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Resumo

O problema TEMPO MÍNIMO DE TRANSMISSÃO (TMT) é um problema conhecido de dissemina-

ção de dados, com o objetivo é encontrar um esquema de transmissão que minimize o número

de passos necessários para executar a operação de transmissão.

O TEMPO MÍNIMO DE TRANSMISSÃO COM PESO (TMTP) é uma generalização do TMT, de

forma que cada operação tem um custo. Ambos os problemas têm diversas aplicações em

sistemas distribuídos, por exemplo, o processo de atualização de dispositivos em uma rede

ponto-a-ponto.

Este trabalho propõe Algoritmos Genéticos de Chave-Aleatória Enviesados (AGCAE) para

o TMT e o TMTP. Um algoritmo híbrido (AGCAE + Programação Linear Inteira) para o TMT.

Algoritmos para calcular um limite inferior para o TMT e o TMTP. Uma abordagem de refina-

mento, e métodos para criar instâncias com ótimos conhecidos para TMT e TMTP. Além disso,

um método para diminuir os grafos para o TMTP.

Foi realizado experimentos com o AGCAE em instâncias comumente utilizadas na literatura

e também em instâncias sintéticas massivas (até 1000 vértices), o que permite cobrir muitas

possibilidades de topologias reais da indústria.

A proposta comparou métodos exatos e heurísticas do estado-da-arte dos problemas. Os

algoritmos superaram as heurísticas mais conhecidas para TMT e TMTP.

Os experimentos demonstraram que estes algoritmos são uma boa alternativa quando mé-

todos exatos não podem ser aplicados. Para todas as instâncias do TMT com valor ótimo

conhecido, os algoritmos alcançaram o valor ótimo ou no máximo uma unidade para encontrar

o tempo mínimo de transmissão. Para todas as instâncias do TMTP, as abordagens alcançaram

ou melhoraram os resultados da literatura.

Keywords: Otimização combinatória, Tempo Mínimo de Transmissão, Metaheurísticas, Al-

goritmos Genéticos de Chave Aleatória Enviesados.
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Abstract

The MINIMUM BROADCAST TIME (MBT) is a well-known data dissemination problem whose goal

is to find a broadcast scheme that minimizes the number of steps needed to execute the broad-

cast operation. The WEIGHTED MINIMUM BROADCAST TIME (WMBT) is a generalization of the

MBT, such that each operation has a cost. Both problems have many applications in distributed

systems, e.g., the devices update process in a peer-to-peer network.

This work proposes Biased Random-Key Genetic Algorithms (BRKGA) for the MBT and

WMBT. A hybrid algorithm (BRKGA + Integer Linear Programming) for the MBT. Algorithms to

calculate a lower bound for the MBT and WMBT. A refinement approach and methods to create

instances with known optima for the MBT and WMBT. Moreover, reducing rules for the WMBT.

We carry out experiments with our BRKGA on instances commonly used in the literature

and also on massive synthetic instances (up to 1000 vertices), allowing us to cover many pos-

sibilities of real industry topologies. Our proposal compared state-of-the-art exact methods and

heuristics. Our algorithms outperformed the best-known heuristics for the MBT and WMBT. The

experiments demonstrated they are a very good alternative when exact methods cannot be ap-

plied. For all instances for the MBT with known optima value, our approaches either attained the

optimal value or missed it by at most one broadcast step. For all instances for the WMBT, our

approaches attained or improved the results of literature.

Keywords: Combinatorial Optimization, Minimum Broadcast Time, Metaheuristics, Biased

Random-Key Genetic Algorithms.
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1
Introduction

Broadcasting is the distribution of data in a network. According to Hedetniemi et al. (1988), it

has been studied since the early 1950s with Bavelas (1950). He studied the effectiveness of

different communication patterns in helping small groups solve common tasks. He considered

measures such as the time required to perform an information transmission task and several

problems, e.g., the gossiping problem. In the 1970s, the broadcasting problem became more

and more popular among researchers.

The MINIMUM BROADCAST TIME (MBT) problem (Farley et al., 1979) consists of finding the

shortest sequence of messages that allows the data to reach every node in the network. At each

time step, every node can transmit the message to at most a single neighbor. The goal is to

find a broadcast scheme that minimizes the number of steps needed to execute the broadcast

operation.

Figures 1.1-1.3 show a simple example of the MBT, where a dashed vertex indicates that

the vertex did not receive the message, and an arrow indicates a message sent at time t. In

this example, V0 = {g1} model a set of network gateways, whereas D = {d1,d2,d3} a set of

common network devices. A simple (feasible) solution for the presented problem is depicted in

Figure 1.2 and suggests a three-step broadcast. However, Figure 1.3 shows an optimal solution

that requires only two steps to broadcast the data throughout the network.

d2

d3d1

g1

Figure 1.1: Example scenario
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d2

d1

g1 d2g1

d1 d3

g1

d1

d2 g1

d1

d2

d3

Figure 1.2: Feasible broadcast solution.

d2

d1

g1

d3d1

g1 d2 g1

d1

d2

d3

Figure 1.3: Optimal broadcast solution.

1.1 Motivation

The MBT and its generalization, the WEIGHTED MINIMUM BROADCAST TIME (WMBT), have

many applications in distributed systems, such as the Internet of Things (IoT) and Wireless

Sensor Networks (WSNs) (Shang et al., 2010). These applications rely mainly on large-scale

machine communications. Hence, they need data dissemination techniques that combine high

reliability with low communication latency.

Besides distributed systems, the MBT has many other applications, including communication

among telephone networks (Ivanova, 2019), surveillance and reconnaissance (Dekker, 2002),

and Direct Memory Access (DMA) (Lazard, 1992). Next, we present applications in robotics,

satellite networks and an industrial with Bluetooth.

In the context of swarm robotics, the MBT can be used for solving the Freeze-Tag Problem

(Bucantanschi et al., 2007; Keshavarz et al., 2011). The problem is to devise a schedule to

activate all robots in the minimum amount of time. Activation of robots, other than the initial

robot, only occurs if an active robot physically moves to the location of an inactive robot.

Chu and Chen (2018) described a practical application on satellite networks. Antennas trans-

mit data over a long distance in a directed way. Each vertex represents a satellite or a base

station, and transmissions only occur one at a time. Each satellite has a transmission and setup

time, such that the first considers the time to transmit the data and the second considers the time

to redirect the antenna.

The original motivation for our work on the MBT was a network problem from an industrial

partner, which asked us to optimize their device update process. In their network, devices used

Bluetooth for intranet communication. Some of these devices (gateways) had a GPRS board for
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external communication. In preliminary experiments, they tested the update process considering

that the gateways had a firmware image of 200KB to broadcast. Two broadcasting techniques

were tested: peer-to-peer and Bluetooth mesh. In peer-to-peer, the nodes work in a MBT style

such that only one transmission occurs at a time per device, whereas in mesh this restriction

does not exist and a device can update more than one neighbor at the same time. The exper-

iments have shown that in peer-to-peer the update process took 2 minutes, and in Bluetooth

mesh, it took 4.5 hours. The main reason for this difference is that the mesh technique de-

manded more bandwidth, which in turn resulted in more network congestion and packet loss.

This observation was formally demonstrated in Robledo et al. (2020).

1.2 Message-passing systems

According to Tsou et al. (2013), the two most common models for studying message-passing

systems are the telephone model (Slater et al., 1981; Su et al., 2010) and the postal model (Bar-

Noy and Kipnis, 1994). In both models, the communication is made via calls between adjacent

vertices, by transmitting a single message from one sender to one receiver. In the telephone

model, each call takes one unit of time, and each vertex can only participate in one call at

any time. The postal model incorporates a communication setup phase and latency time. It is

introduced as the most appropriate for the message-passing system, which employs additional

parameters α≥ 0 and β≥ 0, called the setup phase and latency time, respectively.

In this model, each call consists of a setup phase, which takes α units times. Furthermore,

a sender can start a new call to another receiver when the transmission phase of its last call

finishes. For example, suppose that a vertex u wants to transmit a message first to v1 and then

to v2 at time 0. In its first call, u sets up the connection to v1 and after α units time sends the

message to v1. Thus, the call from u to v1 will be completed after α units of time, but v1 received

message in α+β units of time. Since the setup phase of the first call is finishes at time α, the

call from u to v2 must be completed after 2 ·α units of time, but v2 receives the message in

2 ·α+β units of time.

Rico-Gallego et al. (2019) present these models generics, considering a setup phase or

connection time α and transmission time β. Where α is assumed to be a constant and β varies

from edge to edge. Hence, the transmission time between the sender v and receiver u is βv,u.

The telephone model considers that the device must be set up only once and then can

transmit. That is, if the sender v transmits to u1, u2, . . . and un, thus broadcast time is defined

as:

b(v) = α+ max
i∈{1,2,...,n}

((
i

∑
j=1

βv,u j)+b(ui)).

On the other hand, the postal model considers that the device must be set up for each

connection, and then it can transmit. That is, if the sender v transmits to u1, u2, . . . and un, thus
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broadcast time is defined as:

b(v) = max
i∈{1,2,...,n}

(i ·α+βv,ui +b(ui)).

Figure 1.4 shows an example instance of the MBT. Figures 1.5.a and 1.5.b show the broad-

cast scheme for the telephone model and postal model with αg1 = 2, αd1 = αd2 = αd3 = 0,

βg1,v1 = 1, βg1,v2 = 2, and βg1,v3 = 3. The ordering of transmissions is arbitrary. In Figure 1.5.a,

the vertex g1 transmits to v1, v2 and v3. Note that g1 has only one setup phase before the first

sending. The remaining transmissions do not have this phase. On the other hand, in Figure

1.5.b (that illustrated the postal model), the vertex g1 transmits to v1, v3 and v2. Note that, before

each transmission, there is a setup phase.

v2
0

v3
0

v1
0

g1
2

1 23

Figure 1.4: Network with connection time and transmission time

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8
g1 v1 v2 v3

(a) Telephone model

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8
g1 v1 v2 v3

(b) Postal model

Figure 1.5: Telephone and postal models
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1.3 Optimization

Gomez et al. (2004) define optimization as “doing the most with the least” and Lockhart and

Johnson (2000) define optimization as “the process of finding the most effective or favorable

value or condition”. Optimization is the act of finding the input parameters or arguments to a

function that result in the minimum or maximum output of the function. Classical optimization

models are mathematical programming, combinatorial optimization, constraint satisfaction, and

nonanalytic. Mathematical programming can be divided into continuous, integer, and mixed for

linear or nonlinear models (Talbi, 2009).

Combinatorial problems can be identified in the most diverse real applications such as plan-

ning, production, coordination, investment, transportation, communication, among others. Com-

binatorial problems can be identified in the most diverse real applications such as planning,

production, coordination, investment, transportation, communication, and others. Furthermore,

they can be examined, formulated and solved, using techniques from different areas of knowl-

edge such as engineering, biology, economics and computer science. To solve one of these

problems, you must maximize/minimize a given function with one or several variables, so that all

constraints are satisfied. Those constraints are modeled in the form of equations or inequalities.

However, solving some problems might be hard, since they can belong to the N P -hard com-

plexity class. In these cases, their resolution through exact methods is ineffective in instances

of high dimensions. They need memory and processor time, so maybe it is not suitable prac-

tical to use them. But, approximate or heuristic methods can generate high-quality solutions in

acceptable time for practical use, but there is no guarantee of finding a globally optimal solution.

1.3.1 Exact algorithms

Exact methods obtain optimal solutions and guarantee their optimality. For N P -hard problems,

we do not know a polynomial-time algorithm to solve them. We include some classical algorithms

as dynamic programming, and branch-and-X family of algorithms (branch-and-bound, branch-

and-cut, branch-and-price) (Padberg and Rinaldi, 1987; Barnhart et al., 1998).. Both methods

perform the search by subdividing it into smaller problems of the same kind. Another exact

approach is to transform combinatorial problems into linear programming (LP) and integer linear

programming problems and then solve them using a mathematical programming solver.

1.3.2 Approximate algorithms

Approximate methods generate high-quality solutions in a reasonable time for practical use,

but there is no guarantee of finding a globally optimal solution. In the class of approximate

methods, two subclasses of algorithms may be distinguished: approximation algorithms and

heuristic algorithms (Talbi, 2009).
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Heuristics find “good” solutions on large-size problem instances. They allow obtaining ac-

ceptable performance at acceptable costs in a wide range of problems. In general, heuristics do

not have an approximation guarantee on the obtained solutions. Specific heuristics are tailored

and designed to solve a specific problem and/or instance. Greedy or constructive algorithms

start from scratch (empty solution) and construct a solution by assigning values to one decision

variable at a time, until a complete solution is generated (Gendreau and Potvin, 2010).

Approximation algorithms are similar to heuristics algorithms, but they ensure that the bound

of the obtained solution is from the global optimum. An k-approximation algorithm generates an

approximate solution not less than a factor k times the optimum solution (Vazirani, 2001).

1.3.3 Metaheuristics

Unlike heuristics that are designed to solve a specific problem, metaheuristics are general-

purpose algorithms that can be applied to solve almost any optimization problem. They may

be viewed as upper-level general methodologies that can be used as a guiding strategy in

designing underlying heuristics to solve specific optimization problems. Metaheuristics allow

tackling large-size problem instances by delivering satisfactory solutions in a reasonable time.

There is no guarantee to find globally optimal solutions or even bounded solutions. Their use in

many applications shows their efficiency and effectiveness to solve large and complex problems

(Sorensen et al., 2017).

In designing a metaheuristic, two contradictory criteria must be taken into account: (i) the

exploration of the search space (diversification) and (ii) the exploitation of the best solutions

found (intensification). We can determine if a region is promising by the quality of its solutions.

In intensification, a promising area is explored more deeply in the hope of finding better solutions.

In diversification, unexplored areas should be visited to make sure that all regions of the search

space are explored evenly and that the search is not limited to just a small number of regions.

Talbi (2009) classifies metaheuristics into two groups: single-solution-based and population-

based metaheuristics. For single-solution-based metaheuristics, the main idea is to find high-

quality solutions interactively. The initial solution is the first solution. It can be entirely random,

greedy, or a combination of both. The neighborhood of a solution s is a set of similar solutions,

which can be generated from s by applying predefined “small” perturbations. The algorithm

can accept a quality improvement or move to worst solution. These features may vary for each

metaheuristic.

The population-based metaheuristics approach maintains and improves multiple candidate

solutions, often using population characteristics to guide the search. The candidates have a

cooperative relationship, where this relationship designs from a kind of metaheuristic. There

are such as ACO (ant colonies optimization), GA (genetic algorithms), GRASP (greedy adaptive

search procedure), ILS (iterated local search), PSO (particle swarm optimization), SA (simulated

annealing), TS (tabu search), and VNS (variable neighborhood search). Now, we will show an
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overview of GA and detail the biased random-key genetic algorithm.

Genetic algorithms (GA) is a population-based metaheuristic that relies on the principles of

natural selection. It can be viewed as an iterative improvement in a population of solutions. A

GA usually has seven steps (Holland, 1975): (i) Initial population, (ii) Evaluation, (iii) Selection,

(iv) Recombination, (v) Mutation, (vi) Replacement, and (vii) Repeat (ii)—(vi). First, the

population is initialized and evaluated. Then, a new population of solutions is generated using

some selection, followed by recombination and mutation procedures. Finally, this new population

is integrated into the current one.

In a GA, each individual is referred as a chromosome, which encodes a candidate solution. A

chromosome consists of a string of genes whose values are called alleles. An objective function

associates a fitness value with each individual indicating its fitting to the problem. In the evolving

process, individuals are selected to reproduce, and a crossover operator is used on the selected

individuals to produce new offspring that make up the next generation. In addition, mutation

operators are involved in this process. Finally, a replacement step is applied to determine which

individuals of the population (parents and offspring) will survive.

The proposed GA is not similar to classical Genetic Algorithms (Holland, 1975), where in-

dividuals are represented using a binary array and modified by some mutation operator. Our

algorithm is based on more recent implementations using random-keys encodings. In random-

key genetic algorithms (RKGA), developed by Bean (1994), the chromosomes consist of vectors

of real numbers generated randomly in the range [0,1). Besides, a deterministic algorithm called

decoder processes the vector to calculate the fitness of the solution. RKGA does not make use

of the standard mutation operator, where some alleles are changed with a given probability. In-

stead, new (mutant) solutions are randomly generated and introduced in the current population

in each generation, in the same way as the initial population is created.

A biased random-key genetic algorithm (BRKGA) (Gonçalves and Resende, 2011) differs

from an RKGA in the way parents are selected for crossover. As shown in Fig. 1.6, at each

generation, the population is partitioned into two parts: elite and non-elite. The elite part contains

the best solutions in the total population and is simply copied to the next population generation.

The remaining elements are created by crossover or randomly generated (mutants). In the

recombination phase, each new individual is generated by combining one individual selected

from the elite set and another individual selected from the non-elite population. The elite parent

has a higher probability of passing its genes to the offspring generation, i.e., a biased selection

via the parameterized uniform crossover operator proposed by Spears and Jong (1991). This

process is illustrated in Fig. 1.6, where ρe = 0.7 (70%) is the probability that the offspring will

inherit each of its alleles from the best fit of the two parents. Gonçalves et al. (2014) made

an empirical comparison of biased and unbiased random-keys genetic algorithms in four types

of covering problems and has shown that the biased variant is faster than the original Bean’s

algorithm.
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Figure 1.6: BRKGA

1.3.4 Matheuristics

Matheuristics are optimization methods that integrate mathematical programming techniques

into a heuristic framework (Boschetti et al., 2009). A matheuristic combines a metaheuristic with

exact methods, such as algorithms from mathematical programming and constraint program-

ming. Both components of a hybrid metaheuristic may run concurrently and exchange informa-

tion to guide the search. Coupling metaheuristics and exact methods is a promising alternative in

solving many combinatorial optimization problems. The interest in hybrid approaches has rapidly

grown especially due to several inspiring results obtained by the union of these two methods.

1.4 Objectives

Our work is centralized in solving the MBT and the WMBT using a Biased Random-Key Genetic

Algorithm (BRKGA). We focus on large and sparse networks since they are the hardest instances

to find the optimal solution (Hasson and Sipper, 2004). Finally, our proposal can be summarized

as follows (see Figure 1.7):
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• For MBT:

(i) An algorithm to calculate a lower bound;

(ii) A BRKGA metaheuristics;

(iii) A BRKGA metaheuristics coupled with a refinement approach;

(iv) A hybrid algorithm (BRKGA + ILP);

(v) A method to create instances with known optima;

• For WMBT:

(i) Three exact models (one for each variant of the WMBT);

(ii) An algorithm to calculate a lower bound;

(iii) A polynomial algorithm to calculate the WMBT of trees;

(iv) Two BRKGA metaheuristics coupled with a refinement approach;

(v) A method to create instances with known optima.

1.5 Structure of the Thesis

This work is structured as follows: Chapter 2 is the outcome of an article in revision in the

International Transactions in Operational Research (ITOR). It presents the definition, related

work of the MBT, and our proposals for the MBT. Chapter 3 introduces the definition, related

work of the WMBT, and our contributions to the WMBT. Finally, Chapter 4 includes our final

considerations.
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Figure 1.7: Overview of this work.
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Minimum Broadcast Time

The MINIMUM BROADCAST TIME is a classical N P -hard problem (Garey and Johnson, 1979,

problem ND49). The problem can be formally defined as the following. Let G = (V,E) be

an undirected connected graph and V0 ⊆ V a subset of vertices (message originators) which,

initially, contain a given message. Let Vt be the set of vertices that receive the message at time

t or earlier, with 1 ≤ t ≤ T , where T is an upper bound for the broadcast time. From these

definitions, the MBT asks to find a sequence V0,E1,V1,E2, . . . ,Ek,Vk that minimizes k, such

that Vk = V . In addition, for each t ∈ {1, . . . ,k}, the following constraints hold: (i) each edge

in Et has exactly one endpoint in Vt−1, (ii) no two edges in Et share a common endpoint, and

(iii) Vt =Vt−1∪{v : (u,v) ∈ Et}.
Here, we have some terminology that will be used throughout this work.

Definition 1. The broadcast scheme, denoted as BS, is a sequence of vertices and edges V0,

E1, V1, . . . , VT that describes a solution.

Definition 2. Broadcast tree BT is a directed spanning tree that describes a solution.

Definition 3. Broadcast time of vertex v0 in G, denoted as b(G,v0), is minimum number of steps

to v0 broadcast the message for all vertices in V .

Definition 4. Broadcast time of graph G is defined by b(G) = min
v0∈V

(b(G,v0)).

Definition 5. Broadcast center of graph G is defined as BC(G) = {v0 ∈V | b(v0) = b(G)}.

Definition 6. A graph G is called broadcast graph if max
v0∈V

(b(G,v0)) = dlog2 |V |e.

Definition 7. A minimum broadcast graph (MBG) is a broadcast graph with a minimum number

of edges.

11
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2.1 Related Work

This section introduces the related work on the MBT. Given its potential for modeling many

real-world applications, the MBT has attracted considerable research interest, and several exact

(de Sousa et al., 2018; Ivanova, 2019), approximation (Elkin and Kortsarz, 2003; Kortsarz and

Peleg, 1992), and heuristics (Scheuermann and Wu, 1984; Hoelting et al., 1996; de Sousa et al.,

2018; Hasson and Sipper, 2004) algorithms have been proposed.

In some special situations, for instance, when |V0| = 1 and the graph is a tree (Koh and

Tcha, 1991; Su et al., 2010) or a complete grid (Wojciechowska and Scoy, 1999), the MBT can

be optimally solved in polynomial time. For arbitrary graphs, the exact approaches include a

dynamic programming algorithm (Scheuermann and Wu, 1984) and the ILP models presented

by de Sousa et al. (2018) and Ivanova (2019). Currently, the ILP model suggested by de Sousa

et al. (2018) is the best exact method. However, this model is able to solve in reasonable times

only instances of up to approximately 50 vertices, which is an insufficient number for real-world

industrial applications (this model is presented in Section 2.2.4).

Other works proposed approximation algorithms, constructive-based heuristics and meta-

heuristics. Approximation algorithms for MBT are studied in Kortsarz and Peleg (1992), where

the authors introduce an O(
√

n)-additive approximation algorithm for broadcasting in general

graphs with n vertices. This work also proposes several approximation algorithms for graph

classes with small separators, with an approximation ratio proportional to the separator size

times logn. Another algorithm with O
(

logn
log logn

)
-approximation ratio is presented in Elkin and

Kortsarz (2003).

Scheuermann and Wu (1984) were the first to propose heuristics for the problem, with two

constructive-based heuristic algorithms: Least Weight Maximum Matchings (LWMM) and Ap-

proximate Matching (AM). The AM presented better results. Next, Hoelting et al. (1996) pro-

posed a genetic algorithm (GA), the first metaheuristic for the MBT. They compared their GA

with AM, and the experimental results indicated that the GA produces better broadcast time val-

ues. Hasson and Sipper (2004) proposed an ant colony system (ACS) algorithm and compared

it with LWMM, AM and GA. The ACS presented the best results in comparison with the other

heuristics.

We present a summarized the literature’s approaches. Table 2.1 lists the main articles about

MBT in the literature.

Table 2.1: List of articles about MBT in the literature.

Article Approach Observation

Scheuermann and Wu (1984) Exact and heuristic algorithms -

de Sousa et al. (2018) ILP model and heuristic algorithm -

Ivanova (2019) ILP model and lower bound -

Hoelting et al. (1996) Metaheuristic algorithm -

Hasson and Sipper (2004) Metaheuristic algorithm -

Continued on next page
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Table 2.1 – continued from previous page

Article Approach Observation

Slater et al. (1981) Polynomial time algorithm
For broadcast center problem, when graph is a tree

and |V0|= 1.

Koh and Tcha (1991) Polynomial time algorithm
For MBT, when graph is a tree and |V0| = 1. With

complexity O(|E| log(|E|)).

Su et al. (2010) Polynomial time algorithm
For MBT, when graph is a tree and |V0| = 1. With

complexity O(|E|).
Wojciechowska and Scoy (1999) Polynomial time algorithm For MBT, when graph is a complete grid and |V0|= 1.

2.2 Algorithmic approaches for the MBT

This section introduces our proposals for the classical MBT. Section 2.2.1 proposes synthetic

instances for the MBT. Section 2.2.2 describes a lower bound algorithm for the MBT. Section

2.2.3 presentes some decoders for the MBT. Finally, Section 2.2.4 shows a matheuristic for the

MBT.

2.2.1 Synthetic instances for the MBT

Given that the optimal solution for large MBT instances is often unknown, we generated a new

benchmark with known optimal solutions using the following procedure.

Let the instance G = (V,E) be defined by the union of a binomial tree Bk = (VB,EB) and

a random graph Gr = (Vr,Er), where V = VB = Vr and E = EB ∪Er. The binomial tree Bk is

an ordered tree defined recursively as follows: (i) B0 is a trivial graph, (ii) Bk is constructed from

two binomial trees Bk−1 by attaching one of them as the rightmost (can be leftmost) child of the

root of the other. Figure 2.1 shows the binomial trees B0 through B3. Note that the MBT of a

binomial tree Bk is equal to k if the root of Bk is in V0. The random graph Gr is based on the

G(n, p) model, also known as the binomial model (Gilbert, 1959). Each graph Gr = (V,Er) is

generated with n vertices and each potential edge in Er is created with probability p. In Figure

2.2, we apply a union of graphs B3 and Gr and we obtain a synthetic graph G with 8 vertices.

1
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Figure 2.1: Examples of binomial trees.
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Figure 2.2: Building a synthetic instance.

This methodology can be applied to create synthetic instances with multiple sources (|V0|>
1). The idea is simple, we will build |V0| binomial trees and connect them with a random graph.

In Figure 2.3 we created a synthetic instance with V0 = {1,5}.
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Figure 2.3: Building a synthetic instance with 2 sources.

2.2.2 Lower bound algorithm

In many practical applications, bounds on the optimal solutions are sufficient. Bounds can also

help solvers to prove the optimally of a solution. Clearly, |V | − |V0| is an upper bound for the

optimal broadcast time. Furthermore, the value

T LB(G,V0) =

⌈
log2

|V |
|V0|

⌉
(2.1)

defines a theoretical lower bound for the MBT (Ivanova, 2019). It is easy to see that a complete

graph needs exactly
⌈

log2
|V |
|V0|

⌉
steps to broadcast.

A good estimate of the planning horizon length is very important for the performance of

a mathematical formulation. A tighter lower bound can reduce the number of columns in the

coefficient matrix and, thus, reduce the computational demand and the total amount of used

memory. Moreover, a lower bound can be used by a heuristic algorithm to prove the optimality

of a feasible solution, i.e., if a heuristic finds a solution whose value meets the lower bound, then

this solution is proved optimal.
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Algorithm 1 presents the pseudo-code for the proposed lower bound calculation. The pro-

posed lower bound, called LBB-BFS, is based on a multisource breadth-first search (BFS), start-

ing at every vertex of V0. Its main objective is to find the maximum shortest path between a target

vertex and its nearest source. Note a straightforward implementation of LBB-BFS, i.e., applying

a breadth-first search on each v ∈ V0, would require O(|V0| · |E|). This issue can be addressed

by labeling every vertex in V0 as discovered, and placing them at the beginning of the known

vertices queue Q0 (see lines 4–7). Overall, the worst-case running time of the LBB-BFS function

is O(|E|). A similar approach based on BFS has also been used by de Sousa et al. (2018) to

reduce the number of variables in their proposed ILP formulation.

Algorithm 1: Lower bound algorithm for the MBT.
Input : Undirected graph: G = (V,E),

Source set: V0
Output: Lower bound to broadcast: lowerBound

1 LBB-BFS(G,V0)
2 for each v ∈V do
3 dist[v]← ∞ // Set distance to infinity

4 Q← InitQueue() // Let Q be an empty queue
5 for each v0 ∈V0 do
6 dist[v0]← 0 // Set distance to zero
7 Q← Enqueue(Q, v0) // Enqueue v0 in Q

8 while not isEmpty(Q) do
9 v← Dequeue(Q) // Dequeue v of Q

10 for each u ∈ G.ad j[v] do
11 if dist[u]> dist[v]+1 then // Check the distance
12 dist[u]← dist[v]+1 // Update distance of u
13 Q← Enqueue(Q, u) // Enqueue v0 in Q

14 lowerBound←max
v∈V

(dist[v]) // Get higher distance

15 return lowerBound

Theorem 8. Algorithm 1 returns a lower bound for the optimum of the MBT with input graph

G = (V,E) and source set V0.

Proof. Let b∗ be the optimum of MBT for an instance (G,V0) and z be the value returned by

the LBB-BFS algorithm. Let v ∈ V0 be the closest vertex of V0 to a vertex ` ∈ V , such that the

distance between them is exactly z. We need at least z steps to reach ` from any vertex in V0.

Therefore, z≤ b∗, i.e., z is a lower bound for the optimum MBT value.

The lower bound is given by

LB(G,V0) = max(T LB(G,V0),LBB-BFS(G,V0)), (2.2)
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where TLB(G,V0) is defined in Eq. (2.1) and LBB-BFS(G,V0) is calculated by Algorithm 1.

Hence, if the best fitness in the current population is equal to LB(G,V0), the algorithm proves

that it is an optimal solution.

2.2.3 BRKGA decoders for the MBT

The only problem-specific part of BRKGA is the decoder, i.e., the procedure that converts random-

keys (chromosomes vector) into a solution for the problem. The following subsections present

the two proposed decoders for the MBT.

2.2.3.1 First receive first send decoder

Algorithm 2 describes our first decoder, called FRFS, which is based on the priority decoder of

Hoelting et al. (1996). The algorithm receives as input a graph G(V,E), source set V0, and

chromosomes vector Cr. It returns as output the MBT for the encoded candidate solution. In

this decoder, the chromosomes vector Cr has size |V |. Each allele Cr[v] represents the priority

of vertex v to receive a message. The lower the allele value, the higher the priority.

Algorithm 2: FRFS decoder.
Input : Undirected graph: G = (V,E), Source set: V0, Chromosomes vector: Cr
Output: Total step time to broadcast: time

1 FRFS(G,V0,Cr)
2 time← 0 // Init time
3 Transmitters←V0 // Set the initial Transmitters
4 Ranking← InitList() // Init Ranking list
5 for each v ∈ Sort(V0,Cr) do // Ordering in ascending order of allele value
6 Ranking← AppendItem(Ranking,v)

7 while Transmitters 6=V do
8 NewTransmitters← InitList() // Set the new transmitters
9 for each v ∈ Ranking do

10 u← argmin(Cr[u])
u∈N(v)\{Transmitters∪NewTransmitters}

// Get the best vertex

11 if u 6= /0 then
12 NewTransmitters← AppendItem(NewTransmitters, u) // Add the best

vertex in NewTransmitters

13 for each v ∈ NewTransmitters do
14 Transmitters← Transmitters∪{v} // Update Transmitters
15 Ranking← AppendItem(Ranking,v) // Update Ranking

16 time← time+1 // Increment time

17 return time

The algorithm starts by setting the variables time = 0 and Transmitters = V0 (lines 2–4),

where time represents the current time step, set Transmitters the vertices that have the mes-
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sage, and list Ranking the order of each transmitter. Next, it appends at list Ranking the vertex

v for each vertex v ∈ V0, in ascending order of allele value (lines 4–6). In the main loop (lines

7–16), the variable NewTransmitters indicates the list of vertices that receive the message in

step time. This loop is executed until all vertices are in set Transmitters. The main loop starts

by scanning, in order, each vertex v from list Ranking and selects the neighbor u of v that has

not yet received the message, ties are broken according to the allele value Cr[u]. The selected

vertex u is then added to the list NewTransmitters (line 12). In lines 13–15, the vertices in

NewTransmitters are added in Transmitters and appended at the end of the list Ranking. Fi-

nally, variable time is incremented (line 16). Overall, the worst-case running time of this decoder

is O(|V | · |E|).
The graph in Figure 2.4 (with only one source) and chromosomes vector in Table 2.2 show

an input example for the decoding procedure. We now describe the FRFS decoding procedure

for this example. Initially, vertex v1 is designated as the unique transmitter (Figure 2.5-a). Among

the neighbors of v1, vertex v3 has the highest priority value (according to its chromosome value),

hence vertex v1 sends the message to v3 (Figure 2.5-b). In time 2, only vertices v1 and v3 have

received the message. Because of the ordering in the Ranking list of the FRFS algorithm, v1 will

transmit first to vertex v4 (its second highest priority neighbor), and v3 transmits to v8 (Figure

2.5-c). Next, in time 3, v1 transmits to v2, and v4 transmits to v7 (Figure 2.5-d). Finally, in time

4, the other vertices receive the messages in the following order: v4→ v6 and v7→ v5 (Figure

2.5-e).

Figure 2.4: Input graph

v2

v3

v4

v5v6

v7v8

v1

Table 2.2: Chromosomes of input

Vertices v1 v2 v3 v4 v5 v6 v7 v8
Value(Cr ) 0.5 0.4 0.1 0.2 0.8 0.7 0.6 0.3

2.2.3.2 First Receive First Send with SCHA improvement

Preliminary experiments with the FRFS decoder have shown that this decoder has a poor perfor-

mance in sparse graphs. This motivated us to devise a new decoder, called FRFS-SCHA. This

new decoder combines FRFS with a greedy method, called SCHA, that is able to find in polynomial

time the optimal MBT on forest graphs. More specifically, in FRFS-SCHA, we use an adaptation

of the FRFS decoder to produce a forest that is then used as input to the SCHA algorithm. In the

following, we give more details about FRFS-SCHA.

Algorithm 3 introduces SCHA. This algorithm receives as input a forest graph F(V,E) and

source set V0. It returns as output the optimal MBT for the forest. SCHA iteratively calls function

MBT-Tree (line 5), which is an algorithm proposed by Su et al. (2010); Koh and Tcha (1991) for
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Figure 2.5: FRFS decoding procedure.

finding the MBT on tree graphs. Hence, SCHA finds the optimal MBT by calculating the MBT of

each tree in the forest, and then returning the greatest MBT among these trees. Given that the

asymptotic complexity of MBT-Tree is O(|V | · log2(|V |)), SCHA is O(|V | · log2(|V |)).

Algorithm 3: SCHA.
Input : Forest undirected: F = (V,E), Source set: V0
Output: Total step time to broadcast: time

1 SCHA(F,V0)
2 time← 0 // Init time
3 for each v0 ∈V0 do
4 T ← GetTree(F ,v0) // Get the tree with root v0
5 time← max(time, MBT-Tree(T ,v0)) // MBT of tree T from source v0

6 return time

Our new decoder FRFS-SCHA is depicted in Algorithm 4. In lines 2–16, FRFS was adapted to

produce a forest. In line 17, this forest is used as input to SCHA, which calculates the resulting

MBT. Because of the complexity of FRFS is O(|V | · |E|) and SCHA is O(|V | · log2 |V |), the worst-

case running time of this decoder is O(|V | · |E|).
Figure 2.6-b shows the resulting forest for the input example in Figure 2.4 and Table 2.2. The

solution obtained after the SCHA procedure is applied to this forest is depicted in Fig 2.6-a. Note

this solution is better than the solution previously obtained with the original FRFS (Figure 2.5-e).
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Algorithm 4: FRFS-SCHA decoder.
Input : Undirected graph: G = (V,E), Source set: V0, Chromosomes vector: Cr
Output: Total step time to broadcast: time

1 FRFS-SCHA(G,V0,Cr)
2 EF ← /0 // Init the set of edges from the forrest graph
3 Transmitters←V0 // Set the initial Transmitters
4 Ranking← InitList() // Init Ranking list
5 for each v ∈ Sort(V0,Cr) do // Ordering in ascending order of allele value
6 Ranking← AppendItem(Ranking,v)

7 while Transmitters 6=V do
8 NewTransmitters← InitList() // Set the new transmitters
9 for each v ∈ Ranking do

10 u← argmin(Cr[u])
u∈N(v)\{Transmitters∪NewTransmitters}

// Get the best vertex

11 if u 6= /0 then
12 NewTransmitters← AppendItem(NewTransmitters, u) // Add the best

vertex in NewTransmitters
13 EF ← EF ∪{(v,u)} // Add the edge in EF

14 for each v ∈ NewTransmitters do
15 Transmitters← Transmitters∪{v} // Update Transmitters
16 Ranking← AppendItem(Ranking,v) // Update Ranking

17 return SCHA((V,EF),V0) // Compute MBT of forest with SCHA
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Figure 2.6: FRFS-SCHA decoding procedure.

2.2.4 Proposed matheuristic

This section describes the proposed matheuristic, which combines an extension of the ILP model

of de Sousa et al. (2018) and our BRKGA. To the best of our knowledge, this is the first work to

propose a matheuristic for the MBT.

This is a small extension for the ILP model of de Sousa et al. (2018). Different from

the original model, ILP extension considers graphs with multi-source (i.e., |V0| > 1). Let

V = {0,1, · · · ,n− 1} be the set of vertices, V0 the set of sources, E the set of connections

between two vertices, and N(i) the set of neighboring vertices of vertex i. In the model, Ki is a

binary constant indicating whether or not vertex i is in V0, and Tmax a constant that represents
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an upper limit on the time in which a vertex receives the message (e.g., Tmax = |V |− |V0| is the

trivial limit). Finally, define T as a decision variable that represents the minimum broadcast time,

and xt
i j as a binary variable that has value 1 if the vertex i sends the message to the vertex j in

time t and 0, otherwise. Based on these elements, the ILP model is as follows:

min T (2.3)

s. t Ki + ∑
j∈N(i)

Tmax

∑
t=1

xt
ji = 1 ∀i ∈V (2.4)

∑
j∈N(i)

xt
i j ≤ 1 ∀i ∈V,∀t ∈ [1,Tmax] (2.5)

xt
i j ≤ Ki +

t−1

∑
τ=1

∑
k∈N(i)\{ j}

xτ

ki ∀(i, j) ∈ E, ∀t ∈ [1,Tmax] (2.6)

Tmax

∑
t=1

t · xt
i j ≤ T ∀(i, j) ∈ E (2.7)

T ∈ N (2.8)

xt
i j ∈ B ∀(i, j) ∈ E, ∀t ∈ [1,Tmax] (2.9)

Equation (2.3) is the objective function. Constraints (2.4) limit each vertex to receive only

one message at a time or to start with it. Constraints (2.5) require that each vertex sends at

most one message to a neighbor in each t. Constraints (2.6) establish that each vertex can

only transmit if it has already received the message. Constraints (2.7) state that the value of T

must be greater than or equal to the time of any transmission. Finally, Constraints (2.8) and (2.9)

define the domain of the decision variables.

Figure 2.7 illustrates the main ideas of the proposed matheuristic. First, given a problem

instance, the matheuristic uses BRKGA to generate and maintain a pool of candidate solutions.

After some BRKGA iterations without improvement in this pool, the matheuristic combines the

solutions in the pool through a merging process. The merging process generates a subgraph

that contains the original instance vertices and some edges from the solutions in the pool. Next,

the matheuristic uses the ILP model to solve the problem instance induced by this subgraph.

Note that solving the induced problem instance is far easier than solving the original instance.

The solution obtained through the ILP model is then added to the pool of solutions, and some

other solution is removed from the pool. The process in Figure 2.7 is then repeated until a stop

criterion is met.

Algorithm 5 details the proposed matheuristic. It starts with an initial pool of candidate so-

lutions P generated through BRKGA (line 3). In the main loop (lines 5–28), the algorithm uses

BRKGA to evolve the current pool of solutions, and then it checks if this pool has improved. If



Minimum Broadcast Time 21

v2

v3

v4

v5v6

v7v8

v1 1

2

3

4

9

5

6

7

8

10

11

12

13

14

15

16

17

v2

v3

v4

v5v6

v7v8

v1

3

2

1

4

3

2

3

v2

v3

v4

v5v6

v7v8

v1

2

1

3

2

4

4

3

v2

v3

v4

v5v6

v7v8

v1

3

1

2

2

3

4

3

v2

v3

v4

v5v6

v7v8

v1

v2

v3

v4

v5v6

v7v8

v1

3

2

1

3

3

2

3
ILP

Subgraph (Merge of Solutions)

Solution 1 Solution 2

· · ·

Solution n

Population PK

Graph

Figure 2.7: Proposed matheristic: pool of solutions merging and solving process.

no improvement is achieved after maxIt iterations, the merging process begins. In the merging

process, the subgraph GS(V,ES) is created by adding the edges from the best solutions in the

pool until the edge density of the subgraph is greater than or equal to d (lines 15–22). After

the subgraph is created, the algorithm uses the lower bound given in Eq. (2.2) to check if a

better solution than the best current one S∗ can be found. Note this checking is useful to avoid

unnecessary ILP model solving, which can be quite costly. If the subgraph passes this filter, the

algorithm solves the ILP model using a standard model solver. The model solver is invoked with

S∗ as the initial solution and a time limit of tILP. If the ILP solution returned by the model solver

SILP is better than S∗, then we remove S∗ from P, add SILP in P, and update S∗ with SILP (lines

25–28).
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Algorithm 5: Proposed matheuristic for the MBT.
Input : Undirected graph: G = (V,E), Source set: V0, Time limit for each running of ILP: tILP,

Minimal density of subgraph: d,
Maximum number of generations without improvement: maxIt

Output: Schedule Broadcast: S

1 BRKGA+ILP(G,V0, tILP,d,maxIt)
2 P← BRKGA_Init(G, V0) // Inicialize the first BRKGA population
3 S∗← GetBestIndividual(P) // Get the best individual of the population
4 noImprovement← 0
5 while stopping criterion not met do
6 P← BRKGA_Evolve(P) // Evolve population
7 S← GetBestIndividual(P) // Get the best individual of the

population
8 if Fitness(S) < Fitness(S∗) then // Check if the population has improved
9 S∗← S // Update S∗

10 noImprovement← 0

11 else
12 noImprovement← noImprovement +1

13 if noImprovement = maxIt then // If no improvement after I generations
14 noImprovement← 0
15 ES← GetEdges(S∗)
16 EP← InitList() // Let EP a empty list
17 for each S in Sort(P\S∗) do // For each solution S in P (in fitness

order)
18 EP←AppendItems(GetEdges(S)) // Append the edges of S in EP

19 for each e in EP do // For each edge e in EP

20 if Density((V,ES)) ≥ d then
21 break

22 ES← ES∪{e} // Add the edge e in ES

23 if LB((V,ES), V0) < Fitness(S∗) then // Check if a better solution can
be found

24 SILP← ILP-MBT((V,ES), V0, S∗, tILP) // Run ILP
25 if Fitness(SILP) < Fitness(S∗) then // Check if SILP is better
26 P← P\{S∗} // Remove solution S∗ on P
27 P← P∪{SILP} // Add solution SILP in P
28 S∗← SILP // Update S∗

29 return S∗
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2.3 Computacional results of the MBT

This section presents the computational experiments conducted to evaluate the effectiveness

of our proposed BRKGA and matheuristic. The proposed algorithms are compared with the

following state-of-the-art approaches: (i) the Ant Colony metaheuristic (ACS) from Hasson and

Sipper (2004); (ii) the ILP model from de Sousa et al. (2018); and (iii) the constructive heuristic

TreeBlock from de Sousa et al. (2018).

Since we could not obtain the source code of ACS, we implemented our own version of this

algorithm based on its original definitions. We did not implement the GA approach of (Hoelting

et al., 1996) because the results reported in Hasson and Sipper (2004) are enough to conclude

that ACS outperforms it.

To test the effectiveness of the SCHA decoding approach, we developed two versions of our

BRKGA: one without SCHA (Algorithm 2), called BRKGA_FRFS, and one with SCHA (Algorithm 4),

called BRKGA. The effectiveness of SCHA was also tested on the proposed matheuristic, hence

two versions of the matheuristic were devised: one without SCHA, called BRKGA_FRFS+ILP, and

one with SCHA, called BRKGA+ILP.

All experiments in this section were conducted on an Intel Core i7-6700 with 3.40 GHz, 32

GB of RAM, running Ubuntu 18.04.5. The heuristic algorithms were coded in C++ and compiled

with g++ 7.5 and ‘-O3’ flag. The BRKGA C++ framework developed by Toso and Resende (2015)

has been used to implement our BRKGA. Moreover, IBM Cplex 12.9 has been adopted to solve

the ILP models.

2.3.1 Instances

The algorithms were tested on a total of 142 instances, which include:

• Harary graphs (16 instances): These are the same instances used in the work of

de Sousa et al. (2018). A Harary graph, denoted by Hk,n, is a k-connected graph with

n vertices having the smallest possible number of edges.

• Others graphs (25 instances): We also included the instances we were able to repro-

duce from the works of Harutyunyan and Wang (2010); Harutyunyan and Jimborean

(2014). These instances are hypercube (6 instances), shuffle exchange (7 instances),

cube-connected cycles graphs (5 instances), and deBruijn (7 instances).

• Network Data Repository1 (59 instances): Because the MBT instances used in previous

works (Scheuermann and Wu, 1984; Hoelting et al., 1996; Hasson and Sipper, 2004) are

no longer available, we have chosen some instances from well-established benchmarks of

complex network problems. To cover different industry scenarios, we consider instances

based on connected small-world networks with 100 or 1000 vertices (Freitas et al., 2019).

1http://www.networkrepository.com
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We have chosen the small-world model because it is commonly used to represent com-

munication networks in industrial scenarios, as suggested in (Guidoni et al., 2010; Cabral

et al., 2013).

• Large synthetic instances based on Binomial Tree (42 instances): Given that the op-

timal solution for large MBT instances is often unknown, we generated a new benchmark

with known optimal solutions using the following procedure. Let the instance G= (V,E) be

defined by the union of a binomial tree Bk = (VB,EB) and a random graph Gr = (Vr,Er),

where V = VB = Vr and E = EB ∪Er. The binomial tree Bk is an ordered tree defined

recursively as follows: (i) B0 is a trivial graph, (ii) Bk is constructed from two binomial trees

Bk−1 by attaching one of them as the rightmost (can be leftmost) child of the root of the

other. Figure 2.1 shows the binomial trees B0 through B3. Note that the MBT of a bino-

mial tree Bk is equal to k if the root of Bk is in V0. The random graph Gr is based on the

G(n, p) model, also known as binomial model (Gilbert, 1959). Each graph Gr = (V,Er)

is generated with n vertices and each potential edge in Er is created with probability p.

In Figure 2.2-b, we apply an union of graphs B3 and Gr, obtaining a synthetic instance G

with 8 vertices.

For much more detail of instances, see Appendix A.1.

2.3.2 Parameter settings and experimental protocol

In our experiments with the ACS algorithm, we adopted the same parameter settings indicated

by its authors. Moreover, we have used the irace tunning tool (López-Ibáñez et al., 2016) to

configure the parameters of our algorithms and their variations. The best parameter settings

identified by the tuning experiment are reported in Table 2.3. In this table, BRKGA parameters p,

pe, pm, ρe, and K represent, respectively, number of individuals in each population, percentage

of elite individuals into each population, percentage of mutants introduced at each generation

into the population, probability that an offspring inherits the allele of its elite parent, and the

number of independent populations. Parameters d and tILP are used only in the matheuristic

and represent, respectively, density of subgraph GS(V,ES) and time limit for the ILP model

solver. The matheuristic has an additional parameter maxIt (maximum number of generations

without improvement), which was experimentally set to a linear function that depends on |V |:
maxIt = 550−

⌈
|V |
10

⌉
, where 20≤ maxIt ≤ 500.

Table 2.3: Range considered by IRACE and best parameter settings obtained.

Parameter Value ranges BRKGA_FRFS BRKGA BRKGA_FRFS+ILP BRKGA+ILP

p - |V | |V | |V | |V |
pe 0.10, 0.11, . . ., 0.25 0.16 0.11 0.16 0.11
pm 0.10, 0.11, . . ., 0.30 0.11 0.19 0.11 0.19

Continued on next page
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Table 2.3 – continued from previous page

Parameter Value ranges BRKGA_FRFS BRKGA BRKGA_FRFS+ILP BRKGA+ILP

ρe 0.50, 0.51, . . ., 0.80 0.69 0.53 0.69 0.53
K - 1 1 1 1
d 0.10, 0.11, . . ., 1.00 - - 0.85 0.30
tILP 5.00, 5.01, . . ., 25.00 - - 13.31 18.01

We have set a time limit of 3600 s (1 h) to Cplex for solving the ILP models from de Sousa

et al. (2018). To assess the average performance of the heuristic algorithms (BRGKAs and ACS),

we have performed 10 runs in each benchmark instance with different random seeds for each

run. A time limit of 60 s has been used for these runs.

2.3.3 Experiments on Harary Graphs

Table 2.4 compares BRKGA_FRFS with the heuristic approaches ACS and TreeBlock in Harary

instances. The methods are compared using the following criteria: the best, the average, the

worst solution obtained (columns ‘Best’, ‘Avg.’ and ‘Worst’, respectively), as well as the average

CPU time to find the best solution (column ‘t (s)’). An asterisk means that the method has

been able to prove the optimality of a given result. If in a run the heuristic fails to attain the

best solution, its CPU time to find the best in this run is considered to be the cutoff time of

60 seconds. The bottom of Table 2.4 shows a summary that includes: number of instances in

which the method found the best broadcast time, number of instances in which the algorithm

determined the best average broadcast time, and the average of the average CPU time values

to find the best solution. The results of TreeBlock are reproduced from its original paper.

Table 2.4: Comparative results of ACS, Treeblock and BRKGA_FRFS.

Instance
ACS Treeblock BRKGA_FRFS

Best Avg. Worst t (s) Best Best Avg. Worst t (s)

H10,30 5* 5.00 5 0.10 6 5* 5.00 5 < 0.01
H11,50 6* 6.00 6 < 0.01 7 6* 6.00 6 < 0.01
H20,50 6* 6.00 6 < 0.01 8 6* 6.00 6 < 0.01
H21,50 6* 6.00 6 < 0.01 7 6* 6.00 6 < 0.01
H2,100 50* 50.00 50 < 0.01 50 50* 50.00 50 < 0.01
H2,17 9* 9.00 9 < 0.01 9 9* 9.00 9 < 0.01
H2,30 15* 15.00 15 < 0.01 15 15* 15.00 15 < 0.01
H2,50 25* 25.00 25 < 0.01 25 25* 25.00 25 < 0.01
H3,17 5* 5.00 5 < 0.01 5 5* 5.00 5 < 0.01
H3,30 9* 9.00 9 < 0.01 9 9* 9.00 9 < 0.01
H3,50 14* 14.00 14 < 0.01 14 14* 14.00 14 < 0.01
H5,17 5* 5.00 5 < 0.01 5 5* 5.00 5 < 0.01
H6,17 5* 5.00 5 < 0.01 5 5* 5.00 5 < 0.01
H7,17 5* 5.00 5 < 0.01 5 5* 5.00 5 < 0.01
H8,30 6 6.00 6 60.00 6 5* 5.00 5 0.02

H9,30 5* 5.00 5 < 0.01 6 5* 5.00 5 < 0.01

# Best 15 10 16

Continued on next page



Minimum Broadcast Time 26

Table 2.4 – continued from previous page

Instance
ACS Treeblock BRKGA_FRFS

Best Avg. Worst t (s) Best Best Avg. Worst t (s)

# Best Avg. 15 - 16

Avg. t (s) 3.76 - 0.01

The results in Table 2.4 show that our BRKGA version without SCHA outperforms both ACS

and TreeBlock. In particular, BRKGA_FRFS was able to prove the optimal solution for all Harary

graph instances in milliseconds.

Next, we compare in Table 2.5 our BRKGA_FRFS with the ILP from de Sousa et al. (2018).

Five variants of this model were considered: (i) the original model without bounds, (ii) the model

with the lower bound defined in Eq. (2.1), (iii) the model with the lower bound defined in Eq.

(2.2), (iv) the model with an upper bound determined by our BRKGA_FRFS, and (v) the model

with upper and lower bounds.

It is possible to observe in the results of Table 2.5 that the utilization of bounds in the ILP

model effectively reduced the computational time. Without the upper bounds provided by our

BRKGA_FRFS, instances H11,50, H20,50, and H21,50 could not be optimally solved by the ILP

model. In instances H2,100, H2,30 and H3,50, the ILP model with the proposed lower bound

outperformed the model with the theoretical lower bound defined in Eq. (2.1). Indeed, for these

three instances, LBB–BFS(G,V0) > T LB(G,V0) (Table A.1). Additionally, BRKGA_FRFS used

less CPU time to prove the optimal solution than all ILP model variants.

Table 2.5: Comparative results of BRKGA_FRFS and ILPs.

Instance

de Sousa et al’s ILP
BRKGA_FRFS

No Bounds Lower Bound - Eq. (2.1) Lower Bound - Eq. (2.2) Upper Bound Both Bounds

Best t (s) Best t (s) Best t (s) Best t (s) Best t (s) Best Avg. t(s)

H10,30 5* 8.91 5* 44.01 5* 43.63 5* 1.71 5* 0.11 5* 5.00 < 0.01
H11,50 6 3600 6* 2431.80 6* 2472.72 6 3600 6* 0.17 6* 6.00 < 0.01
H20,50 6* 890.20 6* 0.07 6* 0.07 6 3600 6* 0.01 6* 6.00 < 0.01
H21,50 6 3600 6* 0.07 6* 0.07 6 3600 6* 0.01 6* 6.00 < 0.01
H2,100 50* 9.71 50* 7.71 50* 0.13 50* 0.76 50* 0.76 50* 50.00 < 0.01
H2,17 9* 0.02 9* 0.02 9* 0.02 9* 0.01 9* 0.01 9* 9.00 < 0.01
H2,30 15* 0.08 15* 0.08 15* < 0.01 15* 0.02 15* 0.02 15* 15.00 < 0.01
H2,50 25* 1.06 25* 0.82 25* 0.01 25* 0.09 25* 0.09 25* 25.00 < 0.01
H3,17 5* 0.09 5* 0.03 5* 0.03 5* 0.01 5* < 0.01 5* 5.00 < 0.01
H3,30 9* 0.72 9* 0.61 9* 0.36 9* 0.03 9* 0.03 9* 9.00 < 0.01
H3,50 14* 3.23 14* 2.33 14* 0.64 14* 0.09 14* 0.09 14* 14.00 < 0.01
H5,17 5* 0.61 5* < 0.01 5* < 0.01 5* 0.52 5* < 0.01 5* 5.00 < 0.01
H6,17 5* 0.61 5* < 0.01 5* < 0.01 5* 0.36 5* < 0.01 5* 5.00 < 0.01
H7,17 5* 61.49 5* < 0.01 5* < 0.01 5* 134.06 5* < 0.01 5* 5.00 < 0.01
H8,30 5* 3.78 5* 1.42 5* 1.42 5* 0.20 5* 0.10 5* 5.00 0.02

H9,30 5* 14.72 5* 29.79 5* 29.73 5* 8.43 5* 0.08 5* 5.00 < 0.01

# Best 16 16 16 16 16 16

Avg. t (s) 512.19 157.42 159.30 684.12 0.09 0.01
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2.3.4 Experiments on others instances from literature

Table 2.6 compares the methods on the instances we were able to reproduce from the works of

Harutyunyan and Wang (2010); Harutyunyan and Jimborean (2014). In the experiments shown

in this table, we use the BRKGA version with SCHA decoding. The results for NTBA and NEWH

were reproduced from their original papers (Harutyunyan and Wang, 2010; Harutyunyan and

Jimborean, 2014). A hyphen in Table 2.6 indicates we do not have the method result for an

instance or the method could not produce a feasible solution. Once again, the results show that

BRKGA is competitive in terms of both solution quality and computational efficiency relative the

best performing methods in the literature.

Table 2.6: Comparative results of NEWH, NTBA, ILP, ACS and BRKGA

Instance
Treeblock NTBA NEWH ILP (Both bounds) ACS BRKGA

Best Best Best Best (GAP) t (s) Best Avg. t (s) Best Avg. t (s)

HC5 5 5 5 5* < 0.01 5* 5.00 < 0.01 5* 5.00 < 0.01
HC6 6 7 6 6* < 0.01 6* 6.00 < 0.01 6* 6.00 < 0.01
HC7 7 9 7 7* 0.02 7* 7.00 0.01 7* 7.00 0.16

HC8 8 11 8 8* 0.07 8* 8.00 0.01 9 9.00 60.00

HC9 9 14 9 9* 0.39 9* 9.00 0.02 10 10.00 60.00

HC10 10 15 10 10* 2.02 10* 10.00 0.23 11 11.00 60.00

CCC3 - 6 7 6* 0.04 6* 6.00 0.04 6* 6.00 < 0.01
CCC4 - 9 9 9* 0.14 9* 9.00 0.01 9* 9.00 < 0.01
CCC5 - 11 12 11* 0.57 12 12.00 60.00 11* 11.00 < 0.01
CCC6 - 14 14 13* 4.82 14 14.90 60.00 13* 13.90 55.83

CCC7 - 16 17 - 3600.00 17 17.80 60.00 16 16.00 1.37

DB4 4 5 5 - 3600.00 5 5.00 60.00 5 5.00 60.00

DB5 7 7 7 - 3600.00 6* 6.00 1.27 6* 6.00 < 0.01
DB6 8 8 8 - 3600.00 8 8.00 0.03 8 8.00 < 0.01
DB7 12 10 10 - 3600.00 10 10.00 60.00 9 9.00 0.60

DB8 12 12 12 - 3600.00 12 12.00 60.00 11 11.00 < 0.01
DB9 14 13 13 - 3600.00 14 14.00 60.00 13 13.00 < 0.01
DB10 15 15 15 - 3600.00 16 16.00 60.00 14 14.20 21.48

SE4 - 7 7 7* 0.02 7 7.00 < 0.01 7 7.00 < 0.01
SE5 - 9 9 9* 0.02 9* 9.00 0.01 9* 9.00 < 0.01
SE6 - 11 11 11* 0.05 11* 11.00 0.01 11* 11.00 < 0.01
SE7 - 13 13 13* 0.25 13* 13.00 0.01 13* 13.00 < 0.01
SE8 - 15 15 15* 1.21 15* 15.00 0.04 15* 15.00 0.34

SE9 - 18 18 17* 12.65 17* 17.00 0.04 18 18.00 60.00

SE10 - 20 20 - 3600.00 19* 19.00 0.07 20 20.00 60.00

# Best 8/13 13/25 15/25 16/25 17/25 19/25

# Best Avg. 8/13 13/25 15/25 16/25 17/25 18/25

Avg. t (s) - - - 1296.89 19.27 17.59

2.3.5 Experiments on Small-World and synthetic instances

Table 2.7 compares BRKGA_FRFS with ACS and the ILP model with both bounds in the Small-

World and synthetic instances. In this table, we have added a GAP information for instances in

which the ILP model did not prove the optimal solution.



Minimum Broadcast Time 28

Table 2.7: Comparative results of ACS, ILP and BRKGA_FRFS

Instance
ACS ILP (Both bounds) BRKGA_FRFS

Best Avg. t (s) Best (GAP) t (s) Best Avg. t (s)

B4 4* 4.00 < 0.01 4* < 0.01 4* 4.00 < 0.01
B5 5* 5.00 < 0.01 5* < 0.01 5* 5.00 2.03

B6 6* 6.00 < 0.01 6* < 0.01 6* 6.80 55.04

B7 7* 7.00 < 0.01 7* 0.01 8 8.80 60.00

B8 8* 8.00 0.01 8* 0.06 10 10.60 60.00

B9 9* 9.00 0.08 9* 0.35 12 12.30 60.00

B5 ∪G(32,5%) 6 6.00 60.00 5* 0.01 5* 5.90 58.45

B5 ∪G(32,7.5%) 6 6.00 60.00 5* 0.06 5* 5.10 15.21

B5 ∪G(32,10%) 5* 5.00 2.28 5* 0.02 5* 5.00 0.15

B5 ∪G(32,15%) 5* 5.00 2.25 5* 0.02 5* 5.00 0.02

B5 ∪G(32,20%) 5* 5.00 0.03 5* 0.11 5* 5.00 < 0.01
B5 ∪G(32,25%) 5* 5.00 0.05 5* 0.15 5* 5.00 < 0.01
B6 ∪G(64,5%) 7 7.00 60.00 6* 1.02 7 7.00 60.00

B6 ∪G(64,7.5%) 7 7.00 60.00 6* 2.34 7 7.00 60.00

B6 ∪G(64,10%) 7 7.00 60.00 6* 0.49 6* 6.00 3.65

B6 ∪G(64,15%) 6* 6.00 5.57 6* 1.17 6* 6.00 0.02

B6 ∪G(64,20%) 6* 6.00 0.68 6* 1.78 6* 6.00 < 0.01
B6 ∪G(64,25%) 6* 6.00 0.32 6* 2.16 6* 6.00 < 0.01
B7 ∪G(128,5%) 8 8.00 60.00 7* 65.50 8 8.00 60.00

B7 ∪G(128,7.5%) 8 8.00 60.00 7* 81.61 8 8.00 60.00

B7 ∪G(128,10%) 8 8.00 60.00 7* 45.78 7* 7.00 2.06

B7 ∪G(128,15%) 8 8.00 60.00 7* 1643.97 7* 7.00 0.04

B7 ∪G(128,20%) 7* 7.00 2.09 7* 204.40 7* 7.00 0.01

B7 ∪G(128,25%) 7* 7.00 1.41 7* 239.89 7* 7.00 < 0.01
B8 ∪G(256,5%) 9 9.00 < 0.01 9(11.11%) 3600 9 9.00 < 0.01
B8 ∪G(256,7.5%) 9 9.00 60.00 - 3600 8* 8.90 56.79

B8 ∪G(256,10%) 9 9.00 60.00 - 3600 8* 8.00 16.23

B8 ∪G(256,15%) 9 9.00 60.00 - 3600 8* 8.00 0.07

B8 ∪G(256,20%) 9 9.00 60.00 - 3600 8* 8.00 0.03

B8 ∪G(256,25%) 8* 8.00 2.23 - 3600 8* 8.00 0.01

B9 ∪G(512,5%) 10 10.00 0.01 10(10.00%) 3600 10 10.00 < 0.01
B9 ∪G(512,7.5%) 10 10.00 0.03 10(10.00%) 3600 10 10.00 < 0.01
B9 ∪G(512,10%) 10 10.00 60.00 - 3600 9* 9.30 35.79

B9 ∪G(512,15%) 10 10.00 60.00 - 3600 9* 9.00 0.53

B9 ∪G(512,20%) 10 10.00 60.00 - 3600 9* 9.00 0.07

B9 ∪G(512,25%) 10 10.00 60.00 - 3600 9* 9.00 0.02

B10 ∪G(1024,5%) 11 11.00 0.11 - 3600 11 11.00 0.01

B10 ∪G(1024,7.5%) 11 11.00 0.22 - 3600 11 11.00 0.01

B10 ∪G(1024,10%) 11 11.00 60.00 - 3600 10* 10.50 41.54

B10 ∪G(1024,15%) 11 11.00 60.00 - 3600 10* 10.00 3.64

B10 ∪G(1024,20%) 10* 10.00 2.58 - 3600 10* 10.00 0.27

B10 ∪G(1024,25%) 11 11.00 60.00 - 3600 10* 10.00 0.08

SW-100-3-0d1-trial1 61* 61.00 0.09 61* 0.70 61* 61.00 0.01

SW-100-3-0d2-trial1 31* 31.00 0.02 31* 0.33 31* 31.00 < 0.01
SW-100-3-0d2-trial3 31* 31.00 0.04 31* 0.33 31* 31.00 < 0.01
SW-100-4-0d1-trial1 10 10.00 60.00 9* 0.84 9* 9.00 0.24

SW-100-4-0d1-trial2 9 9.00 60.00 8* 0.79 8* 8.70 45.89

SW-100-4-0d1-trial3 11 11.00 60.00 10* 0.77 10* 10.00 0.07

SW-100-4-0d2-trial1 9 9.00 60.00 8* 1.28 8* 8.90 57.91

SW-100-4-0d2-trial2 9 9.00 60.00 8* 3.78 9 9.00 60.00

SW-100-4-0d2-trial3 9* 9.00 1.41 9* 1.88 9* 9.00 < 0.01
SW-100-4-0d3-trial1 9 9.00 60.00 8* 1.20 8* 8.00 1.43
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Minimum Broadcast Time 29

Table 2.7 – continued from previous page

Instance
ACS ILP (Both bounds) BRKGA_FRFS

Best Avg. t (s) Best (GAP) t (s) Best Avg. t (s)

SW-100-4-0d3-trial2 8* 8.00 0.90 8* 16.23 8* 8.00 0.01

SW-100-4-0d3-trial3 9 9.00 60.00 8* 0.56 8* 8.00 10.86

SW-100-5-0d1-trial1 10 10.00 60.00 9* 0.56 9* 9.00 5.00

SW-100-5-0d1-trial2 11 11.00 60.00 10* 0.73 10* 10.00 0.05

SW-100-5-0d1-trial3 13 13.00 60.00 12* 0.32 12* 12.00 0.05

SW-100-5-0d2-trial1 10 10.00 60.00 9* 1.59 10 10.00 60.00

SW-100-5-0d2-trial2 10 10.00 60.00 9* 0.42 10 10.00 60.00

SW-100-5-0d2-trial3 9 9.00 60.00 8* 2.62 9 9.00 60.00

SW-100-5-0d3-trial1 9 9.00 60.00 8* 3.22 8* 8.00 0.12

SW-100-5-0d3-trial2 8 8.00 0.36 8(12.50%) 3600 8 8.00 < 0.01
SW-100-5-0d3-trial3 8* 8.00 4.29 8* 11.25 8* 8.00 < 0.01
SW-100-6-0d1-trial1 8 8.00 60.00 7* 4.35 8 8.00 60.00

SW-100-6-0d1-trial2 9 9.00 60.00 8* 870.41 8* 8.00 0.02

SW-100-6-0d1-trial3 9 9.00 60.00 7* 2.94 8 8.00 60.00

SW-100-6-0d2-trial1 8 8.00 60.00 7* 1.64 7* 7.10 17.88

SW-100-6-0d2-trial2 8 8.00 60.00 7* 0.11 7* 7.00 0.81

SW-100-6-0d2-trial3 8 8.00 60.00 7* 1.65 7* 7.00 6.58

SW-100-6-0d3-trial1 8 8.00 60.00 7* 1.53 7* 7.00 1.31

SW-100-6-0d3-trial2 8 8.00 60.00 7* 1.28 7* 7.00 0.56

SW-100-6-0d3-trial3 8 8.00 60.00 7* 0.86 7* 7.00 0.11

SW-1000-3-0d2-trial1 96 96.00 60.00 - 3600 89* 89.00 14.42

SW-1000-3-0d2-trial2 94 94.00 60.00 - 3600 88* 88.00 9.26

SW-1000-3-0d3-trial2 96 96.00 60.00 - 3600 87* 87.00 9.39

SW-1000-4-0d1-trial1 19 19.00 60.00 - 3600 17 17.00 5.68

SW-1000-4-0d1-trial2 20 20.00 60.00 - 3600 17 17.90 55.04

SW-1000-4-0d1-trial3 20 20.00 60.00 - 3600 18 18.00 5.07

SW-1000-4-0d2-trial1 15 15.00 60.00 - 3600 14 14.30 41.90

SW-1000-4-0d2-trial2 16 16.00 60.00 - 3600 14 14.80 49.96

SW-1000-4-0d2-trial3 16 16.00 60.00 - 3600 15 15.20 28.21

SW-1000-4-0d3-trial1 14 14.00 60.00 12(16.67%) 3600 13 13.00 60.00

SW-1000-4-0d3-trial3 14 14.00 60.00 13(23.08%) 3600 13 13.00 0.37

SW-1000-5-0d1-trial1 20 20.00 60.00 - 3600 17 17.10 15.22

SW-1000-5-0d1-trial2 20 20.00 60.00 - 3600 17 17.00 13.70

SW-1000-5-0d1-trial3 18 18.00 60.00 15(24.38%) 3600 16 16.00 60.00

SW-1000-5-0d2-trial1 16 16.00 60.00 - 3600 15 15.00 0.10

SW-1000-5-0d2-trial2 16 16.00 60.00 - 3600 14 14.90 54.75

SW-1000-5-0d2-trial3 15 15.00 60.00 - 3600 14 14.00 1.25

SW-1000-5-0d3-trial1 14 14.00 60.00 12(16.67%) 3600 13 13.90 60.00

SW-1000-5-0d3-trial2 14 14.00 60.00 - 3600 13 13.20 26.52

SW-1000-5-0d3-trial3 14 14.00 17.22 - 3600 14 14.00 0.04

SW-1000-6-0d1-trial1 16 16.00 60.00 - 3600 14 14.00 16.05

SW-1000-6-0d1-trial2 15 15.00 60.00 - 3600 13 13.90 57.65

SW-1000-6-0d1-trial3 14 14.00 60.00 - 3600 13 13.00 6.31

SW-1000-6-0d2-trial1 13 13.00 60.00 - 3600 12 12.00 0.13

SW-1000-6-0d2-trial2 14 14.00 60.00 - 3600 13 13.00 0.01

SW-1000-6-0d2-trial3 13 13.00 60.00 - 3600 12 12.00 0.24

SW-1000-6-0d3-trial1 12 12.00 0.12 - 3600 12 12.00 0.01

SW-1000-6-0d3-trial2 12 12.00 5.33 - 3600 12 12.00 0.01

SW-1000-6-0d3-trial3 12 12.00 3.99 - 3600 12 12.00 0.01

Avg. t (s) 40.93 1742.87 17.94

# Best 33 61 85

# Best Avg. 33 61 79
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The results in Table 2.7 confirm the robustness of BRKGA_FRFS and its superiority over ACS

and the ILP model. Even with an upper bound set by BRKGA_FRFS, the ILP model could not

produce any feasible results for instances with 256 vertices. BRKGA_FRFS proved the optimal

solution in 56 instances, whereas this number was 53 for the ILP model. Moreover, our algorithm

outperformed ACS in terms of both solution quality and CPU time. It attained the best solution in

85 out of the 101 instances. It is worthwhile mentioning that the synthetic instances proposed

in this paper are indeed very challenging, as the ILP model could only solve a small portion

of them. Hence, we think the proposed benchmark with known optima is a very good one to

evaluate future new exact methods.

2.3.6 Experiments with SCHA decoding and the proposed matheuristic

As shown in the previous results, our basic BRKGA_FRFS algorithm outperforms the best-

performing algorithms in the literature. In this subsection, we show that BRKGA_FRFS results

can be improved using SCHA decoding and our matheuristic. Table 2.8 compares: (i) BRKGA

without SCHA (BRKGA_FRFS), (ii) BRKGA with SCHA, (iii) proposed matheuristic without SCHA

(BRKGA_FRFS+ILP), and (iv) proposed matheuristic with SCHA (BRKGA+ILP).

Table 2.8: Comparative results of BRKGAs and hybrids

Instance
BRKGA_FRFS BRKGA BRKGA_FRFS+ILP BRKGA+ILP

Best Avg. t (s) Best Avg. t (s) Best Avg. t (s) Best Avg. t (s)

B4 4* 4.00 < 0.01 4* 4.00 < 0.01 4* 4.00 < 0.01 4* 4.00 < 0.01
B5 5* 5.00 2.03 5* 5.00* < 0.01 5* 5.00 0.05 5* 5.00 < 0.01
B6 6* 6.80 55.04 6* 6.00 < 0.01 6* 6.10 6.25 6* 6.00 < 0.01
B7 8 8.80 60.00 7* 7.00 < 0.01 7* 7.20 7.15 7* 7.00 < 0.01
B8 10 10.60 60.00 8* 8.00 < 0.01 8* 8.00 6.02 8* 8.00 < 0.01
B9 12 12.30 60.00 9* 9.00 < 0.01 9* 9.30 40.91 9* 9.00 < 0.01
B5 ∪G(32,5%) 5* 5.90 58.45 5* 5.10 19.41 5* 5.00 0.12 5* 5.00 0.17

B5 ∪G(32,7.5%) 5* 5.10 15.21 5* 5.00 3.45 5* 5.00 0.25 5* 5.00 0.22

B5 ∪G(32,10%) 5* 5.00 0.15 5* 5.00 0.04 5* 5.00 0.14 5* 5.00 0.04

B5 ∪G(32,15%) 5* 5.00 0.02 5* 5.00 0.06 5* 5.00 0.05 5* 5.00 0.09

B5 ∪G(32,20%) 5* 5.00 < 0.01 5* 5.00 < 0.01 5* 5.00 < 0.01 5* 5.00 < 0.01
B5 ∪G(32,25%) 5* 5.00 < 0.01 5* 5.00 < 0.01 5* 5.00 < 0.01 5* 5.00 < 0.01
B6 ∪G(64,5%) 7 7.00 60.00 7 7.00 60.00 6* 6.10 9.96 6* 6.00 5.47

B6 ∪G(64,7.5%) 7 7.00 60.00 7 7.00 60.00 6* 6.00 6.77 6* 6.00 11.97

B6 ∪G(64,10%) 6* 6.00 3.65 6* 6.00 4.58 6* 6.00 3.87 6* 6.00 3.69

B6 ∪G(64,15%) 6* 6.00 0.02 6* 6.00 0.03 6* 6.00 0.02 6* 6.00 0.03

B6 ∪G(64,20%) 6* 6.00 < 0.01 6* 6.00 < 0.01 6* 6.00 < 0.01 6* 6.00 < 0.01
B6 ∪G(64,25%) 6* 6.00 < 0.01 6* 6.00 < 0.01 6* 6.00 < 0.01 6* 6.00 < 0.01
B7 ∪G(128,5%) 8 8.00 < 0.01 8 8.00 < 0.01 8 8.00 < 0.01 8 8.00 < 0.01
B7 ∪G(128,7.5%) 8 8.00 60.00 7* 7.80 52.93 8 8.00 60.00 8 8.00 60.00

B7 ∪G(128,10%) 7* 7.00 2.06 7* 7.00 6.25 7* 7.00 23.98 7* 7.40 33.13

B7 ∪G(128,15%) 7* 7.00 0.04 7* 7.00 0.07 7* 7.00 0.05 7* 7.00 0.08

B7 ∪G(128,20%) 7* 7.00 0.01 7* 7.00 0.01 7* 7.00 0.01 7* 7.00 0.01

B7 ∪G(128,25%) 7* 7.00 < 0.01 7* 7.00 < 0.01 7* 7.00 < 0.01 7* 7.00 < 0.01
B8 ∪G(256,5%) 9 9.00 < 0.01 9 9.00 < 0.01 9 9.00 < 0.01 9 9.00 < 0.01
B8 ∪G(256,7.5%) 8* 8.90 56.79 8* 8.90 55.27 9 9.00 60.00 8* 8.90 57.20

Continued on next page
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Table 2.8 – continued from previous page

Instance
BRKGA_FRFS BRKGA BRKGA_FRFS+ILP BRKGA+ILP

Best Avg. t (s) Best Avg. t (s) Best Avg. t (s) Best Avg. t (s)

B8 ∪G(256,10%) 8* 8.00 16.23 8* 8.30 34.42 8* 8.40 38.81 8* 8.60 42.42

B8 ∪G(256,15%) 8* 8.00 0.07 8* 8.00 0.29 8* 8.00 0.08 8* 8.00 0.30

B8 ∪G(256,20%) 8* 8.00 0.03 8* 8.00 0.04 8* 8.00 0.04 8* 8.00 0.05

B8 ∪G(256,25%) 8* 8.00 0.01 8* 8.00 0.01 8* 8.00 0.01 8* 8.00 0.01

B9 ∪G(512,5%) 10 10.00 < 0.01 10 10.00 < 0.01 10 10.00 < 0.01 10 10.00 < 0.01
B9 ∪G(512,7.5%) 10 10.00 < 0.01 10 10.00 < 0.01 10 10.00 < 0.01 10 10.00 < 0.01
B9 ∪G(512,10%) 9* 9.30 35.79 9* 9.70 50.77 9* 9.50 38.45 9* 9.70 51.38

B9 ∪G(512,15%) 9* 9.00 0.53 9* 9.00 1.05 9* 9.00 0.62 9 9.00 1.18

B9 ∪G(512,20%) 9* 9.00 0.07 9* 9.00 0.09 9* 9.00 0.08 9* 9.00 0.10

B9 ∪G(512,25%) 9* 9.00 0.02 9* 9.00 0.03 9* 9.00 0.03 9* 9.00 0.03

B10 ∪G(1024,5%) 11 11.00 0.01 11 11.00 0.01 11 11.00 0.01 11 11.00 0.02

B10 ∪G(1024,7.5%) 11 11.00 0.01 11 11.00 0.01 11 11.00 0.02 11 11.00 0.01

B10 ∪G(1024,10%) 10* 10.50 41.54 11 11.00 60.00 10* 10.50 42.99 11 11.00 60.00

B10 ∪G(1024,15%) 10* 10.00 3.64 10* 10.00 4.58 10* 10.00 4.14 10* 10.00 5.09

B10 ∪G(1024,20%) 10* 10.00 0.27 10* 10.00 0.31 10* 10.00 0.31 10* 10.00 0.36

B10 ∪G(1024,25%) 10* 10.00 0.08 10* 10.00 0.09 10* 10.00 0.09 10* 10.00 0.10

SW-100-3-0d1-trial1 61* 61.00 0.01 61* 61.00 < 0.01 61* 61.00 0.01 61* 61.00 < 0.01
SW-100-3-0d2-trial1 31* 31.00 < 0.01 31* 31.00 < 0.01 31* 31.00 < 0.01 31* 31.00 < 0.01
SW-100-3-0d2-trial3 31* 31.00 < 0.01 31* 31.00 < 0.01 31 31.00 < 0.01 31* 31.00 < 0.01
SW-100-4-0d1-trial1 9* 9.00 0.24 9* 9.00 < 0.01 9* 9.00 0.28 9* 9.00 0.01

SW-100-4-0d1-trial2 8* 8.70 45.89 8* 8.00 3.10 8* 8.00 1.44 8* 8.00 1.42

SW-100-4-0d1-trial3 10* 10.00 0.07 10* 10.00 0.01 10* 10.00 0.07 10* 10.00 0.02

SW-100-4-0d2-trial1 8* 8.90 57.91 8* 8.50 43.80 8* 8.00 1.62 8* 8.00 3.18

SW-100-4-0d2-trial2 9 9.00 60.00 9 9.00 60.00 8* 8.00 6.14 8* 8.00 7.48

SW-100-4-0d2-trial3 9* 9.00 < 0.01 9* 9.00 < 0.01 9* 9.00 < 0.01 9* 9.00 < 0.01
SW-100-4-0d3-trial1 8* 8.00 1.43 8* 8.00 1.00 8* 8.00 1.01 8* 8.00 0.76

SW-100-4-0d3-trial2 8* 8.00 0.01 8* 8.00 < 0.01 8* 8.00 0.01 8* 8.00 < 0.01
SW-100-4-0d3-trial3 8* 8.00 10.86 8* 8.00 1.44 8* 8.00 1.33 8* 8.00 0.76

SW-100-5-0d1-trial1 9* 9.00 5.00 9* 9.00 0.08 9* 9.00 0.83 9* 9.00 0.10

SW-100-5-0d1-trial2 10* 10.00 0.05 10* 10.00 < 0.01 10* 10.00 0.05 10* 10.00 < 0.01
SW-100-5-0d1-trial3 12* 12.00 0.05 12* 12.00 < 0.01 12* 12.00 0.05 12* 12.00 < 0.01
SW-100-5-0d2-trial1 10 10.00 60.00 10 10.00 60.00 9* 9.00 2.08 9* 9.00 3.34

SW-100-5-0d2-trial2 10 10.00 60.00 10 10.00 60.00 9* 9.00 1.50 9* 9.00 2.45

SW-100-5-0d2-trial3 9 9.00 60.00 9 9.00 60.00 8* 8.00 3.72 8* 8.00 6.96

SW-100-5-0d3-trial1 8* 8.00 0.12 8* 8.00 0.03 8* 8.00 0.13 8* 8.00 0.02

SW-100-5-0d3-trial2 8 8.00 < 0.01 8 8.00 < 0.01 8 8.00 < 0.01 8 8.00 < 0.01
SW-100-5-0d3-trial3 8* 8.00 < 0.01 8* 8.00 < 0.01 8* 8.00 < 0.01 8* 8.00 < 0.01
SW-100-6-0d1-trial1 8 8.00 60.00 8 8.00 60.00 7* 7.50 48.87 7* 7.50 44.86

SW-100-6-0d1-trial2 8* 8.00 0.02 8* 8.00 < 0.01 8* 8.00 0.03 8* 8.00 < 0.01
SW-100-6-0d1-trial3 8 8.00 60.00 8 8.00 60.00 7* 7.00 13.55 7* 7.00 15.28

SW-100-6-0d2-trial1 7* 7.10 17.88 7* 7.20 36.35 7* 7.00 7.39 7* 7.00 8.02

SW-100-6-0d2-trial2 7* 7.00 0.81 7* 7.00 0.35 7* 7.00 5.87 7* 7.00 0.44

SW-100-6-0d2-trial3 7* 7.00 6.58 7* 7.00 8.53 7* 7.00 10.50 7* 7.00 6.92

SW-100-6-0d3-trial1 7* 7.00 1.31 7* 7.00 0.89 7* 7.00 9.88 7* 7.00 5.60

SW-100-6-0d3-trial2 7* 7.00 0.56 7* 7.00 0.40 7* 7.00 4.91 7* 7.00 0.45

SW-100-6-0d3-trial3 7* 7.00 0.11 7* 7.00 0.06 7* 7.00 0.76 7* 7.00 0.08

SW-1000-3-0d2-trial1 89* 89.00 14.42 89* 89.00 0.01 89* 89.00 14.81 89* 89.00 0.02

SW-1000-3-0d2-trial2 88* 88.00 9.26 88* 88.00 0.01 88* 88.00 9.34 88* 88.00 0.01

SW-1000-3-0d3-trial2 87* 87.00 9.39 87* 87.00 0.01 87* 87.00 9.43 87* 87.00 0.02

SW-1000-4-0d1-trial1 17 17.00 60.00 16 16.60 46.05 17 17.00 60.00 16 16.60 44.75

SW-1000-4-0d1-trial2 17 17.90 55.04 17 17.00 0.42 17 17.90 55.05 17 17.00 0.67

SW-1000-4-0d1-trial3 18 18.00 60.00 17 17.80 53.42 18 18.00 60.00 17 17.70 53.47

SW-1000-4-0d2-trial1 14 14.30 41.90 14 14.00 0.02 14 14.30 42.26 14 14.00 0.02
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Table 2.8 – continued from previous page

Instance
BRKGA_FRFS BRKGA BRKGA_FRFS+ILP BRKGA+ILP

Best Avg. t (s) Best Avg. t (s) Best Avg. t (s) Best Avg. t (s)

SW-1000-4-0d2-trial2 14 14.80 49.96 14 14.00 0.17 14 14.80 49.98 14 14.00 0.17

SW-1000-4-0d2-trial3 15 15.20 28.21 15 15.00 0.01 15 15.20 28.29 15 15.00 0.02

SW-1000-4-0d3-trial1 13 13.00 0.60 13 13.00 0.02 13 13.00 0.60 13 13.00 0.01

SW-1000-4-0d3-trial3 13 13.00 0.37 13 13.00 0.02 13 13.00 0.37 13 13.00 0.02

SW-1000-5-0d1-trial1 17 17.10 15.22 17 17.00 0.05 17 17.10 15.36 17 17.00 0.06

SW-1000-5-0d1-trial2 17 17.00 13.70 17 17.00 0.14 17 17.00 14.96 17 17.00 0.15

SW-1000-5-0d1-trial3 16 16.00 60.00 15 15.00 0.65 16 16.00 60.00 15 15.00 1.09

SW-1000-5-0d2-trial1 15 15.00 60.00 14 14.00 2.39 15 15.00 60.00 14 14.00 2.58

SW-1000-5-0d2-trial2 14 14.90 54.75 14 14.00 0.07 14 14.90 54.77 14 14.00 0.07

SW-1000-5-0d2-trial3 14 14.00 1.25 14 14.00 0.01 14 14.00 1.26 14 14.00 0.02

SW-1000-5-0d3-trial1 13 13.90 55.65 13 13.00 0.05 13 13.90 55.67 13 13.00 0.05

SW-1000-5-0d3-trial2 13 13.20 26.52 13 13.00 0.03 13 13.20 26.64 13 13.00 0.03

SW-1000-5-0d3-trial3 14 14.00 60.00 13 13.00 5.81 14 14.00 60.00 13 13.00 3.22

SW-1000-6-0d1-trial1 14 14.00 16.05 14 14.00 0.39 14 14.10 18.35 14 14.00 0.61

SW-1000-6-0d1-trial2 13 13.90 57.65 13 13.20 28.66 13 13.90 58.20 13 13.00 26.01

SW-1000-6-0d1-trial3 13 13.00 6.31 13 13.00 0.08 13 13.00 7.24 13 13.00 0.08

SW-1000-6-0d2-trial1 12 12.00 0.13 12 12.00 0.02 12 12.00 0.14 12 12.00 0.02

SW-1000-6-0d2-trial2 13 13.00 0.01 13 13.00 0.01 13 13.00 0.01 13 13.00 0.01

SW-1000-6-0d2-trial3 12 12.00 0.24 12 12.00 0.03 12 12.00 0.24 12 12.00 0.03

SW-1000-6-0d3-trial1 12 12.00 0.01 12 12.00 0.01 12 12.00 0.01 12 12.00 0.01

SW-1000-6-0d3-trial2 12 12.00 0.01 12 12.00 0.01 12 12.00 0.01 12 12.00 0.01

SW-1000-6-0d3-trial3 12 12.00 0.01 12 12.00 0.01 12 12.00 0.01 12 12.00 0.01

# Best 84 92 94 99

# Best Avg. 69 85 78 96

Avg. t (s) 18.98 9.98 12.24 5.69

The results in Table 2.8 show that the SCHA decoding positively impacts the search since the

algorithms with SCHA performed better than their counterparts without SCHA. The SCHA refine-

ment gives more accuracy to the BRKGA decoding. Moreover, the results reveal that BRKGA+ILP

compares favorably with BRKGA in both features, solution quality and CPU time. Note that in the

cases BRKGA+ILP missed the best solution, the solution determined by BRKGA+ILP is at most

one unit time longer than the best one. Adding ILP features to the BRKGA has shown a very

feasible approach.
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Weighted Minimum Broadcast Time

The Weighted Minimum Broadcast Time (WMBT) is a generalization of the MBT with weight in

vertices or/and edges. The WMBT model is more realistic than the MBT. Because the WMBT

can represent transmission delay rates as explained in Section 1.2. We remark that our work

focuses on the telephone model.

There are four variations of the WMBT: (i) classic model (α = 0 and β = 1 for all edges),

(ii) weighted-vertex model (Harutyunyan and Kamali, 2008) (α ≥ 0 and β = 1 for all edges),

(iii) weighted-edge model (Su et al., 2010) (α = 0 and β ≥ 1 for all edges), and (iv) weight-

ed-vertex-and-edge (general) model (α≥ 0 and β≥ 1 for all edges). The α and β were defined

in Section 1.2. The first model was presented in Section 2.2. In this chapter, we will propose

solutions for the remaining models.

Figures 3.1–3.3 illustrate an example for each variant of the WMBT. Figure 3.1-a shows a

network with weighted-vertex, such that each vertex has a label and setup phase. Figure 3.1-b

shows an optimal solution of example of the previous example. The values in edges represent

the time that vertex received information.
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d1
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g1
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(a) Example network with
weighted-vertex

g1
0

d1
3

d2
1

d3
0
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41

(b) Optimal broadcast solu-
tion.

Figure 3.1: Example of weighted-vertex model.

Figure 3.2-a shows a network with a weighted-edge graph. Each edge is associated with a

value representing the transmission time of connection. Similarly, Figure 3.1-b shows optimal

33
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solution of the previous example. The values in edges represent the time that each vertex

received information.
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(a) Example network with
weighted-edge

g1

d1

d2

d3

2 31

(b) Optimal broadcast solu-
tion.

Figure 3.2: Example of weighted-edge model.

Figure 3.3-a shows an example of a weighted-edge-and-vertex variant. Edges are associ-

ated with a transmission time, whereas vertices are associated with a setup time. Figure 3.1-b

shows optimal solution of the previous example.
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(b) Optimal broadcast solu-
tion.

Figure 3.3: Example of weighted-edge-and-vertex model.

Theorem 9. The weighted-edge, weighted-vertex and weighted-edge-and-vertex Minimum

Broadcast Problems are N P -Complete.

Proof. Restrict each WMTB variant to classical MBT by allowing only instances having we = 1
for all e ∈ E(G) and wv = 0 for all v ∈V (G).

We remark that the classical MBT can be viewed as telephone or postal models when α = 0
and β = 1 for all edges. Harutyunyan and Kamali (2008) introduced a generalization of the

telephone model with the weighted-vertex model, where each vertex has a different α value.

In both, telephone and postal models, only one transmission can be performed at a time.

Because of this, these models are labeled as 1-broadcast or 1-port. In addition, a model in

which a maximum of k transmission can be performed at a time, it called k-broadcast or k-port
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(König and Lazard, 1994). This work aims to study the telephone model as a message-passing

system for the MBT.

We remark that Definitions 1–7 are related to the MBT when |V0| = 1. However, similar

considerations can be applied, mutatis mutandis, for the WMBT or/and when |V0|> 1.

3.1 Related Work

Harutyunyan and Kamali (2008); Koh and Tcha (1991) introduced generalizations of the Tele-

phone model. Koh and Tcha (1991) show a polynomial algorithm that optimally solves the

weighted-edge model for the tree graphs. Harutyunyan and Kamali (2008) presented a greedy

algorithm and an evolutionary algorithm for the general graphs with setup phase (weighted-

vertex). The greedy algorithm outperformed the evolutionary algorithm. Averbuch et al. (2000)

propose polynomial algorithms for weighted-vertex and weighted-edge trees, but the cost func-

tion is computed differently than Garey and Johnson (1979); Harutyunyan and Kamali (2008);

Koh and Tcha (1991). To the best of the authors’ knowledge, there are no exact algorithms

for any generalization of the WMBT. Also, there are no heuristic or metaheuristic algorithms for

general graphs with transmission time and setup phase (weighted-vertex-and-edge).

Harutyunyan and Kamali (2008) introduce a greedy algorithm for the weighted-vertex model,

which we will show in Algorithm 6. This algorithm is an adaptation of Dijkstra’s algorithm for

Weighted-Vertex MBT. It starts setting the cost of all vertices to infinity, creates sets to informed

and uninformed vertices, and sets the cost of source v0 (lines 2-6). Next, the procedure may be

repeated if there is any uninformed vertex, choosing an edge with the least weight that does not

cycle in the solution (lines 7-12). Finally, broadcastTime gets the biggest cost of vertices (line

13). Overall, the worst-case running time of this algorithm is O(|V | · |E|).
Harutyunyan and Kamali (2008) described that even if it finds the optimal broadcast tree, the

algorithm does not guarantee that the WMBT schedule will be the optimum. In Section 3.2.4, we

describe an exact algorithm for the WMBT for trees.

We present a summarized comparison of the literature’s approaches. Table 3.1 lists the main

articles about WMBT in the literature.

Table 3.1: List of articles about WMBT in the literature.

Article Approach Observation

Bar-Noy et al. (2000) Description of message-passing systems -

Harutyunyan and Kamali (2008) Heuristic and metaheuristic algorithm For weighted-vertex.

Su et al. (2016) Polynomial time algorithm For edge-vertex, when graph is a tree and |V0|= 1.
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Algorithm 6: Greedy algorithm for Weighted-Vertex-MBT
Input : Weighted Vertex Undirected graph: G = (V,E,Wv),

Source vertex: v0
Output: Broadcast time: broadcastTime

1 GreedyAlgorithm(G,v0)
2 for v ∈V do
3 cost[v]← ∞

4 I←{v0} // let I be a set
5 U ←V \{v0} // let U be a set
6 cost[v0]←Wv[v0]
7 while U 6= /0 do
8 vα,vβ← argmin(c(vi)+w(v j))

i∈I, j∈U,(i, j)∈E

9 cost(vβ)← cost(vα)+w(vβ)+1
10 cost(vα)← cost(vα)+1
11 I← I∪{vβ}
12 U ←U \{vβ}
13 broadcastTime←max

v∈V
(cost[v]) // Get higher cost

14

15 return broadcastTime

3.2 Algorithmic approaches for the WMBT

In this Section, we will show our contributions. First, we will explain about our mathematical

models for WMBTs in Section 3.2.1. Section 3.2.2 describes a lower bound algorithm for the

WMBT. Section 3.2.3 shows an exact greedy algorithm for the WMBT for forests. Section 3.2.4

presents a greedy algorithm for the WMBT for general instances. Section 3.2.5 describes a

reduce rule for the WBMT. Finally, Section 3.2.6 some decoders for BRKGA for the WMBT.

3.2.1 Mathematical models for WMBT

To the best of the author’s knowledge, there is no mathematical model for WMBTs. In this

section, we proposed a mathematical model for each variant of the WMBT: (i) weighted-ver-

tex model, (ii) weighted-edge model, and (iii) general model. These mathematical models are

extensions of the model proposed by de Sousa et al. (2018) for the MBT.

3.2.1.1 Weighted-vertex model

Let G = (V,E) be a simple graph, N(i) the set of neighboring vertices of vertex i ∈ V , and Wv

the list of weights for each vertex of G. In our model, Ki is a binary constant indicating whether

or not vertex i is in V0, and Tmax a constant that represents an upper bound on the time in which

a vertex receives the message (e.g., Tmax = ( ∑
v∈V

Wv(v))+ |V |− |V0| is the trivial bound). Finally,
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define T as a decision variable that represents the minimum broadcast time, and xt
i j as a binary

variable that has value 1 if the vertex i starts transmission of the message to the vertex j in time

t and 0, otherwise. Based on these elements, our ILP model is defined as follows:

min T (3.1)

s. t Ki + ∑
j∈N(i)

Tmax

∑
t=0

xt
ji = 1 ∀i ∈V (3.2)

∑
j∈N(i)

xt
i j = 0 ∀i ∈V0,∀t ∈ [0,Wv(i)) (3.3)

∑
j∈N(i)

xt
i j ≤ 1 ∀i ∈V,∀t ∈ [0,Tmax] (3.4)

xt
i j ≤ Ki + ∑

k∈N(i)\{ j}

t−1−Wv(i)

∑
τ=0

xτ

ki ∀(i, j) ∈ E, ∀t ∈ [0,Tmax] (3.5)

Tmax

∑
t=0

(t +1+Wv( j)) · xt
i j ≤ T ∀(i, j) ∈ E (3.6)

T ∈ N (3.7)

xt
i j ∈ B ∀(i, j) ∈ E, ∀t ∈ [0,Tmax] (3.8)

The objective function (3.1) minimizes the weighted broadcast time. Constraints (3.2) limit

each vertex to receive only one message or start with its. Constraints (3.3) imply that each

source sends the message after its setup phase. Constraints (3.4) require that each vertex

sends at most one message to a neighbor at each time t. Constraints (3.5) establish that each

vertex can only transmit if it has already received the message. Constraints (3.6) state that the

value of T must be greater than or equal to the time of any transmission. Finally, Constraints

(3.7) and (3.8) define the domain of the decision variables.

3.2.1.2 Weighted-edge model

In the weighted-edge variation, there is a list We with weights for each edge of the graph. The

ILP model for this variation is as follows:

min T (3.9)

s. t Ki + ∑
j∈N(i)

Tmax

∑
t=1

xt
ji = 1 ∀i ∈V (3.10)

∑
j∈N(i)

xt
i j ≤ 1 ∀i ∈V,∀t ∈ [0,Tmax] (3.11)
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xt
i j ≤ Ki + ∑

k∈N(i)\{ j}

t−We((k,i))

∑
τ=0

xτ

ki ∀(i, j) ∈ E, ∀t ∈ [0,Tmax] (3.12)

Tmax

∑
t=0

(t +We((i, j))) · xt
i j ≤ T ∀(i, j) ∈ E (3.13)

xτ

ik ≤ 1− xt
i j ∀(i, j) ∈ E, ∀t ∈ [0,Tmax], ∀k ∈ N(i), ∀τ ∈ [t +1, t +We(i, j)] (3.14)

T ∈ N (3.15)

xt
i j ∈ B ∀(i, j) ∈ E, ∀t ∈ [0,Tmax] (3.16)

The objective function (3.9) minimizes the weighted broadcast time. Constraints (3.10) limit

each vertex to receive only one message or start with its, where Tmax = ∑
e∈E

We(e) is the trivial

upper bound. Constraints (3.11) require that each vertex sends at most one message to a

neighbor at each time t. Constraints (3.12) establish that each vertex can only transmit if it has

already received the message. Constraints (3.13) state that the value of T must be greater than

or equal to the time of any transmission. Constraints (3.14) mean each vertex wait We(i, j) units

of time for a new transmission. Finally, Constraints (3.15) and (3.16) define the domain of the

decision variables.

3.2.1.3 General model

The general model is based on the previous ones and combines them as follows:

min T (3.17)

s. t Ki + ∑
j∈N(i)

Tmax

∑
t=1

xt
ji = 1 ∀i ∈V (3.18)

∑
j∈N(i)

xt
i j = 0 ∀i ∈V0,∀t ∈ [0,Wv(i)) (3.19)

∑
j∈N(i)

xt
i j ≤ 1 ∀i ∈V,∀t ∈ [0,Tmax] (3.20)

xt
i j ≤ Ki + ∑

k∈N(i)\{ j}

t−We((k,i))−Wv(i)

∑
τ=0

xτ

ki ∀(i, j) ∈ E, ∀t ∈ [0,Tmax] (3.21)

Tmax

∑
t=0

(t +We((i, j))+Wv(( j))) · xt
i j ≤ T ∀(i, j) ∈ E (3.22)

xτ

ik ≤ 1− xt
i j ∀(i, j) ∈ E, ∀t ∈ [0,Tmax], ∀k ∈ N(i), ∀τ ∈ [t +1, t +We((i, j))] (3.23)

T ∈ N (3.24)

xt
i j ∈ B ∀(i, j) ∈ E, ∀t ∈ [0,Tmax] (3.25)
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The objective function (3.17) minimizes the weighted broadcast time. Constraints (3.18) limit

each vertex to receive only one message or start with its, where Tmax = ∑
e∈E

We(e)+ ∑
v∈V

Wv(v) is

the trivial bound. Constraints (3.19) imply that each source sends the message after its setup

phase. Constraints (3.20) require that each vertex sends at most one message to a neighbor

at each time t. Constraints (3.21) establish that each vertex can only transmit if it has already

received the message. Constraints (3.22) state that the value of T must be greater than or equal

to the time of any transmission. Constraints (3.23) mean each vertex wait We(i, j) units of time

for a new transmission. Finally, Constraints (3.24) and (3.25) define the domain of the decision

variables.

For the remainder of this work, we will consider only the general model as the WMBT.

3.2.2 Lower bound algorithm for the WMBT

We have already commented on the importance of bounds in Section 2.2.2. Harutyunyan and

Kamali (2008) proposed a lower bound given by d+(d+1) ·wmin, where d is the maximum dis-

tance of sources to other vertices and wmin is min
v∈V

(Wv(v)). To the best of the author’s knowledge,

there are no works about bounds for weighted-edge and weighted-edge-and-vertex models.

Clearly, ∑
e∈E

We(e)+ ∑
v∈V

Wv(v) is an upper bound for the optimal broadcast time. However,

this upper bound value is not tight, because, this sum can be a very high value. Consequently,

for exact models, a large upper bound makes the solver require a lot of memory to solve the

problem exactly.

Algorithm 7 calculates an upper bound for the WMBT. Its main objective is to find the maxi-

mum shortest path between a target vertex and its nearest source. Note that a straightforward

implementation of LBB-Dijkstra, i.e., applying a Dijkstra’s algorithm on each v ∈ V0, would

require O(|V0| · (|V |+ |E| · log(|V |))). But, the worst-case running time of LBB-Dijkstra is

O(|V |+ |E| · log(|V |).

Theorem 10. Algorithm 7 returns a lower bound for the optimum of the MBT with input graph

G = (V,E), positive edge weights We, non-negative vertex weights Wv and source set V0.

Proof. Let b∗ be the optimum an instance G(V,E,We,Wv), V0 and z be the value returned by the

LBB-Dijkstra algorithm. Consider that v ∈V0 is the closest vertex of V0 to a vertex `∈V , such

that the distance between them is exactly z. We need at least z distance to reach ` from any

vertex in V0. Therefore, z≤ b∗, i.e., z is a lower bound for the optimum MBT value.

3.2.3 Exact greedy algorithm for the WMBT for forest

In this section, we extend the algorithm proposed by Su et al. (2016). The original algorithm

solves the weighted-vertex MBT for trees. In our extension, both vertices and edges have
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Algorithm 7: Lower bound algorithm for WMBT.
Input : Undirected graph: G = (V,E),

Positive edge weights: We,
Non-negative vertex weights: Wv,
Source set: V0

Output: Lower bound to broadcast: lowerBound

1 LBB-Dijkstra(G,Wv,We,V0)
2 for v ∈V do
3 dist[v]← ∞

4 S← /0 // let S be an set
5 for v ∈V0 do

6 dist[v]← 0 +Wv[v]

7 S← S∪{v}
8 while S 6= /0 do
9 v← argmin(dist[u])

u∈S
// Get the vertex with lower distance

10 S← S\{v}
11 for all (v,u) ∈ E do

12 if dist[u]> dist[v]+ We[(v,u)] +Wv[u] then

13 dist[u]← dist[v]+ We[(v,u)] +Wv[u]

14 S← S∪{u}

15 lowerBound←max
v∈V

(dist[v]) // Get higher distance

16 return lowerBound

weights. Our contribution is illustrated in Algorithm 8 with an underline. For the remainder of

this work, we will label Algorithm 8 as Weighted-SCHA.

3.2.4 Greedy algorithm for the WMBT for general instances

In this section, we propose an extension for the algorithm of Harutyunyan and Kamali (2008)

(Algorithm 6). We improve this algorithm by considering multi-source graphs and also by allowing

weights on both vertices and edges. The differences from the original algorithm are highlighted

with rectangles in Algorithm 9. Note that our algorithm refines the greedy solution by applying the

Weighted-SCHA algorithm (line 17). Moreover, our algorithm ensures the optimal solution if the

input graph is a tree. Overall, the worst-case running time of the algorithm remains O(|E| · |V |).

3.2.5 Reducing rules

In this section, we propose a reducing rule to improve the performance of heuristics for WMBT.

The idea is to reduce the search space by removing edges that do not belong to any optimal

solution. Consequently, the probability of finding an optimal solution increases. The proposed
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Algorithm 8: WMBT for forest instances.
Input : Weighted forest: F = (V,E,S,Wv,We)
Output: Total step time to broadcast: broadcastTime

1 WMBT-Forest(F)
2 broadcastTime← 0
3 for each v ∈V do
4 vstd[v]← f alse

5 for each r ∈ R do
6 Tr← GetTree(F ,r)
7 broadcastTime← max(broadcastTime, WMBT-Tree(Tr, r, vstd))

8 return broadcastTime

9 WMBT-Tree(T,v,vstd)
10 vstd[v]← true
11 broadcastTime← 0
12 time← 0
13 PQ← InitPQ() // let PQ be an priority queue
14 for each u ∈ N(v) do
15 if vstd[u] = f alse then
16 PQ←PushPQ(PQ,(WMBT-Tree(T ,u,vstd) + We((v,u)), We((v,u)), u))

17 while not IsEmpty(PQ) do
18 p,w,u← PopPQ(PQ)
19 broadcastTime← max(broadcastTime, p+ time)
20 time← time+w

21 broadcastTime← broadcastTime+Wv(v)
22 return broadcastTime

reduce algorithm uses Algorithm 7 to compute WMBT lowers bounds for each vertex. The main

idea of the algorithm is to check if the lower bound of a vertex plus its transmission cost is greater

than the best WMBT found. If so, we can delete some of this edges.

Definition 11. Given an instance G(V,E,S,We,Wv), for a vertex v ∈ V , there is a lower bound

on the time required to v receive any message from S, denoted by lb[v], which is computed by

the LBB-Dijkstra algorithm.

Definition 12. Let e=(v,u)∈E an edge with weight we =We(e) for an instance G(V,E,S,We,Wv).

The cost of edge cost(e) is computed as min(lb[v]+Wv[u], lb[u]+Wv[v])+we.

Theorem 13. Let b be the WMBT of a primal solution for an instance G(V,E,S,We,Wv) and

e ∈ E an edge of G. If cost(e) > b, then not exists an optimal solution B, which has a lower

WMBT than the b such that e belong to B.

Proof. Let B′ be a solution of G(V,E,S,We,Wv) with WMBT b′ ≤ b such that e ∈ S′. The edge e

can be used in the broadcast to transmit from u to v or from v to u. The vertex v can receive the

message (sent by u) at time lb[u]+Wv[v]+we. Similarly, the vertex u can receive the message
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Algorithm 9: Exact greedy algorithm for WMBT
Input : Weighted Undirected graph: G = (V,E,Wv,We),

Source set: V0
Output: Broadcast time: broadcastTime

1 ImprovedGreedyAlgorithm(G,V0)
2 for v ∈V do
3 cost[v]← ∞

4 I← /0 // let I be a set
5 for v0 ∈V0 do
6 cost[v0]←Wv[v0]
7 I← I∪{v0}
8 Eb← /0 // let Eb be a set
9 U ←V \{v0} // let U be a set

10 while U 6= /0 do
11 vα,vβ← argmin(cost[vi]+Wv[v j]+ We[(vi,v j)] )

i∈I, j∈U,(i, j)∈E

12 cost[vβ]← cost[vα]+Wv[vβ]+ We[(vi,v j)]

13 cost[vα]← cost[vα]+ We[(vi,v j)]

14 I← I∪{vβ}
15 U ←U \{vβ}
16 Eb← Eb∪{(vα,vβ)}
17 broadcastTime← WSCHA((V,Eb,V0,Wv,We))
18 return broadcastTime

Algorithm 10: Algorithm to remove edges of graph
Input : Weighted graph: G = (V,E,S,Wv,We), Lower bounds: lbs,

Broadcast time: broadcastTime
Output: Weighted graph: Gc

1 ReduceRules(G, lbs,broadcastTime)
2 Ec← /0

3 Wec ← /0

4 for each e ∈ E do
5 cost←min(lbs[ev]+Wv[eu],lbs[eu]+Wv[ev]) +ew

6 if cost ≤ broadcastTime then
7 Ec← Ec∪{e}
8 Wec [e]←We[e]

9 Gc = (V,Ec,S,Wv,We)
10 return Gc

(sent by v) at time lb[v] +Wv[u] +we. Therefore, S′ (and any solution that uses the edge e)

must have a WMBT of at least min(lb[v]+Wv[u], lb[u]+Wv[v])+we = cost(e), contradicting our

assumption that b′ ≤ b.
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Rules 14. Given instance G(V,E,S,We,Wv), a solution S of G with b an edge e such that

cost(e)> b, then delete e from G.

3.2.6 BRKGA for the WMBT

In this section, we propose two BRKGA decoders for the WMBT: (i) Dijkstra-based with Weight-

ed-SCHA, (ii) Minimum Spanning Forest-based with Weighted-SCHA refinement. Both decoders

start by generating a forest to be used as input for Weighted-SCHA. We do not apply the same

ideas in Chapter 2 since the decoders of MBT can not represent all solutions of WMBT in the

search space. Figure 3.2 shows an example of an instance such that the FRFS decoder can not

construct the optimal solution. In this example, any subgraph generated by the FRFS decoder

will have the edge (g1,d2), but this edge does not belong to the optima.

In preliminary tests, we realize that an initial population with a single greedy solution pro-

duced good results. Thus, Algorithm 11 starts by computing the greedy solution using Algorithm

9 and the lower bound for each vertex in V . After that, in the multi-start loop (lines 2–3), it is ap-

plied the ReduceRule and population are initialized (including the greedy solution). In the main

loop (lines 4–15), we evolve the population and evaluate it using a decoder method (line 10),

which will be presented in the following sections. Finally, we finish the main loop after maxIt

attempts without improvement, and then we reset the population (lines 11–14).

Algorithm 11: BRKGA for the WMBT.
Input : Weighted graph: G = (V,E,Wv,We),

Source set: V0, Maximum number of generations without improvement: maxIt
Output: Schedule Broadcast: S

1 BRKGA(G,V0,maxIt)
2 S∗← ImprovedGreedyAlgorithm((V,E,V0,Wv,We))
3 Lb← LB(G, V0)
4 while stopping criterion not met do
5 G← {ReduceRules(G, Lb, Fitness(S∗))}
6 P← {EncodeSolution(S∗)}
7 P← P ∪ InitPopulation(G, V0) // Inicialize the first BRKGA population
8 noImprovement← 0
9 while stopping criterion not met or does not improve the solution do

10 P← BRKGA_Evolve(P) // Evolve population
11 noImprovement← noImprovement +1
12 if noImprovement = maxIt then // If no improvement after maxIt

generations
13 noImprovement← 0
14 P← ResetPopulation(P) // Reset the BRKGA population

15 S∗← GetBestIndividual(P) // Get the best individual of the
population

16 return S∗
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3.2.6.1 Dijkstra-based decoder (DJ)

The Dijkstra-based decoder describes a solution by a set of |E| random keys (allele). Each

random key represents the priority of an edge to be added on the broadcast forest, i.e., the edge

with the lowest allele has the highest priority, and so on. We use the forest of Dijkstra as input to

Weighted-SCHA for computing the WMBT. Overall, the worst-case running time of the decoder

function is O(|E| · log |V |).

Algorithm 12: DJ decoder
Input : Weighted graph: G = (V,E,S,Wv,We),

Chromosomes vector: Cr
Output: Total step time to broadcast: broadcastTime

1 DJ(G,Cr)
2 for v ∈V do
3 cost[v]← ∞

4 I← S // let I be a set
5 Eb← /0 // let Eb be a set
6 for v ∈V do
7 cost[v]← ∞

8 U ←V \S // let U be a set
9 cost[v0]← 0

10 while U 6= /0 do
11 vα,vβ← argmin(cost[vi]+Cr[(vi,v j)])

i∈I, j∈U,(i, j)∈E

12 I← I∪{vβ}
13 U ←U \{vβ}
14 Eb← Eb ∪{(vα,vβ)}
15 broadcastTime← WSCHA((V,Eb,S,Wv,We))
16 return broadcastTime

3.2.6.2 Minimum Spanning Forest-based decoder (MSF)

In this section, we describe a Minimum Spanning Forest-based decoder (MSF). In this approach,

each random key is associated with an edge. Each allele indicates the weight of this edge. Next,

we compute the minimum spanning forest using Kruskal Algorithm (Kruskal, 1956), . Finally, we

compute the WMBT over this forest using the Weighted-SCHA. Overall, the worst-case running

time of the decoder function is O(|E| · log |E|).

3.3 Computacional results of the WMBT

This section presents the computational experiments conducted to evaluate the effectiveness of

our proposed ILP and BRKGAs. The proposed algorithms are compared with the following state-

of-the-art approaches: (i) an adaptation of Ant Colony metaheuristic (ACS) from Hasson and
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Algorithm 13: MSF decoder
Input : Weighted graph: G = (V,E,S,Wv,We),

Chromosomes vector: Cr
Output: Total step time to broadcast: broadcastTime

1 Root(v, parent)
2 if parent[v]< 0 then
3 return v

4 parent[v]← Root(parent[v], parent)
5 return parent[v]

6 Merge(u,v, parent)
7 u← Root(u, parent)
8 v← Root(v, parent)
9 parent[v]← parent[u]

10 MSF(G,Cr)
11 Eb← /0

12 for each v ∈V do
13 parent[v]←−1

14 r←∀v0 ∈ S
15 for each v0 ∈V0 do
16 Merge(r, v0)

17 Ranking← /0

18 for each e ∈ E do
19 Ranking← Ranking∪{(Cr[e],ev,eu)}
20 while |Eb|+ |S| 6= |V | do
21 e←ExtractMin(Ranking)
22 Ranking← Ranking\{e}
23 if Root(ev, parent) 6= Root(eu, parent) then
24 Eb← Eb∪{(ev,eu)}
25 Merge(ev, eu)

26 broadcastTime← WSCHA((V,Eb,S,Wv,We))
27 return broadcastTime

Sipper (2004); and (ii) an adaption of constructive heuristic from Harutyunyan and Kamali (2008).

For the ACS algorithm, we use the Weighted-SCHA algorithm to refine the partial solutions. We

adapt the constructive heuristic from Harutyunyan and Kamali (2008) by adding weights in the

edges.

All experiments in this section were conducted on an Intel Core i7-6700 with 3.40 GHz, 32

GB of RAM, running Ubuntu 18.04.5. The heuristic algorithms were coded in C++ and compiled

with g++ 7.5 and ‘-O3’ flag. The BRKGA C++ framework developed by Toso and Resende (2015)

has been used to implement our BRKGA. Moreover, IBM Cplex 12.9 has been adopted to solve

the ILP models.
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3.3.1 Instances

We tested our algorithms on a total of 40 instances, which include:

• Random graph (20 instances): The random graph Gr is based on the G(n, p) model,

also known as binomial model (Gilbert, 1959). Each graph Gr = (V,Er) is generated with

n vertices and each potential edge in Er is created with probability p. The vertices and

edges weights have been created using a uniform distribution.

• Large synthetic instances based on random tree (20 instances): Given that the optimal

solution for large the WMBT instances is often unknown, we generated a new benchmark

with known optimal solutions using the following procedure.

Algorithm 14 creates a random instance G = (V,E,Wv,We) by applying the union of a

weighted-vertex-and-edge random tree T = (VT ,ET ,WvT ,WeT ) and a weighted-edge random

graph Gr = (Vr,Er,Wr), where V =VT =Vr, E = ET ∪Er, Wv =WvT and We =WeT ∪Wr. First,

we calculate the optimal broadcast time of T by using the Algorithm 8 (WMBT-TREE). After that,

we created a random graph Gr to merge with T into G. Finally, for each new edge in Gr, we

assigned a weight value preserving the optimal solution found previously.

Appendix A.2 gives more information regarding the adopted instances, such as the number

of vertices and edges.

3.3.2 Parameter settings and experimental protocol

In our experiments with the ACS algorithm, we adopted the same parameter settings indicated by

its authors. Moreover, we have used the irace tunning tool (López-Ibáñez et al., 2016) to config-

ure the parameters of our algorithms and their variations. The best parameter settings identified

by the tuning experiment are reported in Table 3.2. In this table, BRKGA parameters p, pe,

pm, ρe, and K represent, respectively, the number of individuals in each population, percentage

of elite individuals into each population, percentage of mutants introduced at each generation

into the population, the probability that an offspring inherits the allele of its elite parent, and the

number of independent populations.

Table 3.2: Range considered by IRACE and best parameter settings obtained.

Parameter Value ranges BRKGA-DJ BRKGA-MSF

p - |V | |V |
pe 0.10, 0.11, . . ., 0.25 0.24 0.25
pm 0.10, 0.11, . . ., 0.30 0.23 0.22
ρe 0.50, 0.51, . . ., 0.80 0.59 0.52
K - 1 1

We have set a time limit of 3600 s (1 h) to Cplex for solving our ILP model. To assess the
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Algorithm 14: Create a random weighted graph with optima known.
Input : Number of vertices: n,

density: d
Output: Weighted-vertex-and-edge graph: G(VG,EG,S,Wv,We),

minimum broadcast time of graph G: wmbt

1 GenerateWeightedGraph(n,d)
2 T ← RandomTree(n)
3 root← Random(0,n)
4 for each v ∈V (T ) do
5 WvT [v]← Random(0,∞)

6 for each e ∈ E(T ) do
7 WeT [e]← Random(1,∞)

8 S← WMBT-Tree((V (T ),V (E),WvT ,WeT ), root)
9 times← GetTimes(S)

10 Gr← RandomGraph(n,d)
11 VG←V (T )
12 Wv←WvT

13 EG← E(T )
14 We←WeT

15 for each e ∈ E(Gr)\E(T ) do
16 EG← EG∪{e}
17 di f f erentTime← abs(times[e.v]− times[e.u])
18 We[e]← di f f erentTime+ Random(1,∞)

19 wmbt←max
v∈V

(times[v])

20 G← (VG,EG,{root},Wv,We)
21 return G,wmbt

average performance of the heuristic algorithms (BRGKAs and ACS), we have performed 10

runs in each benchmark instance with different random seeds for each run. A time limit of 300 s

has been used for these runs.

3.3.3 Comparing the deterministic algorithms

Table 3.3 compares the algorithm of Harutyunyan and Kamali (2008) (Algorithm 6), our improve-

ment in this algorithm (Algorithm 9), and the ILP model in all instances. The methods are com-

pared using only the following criteria: the WMBT, and the CPU time to find the best solution

(column ‘t (s)’). An asterisk means that the method has been able to prove the optimality of a

given result. Since the algorithms are deterministic, we run them only one time.

Note that Harutyunyan-WSCHA attains or improves the quality of the solutions obtained by

Harutyunyan on all instances. In the ILP model, we set the lower bound using Algorithm 7. We

also used the WMBT value of Harutyunyan-WSCHA as the upper bound to reduce the computa-

tional demand and the total amount of used memory. The ILP model does not produce feasible

solutions for instances with more than 512 vertices. But in graphs with up to 256 vertices, the
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model showed a significant result.

Table 3.3: Comparative results of deterministic algorithms.

Instance
Lower Bound HARUTYUNYAN HARUTYUNYAN-WSCHA ILP

WMBT t (s) WMBT t (s) WMBT t (s)

R1024-G1-D10-1 13 20 0.19 19 0.19 - 3600.00

R1024-G1-D15-1 15 22 0.30 21 0.30 - 3600.00

R1024-G1-D20-1 9 17 0.40 16 0.39 - 3600.00

R1024-G1-D25-1 9 17 0.48 16 0.47 - 3600.00

R128-G1-D10-1 20 29 < 0.01 27 < 0.01 23 3575.57

R128-G1-D15-1 20 28 < 0.01 27 < 0.01 23 3603.59

R128-G1-D20-1 18 26 < 0.01 25 < 0.01 24 3605.44

R128-G1-D25-1 15 22 < 0.01 20 < 0.01 18 3606.34

R256-G1-D10-1 15 24 < 0.01 23 < 0.01 - 3600.00

R256-G1-D15-1 16 22 < 0.01 21 < 0.01 - 3600.00

R256-G1-D20-1 10 18 0.01 16 0.01 - 3600.00

R256-G1-D25-1 12 17 0.01 16 0.01 - 3600.00

R512-G1-D10-1 13 21 0.03 21 0.02 - 3600.00

R512-G1-D15-1 16 23 0.04 22 0.04 - 3600.00

R512-G1-D20-1 10 18 0.05 17 0.05 - 3600.00

R512-G1-D25-1 13 19 0.06 18 0.06 - 3600.00

R64-G1-D10-1 22 28 < 0.01 27 < 0.01 23 36.45

R64-G1-D15-1 20 25 < 0.01 24 < 0.01 22 42.99

R64-G1-D20-1 20 30 < 0.01 29 < 0.01 25 3600.64

R64-G1-D25-1 16 21 < 0.01 21 < 0.01 18 51.16

RO1024-G1-D10-1 440 492 0.19 490 0.19 - 3600.00

RO1024-G1-D15-1 550 609 0.30 603 0.30 - 3600.00

RO1024-G1-D20-1 479 536 0.40 532 0.39 - 3600.00

RO1024-G1-D25-1 353 393 0.48 393 0.47 - 3600.00

RO128-G1-D10-1 117 139 < 0.01 124 < 0.01 - 3600.00

RO128-G1-D15-1 186 214 < 0.01 186 < 0.01 - 3600.00

RO128-G1-D20-1 167 202 < 0.01 197 < 0.01 - 3600.00

RO128-G1-D25-1 122 149 < 0.01 149 < 0.01 - 3600.00

RO256-G1-D10-1 250 282 < 0.01 279 < 0.01 - 3600.00

RO256-G1-D15-1 208 239 < 0.01 237 < 0.01 - 3600.00

RO256-G1-D20-1 169 202 < 0.01 197 0.01 - 3600.00

RO256-G1-D25-1 211 243 0.01 241 0.01 - 3600.00

RO512-G1-D10-1 288 335 0.03 331 0.02 - 3600.00

RO512-G1-D15-1 409 479 0.04 476 0.04 - 3600.00

RO512-G1-D20-1 297 333 0.05 332 0.05 - 3600.00

RO512-G1-D25-1 320 362 0.06 356 0.06 - 3600.00

RO64-G1-D10-1 74 95 < 0.01 74* < 0.01 74* 15.23

RO64-G1-D15-1 108 128 < 0.01 128 < 0.01 109 52.02

RO64-G1-D20-1 87 99 < 0.01 88 < 0.01 88 57.86

RO64-G1-D25-1 140 168 < 0.01 168 < 0.01 - 3600.00

# Best 4 31 11

Avg. t (s) 0.08 0.08 3066.18

3.3.4 Validating the reducing rules

This section shows the benefits of using the proposed reducing rules (RR). Tables 3.4, 3.5 and

3.6 compare the decoder with and without the RR. We considered instances with a density of
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25%, a time limit of 600 seconds, and 5 runs with different random seeds for each run. Moreover,

we behold that the RR can reduce the density by 5–95%. Consequently, the BRKGA gets faster.

Table 3.4: Comparative results of BRKGA-DJs with and without RR

Method
BRKGA-DJ BRKGA-DJ

without RR with RR

# Best 9 10

# Best Avg. 8 10

Avg. t (s) 129.66 55.68

Table 3.5: Comparative results of BRKGA-MSFs with and without RR

Method
BRKGA-MSF BRKGA-MSF

without RR with RR

# Best 8 10

# Best Avg. 8 9

Avg. t (s) 140.93 113.39

Table 3.6: Comparative results of BRKGAs with and without RR

Method
BRKGA-DJ BRKGA-MSF BRKGA-DJ BRKGA-MSF

without RR without RR with RR with RR

# Best 8 8 9 10

# Best Avg. 7 8 8 8

Avg. t (s) 189.65 140.93 115.68 113.39

3.3.5 Comparing the metaheuristics

Table 3.7 compares the heuristics ACS-WSCHA, Harutyunyan-WSCHA and BRKGAs in all in-

stances for the WMBT. The results show that BRKGAs outperform both heuristics from the lit-

erature in solution quality and CPU time. The BRKGA-MSF found 38 best solutions, whereas this

number was 36 for the BRKGA-DJ. Both decodes have similar computational times.

The BRKGAs initialize the initial population with an element based on a solution of

Harutyunyan-WSCHA, so it is prospective that the BRKGA would be better than its.

Table 3.7: Comparative results of ACS, BRKGAs and HARUTYUNYAN-WSCHA

Instance
BRKGA-DJ BRKGA-MSF HARUTYUNYAN-WSCHA ACS-WSCHA

Best Avg. t (s) Best Avg. t (s) Best t (s) Best Avg. t (s)

R1024-G1-D10-1 19 19.00 0.24 19 19.00 0.24 19 0.24 391 391.00 300.00

R1024-G1-D15-1 21 21.00 0.36 21 21.00 0.36 21 0.38 512 512.00 300.00

R1024-G1-D20-1 16 16.00 0.46 16 16.00 0.46 16 0.49 735 735.00 300.00

R1024-G1-D25-1 16 16.00 0.57 16 16.00 0.57 16 0.59 843 843.00 300.00

R128-G1-D10-1 26 26.80 256.73 26 26.80 273.74 27 < 0.01 58 58.00 300.00

Continued on next page
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Table 3.7 – continued from previous page

Instance
BRKGA-DJ BRKGA-MSF HARUTYUNYAN-WSCHA ACS-WSCHA

Best Avg. t (s) Best Avg. t (s) Best t (s) Best Avg. t (s)

R128-G1-D15-1 26 26.80 275.70 26 26.70 257.74 27 < 0.01 70 70.00 300.00

R128-G1-D20-1 24 24.90 299.05 25 25.00 300.00 25 < 0.01 93 93.00 300.00

R128-G1-D25-1 20 20.00 < 0.01 20 20.00 < 0.01 20 < 0.01 130 130.00 300.00

R256-G1-D10-1 23 23.00 < 0.01 23 23.00 < 0.01 23 < 0.01 97 97.00 300.00

R256-G1-D15-1 21 21.00 0.01 21 21.00 0.01 21 0.01 135 135.00 300.00

R256-G1-D20-1 16 16.00 0.01 16 16.00 0.01 16 0.01 158 158.00 300.00

R256-G1-D25-1 16 16.00 0.01 16 16.00 0.01 16 0.01 197 197.00 300.00

R512-G1-D10-1 21 21.00 0.03 21 21.00 0.03 21 0.03 194 194.00 300.00

R512-G1-D15-1 22 22.00 0.04 22 22.00 0.04 22 0.05 297 297.00 300.00

R512-G1-D20-1 17 17.00 0.06 17 17.00 0.06 17 0.06 340 340.00 300.00

R512-G1-D25-1 18 18.00 0.07 18 18.00 0.07 18 0.08 407 407.00 300.00

R64-G1-D10-1 25 25.30 146.31 25 25.60 201.67 27 < 0.01 38 38.00 300.00

R64-G1-D15-1 23 23.80 277.72 23 23.70 226.22 24 < 0.01 52 52.00 300.00

R64-G1-D20-1 28 28.00 300.00 27 27.90 278.18 29 < 0.01 72 72.00 300.00

R64-G1-D25-1 19 19.40 142.70 19 19.50 195.32 21 < 0.01 56 56.00 300.00

RO1024-G1-D10-1 490 490.00 0.23 490 490.00 0.23 490 0.24 43309 43309.00 300.00

RO1024-G1-D15-1 603 603.00 0.35 603 603.00 0.35 603 0.37 73373 73373.00 300.00

RO1024-G1-D20-1 532 532.00 0.45 532 532.00 0.45 532 0.48 106708 106708.00 300.00

RO1024-G1-D25-1 393 393.00 0.56 393 393.00 0.56 393 0.59 91319 91319.00 300.00

RO128-G1-D10-1 124 124.00 < 0.01 124 124.00 < 0.01 124 < 0.01 1567 1568.10 300.00

RO128-G1-D15-1 186 186.00 < 0.01 186 186.00 < 0.01 186 < 0.01 3655 3655.00 300.00

RO128-G1-D20-1 182 192.90 300.00 167 191.40 287.96 197 < 0.01 3829 3829.00 300.00

RO128-G1-D25-1 122 140.90 245.69 122 138.70 268.81 149 < 0.01 3720 3720.00 300.00

RO256-G1-D10-1 277 278.80 271.21 277 278.80 285.83 279 < 0.01 5878 5882.30 300.00

RO256-G1-D15-1 232 235.50 300.00 209 234.10 281.18 237 0.01 8603 8603.00 300.00

RO256-G1-D20-1 197 197.00 300.00 189 195.10 277.43 197 0.01 8056 8056.00 300.00

RO256-G1-D25-1 238 240.30 249.51 241 241.00 300.00 241 0.01 10637 11548.90 300.00

RO512-G1-D10-1 331 331.00 0.03 331 331.00 0.03 331 0.03 14470 14640.60 300.00

RO512-G1-D15-1 476 476.00 0.04 476 476.00 0.04 476 0.05 31088 31088.00 300.00

RO512-G1-D20-1 332 332.00 0.06 332 332.00 0.06 332 0.06 30598 30598.00 300.00

RO512-G1-D25-1 356 356.00 0.07 356 356.00 0.07 356 0.08 36776 36776.00 300.00

RO64-G1-D10-1 74 74.00 < 0.01 74 74.00 < 0.01 74 < 0.01 485 485.00 300.00

RO64-G1-D15-1 109 109.00 5.81 109 109.00 65.92 128 < 0.01 914 916.00 300.00

RO64-G1-D20-1 88 88.00 < 0.01 88 88.00 < 0.01 88 < 0.01 1044 1044.00 300.00

RO64-G1-D25-1 140 142.80 71.03 140 140.00 37.46 168 < 0.01 2636 2636.00 300.00

Avg. t (s) 86.13 88.53 0.1 300

# Best 36 38 25 0

# Best Avg. 32 36 25 0



4
Final Considerations

In this work, we proposed some algorithms for the MINIMUM BROADCAST TIME problem and its

weighted version (WMBT). For the MBT, we have described a new lower bound procedure for the

problem based on vertex distances in the input graph. This procedure can reduce computational

resources and heuristic algorithms used to prove the optimality. The experimental results reveal

that our approach increased several lower bounds and helped the Integer Linear Programming

(ILP) model and our BRKGA prove several previously unknown optima.

We proposed two BRKGA metaheuristics and a matheuristic using BRKGA and ILP, our ap-

proaches outperformed ACS (Hasson and Sipper, 2004) and ILP (de Sousa et al., 2018) in both

solution quality and CPU time. In our best approaches, we used the idea described in Koh and

Tcha (1991); Su et al. (2010) to improve solution quality. For all instances for the MBT with

known optima value, our approaches either attained the optimal value or missed it by at most

one broadcast step. Moreover, we described a method to create instances with known optima.

To the best of our knowledge, this is the first time that major efforts were made to study, generate,

and solve hard instances for the MBT.

The WMBT is even harder to handle than the MBT because the broadcast scheme does not

follow a standard pattern. There are a smaller amount of articles. To the best of our knowl-

edge, we proposed the first mathematical model for the WMBT. Thus, we formulated three ILP

models (one for each variant of the WMBT). Moreover, we adapted our lower bound of MBT al-

gorithm to WMBT. We adopted a similar refinement of MBT to improve solution quality, which the

experimental computational showed a significant improvement. We proposed two BRKGA meta-

heuristics, which outperformed the algorithms in the literature. Finally, we proposed a reducing

rule.

51
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4.1 Future works

We also plan to extend the proposed algorithm to solve related problems, such as the following

MBT or WMBT:

(i) with at most k transmissions (k-broadcast) (Lazard, 1992; Harutyunyan and Liestman,

2001),

(ii) proposal an algorithm distributed for problems, and

(iii) apply our algorithms for solving real problems, such as swarm robotics (Al-Sarawi et al.,

2017).

4.2 Scientific production

This master’s degree resulted in the following scientific production:

(i) An article published in the Simpósio Brasileiro de Pesquisa Operacional (SBPO) (Lima

et al., 2020) composed by part of Chapter 2;

(ii) An article in revision in the International Transactions in Operational Research (ITOR)

composed by Chapter 2.

(iii) An article published in IEEE Systems, Man, and Cybernetics Society (SMC) (Lima et al.,

2021), in cooperation with others researches;

Finally, we are writing a new article composed by the results of Chapter 3.
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Appendix A

Detailed instances

A.1 Instances for the MBT.

For each instance, Table A.1 gives the name (column ‘Instance’), the number of vertices (column

‘|V |’), the number of edges (column ‘|E|’), the initial source vertex (column ‘V0’), the theoretical

lower bound (column ‘TLB’, see Eq. (2.1)), the lower bound found by the proposed Algorithm 1

(column ‘LBB’), and the edge density (column ‘density’).

Table A.1: Description of the test instances.

Instance |V | |E| V0 T LB LBB density Instance |V | |E| V0 T LB LBB density

Harary Graphs

H10,30 30 150 {30} 5 3 0.3448 H11,50 50 275 {50} 6 3 0.2245

H20,50 50 500 {50} 6 3 0.4082 H21,50 50 525 {50} 6 2 0.4286

H2,100 100 100 {100} 7 50 0.0202 H2,17 17 17 {17} 4 8 0.125

H2,30 30 30 {30} 5 15 0.069 H2,50 50 50 {50} 6 25 0.0408

H3,17 17 26 {6} 4 4 0.1912 H3,30 30 45 {30} 5 8 0.1034

H3,50 50 75 {50} 6 13 0.0612 H5,17 17 43 {17} 4 3 0.3162

H6,17 17 51 {17} 4 3 0.375 H7,17 17 60 {17} 4 2 0.4412

H8,30 30 120 {30} 5 4 0.2759 H9,30 30 135 {30} 5 3 0.3103

Hypercube Graphs

HC5 32 80 {1} 5 5 0.1613 HC6 64 192 {1} 6 6 0.0952

HC7 128 448 {1} 7 7 0.0551 HC8 256 1024 {1} 8 8 0.0314

HC9 512 2304 {1} 9 9 0.0176 HC10 1024 5120 {1} 10 10 0.0098

Cube-Connected Cycles Graphs

CCC3 24 36 {1} 5 6 0.1304 CCC4 64 96 {1} 6 8 0.0476

CCC5 160 240 {1} 8 10 0.0189 CCC6 384 576 {1} 9 13 0.0078

CCC7 896 1344 {1} 10 15 0.0034

deBruijn Graphs

DB4 16 32 {1} 4 4 0.2583 DB5 32 64 {1} 5 5 0.1270

DB6 64 128 {1} 6 6 0.0630 DB7 128 256 {1} 7 7 0.0314

DB8 256 512 {1} 8 8 0.0157 DB9 512 1024 {1} 9 9 0.0078

DB10 1024 2048 {1} 10 10 0.0039

Continued on next page

59



Detailed instances 60

Table A.1 – continued from previous page

Instance |V | |E| V0 T LB LBB density Instance |V | |E| V0 T LB LBB density

Shuffle Exchange Graphs

SE4 16 21 {1} 4 7 0.1750 SE5 32 46 {1} 5 9 0.0927

SE6 64 93 {1} 6 11 0.0461 SE7 128 190 {1} 7 13 0.0234

SE8 256 381 {1} 8 15 0.0117 SE9 512 766 {1} 9 17 0.0059

SE10 1024 1533 {1} 10 19 0.0029

Network Repository

SW-100-3-0d1-trial1 100 100 {1} 7 61 0.0202 SW-100-3-0d2-trial1 100 100 {1} 7 31 0.0202

SW-100-3-0d2-trial3 100 100 {1} 7 31 0.0202 SW-100-4-0d1-trial1 100 200 {1} 7 7 0.0404

SW-100-4-0d1-trial2 100 200 {1} 7 7 0.0404 SW-100-4-0d1-trial3 100 200 {1} 7 9 0.0404

SW-100-4-0d2-trial1 100 200 {1} 7 7 0.0404 SW-100-4-0d2-trial2 100 200 {1} 7 7 0.0404

SW-100-4-0d2-trial3 100 200 {1} 7 7 0.0404 SW-100-4-0d3-trial1 100 200 {1} 7 6 0.0404

SW-100-4-0d3-trial2 100 200 {1} 7 6 0.0404 SW-100-4-0d3-trial3 100 200 {1} 7 7 0.0404

SW-100-5-0d1-trial1 100 200 {1} 7 8 0.0404 SW-100-5-0d1-trial2 100 200 {1} 7 9 0.0404

SW-100-5-0d1-trial3 100 200 {1} 7 11 0.0404 SW-100-5-0d2-trial1 100 200 {1} 7 8 0.0404

SW-100-5-0d2-trial2 100 200 {1} 7 9 0.0404 SW-100-5-0d2-trial3 100 200 {1} 7 7 0.0404

SW-100-5-0d3-trial1 100 200 {1} 7 6 0.0404 SW-100-5-0d3-trial2 100 200 {1} 7 6 0.0404

SW-100-5-0d3-trial3 100 200 {1} 7 6 0.0404 SW-100-6-0d1-trial1 100 300 {1} 7 5 0.0606

SW-100-6-0d1-trial2 100 300 {1} 7 6 0.0606 SW-100-6-0d1-trial3 100 300 {1} 7 6 0.0606

SW-100-6-0d2-trial1 100 300 {1} 7 6 0.0606 SW-100-6-0d2-trial2 100 300 {1} 7 4 0.0606

SW-100-6-0d2-trial3 100 300 {1} 7 4 0.0606 SW-100-6-0d3-trial1 100 300 {1} 7 4 0.0606

SW-100-6-0d3-trial2 100 300 {1} 7 5 0.0606 SW-100-6-0d3-trial3 100 300 {1} 7 5 0.0606

SW-1000-3-0d2-trial1 1000 1000 {1} 10 89 0.002 SW-1000-3-0d2-trial2 1000 1000 {1} 10 88 0.002

SW-1000-3-0d3-trial2 1000 1000 {1} 10 87 0.002 SW-1000-4-0d1-trial1 1000 2000 {1} 10 14 0.004

SW-1000-4-0d1-trial2 1000 2000 {1} 10 15 0.004 SW-1000-4-0d1-trial3 1000 2000 {1} 10 15 0.004

SW-1000-4-0d2-trial1 1000 2000 {1} 10 10 0.004 SW-1000-4-0d2-trial2 1000 2000 {1} 10 10 0.004

SW-1000-4-0d2-trial3 1000 2000 {1} 10 11 0.004 SW-1000-4-0d3-trial1 1000 2000 {1} 10 9 0.004

SW-1000-4-0d3-trial3 1000 2000 {1} 10 8 0.004 SW-1000-5-0d1-trial1 1000 2000 {1} 10 14 0.004

SW-1000-5-0d1-trial2 1000 2000 {1} 10 15 0.004 SW-1000-5-0d1-trial3 1000 2000 {1} 10 12 0.004

SW-1000-5-0d2-trial1 1000 2000 {1} 10 11 0.004 SW-1000-5-0d2-trial2 1000 2000 {1} 10 10 0.004

SW-1000-5-0d2-trial3 1000 2000 {1} 10 10 0.004 SW-1000-5-0d3-trial1 1000 2000 {1} 10 9 0.004

SW-1000-5-0d3-trial2 1000 2000 {1} 10 9 0.004 SW-1000-5-0d3-trial3 1000 2000 {1} 10 10 0.004

SW-1000-6-0d1-trial1 1000 3000 {1} 10 10 0.006 SW-1000-6-0d1-trial2 1000 3000 {1} 10 9 0.006

SW-1000-6-0d1-trial3 1000 3000 {1} 10 8 0.006 SW-1000-6-0d2-trial1 1000 3000 {1} 10 8 0.006

SW-1000-6-0d2-trial2 1000 3000 {1} 10 8 0.006 SW-1000-6-0d2-trial3 1000 3000 {1} 10 7 0.006

SW-1000-6-0d3-trial1 1000 3000 {1} 10 6 0.006 SW-1000-6-0d3-trial2 1000 3000 {1} 10 6 0.006

SW-1000-6-0d3-trial3 1000 3000 {1} 10 7 0.006

Synthetic instances

B5 ∪RG32,0.05 32 48 {1} 5 5 0.0968 B5 ∪RG32,0.075 32 64 {1} 5 4 0.129

B5 ∪RG32,0.1 32 83 {1} 5 3 0.1673 B5 ∪RG32,0.15 32 89 {1} 5 3 0.1794

B5 ∪RG32,0.2 32 142 {1} 5 2 0.2863 B5 ∪RG32,0.25 32 156 {1} 5 2 0.3145

B6 ∪RG64,0.05 64 159 {1} 6 3 0.0789 B6 ∪RG64,0.075 64 184 {1} 6 3 0.0913

B6 ∪RG64,0.1 64 243 {1} 6 3 0.1205 B6 ∪RG64,0.15 64 349 {1} 6 2 0.1731

B6 ∪RG64,0.2 64 461 {1} 6 2 0.2287 B6 ∪RG64,0.25 64 558 {1} 6 2 0.2768

B7 ∪RG128,0.05 128 560 {1} 7 3 0.0689 B7 ∪RG128,0.075 128 716 {1} 7 3 0.0881

B7 ∪RG128,0.1 128 923 {1} 7 3 0.1136 B7 ∪RG128,0.15 128 1313 {1} 7 3 0.1615

B7 ∪RG128,0.2 128 1742 {1} 7 2 0.2143 B7 ∪RG128,0.25 128 2140 {1} 7 2 0.2633

B8 ∪RG256,0.05 256 1863 {1} 8 3 0.0571 B8 ∪RG256,0.075 256 2657 {1} 8 3 0.0814

B8 ∪RG256,0.1 256 3450 {1} 8 2 0.1057 B8 ∪RG256,0.15 256 5168 {1} 8 2 0.1583

B8 ∪RG256,0.2 256 6691 {1} 8 2 0.205 B8 ∪RG256,0.25 256 8307 {1} 8 2 0.2545

B9 ∪RG512,0.05 512 6881 {1} 9 3 0.0526 B9 ∪RG512,0.075 512 10304 {1} 9 3 0.0788

B9 ∪RG512,0.1 512 13444 {1} 9 2 0.1028 B9 ∪RG512,0.15 512 20009 {1} 9 2 0.153

B9 ∪RG512,0.2 512 27012 {1} 9 2 0.2065 B9 ∪RG512,0.25 512 33313 {1} 9 2 0.2547

Continued on next page
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Table A.1 – continued from previous page

Instance |V | |E| V0 T LB LBB density Instance |V | |E| V0 T LB LBB density

B10 ∪RG1024,0.05 1024 27259 {1} 10 3 0.052 B10 ∪RG1024,0.075 1024 40222 {1} 10 3 0.0768

B10 ∪RG1024,0.1 1024 53480 {1} 10 2 0.1021 B10 ∪RG1024,0.15 1024 79574 {1} 10 2 0.1519

B10 ∪RG1024,0.2 1024 105448 {1} 10 2 0.2013 B10 ∪RG1024,0.25 1024 131643 {1} 10 2 0.2513

A.2 Instances for the WMBT.

For each instance, Table A.2 gives the name (column ‘Instance’), the number of vertices (column

‘|V |’), the number of edges (column ‘|E|’), the initial source vertex (column ‘V0’), the lower bound

found by the proposed Algorithm 7 (column ‘LBB’), and the edge density (column ‘density’).

Table A.2: Description of the test instances.

Instance |V | |E| V0 T LB LBB density Instance |V | |E| V0 T LB LBB density

Random graph

RG64,10,1 64 274 {7} 6 3 0.1359 RG64,15,1 64 352 {34} 6 3 0.1746

RG64,20,1 64 456 {31} 6 3 0.2262 RG64,25,1 64 549 {30} 6 2 0.2723

RG128,10,1 128 917 {82} 7 20 0.1128 RG128,15,1 128 1313 {104} 7 20 0.1615

RG128,20,1 128 1753 {5} 7 18 0.2157 RG128,25,1 128 2209 {57} 7 15 0.2718

RG256,10,1 256 3493 {20} 8 15 0.107 RG256,15,1 256 5069 {235} 8 16 0.1553

RG256,20,1 256 6743 {190} 8 10 0.2066 RG256,25,1 256 8404 {116} 8 12 0.2575

RG512,10,1 512 13500 {408} 9 13 0.1032 RG512,15,1 512 20081 {384} 9 16 0.1535

RG512,20,1 512 26446 {267} 9 10 0.2022 RG512,25,1 512 33103 {326} 9 13 0.2531

RG1024,10,1 1024 53315 {553} 10 13 0.1018 RG1024,15,1 1024 79258 {829} 10 15 0.1513

RG1024,20,1 1024 105629 {246} 10 9 0.2017 RG1024,25,1 1024 131816 {881} 10 9 0.2517

Random graph with optima know

RGO64,10,1 64 267 {48} 6 74 0.1324 RGO64,15,1 64 354 {50} 6 108 0.1756

RGO64,20,1 64 456 {32} 6 87 0.2262 RGO64,25,1 64 548 {38} 6 140 0.2718

RGO128,10,1 128 932 {30} 7 117 0.1147 RGO128,15,1 128 1325 {42} 7 186 0.163

RGO128,20,1 128 1705 {17} 7 167 0.2098 RGO128,25,1 128 2090 {65} 7 122 0.2571

RGO256,10,1 256 3461 {119} 8 250 0.106 RGO256,15,1 256 5119 {124} 8 208 0.1568

RGO256,20,1 256 6925 {163} 8 169 0.2122 RGO256,25,1 256 8353 {1} 8 211 0.2559

RGO512,10,1 512 13460 {272} 9 288 0.1029 RGO512,15,1 512 20347 {337} 9 409 0.1555

RGO512,20,1 512 26371 {300} 9 297 0.2016 RGO512,25,1 512 32891 {317} 9 320 0.2514

RGO1024,10,1 1024 53634 {778} 10 440 0.1024 RGO1024,15,1 1024 79458 {51} 10 550 0.1517

RGO1024,20,1 1024 105615 {871} 10 479 0.2016 RGO1024,25,1 1024 131157 {421} 10 353 0.2504




