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RESUMO

Manter famílias de programas não é uma tarefa trivial. Desenvolvedores comumente in-
troduzem erros quando não consideram dependências existentes entre features. Quando
tais features compartilham elementos de programa, como variáveis e funções, utilizar es-
tes elementos inadvertidamente pode resultar em erros de variabilidade. Neste contexto,
trabalhos anteriores focaram apenas na ocorrência de dependências intraprocedurais, ou
seja, quando features compartilham elementos de programa dentro de uma mesma fun-
ção. Mas ao mesmo tempo, ainda não temos estudos investigando dependências que
extrapolam os limites de uma função, já que esses casos também podem causar erros. De
fato, neste trabalho nós trazemos evidências de que erros de variabilidade também po-
dem ocorrer devido a dependências interprocedurais ou a variáveis globais. Para avaliar
até que ponto esses diferentes tipos de dependências entre features existem na prática,
nós realizamos um estudo empírico abrangendo 40 famílias de programas de diferentes
domínios e tamanhos. Nossos resultados mostram que dependências intraprocedurais e
interprocedurais são comuns na prática: 51, 44% ± 17, 77% das funções com diretivas de
pré-processamento têm dependências intraprocedurais, enquanto 25, 98% ± 19, 99% de
todas as funções possuem dependências interprocedurais. Após estudar a ocorrência de
dependências entre features na prática, nós conduzimos outro estudo empírico, desta vez
direcionado a encontrar erros de variabilidade relacionados a dependências entre features.
Aqui nos concentramos em variáveis não declaradas, funções não declaradas, variáveis
sem uso e funções sem uso. Este estudo utiliza 15 sistemas para responder a questões de
pesquisa relacionadas a como os desenvolvedores introduzem esses erros e sua frequência.
Nós detectamos e confirmamos a existência de 32 erros de variabilidade. O conjunto de
erros que coletamos é uma fonte valiosa para fundamentar a pesquisa sobre esse tema e
para auxiliar desenvolvedores de ferramentas, de forma que eles forneçam meios em suas
ferramentas de evitar tais problemas.

Palavras-chaves: Famílias de programas, Pré-processadores, Dependências entre featu-
res, Erros de variabilidade.



ABSTRACT

Maintaining program families is not a trivial task. Developers commonly introduce bugs
when they do not consider existing dependencies among features. When such implemen-
tations share program elements, such as variables and functions, inadvertently using these
elements may result in bugs. In this context, previous work focuses only on the occurrence
of intraprocedural dependencies, that is, when features share program elements within a
function. But at the same time, we still lack studies investigating dependencies that tran-
scend the boundaries of a function, since these cases might cause bugs as well. Indeed, in
this work we bring evidence that variability bugs can also occur due to interprocedural
dependencies and global variables. To assess to what extent these different types of fea-
ture dependencies exist in practice, we perform an empirical study covering 40 program
families of different domains and sizes. Our results show that the intraprocedural and in-
terprocedural feature dependencies are common in practice: 51.44%±17.77% of functions
with preprocessor directives have intraprocedural dependencies, while 25.98%±19.99% of
all functions have interprocedural dependencies. After studying the feature dependencies
occurrence in practice, we perform another empirical study now focusing on finding actual
bugs related to feature dependencies. Here we focus on undeclared variables, undeclared
functions, unused variables, and unused functions. This study uses 15 systems to answer
research questions related to how developers introduce these bugs and their frequency.
We detect and confirm 32 variability bugs. The corpus of bugs we gather is a valuable
source to ground research on this topic and to help tool developers, so they can provide
means in their tools to avoid these problems.

Keywords: Program families, Preprocessors, Feature dependencies, Variability bugs.
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1 INTRODUCTION

Developers commonly introduce errors when they fail to recognize dependencies among
the software modules they are maintaining (1). The same situation happens in config-
urable systems in terms of program families and product lines, where features share pro-
gram elements such as variables and functions. This way, features might depend on each
other and developers can miss such dependencies as well. Consequently, by maintaining
one feature implementation, they might introduce problems to another, like when assign-
ing a new value to a variable which is correct to the feature under maintenance, but
incorrect to the one that uses this variable (2, 3).

In this context, developers often use the C preprocessor to implement variability in
software families (4, 5, 6, 7). The C preprocessor allows the use of directives to annotate
the code, associating program elements with specific features. When a developer defines
a variable in a feature and then uses it in another feature, we have a feature dependency.
The same happens with functions. These dependencies might cause problems, such as
when an implementation includes a feature that accesses a variable or function, but does
not include the feature that defines such identifiers. In this work, we consider only the
dependencies we can compute from the analysis of an abstract syntax tree (AST) of a
source code. Hence, we refer to these purely syntactic code level feature dependencies
simply as feature dependencies.

Previous work (8) reports on how often feature dependencies occur in practice by
considering 43 preprocessor-based families and product lines. However, the study focuses
only on intraprocedural dependencies, that is, feature dependencies that occur exclusively
within the function boundaries. Nevertheless, dependencies that go beyond function
boundaries may result in bugs that are harder to detect and fix. In this way, we still
lack a study that takes other kinds of feature dependencies into account. Also, we lack
a systematic study to better relate feature dependencies and bugs, in the sense we can
understand, for example, how developers introduce these bugs in practice, to avoid them
in the future.

Therefore, to help fill the gap and better understand feature dependencies, in this
work we perform two studies:

(i) an empirical study to assess to what extent feature dependencies occur in practice,
identifying their characteristics and frequency;

(ii) an empirical study to identify actual variability bugs related to feature dependencies,
quantifying such bugs and investigating how developers introduce them.

Before executing the studies, as a first step, we arbitrarily analyze several bug reports
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from many open-source software families, like GCC,1 GNOME,2 and Linux kernel.3 The
idea of this first step is to learn how the bugs happen in practice and better prepare
our studies. Given this knowledge related to the feature dependencies bugs we find, we
conduct an empirical study that complements previous work on this topic, in the sense
that we take interprocedural dependencies into account. Notice that, during maintenance
of preprocessor-based software, these dependencies are even harder to detect: one feature
might use data from another and they are in different functions. Because in a typical
system we have several method calls passing data, we also compute the depth of such
dependencies (from the variable definition to its use). In addition, we consider depen-
dencies based on global variables. We also compute the dependency direction, that is,
mandatory-to-optional, optional-to-mandatory, and optional-to-optional. A mandatory-
to-optional dependency, for instance, means that the definition of the program element
(for instance, a global variable) happens in a mandatory feature—that is, no #ifdef en-
compassing the definition—and its use in an optional feature. In particular, we answer
the following research questions: How often do program families contain intraprocedu-
ral dependencies? How often do program families contain interprocedural dependencies?
What is the average dependency depth for interprocedural dependencies? How often do
program families contain global dependencies? How often do dependencies of different di-
rections occur in practice? Answering these questions is important to better understand
feature dependencies, assess their occurrence in practice, and enable the development of
tools and techniques to guide developers during maintenance tasks in the presence of such
dependencies.

To answer our research questions, our first study covers 40 C program families of
different domains and sizes. We select these families inspired by previous work (6, 7,
8, 9, 10, 11). We rely on TypeChef (12), a variability-aware parser, to compute feature
dependencies considering the entire configuration space of each source file of the families
we analyze. To detect dependencies that span multiple files, we perform global analysis
(instead of per-file analysis).

The data we collect in our first empirical study reveal that the feature dependencies
we consider in this work are reasonably common in practice, except the ones regarding
global variables. Following the convention “average ± standard deviation”, our results
show that 51.44%±17.77% of functions with preprocessor directives have intraprocedural
dependencies, 11.90% ± 12.20% of the functions which use global variables have global
dependencies, while 25.98%± 19.99% of all functions have interprocedural dependencies.

Given that feature dependencies are reasonable common in practice, we conduct a
second empirical study to better understand the actual variability bugs related to depen-
dencies. For example, here we intend to understand the way developers introduce such
1 <https://gcc.gnu.org/bugzilla/>
2 <https://bugzilla.gnome.org/>
3 <https://bugzilla.kernel.org/>

https://gcc.gnu.org/bugzilla/
https://bugzilla.gnome.org/
https://bugzilla.kernel.org/
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bugs when maintaining software families. This time, we analyze 15 popular open-source
program families written in C, such as Bash, gzip, and libssh. We answer research ques-
tions related to the occurrence of variability bugs regarding feature dependencies in the
families we analyze and how developers introduce them. Answering these questions is
important to quantify and study these issues, understand their peculiarities, and support
tool developers, so they can provide means to minimize or even avoid such variability
bugs.

To detect variability bugs in a systematic way and go beyond analysis of repositories,
in this second study we also consider variability-aware analysis (12, 13) to check the entire
configuration space. We also perform a global analysis to detect bugs that span multiple
files and take the header files into account. However, to scale our study and minimize
setup problems of variability-aware tools, we propose a strategy that only considers the
header files of the target platform. We instantiate our strategy with the TypeChef (12)
variability-aware parser and target headers of the Linux platform.

Our second empirical study confirms that such feature dependencies can cause vari-
ability bugs (14). We detect 32 variability bugs of different kinds, such as undeclared
variables and functions. This set also includes 10 unused variables and 7 unused func-
tions, which do not cause compilation errors, but might trigger compilation warnings and
slightly pollute the code. Thus, they are still considered by developers through several bug
reports.4 Although some of these bugs might be relatively simple to fix, the variability
factor makes them harder to detect, remaining hidden in the families source code.

We organize the remainder of this work as follows:

• Chapter 2 shows motivating examples that illustrate actual variability bugs related
to feature dependencies;

• Chapter 3 presents the empirical study to assess feature dependencies in practice;

• Chapter 4 presents the empirical study to quantify and better understand variability
bugs regarding feature dependencies;

• Chapter 5 discusses the related work;

• Chapter 6 presents the final considerations of this work.

4 <https://bugzilla.gnome.org/show_bug.cgi?id=461011>, 167715, and 401580

https://bugzilla.gnome.org/show_bug.cgi?id=461011
https://bugzilla.gnome.org/show_bug.cgi?id=167715
https://bugzilla.gnome.org/show_bug.cgi?id=401580
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2 MOTIVATING EXAMPLES

Developers often use preprocessors to implement variability in software families, even
though they might induce to errors (4, 5, 15, 16).

In this work, we refer to bug as a fault, that is, an incorrect instruction in the software
code, due to a developer mistake, that leads to an incorrect program state (17).

A variability bug is a fault that happens in some, but not all, feature configurations of
a software family (17). A category of variability bugs is related to the sharing of elements
such as variables and functions among features. Due to this sharing, a maintenance task
in one feature might break another one (8). This might happen since there is no mutual
agreement (18) between the developers. In this work, we refer to such sharing as a feature
dependency between the involved features.

To better illustrate that feature dependencies may cause problems, in this chapter we
present three scenarios of C program families containing actual variability bugs related
to dependencies. First, we present an example of variability bug regarding an intrapro-
cedural dependency (Section 2.1). Then, we present a variability bug related to a global
dependency (Section 2.2). Next, we present a variability bug regarding an interprocedural
dependency (Section 2.3). Finally, we summarize our findings on this topic (Section 2.4).

2.1 Scenario 1: Intraprocedural dependency

In this work we refer to intraprocedural dependencies when features share the same
program element inside a function. For example, we may have a variable defined in a
feature and used in another one.

To better define intraprocedural dependencies, in this paper we rely on the presence
condition definition (17). The presence condition is a boolean formula that denotes the
minimum subset of configurations in which a fragment of code is included in the condi-
tional compilation (17). Thus, we have an intraprocedural dependency every time the
definition of a local variable has a different presence condition than its use. We refer to
every variable in this situation as dependent variable.

Figure 1 presents a code snippet from GLib,1 a general-purpose utility library for
applications written in C. The figure shows a modification made to the code, by including
and removing specific lines, committed to a Git repository.2 In the figure, the function
g_inet_address_new_from_string parses a string containing an IP address. Inside this
function, there is a call to g_inet_address_get_type (see line 10). To ensure that the
compiler would not optimize away this function, the developer added a volatile variable,
1 <https://developer.gnome.org/glib/>
2 <https://git.gnome.org/browse/glib/>

https://developer.gnome.org/glib/
https://git.gnome.org/browse/glib/
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type (see line 5), assigning the function return value to such a variable (by removing line
10 and adding line 11).

Figure 1 – Adding an intraprocedural dependency, causing a bug in GLib.

  1.  GInetAddress *g_inet_address_new_from_string (…) {
  2.   G_OS_WIN32#ifdef
  3.     sockaddr_storage sa;struct
  4.    …
+ 5.    volatile GType type;
  6.    gint len;
  7.   #else /* !G_OS_WIN32 */
  8.    …
  9.  #endif
- 10.   (void) g_inet_address_get_type ();
+ 11.   type = g_inet_address_get_type ();
  12.   …
  13. }

+ Including line Removing line-

Source: Author’s own elaboration.

The problem is that the definition of type is inside an #ifdef block, and therefore
it is accessible only when we define G_OS_WIN32. Notice that the developer introduced
an intraprocedural dependency for the variable type. We say that the direction of this
dependency is optional-to-mandatory, as the presence condition of the variable definition
(see line 5) is G_OS_WIN32, whereas the presence condition of the variable use (see line
11) is true. In case we do not set G_OS_WIN32, that is, in a non-Windows system, we get
an undefined variable error for the variable type and cannot compile the code.

Figure 2 shows a new modification to the function, in order to fix this variability bug.3

To do so, the developer relocated4 the type variable definition to a mandatory portion
of code (by removing line 6 and adding line 2). This modification makes the presence
condition of both variable definition (see line 2) and its use (see line 11) the same, ceasing
the dependency.

In this work, we consider two points for a dependency: the maintenance point and
the impact point. For intraprocedural dependencies, we define a maintenance point as the
point where we can change the name, type, or value of a dependent variable. Thus, a
variable definition or assignment are possible maintenance points. The impact points are
the points we can affect by changing the maintenance point, or, in other words, where
the dependent variable is later referenced. Notice that a maintenance point, such as a
variable assignment, can also be an impact point, regarding a previous maintenance point.
Moreover, to have a dependency, the presence condition of the maintenance point must
be different than the impact point. In Figure 1 we have an example of maintenance point
at line 5 and an impact point at line 11.
3 <https://bugzilla.gnome.org/show_bug.cgi?id=580750>
4 <https://github.com/GNOME/glib/commit/97fe421518139dcb3477209d3d3c3b6744f54153>

https://bugzilla.gnome.org/show_bug.cgi?id=580750
https://github.com/GNOME/glib/commit/97fe421518139dcb3477209d3d3c3b6744f54153
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Figure 2 – Removing the dependency to fix the bug in GLib.

  1.  GInetAddress *g_inet_address_new_from_string (…) {
+ 2.    volatile GType type;
  3.   G_OS_WIN32#ifdef
  4.     sockaddr_storage sa;struct
  5.    …
- 6.    volatile GType type;
  7.    gint len;
  8.   #else /* !G_OS_WIN32 */
  9.    …
  10. #endif
  11.   type = g_inet_address_get_type ();
  12.   …
  13. }

+ Including line Removing line-

Source: Author’s own elaboration.

2.2 Scenario 2: Global dependency

Dependencies often transcend the boundaries of a function. A global dependency is
similar to an intraprocedural dependency, except that the dependent variable is global,
not local. In a global dependency the global variable appears outside a function and is
used within a function. As we can define a global variable in a different file from where
we use it, we might overlook these dependencies.

For instance, libxml2 5 is a XML parser written in C. Figure 3 presents a code snippet
of the libxml2 software family. The figure depicts a modification made to the code,
committed to a Git repository.6 In the figure we have a global variable, xmlout (see
line 3). A preprocessor conditional directive (#if defined(HTML) || defined(VALID))
surrounds its definition, which means the variable xmlout is available if we define at least
one of the macros. Notice that the developer added lines 10 and 11 to the code, using the
xmlout variable inside the function parseAndPrintFile in the mandatory feature (see
line 10). As there is no #ifdef encompassing the xmlout use, we have a global dependency
for this variable. The direction of this dependency is again optional-to-mandatory, as the
presence condition of the variable definition (the maintenance point) is HTML || VALID

while the presence condition of its use (the impact point) is true.
This dependency triggers a bug7 if we do not define any of the macros (HTML or

VALID), as we still reference the variable xmlout in the function parseAndPrintFile

while it is undefined. Figure 4 presents another modification to the code, aiming to solve
this variability bug. In the figure, the developer included 8 the same conditional directive
of the variable definition to its use (by adding lines 10 and 13).
5 <http://xmlsoft.org/>
6 <https://git.gnome.org/browse/libxml2/>
7 <https://bugzilla.gnome.org/show_bug.cgi?id=611806>
8 <https://goo.gl/gACFs6>

http://xmlsoft.org/
https://git.gnome.org/browse/libxml2/
https://bugzilla.gnome.org/show_bug.cgi?id=611806
https://goo.gl/gACFs6
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Figure 3 – Adding a new save option, creating a global dependency and causing a
variability bug in libxml2.

  1.   defined(HTML) || defined(VALID)#if
  2.  …
  3.   xmlout = 0;static int
  4.  #endif
  5.  …
  6.   parseAndPrintFile(…) {static void
  7.    …
  8.     (format)if
  9.      saveOpts |= XML_SAVE_FORMAT;
+ 10.    (xmlout)if 
+ 11.      saveOpts |= XML_SAVE_AS_XML;
  12.   …
  13. }

+ Including line

Source: Author’s own elaboration.

Figure 4 – Removing the dependency to fix the bug in libxml2.

  1.   defined(HTML) || defined(VALID)#if
  2.  …
  3.   xmlout = 0;static int
  4.  #endif
  5.  …
  6.   parseAndPrintFile(…) {static void
  7.    …
  8.     (format)if
  9.      saveOpts |= XML_SAVE_FORMAT;
+ 10.  defined(HTML) || defined(VALID)#if
  11.    (xmlout)if 
  12.      saveOpts |= XML_SAVE_AS_XML;
+ 13. #endif
  14.   …
  15. }

+ Including line

Source: Author’s own elaboration.

2.3 Scenario 3: Interprocedural dependency

We refer to interprocedural dependencies when features share data among different
functions. Consider two functions, f and g. Function f calls g passing x as an argument.
If g uses data from x in an different feature than the feature associated to the g call in
f, we have an interprocedural dependency. In this case, maintaining the argument of the
call to g, for instance, by changing its value, we might break a feature at the points where
function g references x.

Figure 5 presents a code snippet from Lustre,9 a parallel distributed file system for
high-performance cluster computing. The figure depicts a modification made to the code,
committed to a Git repository.10 In the figure, the developer added an #ifdef block (see
lines 4-7) containing a reference to the parameter nd (see line 5), which is a pointer to a
9 <http://www.lustre.org>
10 <http://git.whamcloud.com/>

http://www.lustre.org
http://git.whamcloud.com/
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Figure 5 – Adding an interprocedural dependency in Lustre.

  1.   ll_revalidate_nd(  dentry *dentry,int struct
  2.                        nameidata *nd) {struct
  3.    …
+ 4.   LOOKUP_RCU#ifdef
+ 5.        (nd->flags & LOOKUP_RCU)if
+ 6.               -ECHILD;return
+ 7.  #endif
  8.    …
  9.  }

+ Including line

Source: Author’s own elaboration.

struct of type nameidata. Developers reported a null pointer dereference bug11 regarding
the nd parameter. When calling the function ll_revalidate_nd, we may face a null
pointer dereference accessing nd->flags if nd is null.

Figure 6 – Fixing the possible null pointer dereference in Lustre.

  1.   HAVE_IOP_ATOMIC_OPEN#ifdef
  2.   ll_revalidate_nd(  dentry *dentry,int struct
  3.                        flags) {unsigned int
  4.    …
  5.  }
  6.   #else /* !HAVE_IOP_ATOMIC_OPEN */
  7.   ll_revalidate_nd(  dentry *dentry,int struct
  8.                        nameidata *nd) {struct
  9.    …
  10.  HAVE_DCACHE_LOCK#ifndef
- 11.    (nd->flags & LOOKUP_RCU)if
+ 12.    (nd && (nd->flags & LOOKUP_RCU))if
  13.      -ECHILD;return
  14. #endif
  15.   …
  16. }
  17.  #endif /* HAVE_IOP_ATOMIC_OPEN */

+ Including line Removing line-

Source: Author’s own elaboration.

To solve this problem, the program now checks12 if nd is null, right before accessing
nd->flags (see Figure 6, line 12). Despite its severity, this bug remained undetected for
more than one year. This is because the problematic line of code is guarded by a macro
and is only accessible on Linux kernel versions 2.6.38 and up. On older kernels, the code
is innocuous. In other words, this variability bug occurs only in configurations that exist
on newer versions of Linux kernel.

To verify the existence of an interprocedural dependency in this code, we must check
the calls to the function ll_revalidate_nd. Although there are no calls to this function
in the Lustre code, we can find them in the Linux kernel. Figure 7 shows such an indirect
call in line 26. In this case, the field d_op of struct dentry corresponds to the struct
11 <https://jira.hpdd.intel.com/browse/LU-3483>
12 <http://review.whamcloud.com/#/c/6715/5/lustre/llite/dcache.c,cm>

https://jira.hpdd.intel.com/browse/LU-3483
http://review.whamcloud.com/#/c/6715/5/lustre/llite/dcache.c,cm
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Figure 7 – Code snippet from Linux kernel.

1.   dentry *lookup_one_len(…) {struct
2.    …
3.     qstr this;struct
4.    …
5.     __lookup_hash(&this, base, NULL);return
6.  }
7.
8.   dentry *__lookup_hash(  qstr *name,static struct struct
9.  dentry *base,                                      struct
10.  nameidata *nd) {                                     struct
11.   …
12.    dentry *dentry;struct
13.   …
14.   dentry = do_revalidate(dentry, nd);
15.   …
16. }
17.
18.  dentry *do_revalidate(  dentry *dentry,static struct struct
19.    nameidata *nd) {                                  struct
20.    status = d_revalidate(dentry, nd);int
21.   …
22. }
23.
24.  inline  d_revalidate(  dentry *dentry,static int struct
25.                                 nameidata *nd) {struct
26.    dentry->d_op->d_revalidate(dentry, nd);return
27. }

Source: Author’s own elaboration.

ll_d_ops (Figure 8). Therefore, dentry->d_op->d_revalidate points to the function
ll_revalidate_nd (see line 2 in Figure 8). Notice that, even though this dependency do
not directly cause this variability bug, it might delay the detection and further correction
of this bug. For instance, if there was no #ifdef encompassing the reference to the
parameter nd (see Figure 5, line 5), this problem would occur in every implementation,
probably being more noticeable.

Figure 8 – Code snippet from Lustre.

1.  dentry_operations ll_d_ops = {  struct
2.    .d_revalidate = ll_revalidate_nd,
3.    .d_release = ll_release,
4.    .d_delete  = ll_ddelete,
5.    .d_iput    = ll_d_iput,
6.    .d_compare = ll_dcompare,
7.  };

Source: Author’s own elaboration.

As this call is in a mandatory section of code and we access the parameter nd in an
optional feature (see Figure 5, line 5), we have an mandatory-to-optional interprocedural
dependency. The presence condition of nd at first was LOOKUP_RCU (see Figure 5, line 4),
but further modifications changed the presence condition to (!HAVE_IOP_ATOMIC_OPEN

&& !HAVE_DCACHE_LOCK) (see Figure 6, lines 6 and 10).
Analogously to the intraprocedural and global dependencies, in which the dependent

variable initialization is a possible maintenance point, we consider the function call as a
maintenance point regarding an interprocedural dependency, as its arguments initialize
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the function formal parameters. Thus, a maintenance task in a function call, such as
an argument change, might impact the corresponding parameter use inside the callee
function (the impact point). In this example, we have a maintenance point at Figure 7,
line 26, and an impact point in Figure 5, line 5. When such points are in different files,
or, in this case, in different projects, detecting these dependencies can be more difficult.

Moreover, a function call argument may come from another function. In Figure 7, the
null problematic value originates in the function lookup_one_len, as an argument when
calling the function __lookup_hash (see line 5). This argument initializes the parame-
ter nd (line 10), which also passes it through the function do_revalidate (see line 14)
before finally reaching the function d_revalidate (see line 20). Function d_revalidate

includes it as an argument of the call to dentry->d_op->d_revalidate (see line 26).
We refer to the total of chained function calls that share the same data regarding an
interprocedural dependency as the dependency depth. In this example, the depth is four,
as the null value (Figure 7, line 5) passes through four function calls before the function
ll_revalidate_nd references it in a different configuration. Interprocedural dependen-
cies with high depths might require more attention from the developer. As there are more
functions to consider when maintaining a feature, such dependencies are easier to miss,
facilitating the introduction of bugs.

2.4 Summary

Bugs in general contribute to decrease developers productivity and impair software
quality. Tasks like submitting bug reports, triaging bugs, developing patches, committing
changes to the repository, validating patches, and updating documentation demand time
and effort, even for simple bugs (19, 20).

Bugs regarding feature dependencies are even more difficult to deal with, since they
might occur only in specific configurations, possibly delaying their detection and subse-
quent fix. Moreover, global and interprocedural dependencies are particularly problem-
atic, as different features might share data from a variable between different files. The
bug in Section 2.3 is rather complicated because it involves two different projects (Lus-
tre and Linux ). The maintenance of a variable in a mandatory section of Lustre causes
a bug when Linux references it in an optional feature. Fixing a bug like this involves
coordinating teams of developers of both projects.

This section introduces variability bugs related to three types of feature dependencies.
To assess how often these dependencies occur in practice, we present next an empirical
study to answer research questions on this topic (Chapter 3). Then, we present another
empirical study to better understand how feature dependencies might lead to variability
bugs (Chapter 4).
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3 FEATURE DEPENDENCIES IN THE WILD

In this chapter we present an empirical study to assess fine-grained feature depen-
dencies in practice. First, we report our empirical study of 40 popular software families,
presenting the research questions we address, and our approach to identify feature depen-
dencies in those families (Section 3.1). Then, we present and discuss the results, as well
as the threats to validity of our study (Section 3.2).

3.1 Study Settings

In this section we present the settings of our study to investigate feature dependencies
on software families. Our study covers 40 C industrial program families. We select these
families inspired by previous work (6, 7, 8, 9, 10, 11). We consider this selection to
be very appropriate, because it includes well-known families used in industrial practice.
Moreover, these families comprise different domains, such as operating systems, databases,
text editors, and web servers, varying from small to mid sizes. Finally, all of them contain
several features implemented using preprocessor directives, which is a prerequisite for our
dependency detection technique. To structure our research, we use the Goal, Question,
and Metrics (21) approach.

3.1.1 Goal, Question, and Metrics

The goal of this empirical study is to investigate to what extent feature dependencies
occur in practice, their types, and how they might impact maintenance tasks on product
families.

To achieve this goal, this study addresses the following research questions:

• Question 1: how often do program families contain intraprocedural dependencies?

• Question 2: how often do program families contain global dependencies?

• Question 3: how often do program families contain interprocedural dependencies?

• Question 4: how often do dependencies of different directions (mandatory-to-
optional, optional-to-mandatory, and optional-to-optional) occur?

• Question 5: what is the dependency depth distribution for interprocedural depen-
dencies?

To answer Question 1, we count the number of functions with preprocessor direc-
tives, such as #ifdef, #elif or #else, and the number of functions with intraprocedural
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dependencies for each family. These metrics allow us to calculate how often functions
with preprocessor directives have intraprocedural dependencies.

To answer Question 2, we count the functions with impact points regarding global
dependencies, that is, direct references to global variables in a different feature than its
definition. We do not consider global variable assignments as maintenance points when
they are inside a function, because we are unable to track the dataflow of global variables
across functions, as we shall see in Section 3.2.6.

To answer Question 3, as interprocedural dependencies directly involves two func-
tions, we count separately the number of functions containing maintenance points and
the number of functions containing impact points regarding interprocedural dependencies
for each family. Notice that the same function may contain both maintenance points
and impact points, regarding distinct interprocedural dependencies, so these values may
overlap. We also count the number of functions containing either maintenance points or
impact points, to total how many functions contribute to interprocedural dependencies.

To answer Question 4, we classify every dependency based on its direction
(mandatory-to-optional, optional-to-mandatory, or optional-to-optional). Next we count
the occurrences of dependencies for each direction. We use this metric in order to verify
if some direction is particularly common.

To answer Question 5, we create a call graph (22), having functions as nodes, and
function calls as arcs pointing the callee function to the caller function. We also consider
arguments placement and the presence condition of each function call when creating the
graph. We use the well-known depth-first search (23) algorithm to traverse the graph.
We make an adjustment in the algorithm to allow revisiting nodes (but avoiding loops),
in order to track all possible paths (from the shortest to the longest) from every node
regarding functions with interprocedural dependencies. This information is important
to foresee situations where an argument in a function call may cause a problem due to
an existing dependency later on the code. Also, answering this question is important to
better set up dataflow analysis tools, such as Emergo (2) (see Section 5.1).

To better explain the metrics we compute, we refer to the code snippet in Figure 9.
We extract this code snippet from libssh,1 a multiplatform C library for SSH protocol
implementations. The figure depicts five functions from three different files, dh.c, packet.c,
and packet1.c. These functions handle SSH cryptography and packet sending over a SSH
session. Function ssh_crypto_init initializes the values for the global variables g and
p. Function ssh_packet_send_unimplemented calls function packet_send. Depending
on the configuration regarding SSH protocol version (WITH_SSH1 or !WITH_SSH1), pack-
et_send may call either packet_send1 or packet_send2. The code snippet also contains
other four macros: HAVE_LIBZ and WITH_LIBZ, both related to zlib,2 a compression library;
1 <http://www.libssh.org/>
2 <http://www.zlib.net/>

http://www.libssh.org/
http://www.zlib.net/
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HAVE_LIBGCRYPT, related to libgcrypt,3 a cryptographic library; and DEBUG_CRYPTO, for
debugging purposes.

In the figure, there is an intraprocedural dependency in the function packet_send2

regarding variable currentlen, which is defined in a mandatory feature (see line 48)
and later referenced in an optional configuration (HAVE_LIBZ && WITH_LIBZ, see line 52).
Thus, the direction of this dependency is mandatory-to-optional.

Figure 9 – Code snippet from libssh.

1.  static bignum g;
2.   bignum p;static
3.  
4.   ssh_crypto_init(void) {int
5.    …
6.    g = bignum_new();
7.    …
8.   HAVE_LIBGCRYPT#ifdef
9.    …
10.    (p == NULL) {if
11.     bignum_free(g);
12.     g = NULL;
13.     …
14.   }
15.   …
16. #endif
17.   …
18. }
19. 
20. int ssh_packet_send_unimplemented(…) {
21.  r;  int
22.   …
23.   r = packet_send(session);
24.   …
25. }
26. 
27.  packet_send(ssh_session session) {int
28.  WITH_SSH1#ifdef
29.  (session->version == 1) {  if
30.  packet_send1(session);    return
31.   }
32. #endif
33.    packet_send2(session);return
34. }
35.
36.  WITH_SSH1#ifdef
37.  packet_send1(ssh_session session) {int
38.   …
39.  DEBUG_CRYPTO#ifdef
40.   ssh_print_hexa(…, ssh_buffer_get_begin(session->out_buffer), …);
41. #endif
42.   …
43. }
44. #endif
45.
46.  packet_send2(ssh_session session) {static int
47.   …
48.   uint32_t currentlen = …;
49.   …
50.  defined(HAVE_LIBZ) && defined(WITH_LIBZ)#if
51.   …
52.   currentlen = buffer_get_rest_len(session->out_buffer);
53.   …
54. #endif
55.   …
56. }

Source: Author’s own elaboration.

There are two global variables, g and p, both declared in a mandatory section of code
3 <http://www.gnu.org/software/libgcrypt/>

http://www.gnu.org/software/libgcrypt/
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(see lines 1 and 2) and referenced multiple times within the function ssh_crypto_init.
We have global dependencies regarding both variables, as function ssh_crypto_init

references them in an optional configuration (HAVE_LIBGCRYPT, see lines 10 − 12). The
direction of these global dependencies is also mandatory-to-optional.

In addition, notice that there are four functions involved with interprocedural depen-
dencies. Considering line 23 as a maintenance point, we may impact lines 29 and 30 in
another function: packet_send. This happens due to the data from the session variable
that flows out the function ssh_packet_send_unimplemented and flows into the func-
tion packet_send. As the impact points in packet_send are in an optional configuration
(WITH_SSH1), we have two interprocedural dependencies involving both functions (as there
are two distinct pairs of a maintenance point and an impact point). The direction of both
dependencies is mandatory-to-optional. Notice that the reference to variable session

at line 33 does not result in a dependency among features: both maintenance and im-
pact points are in the mandatory feature. Furthermore, considering line 30 as another
maintenance point, we may also impact line 40, implying in one more interprocedural
dependency. Its direction is optional-to-optional, as both maintenance and impact points
have different (and not true) presence conditions. Finally, when considering line 33 as
a maintenance point, we may impact line 52, resulting in another mandatory-to-optional
interprocedural dependency.

Regarding dependency depths, we track all paths across functions to interprocedural
dependencies. For instance, we have two interprocedural dependencies involving func-
tions ssh_packet_send_unimplemented and packet_send. From ssh_packet_send_un-

implemented to packet_send the depth is one. As we have two interprocedural depen-
dencies in these functions, we count this path (ssh_packet_send_unimplemented →
packet_send) twice. Furthermore, we have another interprocedural dependency involv-
ing functions packet_send and packet_send1, and a last one involving functions pack-
et_send and packet_send2. In these dependencies, the maintenance points are within
function packet_send, at lines 30 and 33. In both cases, the value of the argument of
these function calls comes from another function: packet_send_unimplemented. Hence,
besides the obvious paths packet_send → packet_send1 and packet_send → pack-

et_send2, both with a depth of one, we also consider packet_send_unimplemented →
packet_send → packet_send1 and packet_send_unimplemented → packet_send →
packet_send2, with a depth of two. In short, the average dependency depth for this
example is (1 + 1 + 1 + 1 + 2 + 2)/6 = 1.33.

Table 1 summarizes the metrics we compute for this example.

3.1.2 Instrumentation

To compute the metrics we consider, we rely on TypeChef (12), a variability-aware
type checking utility, to create an Abstract Syntax Tree (AST) from each source file.
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Table 1 – Metrics summary for the code snippet in Figure 9.

Question Metric Value

Question 1 Functions with preprocessor directives 4 (80%)
Functions with intraprocedural dependencies 1 (20%)

Question 2 Functions with global dependencies 1 (20%)

Question 3
Functions with maintenance points regarding interprocedural dependencies 2 (40%)

Functions with impact points regarding interprocedural dependencies 3 (60%)
Functions with either maintenance or impact points regarding interprocedural dependencies 4 (80%)

Question 4
Mandatory-to-optional 7 (87.5%)
Optional-to-mandatory 0 (0%)
Optional-to-optional 1 (12.5%)

Question 5 Average depth 1.33
Standard deviation 0.47

Source: Author’s own elaboration.

TypeChef can parse C code containing #ifdef directives without generating all possible
variants; instead, it creates an AST that preserves all variability information, having each
preprocessor directive as a node in the tree. Previous studies (6, 8, 11) use srcML (24)
to create ASTs represented in the XML format, but this tool usually fails when handling
code with non-disciplined annotations (11). Thus, it generates ill-formed XML files as a
result. Therefore, we believe that TypeChef is a better solution for this task.

In this work, we use TypeChef version 0.3.5 to create the ASTs for all program families
source code files. We develop a tool to automate both ASTs creation and dependencies
computation. We use Java SE 7 to implement this tool.

3.1.3 Operation

We perform the empirical study using a 2 GHz quad-core Intel Core i7-2630QM with 8
GB of RAM, running MS Windows 7 Home Premium SP1 64-bit. We divide this study in
two parts: dependency identification and dependency depth analysis. In the first part of
the study, our tool analyzes the ASTs generated for all program families source code files,
one at a time, searching for intraprocedural, global, and interprocedural dependencies
in all functions of each family. We simplistically describe this strategy in Algorithm 1.
Notice that we present a simpler version of the actual algorithm, to better explain its
operation. Thus, it lacks any optimizations in favor of understandability.

In the algorithm we traverse all ASTs for a program family. For each AST, we look
into all functions, searching for variable references. For each variable, we search all uses
within the function. For each variable use, we verify the variable scope. If it is a func-
tion parameter, we investigate all function calls in all ASTs, and compare the presence
condition of each function call against the presence condition of the variable use. Every
time such presence conditions differ, we have an interprocedural dependency. Now, if the
variable is not a function parameter, it must be either a local or a global variable. So, we
get all variable definitions (declarations, assignments, and increments/decrements) inside
the current function, comparing their presence condition against the presence condition
of the variable use. Again, every time a definition and an use have different presence
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Algorithm 1 General algorithm for dependency search
ASTS ← set of all abstract syntax trees of a program family
FUNCTIONS ← set of all function definitions within the current AST
VARIABLES ← set of all variables used within the current function
CALLS ← set of all function calls to the current function
USES(v) ← function that returns the set of all uses of the variable v
DEFINITIONS(v) ← function that returns the set of all definitions of the variable v
IS_LOCAL(v) ← function that returns true, if the variable v is a local variable; false, otherwise
IS_GLOBAL(v) ← function that returns true, if the variable v is a global variable; false, otherwise
IS_PARAMETER(v) ← function that returns true, if the variable v is a function parameter; false, otherwise
PC(s) ← function that returns the presence condition of statement s

1: for each ast in ASTS do
2: for each function in FUNCTIONS do
3: for each variable in VARIABLES do
4: for each use in USES(variable) do
5: if IS_PARAMETER(variable) then
6: for all call in CALLS do
7: if PC(use) 6= PC(call) then
8: — There is an interprocedural dependency
9: end if
10: end for
11: else . The variable is either local or global
12: for each definition in DEFINITIONS(variable) do
13: if PC(definition) 6= PC(use) then
14: if IS_LOCAL(variable) then
15: — There is an intraprocedural dependency
16: else if IS_GLOBAL(variable) then
17: — There is a global dependency
18: end if
19: end if
20: end for
21: end if
22: end for
23: end for
24: end for
25: end for

conditions, we have a dependency, that can be intraprocedural or global, depending on
the variable scope.

In the second part of the study, our tool analyzes each function call which is a main-
tenance point to an interprocedural dependency to find out the maximum dependency
depth. To do so, we check whether the function call argument comes from another func-
tion, thus being a parameter of the current function. If so, we then analyze the caller
function, in a recursive manner.

Next, we interpret and discuss the results of our empirical study to assess fine-grained
feature dependencies.

3.2 Results and discussion

In this section, we answer the research questions based on the results of our first em-
pirical study and present the threats to validity. All results are available at the companion
web site.4

4 <http://www.iranrodrigues.com.br/masterthesis>

http://www.iranrodrigues.com.br/masterthesis
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3.2.1 Question 1: How often do program families contain intraprocedural dependencies?

To answer this question, we use the number of functions with preprocessor directives
(FDi) and the number of functions with intraprocedural dependencies (FIntra). Table 2
shows FDi and FIntra for all families, expressed as a percentage of the total of functions
(NoF ) we analyze. According to the table, both metrics differ considerably depending on
the family we analyze. For instance, only 1.36% of libsoup functions have preprocessor di-
rectives (FDi), while Vim have preprocessor directives in 37.25% of its functions. Follow-
ing the convention “average ± standard deviation”, our results show that 10.09%± 8.63%

of the functions have preprocessor directives within.
The same variation occurs for FIntra. While mpsolve has no intraprocedural depen-

dencies, FIntra reaches 17.04% on libxml2, and 18.77% on Vim. Notice that the values
for FIntra are rather low because we consider the number of functions with dependencies
over the total of functions. If we consider only the number of functions with directives,
this number grows substantially. For instance, mptris family has intraprocedural depen-
dencies in 14.14% of its functions. However, 82.35% of its functions with preprocessor
directives also have intraprocedural dependencies. We express this ratio as the column
FIntra/FDi in Table 2, which stands for FIntra divided by FDi. Another interesting
example is Lua: only one function (0.12% out of the total) has preprocessor directives.
But, this function also contains intraprocedural dependencies, meaning that 100% of
Lua functions with preprocessor directives also have intraprocedural dependencies. The
division is more meaningful than FIntra alone, because only functions with directives
can possibly have intraprocedural dependencies. This way, when maintaining code with
preprocessor directives, the likelihood of finding a dependency increases. Our data shows
that 51.44%±17.77% of the functions with directives also have intraprocedural dependen-
cies. Therefore, intraprocedural dependencies are rather common in the product families
we analyze, confirming the previous study (8) results, in the sense that the majority of
functions with preprocessor directives have such dependencies.

3.2.2 Question 2: How often do program families contain global dependencies?

To answer this question we use the number of functions referencing global variables
(FGRef) and the number of functions with global dependencies (FGlobal). Table 3 shows
that, once more, the results vary vastly depending on the family we analyze. Some
families do not make much use of global variables. Lua, for instance, has only 4.06% of
its functions referencing global variables (FGRef ). On the other hand, gzip has a FGRef
of 68.42%, meaning that the majority of its functions references global variables. Our
results show that 27.24%± 14.24% of the functions do reference global variables.

The number of functions with global dependencies (FGlobal) also vary across the
families we analyze. According to the table, five of the families do not have any global
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Table 2 – Intraprocedural dependencies in the program families.

Family Version Application Domain FDi FIntra FIntra/FDi NoF
apache 2.4.3 web server 7.57% 3.58% 47.30% 3910
atlantis 0.0.2.1 operating system 4.27% 1.71% 40.00% 117
bash 2.01 command language interpreter 13.42% 5.89% 43.89% 1647
bc 1.03 calculator 2.41% 0.60% 25.00% 166

berkeley db 4.7.25 database system 11.01% 7.87% 71.47% 3468
bison 2.0 parser generator 2.19% 1.17% 53.33% 684

cherokee 1.2.101 web server 8.11% 3.97% 48.99% 1838
clamav 0.97.6 antivirus 13.37% 7.05% 52.71% 2072
cvs 1.11.21 revision control system 7.66% 4.46% 58.14% 1122
dia 0.96.1 diagramming software 2.33% 1.72% 73.68% 814

expat 2.1.0 XML library 5.71% 1.66% 29.03% 543
flex 2.5.35 lexical analyzer 6.14% 1.44% 23.53% 277
fvwm 2.4.15 window manager 6.45% 3.27% 50.72% 2141
gawk 3.1.4 GAWK interpreter 12.21% 6.58% 53.85% 745

gnuchess 5.06 chess engine 1.84% 0.92% 50.00% 217
gnuplot 4.6.1 plotting tool 12.84% 6.23% 48.54% 1861
gzip 1.2.4 file compressor 21.93% 13.16% 60.00% 114
irssi 0.8.15 IRC client 2.17% 0.53% 24.19% 2853
kin 0.5 database system 6.01% 3.85% 64.00% 1248

libdsmcc 0.6 DVB library 2.00% 1.00% 50.00% 100
libieee 0.2.11 IEEE standards for VHDL library 12.18% 2.54% 20.83% 197
libpng 1.0.60 PNG library 27.31% 13.87% 50.77% 476
libsoup 2.41.1 HTTP library 1.36% 0.61% 45.00% 1475
libssh 0.5.3 SSH library 10.82% 5.51% 50.98% 943
libxml2 2.9.0 XML library 23.91% 17.04% 71.26% 6009
lighttpd 1.4.30 web server 16.73% 10.56% 63.10% 1004

lua 5.2.1 programming language 0.12% 0.12% 100.00% 837
lynx 2.8.7 web browser 29.07% 15.47% 53.21% 1448
m4 1.4.4 macro expander 9.72% 4.63% 47.62% 216

mpsolve 2.2 mathematical software 1.95% 0.00% 0.00% 411
mptris 1.9 game 17.17% 14.14% 82.35% 99
prc-tools 2.3 C/C++ library for palm OS 3.52% 2.71% 76.92% 369
privoxy 3.0.19 proxy server 21.55% 14.02% 65.05% 478

rcs 5.7 revision control system 2.34% 1.00% 42.86% 299
sendmail 8.14.6 mail transfer agent 7.67% 3.72% 48.48% 861
sqlite 3.7.15.3 database system 16.85% 8.81% 52.27% 2612

sylpheed 3.3.0 e-mail client 3.50% 1.85% 52.75% 2597
vim 7.3 text editor 37.25% 18.77% 50.38% 5600
xfig 3.2.3 vector graphics editor 2.96% 1.60% 54.00% 1689

xterm 2.9.1 terminal emulator 8.09% 4.95% 61.25% 989

Notes: FDi: % of functions with preprocessor directives; FIntra: % of functions with intraprocedural dependen-
cies; NoF: Number of functions.

Source: Author’s own elaboration.

dependencies: Atlantis, bc, Expat, libsoup, and Lua. Families with the highest values for
FGlobal include Vim (15.89%) and libxml2 (15.14%). However, these percentages relate
to the total of functions (NoF ), for instance, from all Vim functions, 15.89% have global
dependencies. We cannot restrict this number to consider only functions with preprocessor
directives, as we do in Section 3.2.1. This is because global dependencies may occur even
in a function without any preprocessor directive, simply by declaring a global variable
in an optional feature and referencing within such a function, in a mandatory feature.
Figure 10 illustrates two functions with global dependencies. While the function in the
left-hand side of the figure contains a preprocessor directive (#ifdef), the right-hand side
shows a function without any directives.

Now, if we consider only functions which reference global variables, we can better
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Figure 10 – Global dependencies of different directions.

1.   x;int
2.    …
3.   f() {void
4.  #ifdef A
5.    x++;
6.  #endif
7.  }

1.  #ifdef A
2.  x;int 
3.  #endif
4.  …
5.   f() {void
6.    x++;
7.  }

M ® O O ® M

Source: Author’s own elaboration.

estimate the global dependency occurrence. For instance, mptris has global dependencies
in 8.08% of its functions. But, when considering only the functions which reference global
variables, 42.11% of them have global dependencies (see column FGlobal/FGRef in
Table 3, which stands for FGlobal divided by FGRef ). Our results show that 11.90% ±
12.20% of the functions which refer to global variables also have global dependencies.
Therefore, we conclude that this type of dependency is less common in the families we
analyze. Nevertheless, this value is a lower bound. As we do not track the dataflow of
global variables across functions, we cannot consider all possible maintenance points of a
global variable, such as assignments or increments/decrements, that may happen inside
functions. We further discuss this limitation in Section 3.2.6.

Moreover, we cannot neglet such dependencies, because depending on the family, the
total of global dependencies may be reasonably higher. Besides, Section 2.2 shows that
this type of dependency can be as problematic as any other dependency. Additionally,
such dependencies might be hidden as different files can refer to the same global variable.

3.2.3 Question 3: How often do program families contain interprocedural dependencies?

To answer this question, we use the number of functions with maintenance points re-
garding interprocedural dependencies (FM), the number of functions with impact points
regarding interprocedural dependencies (FI), and the number of functions with interpro-
cedural dependencies (FInter). As an interprocedural dependency involves two functions,
one containing a maintenance point and the other containing an impact point, we refer to
functions with interprocedural dependencies (FInter) as the functions containing either
a maintenance point or an impact point regarding interprocedural dependencies. Table 4
shows the values for FM, FI, and FInter for the families we analyze. Not surprisingly,
again these values vary significantly across the families. FM, for instance, ranges from
0.12% to 56.69%, in Lua and Privoxy, respectively. Considering the families we analyze,
18.96%± 16.41% of the functions have maintenance points regarding interprocedural de-
pendencies. In other words, this is the number of functions containing function calls that
lead to interprocedural dependencies.

In most families we analyze, FI is lower than FM, with some exceptions. Curiously,
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Table 3 – Global dependencies in the program families.

Family Version Application Domain FGRef FGlobal FGlobal/FGRef NoF
apache 2.4.3 web server 30.74% 1.30% 4.24% 3910
atlantis 0.0.2.1 operating system 17.95% 0.00% 0.00% 117
bash 2.01 command language interpreter 51.00% 7.65% 15.00% 1647
bc 1.03 calculator 27.11% 0.00% 0.00% 166

berkeley db 4.7.25 database system 8.39% 0.95% 11.34% 3468
bison 2.0 parser generator 35.38% 0.73% 2.07% 684

cherokee 1.2.101 web server 5.98% 1.52% 25.45% 1838
clamav 0.97.6 antivirus 15.93% 1.64% 10.30% 2072
cvs 1.11.21 revision control system 30.30% 2.23% 7.35% 1122
dia 0.96.1 diagramming software 26.54% 0.37% 1.39% 814

expat 2.1.0 XML library 23.57% 0.00% 0.00% 543
flex 2.5.35 lexical analyzer 23.83% 1.44% 6.06% 277
fvwm 2.4.15 window manager 44.14% 2.29% 5.19% 2141
gawk 3.1.4 GAWK interpreter 30.60% 2.95% 9.65% 745

gnuchess 5.06 chess engine 35.94% 0.92% 2.56% 217
gnuplot 4.6.1 plotting tool 41.97% 6.45% 15.36% 1861
gzip 1.2.4 file compressor 68.42% 9.65% 14.10% 114
irssi 0.8.15 IRC client 26.95% 0.21% 0.78% 2853
kin 0.5 database system 26.84% 1.60% 5.97% 1248

libdsmcc 0.6 DVB library 5.00% 2.00% 40.00% 100
libieee 0.2.11 IEEE standards for VHDL library 26.90% 1.52% 5.66% 197
libpng 1.0.60 PNG library 11.34% 2.73% 24.07% 476
libsoup 2.41.1 HTTP library 12.47% 0.00% 0.00% 1475
libssh 0.5.3 SSH library 8.38% 1.17% 13.92% 943
libxml2 2.9.0 XML library 37.11% 15.14% 40.81% 6009
lighttpd 1.4.30 web server 12.55% 1.00% 7.94% 1004

lua 5.2.1 programming language 4.06% 0.00% 0.00% 837
lynx 2.8.7 web browser 37.22% 10.70% 28.76% 1448
m4 1.4.4 macro expander 38.43% 6.48% 16.87% 216

mpsolve 2.2 mathematical software 10.46% 1.46% 13.95% 411
mptris 1.9 game 19.19% 8.08% 42.11% 99
prc-tools 2.3 C/C++ library for palm OS 43.36% 0.81% 1.88% 369
privoxy 3.0.19 proxy server 22.38% 4.81% 21.50% 478

rcs 5.7 revision control system 40.80% 1.00% 2.46% 299
sendmail 8.14.6 mail transfer agent 31.24% 1.97% 6.32% 861
sqlite 3.7.15.3 database system 20.06% 3.25% 16.22% 2612

sylpheed 3.3.0 e-mail client 28.30% 1.04% 3.67% 2597
vim 7.3 text editor 38.57% 15.89% 41.20% 5600
xfig 3.2.3 vector graphics editor 52.40% 1.12% 2.15% 1689

xterm 2.9.1 terminal emulator 17.80% 1.72% 9.66% 989

Notes: FGRef : % of functions referencing global variables; FGlobal: % of functions with global dependencies;
NoF: Number of functions.

Source: Author’s own elaboration.

Lua has the same value for FM and FI : 0.12%, which is also the smallest value for the FI
in all families. The highest FI is in libpng, where 42.65% of its functions contain impact
points regarding interprocedural dependencies. Our data reveal that 12.14%± 10.46% of
the functions references dependent variables in interprocedural dependencies.

According to Table 4, the family with the lowest FInter is once again Lua, with 0.24%

of its functions with interprocedural dependencies. On the other hand, Vim is the family
with the highest number of functions with interprocedural dependencies: 67.34%. Consid-
ering all the families, the average number of functions with interprocedural dependencies
is 25.98%± 19.99%.

All these metrics consider all the functions (NoF ) for each family. Once more, we
cannot restrict them to consider only the functions with preprocessor directives. The
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reason is that both maintenance points and impact points can be in a mandatory feature,
provided that their counterparts are in optional features. To better explain this situation,
consider Figure 11 as an example. In each side of the figure, we have an interprocedural
dependency regarding functions f and g. In the left-hand side of the figure we have a
maintenance point at line 3 in a mandatory feature, and an impact point at line 8 in an
optional feature. In the right-hand side of the figure the situation is just the opposite, as
the maintenance point at line 4 is now in an optional feature, while the impact point at line
9 is in a mandatory feature. Nevertheless, we conclude that interprocedural dependencies
are reasonably common in the families we analyze. This may be a problem if developers
are not aware of the existence of such dependencies in the code they maintain. Problems
regarding interprocedural dependencies may involve more than one file, or even different
software families (see Section 2.3), making maintenance tasks in the presence of such
dependencies rather risky.

Figure 11 – Interprocedural dependencies of different directions.

1.   f() {void
2.     x = 0;int
3.    g(x);
4.  }
5.  …
6.   g(  x) {void int
7.  #ifdef A
8.    x++;
9.  #endif
10. }

1.   f() {void
2.     x = 0;int
3.  #ifdef A
4.    g(x);
5.   #endif
6.  }
7.  …
8.   g(  x) {void int
9.    x++;
10. }

M ® O O ® M

Source: Author’s own elaboration.

3.2.4 Question 4: How often do dependencies of different directions (mandatory-to-optional,
optional-to-mandatory, and optional-to-optional) occur?

To answer this question, we use the number of mandatory-to-optional dependencies
(M→O), the number of optional-to-mandatory dependencies (O→M), and the number of
optional-to-optional dependencies (O→O).

Figure 12 shows the distribution of dependency directions according to their types
using a beanplot chart (25). Notice that the distribution of intraprocedural dependen-
cies resembles the distribution of global dependencies, with pretty similar averages (the
horizontal lines) and estimated density (the bean shape) for each bean. In both types,
most of dependencies are mandatory-to-optional (M→O), followed by optional-to-optional
(O→O) dependencies. Only few are optional-to-mandatory (O→M). These results mean
that developers create most of intraprocedural and global dependencies by defining local
and global variables in a mandatory feature, and referencing them in an optional feature.
In such cases, these dependencies do not cause build errors (regarding undeclared vari-
ables), but they can trigger compilation warnings regarding unused variables, which is
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Table 4 – Interprocedural dependencies in the program families.

Family Version Application Domain FM FI FInter NoF
apache 2.4.3 web server 6.14% 5.01% 9.87% 3910
atlantis 0.0.2.1 operating system 2.56% 0.85% 2.56% 117
bash 2.01 command language interpreter 37.58% 19.98% 47.78% 1647
bc 1.03 calculator 10.84% 6.02% 15.06% 166

berkeley db 4.7.25 database system 55.82% 18.54% 62.72% 3468
bison 2.0 parser generator 2.92% 6.58% 8.48% 684

cherokee 1.2.101 web server 12.62% 9.85% 18.61% 1838
clamav 0.97.6 antivirus 17.18% 11.00% 23.65% 2072
cvs 1.11.21 revision control system 18.81% 14.35% 28.43% 1122
dia 0.96.1 diagramming software 2.33% 1.97% 4.05% 814

expat 2.1.0 XML library 3.68% 1.84% 5.52% 543
flex 2.5.35 lexical analyzer 1.08% 11.19% 12.27% 277
fvwm 2.4.15 window manager 9.29% 6.45% 14.20% 2141
gawk 3.1.4 GAWK interpreter 16.91% 8.86% 23.49% 745

gnuchess 5.06 chess engine 20.28% 4.61% 23.96% 217
gnuplot 4.6.1 plotting tool 31.22% 13.70% 40.03% 1861
gzip 1.2.4 file compressor 24.56% 15.79% 35.96% 114
irssi 0.8.15 IRC client 2.28% 1.68% 3.72% 2853
kin 0.5 database system 32.29% 5.69% 36.38% 1248

libdsmcc 0.6 DVB library 13.00% 15.00% 22.00% 100
libieee 0.2.11 IEEE standards for VHDL library 8.63% 7.61% 12.69% 197
libpng 1.0.60 PNG library 40.97% 42.65% 59.66% 476
libsoup 2.41.1 HTTP library 0.61% 0.41% 1.02% 1475
libssh 0.5.3 SSH library 35.63% 23.97% 50.69% 943
libxml2 2.9.0 XML library 44.02% 15.74% 52.89% 6009
lighttpd 1.4.30 web server 25.70% 20.22% 37.35% 1004

lua 5.2.1 programming language 0.12% 0.12% 0.24% 837
lynx 2.8.7 web browser 28.04% 24.31% 42.33% 1448
m4 1.4.4 macro expander 11.11% 9.72% 18.98% 216

mpsolve 2.2 mathematical software 0.97% 1.46% 2.43% 411
mptris 1.9 game 27.27% 27.27% 41.41% 99
prc-tools 2.3 C/C++ library for palm OS 12.20% 5.42% 17.34% 369
privoxy 3.0.19 proxy server 56.69% 24.69% 66.74% 478

rcs 5.7 revision control system 6.35% 6.69% 12.04% 299
sendmail 8.14.6 mail transfer agent 21.95% 8.48% 26.71% 861
sqlite 3.7.15.3 database system 44.83% 32.20% 59.49% 2612

sylpheed 3.3.0 e-mail client 4.74% 3.62% 7.78% 2597
vim 7.3 text editor 52.38% 39.88% 67.34% 5600
xfig 3.2.3 vector graphics editor 5.45% 3.02% 7.58% 1689

xterm 2.9.1 terminal emulator 9.50% 9.10% 15.77% 989

Notes: FM: % of functions with maintenance points regarding interprocedural dependencies; FI: % of func-
tions with impact points regarding interprocedural dependencies; FInter: % of functions with interprocedural
dependencies (that is, containing either maintenance or impact points); NoF: Number of functions.

Source: Author’s own elaboration.

a minor problem. We can also infer that in such types of dependency, when developers
define variables in optional features, they reference such variables much more in another
optional feature than in a mandatory one.

One might wonder if this situation can cause compilation errors. However, this de-
pends on a number of factors, such as configuration parameters or the family feature
model, for instance. To better explain this, we refer to the code snippet in Figure 13.
This code contains intraprocedural dependencies regarding variables dsa and bio. The
variable dsa has two definitions. The presence condition of its first definition (see line
3) is HAVE_LIBGCRYPT. The presence condition of its second definition (see line 6) is
!HAVE_LIBGCRYPT && HAVE_LIBCRYPTO. Despite such definitions occurring only in op-
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Figure 12 – Dependency directions distribution by type.
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Source: Author’s own elaboration.

tional features, the variable dsa is referenced in a mandatory section of the code (see line
17). If we do not define either HAVE_LIBGCRYPT or HAVE_LIBCRYPTO we would have an
undefined variable error. Now, look at bio definition at line 8. Its presence condition is
!HAVE_LIBGCRYPT && HAVE_LIBCRYPTO. This variable is later referenced at line 12, in a
different presence condition: HAVE_LIBCRYPTO. Now, we would face a similar compilation
error if we define both macros at once. In this case, libssh configure step prevents the
occurrence of such errors, ensuring that either HAVE_LIBGCRYPT or HAVE_LIBCRYPTO is
available (7).

Figure 13 – Code snippet from libssh.

1.   HAVE_LIBGCRYPT#ifdef
2.    …
3.    gcry_sexp_t dsa = NULL;
4.    …
5.  defined HAVE_LIBCRYPTO#elif 
6.    DSA *dsa = NULL;
7.    …
8.    BIO *bio = NULL;
9.  #endif
10.   …
11. HAVE_LIBCRYPTO#ifdef 
12.   (bio == NULL) {if 
13.     …
14.   }
15. #endif
16.   …
17.   privkey->dsa_priv = dsa;

Source: Author’s own elaboration.

The distribution of interprocedural dependencies is very different (see Figure 12).
Regarding interprocedural dependencies, optional-to-mandatory is the most common di-
rection, followed closely by mandatory-to-optional. Optional-to-optional dependencies
are rather uncommon. These results show that developers introduce the majority of in-
terprocedural dependencies by calling functions from optional features which reference
their parameters in a mandatory feature. Besides, the opposite situation, that is, calling
a function from a mandatory feature which references its parameters in optional features,
is also common.
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3.2.5 Question 5: What is the dependency depth distribution for interprocedural dependen-
cies?

Table 5 summarizes the dependency depths for all interprocedural dependencies we
collect. The Max. column in the table refers to the maximum depth we find in each
family. In this sense, we can see that bc, Flex, and MPSolve do not have interprocedural
dependencies with a depth greater than one. In such dependencies, functions share data
directly from the caller function to the callee function. On the other hand, Berkeley DB
and libxml2 have surprisingly high values for the maximum dependency depth: 23. This
means that Berkeley DB, for instance, shares data across 23 functions before reaching
an impact point of a particular interprocedural dependency. According to Table 5, Lua
has a even greater maximum depth: 29. However, our results for Lua are still indefinite.
This particular family has a surprisingly high number of chained functions, which our tool
cannot handle in our current equipment, due to memory constraints. Therefore, we limit
the maximum number of paths of the call graph for Lua functions, thus obtaining a lower
bound for the maximum depth. Considering all the families, the maximum dependency
depth is 8.48± 6.59. We also present the average (Avg.) and the standard deviation (St.
Dev.) of the depths for all dependencies in each family. These data consider the depths
of all possible paths to an interprocedural dependency. To better explain this metric,
we refer to Figure 14. The code in the figure illustrates an interprocedural dependency
involving functions f and g: the latter provides the argument (see line 8) which the former
references in a different presence condition (see line 3). Between these functions there is
a depth of one. Besides, function h provides the data to the function g (see line 12).
Thus, from h to f we have a depth of two. Furthermore, functions i and j provide data
to h, which will ultimately reach f. Now, we have two different paths with a depth of
three (i → h → g → f and j → h → g → f). In this example, the average depth is
(1 + 2 + 3 + 3)/4 = 2.25.

The average depth we present in Table 5 varies depending on the family. For instance,
gnuplot has an average depth of 1.57 ± 0.87, which is a relatively low value, considering
its maximum depth is 9. xterm, on the other side, has an average depth of 11.11± 3.16,
while its maximum depth is 22. Figure 15 shows individual histograms of dependency
depths for each family we analyze. In such charts, the vertical dashed line indicates the
average depth in the family. While most of families have the majority of interprocedural
dependencies with a depth of one, some histograms look like a bell-shaped curve. Take
libxml2 as an example: most of its dependencies have depths above 10, while few have a
depth of one.

We conclude that, although most of interprocedural dependencies have a depth of
one, there is no single pattern that fits into all the families we analyze. Depending on the
family, the developer may face dependencies of higher depths more or less often. High
values for dependency depths may hinder developer work when maintaining such chained
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Figure 14 – Different depths for a interprocedural dependency.

1.   f(  x) {void int
2.   A#ifdef
3.    x++;
4.  #endif
5.  }
6.  
7.  g(  x) {void int
8.    f(x);
9.  }
10. 
11. h(  x) {void int
12.   g(x);
13. }
14. 
15. i(  x) {void int
16.   h(x);
17. }
18. 
19. j(  x) {void int
20.   h(x);
21. }

Source: Author’s own elaboration.

functions, especially when the developer is unaware of the existence of those dependencies.
In these cases, modifying a variable do not impact only the current function, but all the
functions that use that variable from that point on. Moreover, the greater the depth, the
harder it is for the developer detect the dependency, therefore, it is easier to introduce a
bug. Introducing a bug in such way may hamper its posterior correction, since it may be
difficult to trace it back to the source of the problem.

3.2.6 Threats to validity

Now, we present the threats to validity. To structure this section, we follow the Cook
and Campbell validity system (26).

Construct Validity. We do not have access to the specification of valid configurations
of the families we analyze. Thus, we cannot ensure that all the dependencies we find in
our study arise in valid configurations.

Internal Validity. Our analysis of global dependencies is not exhaustive. We do
not consider all possible maintenance points on global variables that may occur inside
functions. This is because we cannot determine if a global variable reference (an impact
point) in a function takes place before or after a particular assignment (a maintenance
point) inside another function. As we do not track the dataflow of global variables across
functions, we limit to consider only the variable definition as a possible maintenance point.
Thus, we have a lower bound. The real number of global dependencies might be higher.

Also, our results for dependency depths for Lua are not complete. While the depth
computation for every other family occurs without hassle, our tool cannot finish it for Lua.
We attribute this problem to the high number of chained functions in Lua, as virtually
all of its functions share a parameter regarding the state of Lua interpreter. Our tool
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Table 5 – Interprocedural dependency depths in the program families.

Family Version Application Domain Max. Avg. St. Dev.
apache 2.4.3 web server 7 2.48 1.42
atlantis 0.0.2.1 operating system 3 1.49 0.60
bash 2.01 command language interpreter 13 4.14 2.78
bc 1.03 calculator 1 1.00 0.00

berkeley db 4.7.25 database system 23 7.29 3.72
bison 2.0 parser generator 5 1.10 0.37

cherokee 1.2.101 web server 7 1.56 0.83
clamav 0.97.6 antivirus 12 5.51 2.37
cvs 1.11.21 revision control system 8 2.32 1.38
dia 0.96.1 diagramming software 2 1.26 0.44

expat 2.1.0 XML library 6 3.13 1.45
flex 2.5.35 lexical analyzer 1 1.00 0.00
fvwm 2.4.15 window manager 7 2.34 1.35
gawk 3.1.4 GAWK interpreter 9 3.09 1.68

gnuchess 5.06 chess engine 4 1.28 0.49
gnuplot 4.6.1 plotting tool 9 1.57 0.87
gzip 1.2.4 file compressor 3 1.41 0.64
irssi 0.8.15 IRC client 9 1.87 1.59
kin 0.5 database system 7 2.10 1.34

libdsmcc 0.6 DVB library 5 1.38 0.76
libieee 0.2.11 IEEE standards for VHDL library 3 1.73 0.83
libpng 1.0.60 PNG library 9 3.06 1.44
libsoup 2.41.1 HTTP library 3 1.29 0.64
libssh 0.5.3 SSH library 13 4.30 2.78
libxml2 2.9.0 XML library 23 11.03 3.32
lighttpd 1.4.30 web server 8 2.94 1.57

lua 5.2.1 programming language 29 23.40 11.20
lynx 2.8.7 web browser 11 4.44 1.83
m4 1.4.4 macro expander 4 1.31 0.64

mpsolve 2.2 mathematical software 1 1.00 0.00
mptris 1.9 game 4 1.41 0.68
prc-tools 2.3 C/C++ library for palm OS 4 1.60 0.75
privoxy 3.0.19 proxy server 6 2.05 0.94

rcs 5.7 revision control system 3 1.40 0.73
sendmail 8.14.6 mail transfer agent 10 4.83 2.54
sqlite 3.7.15.3 database system 19 7.34 2.94

sylpheed 3.3.0 e-mail client 4 1.48 0.59
vim 7.3 text editor 14 4.01 3.04
xfig 3.2.3 vector graphics editor 8 2.48 1.45

xterm 2.9.1 terminal emulator 22 11.11 3.16

Source: Author’s own elaboration.

completes this task in a few minutes for most of the families. With Lua, on the other
hand, our tool spends a week running without finishing its computations. To alleviate
this threat, we limit the call graph size when computing depths for Lua, in order to get a
lower bound, at least. Even though limited, dependency depths for Lua are the greatest
among families we analyze.

Another point is that our tool does not know anything about the compiler linking
process. Therefore, we cannot determine if a particular function accesses a given resource
(such as a global variable or another function) in another file. Thus, we consider that
every function can access any global variable and function simply by referencing it. This
can be problematic if some program defines global variables or functions with duplicate
names across its files, since our tool is unable to link these resources properly.

Our analysis depends on the TypeChef C parser, which generates an Abstract Syn-
tax Tree (AST) for each source code file we provide. The resulting AST is not always
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completely equivalent to the original code, that is, TypeChef may refactor a code before
generating the AST. This is necessary since TypeChef cannot directly map some non-
disciplined annotations to individual AST elements. We also find that TypeChef do not
handle well #ifdef blocks that contain one or more #elif clauses and no #else, produc-
ing nodes with incorrect presence conditions. This is a minor problem, since we find that
in all families we analyze, such situation only occur in 0.43% of annotations. Therefore,
we may face false positives and false negatives in our results, since we analyze the ASTs,
not the original files. Although, due to the low occurrence of such divergences, they could
not significantly affect the results, thereby alleviating this threat.

Also, we rely on a previous technique (7) to restrict the analysis to program families
code only, to make the analysis feasible, by excluding external libraries. In this approach,
we remove all #include directives from the program family code. To prevent possible
syntax errors caused by the suppression of these libraries, all needed macros and types are
recreated in a separate header file. This process is semi-automatic, and hence, error-prone.

Finally, TypeChef cannot successfully generate the AST for all families files. Some
files cause errors during the AST generation. We cannot determine if these errors are due
to syntax errors in source code, a faulty header file, or if TypeChef simply cannot handle
some C constructs. We present the rates of successful generation of ASTs for all families
in Table 6. Our data show that TypeChef successfully parses 97.70% of all source code
files we select in the study, which is an acceptable ratio. After a manual inspection of
the files that TypeChef rejects, we conclude that they could not substantially change the
results, thus alleviating this threat.

External Validity. In our study we analyze 40 C program families from different
sizes and domains. These families are well-known in the industry. Their communities are
very active, despite some of them exist for many years. Nevertheless, our results might not
hold to other families, as some of them have very distinctive results. The high standard
deviation values found in some metrics, for instance, the number of functions with global
dependency, evidence the high variability in the results. For that reason, we should not
use these results in direct comparison among different families.
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Table 6 – Successful AST generation rate in the program families.

Family Version Application Domain Successful AST Generation Rate
apache 2.4.3 web server 98.81%
atlantis 0.0.2.1 operating system 97.78%
bash 2.01 command language interpreter 100.00%
bc 1.03 calculator 100.00%

berkeley db 4.7.25 database system 99.78%
bison 2.0 parser generator 100.00%

cherokee 1.2.101 web server 96.55%
clamav 0.97.6 antivirus 96.15%
cvs 1.11.21 revision control system 84.85%
dia 0.96.1 diagramming software 93.85%

expat 2.1.0 XML library 100.00%
flex 2.5.35 lexical analyzer 100.00%
fvwm 2.4.15 window manager 100.00%
gawk 3.1.4 GAWK interpreter 100.00%

gnuchess 5.06 chess engine 100.00%
gnuplot 4.6.1 plotting tool 98.57%
gzip 1.2.4 file compressor 100.00%
irssi 0.8.15 IRC client 100.00%
kin 0.5 database system 100.00%

libdsmcc 0.6 DVB library 100.00%
libieee 0.2.11 IEEE standards for VHDL library 100.00%
libpng 1.0.60 PNG library 100.00%
libsoup 2.41.1 HTTP library 86.41%
libssh 0.5.3 SSH library 98.86%
libxml2 2.9.0 XML library 93.62%
lighttpd 1.4.30 web server 98.89%

lua 5.2.1 programming language 100.00%
lynx 2.8.7 web browser 96.49%
m4 1.4.4 macro expander 100.00%

mpsolve 2.2 mathematical software 100.00%
mptris 1.9 game 100.00%
prc-tools 2.3 C/C++ library for palm OS 100.00%
privoxy 3.0.19 proxy server 100.00%

rcs 5.7 revision control system 100.00%
sendmail 8.14.6 mail transfer agent 99.41%
sqlite 3.7.15.3 database system 98.28%

sylpheed 3.3.0 e-mail client 98.90%
vim 7.3 text editor 93.33%
xfig 3.2.3 vector graphics editor 100.00%

xterm 2.9.1 terminal emulator 100.00%

Source: Author’s own elaboration.
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Figure 15 – Dependency depth distribution in the program families.
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4 FEATURE DEPENDENCIES CAUSING VARIABILITY BUGS

In this chapter we present an empirical study to better understand how feature de-
pendencies might lead to variability bugs. After studying the occurence of different types
of feature dependencies in practice (see Chapter 3), we now focus on finding actual vari-
ability bugs regarding feature dependencies. In addition to counting bugs occurrence, we
aim to understand how developers introduce such bugs, in order to possibly avoid them in
the future. Here, these bugs include undeclared variables, undeclared functions, unused
variables, and unused functions. We restrict our study to these variability bugs because
they are likely to happen due to an overlooked feature dependency (see Section 2.1 and
Section 2.2). Even simple problems like unused variables and unused functions, that we
can consider as less severe issues, receive attention from developers seeking to solve them,
as they pollute the code and might raise warnings during compilation. For instance, a
single patch to GNU Chess fixes 19 unused variables.1

As an example of bug we intend to study here, Figure 16 depicts an excerpt of the
C source code of the Bash2 project, related to executing arithmetic in commands. The
arithmetic feature is optional and is included only when we enable the macro ARITH. This
code snippet also contains a configuration option to use the Korn Shell evaluation pattern
controlled by the macro DPAREN. We can generate four different configurations from this
code snippet: (1) both macros enabled; (2) only ARITH enabled; (3) only DPAREN enabled;
and (4) both macros disabled.

Most analysis tools for C code, such as GCC, and clang, operate on preprocessed code,
that is, one configuration at a time. By compiling the code snippet of Figure 16 with
ARITH enabled and DPAREN disabled, we get a compilation error. File execute_cmd.c
uses function eval_arith_for_expr, which print_cmd.c does not declare when we
disable DPAREN. Thus, we have a feature dependency regarding such a function, since
the presence condition of its definition (DPAREN) differs from its use (ARITH). Because
traditional C compilers check only one configuration at a time, they do not show warning
or error messages when one compiles the same code depicted in Figure 16 considering the
remaining configurations. This is an example of a variability bug exposed only under some
combination of configuration options (27, 28, 29). Unfortunately, the space of possible
combinations is exponential in the worst case, and it is usually too large to explore
exhaustively.

Previous work (10, 17, 29, 30) study variability bugs similar to the one we dis-
cuss by analyzing software repositories (17, 30), and using a number of sampling al-
gorithms (31, 32, 33, 34). Such studies focus on bugs that developers have already fixed
1 <https://goo.gl/1hfm6m>
2 <http://www.gnu.org/software/bash/>

https://goo.gl/1hfm6m
http://www.gnu.org/software/bash/
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Figure 16 – A variability bug in Bash that occurs when we enable ARITH and disable
DPAREN.

1.   ARITH#ifdef
2.   eval_arith_for_expr() {int
3.    …
4.    print_arith_command();
5.    …
6.  }
7.  #endif
8.  displen() {int 
9.    …
10. }

1.   DPAREN#ifdef
2.   print_arith_command() {void
3.    …
4.  }
5.  #endif
6.  print_simple_command() {void 
7.    …
8.  }

File: execute_cmd.c

File: print_cmd.c

#define ARITH
#define DPAREN

Compilation succeeded

Configuration 1

#define ARITH
#undef DPAREN

Configuration 2

#undef ARITH
#define DPAREN

Configuration 3

#undef ARITH
#undef DPAREN

Configuration 4

Compilation error

Source: Author’s own elaboration.

in software repositories, and do not check all configurations of the source code (that
is, sampling checks only a subset of valid configurations), potentially missing bugs. All
these studies, however, do not relate the occurrence of variability bugs to the presence of
feature dependencies. In addition, a number of previous studies perform per-file analy-
sis (7, 31, 35), which do not detect bugs that span multiple files. This specific variability
bug in Bash, for example, spans multiple files. Having two different files makes the task
of detecting and fixing the bug harder, specially in case we have two or more developers
maintaining these files.

To detect variability bugs in a systematic way, we can use variability-aware tools ca-
pable of checking all configurations of the source code. However, when using these tools,
there is a time-consuming setup that hinders us from scaling the analysis for several soft-
ware systems. Therefore, in this chapter we propose a strategy to minimize this scalability
problem (Section 4.1). Then, we report an empirical study of 15 popular open-source sys-
tems (Section 4.2) to better understand variability bugs that feature dependencies might
cause. Finally, we present and discuss the results (Section 4.3).

4.1 Strategy to detect variability bugs

In this section, we present our strategy to detect variability bugs regarding feature
dependencies in software systems, explaining it using constructs of the C language. Our
strategy parses the system source code (C files only) without preprocessing and generates
an Abstract Syntax Tree (AST) for each source file. We create a data structure with global
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information about variables, functions, and preprocessor macros defined in all source files
to check dependencies. This data structure also maintains information regarding which
functions, and variables each system configuration defines, allowing us to detect variability
bugs (36). Figure 17 illustrates the three steps of our strategy, detailed in what follows.

The goal of Step 1 is to enable us to analyze several software systems. Variability-
aware analysis tools can identify certain classes of bugs (mostly syntax, and type) by
covering the entire configuration space. A common difficulty in setting up these tools is
that many configuration options are related to platform-specific definitions and libraries.
Hence, our strategy preprocesses the included header files and generates platform-specific
versions of these files. Despite focusing only on one platform at a time, the strategy enables
us to analyze several software systems in such a platform. To generate platform-specific
headers, the strategy removes the preprocessor conditional directives (such as #ifdef and
#endif) of the header files, according to the characteristics of a specific platform. For
instance, Figure 18 presents how we generate platform-specific headers for Linux using
GCC. After preprocessing the source code, the C preprocessor removes the preprocessor
conditional directives associated with the WIN32 configuration option, and resolves the
includes. Thus, our strategy considers only one configuration of each header file. Notice
that by considering only Linux headers, we might miss other platform-specific variability
bugs. To instantiate our strategy for different platforms, one needs to generate platform-
specific header files for each different target platform. However, notice that we do not
preprocess the C files. For those files, we consider the entire configuration space, as we
explain in what follows.

Figure 17 – Strategy to detect variability bugs.
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#endif
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Variability bugs

Macro constraints A Û ØB 

Global
checking

Source: Author’s own elaboration.

In Step 2, we use a variability-aware tool to parse the source code (C files) and generate
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an AST for each source file. When parsing each source file, the tool uses the platform-
specific header files generated in the first step. Since we do not preprocess the source
files, they still contain preprocessor conditional directives. Therefore, the resulting AST
has variable nodes to represent the optional and alternative code blocks. Figure 19 de-
picts a simplified AST enhanced with variability information from the code excerpt of
Figure 16. During this step, our strategy may receive any known constraints to eliminate
invalid configurations (for instance, macros A and B are mutually exclusive). We pass
this information to the variability-aware tool, which then ignores the invalid configura-
tions. Unfortunately, the majority of C open-source projects do not have such constraints
information defined explicitly.

Figure 18 – Generating platform-specific headers for Linux.

1.   <stdio.h>#include
2.   WIN32#ifdef
3.   <windows.h>#include
4.  #elif defined(LINUX)
5.  test();void 
6.  #endif
7.  …

1.   printf(…);int
2.   // More definitions
3.  // from stdio.h
4.  test();void 
5.  …

H

gcc -E

-U WIN32
-D LINUX

H

#ifdef
#endif

Source: Author’s own elaboration.

Figure 19 – Simplified AST of the code excerpt of Figure 16.

execute_cmd.c print_cmd.c

ARITH DPAREN

eval_arith_for_expr displen print_arith_command print_simple_command

print_arith_command

Conditional node Function definition Function call

Source: Author’s own elaboration.

Step 3 uses the abstract syntax trees of the source files to detect the variability bugs.
Notice that we consider the abstract syntax trees of all source files, which allow us to detect
variability bugs that span multiple files. Similar to safe composition approaches (37, 38),
we check, for each configuration, if the required definitions (variables and functions) are
being provided. However, we are also able to capture other issues such as unused variables
and functions. For instance, we can see in Figure 19 that ARITH requires a function
definition (print_arith_command) provided by DPAREN, as discussed in the beginning of
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this chapter. For this reason, Bash has a variability bug that arises when we enable
ARITH and disable DPAREN. DPAREN provides the function print_arith_command, and no
other source file provides this required function definition for this specific configuration.
At this point, we have the following variability-aware checkers implemented: undeclared
variables, unused variables, undeclared functions, and unused functions. Nonetheless, we
can extend our infrastructure to add other checkers, such as checking for return types,
and fields in struct declarations.

4.2 Study settings

In this section, we present the settings of the empirical study we perform to better
understand variability bugs that feature dependencies might cause. To perform the study,
we instantiate our strategy to detect variability bugs using the well-known GCC compiler,
TypeChef (12), a variability-aware parser widely used in previous studies (7, 39, 40, 41),
and the Linux operating system to generate platform-specific header files. We choose
Linux because it provides simple and effective packaging tools to identify and install the
software system dependencies.

In particular, this study addresses the following research questions:

• Question 1: what are the frequencies of undeclared variables, unused variables,
undeclared functions, and unused functions?

• Question 2: how do developers introduce variability bugs related to feature de-
pendencies?

Before answering the research questions, we consider feedback from the actual sys-
tems developers to confirm each variability bug. So, all numbers we report here do not
include false positives. To answer Question 1, we execute our four checkers (undeclared
functions, unused functions, undeclared variables, and unused variables) and count their
frequencies. Regarding Question 2, we analyze each variability bug to verify how devel-
opers introduced them by using the source file history in the software repository.

4.2.1 Subject selection

We analyze 15 subject systems written in C ranging from 4,988 to 44,828 lines of code.
These systems are from different domains, such as revision control systems, programming
languages, and games. Furthermore, we consider mature systems with many developers
as well as small systems with few developers. We select these subject systems inspired
by previous work (6, 7, 8, 9, 10, 11). This selection is a subset of the 40 families we
analyze in our previous study (see Chapter 3). We reduce the number of software families
we analyze in this second empirical study because our strategy (see Section 4.1) now
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demands a greater effort to set up software families when compared to our approach in
the first study. We present the details of each subject system in Table 7. For the subject
systems with git software repository available, we also consider the commits history of
the source files.

4.2.2 Instrumentation

We use the strategy presented in Section 4.1 to investigate variability bugs. We use
TypeChef version 0.3.5 to parse all configurations of the source code. Furthermore, we
also count the number of lines of code, and the number of files of each subject system
using the Count Lines of Code (CLOC ) tool version 1.56, which eliminates blank lines
and comments. Finally, we use Git version 1.7.12.4 to identify changes in source files.

Table 7 – Subject characterization and number of variability bugs.

Family Version Application Domain LOC Files Bugs
bash 4.2 command language interpreter 44,824 138 14
bc 1.03 calculator 5,177 27

expat 2.1.0 XML library 17,103 54
flex 2.5.37 lexical analyzer 16,501 41

gnuchess 5.06 chess engine 9,293 37 1
gzip 1.2.4 file compressor 5,809 36 3

libdsmcc 0.6 DVB library 5,453 30
libpng 1.6.0 PNG library 44,828 61 9
libsoup 2.41.1 SOUP library 40,061 178
libssh 0.5.3 SSH library 28,015 125 2
lua 5.2.1 programming language 14,503 59 1
m4 1.4.4 macro expander 10,469 26 1

mptris 1.9 game 4,988 29
privoxy 3.0.19 proxy server 29,021 67 1

rcs 5.7 revision control system 11,916 28
Total 287,961 936 32

Note: LOC: Number of lines of code.

Source: Author’s own elaboration.

4.3 Results and discussion

In this section, we discuss the results of our empirical study and answer the research
questions. Table 8 presents the variability bugs we detect in each subject system. Notice
that we confirm all variability bugs so that the numbers we report do not include false
positives. We provide all results at the companion web site.3 We answer the research
questions in what follows.
3 <http://www.iranrodrigues.com.br/masterthesis>

http://www.iranrodrigues.com.br/masterthesis
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4.3.1 Question 1: What are the frequencies of undeclared variables, unused variables, unde-
clared functions, and unused functions?

We analyze 15 subject systems. We find 13 undeclared functions; 7 unused functions;
2 undeclared variables; and 10 unused variables. Figure 20 illustrates these numbers.
Overall, we detect 32 variability bugs (14). Because of variability, more than 74% of
developers believe that variability bugs issues are more difficult to detect than bugs that
appear in all configurations (42). Nevertheless, during the analysis, we also detect bugs
that occur in mandatory code, that is, issues that appear in all configurations. Yet,
because we focus on variability bugs, we remove numbers related to mandatory code from
our statistics. Figure 21 presents an example of undeclared variable. This code excerpt
is part of the libpng project, and it fails to compile when we enable SPLT and disable
POINTER. As we can see, developers declare variable p at line 6 only when they enable
POINTER. The problem is that they use this variable at lines 13 and 14, in which macro
POINTER is disabled, creating an intraprocedural dependency and causing a compilation
error.

Figure 20 – Frequencies of each variability bug we focus.

22%

31%

41%

6%

Undeclared variables
Undeclared functions
Unused variables
Unused functions

Source: Author’s own elaboration.

We also find unused variables and functions. Traditional C compilers raise warnings
like unused variables and functions when developers set specific command line parame-
ters. Still, we are able to find several unused variables and functions related to feature
dependencies. As these warnings do not cause compilation errors, developers might ne-
glect them, even in mandatory code. Figure 22 presents a code excerpt with an unused
variable in the libssh project. In this code excerpt, variable strong is not used when
we disable LIBCRYPTO and enable LIBCRYPT. The warning disappears when the opposite
configuration selection happens. Notice that for each call to function get_random with
other presence condition than !LIBGCRYPT && LIBCRYPTO, we have an interprocedural
dependency. Although unused variable is a simple warning, some developers still care
about them, by raising bug reports and providing patches to fix them. Indeed, we find
bug reports and patches to fix unused variables and functions, such as the one to fix the
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Figure 21 – An undeclared variable in the Libpng project that occurs when SPLT is
enabled and POINTER is disabled.

1.  …
2.   SPLT#ifdef
3.   png_handle_sPLT() {void
4.    …
5.     POINTER#ifdef
6.      png_sPLT_entryp p;
7.    #endif
8.    …
9.     POINTER#ifdef
10.     p = palette + i;
11.     p->red = *start++;
12.   #else
13.     p = new_palette;
14.     p[i].red = *start++;
15.   #endif
16.   …
17. }
18. #endif
19. …

#define SPLT
#define POINTER

Compilation succeeded

Configuration 1

#define SPLT
#undef POINTER

Configuration 2

#undef SPLT
#define POINTER

Configuration 3

#undef SPLT
#undef POINTER

Configuration 4

Compilation error

Source: Author’s own elaboration.

Figure 22 – An unused variable in the libssh project that occurs when LIBCRYPTO is
disabled and LIBCRYPT is enabled.

1.  …
2.   get_random(int strong) {int
3.   LIBGCRYPT#ifdef
4.    gcry_randomize(len);
5.    return 1;
6.  #elif defined(LIBCRYPTO)
7. if (strong) {    
8.      return bytes(len);
9.  } else {
10.     return pseudo(len);
11.   }
12. #endif
13. }
14. …

#define LIBGCRYPT
#undef LIBCRYPTO

Compilation succeeded

Configuration 1

#undef LIBGCRYPT
#define LIBCRYPTO

Configuration 2

Unused variable

Source: Author’s own elaboration.

libssh warning4 presented in Figure 22 and others.5

Overall, we conclude that the kinds of variability bugs we focus on this work are not
so common in the repositories we study. Still, it seems they are more common than
variability bugs regarding syntax errors. A previous work analyzed 41 software families
but found only 24 syntax errors in valid configurations (7).
4 <https://goo.gl/3Y78M4>
5 <https://bugzilla.gnome.org/show_bug.cgi?id=461011>, 167715, and 401580

https://goo.gl/3Y78M4
https://bugzilla.gnome.org/show_bug.cgi?id=461011
https://bugzilla.gnome.org/show_bug.cgi?id=167715
https://bugzilla.gnome.org/show_bug.cgi?id=401580


46

4.3.2 Question 2: How do developers introduce variability bugs related to feature dependen-
cies?

We investigate how developers introduce the variability bugs we find in our empirical
study. Our goal here is to identify whether developers introduce more bugs when imple-
menting new functionalities or fixing bugs in the source code. According to the results,
developers introduce more variability bugs (73%) when introducing new functionalities,
such as a new source file, or adding a new function. We now present the results in the
following order: undeclared functions, undeclared variables, unused functions, and unused
variables.

Developers introduce undeclared functions in two different cases: (I) adding a call
to existing functions without checking the preprocessor conditional directives that en-
compass such function definitions, thus creating a new dependency; and (II) changing a
function definition without modifying the corresponding function calls, due to an existing
dependency. Figure 23 illustrates these two cases with small code excerpts. We find that
developers introduce 85% of the undeclared functions with case (I): Bash (1), GNU Chess
(1), gzip (2), Libpng (6), and Privoxy (1); and 15% of the undeclared functions follow
case (II): libssh (1), and Lua (1).

Figure 23 – Introducing undeclared functions.

  1.   A#ifdef
  2.   func1() {void
  3.    …
  4.  }
  5.  #endif
+ 6.  void func2() {
+ 7.    func1();
+ 8.  }

  1.   B#ifdef
  2.   func3() {void
  3.    func4();
  4.  }
  5.  #endif
- 6.  void func4() {
+ 7.   func4(  p) {void int
  8.    …
  9.  }

+ Including line Removing line-

I II

Source: Author’s own elaboration.

Figure 24 presents the two cases we detect for undeclared variables. In case (I),
developers try to eliminate a shadowed declaration of variable p1 at line 6. However, they
change the conditional directive at line 1, creating a dependency and raising an undeclared
variable at line 9. Developers introduce another undeclared variable following case (II),
that is, they introduce a new source file that defines variable p2 conditionally, but uses it
in mandatory code, adding a new dependency. We find only one issue for each case: (I)
in libpng, and (II) in gzip.

Developers introduce unused functions in two cases: (I) conditionally defining a func-
tion and calling it in code encompassed with different preprocessor conditional directives,
ending up in a feature dependency; and (II) removing a call to a conditionally defined
function, and adding another call to a mandatory function, thus creating a new depen-



47

Figure 24 – Introducing undeclared variables.

- 1.   A#ifndef
+ 2.   A#ifdef
  3.   p1;  int
  4.  #endif
  5.  #ifdef A
- 6.  p1;  int 
  7.    p1 = func1();
  8.  #else
  9.    p1 = func2();
  10. #endif

+ 1.   func3() {void
+ 2.  #ifdef A
+ 3.    int p2;
+ 4.  #endif
+ 5.    …
+ 6.    p2 = func4();
+ 7.    …
+ 8.  }

+ Including line Removing line-

I II

Source: Author’s own elaboration.

dency. Figure 25 depicts these two cases. We find that 86% of unused functions follow
case (I): Bash (4), libpng (1), and m4 (1); and 14% follow case (II): libpng (1).

Figure 25 – Introducing unused functions.

+ 1.   A#ifdef
+ 2.   func1() {void
+ 3.  …  
+ 4.  }
+ 5.  #endif
+ 6.  func2() {void 
+ 7.  #if defined(A) && defined (B)
+ 8.    func1();
+ 9.  #endif
+ 10. }

- 1.   A#ifdef
- 2.  void func3() {
- 3.    …
- 4.  }
- 5.  #endif
    void 6. func4() {
  7.    …
  8.  }
  9.  func5() {void 
  . 10 A#ifdef 
- 11.   func3();
+ 12.   func4();
  13. #endif
  14. }

+ Including line Removing line-

I II

Source: Author’s own elaboration.

Regarding the unused variables we find in our study, developers introduce them fol-
lowing two cases: (I) adding a new variable to mandatory code and using this variable
only in optional code; and (II) moving the uses of a variable to optional code. In both
cases, developers add new dependencies in the process. Figure 26 depicts these two cases.
Case (I) is the most common (80%): Bash (8); and 20% follow case (II): Bash (1), and
libssh (1).

We also analyze whether developers introduce variability bugs by changing mandatory
or optional code. Our results reveal that developers introduce most of the bugs we detect
(63%) when working on optional code, when compared to bugs introduced in mandatory
code (37%).
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Figure 26 – Introducing unused variables.

  1.   func1() {void
  2.    …
+ 3.    int p1;
  4.    …
+ 5.  #ifdef A
+ 6.    p1 = func2();
+ 7.  #endif
  8.    …
  9.  }

  1.   func3() {void
  2.     p2;int
  3.    …
+ 4.  #ifdef B
  5.    p2 = func4();
+ 6.  #endif
  7.    …
  8.  }

+ Including line Removing line-

I II

Source: Author’s own elaboration.

4.3.3 Summary

The corpus of dependency-related variability bugs gathered in our study is a valuable
source to study variability bugs, compare sampling algorithms, and test and improve
variability-aware tools. Besides the bugs themselves, this corpus also includes ways in
which developers introduce them in practice. These different ways can be explored for
developing techniques to detect such bugs as soon as their introduction, through pattern-
matching, for instance. Another possibility is that these cases can provide guidance for
sampling algorithms, indicating which configurations to test. Thus, developers of bug
finder tools can use our results to provide support for detecting variability bugs and
consequently minimize them in practice, improving software quality.

4.3.4 Threats to validity

Now, we present the threats to validity. To structure this section, we again follow the
Cook and Campbell validity system (26).

Construct Validity. We have to check whether the variability bugs we find appear
in valid configurations or represent false positives. To minimize this threat, we perform
two tasks: (i) for the systems we know configuration option constraints in advance, we
set TypeChef to take them into account and consequently avoid analyzing invalid config-
urations (e.g., Bash, libssh, and Privoxy); and (ii) ask the actual developers to confirm
each variability bug not fixed in the software repository. Unfortunately, most projects do
not provide constraints information explicitly.

Internal Validity. We analyze the issues manually, which is a time-consuming and
error-prone activity. Nevertheless, because we get feedback from the actual developers
and confirm the variability bugs we report, we minimize this threat.

External Validity. To scale our analysis, our strategy considers only one configura-
tion of header files. We use GCC and generate only header files for the Linux platform.
However, notice that we may face false negatives due to this limitation. In this context,
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our strategy may miss some variability bugs that occur only for other platforms, such as
Windows and Mac OS. Still, in our study, we find 32 variability bugs regarding feature
dependencies, and we confirm them either by checking if developers fixed them in software
repositories or by getting feedback from developers. Also, we analyze subject systems of
different domains, sizes, and different number of developers. We select well-known and
active C software systems used in industrial practice. Their communities exist for years
and they are in constant development. Therefore, we alleviate this threat.

Table 8 – Variability bugs detected in our empirical study.

Project File Kind Fix/New Optional/Mandatory
bash macro.c unused variable new optional
bash display.c unused variable fix optional
bash error.c unused variable new optional
bash execute_cmd.c unused variable new optional
bash finfo.c unused variable new mandatory
bash general.c unused variable new mandatory
bash malloc.c unused variable new optional
bash shell.c unused variable fix mandatory
bash watch.c unused variable new mandatory
bash execute_cmd.c undeclared function fix optional
bash variables.c unused function new optional
bash pcomplete.c unused function - -
bash bashline.c unused function new optional
bash array.c unused function new -

gnuchess getopt.c undeclared function new optional
gzip deflate.c undeclared function new optional
gzip util.c undeclared function new -
gzip deflate.c undeclared variable new -
libpng iccfrompng.c undeclared function new mandatory
libpng iccfrompng.c undeclared function new mandatory
libpng iccfrompng.c undeclared function new mandatory
libpng iccfrompng.c undeclared function new mandatory
libpng pngpixel.c undeclared function new mandatory
libpng pngpixel.c undeclared function new mandatory
libpng pngrutil.c undeclared variable new optional
libpng pngvalid.c unused function fix optional
libpng pngget.c unused function new optional
libssh dh.c unused variable fix optional
libssh keyfiles.c undeclared function fix optional
lua loadlib_rel.c undeclared function fix optional
m4 input.c unused function fix optional

privoxy filter.c undeclared function - -

Notes: (-) We do not find the necessary information to answer the research question, for instance, in case we
detect a bug in the first commit available for analysis, so, we miss information regarding how developers introduce
the variability bug. Developers introduce bugs by adding new code, and by modifying existing code (fix), see
column “Fix/New”. They introduce bugs by adding / modifying mandatory or optional code, as we can see in
column “Optional/Mandatory”.

Source: Author’s own elaboration.
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5 RELATED WORK

In this chapter, we present the related work regarding feature dependencies (Sec-
tion 5.1), variability bugs (Section 5.2), and C preprocessor usage (Section 5.3).

5.1 Feature dependencies

Prior studies investigated the occurrence of feature dependencies in preprocessor-based
families. Ribeiro et al. presented an empirical study on the impact of feature dependencies
during maintenance of software families (8). This study comprised 43 families written in
C and Java. They developed a tool based on srcML (24) to generate abstract syntax trees
from source code and collect data regarding intraprocedural dependencies in such families.
They found that 65.92% ± 18.54% of methods contain intraprocedural dependencies. In
our study, we focus on families implemented in C, in a total of 40 software families.
Instead of srcML, our tool uses TypeChef (43), which is a more robust solution as it
can handle code containing undisciplined annotations, which srcML cannot (11). We
extend their study by collecting data regarding three types of dependencies: besides
intraprocedural, we consider global and interprocedural. In addition, we also classify the
dependencies according to their direction, and identify the dependency depth distribution
of the interprocedural dependencies.

In another study, Ribeiro et al. (2) presented Emergo, a tool capable of inferring inter-
faces from dataflow analysis on demand. Emergo uses emergent interfaces (44) to raise
awareness of intraprocedural and interprocedural feature dependencies during the main-
tenance of configurable systems. Later, Ribeiro et al. (3) conducted an experiment that
showed that the awareness of feature dependencies decreases the effort and reduces errors
on maintenance tasks. In our work, we present the depth distribution for interprocedu-
ral dependencies found on some software families. This information can possibly benefit
Emergo and similar tools, as the call depth is a required parameter in the computing of
emergent interfaces. A low depth value may prevent the detection of some feature depen-
dencies, while a high depth value may cause performance issues. Thus, we complement
their work by providing the depth distribution, which might be helpful to better set tools
like Emergo.

Queiroz et. al. (45) analyzed the correlation between software complexity and feature
dependencies in 45 preprocessor-based software families and product lines. Moreover,
their study also pointed which preprocessor directives (such as #ifdef or #elif) are
responsible for the largest number of dependencies. While they classify dependencies
by preprocessor directive, we perform a classification by direction. Besides, their work
comprised only intraprocedural dependencies, whilst our work also includes global and
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interprocedural dependencies.
Cafeo et al. (46) conducted a comparative study of three programming techniques to

implement feature dependencies and their impact on SPL development. Authors analyzed
15 releases of three SPLs in Java, comparing conditional compilation, Aspect Oriented
Programming (AOP) (47), and Feature Oriented Programming (FOP) (48), assessing their
contribution to instabilities caused by feature dependencies in such SPLs. In our work,
we analyzed families written in C. All of them use conditional compilation to implement
variability, by using #ifdef and other preprocessor directives. Although we do not assess
the stability of such families, we quantify the occurrence of variability bugs regarding
feature dependencies.

5.2 Variability bugs

Some studies indicated that the indistinct use of C preprocessor may degrade the
understandability of the code, hampering its maintenance, and ultimately leading to the
introduction of errors (4, 5, 15). Recently, researchers investigated the occurrence of
errors that variability might induce. Medeiros et al. (7) conducted an exhaustive search
for syntax errors regarding preprocessor usage on 41 product family releases and over
51 thousand commits of 8 program families. They built a tool based on TypeChef to
parse the code and check for errors in all possible configurations. Their results showed
that such errors are not common in practice. In our work, we also use TypeChef to
perform variability-aware parsing, but we do not focus on the identification of syntax
errors. Instead, we focus on variability bugs such as undeclared variables and functions,
and unused variables and functions. Besides, in their work, they consider all syntax errors
regarding preprocessor directives, not only the ones related to feature dependencies.

Abal et al. (17) performed a qualitative study of 42 variability bugs found on the Linux
kernel. As well as syntax errors, their study also includes semantic errors. They collected
such bugs from bug-fixing commits to the Linux kernel repository. These bugs include 30
feature-interaction bugs, bugs that arise as a result of feature interactions. In our work,
we do not analyze syntax or semantic variability bugs, just undeclared variables and
functions, and unused variables and functions. Also, while they search for bugs already
fixed, our analysis also includes actual unfixed bugs.

Garvin and Cohen (29) investigated several bug reports regarding configuration-related
faults in two configurable systems: GCC and Firefox. They classified those faults accord-
ing to the feature selection in which they arise, such as faults caused by wrong features
being enabled or when a feature violates another one. They found that only three out
of 28 variability bugs were due to feature interactions. In our study, we classify the vari-
ability bugs we find according to the type of issue they cause, not according to how their
features interact. Besides, we consider a much larger selection of systems. In addition,
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we do not restrict our corpus of variability bugs to already fixed ones, since some of bugs
we find were still unreported.

5.3 C preprocessor usage

Several studies analyzed the usage of variability mechanisms of C preprocessor, cpp.
Ernst et al. (9) presented an empirical study concerning C preprocessor usage. They
analyzed 26 C software families, collecting data regarding the occurrence of preprocessor
directives and macro usage. They also measured to what extent macro dependences occur
in the analyzed families, that is, the dependence of a line of code on a macro. In our work,
we analyze a broader set of C software families, although some families are common to
both studies. We also present data regarding preprocessor directives occurrence, but we
focus on the number of functions which contain such directives. Besides, the feature
dependencies we analyze do not relate to their concept of macro dependence. While they
basically count the number of lines of code depending on a macro, we go beyond by taking
into account the sharing of a variable across different features.

Liebig et al. (6) analyzed 40 product families implemented in C to gather information
regarding feature code scattering and tangling in the use of preprocessor directives. Later,
Liebig et al. (11) analyzed the discipline of preprocessor annotations in those families. In
both studies they developed a tool using srcML to perform their analysis. Likewise, in our
first study we also analyze 40 product families, although not exactly the same families.
However, we focus on the analysis of the feature dependencies in such families.

Hunsen et al. (49) performed a study to understand how the C preprocessor is used in
open-source and industrial systems. Their study answers questions regarding general use
and size of cpp-annotated code, and the scattering, tangling, and nesting of preprocessor
directives. They analyzed 33 software families, including open-source and proprietary
software, relying on srcML to generate ASTs from source code. In our work we do not
focus on understand how developers use cpp. Instead, we aim to understand feature de-
pendencies and how developers introduce variability bugs related to feature dependencies.

Similarly, Queiroz et. al. (50) conducted an analysis of 20 well-known C preprocessor-
based systems from different domains, gathering statistics regarding scattering, tangling,
and nesting depth of preprocessor annotations. We do not consider such statistics in our
work, since we focus on feature dependencies and their implications.
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6 CONCLUDING REMARKS

This work presents two empirical studies to better understand the occurrence of fine-
grained feature dependencies in C program families and their implications.

Firstly, we present three scenarios to illustrate that different types of feature depen-
dency might cause problems.

Next, we perform a first empirical study of 40 C software families to answer our re-
search questions. Our results show that feature dependencies are fairly common in prac-
tice, except for global dependencies. We find intraprocedural dependencies in 51.44% ±
17.77% of the functions containing preprocessor directives. We find global dependencies
in only 12.14%± 10.46% of the functions which use global variables. Despite being more
problematic, this type of dependency is less common. Regarding interprocedural depen-
dencies, we find them in 25.98% ± 19.99% of the functions. This data is concerning,
since interprocedural dependencies are at least as problematic as global dependencies,
as both can spread through different files, being easier to miss them. Our results also
show that the most common dependency direction is mandatory-to-optional, occurring in
54.47%± 31.08% of all dependencies. This means that developers are more likely to face
a dependency when maintaning mandatory code. Finally, we find that the dependency
depth distribution for interprocedural dependencies varies considerably, depending on the
family we analyze. In our results, the average depth ranges from 1 to 23.40± 11.20.

Then, we conduct a second empirical study of 15 C software families to assess the
problems feature dependencies might cause. To do so, we define a strategy to identify
variability bugs that minimizes the setting up problems of variability-aware tools and
allows us to analyze several systems. This second study answers questions related to
how often software families have variability bugs regarding feature dependencies, and
how developers introduce such bugs. In summary, we find 32 distinct variability bugs
related to the presence of feature dependencies, including 13 undeclared functions, 2 un-
declared variables, 7 unused functions, and 10 unused variables that appear only in some
configurations of the source code.

Both empirical studies presents findings that may be helpful to understand feature de-
pendencies and variability bugs, develop tools and techniques to minimize such problems,
and improve software quality.

6.1 Review of the contributions

This work makes the following contributions:

• Data on feature dependency that reveal to what extent they are common in practice,
complementing previous work;
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• A tool to compute code level feature dependencies based on TypeChef variability-
aware parser;

• A corpus of variability bugs that researchers can use to study variability bugs and
test and improve variability-aware tools;

• Findings showing how developers introduce variability bugs when maintaining soft-
ware families;

• A strategy that makes feasible the task of analyzing variability bugs in several
software families.

6.2 Limitations

Our work has some limitations:

• The notion of feature dependency we consider takes only intraprocedural, global,
and interprocedural into consideration;

• Our analysis captures only purely syntactic dependencies, by navigating throughout
the AST looking for variables definitions and uses, as well as functions definitions
and calls. Another technique suitable to this task is the dataflow analysis;

• The tool we create to compute dependencies do not capture all possible existing
feature dependencies, specially the ones regarding global variables, due to reasons
explained in Section 3.2.6;

• We restrict our variability bugs analysis to four kinds of issues: undeclared variables
and functions, and unused variables and functions, when such issues involve feature
dependencies. Still, we can extend our infrastructure to add more checkers.

6.3 Future work

In particular, we intend to complement this work with the following:

• In our first empirical study, we analyze 97.70% of all source files. We intend to
enhance our technique so we can analyze all files and provide more accurate results;

• Another point to improve is the global dependency detection, particularly when
functions use global variables after some other function modifies them, which our
strategy currently neglects. We intend to use a dataflow analysis approach, so we
can have a more precise global dependency identification;



55

• In our second empirical study, we analyze 15 software families, compared with 40 of
the previous study. This reduction is due to the time required to prepare each family
for analysis, including setting up the environment, managing package dependencies,
and so on. As a future work, we intend to use our second study strategy in all 40
families we analyze previously, since we expect to find even more variability bugs in
families that were left out;

• Our variability bugs analysis includes only four kinds of issues: undeclared variables,
undeclared functions, unused variables, and unused functions. We intend to add
more checkers to our strategy, so we can detect a wider set of variability bugs.
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