \mathbb{R}^m \longrightarrow \Omega$ uma parametrização de uma subvariedade m-dimensional $M \subset \mathbb{R}^n$ de classe C^2 e U um conjunto aberto contido em M. Para todo $p \in [1, m)$, existe uma constante C = C(m, p) > 0 tal que para todo $\varphi \in C_c^1(U)$,

$$\left(\int_{M} |\varphi|^{p^{*}} d\sigma\right)^{\frac{1}{p^{*}}} \leq C \left[\left(\int_{M} |\nabla \varphi|^{p} d\sigma\right)^{1/p} + \left(\int_{M} |H\varphi|^{p} d\sigma\right)^{1/p} \right], \tag{2.1}$$

onde $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{m}$, H é a curvatura média de M e $\nabla \varphi$ é o gradiente tangencial.

Para demonstrar esse teorema usaremos os lemas a seguir.

Lema 2.1.1 Suponha que $\lambda \in C^1(\mathbb{R})$ é uma função não-decrescente tal que $\lambda(t) = 0$ para $t \leq 0$. Seja $\varphi \in C^1_c(U), \varphi \geq 0$. Seja $x_0 \in M$, defina $\varphi_{x_0}, \psi_{x_0} \in C^1(0, +\infty)$ por

$$\varphi_{x_0}(\rho) = \int_M \varphi(x) \lambda(\rho - r) \, d\sigma(x)$$

e

$$\psi_{x_0}(\rho) = \int_M [|\nabla_T \varphi(x)| + |H|\varphi(x)] \lambda(\rho - r) \, d\sigma(x),$$

onde $r = |x - x_0|$. Então

$$-\frac{d}{d\rho}\left(\frac{\varphi_{x_0(\rho)}}{\rho^m}\right) \le \frac{\psi_{x_0}(\rho)}{\rho^m}, \quad para \ todo \ \rho > 0.$$

Demonstração. Observe que no lema 1.3.1, temos a igualdade em cada coordenada, assim tomando a função

$$\psi = (x - x_0)_i \lambda(\rho - r) \varphi$$

temos

$$\int_{M} \delta_{i}[(x-x_{0})_{i}\lambda(\rho-r)\varphi] d\sigma = -\int_{M} H_{i}(x-x_{0})_{i}\lambda(\rho-r)\varphi d\sigma,$$

onde δ_i , H_i são as componentes de ∇ , H na base canônica de \mathbb{R}^n . Somando em i, ficamos com

$$\int_{M} \sum_{i=1}^{n} \delta_{i}[(x-x_{0})_{i}\lambda(\rho-r)\varphi] d\sigma = -\int_{M} \lambda(\rho-r)\varphi \sum_{i=1}^{n} H_{i}(x-x_{0})_{i} d\sigma.$$
 (2.2)

Agora, precisamos encontrar a i-ésima coordenada de $\nabla \psi$. Temos

$$\nabla \psi = \lambda(\rho - r)\varphi \nabla(x - x_0)_i + (x - x_0)_i \varphi \lambda'(\rho - r) \nabla(\rho - r) + (x - x_0)_i \lambda(\rho - r) \nabla \varphi.$$

Pela proposição 1.1.2, temos

$$\nabla (x - x_0)_i = \sum_{r,s=1}^m g^{rs} \frac{\partial}{\partial t_s} (x - x_0)_i \frac{\partial x}{\partial t_r}$$
$$= \sum_{i=1}^n \sum_{r=1}^m g^{rs} \frac{\partial x_i}{\partial t_s} \frac{\partial x_i}{\partial t_r} e_i = \sum_{i=1}^n \tilde{g}^{ii} e_i,$$

$$\nabla(\rho - r) = \sum_{i=1}^{n} \sum_{r,s=1}^{m} g^{rs} \frac{\partial}{\partial t_{s}} (\rho - |x - x_{0}|) \frac{\partial x_{i}}{\partial t_{r}} e_{i}$$

$$= \sum_{i=1}^{n} \sum_{r,s=1}^{m} g^{rs} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} (\rho - |x - x_{0}|) \frac{\partial x_{j}}{\partial t_{s}} \frac{\partial x_{i}}{\partial t_{r}} e_{i}$$

$$= \sum_{i,j=1}^{n} \sum_{r,s=1}^{m} g^{rs} \left(-\frac{(x - x_{0})_{j}}{|x - x_{0}|} \right) \frac{\partial x_{j}}{\partial t_{s}} \frac{\partial x_{i}}{\partial t_{r}} e_{i}$$

$$= -\sum_{i,j=1}^{n} \frac{(x - x_{0})_{j}}{|x - x_{0}|} \tilde{g}^{ji} e_{i} = -\sum_{i,j=1}^{n} \frac{(x - x_{0})_{j}}{r} \tilde{g}^{ji} e_{i}$$

e

$$\nabla \varphi = \sum_{i=1}^{n} \delta_i \varphi . e_i.$$

Assim, para cada i,

$$\delta_i \psi = \lambda(\rho - r)\varphi \cdot \tilde{g}^{ii} - (x - x_0)_i \varphi \lambda'(\rho - r) \sum_{j=1}^n \frac{(x - x_0)_j}{r} \tilde{g}^{ji} + (x - x_0)_i \lambda(\rho - r)\delta_i \varphi$$

Somando em i e usando a proposição 1.1.1, temos

$$\sum_{i=1}^{n} \delta_{i} \psi = \lambda(\rho - r)\varphi. \sum_{i=1}^{n} \tilde{g}^{ii} - \varphi r \lambda'(\rho - r) \sum_{i,j=1}^{n} \frac{(x - x_{0})_{i}}{r} \frac{(x - x_{0})_{j}}{r} \tilde{g}^{ji} +$$

$$+ \sum_{i=1}^{n} (x - x_{0})_{i} \lambda(\rho - r) \delta_{i} \varphi$$

$$\geq m \lambda(\rho - r)\varphi - \varphi r \lambda'(\rho - r) \frac{|x - x_{0}|^{2}}{r^{2}} + \lambda(\rho - r) \sum_{i=1}^{n} (x - x_{0})_{i} \delta_{i} \varphi$$

$$= m \lambda(\rho - r)\varphi - \varphi r \lambda'(\rho - r) + \lambda(\rho - r) \sum_{i=1}^{n} (x - x_{0})_{i} \delta_{i} \varphi$$

Substituindo na equação (2.2),

$$-\int_{M} \lambda(\rho - r)\varphi \sum_{i=1}^{n} H_{i}(x - x_{0})_{i} d\sigma \geq m \int_{M} \lambda(\rho - r)\varphi d\sigma - \int_{M} r\varphi \lambda'(\rho - r) d\sigma + \int_{M} \lambda(\rho - r) \sum_{i=1}^{n} (x - x_{0})_{i} \delta_{i}\varphi d\sigma,$$

daí,

$$m\varphi_{x_0}(\rho) - \int_M r\varphi \lambda'(\rho - r) \, d\sigma \leq -\int_M \lambda(\rho - r)\varphi \sum_{i=1}^n H_i(x - x_0)_i \, d\sigma - \int_M \lambda(\rho - r) \sum_{i=1}^n (x - x_0)_i \delta_i \varphi \, d\sigma$$

$$= -\int_M \lambda(\rho - r)\varphi \langle H, x - x_0 \rangle \, d\sigma - \int_M \lambda(\rho - r)\langle x - x_0, \nabla \varphi \rangle \, d\sigma$$

$$\leq \int_M \lambda(\rho - r)\varphi |\langle H, x - x_0 \rangle| \, d\sigma$$

$$+ \int_M \lambda(\rho - r)|\langle x - x_0, \nabla \varphi \rangle| \, d\sigma$$

$$m\varphi_{x_0}(\rho) - \int_M r\varphi \lambda'(\rho - r) d\sigma \leq \int_M \lambda(\rho - r)\varphi |H| |x - x_0| d\sigma + \int_M \lambda(\rho - r) |x - x_0| |\nabla \varphi| d\sigma$$
$$= \int_M r\lambda(\rho - r) (|\nabla \varphi| + |H|\varphi) d\sigma.$$

Como $\lambda(\rho-r)\geq 0$ e $\lambda'(\rho-r)\geq 0$ (pois $\lambda(t)$ é não-decrescente), para $r\leq \rho$, temos que

$$r\lambda(\rho - r) \le \rho\lambda(\rho - r)$$
 e $r\lambda'(\rho - r) \le \rho\lambda'(\rho - r)$. (2.3)

Para $r \ge \rho$, temos $\lambda(\rho-r)=0$, e as desigualdades (2.3) seguem trivialmente. Com isso, obtemos

$$m\varphi_{x_0}(\rho) - \int_M \rho \varphi \lambda'(\rho - r) d\sigma \le \int_M \rho \lambda(\rho - r) (|\nabla \varphi| + |H|\varphi) d\sigma,$$

isto é,

$$m\varphi_{x_0}(\rho) - \rho\varphi'_{x_0}(\rho) \le \rho\psi_{x_0}(\rho)$$

Logo,

$$-\frac{d}{d\rho}\left(\frac{\varphi_{x_0}(\rho)}{\rho^m}\right) = \frac{1}{\rho}\left(\frac{m\varphi_{x_0}(\rho)}{\rho^m} - \frac{\rho\varphi_{x_0}'(\rho)}{\rho^m}\right) \le \frac{1}{\rho}\left(\frac{\rho\psi_{x_0}(\rho)}{\rho^m}\right) = \frac{\psi_{x_0}(\rho)}{\rho^m}.$$

Lema 2.1.2 Sejam φ como no Lema 2.1.1 e $x_0 \in M$ tal que $\varphi(x_0) \geq 1$. Defina $\overline{\varphi}_{x_0}, \overline{\psi}_{x_0}$ em $(0, +\infty)$ por

$$\overline{\varphi}_{x_0}(\rho) = \int_{S_o(x_0)} \varphi(x) \, d\sigma(x)$$

e

$$\overline{\psi}_{x_0}(\rho) = \int_{S_{\rho}(x_0)} [|\nabla \varphi(x)| + |H|\varphi(x)] \, d\sigma(x),$$

onde $S_{\rho}(x_0) = \{x \in M : |x - x_0| \le \rho\}$. Então, existe ρ tal que $0 < \rho < 2[\omega_m^{-1} \int_M \varphi \, d\sigma]^{\frac{1}{m}}$ e

$$\overline{\varphi}_{x_0}(4\rho) \le 4^m \left[\omega_m^{-1} \int_M \varphi \, d\sigma \right]^{\frac{1}{m}} \overline{\psi}_{x_0}(\rho),$$

onde ω_m denota a medida de Lebesgue da bola unitária em \mathbb{R}^m .

Demonstração. Sejam $\varphi_{x_0}, \psi_{x_0}$ como no Lema 2.1.1, então

$$-\frac{d}{d\rho}\left(\frac{\varphi_{x_0(\rho)}}{\rho^m}\right) \le \frac{\psi_{x_0}(\rho)}{\rho^m}.$$
 (2.4)

Seja $\rho_0 = 2[\omega_m^{-1} \int_M \varphi \, d\sigma]^{\frac{1}{m}} > 0$. Assuma que $t \in (0, \rho_0)$. Integrando (2.4) no intervalo (t, ρ_0) , obtemos

$$t^{-m}\varphi_{x_0}(t) - \rho_0^{-m}\varphi_{x_0}(\rho_0) \le \int_t^{\rho_0} \rho^{-m}\psi_{x_0}(\rho)d\rho$$

Daí,

$$t^{-m}\varphi_{x_0}(t) \leq \rho_0^{-m}\varphi_{x_0}(\rho_0) + \int_0^{\rho_0} \rho^{-m}\psi_{x_0}(\rho)d\rho \tag{2.5}$$

Agora, seja $\varepsilon \in (0,t)$ e suponha que a função λ que aparece na definição de $\varphi_{x_0}, \psi_{x_0}$ é tal que $\lambda(t) = 1, \forall t \geq \varepsilon$. Então,

$$\varphi_{x_0}(t) = \int_M \varphi(x)\lambda(t-r) d\sigma = \int_{M \cap S_t(x_0)} \varphi(x)\lambda(t-r) d\sigma$$
 (2.6)

$$= \int_{M \cap S_{t-\varepsilon}(x_0)} \varphi(x)\lambda(t-r) d\sigma + \int_{M \cap (S_t(x_0) \setminus S_{t-\varepsilon}(x_0))} \varphi(x)\lambda(t-r) d\sigma \qquad (2.7)$$

$$= \int_{M \cap S_{t-\varepsilon}(x_0)} \varphi(x) d\sigma + \int_{M \cap (S_t(x_0) \setminus S_{t-\varepsilon}(x_0))} \varphi(x) \lambda(t-r) d\sigma$$
 (2.8)

$$\geq \int_{M \cap S_{t-\varepsilon}(x_0)} \varphi(x) \, d\sigma = \overline{\varphi}_{x_0}(t-\varepsilon), \tag{2.9}$$

$$\varphi_{x_0}(\rho_0) = \int_{M \cap S_{\rho_0 - \varepsilon}(x_0)} \varphi(x) d\sigma + \int_{M \cap (S_{\rho_0}(x_0) \setminus S_{\rho_0 - \varepsilon}(x_0))} \varphi(x) \lambda(\rho_0 - r) d\sigma \qquad (2.10)$$

$$\leq \int_{M \cap S_{\rho_0 - \varepsilon}(x_0)} \varphi(x) \, d\sigma + \int_{M \cap (S_{\rho_0}(x_0) \setminus S_{\rho_0 - \varepsilon}(x_0))} \varphi(x) \, d\sigma \tag{2.11}$$

$$= \int_{M \cap S_{a_0}(x_0)} \varphi(x) \, d\sigma = \overline{\varphi}_{x_0}(\rho_0) \tag{2.12}$$

 \mathbf{e}

$$\psi_{x_0}(\rho) = \int_M [|\nabla \varphi(x)| + |H|\varphi(x)] \lambda(\rho - r) d\sigma$$

$$= \int_{M \cap S_{\rho}(x_0)} [|\nabla \varphi(x)| + |H|\varphi(x)] \lambda(\rho - r) d\sigma$$

$$= \int_{M \cap S_{\rho-\varepsilon}(x_0)} [|\nabla \varphi(x)| + |H|\varphi(x)] d\sigma$$

$$+ \int_{M \cap (S_{\rho}(x_0) \setminus S_{\rho-\varepsilon}(x_0))} [|\nabla \varphi(x)| + |H|\varphi(x)] \lambda(\rho - r) d\sigma$$

$$\leq \int_{M \cap S_{\rho-\varepsilon}(x_0)} [|\nabla \varphi(x)| + |H|\varphi(x)] d\sigma + \int_{M \cap (S_{\rho}(x_0) \setminus S_{\rho-\varepsilon}(x_0))} [|\nabla \varphi(x)| + |H|\varphi(x)] d\sigma$$

$$\psi_{x_0}(\rho) \leq \int_{M \cap S_{\rho}(x_0)} [|\nabla \varphi(x)| + |H|\varphi(x)] d\sigma = \overline{\psi}_{x_0}(\rho).$$

Substituindo essas estimativas em (2.5), obtemos

$$t^{-m}\overline{\varphi}_{x_0}(t-\varepsilon) \le \rho_0^{-m}\overline{\varphi}_{x_0}(\rho_0) + \int_0^{\rho_0} \rho^{-m}\overline{\psi}_{x_0}(\rho)d\rho.$$

Como $t < \rho_0$ e $\varepsilon \in (0, t)$ são arbitrários, segue que

$$\sup_{t \in (0,\rho_0)} t^{-m} \overline{\varphi}_{x_0}(t) \le \rho_0^{-m} \overline{\varphi}_{x_0}(\rho_0) + \int_0^{\rho_0} \rho^{-m} \overline{\psi}_{x_0}(\rho) d\rho. \tag{2.13}$$

Suponha, ao contrário do estabelecido no lema, que $\overline{\psi}_{x_0}(\rho) < 2.4^{-m}\rho_0^{-1}\overline{\varphi}_{x_0}(4\rho), \forall \rho \in (0,\rho_0).$ Então,

$$\int_{0}^{\rho_{0}} \rho^{-m} \overline{\psi}_{x_{0}}(\rho) d\rho \leq 2.4^{-m} \rho_{0}^{-1} \int_{0}^{\rho_{0}} \rho^{-m} \overline{\varphi}_{x_{0}}(4\rho) d\rho
= \frac{1}{2} \rho_{0}^{-1} \int_{0}^{4\rho_{0}} t^{-m} \overline{\varphi}_{x_{0}}(t) dt
\leq \frac{1}{2} \rho_{0}^{-1} \left[\int_{0}^{\rho_{0}} t^{-m} \overline{\varphi}_{x_{0}}(t) dt + \int_{\rho_{0}}^{+\infty} t^{-m} \overline{\varphi}_{x_{0}}(t) dt \right]
\leq \frac{1}{2} \rho_{0}^{-1} \left[\int_{0}^{\rho_{0}} t^{-m} \overline{\varphi}_{x_{0}}(t) dt + \int_{M} \varphi d\sigma \int_{\rho_{0}}^{+\infty} t^{-m} dt \right]
\leq \frac{1}{2} \rho_{0}^{-1} \left[\rho_{0} \sup_{t \in (0, \rho_{0})} t^{-m} \overline{\varphi}_{x_{0}}(t) + \frac{1}{m-1} \rho_{0}^{1-m} \int_{M} \varphi d\sigma \right].$$

Segue de (2.13),

$$\frac{1}{2} \sup_{t \in (0,\rho_0)} t^{-m} \overline{\varphi}_{x_0}(t) \leq \rho_0^{-m} \overline{\varphi}_{x_0}(\rho_0) + \frac{1}{2(m-1)} \rho_0^{-m} \int_M \varphi \, d\sigma \\
\leq \rho_0^{-m} \left(1 + \frac{1}{2(1-m)} \right) \int_M \varphi \, d\sigma.$$

Substituindo ρ_0 ,

$$\sup_{t \in (0,\rho_0)} t^{-m} \overline{\varphi}_{x_0}(t) \le 2^{1-m} \omega_m \left(1 + \frac{1}{2(m-1)} \right) < \omega_m.$$

Usando o Lema 1.2.1 e a suposição $\varphi(x_0) \ge 1$, obtemos

$$\sup_{t \in (0,\rho)} \frac{1}{t^m} \int_{S_t(x_0)} \varphi \, d\sigma < \lim_{\rho \to 0^+} \frac{\sigma(S_\rho(x_0))}{\rho^m},$$

que é uma contradição.

Demonstração. (Teorema 2.1.1) Suponha, inicialmente, que p=1 e, sem perda de generalidade, $\varphi \geq 0$. Usando um argumento de cobertura e o Lema 2.1.2, provaremos que

$$\sigma(\lbrace x \in M : \varphi(x) \ge 1 \rbrace) \le 4^m \left(\omega_m^{-1} \int_M \varphi \, d\sigma \right)^{1/m} \cdot \int_M (|\nabla \varphi| + |H|\varphi) \, d\sigma. \tag{2.14}$$

Suponha que $A=\{x\in M: \varphi(x)\geq 1\}\neq\emptyset$. Para cada $x\in A$, sejam $\overline{\varphi}_x(\rho)$ e $\overline{\psi}_x(\rho)$, como no Lema 2.1.2, e $J=\left(\omega_m^{-1}\int_M\varphi\,d\sigma\right)^{1/m}$.

Sejam $\rho_i = 4.2^{-i} J, i = 1, 2, \dots e$

$$A_i = \left\{ x \in A : \overline{\varphi}_x(4\rho) \le 4^m J \overline{\psi}_x(\rho), \text{ para algum } \rho \in \left(\frac{1}{2}\rho_i, \rho_i\right] \right\}.$$

Segue do Lema 2.1.2 que $A = \bigcup_{i=1}^{\infty} A_i$.

Defina indutivamente a sequência $\mathscr{F}_0, \mathscr{F}_1, \dots$ de subconjuntos de A como a seguir:

- i) $\mathscr{F}_0 = \emptyset$
- ii) Seja $k \geq 1$ e suponha que $\mathscr{F}_0,...,\mathscr{F}_{k-1}$ estão bem definidos. Seja

$$B_k = A_k \setminus \bigcup_{i=0}^{k-1} \bigcup_{x \in \mathscr{F}_i} S_{2\rho_i}(x).$$

Se $B_k = \emptyset$, então $\mathscr{F}_k = \emptyset$. Se $B_k \neq \emptyset$, então escolha \mathscr{F}_k um subconjunto finito de B_k tal que $B_k \subset \bigcup_{x \in \mathscr{F}_k} S_{2\rho_k}(x)$ e os conjuntos $S_{\rho_k}(x)$, com $x \in \mathscr{F}_k$, são dois a dois disjuntos.

Então, valem as seguintes propriedades:

- (a) $\mathscr{F}_i \subset A_i$, para i = 1, 2, ..., pois $\mathscr{F}_i \subset B_i \subset A_i$;
- (b) $A \subset \bigcup_{i=1}^{+\infty} \bigcup_{x \in \mathscr{F}_i} S_{2\rho_i}(x)$, pois se $x \in A$, então $x \in A_k$, para algum k, assim $x \in \bigcup_{i=0}^{k-1} \bigcup_{x \in \mathscr{F}_i} S_{2\rho_i}(x)$ ou $x \in B_k \subset \bigcup_{x \in \mathscr{F}_k} S_{2\rho_k}(x)$; e
- (c) os conjuntos da coleção enumerável $S_{\rho_i}(x), x \in \mathscr{F}_i, i=1,2,...,$ são disjuntos.

Por (a), temos, para cada $x \in \mathcal{F}_i$,

$$\overline{\varphi}_x(4\rho) \le 4^m J \overline{\psi}_x(\rho), \tag{2.15}$$

para algum $\rho \in (\frac{1}{2}\rho_i, \rho_i]$. Como $2\rho_i \le 4\rho$ e $\rho \le \rho_i$, temos que

$$\overline{\varphi}_x(2\rho_i) = \int_{S_{2\rho_i}(x)} \varphi \, d\sigma \le \int_{S_{4\rho}(x)} \varphi \, d\sigma = \overline{\varphi}_x(4\rho),$$

$$\overline{\psi}_x(\rho) = \int_{S_{\rho}(x)} (|\nabla \varphi| + |H\varphi|) \, d\sigma \le \int_{S_{\rho_i}(x)} (|\nabla \varphi| + |H\varphi|) \, d\sigma = \overline{\psi}_x(\rho_i)$$

e segue de (2.15) que

$$\overline{\varphi}_x(2\rho_i) \le 4^m J \overline{\psi}_x(\rho_i)$$
, para cada $x \in \mathscr{F}_i$. (2.16)

Somando sobre todo $x \in \mathcal{F}_i, i = 1, 2, ...,$ usando as propriedades (b) e (c) e (2.16), obtemos

$$\sigma(M_1) \leq \sum_{i=1}^{\infty} \sigma(S_{2\rho_i}(x)) \leq \sum_{i=1}^{\infty} \int_{S_{2\rho_i}(x)} \varphi \, d\sigma \tag{2.17}$$

$$\leq 4^m J \sum_{i=1}^{\infty} \int_{S_{\rho_i}(x)} (|\nabla \varphi| + |H\varphi|) d\sigma \tag{2.18}$$

$$\leq 4^m J \int_M (|\nabla \varphi| + |H\varphi|) \, d\sigma, \tag{2.19}$$

onde $M_1 = \{x \in M : \varphi(x) \ge 1\}$, o que demonstra (2.14).

Agora, sejam $\alpha, \varepsilon > 0$ constantes arbitrárias e $\lambda \in C^1(\mathbb{R})$ uma função não-decrescente tal que $\lambda(t) = 0$ para $t \leq -\varepsilon$ e $\lambda(t) = 1$ para $t \geq 0$. Tomando $\lambda(\varphi - \alpha)$ no lugar de φ , temos que $\lambda(\varphi - \alpha) = 1$ (ou ≥ 1) quando $\varphi - \alpha \geq 0$, isto é, $\varphi(x) \geq \alpha$, ou seja, $x \in M_{\alpha} = \{x \in M : \varphi(x) \geq \alpha\}$. Substituindo em (2.19), obtemos

$$\sigma(M_{\alpha}) \leq 4^{m} \left[\omega_{m}^{-1} \int_{M} \lambda(\varphi - \alpha) \, d\sigma \right]^{1/m} \cdot \int_{M} [|\nabla(\lambda(\varphi - \alpha))| + |H|\lambda(\varphi - \alpha)] \, d\sigma \quad (2.20)$$

$$= 4^{m} \omega_{m}^{-1/m} \left[\int_{M} \lambda(\varphi - \alpha) \, d\sigma \right]^{1/m} \int_{M} [\lambda'(\varphi - \alpha)|\nabla\varphi| + |H|\lambda(\varphi - \alpha)] \, d\sigma \cdot (2.21)$$

Multiplicando ambos os lados de (2.21) por $\alpha^{1/(m-1)}$, usando que $0 \le \lambda(t) \le 1, \forall t$, e que $\lambda(\varphi - \alpha) = 0$ para $\varphi - \alpha \le -\varepsilon$ ($\alpha \ge \varphi + \varepsilon$), temos

$$\alpha^{1/(m-1)}\sigma(M_{\alpha}) \leq 4^{m}\alpha^{1/(m-1)}\omega_{m}^{-1/m} \left[\int_{M} \lambda(\varphi - \alpha) \, d\sigma \right]^{1/m} \times \\ \times \int_{M} [\lambda'(\varphi - \alpha)|\nabla\varphi| + |H|\lambda(\varphi - \alpha)] \, d\sigma.$$

$$= 4^{m}\alpha^{1/(m-1)}\omega_{m}^{-1/m} \left[\int_{M_{\alpha-\varepsilon}} \lambda(\varphi - \alpha) \, d\sigma \right]^{1/m} \times \\ \times \int_{M} [\lambda'(\varphi - \alpha)|\nabla\varphi| + |H|\lambda(\varphi - \alpha)] \, d\sigma.$$

$$\leq 4^{m}\omega_{m}^{-1/m} \left[\int_{M_{\alpha-\varepsilon}} \alpha^{m/(m-1)} \, d\sigma \right]^{1/m} \times \\ \times \int_{M} [\lambda'(\varphi - \alpha)|\nabla\varphi| + |H|\lambda(\varphi - \alpha)] \, d\sigma,$$

isto é,

$$\alpha^{1/(m-1)}\sigma(M_{\alpha}) \leq 4^{m}\omega_{m}^{-1/m} \left[\int_{M} (\varphi + \varepsilon)^{m/(m-1)} d\sigma \right]^{1/m} \int_{M} [\lambda'(\varphi - \alpha)|\nabla\varphi| + |H|\lambda(\varphi - \alpha)] d\sigma.$$

Integrando a desigualdade em $(0, +\infty)$ com relação a α e usando que

$$\int_{0}^{+\infty} \lambda'(\varphi - \alpha) \, d\alpha = -\lambda(\varphi - \alpha) \bigg|_{0}^{+\infty} = \lambda(\varphi) \le 1$$

٥

$$\int_{0}^{+\infty} \lambda(\varphi - \alpha) \, d\alpha = \alpha \lambda(\varphi - \alpha) \Big|_{0}^{+\infty} + \int_{0}^{+\infty} \alpha \lambda'(\varphi - \alpha) \, d\alpha = \int_{0}^{+\infty} \alpha \lambda'(\varphi - \alpha) \, d\alpha$$

$$\leq (\varphi + \varepsilon) \int_{0}^{+\infty} \lambda'(\varphi - \alpha) \, d\alpha = (\varphi + \varepsilon)(-\lambda(\varphi - \alpha)) \Big|_{0}^{+\infty} = (\varphi + \varepsilon)\lambda(\varphi)$$

$$\leq \varphi + \varepsilon,$$

obtemos

$$\int_{0}^{+\infty} \alpha^{1/(m-1)} \sigma(M_{\alpha}) d\alpha \leq 4^{m} \omega_{m}^{-1/m} \left[\int_{M} (\varphi + \varepsilon)^{m/(m-1)} d\sigma \right]^{1/m} \times \\
\times \int_{0}^{+\infty} \int_{M} [\lambda'(\varphi - \alpha)|\nabla \varphi| + |H|\lambda(\varphi - \alpha)] d\sigma d\alpha \\
= 4^{m} \omega_{m}^{-1/m} \left[\int_{M} (\varphi + \varepsilon)^{m/(m-1)} d\sigma \right]^{1/m} \times \\
\times \int_{M} \left[|\nabla \varphi| \int_{0}^{+\infty} \lambda'(\varphi - \alpha) d\alpha + |H| \int_{0}^{+\infty} \lambda(\varphi - \alpha) d\alpha \right] d\sigma \\
\leq 4^{m} \omega_{m}^{-1/m} \left[\int_{M} (\varphi + \varepsilon)^{m/(m-1)} d\sigma \right]^{1/m} \int_{M} [|\nabla \varphi| + |H|(\varphi + \varepsilon)] d\sigma.$$

Pela fórmula da coarea,

$$\int_{0}^{+\infty} \alpha^{1/(m-1)} \sigma(M_{\alpha}) d\alpha = \int_{0}^{+\infty} \alpha^{1/(m-1)} \int_{\{\varphi \ge \alpha\}} |\nabla \varphi| d\sigma d\alpha$$

$$= \int_{0}^{+\infty} \int_{\{\varphi \ge \alpha\}} \alpha^{1/(m-1)} |\nabla \varphi| d\sigma d\alpha$$

$$= \int_{0}^{+\infty} \int_{-\infty}^{\infty} \int_{\{\varphi = \alpha\}} \alpha^{1/(m-1)} d\tau d\alpha$$

$$= \frac{m-1}{m} \int_{-\infty}^{\infty} \int_{\{\varphi = \alpha\}} \alpha^{m/(m-1)} d\tau$$

$$= \frac{m-1}{m} \int_{M} \varphi^{m/(m-1)} d\sigma,$$

Fazendo $\varepsilon \to 0$, obtemos

$$\frac{m-1}{m} \int_{M} \varphi^{m/(m-1)} d\sigma \le 4^{m} \omega_{m}^{-1/m} \left[\int_{M} \varphi^{m/(m-1)} d\sigma \right]^{1/m} \int_{M} [|\nabla \varphi| + |H|\varphi] d\sigma.$$

Daí,

$$\left(\int_{M} \varphi^{m/(m-1)} d\sigma\right)^{1-\frac{1}{m}} \leq 4^{m} \omega_{m}^{-1/m} \frac{m}{m-1} \int_{M} [|\nabla \varphi| + |H|\varphi|] d\sigma.$$

Logo,

$$\left(\int_{M} \varphi^{1^*} d\sigma\right)^{1/1^*} \leq C \int_{M} [|\nabla \varphi| + |H|\varphi|] d\sigma.$$

Para o caso $p \in (1, m)$, tome $\psi = \varphi^{\alpha}$, vale que

$$\left(\int_{M} |\varphi^{\alpha}|^{1^{*}} d\sigma\right)^{\frac{1}{1^{*}}} \leq C \int_{M} (|\nabla(\varphi^{\alpha})| + |H\varphi^{\alpha}|) d\sigma.$$

Temos que $\nabla(\varphi^{\alpha}) = \alpha \varphi^{\alpha-1} \nabla \varphi$. Assim

$$\left(\int_{M} |\varphi^{\alpha}|^{1^{*}} d\sigma\right)^{\frac{1}{1^{*}}} \leq C\alpha \int_{M} |\nabla \varphi| |\varphi^{\alpha-1}| d\sigma + C \int_{M} |H\varphi| |\varphi^{\alpha-1}| d\sigma.$$

Tome $\alpha = p^*/1^*$, com $p \in (1, m)$, então $\alpha = \frac{pm-p}{m-p} > 1$. Usando a desigualdade de Hölder,

$$\left(\int_{M} |\varphi^{\alpha}|^{1^{*}} d\sigma\right)^{1/1^{*}} \leq C\alpha \left(\int_{M} |\nabla\varphi| |\varphi^{\alpha-1}| d\sigma + \int_{M} |H\varphi| |\varphi^{\alpha-1}| d\sigma\right) \\
\leq C\alpha \left(\int_{M} |\nabla\varphi|^{p} d\sigma\right)^{1/p} \left(\int_{M} |\varphi|^{(\alpha-1)q}\right)^{1/q} + \\
+ C\alpha \left(\int_{M} |H\varphi|^{p} d\sigma\right)^{1/p} \left(\int_{M} |\varphi|^{(\alpha-1)q}\right)^{1/q} \\
= C\alpha \left(\int_{M} |\varphi|^{(\alpha-1)q}\right)^{1/q} \left[\left(\int_{M} |\nabla\varphi|^{p} d\sigma\right)^{1/p} + \left(\int_{M} |H\varphi|^{p} d\sigma\right)^{1/p}\right],$$

onde $\frac{1}{n} + \frac{1}{a} = 1$. Observe que

$$\frac{1}{1^*} - \frac{1}{p^*} = \frac{1}{1} - \frac{1}{p} = \frac{1}{q}$$

е

$$(\alpha - 1)q = \left(\frac{p^*}{1^*} - 1\right)q = p^* \left(\frac{1}{1^*} - \frac{1}{p^*}\right)q = p^*.$$

Daí,

$$\left(\int_{M} |\varphi|^{p^{*}} d\sigma\right)^{\frac{1}{1^{*}}} \leq C\alpha \left(\int_{M} |\varphi|^{p^{*}}\right)^{1/q} \left[\left(\int_{M} |\nabla \varphi|^{p} d\sigma\right)^{1/p} + \left(\int_{M} |H\varphi|^{p} d\sigma\right)^{1/p}\right],$$

o que implica

$$\left(\int_{M} |\varphi|^{p^{*}} d\sigma\right)^{\frac{1}{1^{*}} - \frac{1}{q}} \leq C\alpha \left[\left(\int_{M} |\nabla \varphi|^{p} d\sigma\right)^{1/p} + \left(\int_{M} |H\varphi|^{p} d\sigma\right)^{1/p} \right].$$

Portanto,

$$\left(\int_{M}|\varphi|^{p^{*}}d\sigma\right)^{1/p^{*}}\leq C(m,p)\left[\left(\int_{M}|\nabla\varphi|^{p}\,d\sigma\right)^{1/p}+\left(\int_{M}|H\varphi|^{p}\,d\sigma\right)^{1/p}\right],$$

como queríamos demonstrar.

2.2 Uma Desigualdade do Valor Médio para Funções Subharmônicas

Para cada função $h \in C^2(U)$, Δh é definido por

$$\Delta h(x) = \sum_{i,j=1}^{n} \tilde{g}^{ij}(x) \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}(x) + \sum_{j=1}^{n} H_{i}(x) \frac{\partial h}{\partial x_{j}}(x)$$
(2.22)

para $x \in M$.

Definição 2.2.1 Uma função real χ em M é chamada fracamente subharmônica se é σ -integrável em M e

$$\int_{M} \chi(x)\Delta h(x)d\sigma(x) \ge 0 \tag{2.23}$$

pra cada função não-negativa $h \in C_0^2(U)$.

Observação 2.2.1 Toda função subharmônica é fracamente subharmônica. De fato, sejam $u \in C^2$ uma função subharmônica, isto é, $\Delta u \geq 0$, e $h \in C_0^2(U)$ uma função não-negativa. Temos

$$\begin{split} \int_{M} h \Delta u \, d\sigma &= \int_{M} div(h \nabla u) d\sigma - \int_{M} \langle \nabla h, \nabla u \rangle d\sigma \\ &= \int_{\partial M} \langle h \nabla u, \nu \rangle d\sigma - \int_{M} \langle \nabla h, \nabla u \rangle d\sigma \\ &= -\int_{M} \langle \nabla h, \nabla u \rangle d\sigma, \end{split}$$

da mesma forma

$$\int_{M} u \Delta h \, d\sigma = \int_{M} div(u \nabla h) d\sigma - \int_{M} \langle \nabla u, \nabla h \rangle d\sigma$$
$$= - \int_{M} \langle \nabla u, \nabla h \rangle d\sigma,$$

logo,

$$\int_{M} u\Delta h \, d\sigma = \int_{M} h\Delta u \, d\sigma \ge 0,$$

isto é, u é subharmônica.

O lema seguinte será usado na demonstração do resultado principal desta seção.

Lema 2.2.1 Sejam $\lambda \in C^2(\mathbb{R})$ uma função não-decrescente tal que $\lambda(t) = 0$ quando $t \leq 0$, e χ uma função não-negativa fracamente subharmônica em M. Para cada $x_0 \in M$, definimos $\varphi_{x_0}, \psi_{x_0}$ por

$$\varphi_{x_0}(\rho) = \int_M \chi(x)\lambda(\rho - r) d\sigma(x)$$

e

$$\psi_{x_0}(\rho) = \int_M \chi(x) |H(x)| \lambda(\rho - r) \, d\sigma(x),$$

onde $r = |x - x_0|$. Então,

$$-\frac{d}{d\rho} \left(\frac{\varphi_{x_0(\rho)}}{\rho^m} \right) \le \rho^{-m-1} \int_0^\rho t \psi'_{x_0}(t) dt$$

para cada $\rho \in (0, d)$, onde $d = dist(x_0, \partial U)$.

Demonstração. Seja γ definida em \mathbb{R} por

$$\gamma(s) = \int_{s}^{\infty} t\lambda(\rho - t) dt.$$

Como $\gamma'(r) = r\lambda(\rho - r)$ e $\gamma''(r) = \lambda(\rho - r) + r\lambda'(\rho - r)$, segue que $\gamma(r)$, onde $r = |x - x_0|$, é $C^2(U)$. Quando $s \ge \rho$, temos $\gamma(s) = 0$, isto é, se $\rho < d$, então γ tem suporte compacto em U. Assim, quando $\rho < d$, podemos calcular $\Delta \gamma(r)$ usando (2.22). Temos

$$\frac{\partial}{\partial x_{j}}(\gamma(r)) = \gamma'(r) \cdot \frac{\partial r}{\partial x_{j}} = -r\lambda(\rho - r) \frac{(x - x_{0})_{j}}{r} = -\lambda(\rho - r)(x - x_{0})_{j}$$

e

$$\begin{split} \frac{\partial^2(\gamma(r))}{\partial x_i x_j} &= \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} (\gamma(r)) \right) = -\frac{\partial}{\partial x_i} (\lambda(\rho - r)(x - x_0)_j) \\ &= -\left((x - x_0)_j \cdot \frac{\partial}{\partial x_i} (\lambda(\rho - r)) + \lambda(\rho - r) \cdot \frac{\partial}{\partial x_i} (x - x_0)_j \right) \\ &= -\left(-(x - x_0)_j \cdot \lambda'(\rho - r) \frac{\partial r}{\partial x_i} + \lambda(\rho - r) \delta_{ij} \right) \\ &= \lambda'(\rho - r)(x - x_0)_j \cdot \frac{(x - x_0)_i}{r} - \lambda(\rho - r) \delta_{ij}, \end{split}$$

logo,

$$\Delta(\gamma(r)) = \sum_{i,j=1}^{n} \tilde{g}^{ij} \left(\lambda'(\rho - r)(x - x_0)_j \cdot \frac{(x - x_0)_i}{r} - \lambda(\rho - r)\delta_{ij} \right) - \sum_{j=1}^{n} H_j \lambda(\rho - r)(x - x_0)_j$$

$$= r\lambda'(\rho - r) \sum_{i,j=1}^{n} \tilde{g}^{ij} \frac{(x - x_0)_i}{r} \frac{(x - x_0)_j}{r} - \lambda(\rho - r) \sum_{i=1}^{n} \tilde{g}^{ii} - \lambda(\rho - r) \sum_{j=1}^{n} (x - x_0)_j H_j.$$

Usando a Proposição 1.1.1, obtemos

$$\Delta(\gamma(r)) \leq r\lambda'(\rho - r) - m\lambda(\rho - r) + \lambda(\rho - r)\langle -H, x - x_0 \rangle$$

$$\leq r\lambda'(\rho - r) - m\lambda(\rho - r) + \lambda(\rho - r)|H|r.$$

Por (2.23),

$$\begin{array}{lcl} 0 & \leq & \int_{M} \chi \, \Delta(\gamma(r)) d\sigma \\ \\ & \leq & \int_{M} \chi \, (r\lambda^{'}(\rho-r) - m\lambda(\rho-r) + \lambda(\rho-r) |H|r) \, d\sigma, \end{array}$$

o que nos dá

$$m \int_{M} \chi \, \lambda(\rho - r) \, d\sigma - \int_{M} \chi \, r \lambda^{'}(\rho - r) \, d\sigma \leq \int_{M} \chi \, |H| r \lambda(\rho - r) \, d\sigma,$$

isto é,

$$m\varphi_{x_0}(\rho) - \int_M \chi \, r\lambda'(\rho - r) \, d\sigma \le \int_M \chi \, |H| r\lambda(\rho - r) \, d\sigma.$$
 (2.24)

Observe que derivando λ (com relação a ρ), temos que $\lambda'(\rho-r)\geq 0$ (pois λ é não decrescente). Assim, para $r<\rho$, temos

$$r\lambda'(\rho - r) \le \rho\lambda'(\rho - r),\tag{2.25}$$

para $r \ge \rho$, (2.25) segue trivialmente.

Com isso,

$$\int_{M} \chi \, r \lambda'(\rho - r) \, d\sigma \leq \rho \int_{M} \chi \, \lambda'(\rho - r) \, d\sigma$$

$$= \rho \cdot \frac{d}{d\rho} \left(\int_{M} \chi \lambda(\rho - r) \, d\sigma \right)$$

$$= \rho \varphi'_{x_{0}}(\rho)$$

e

$$\int_{M} \chi |H| r \lambda(\rho - r) d\sigma = \int_{M} \chi |H| \int_{0}^{\rho} r \lambda'(t - r) dt d\sigma
\leq \int_{M} \chi |H| \int_{0}^{\rho} t \lambda'(t - r) dt d\sigma
= \int_{0}^{\rho} t \int_{M} \chi |H| \lambda'(t - r) d\sigma dt
= \int_{0}^{\rho} t \psi'_{x_{0}}(t).$$

Consequentemente, (2.24) nos dá

$$m\varphi_{x_0}(\rho) - \rho\varphi'_{x_0}(\rho) \leq \int_0^{\rho} t\psi'_{x_0}(t) dt,$$

e obtemos

$$-\frac{d}{d\rho} \left(\frac{\varphi_{x_0}(\rho)}{\rho^m} \right) = -\left(\frac{\rho^m \varphi'_{x_0}(\rho) - \varphi_{x_0}(\rho) m \rho^{m-1}}{\rho^{2m}} \right)$$

$$= \frac{\rho^{m-1} (m \varphi_{x_0}(\rho) - \rho \varphi'_{x_0}(\rho))}{\rho^{2m}}$$

$$\leq \rho^{-m-1} \int_0^{\rho} t \psi'_{x_0}(t) dt.$$

Corolário 2.2.1 Se as hipóteses do Lema 2.2.1 são satisfeitas, então

$$-\frac{d}{d\rho}\left(\frac{\varphi_{x_0(\rho)}}{\rho^m}\right) \le \frac{\psi_{x_0}(\rho)}{\rho^m},$$

para cada $\rho \in (0, d)$.

De fato,

$$\int_{0}^{\rho} t \psi_{x_{0}}^{'}(t) dt \leq \rho \int_{0}^{\rho} \psi_{x_{0}}^{'}(t) dt = \rho \psi_{x_{0}}(\rho),$$

daí,

$$-\frac{d}{d\rho} \left(\frac{\varphi_{x_0(\rho)}}{\rho^m} \right) \le \rho^{-m-1} \int_0^{\rho} t \psi'_{x_0}(t) \, dt \le \rho^{-m} \psi_{x_0}(\rho).$$

Observe que se existe uma constante Λ tal que $|H| \leq \Lambda$ em M, então $\psi_{x_0}(\rho) \leq \Lambda \varphi_{x_0}(\rho)$ e, segue do Corolário 2.2.1, que

$$-\frac{d}{d\rho} \left(\frac{\varphi_{x_0}(\rho)}{\rho^m} \right) \le \Lambda \frac{\varphi_{x_0}(\rho)}{\rho^m}.$$

Integrando no intervalo $[t, \rho]$, onde $t \in (0, \rho)$, obtemos

$$-\log\left(\frac{\varphi_{x_0}(\rho)}{\rho^m}\right) + \log\left(\frac{\varphi_{x_0}(t)}{t^m}\right) \le \Lambda\rho - \Lambda t \le \Lambda\rho,$$

como a exponencial é crescente.

$$\left(\frac{\varphi_{x_0}(\rho)}{\rho^m}\right)^{-1} \cdot \frac{\varphi_{x_0}(t)}{t^m} \le e^{\Lambda \rho},$$

isto é,

$$\frac{\varphi_{x_0}(t)}{t^m} \le e^{\Lambda \rho} \cdot \frac{\varphi_{x_0}(\rho)}{\rho^m},$$

daí,

$$\sup_{t \in (0,\rho)} \frac{\varphi_{x_0}(t)}{t^m} \le e^{\Lambda \rho} \cdot \frac{\varphi_{x_0}(\rho)}{\rho^m},$$

para todo $\rho \in (0,d)$. Escolhendo λ tal que $\lambda(t)=1$, quando $t \geq \varepsilon$, e fazendo $\varepsilon \to 0^+$, segue que

$$\chi(x_0) \le e^{\Lambda \rho} \omega_m^{-1} \rho_0^{-m} \int_{S_{\rho_0}(x_0)} \chi \, d\sigma,$$

pela expansão da série de Taylor,

$$\chi(x_0) \le \left[1 + \frac{\Lambda \rho}{1!} + \frac{(\Lambda \rho)^2}{2!} + \dots + \frac{(\Lambda \rho)^m}{m!} + \dots \right] \omega_m^{-1} \rho^{-m} \int_{S_\rho(x_0)} \chi(x) \, d\sigma(x).$$

O teorema a seguir mostra que esse resultado pode ser melhorado.

Teorema 2.2.1 Seja χ uma função não-negativa fracamente subharmônica em M e suponha que existe uma constante Λ tal que $|H(x)| \leq \Lambda$, $\forall x \in M$. Para cada $x_0 \in M$, seja $d(x_0) =$

 $d(x_0, \partial U)$. Então, para quase todo $x_0 \in M$ e todo $\rho \in (0, d(x_0))$, temos

$$\chi(x_0) \le \left[1 + \frac{\Lambda \rho}{1!} + \frac{(\Lambda \rho)^2}{2!} + \dots + \frac{(\Lambda \rho)^m}{m!}\right] \omega_m^{-1} \rho^{-m} \int_{S_\rho(x_0)} \chi(x) \, d\sigma(x).$$

Demonstração. Sejam φ_{x_0} , ψ_{x_0} como no Lema 2.2.1. Desde que $|H(x)| \leq \Lambda$, temos $\psi'_{x_0}(\rho) \leq \Lambda \varphi'_{x_0}(\rho)$ e, pelo Lema 2.2.1,

$$-\frac{d}{d\rho}\left(\frac{\varphi_{x_0}(\rho)}{\rho^m}\right) \le \Lambda \rho^{-m-1} \int_0^\rho t\varphi'_{x_0}(t) dt, \tag{2.26}$$

para cada $\rho \in (0, d(x_0))$. Sejam $\rho_0 \in (0, d(x_0))$ e, para $0 \le s \le m$,

$$T_{s} = \int_{0}^{\rho_{0}} \left[\int_{0}^{\rho} t \varphi_{x_{0}}^{'}(t) dt \right] \rho^{-s-1} d\rho.$$

Integrando (2.26) no intervalo (t, ρ_0) , com $0 < t < \rho_0$, obtemos

$$\frac{\varphi_{x_0}(t)}{t^m} - \frac{\varphi_{x_0}(\rho_0)}{\rho_0^m} \leq \Lambda \int_t^{\rho_0} \left[\int_0^{\rho} t \varphi_{x_0}'(t) dt \right] \rho^{-m-1} d\rho
\leq \Lambda \int_0^{\rho_0} \left[\int_0^{\rho} t \varphi_{x_0}'(t) dt \right] \rho^{-m-1} d\rho = \Lambda T_m,$$

ou seja,

$$\frac{\varphi_{x_0}(t)}{t^m} \le \frac{\varphi_{x_0}(\rho_0)}{\rho_0^m} + \Lambda T_m. \tag{2.27}$$

Usando integração por partes, temos

$$T_{s} = \int_{0}^{\rho_{0}} \rho^{-s-1} \int_{0}^{\rho} t \varphi_{x_{0}}'(t) dt d\rho$$
 (2.28)

$$= -s^{-1}\rho^{-s} \int_0^\rho t\varphi'_{x_0}(t) dt \bigg|_0^{\rho_0} - \int_0^{\rho_0} (-s^{-1}\rho^{-s} \cdot \rho \varphi'_{x_0}(\rho)) d\rho$$
 (2.29)

$$= -s^{-1}\rho_0^{-s} \int_0^{\rho_0} t\varphi_{x_0}'(t) dt + s^{-1} \int_0^{\rho_0} \rho^{1-s}\varphi_{x_0}'(\rho) d\rho$$
 (2.30)

$$\leq s^{-1} \int_{0}^{\rho_0} \rho^{1-s} \varphi_{x_0}^{'}(\rho) d\rho$$
 (2.31)

$$= s^{-1} \left[\rho^{1-s} \varphi_{x_0}(\rho) \Big|_0^{\rho_0} - \int_0^{\rho_0} (1-s) \rho^{-s} \varphi_{x_0}(\rho) d\rho \right]$$
 (2.32)

$$= s^{-1}\rho_0^{1-s}\varphi_{x_0}(\rho_0) + s^{-1}(s-1)\int_0^{\rho_0} \rho^{-s}\varphi_{x_0}(\rho) d\rho.$$
 (2.33)

Agora, podemos escrever

$$\int_0^{\rho_0} \rho^{-s} \varphi_{x_0}(\rho) \, d\rho = \int_0^{\rho_0} \rho^{m-s} (\rho^{-m}, \varphi_{x_0}(\rho)) \, d\rho$$

daí, usando integração por partes e a equação (2.26), obtemos

$$\int_{0}^{\rho_{0}} \rho^{-s} \varphi_{x_{0}}(\rho) d\rho = \int_{0}^{\rho_{0}} \rho^{m-s}(\rho^{-m}, \varphi_{x_{0}}(\rho)) d\rho
= \frac{\rho^{m-s+1}}{m-s+1} \cdot \rho^{-m} \varphi_{x_{0}}(\rho) - \int_{0}^{\rho_{0}} \frac{\rho^{m-s+1}}{m-s+1} \left(\frac{\varphi_{x_{0}}(\rho)}{\rho^{m}}\right)' d\rho
\leq (m-s+1)^{-1} \left[\rho^{1-s} \varphi_{x_{0}}(\rho)\right]_{0}^{\rho_{0}} + \int_{0}^{\rho_{0}} \rho^{-s} \Lambda \int_{0}^{\rho} t \varphi'_{x_{0}}(t) dt d\rho \right]
= (m-s+1)^{-1} \left[\rho^{1-s} \varphi_{x_{0}}(\rho_{0}) + \Lambda \int_{0}^{\rho_{0}} \left[\int_{0}^{\rho} t \varphi'_{x_{0}}(t) dt\right] \rho^{-s} d\rho \right]
= (m-s+1)^{-1} [\rho^{1-s} \varphi_{x_{0}}(\rho_{0}) + \Lambda T_{s-1}].$$

Substituindo em (2.33), teremos

$$T_s \le s^{-1}\rho_0^{1-s}\varphi_{x_0}(\rho_0) + s^{-1}(s-1)(m-s+1)^{-1}[\rho_0^{1-s}\varphi_{x_0}(\rho_0) + \Lambda T_{s-1}]$$
 (2.34)

$$= s^{-1}\rho_0^{1-s}\varphi_{x_0}(\rho_0)\left(1 + \frac{s-1}{m-s+1}\right) + \frac{s-1}{s(m-s+1)} \cdot \Lambda T_{s-1}$$
 (2.35)

$$= \frac{m}{s(m-s+1)} \rho_0^{1-s} \varphi_{x_0}(\rho_0) + \frac{s-1}{s(m-s+1)} \cdot \Lambda T_{s-1}$$
 (2.36)

para $1 \le s \le m$. Combinando (2.36), para s = 1, 2, ..., m, com (2.27), obtemos

$$\frac{\varphi_{x_0}(t)}{t^m} \le \left[1 + \frac{\Lambda \rho_0}{1!} + \frac{(\Lambda \rho_0)}{2!} + \dots + \frac{(\Lambda \rho_0)^m}{m!}\right] \frac{\varphi_{x_0}(\rho_0)}{\rho_0^m}.$$
 (2.37)

Agora, seja $\varepsilon \in (0,t)$ e escolha λ tal que $\lambda(t)=1$ quando $t\geq 0$. A equação (2.37), usando (2.9) e (2.12), com χ no lugar de φ , nos dá

$$t^{-m}\int_{S_{t-\varepsilon}(x_0)}\chi\,d\sigma\leq \left[1+\frac{\Lambda\rho_0}{1!}+\ldots+\frac{(\Lambda\rho_0)^m}{m!}\right]\rho_0^{-m}\int_{S_{\rho_0}(x_0)}\chi\,d\sigma.$$

Como $t \in (0, \rho_0)$ e $\varepsilon \in (0, t)$, segue que

$$\sup_{t \in (0,\rho_0)} t^{-m} \int_{S_t(x_0)} \chi \, d\sigma \le \left[1 + \frac{\Lambda \rho_0}{1!} + \dots + \frac{(\Lambda \rho_0)^m}{m!} \right] \rho_0^{-m} \int_{S_{\rho_0}(x_0)} \chi \, d\sigma,$$

o que implica

$$\sup_{t \in (0,\rho_0)} \max_{S_t(x_0)} \{\chi(x)\} t^{-m} \int_{S_t(x_0)} d\sigma \le \left[1 + \frac{\Lambda \rho_0}{1!} + \ldots + \frac{(\Lambda \rho_0)^m}{m!} \right] \rho_0^{-m} \int_{S_{\rho_0}(x_0)} \chi \, d\sigma,$$

ou ainda

$$\lim_{t \to 0} \max_{S_t(x_0)} \{\chi(x)\} t^{-m} \int_{S_t(x_0)} d\sigma \le \left[1 + \frac{\Lambda \rho_0}{1!} + \dots + \frac{(\Lambda \rho_0)^m}{m!} \right] \rho_0^{-m} \int_{S_{\rho_0}(x_0)} \chi \, d\sigma.$$

Assim, pelo Lema 1.2.1,

$$\chi(x_0)\omega_m \le \left[1 + \frac{\Lambda \rho_0}{1!} + \dots + \frac{(\Lambda \rho_0)^m}{m!}\right] \rho_0^{-m} \int_{S_{\rho_0}(x_0)} \chi \, d\sigma,$$

isto é,

$$\chi(x_0) \le \left[1 + \frac{\Lambda \rho_0}{1!} + \dots + \frac{(\Lambda \rho_0)^m}{m!}\right] \omega_m^{-1} \rho_0^{-m} \int_{S_{\rho_0}(x_0)} \chi \, d\sigma.$$

Pela observação 2.2.1, esse resultado também é válido para funções subharmônicas nãonegativas.

Referências

- 1 Dupaigne, L., Stable solutions of elliptic partial differential equations, Monographs and Surveys in Pure and Applied Mathemathics, Chapman e Hall, 143.
- 2 Evans, L. C., *Partial differential equations*, Graduate Studies in Mathematics vol 19, Departament of Mathematics, University of California, Berkeley.
- 3 Hoffman, D., Spruck, J, Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds, Comm. Pure Appl. Math., vol. XXVII (1974) 715-727.
- 4 Medeiros, A.A., *The weighted Sobolev and meam value inequalities*, American Mathematical Society, vol. 143, number 3, 2015, 1229-1239.
- 5 Michael, J.H., Simon, L.M., Sobolev and mean-value inequalities on generalized submanifolds of \mathbb{R}^n , Comm. Pure Appl. Math. 26 (1973) 361-379.
- 6 Miranda, M., Disuguaglianze di Sobolev sulle ipersuperfici minimali, Rend. Sem. Mat. Univ.Padova, 38, 1967.
- 7 Simon, L. M., Interior gradient bounds for non-uniformly elliptic partial differential equations of divergence form Thesis, University of Adelaide, 1971.