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Resumo

LOPES, LUCAS G. O.. Open-World Learning Aplicado a Pogos de Petroleo Utilizando
Clusterizacao Baseada em Autoencoder. 100f. Tese — Programa de Pés-Graduacao em
Engenharia Civil, Universidade Federal de Alagoas. Maceio-AL, 2025.

Esta tese investiga a aplicacao de Open-World Learning no monitoramento de anomalias
em pocos de petréleo, um aspecto crucial para a seguranca e eficiéncia operacionais.
Métodos disponiveis na literatura identificam anomalias conhecidas, mas lidar com anoma-
lias desconhecidas em ambientes dindmicos segue sendo um desafio. O objetivo deste
trabalho é desenvolver uma abordagem de Open-World Learning que integra redugao
de dimensionalidade com autoencoders, classificadores binarios e um método hibrido de
agrupamento, visando detectar e organizar anomalias desconhecidas. A hipdtese é que essa
abordagem pode contribuir para a detecgao e classificagao de anomalias desconhecidas
em dados de producgao de pogos de petroleo. Caso uma anomalia seja detectada pelo
erro de reconstrucao do autoencoder, classificadores binarios avaliam se pertence a uma
classe conhecida. Se nao pertencer, um método de agrupamento organiza eventos similares
em novas classes, validadas por especialistas humanos. Experimentos com o conjunto
de dados 3W e dados reais de pocgos indicam que os clusters descobertos se alinham a
classes conhecidas, com acuracia geral de 81%, superando 95% em certos casos, enquanto
classificadores binarios atualizados atingem até 99% de acuracia. Os resultados sugerem
que a estratégia proposta representa um avango no monitoramento e na deteccao de
anomalias, podendo, assim, contribuir significativamente para a seguranca e a integridade

estrutural de pogos de petroleo.

Palavras-chave: Deteccao de anomalias, Open-World Learning, Deteccao de novidades,
Representacao latente, Monitoramento industrial dindmico, Integridade estrutural de

POGOs.



Abstract

LOPES, LUCAS G. O.. Open-World Learning Applied to Oil Wells Using Autoencoder-
Based Clustering. 100f. Thesis — Graduate Program in Civil Engineering, Universidade
Federal de Alagoas. Macei6é-AL, 2025.

This thesis investigates the use of Open-World Learning for anomaly monitoring in oil wells,
a critical aspect for operational safety and efficiency. Existing methods identify known
anomalies, but handling unknown anomalies in dynamic environments remains a challenge.
The objective of this work is to develop an Open-World Learning approach that integrates
autoencoder-based dimensionality reduction, binary classifiers, and a hybrid clustering
method to detect and organize unknown anomalies. The hypothesis is that this approach
can contribute to detecting and classifying unknown anomalies in oil well production data.
In the proposed strategy, anomalies are first detected through autoencoder reconstruction
errors. Binary classifiers then determine whether the anomaly belongs to a known category.
If it does not, a clustering method groups similar events into new categories, which are
subsequently validated by human experts. Experiments with the 3W dataset and real-
world oil well data indicate that the discovered clusters align with known classes, achieving
81% overall accuracy and exceeding 95% in certain cases, while updated binary classifiers
reach up to 99% accuracy. The results suggest that the proposed strategy represents an
advancement in monitoring and anomaly detection, thereby significantly contributing to

the safety and structural integrity of oil wells.

Keywords: Anomaly detection, Open-World Learning, Novelty detection, Latent repre-

sentation, Dynamic industrial monitoring, Structural integrity of oil wells.
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1 Introduction

The oil and gas industry plays a vital role in the global energy landscape, supplying
approximately 75% of the global energy demand (Zhong et al., 2020). Despite ongoing
transitions toward renewable energy, fossil fuels will continue to dominate the energy mix
for years to come, underscoring the need for continuous advancements in this sector. Over
the decades, the industry has embraced digital transformation, integrating technologies
such as artificial intelligence (Al), big data, cloud computing, automation, and the Internet
of Things (IoT). These innovations are transforming operational paradigms, improving
both efficiency and safety, and supporting real-time monitoring through sophisticated
sensor networks that measure critical variables such as pressure, temperature, and flow
(Vargas et al., 2019b).

The complexity of oil and gas operations, from exploration to production and distri-
bution, demands meticulous attention to improve efficiency and safety. During production,
wells face varying temperature and pressure conditions, which can lead to challenges
such as equipment failure, hydrate formation, scale deposition, and other operational
disruptions. Monitoring these systems through sensors, such as Permanent Downhole
Gauges (PDGs) and Christmas Tree Temperature/Pressure Transducers (TPTs), provides
invaluable data for assessing well conditions and detecting anomalies (Huffner et al., 2019).
The timely detection and classification of anomalies are crucial for mitigating risks, improv-

ing operational safety, and supporting decision-making processes (Venkatasubramanian,
2003).

Machine learning (ML) and deep learning (DL) have been increasingly applied as
tools for anomaly detection and predictive maintenance in oil wells. Techniques such as
autoencoders, recurrent neural networks, and clustering algorithms have demonstrated
their efficacy in identifying deviations from normal operational patterns (Aranha et al.,
2024a; Magnusson et al., 2023). Research using the 3W Dataset (Vargas et al., 2019b),
the largest labeled dataset of anomalies in oil well data, has laid the foundation for
the development of robust models to address challenges such as hydrate formation (Lu
et al., 2019; Monday and Odutola, 2021) and scale deposition (Yousefzadeh et al., 2022).
Although these advances are significant, existing models often struggle with the detection
of previously unseen anomalies, a limitation given the dynamic and evolving nature of oil

well operations.

To overcome these limitations, this thesis presents an Open-World Learning (Chen
and Liu, 2018) approach that combines anomaly detection with adaptive classification

strategies for both known and unknown cases. The central hypothesis of this thesis
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is that an Open-World Learning strategy, combining autoencoder-based dimensionality
reduction, binary classifiers, and a hybrid clustering method, can enable effective detection,
classification, and continuous adaptation to unknown anomalies in oil well production data,
thereby improving structural integrity and operational safety. By identifying deviations in
well conditions at an early stage, the approach may help mitigate risks associated with
wellbore instability, equipment degradation, and pressure anomalies, which are factors in

maintaining the long-term integrity of oil wells.

The proposed method first detects anomalies using autoencoder reconstruction
error. If an anomaly is detected, the sensor data is transformed into a lower-dimensional
representation using the autoencoder’s encoder. The encoded output is then processed
by binary classifiers—dense models assisted by One-Class Support Vector Machines
(OCSVM)—which help distinguish between known and unknown anomaly types. If the
data does not belong to a known class, it is treated as an unknown anomaly. To manage
these cases, DBSCAN (Deng, 2020) and Mean Shift (Comaniciu and Meer, 2002) are
used to identify noise, while a random forest model estimates the number of potential
new anomaly classes. Using this estimate, a combination of K-means and Mean Shift
clustering is applied to group similar data into potential new anomaly classes. These
newly identified classes undergo human validation to refine cluster assignments, register

new anomaly types, and update binary classifiers, enabling continuous learning.

Additionally, this work introduces and validates the entire anomaly detection
pipeline on a new type of anomaly: the downhole interval control valve (ICV) fault.
This dataset has not been previously used to validate Open-World Learning in oil well
monitoring, making it a valuable test case for evaluating the adaptability and effectiveness

of the proposed approach in real-world scenarios.

The contributions of this work extend beyond individual anomaly types, offering a
unified strategy for detecting, classifying, and learning to recognize new anomalies. The
methodologies presented can be applied across various operational contexts, including
production wells, injection wells, and carbon capture, utilization, and storage (CCUS)
systems. By overcoming the limitations of machine learning approaches and introducing
a dynamic strategy for continuous learning, this thesis advances anomaly detection and

enhances operational safety in the oil and gas industry.

1.1 Related Work

The oil and gas industry has undergone significant advancements with the inte-
gration of artificial intelligence (AI) and machine learning (ML) techniques. This thesis
builds upon previous research efforts, leveraging methodologies detailed in the following

subsections to address anomaly detection and classification challenges in oil well opera-
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tions. These studies form the foundation for the development of the Open-World Learning

strategy presented in this work.
AT Applications in Oil and Gas Operations

Artificial intelligence applications have been extensively used to optimize operations
and improve decision-making in the oil and gas industry. In drilling operations, for
instance, Gurina et al. (2020) introduced an anomaly detection methodology for directional
drilling, while Anifowose et al. (2019) compared other ML techniques to predict reservoir
permeability, emphasizing the importance of Al in characterizing subsurface formations.
Recent advances have extended these applications to broader operational contexts. For
instance, D’Almeida et al. (2022) and Shu et al. (2022) applied predictive modeling
techniques to analyze petroleum reservoirs, showcasing the potential of Al in resource

estimation and planning.

The transformative potential of Al is further illustrated in real-time monitoring
strategies. For instance, Helmy et al. (2010) explored Al-driven reservoir properties
forecasting and Guilherme et al. (2011) enhanced monitoring during the drilling process.
Reinforcement Learning (RL) approaches, such as those demonstrated by Hourfar et al.
(2019), optimized water-flooding operations, improving resource utilization and recovery
efficiency. Neural networks have also been applied to study casing-heading instability,
as demonstrated by Salahshoor et al. (2013), contributing to safer well operations under

varying pressure and temperature conditions.

The application of ML techniques extends beyond drilling and reservoir management
to broader production challenges. Qiao et al. (2023) proposed an improved Bidirectional
Gated Recurrent Unit (BiGRU) neural network algorithm with an attention mechanism to
classify and identify seven common drilling conditions. Their model achieved an average
accuracy of 91.63% and demonstrated strong generalization capabilities, underscoring the
potential of neural networks to improve operational safety. Similarly, Pang et al. (2024)
developed pre-drilling mud loss prediction solutions to mitigate risks in complex drilling

environments, further contributing to efficient production planning.
Anomaly Detection in Oil Well Operations

In the production stage, wells are subjected to various temperature and pressure
conditions, which can cause a variety of issues, including equipment failures and operational
interruptions. Monitoring strategies, such as PDGs and TPTs, have become critical to
tracking well conditions and detecting anomalies (Huffner et al., 2019). These sensors
provide data that can be analyzed using artificial intelligence techniques to prevent

potential failures and improve efficient production.

Several studies have explored the application of Al for anomaly detection in pro-

duction strategies. For instance, Monday and Odutola (2021) addressed hydrate formation
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detection using supervised and unsupervised learning, while Yousefzadeh et al. (2022)
compared ten different intelligent algorithms for scale deposition prediction, reporting
accuracies exceeding 90%. Similarly, Gjelsvik et al. (2023) conducted a systematic review of
intelligent techniques to address hydrate-related challenges, reflecting the growing reliance

on ML in solving flow assurance problems.

Deep learning has emerged as a promissing approach for anomaly detection. Au-
toencoders have been used to identify anomalies by analyzing reconstruction errors, as
highlighted by Aranha et al. (2024a). Other deep learning architectures, such as Long
Short-Term Memory (LSTM) networks, have proven effective in forecasting gas production
and identifying operational anomalies in mature wells (Loh et al., 2018). Shahani et al.
(2022) extended the application of RNN and LSTM models to predict drilling rate indices
for rock engineering, demonstrating the versatility of deep learning in diverse industrial

contexts.

Pipeline monitoring and leak detection represent another important application
area. Li et al. (2023) developed an integrated method that combines singular value
decomposition (SVD), variational mode decomposition (VMD) and probabilistic neural
networks (PNN), achieving high precision in identifying leak signals. These advancements
underscore the adaptability of Al in addressing the complex challenges of oil and gas

operations.

Additionally, recent studies have introduced innovative solutions for improving
anomaly detection in oil well operations. Aslam et al. (2022) utilized machine learning
techniques, including random forest and decision trees, to improve anomaly detection
speed and accuracy in offshore oil wells, achieving remarkable performance. Fernandes
et al. (2024) conducted a comparative study of one-class classifiers, finding that the Local
Outlier Factor (LOF) classifier consistently outperformed others in detecting faults in
offshore oil wells. Finally, Gao et al. (2024) presented a comprehensive approach for
enhancing anomaly detection in low-quality and imbalanced data, proposing methods to

improve both the accuracy and interpretability of detection models.
The Role of the 3W Dataset

The 3W Dataset (Vargas et al., 2019b), the first and largest labeled anomaly
dataset for oil wells, has been very important for research in anomaly detection and
predictive maintenance. It has facilitated the development of various ML models, including
anomaly detectors (Vargas et al., 2019a), event prediction strategies (Li et al., 2020), and
visual analytics tools (Soriano-Vargas et al., 2021). Marins et al. (2021b) and Aranha
et al. (2024b) employed the dataset to develop fault detection strategies, while Carvalho
et al. (2021) used it for classifying multivariate time series data. Unsupervised learning
approaches, such as clustering algorithms, have also leveraged the dataset to classify

offshore well data into normal and anomalous categories (de Salvo Castro et al., 2021).
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Recent studies have expanded the applications of the 3W Dataset. For instance,
Chen et al. (2023) introduced a federated learning model for the identification of the
oil layer, while Magnusson et al. (2023) explored the use of recurrent neural networks
for the detection of anomalies in real time. Gatta et al. (2022) employed convolutional
1D autoencoders to extract features from multivariate time series data, showcasing the

dataset’s versatility in addressing predictive maintenance challenges.
Novelty Detection and Open-World Learning

Despite significant advancements, ML approaches face limitations when encounter-
ing previously unseen anomalies. Most methods rely on labeled datasets and predefined
anomaly classes, making them less effective in dynamic environments where new opera-
tional conditions emerge. Novelty detection provides a pathway to address this challenge
by identifying deviations from known patterns. Techniques such as clustering algorithms
(Pimentel et al., 2014) and null space projection (Bodesheim et al., 2013) have been

successfully applied to detect and group unknown anomalies for further classification.

Open-World Learning (OWL) extends the principles of novelty detection by enabling
strategies to continuously adapt to new anomaly classes. OWL strategies begin with a
set of known classes, detect unknown instances, and incrementally learn new classes from
dynamic data streams (Parmar et al., 2022; Jafarzadeh et al., 2022; Zhu et al., 2024a).
This paradigm offers a comprehensive approach to anomaly detection and classification in

evolving environments, addressing the limitations of closed-world ML models.

Recent advances, such as the ORALI strategy (Zhu et al., 2024b) for lithology
identification, demonstrate the potential of open-set recognition combined with active
learning to address challenges in open-world settings. ORALI utilizes an Open-Set Nearest
Neighbor (OSNN) approach to identify and reject instances of unknown classes effectively.
Once unknown classes are flagged, expert labeling is employed to accurately classify them,
and active learning is used to prioritize and query the most informative instances for
labeling. This iterative process enables ORALI to incrementally integrate new classes and

adapt to dynamic environments.
Contributions to Anomaly Detection in Oil Wells

Building on these developments, I introduce a novel Open-World Learning strategy
designed to detect and classify anomalies in oil wells. The methodology integrates
autoencoders for dimensionality reduction with clustering algorithms to identify previously
unclassified anomalies. Using the 3W Dataset, this approach dynamically discovers new
types of anomalies and continuously adapts to changing operational conditions. The
inclusion of a validation step improves the accurate registration of new anomalies and the

retraining of the classifiers for future monitoring.

The proposed strategy is validated using novel data on Downhole Interval Control
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Valve (ICV) faults, representing a previously unexplored anomaly in oil operations. This
validation, along with real-world applications for hydrate formation detection and multi-
variate anomaly classification, demonstrates the effectiveness of the strategy in addressing

practical challenge

1.2 Hypothesis

This thesis hypothesizes that an Open-World Learning strategy integrating autoencoder-
based dimensionality reduction, binary classification, and hybrid clustering can effectively
detect, classify, and continuously adapt to unknown anomalies in oil well production data.
By leveraging autoencoder reconstruction errors for anomaly detection, binary classifiers
for distinguishing known and unknown anomalies, and clustering techniques for organizing
novel anomaly patterns, the proposed approach enables a dynamic and adaptive monitoring
system. The ability to discover and classify previously unseen anomalies is expected to
enhance early anomaly detection, support operational decision-making, and contribute to
the long-term structural integrity and safety of oil wells. Furthermore, the introduction of
a human-in-the-loop validation step ensures the meaningful integration of new anomaly
categories, facilitating continuous learning and improving the robustness of the monitoring

framework.

1.3 Objectives

The main objective of this thesis is to develop an Open-World Learning strategy
for anomaly detection and classification of novelty and anomaly in oil well operations.
This strategy addresses the challenge of identifying and classifying previously unknown
anomalies, based on modular anomaly detection and novelty clustering research to create
a comprehensive strategy capable of adapting to evolving operational conditions. The pro-
posed approach integrates autoencoder-based dimensionality reduction, binary classifiers,
and clustering techniques to detect, organize, and classify unexpected events in oil well
data. The methodology introduces a human-in-the-loop validation step to incorporate
newly discovered anomaly classes, ensuring continuous improvement of the classification

strategy.

The development and validation of the Open-World Learning strategy are divided
into the following steps, highlighting contributions from each supporting Chapter:

1. Anomaly Detection: - Implement and evaluate anomaly detection using autoen-
coder reconstruction error to identify normal and anomalous data. (Presented
in Chapter 2: "A Strategy to Detect Oilwell Anomalies Using Deep Learning and
Decision Diagram Dual Approach”)
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2. Anomaly Classification: - Develop LSTM-based methods for classifying anomalies.
(Presented in Chapter 3: "Use of LSTM Networks for Anomaly Classification in Oil
Wells")

3. Open-World Learning: Design and implement a strategy that combines dimen-
sionality reduction, clustering, and binary classification for anomaly detection and

classification in oil wells.
- Use autoencoder-based latent representations to identify unknown anomalies.

- Apply clustering techniques to group similar unknown anomalies and define new

classes.

- Incorporate a human validation step to confirm new anomaly classes and retrain

binary classifiers for continuous adaptation.

(Presented in Chapter 4: "Open-World Learning Applied to Oil Wells Using Autoencoder-
Based Clustering.")

1.4 Methodology

This thesis proposes an Open-World Learning strategy for the detection and classi-
fication of anomalies in oil well operations. The methodology is designed to dynamically
handle both known and unknown anomalies, enabling the strategy to adapt to new opera-
tional conditions. The process follows a cyclical flow, as illustrated in Figure 1.1, and is
divided into six key steps: data preprocessing, anomaly detection, binary classification,

clustering of unknown anomalies, human validation, and continuous learning.

Figure 1.1 represents a cyclic process where data flows through each step iteratively.
Starting from data collection and preprocessing, anomalies are detected using autoencoders.
Known anomalies are classified by binary classifiers, whereas unknown anomalies are
clustered and validated by human operators. The validated clusters are used to update

the classifiers, improving the strategy’s adaptability.

1.4.1 Step 1: Data Collection and Preprocessing

The strategy begins with the collection and preprocessing of oil well sensor data. The
primary dataset is the publicly available 3W Dataset (Vargas et al., 2019b), complemented
by proprietary data for specific validation scenarios. The data includes variables such as

temperature, pressure, and flow rates, sampled at one-second intervals.

Preprocessing involves: Synchronizing time-series data from multiple sensors;
Grouping data based on valve states or operational conditions; Conducting exploratory

data analysis to identify patterns and validate data integrity.
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Figure 1.1 — Cyclic methodology for Open-World Learning in oil well operations.
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This step improves that the dataset is structured and prepared for downstream
anomaly detection and classification tasks. In the context of data analysis, the impact
of anomalies in oil well operations can lead to significant changes in loading conditions,
impacting also the well structure. Typically, such probabilistic loads exhibit behavior
akin to normally-distributed variables, making it feasible to compute probabilities and
determine extreme values. Table 1.1 shows the load distribution changes for the 3W

Dataset anomalies.

Table 1.1 — Probabilistic distribution for extreme loading: extreme relative variation (%)

Mean + Standard Deviation

ID P-PDG P-TPT T-TPT

1 | 19.90+16.20 23.20 + 21.20 -18.504+18.90
2 | 10.20£10.20 3.40+5.29 -86.80+12.10
3 4.61£6.72 9.70+£12.31 -11.60+£16.07
4 0.06£0.16 0.99+1.29 -0.61£0.94
5 0.31£2.85 0.72+£2.85 -2.62+7.78
6 0.00+3.77 3.554+3.77 -0.0940.04
7 0.33+1.38 1.344+1.38 -0.4440.45
8 | 20.204+18.20 43.51+£18.20 -95.10£10.80

There are some insights that is possible to obtain from the loading profile, for
instance that the hydrate formation seems to have a larger spread on the loading change

during the event. Other conclusion is that each abnormal event have a very unique
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signature, making it difficult to create analytical rules to identify and detect each event.

Cases with a hard analytical approach are often interesting applications for Deep Learning.

1.4.2 Step 2: Anomaly Detection Autoencoders

An autoencoder is employed to detect anomalies by learning the normal operational
patterns of the oil well data. The model compresses input data into a latent representation
and reconstructs it. Anomalies are identified based on the reconstruction error: data with

high reconstruction error values is flagged as anomalous.

The autoencoder is trained exclusively on normal data, making it effective in
identifying deviations that represent anomalies. This step serves as the foundation for

both known and unknown anomaly handling.

1.4.3 Step 3: Binary Classification of Known Anomalies

For anomalies previously observed in the dataset, binary classifiers are developed
and trained. These classifiers categorize known anomalies into specific types, such as
hydrate formation or equipment malfunctions. The classifiers are trained using labeled data
from the 3W Dataset and evaluated using standard metrics such as accuracy, precision,

and recall.

The anomaly of hydrate formation, for instance, is handled with a specialized
DNN binary classifier that is optimized using hyperparameter tuning. This improves good

performance in distinguishing hydrate-related anomalies from other operational conditions.

1.4.4 Step 4: Clustering of Unknown Anomalies

For anomalies not recognized by binary classifiers (novelty), clustering techniques
are applied to group unknown anomalies into potential new classes. This process utilizes
the latent space representations produced by the autoencoder. Techniques such as k-means

and mean-shift clustering are used to organize similar unknown anomalies into clusters.

The number of clusters is dynamically estimated based on the characteristics of

the latent space, ensuring flexibility in handling diverse and evolving anomalies.

1.4.5 Step 5: Validation of Clusters

Once clusters of unknown anomalies are formed, validation is performed to confirm
their classification or adjust cluster assignments. This human-in-the-loop process is
essential to improve that newly discovered anomaly classes are meaningful and relevant to

operational safety.
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Validated clusters are registered as new anomaly classes, and this information is

used to update the strategy’s classifiers.

1.4.6 Step 6: Continuous Learning and Classifier Updates

The final step in the cycle is the continuous learning process. After human
validation, the binary classifiers are re-trained to include the newly discovered anomaly
classes. This improves that the strategy evolves and remains effective as new operational

conditions and anomalies emerge.

The updated classifiers are then deployed, completing the cycle and preparing the

strategy for the next iteration of data collection, anomaly detection, and classification.

The steps outlined above are integrated into a unified cyclic strategy, as shown in
Figure 1.1. The iterative nature of the process ensures that the strategy continuously adapts
to changes in the oil well environment, providing anomaly detection and classification

capabilities.

1.4.7 Validation of the Strategy

The strategy is validated using the 3W Dataset and proprietary data, focusing on
key evaluation metrics to improve its effectiveness in detecting and classifying both known

and unknown anomalies:

Reconstruction Error: Used as a primary metric to distinguish normal data
from anomalous data. A higher reconstruction error indicates deviations from normal

operational patterns, enabling the detection of potential anomalies.

Clustering Accuracy: Assesses the alignment between discovered clusters of
unknown anomalies and ground-truth classes, reaching a meaningful grouping of previously

unseen anomaly types.

Binary Classifier Performance: Evaluated using metrics such as accuracy,

precision, recall, and F1-score to measure the effectiveness of classifying known anomalies.

The validation processes, presented in the result section of each Chapter, demon-
strates the applicability of the Open-World Learning strategy, improving how it effectively
handles evolving operational scenarios in oil well environments. The results highlight the
strategy’s ability to adapt to new anomaly types while maintaining high classification

performance for known anomalies.

1.5 Delimitation

This section outlines the key limitations, assumptions, and scope of the research
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presented in this thesis, defining the boundaries and focus of the proposed methodology.

1.5.1 Scope of the Study

This doctoral thesis focuses on the development of an Open-World Learning
strategy for anomaly detection and classification in oil well operations, leveraging data
from temperature and pressure sensors. The methodology integrates autoencoder-based
anomaly detection, binary classification of known anomalies, and clustering techniques to
handle previously unseen anomalies. While the proposed strategy has been designed and
validated using real and synthetic datasets, certain limitations are inherent to the scope of

this research.

1.5.2 Datasets and Validation Approach

The methodology is trained on the 3W Dataset 2.0, validated using 40% of real
instances from the same dataset, and tested on a newly introduced downhole interval
control valve (ICV) fault. All training, validation, and testing are performed at the
sample level. As a result, the effectiveness of the methodology is inherently tied to the
characteristics and quality of this dataset, and performance comparisons are made with
studies in the same domain. While the strategy is optimized for oil production anomaly
detection, applications in other sensor domains, such as manufacturing, healthcare, or

transportation, remain unexplored.

1.5.3 Data Representation and Evaluation Levels

This thesis uses two levels of data: instances and samples. The instance level
corresponds to an event from the 3W Dataset or ICV fault data, represented by an entire
file. The sample level represents a segment of an instance, corresponding to a constrained
time series with a fixed length. In other words, a single instance can generate multiple
samples. Training, validation, and testing are primarily conducted and evaluated at the

sample level. However, instance-level accuracy is also assessed in Chapter 4.

1.5.4 Sensor Data and Limitations

The methodology assumes that the sensor data quality is sufficient for anomaly
detection tasks. Issues related to sensor calibration, noise, or missing data are not explicitly
addressed, though preprocessing techniques are employed to improve data integrity. Future
studies could incorporate more robust preprocessing strategies or adaptive methods to

handle such challenges systematically.

This work primarily focuses on pressure downhole gauge (PDG) and temperature

and pressure transducer (TPT) sensors, as they are widely used in oil well operations.
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Other sensor types, such as flow-rate or vibration sensors, are not explicitly considered.
Expanding the methodology to integrate data from a broader range of sensors may
further enhance its adaptability and performance. Additionally, while the methodology is
validated using publicly available datasets and proprietary Petrobras data, its applicability

to land-based wells or other industries requires further study and validation.

1.5.5 Human-in-the-Loop and Open-World Learning Considerations

The Open-World Learning strategy incorporates a human-in-the-loop validation
step for clustering unknown anomalies. While this validation is critical for ensuring the
meaningful integration of new anomaly classes, it introduces a degree of subjectivity
and may not scale seamlessly in real-time operational settings with frequent anomaly

occurrences.

The approach allows for the creation of virtual classes with temporary labels,
enabling the automatic classification of unknown anomalies before validation is completed.
However, bypassing human validation may lead to fragmentation, where a single anomaly
is divided into multiple clusters, reducing interpretability. While the validation process is
primarily required to assign meaningful labels to newly proposed classes, the proposed
approach ensures continuous learning in real-time, even in the absence of immediate
validation. Future research should explore automating this process to enhance scalability

while maintaining classification accuracy.

1.5.6 Statistical Considerations

Unlike other machine learning studies that emphasize statistical significance testing,
this thesis does not include formal statistical significance analyses. However, the robust-
ness of the methodology is illustrated through the presentation of mean and standard
deviation values across hundreds of experimental runs, offering insight into the variability
and expected range of performance. While this approach provides empirical validation,
further studies could conduct statistical hypothesis testing to strengthen confidence in the

methodology’s effectiveness.

1.5.7 Computational Resources

All GPU-based training experiments were conducted on a system equipped with an
Intel Xeon CPU with 2 vCPUs (virtual CPUs), 13GB of RAM, and an NVIDIA T4 GPU.
The computational constraints of this hardware setup may have influenced model training
efficiency, hyperparameter optimization, and overall performance. Future research could

explore the impact of scaling computational resources on model performance, particularly
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for real-time or large-scale industrial applications. Chapter 4 presents the main results

regarding computational time for different parts of the Open-World Methodology.

1.5.8 Time-Series Data Assumptions

Lastly, the proposed strategy is specifically designed for time-series data. Appli-
cations involving non-sequential or mixed data types fall outside the scope of this thesis.
Despite these delimitations, the contributions of this research provide a foundation for
real-time anomaly detection and classification in oil well operations, with the flexibility to

adapt to evolving operational conditions.

1.6 Document Structure

The thesis document is organized into the following Chapters.

o Chapter 1 - Introduction: Provides the context of the problem, objectives, and

an overview of the methodology.

o Chapter 2 - Dual Strategy for General Anomaly Detection: Discusses
anomaly detection using autoencoders and decision tree approaches. The results of

this methodology are presented in the published paper (Aranha et al., 2024a).

o Chapter 3 - Anomaly Classification Focused on Binary Classifiers: Details
the development and optimization of binary classifiers for specific anomalies. These
results are presented in the article submitted, which is already available as a preprint
(Lopes et al., 2024).

o Chapter 4 - Open-World Learning Strategy: Presents the complete strategy,
integrating anomaly detection, clustering, and human validation. The results have

been submitted and have not yet been published.

e Chapter 5 - Final Considerations: Summarizes the findings and suggests future

research directions.
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2 A System to Detect Oilwell Anomalies Us-
ing Deep Learning and Decision Diagram

Dual Approach

This Chapter presents the development of a strategy for detecting anomalies in
oil wells using deep learning techniques combined with a decision diagram approach.
The approach applies autoencoders to analyze real-time data and determine whether it

corresponds to normal operational conditions.

Autoencoder reconstruction error is leveraged to identify anomalous behaviors,
while decision diagrams, specifically decision trees, complement the classification process.
This integration enhances anomaly identification by combining unsupervised learning with

interpretable decision-making techniques.

The results and methodology presented in this chapter were published as the paper
Aranha et al. (2024a) in the SPE Journal.

2.1 Overview

The detection of anomalies plays a critical role in ensuring the safety and efficiency
of oil well operations. Given the complexity of oil production systems, sensors such
as PDGs and TPTs are commonly used to monitor key variables such as pressure and
temperature (Huffner et al., 2019). Anomalous events, whether caused by equipment
malfunctions, unexpected conditions, or operational inefficiencies, can disrupt production
and lead to significant economic and environmental consequences. Therefore, reliable and

efficient anomaly detection systems are essential.

Traditional approaches to anomaly detection in oil wells include rule-based systems,
decision trees (DT), and ensemble methods such as Random Forests (RF) (Marins et al.,
2021a; Al-Hajri et al., 2020). These methods often struggle with the high dimensionality
and sequential nature of time series data generated by oil well sensors. Deep learning
techniques, particularly Long Short-Term Memory (LSTM) networks, have emerged as
powerful tools for handling sequential data and capturing long-term dependencies, making
them highly suitable for analyzing complex datasets such as those collected from oil wells
(Malhotra et al., 2015; Machado et al., 2022).

Autoencoders, a type of unsupervised neural network, have been widely used for

anomaly detection by learning the normal patterns in data and flagging deviations as
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potential anomalies. These methods have proven to be effective in scenarios where labeled
anomaly data is scarce, as they rely exclusively on normal data for training (Marchi et al.,
2015). Recent works, such as Machado et al. (2022), have demonstrated the application of
LSTM-based autoencoders to detect hydrate formation and spurious valve closures in oil
wells, leveraging their ability to accurately reconstruct time series data. However, these
methods often benefit from complementary techniques to enhance their detection accuracy

and robustness.

Rule-based analytical approaches, while simple, can be used to enhance anomaly
detection by providing interpretable thresholds or conditions that align with domain knowl-
edge. Figueiredo et al. (2021) compared multiple unsupervised models and highlighted the
effectiveness of hybrid approaches that combine machine learning with rule-based systems
to detect specific production anomalies. Similarly, Turan and Jaschke (2021) applied
DT and other classifiers to oil production anomalies, demonstrating that explainability

remains a valuable attribute in operational settings.

This chapter presents a methodology that integrates LSTM autoencoders with
a rule-based analytical approach for real-time anomaly detection in subsea well sensor
data. The autoencoder identifies deviations from normal operational patterns using
reconstruction error, while the rule-based system adds interpretability and domain-specific
insights. The methodology was validated on pressure and temperature data from subsea
well sensors, demonstrating its ability to detect both mapped and previously unseen
anomalies. This combined approach offers a balance between the robustness of deep
learning and the transparency of rule-based systems, making it suitable for deployment in

real-time oil well monitoring applications.

2.2 Proposed Methods and Studies

Sensors installed to monitor production in oil wells are located at a few viable
positions to monitor the behavior of a well during its operation and regularly transmit data
concerning pressure and/or temperature values along the depth. With adequate treatment
of these data, followed by pattern identification techniques, it becomes possible to evaluate
whether the well operates within normality or not, allowing operators and engineers to be
capable of classifying normal and abnormal situations by analyzing the time series. In the
anomaly detection system, there is an entry point for sensor data, from which checks are
performed with the association of a Decision Diagram and a deep learning network, as
illustrated in Figure 2.1. The system can map valve configurations and set its anomaly
search mechanisms to suit the current valve status. The methodology is developed in such
a way that the system is scalable to monitor simultaneously multiple wells. The anomalies

detected by the DD can be classified as mapped and unmapped. For the first case, the
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tool has a portfolio of anomalies that contains the attributes of undesirable scenarios in
terms of pressure and temperature. The portfolio was designed based on the expected
behavior of the well for a given valve configuration. Therefore, the attributes of each
scenario are defined by rules and tolerances. As for the second group of anomalies, these
are the cases that have not yet been mapped in the system but configure a scenario that
does not correspond to the normality of the well in question, being detected due to the
behavior patterns that the system attributes to the well for both analytical DD and deep

learning approaches.

Figure 2.1 — General methodology of the proposed dual process.

| {
| well Data |
! f

L A
)\
! T
s Al
x:;:: Mormal Data Inpul——— s Anomaly
Detection
P
Jf’ S
~ ",
¢ Anomalous? " Ho—m Continue
™ Monitoring
\\.

T
Yes

™
f \
| Alert Operator |
-'\.__ Y,

a/ .

Source: Aranha et al. (2024a)

The anomalies detected by the decision tree can be classified as mapped and
unmapped. For the first case, the tool has a portfolio of anomalies that contains the
attributes of undesirable scenarios in terms of pressure and temperature. The portfolio
was designed based on the expected behavior of the well for a given valve configuration.
Therefore, the attributes of each scenario are defined by rules and tolerances. As for the
second group of anomalies, these are the cases that have not yet been mapped in the
system, but configure a scenario that does not correspond to the normality of the well in
question, being detected due to the behavior patterns that the system attributes to the

well for both analytical decision tree and deep learning approaches.

Analysis of pressure and temperature sensor data One of the steps in data processing
is grouping and synchronizing the pressure and temperature sensor data provided by the
oil company. The time series of each sensor are stored in files that contain information
collected in different time intervals. The data were synchronized and grouped based on
combinations of valve states in production. A first analysis took into account the two

main well valve combinations as output, which differ from each other by the open or closed
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state of the Master-2 (M2) valve. Graphs and correlation studies are generated to identify
behaviors of well operation that are not normal. Figure 3.2 shows observations of the
correlation between pressure and temperature values (PT, TPT, and PDG) for both data
from the literature provided by (Vargas et al., 2019b) and data from industry provided for
the open and closed M2 valve.

Figure 2.2 — Correlation matrices for sensor data.
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The red color indicates a positive correlation (directly related variables), and the blue
color a negative correlation (inversely related variables). This study indicates that different
valve status configurations should be investigated and taken into account during the
development of anomaly detection methodologies. Therefore, it is a qualitative study that
indicates the importance of evaluating detection methodologies that take into account

different valve states, as they influence the correlation of variables.

2.2.1 Anomaly Detection Using the Decision Digram

The methodology that defines an action to be taken by the decision tree consists of
structuring a set of rules based on layers with nodes. Each node verifies a condition that
determines the next node to which the information will be passed until a leaf node. As
decisions advance through the internal nodes, the data become more and more specific;
therefore, the decision tree can manage the information in such a way as to extract the

maximum benefit from them to indicate the occurrence of anomalies.

The first layer of the decision tree refers to the data of the monitored well, given the
tool’s ability to simultaneously track multiple wells. In the next layer, the type of well
data is checked, whether it is the first data, whether valve change has occurred or not. If

these are the first well data, only the well data structure will be created and stored in the
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database. If there has been any change in the operating valve state, the system goes into
standby mode until the pressure and temperature levels normalize. When the valve state
remains the same, the well behavior is performed to identify possible anomalies. Then the

state of the well is reported. Figure 2.3 displays the structure of the analytical decision

tree.
Figure 2.3 — Structure of the Decision Diagram.
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The flow chart of Figure 2.3 illustrates the decision-making process to monitor and
analyze the well data. The initial step involves identifying the type of data received: i.e.,
first data from the well, data associated with a valve state change, or data without a valve
change. For the first data, the system creates a data structure in a well and stores it in the
database. If a valve change is detected, the system temporarily halts operations, entering
a stabilization phase where pressure and temperature levels are allowed to normalize prior
to further analysis. For data without valve changes, the system queries the existing well

data structure and performs an analysis to detect potential anomalies. If anomalies are
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detected, the system stops updating the moving averages. Otherwise, it updates the
moving averages and stores the updated structure in the database. The well status is then
reported at the end of each process. This hierarchical workflow ensures efficient handling

of well data while prioritizing anomaly detection and stabilization.

Data concerning pressure and temperature sensors PDG, TPT, and PT are first analyzed
together with the state of the monitored valves, DHSV, M1, M2, W1, W2, XO, PXO
and the choke valve, to develop the proposed methodology. The typical valve and sensor
scheme for a subsea oil well is described in Figure 2.4. The data history is collected from
wells and production vessels (FPSOs) in several oil basins. Initial studies are conducted to
determine the behavior and correlations from the pressure and temperature data for the
most common combinations of valve states. An analytical rule-based approach is then
developed to detect abnormal variations in the data, serving as a basis for classifying the

anomaly based on a known portfolio.

Figure 2.4 — Oil well valves and sensors scheme.
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The response of this analytical system is applied to the training of neural networks,
which is also dedicated to anomaly detection. The trained models receive real-time data
and monitor valve behavior using load conditions that can indicate abnormal events during
oil production based on the current valve scheme. Multiple data sets from the literature

(Vargas et al., 2019b) were used to train and validate the proposed methodology.

After validating the joint application of analytical and machine learning methodologies,
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an interface is developed using the Node-Red platform coupled with the Python 3.7 code.
This tool can receive data from different wells and perform simultaneous monitoring using

advanced methods.

2.2.2 Anomaly Detection from Machine Learning

An important challenge for anomaly detection in the oil industry is that anomaly data are
scarce, so it is difficult to train an Al model accurately enough to classify anomalies. So,
the proposed methodology involves automatically learning what fits as a normal operation
state, which happens most of the time, and constantly checking if the new data match the
previously trained. Once the system has learned what is considered normal, it can alert
the operator when it detects an abnormal state. This means that for each oil well, the
network must collect data and learn on its own without requiring operator interference. In
this sense, two modules are developed, one for learning and the other for detection. The
learning module stores sequential temporal data classified as normal by the DD formulation.
The module enters the training mode after acquiring approximately 500 normal data points,
which covers roughly 5,000 seconds of real-time production, an amount determined through
tests using industry data. Generates three outputs: (1) data normalization parameters,
(2) neural network weights, and (3) anomaly tolerance calculated during training. After
saving these three outputs, the detection module starts operating, detecting abnormal
behaviors in newly acquired data. Networks based on different configurations were tested
and the LSTM-based autoencoder proposed by (Larzalere, 2019) had the best results.

The LSTM autoencoder input consists of multivariate time series data capturing tempera-
ture and pressure readings from various sensors. Given that the model is an autoencoder,
it is trained to reconstruct the input time series after passing through several bottleneck
hidden layers, which first encode the original data in a lower-dimension space and then
decode the original data. These reconstructed data are compared with the original input,
yielding the reconstruction error. This error is then measured against a predefined thresh-
old set during training. Consequently, the LSTM output categorizes the result as Normal

or Anomalous.

Figure 2.5 shows the network developed, in which None refers to the batch size that is not
predefined on the model constructor, and ReLU refers to the rectified linear activation
function. The LSTM features consist of pressure values from the TPT, PT, and PDG

sensors, as well as temperature values from TPT and PDG.

Figure 2.5 illustrates the architecture of the developed autoencoder model, designed
to process multivariate time series data. The input layer receives sequences with a
shape of (no, 5, 500), where none represents the undefined batch size, 5 is the sequence
length, and 500 is the dimensionality of the features. The first LSTM layer reduces the
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Figure 2.5 — Network based on LSTM architecture.
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feature dimensionality to 16, followed by a second LSTM layer that further condenses the
representation to 4 dimensions. The RepeatVector layer reshapes the output to match the
sequence length required for reconstruction. The subsequent LSTM layers progressively
reconstruct the data, expanding them back to their original feature dimensionality. The
final TimeDistributed dense layer outputs the reconstructed data with a shape of (None, 5,
500). This architecture leverages the temporal relationships and patterns in pressure and
temperature values from the TPT, PT, and PDG sensors to encode and reconstruct the
input data effectively. The ReLLU activation function is utilized to introduce non-linearity

within the network.

The Adam optimizer (Kingma and Ba, 2014), available in the Keras framework (Chollet,
2015), is used to calculate the network weights. The Adam algorithm improves the classical
stochastic gradient descent procedure for optimization. Regarding the error metric, mean
absolute error and symmetric mean absolute percentage error (SMAPE) were applied and
obtained similar results, leading to the choice of SMAPE as the main error metric, which
is given by:

100% &

SMAPE = Z 1 — A

|Ail 4| Fil |+|F\

(2.1)

where: n: Total number of observations; Fj: Forecast value; A;: Actual value; |.|: Absolute
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value.

In the studies, the number of epochs is 500 with a batch size of 100. Using a similar
approach, the deep network training uses 500 samples of data labeled as normal in the
DD. After training, the SMAPE value for each prediction is calculated, then approaching
this error metric as a normal distribution of values. Assuming that the reconstruction
error follows a Gaussian distribution, the tolerance is evaluated by Eq. 2, in terms of the

mean of the parameter and its standard deviation, defined as p and , respectively:

tolia = p+k x o, (2.2)

in which k controls the tolerance interval around the mean and can be set for each problem.
In this study, k = 3 was adopted according to the database used, which comprises about 99.
7% of the normal data saved. The threshold for occurrence of an anomalous event is based
on this tolerance. If a new data SMAPE value is under this tolerance, the new instance is
a normal datum. If the SMAPE value exceeds the tolAl value, it can be associated with
risk levels defined by the operator, supporting the real-time decision-making process. For
the purpose of the system presented here, values exceeding 30%, 70%, and 100% represent
low, medium, and high risk anomalies, respectively. Figure 2.6 illustrates the process
flow diagram triggered in a fixed time interval for anomaly detection using the developed
LSTM-based autoencoder.

Figure 2.6 presents a comprehensive flow diagram detailing the general methodology
employed for anomaly detection using the LSTM-based autoencoder. The diagram begins
with the collection of well data and branches based on whether a valve state change
occurred. For normal data, the system assesses whether there is sufficient data for training.
Once trained, the AI model makes predictions and checks for anomalies using the defined
tolerance thresholds. The diagram includes provisions for updating the model and storing
normal data for future training, as well as categorizing anomalies based on their risk levels.
This structured flow highlights the decision-making process at each stage of the anomaly

detection pipeline.

By using both literature (Vargas et al., 2019b) and industry data, the autoencoder
network was tested to verify its robustness when exposed to time series containing
normal, transitional, and anomalous points. It was able to correctly classify 98-99%
of the anomalous data, indicating that the autoencoder network is capable of accurately
detecting undesirable events in oil production. Figure 2.7 shows an example of an abnormal
state using real data from a subsea well, in which can be seen the pressure values gathered
from PDG, PT and TPT in the upper graph, the temperature values from PDG and TPT
in the central graph, and the anomaly score value calculated by the neural network in the

lower graph, compared to the tolerance line (threshold).

Figure 2.7 illustrates a time series visualization of pressure and temperature readings from
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different sensors (TPT, PT, and PDG), along with the anomaly detection results provided
by the AI system. The upper graph represents pressure measurements, showing distinct
trends and fluctuations for each sensor. The central graph represents the temperature
readings, reflecting the variations over time. The bottom graph presents the anomaly score
calculated by the LSTM-based autoencoder, overlaid with the tolerance line that defines
the threshold for anomaly detection. Anomalies are visually apparent where the anomaly
score exceeds the tolerance line, highlighting regions of abnormal behavior detected in

real-time.

As stated previously, three parameters are obtained after the training: (1) data normal-
ization parameters, (2) weights of neural networks, and (3) anomaly tolerance calculated
during training. The first two are configuration parameters relevant to the transformation
of input variables and network coefficients. As monitoring is occurring in real time and
the conditions of the oil well operation are constantly changing, new training is performed
every time 500 new samples are saved. The number of samples required for new training
was determined via hyperparameter testing on real data, aiming to have a sufficient amount
of data that minimizes the hypersensitivity of the results without penalizing computa-
tional resources or causing overfitting. It should be noted that the weights, normalization
parameters, and tolerance depend on the valve schematics. If the operator changes the
valve configuration, a new network is trained specifically for that new scheme. In other
words, each valve configuration has its own deep network associated with it, which evolves
over time through the acquisition of new data. It also allows simulation of a look-ahead

scenario to predict the system response to a specified action, such as a valve maneuver.

Before training a new network, the data are scaled to be between 0 and 1 using a Min-Max
scaler, to ensure that each variable has the same order of magnitude, leading to more
stable and expedited training. The procedure is described in Eq. 2.3, in which x and 2/

refer to the original data point and its scaled value, respectively:

o= E i (2.3)

max, — min,

This step is crucial to achieve accurate optimization results from the network. However,
in some cases, the sensors installed in the wells may transmit data with low variation due
to physical conditions or resolution limitations. This scenario can cause the network to
become more sensitive, resulting in maximum and minimum values that are close together,
so even minor variations may be improperly classified as an anomalous event. To avoid this
excessive sensitivity of the network from occasional low variation of the signal, randomly

generated noise from a uniform distribution is added before scaling, as depicted in Eq. 2.4:

y=1"+e¢ (2.4)
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The noise level is set between 0% and 0.5% of the average of the received data. This
procedure not only enriches the dataset by introducing variance but also ensures that the
model is better equipped to distinguish between significant patterns and minor deviations,

reducing the propensity for false positives.

2.3 Metrics Applied for Performance Evaluation

Classification metrics are highlighted and used as a benchmark to evaluate the performance
of classification algorithms. Therefore, a set of metrics was used to compare and evaluate
the algorithms. Accuracy (ACC) considers all normal and fault samples. ACC can be
calculated using Eq. 2.5:

TP + TN
ACC— — 1% (2.5)
Ntotal
where: T'P: Number of true positives; T'N: Number of true negatives; ny..: Total number

of samples.

When dealing with unbalanced data, accuracy (ACC) is not a suitable measure. Instead,
it is recommended to use balanced accuracy (ACCy) as a more appropriate metric. The

calculation for ACCy, can be estimated using Eq. 2.6:

ACC, = REC;SP (2.6)

where Recall (REC) indicates the proportion of anomalous data that is correctly detected
from all anomalies. Typically, in industrial applications, REC is a prominent metric, as

false negatives lead to much more harmful results than false alarms or false positives. The
REC is given by Eq. 2.7:

TP
REC = 153y (2.7)

in which FN is the number of false negatives.

Specificity (SP) estimates the ability of the algorithm to predict true negatives over false
positives and can be calculated by Eq. 2.8:

1IN
~ TN+ FP

where FP is the number of false positives.

SP (2.8)

The F1-SCORE consists of an important metric, especially in problems containing imbal-
anced data. It is defined as a harmonic mean between recall (REC) and precision (PR)

and can be estimated in Eq. 2.9:



Chapter 2. A System to Detect Oilwell Anomalies Using Deep Learning and Decision Diagram Dual
Approach 37

REC - PR

Fl=2— " -
REC + PR

(2.9)

Precision (PR) evaluates how many of the predicted positive samples were actually true
positives. It is defined by the ratio of true positives to the sum of true positives and false

positives, as defined in Eq. 2.10:

TP

PR = —
R TP + FP

(2.10)

2.4 Results and Discussion

This section presents and analyses the main results for the proposed methods. The case
study are first presented along with the main results, than other aspects of the proposed

system are discused.

2.4.1 Case Studies

The proposed methodology was integrated into a real-time monitoring system of offshore
wells, gathering data from sensors and the valve status of subsea production/injection wells.
It has been implemented in more than 20 FPSOs, monitoring more than 250 wells in the
Santos and Campos basins, eastern Brazil, all equipped with multiplexed wet Christmas
trees. An advantage of this system lies in its compreheniveness in identifying anomalies
related to well integrity for hundreds of subsea wells. These anomalies would be impossible
for human operators to track. Some use cases are presented to illustrate the efficacy
of the system compared to human postclassification (class). In addition, a web-based
prototype was developed to provide a user-friendly experience to monitor multiple wells

simultaneously.

Three case studies are presented to illustrate the efficacy of the system in real monitoring
situations: Well 1 is an oil production well in the presalt area in Santos Basin, ultradeep
water scenario, water depth 2041 m, drilled in five phases, directional trajectory, and final
depth of 5870 m, equipped with downhole interval completion valves, and producing in
three different zones at 5432-5774 m.

Well 2 is an oil production well in the presalt area in the Santos Basin, a depth of water
of 2125 m, drilled in four phases with directional trajectories and a final depth of 5552 m,
equipped with downhole interval completion valves, and producing in two different zones
at 5137-5440 m.

Well 3 is a water-alternating-gas injection well in the presalt area of Santos Basin, at a

depth of water of 1946 m, drilled in four phases, a vertical trajectory, and a final depth of
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6197 m, equipped with completion valves of the downhole interval and injecting in three
different zones at 5437-573 m.

Table 2.1 presents the summarized results for the four classifiers applied to spurious DHSV
closure data. RF was used for the results of (Marins et al., 2021a), DT for the model
presented in (Turan and Jaschke, 2021), and LSTM refers to the results obtained by

(Machado et al., 2022) using the LSTM autoencoder. Finally, DD + LSTM stands for the
present study, and the comparison is made in terms of ACC, F1-SCORE.

Table 2.1 — Comparison of metrics between literature and the proposed method:
identifying spurious closure events of DHSV from a public database (Vargas et al., 2019b).
Classifiers  Accuracy (ACC) F1-SCORE

RF 0.8708 -

DT 0.6000 0.4900
LSTM 0.9922 0.9360
DD + LSTM 0.9894 0.9917

From Table 2.1, the results obtained are in line with other works in the literature. The
accuracy achieved is around 98.9%. On the same dataset, (Machado et al., 2022) reported
99.9% accuracy by using the LSTM autoencoder, while (Marins et al., 2021a) presented
87.1% by using RF, and (Turan and Jaschke, 2021) reported 60% with the DT method.
Looking at the F1-SCORE values, DD + LSTM performs the best, followed by the LSTM
model, both of which are significantly superior to DD.

The coupled method has shown superior performance compared to using the DD alone. To
illustrate this, the results obtained using the DD model are compared with those provided
by the comprehensive model (DD + LSTM). Table 2.2 presents the average values for
accuracy (ACC), balanced accuracy (ACCy,), and F1-SCORE, allowing a direct comparison

between the models developed herein.

Table 2.2 — Metrics obtained for the DD model and the complete model

(DD + LSTM) for identifying spurious closure events of DHSV from a public database
(Vargas et al., 2019b).

Method ACC ACC, F1-SCORE
DD 0.9727 0.9615 0.9758
DD + LSTM 0.9894 0.9771 0.9917

Case Studies: The proposed dual system was applied to the three case studies, and the
results were compared with human post-classification (class), as presented in Figs. 2.8
through 2.11. It can be seen that the occurrence of anomalies occurs abruptly in all case
studies. In these figures, the bottom graphics represent the statuses of the DD and LSTM
methods, which can be labeled as follows: Analyzing, for both methods, which is triggered

when there is a change of a valve status (e.g., M1 has closed), that will cause temporary
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fluctuations in the pressures and temperatures measured by the sensors, so the system
awaits some time for these readings to stabilize before resume monitoring; Network not
trained, exclusive to the LSTM, reported just after analysis while there is not enough
data classified by the DD as normal for the LSTM to train; and Normal / anomalous, for
both methods, regarding anomaly detection; and some others exclusive to DD, such as
DHSV /M1 closed, reported when according to sensors those valves should be open, but
the DD detects that they might actually be closed.

Figure 2.8 — Results for Well 1 for the first anomalous event detected:

PDG, PT, and TPT sensors, valve status, and comparison between model classification
(LSTM Status and Analytical Status) and fault classification (class).
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The data analyzed from well 1 are presented in Figure 2.8 and show data from the PDG,
PT, TPT, and valve status sensors along with the results of the analyzes and classifications
for a specific time window on 1 August 2022. All valves have a binary open or closed state
except for the choke, which reports a partial opening indication. Two anomalous events

were identified during the period. The first at 1:16 a.m. (analysis status curve) related
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Figure 2.9 — Results for Well 1 for the second anomalous event detected:

PDG, PT, and TPT sensors, valve status, and comparison between model classification
(LSTM Status and Analytical Status) and fault classification (class).
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to spurious closure of the DHSV, corrected by the operator in the sequence with valve
cycling performed from 1:39 a.m. to 1:52 a.m. Only the analytical approach captured
this anomaly, while the AI did not have time to identify it because the system went into
analysis mode due to the change in parameters. Several hours later (Figure 2.9), a second
event also occurred at 8:48 am, identified by the model (LSTM curve status and analytical
status) and promptly corrected by the operator. In this case, the analytical model correctly
classified, after detecting the anomaly, as spurious closure of the DHSV or the M1, and

the LSTM model correctly identifies the anomalous event.

The following example refers to Well 2, In this well, the developed system was applied in
a retro-analysis to identify an anomaly event at 2:37 p.m. on 6 June 2018 (curves LSTM
status and analytical status). In the field, the problem was only detected sometime later
in a light workover intervention; the cause was the pressure communication by the gas
lift valve with the subsea well closed. Figure 2.10 presents the data from the PDG, PT,
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Figure 2.10 — Results for Well 2—PDG, PT, and TPT sensors, valve status, and compari-
son between model classification (LSTM status and analytical status) and
fault classification (class).
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TPT and valve status sensors along with the results of the analyzes and classifications. It
is important to note that, in this well, if the developed methodology had already been
implemented at that time, the identification and correction of the problem would have

been anticipated, avoiding NPT, so bringing enormous gains in oil production.

Figure 2.11 presents the data and results for Well 3, on 18 October 2022. The dual model
identified the anomaly at 2:10 am. (curves the LSTM status and analytical status) and
correctly classified it in the sequence as spurious closure of DHSV or M1. It is important to
note that the operator then closed the well and proceeded with valve cycle and reopening
procedures, resuming production in a safe condition. After reopening well at 7:14 a.m.,

the system starts to analyze and returns after some time to normal condition at 8:29 a.m.
Table 2.3 presents the SMAPE values, balanced accuracy (ACCy,), and F1-SCORE values

calculated for the case studies when compared with the human post-classification (class).

Table 2.3 — Comparison of metrics between literature methods and the proposed method
for the three case studies.

Case Study SMAPE (%) ACC, F1-SCORE
Well 1 — first event 39.148 0.9897 0.9987
Well 1 — second event 48.312 0.9988 0.9989
Well 2 33.136 0.9998 0.9998
Well 3 23.390 0.9988 0.9991

The dual model consistently exhibits superior performance across all metrics when con-
trasted with the standalone DD model. This is further evident in the detection results
presented in Table 2.4, where ACC}, and F1-SCORE are compared for the case studies.
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Figure 2.11 — Results for Well 3—PDG and TPT sensors, valve status, and comparison
between model classification (LSTM status and analytical Status) and fault
classification (class).
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Although the DD model on its own already produces impressive results, the combined

model surpasses it.

Table 2.4 — Metrics obtained for the DD model and the complete model (DD + LSTM)
for the three case studies.

Method Case Study ACC, F1-SCORE

DD Well 1 — second event 0.9800 0.9808
Well 2 0.9990 0.9998
Well 3 0.9988 0.9983

DD + LSTM Well 1 — second event  (0.9988 0.9973
Well 2 0.9998 0.9998

Well 3 0.9995 0.9993
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2.4.2 Some Comments on the Proposed System

The proposed system performs well on the task of anomaly detection, presenting detection
rates exceeding 90% in the real field production scenarios studied. Changes in well and
reservoir conditions over time impose concept drift and data drift in time series, which are
challenging factors for machine learning models. The dual approach handles the handling
of these aspects, albeit generating the need for recurrent training of LSTM autoencoder,
which can result in increased computational cost. The DD part serves the specific and
valuable purpose of describing the normal state of the well in different valve statuses.
However, on analytic basis, it exhibits lower sensitivity compared to LSTM, resulting in a

lower detection rate.

DD is used primarily to assess the system’s status under different valve schemes, providing
predefined rules and up to a predetermined threshold of 5%. However, in some cases,
minor variations can result in false positives. Compared to the model trained via LSTM,
the latter exhibits dynamic sensitivity that adapts with each training, enabling it to detect

subtle changes that the analytical method may occasionally miss.

2.4.3 Prototype Development

Aiming to provide an agile and accurate monitoring experience, a web-based computational
system has been developed that allows the handling of multiple wells simultaneously. From
the main dashboard, the operator can set a specific well, whose graphical interface is
presented in Figure 3.10. The center of the screen displays two graphs on the left that
represent the absolute values of the sensors, as well as two first graphs on the right that
display the relative error of the moving average calculated from previous data. The lower
right graph shows the reconstructed error and tolerance from the AI approach. The latest
absolute values received from the sensors are shown on the left, while the latest calculated
relative errors are displayed on the right. At the top of the screen, the well status evaluated
by the analytical approach and the neural network is shown, along with some real-time

monitoring control buttons.

In addition to searching for anomalies, the system has some functionalities that help
prevent false positives. One of them is the detection of frozen sensors, which evaluates the
repetition of values from the sensors for a certain period of time. If detected, the frozen
sensors are reported on the system output. Another functionality is the identification of
invalid data, so that inconsistent data, such as non-numeric or null values for sensors, are
not included in the analysis. Changes in valve status can significantly alter well behavior.
Therefore, the system has an analysis mode whose objective is to provide adequate time
for pressure and temperature levels to stabilize, thus ensuring that planned changes are
not mistaken for anomalous events. With these functionalities, the system becomes more

robust and is able to provide greater security during monitoring.
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Figure 2.12 — Illustrative example of the developed prototype: Parameters and system
response during a tubing to annular communication anomalous event.
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2.5 Partial Remarks

In this Chapter, the system for real-time monitoring and anomaly detection is described
using production sensor data from oil wells. The system utilizes a combination of a deep
learning autoencoder and a rule-based analytic approach to detect unexpected events,
with the goal of improving operational safety and reducing the costs associated with NPT

and failure repair.

Initial studies were conducted to determine the behavior and correlations of pressure and
temperature values for the most common combinations of well valve states. The proposed
methodology uses pressure and temperature sensor data to classify the well status via a
DD, which is then used to train autoencoders based on deep LSTM networks devoted to
anomaly detection. This coupling enables the deep neural network to evolve constantly
through the normal data collected by the analytical method. It makes the system versatile
enough to adapt itself to variations in the valve scheme while also allowing new anomalies

to be added to the cataloged portfolio of the rule-based analytical approach.

A comparison with other approaches using the same public data set is provided, focusing
on spurious DHSV closure events. Evaluating metrics such as accuracy, and F1-SCORE
indicates that the proposed system either performs comparably or outperforms other

machine learning techniques.

The developed system exhibits high accuracy, with true positive detection rates exceeding

90% in the early stages of anomalies identified in both the simulated and actual well
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production scenarios. From the latter, it can be highlighted the enhancement of the
detection process, typically carried out by humans. For the case studies presented, all
three wells had a short transition phase, and the model performed well with a balanced

accuracy higher than 98.0%.

The system is implemented in more than 20 FPSOs, monitoring more than 250 produc-
tion/injection subsea wells, and can be applied in both real-time operation and testing
scenarios. The continuous acquisition of data through sensors combined with the adapt-
ability of the detection model ensures robustness over time, along with the changes in well,
reservoir, and operation conditions. It is worth mentioning the limited computational
infrastructure available at rigsite, which requires expedited models to provide a quick
response to the data flow. By observing the performance of the proposed system in massive
simultaneous monitoring, it has consistently delivered a prompt response to online well

integrity monitoring.

There is still room for future research, such as a rigorous study on how accurately
the proposed method can perform early-stage anomaly detection and address persistent
challenges related, for example, to valve performance and tightness. Although this chapter
focuses on field application, future research could explore the use of other deep learning
architectures, such as gated recurrent units or transformer neural networks, which are

known for their efficiency in processing sequential data.
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3 Anomaly Detection in Oil Wells Using En-
sembles of Binary LSTM Classifiers

This Chapter presents the use of long short-term memory (LSTM) networks for anomaly
detection in oil wells, utilizing a one-vs-all ensemble of binary classifiers. Operational data
from the 3W dataset is used, where each labeled anomaly serves as the positive class, and
normal conditions, along with other anomaly types, form the negative class. Validation is

conducted using real-world data, with hydrate formation detection as a case study.

The ensemble model achieves an average accuracy of 93%, while hydrate detection specif-
ically achieves 90% accuracy. Confidence intervals are calculated using the bootstrap
method to address uncertainty. Benchmarking against multiclass and one-class ensemble
models highlights the strengths and weaknesses of the proposed approach. A key advantage
of the binary ensemble is its ability to identify data from unknown classes, as such data is

unlikely to belong to any positive binary class.

Conversely, multiclass classifiers often constrain data to predefined classes, and one-class
ensemble models can present lower accuracy due to the absence of negative samples
during training. Using real sensor data from pressure and temperature measurements,
the methodology is validated on production datasets and produces results consistent with

existing literature, even with limited sensor configurations.

Part of its content is published on the paper Lopes et al. (2024), and the up to date results

are submitted to the Petroleum Science and Technology Journal.

3.1 Overview

This Chapter focus on the use of a one-vs-all ensemble (Hafiz and Bhat, 2020) of binary
LSTM classifiers for detecting anomalies in the oil industry. A one-vs-all ensemble involves
training multiple binary classifiers, each focused on distinguishing one specific class from
all others. This method can identify data from unknown classes, as it does not force such
data into predefined categories like multiclass classifiers. This approach, validated in real
data from the 3W dataset.

While hydrate Lu et al. (2019) formation detection serves as a representative case study,
the methodology is versatile enough to extend to multiclass classification of various
production anomalies using ensemble strategy. Applications include monitoring production
wells, injection wells; and CCUS (Carbon Capture, Utilization, and Storage) wells, as
demonstrated using the 3W dataset (Vargas et al., 2019b).
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3.2 Proposed Methods and Studies

The methodology adopted in this study focuses on developing a binary LSTM ensemble to
detect anomalies in oil wells. 3W dataset anomalies are used as the main case studies to
validate the approach with real data, and particularly the hydrate formation anomaly is

used to verify results with analytical formulas. The process consists of the steps described

Figure 3.1.
Figure 3.1 — Main binary classifier development.
Exploratory . Data . Binary Classifier at';l&eer';er Verlgﬁztlon
Data Analysis Preparation Development P

Optimization Validation

Source: Author (2025)

3.2.1 Exploratory Data Analysis

The initial step involved an exploration of the 3W dataset provided by Vargas et al. (2019),
consisting of graphical visualization, statistical analysis, and correlation studies among
various variables. These authors made available an extensive dataset comprising some of
the most common unexpected events in production wells. The Pearson’s correlation is
used to illustrate the relationships between variables, focusing both on the combined data
for all events, as shown in Figure 3.2, and specifically on the data indicative of hydrate
formation, as shown in Figure 3.3. In both Figures 3.2 and 3.3, the red colors indicate a
direct correlation between the two variables, while the blue colors represent the negative

proportionality.

3.2.2 Exploratory Data Analysis

The intensity of the color, as the legend indicates, is related to the proportionality between
the variables, from -1 to 1. Comparing both matrices, it is possible to see different
behaviors when comparing hydrate, a specific anomaly case, to the correlation behavior
of rest of the data. This shows that the signal of a single anomaly is different from the
other data, and it indicates to be possible to use a method to specifically identify specific

anomaly cases.

The dataset from Vargas et al. (2019) was released with eight different anomaly data and a
total of 1984 registered study cases across different anomalies and oil wells. An update was
released in 2024 adding new variables, cases and a new class of anomaly, containing 2228
study cases total. The dataset comprises ten folders, each containing several information

about the sensors, as described in Table 1. The undesired events presented on the dataset
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Figure 3.2 — Correlation for the sensor data.
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are: 0 - Normal State, 1 - Abrupt Increase of BSW, 2 - Spurious Closure of DHSV, 3 -
Severe Slugging, 4 - Flow Instability, 5 - Rapid Productivity Loss, 6 - Quick Restriction in
PCK, 7 - Scaling in PCK, 8 - Hydrate in Production Line and 9 - Hydrate in Service Line.
Most sensor data are studied in the correlations, and nine unique anomalies are addressed,
as well as data depicting normal operational conditions. Each sensor sample is categorized
as a 'mormal state," "transient state," or "anomalous state." Notably, hydrate formation
(Lu et al., 2019) is an important anomaly addressed, because hydrate accumulation can
severely impede or even completely block fluid flow.

3.2.3 Binary Deep Neural Network Classifier for Specific Anomaly Detection

The sensor data is processed as numerical time sequences, with each sequence labeled
based on the annotation of its final sample. The primary objective of each binary classifier
in the ensemble is to determine whether a given data sequence corresponds to a specific
anomaly. Sequences ending with a sample labeled as either normal or any anomaly outside

the classifier’s target class are assigned a label of 0, while sequences concluding with a



Chapter 3. Anomaly Detection in Oil Wells Using Ensembles of Binary LSTM Classifiers 49

Figure 3.3 — Correlation for hydrate formation data
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sample indicative of the target anomaly are assigned a label of 1.

This approach frames the task as a binary one-vs-all classification problem, incorporating
multiple temporal input features. ’Multiple input’ refers to the inclusion of various sensor
readings, such as pressure and temperature, as inputs to the model. 'Binary classifier’
signifies that the output consists of two possible classes, while ’one-vs-all” indicates that
the target class is treated as the positive class and all other classes as the negative class.
Sequences are constructed and labeled based on the annotation of their last data point,

with the preceding sequence providing context for anomaly detection.

Various sequence lengths are tested, and hyperparameter tuning is performed to optimize
the architecture, which is primarily based on Long Short-Term Memory (LSTM) layers.
Data is collected on a second-by-second basis, and the most effective architecture is
identified through extensive experimentation. The optimal model architecture, including
details about its layers and hyperparameters is depicted in Figure 3.4: LSTM layers and
Dense layers (Dropout layers (Srivastava et al., 2014), and Batch Normalization layers are

omitted). This figure also specifies the number of neurons and the configuration of each
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Table 3.1 — Summary of sensor data points and descriptions.

Name Description Unit
P-PDG,
P-TPT,
P-MON-CKP,
P-JUS-CKP,
P-JUS-CKGL Pressures measurements Pa
T-TPT,
T-JUS-CKP,
T-MON-CKP,
T-PDG Temperature measurements °C
QGL,
QBS Flow rates m?3/s
ESTADO-DHSV,
ESTADO-M1,
ESTADO-M2,
ESTADO-PXO State of valves [0, 0.5, or 1]
ABER-CKGL,
ABER-CKP Opening percentage %

Figure 3.4 — Hyper-parameters for the binary classifier network.

Dense Dense Dense

kernel {4x1024)
recurrent_kernel {256x1024)
bias (1024}

kernel {64x32)
bias (32}

kernel {32x1}
bias (1}

kernel {256x64)
bias {64)

Activation Activation Activation

Activation

Source: Author (2025)

layer to ensure clarity.

The neural network utilizes data from two key sensors: the temperature and pressure
transducer (TPT) and the permanent downhole gauge (PDG). These sensors were chosen
due to their frequent use in real-world operational monitoring of wells, as highlighted by
Vargas et al. (Petrobras, 2017), and their consistent availability in the dataset. While
additional sensors are sometimes present, their data is not always consistently available

across all samples in the dataset or in practical operational scenarios.

To enhance the model’s applicability to a broader range of real-life operations, this study
focuses on pressure and temperature readings provided by TPT and PDG sensors. This
decision involves a tradeoff: limiting the input to fewer sensors reduces the amount of data
available for identifying anomalous behavior, which may affect the model’s performance.
However, this simplification increases practicality, as fewer sensors are needed for deploying

the models effectively in diverse operational contexts. This balance prioritizes operational
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feasibility while maintaining robust anomaly detection capabilities.

3.2.4 Hyper-parameter Optimization

The focus of hyperparameter optimization is to determine the ideal sequence length for
the input of the neural network. Input sequences are constructed using n seconds of data
samples, ensuring no overlap, resulting in over 200,000 input-output sequence pairs for
training and testing. Early experiments showed that the initial architecture could be

simplified and optimized by reducing the number of neurons and layers.

Hyperparameter tuning was performed using Keras-Tuner, a tool for optimizing neural
networks in the Keras library Chollet, 2016. Random Search was used to explore configu-
rations, evaluated based on validation accuracy. The optimization focused on refining the
number of LSTM layers and units (ranging from 32 to 128), dropout rates (0.1 to 0.5),
dense layers and units (32 to 64), and learning rates (between le-4 and le-2). The Adam
optimizer (Kingma and Ba, 2014) was chosen for its efficiency, using binary cross-entropy
as the loss function. Training was conducted over 25 epochs with early stopping set to 5
steps patience, and a batch size of 64 was used. The final architecture identified during
tuning, shown in Figure 3.4, effectively processes TPT and PDG sensor data for binary

anomaly classification, balancing simplicity and performance.

3.2.5 Verification Formulation and Study Case: Pressure and Temperature
Analysis (PVT)

Despite developing a binary classifier architecture that could be applied to other anomaly
cases, this work uses an analytical formulation to verify the soundness of the models
obtained. Many of the 3W dataset anomalies do not have a specific analytical solution
or depend on expert interpretation. In this context, to verify our model, it is used the
specific anomaly of hydrate formation. Hydrates in oil wells are dependent on specific
conditions, notably the presence of water and natural gas under high pressure and low
temperature. Since hydrate accumulation can severely impede or even completely block
fluid flow, monitoring pressure and temperature in the well is crucial. Preventive measures,
as highlighted in the existing literature, represent the most effective strategy for managing

this problem.

Safamirzaei et al. (2015) describe a minimum pressure and temperature curve for predicting
hydrate occurrences in production lines, as illustrated in Figure 3.5. The Figure shows the
curve that represents the analytical hydrate detection formula, where the x-axis contains
the temperature (in kelvin) the y-axis is the pressure (psi), and the points the curve divides

the normal zone and the hydrate formation zone.

PVT analysis incorporates various formulations that consider the composition of produced
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Figure 3.5 — Pressure and temperature curve for hydrate formation
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gas, a key factor in hydrate formation. As Marins (2018) notes, at a fixed pressure, denser
gas requires a higher temperature for hydrate formation, shifting the pressure-temperature
curve rightward. Modern formulations often include density as an input parameter. To

validate hydrate formation, it is applied Motiee’s formula (Motiee, 1991)::

T = —238.245 + 78.997P — 5.35P% + 349.473877p — 151.055p* — 27.60Pp (3.1)

in which 7T represents the critical temperature threshold for hydrate formation. For a fluid
with pressure P and density p, temperatures below T}y4rqe fall within the risk zone for

hydrate formation. A confidence value, Chygrate, quantifies this risk:
C =100 - (T — Thydrate) /T, (3.2)

C, ranging from 0% to 100%, indicates the likelihood of hydrate formation. It reaches
100% when the temperature T' is below T'. Equation 3.1 uses two considerations: The gas
considered is methane because it would be the most dangerous case, and the coefficients

are designed to convert the values from picoseconds to kPA.
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3.3 Results and Discussions

This section details the results obtained from the proposed methodology. The main
objective is to demonstrate different aspects of the binary classifiers for the 3W dataset
classes and verify the hydrate formation with the analytical formulation. The results
demonstrate the efficacy of the deep LSTM neural network and show that the ensemble

model can identify correctly the not trained anomaly cases.

3.3.1 Binary Classifier Validation and Literature Benchmark

Figure 3.6 and Table 3.2 present the accuracy achieved with different sequence lengths.
The results indicate a clear trend: longer sequences tend to improve model performance.
Our findings can be compared to those of (Marins et al., 2021b), who achieved a similar
accuracy of 96.9%, albeit with a different setup and sequences of up to 1000 seconds.
Similarly, (Brgnstad et al., 2021) reported accuracy varying from 89.2% to 100%, using a
setup very similar to that of (Marins et al., 2021b).

Figure 3.6 — Training and validation accuracy for the binary LSTM hydrate classifier.
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A key distinction in our approach is that instead of using only normal samples as the
negative class, our model classifies all anomalies other than the class of interest as negative,
and only the target anomaly as positive. This means that our model must differentiate
one anomaly type from a wide range of operational conditions. The validation process
relies entirely on real-world cases, reinforcing the model’s applicability to real operations.
Additionally, it is limited the sensor inputs to TPT and PDG, which are among the
most commonly available sensors in operational settings, rather than incorporating all
available sensor data. Despite these constraints, our model achieves accuracy comparable

to previous works while prioritizing flexibility for real-world applications.
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Table 3.2 — Metrics for each sequence length.

Seq Length (s) | Accuracy | Precision | Recall | F1-Score
150 0.866 0.863 0.898 0.881
300 0.891 0.883 0.928 0.905
600 0.891 0.891 0.918 0.904
900 0.902 0.885 0.952 0.917
1200 0.898 0.893 0.937 0.915
1500 0.907 0.911 0.935 0.923
2250 0.899 0.923 0.910 0.917
3000 0.930 0.949 0.941 0.945
3750 0.961 0.958 0.985 0.971
4500 0.920 0.895 0.997 0.943
5250 0.962 0.977 0.966 0.971
6000 0.869 0.968 0.832 0.895
6750 0.942 0.922 1.000 0.959
7500 0.966 0.958 0.994 0.975

Even with an accuracy exceeding 96.6%, it is important to consider the findings of Vargas
et al. (2019), where hydrate formation detection response times ranged between 30 minutes
and 5 hours. This highlights the significance of the 900-second sequence length in our study.
This interval allows for detecting transient states within 15 minutes, making the approach
viable for practical applications. This conclusion is supported by the fact that validation
was conducted solely on unseen real data and utilized only the two most commonly present

SEensors across Stl,ldy cases.

The validation of the binary ensemble classifier is based on its measured accuracy against
real data. As shown in Figure 6 for hydrate detection and Table 3.2 for all anomaly
types, a sufficient time window of sensor data leads to high-confidence anomaly detection.
Specifically, selecting a 15-minute time window presents 90% accuracy for the hydrate class.
Notably, this detection time is still below the minimum response window of 30 minutes,

emphasizing the model’s potential for timely anomaly identification in operational settings.

3.3.2 Verification of the Binary Classifiers Using Analytical Formulation

A crucial metric in evaluating the performance of the binary classification networks,
especially compared to the PVT approach, is their ability to not only improve performance
but also minimize false positives and false negatives. Table 3.3 shows the superiority of

the binary classifier over the analytical method in this regard.

The binary classifier achieves an accuracy of 90.02%, significantly outperforming the
analytical approach, which reaches 76.60%. Additionally, it demonstrates a lower false
positive rate (16.8%) compared to the analytical method (18.61%), indicating fewer

incorrect hydrate formation predictions. More importantly, the classifier substantially
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Table 3.3 — Comparison of Binary Classifier and Analytical Method Metrics

Metric Binary Classifier Analytical Method
Accuracy 90.02% 76.60%
False Positive Rate 16.80% 18.61%
False Negative Rate 4.80% 20.10%

reduces the false negative rate to 4.8%, whereas the analytical method records 20.10%,

meaning fewer missed hydrate cases.

3.3.3 Evaluation of Model Performance and the Potential of Binary One-vs-All

Classifiers

The results in Table 3.4 demonstrate the advantages of the LSTM Binary One-vs-All
Classifier compared to LSTM Multiclass, One-Class SVM, and Marins et al. (2021) models.
The one-vs-all approach, where each classifier distinguishes a specific anomaly from all other
states (including normal conditions), achieves a global accuracy of 0.87, outperforming
LSTM Multiclass (0.86) and significantly surpassing One-Class SVM (0.65). The tables
also show that the normal state class presents inferior accuracy when compared to the other
classes.The initial hydrate detection system employs a dual strategy approach, effectively
combining two distinct yet complementary methods. This approach is conceptualized in
Figure 7, which illustrates how the components contribute to the overall functionality of

the system.

Table 3.4 — All Metrics for the different models: LSTM Binary One-vs-All

Classifier, LSTM Multiclass, One-Class SVMs, Marins et al. (2021) Binary (One-vs-One)
and Marins et al. (2021) Multiclass.

Class Binary Multiclass OCSVM Marins Binary Marins Multiclass
Class 0 0.73 0.71 - - -
Class 1 0.91 (0.77 £ 0.07) 0.92 0.63 0.99 0.51
Class 2 0.92 (0.85 £ 0.04) 0.92 0.57 0.99 0.88
Class 3 0.94 (0.93 £ 0.04) 0.87 0.67 1.00 0.79
Class 4 0.65 (0.61 + 0.02) 0.76 0.64 0.99 0.95
Class 5 0.79 (0.83 £ 0.04) 0.95 0.69 0.98 0.83
Class 6 0.91 (0.81 £ 0.11) 0.61 0.63 0.97 0.71
Class 7 0.78 (0.72 £ 0.03) 0.87 0.65 - -
Class 8 0.90 (0.70 £ 0.10) 0.99 0.74 0.99 -
Class 9 0.93 (0.80 + 0.06) 0.98 0.63 - -
Global  0.87 (0.78 £ 0.05) 0.86 0.65 0.98 0.93

Compared to Marins et al. (2021b) Binary Classifiers, which frames the problem as anomaly
vs. normal detection, the one-vs-all method provides finer granularity in classification
while maintaining competitive accuracy (0.98 vs. 0.87 globally). Although Marins et

al. reach higher scores for some individual anomalies, their binary anomaly detection
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approach does not differentiate between different anomaly types, which is essential for

operational decision-making.

The one-vs-all ensemble proves more effective than multiclass classification, as it avoids
misclassification caused by feature overlaps between anomaly types. Figures 3.7 and 3.8
show that, unlike multiclass classifiers, it does not force unknown data into a predefined
category, making it better suited for real-world applications. In the study of both Figures,
the multiclass model and the ensemble binary model are trained with 6 classes and the
hydrate class (class 8) is used as unknown class. The tested data is the same in both
Figures. Figure 3.7 shows that the hydrate class is classified as one of the 6 other classes
while Figure 3.8 shows that, for the ensemble binary model, almost all data is classified as

none of the classes.

Figure 3.7 — Multiclass trained for 6 classes classifying class 8 in one of the trained classes.
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These results validate the binary one-vs-all strategy as a robust and practical alternative
for oil well anomaly detection, offering greater interpretability and flexibility while ensuring

strong overall performance.

3.3.4 Applications of the DNN Binary Classifiers

One interesting application proposed strategy is a mock-up real operation monitoring

system. Our DNN classifier for the hydrate case can use sensor parameters for pressure and
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Figure 3.8 — Multiclass trained for 6 classes classifying class 8 in one of the trained classes.
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temperature in real-time analysis. The hydrate detection system employs a dual-strategy
approach, effectively combining two distinct yet complementary methods. This approach

is conceptualized in Figure 3.9, illustrating how the components contribute to the overall

functionality of the system.

Figure 3.9 — Adopted strategy for hydrate detection
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The first component of the mock-up system is the application of a characteristic pressure-
temperature curve derived from PVT analysis, and the second component is the DNN
classifier, utilizing the Long Short-Term Memory (LSTM) architecture. Both components
are designed to process the sensor data, evaluating the potential risk of hydrate formation.
A dashboard developed in Node-RED (Node-RED, 2019) consolidates the outcomes of
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methodology, creating a system that can be fed with real-time data, processing it, and
alerting operators to potential hydrate events during oil well operations, as shown in
Figure 3.10.

Figure 3.10 — Hydrate formation detection system.
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This system also categorizes the likelihood of hydrate formation events, combining PVT
analysis with a LSTM binary classifier. By providing operators with a probability assess-
ment of hydrate formation using LSTM deep neural networks and determining if sensor
data falls within the danger zone of the pressure-temperature curve, the system offers a

comprehensive approach to managing hydrate risks in oil wells.

3.4 Partial Remarks

This study presents the development and evaluation of an LSTM-based one-vs-all ensemble
of binary classifiers for oil well anomaly detection. Unlike previous approaches, such as the
binary anomaly vs. normal classifier by Marins et al. (2021), our method provides a more
refined classification by distinguishing each specific anomaly from all others, including
the normal state. The results validate this one-vs-all strategy as an effective alternative
to multiclass classification, overcoming feature overlap issues while maintaining strong

performance across all anomalies.

The binary one-vs-all ensemble achieves a global accuracy of 0.87, outperforming LSTM
Multiclass (0.86) and significantly surpassing One-Class SVM (0.65). This method demon-
strates that training separate binary classifiers for each anomaly improves classification

accuracy while also allowing for better detection of unknown classes, as opposed to a
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forced classification approach used in multiclass models. Additionally, the system relies on
TPT and PDG sensor data, ensuring applicability to real-world operations, where sensor

availability may be limited.

Benchmarking against analytical formulations further reinforces the superiority of the
binary classifiers, with 90.02% accuracy compared to 76.60% for the analytical method,
alongside a lower false positive rate (16.8% vs. 18.61%) and a significantly reduced false
negative rate (4.8% vs. 20.10%), making it a more reliable and precise tool for real-time

anomaly detection.

By validating results on real oil production data, this study confirms that a one-vs-all
binary ensemble is a practical and reliable solution for anomaly detection in oil wells. The
findings also suggest that implementing an initial anomaly vs. normal classifier before
deploying specialized anomaly classifiers could further enhance detection performance,

supporting strategies proposed by Aranha et al. (2024).
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4 Detection and Classification of Anomalies in
Oil Well Production Using an Open-World
Learning Strategy

This chapter presents the first Open-World Learning strategy applied to anomaly detection
in oil well production data. The proposed strategy detects anomalous behavior, determines
whether it belongs to a known labeled anomaly, and, if not, clusters it into newly proposed

anomaly classes while continuously learning to classify them.

The approach integrates autoencoder reconstruction error for anomaly detection, autoencoder-
based dimensionality reduction to extract latent features, binary classifiers to identify
known anomalies, and clustering methods to group similar unseen anomalies. When an
anomaly is detected based on reconstruction error, the binary classifiers assess whether
it belongs to a known class. If it does not, the clustering method groups similar events
into new classes, which are then validated by human experts. This validation step allows
for the training of specific binary classifiers for the newly identified classes and updates

existing models accordingly.

Experiments on real anomalous oil well production data demonstrate that the discovered
clusters align well with ground-truth labels. The clustering methodology achieves an
overall sample level accuracy of 81%, exceeding 95% for certain anomalies, while updated
binary classifiers reach up to 99% accuracy. These results highlight the proposed method’s
effectiveness in dynamically adapting to novel anomalies, improving classification accuracy,

and enhancing oil well monitoring.

4.1 Overview

The detection of anomalies is essential to maintain safety and efficiency in oil well operations.
Advanced Al techniques, such as autoencoders (as discussed in Chapter 2) and clustering
algorithms, have been widely used to detect and classify operational anomalies from sensor
data, such as pressure, temperature, and flow rates (Vargas et al., 2019b; Aranha et al.,
2024a). Although other machine learning methods perform well on known anomalies, they
struggle to handle unseen anomaly types that often emerge due to evolving operational
conditions. Novelty detection methods, such as clustering (de Salvo Castro et al., 2021) and
boundary setting techniques (Pimentel et al., 2014), address this challenge by identifying
data points that deviate from known patterns. However, these approaches fail in dynamic

systems, such as oil wells, where newly discovered anomalies must be integrated into the
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detection process.

To overcome these limitations, this Chapter presents an Open-World Learning (Chen
and Liu, 2018) approach that combines anomaly detection with adaptive classification
strategies for both known and unknown cases. The proposed method first detects anomalies
using autoencoder reconstruction error. If an anomaly is detected, the sensor data is
transformed into a lower-dimensional representation using the autoencoder’s encoder. The
encoded output is then processed by binary classifiers—dense models assisted by One-Class
Support Vector Machines (OCSVM )—which help distinguish between known and unknown
anomaly types. If the data does not belong to a known class, it is treated as an unknown
anomaly. To manage these cases, DBSCAN (Deng, 2020) and Meanshift (Comaniciu and
Meer, 2002) are used to identify noise, while a random forest model estimates the number
of potential new anomaly classes. Using this estimate, a combination of K-means and
Meanshift clustering is applied to group similar data into potential new anomaly classes.
These newly identified classes undergo human validation to refine cluster assignments,

register new anomaly types, and update binary classifiers, enabling continuous learning.

Additionally, this Chapter introduces and validates the entire anomaly detection pipeline
on a new type of anomaly: the downhole interval control valve (ICV) fault. This dataset
has not been previously used to validate Open-World Learning in oil well monitoring,
making it a valuable test case for evaluating the adaptability and effectiveness of the

proposed approach in real-world scenarios.

This Chapter presents the main results of this thesis and advances anomaly detection in
the oil and gas sector by providing an adaptive Open-World Learning strategy, ensuring
continuous improvement through structured validation, cluster refinement, and incremental
classifier updates. This approach bridges the gap between the detection of known anomalies

and the discovery of unknown types, enhancing operational safety and efficiency.

4.2 Proposed Methods and Studies

This Chapter presents a methodology for discovering and classifying unknown anomalies in
oil wells through a multistep process that integrates autoencoder-based anomaly detection,
binary classifiers for known anomalies, and clustering techniques for unknown anomaly
discovery. The approach builds on previous work in oil well anomaly detection while
introducing several novel contributions to enhance system adaptability and robustness.
Specifically, the methodology incorporates an operator-driven validation system to dynam-
ically register new anomalies, a hybrid K-means and Meanshift clustering approach to
group unknown anomalies, and a new application of the encoder’s latent space to efficiently
represent anomalies for clustering. This system, designed within the Open-World Learning

methodology, enables continuous learning and adaptation in oil well monitoring.
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The methodology, illustrated in Figure 4.1, operates as an iterative feedback loop where
each detected anomaly feeds into the next stage. First, anomalies are detected using an
autoencoder model trained exclusively on normal data. The anomaly detection process
leverages reconstruction error to identify deviations from the expected operational patterns

learned during training.

Once an anomaly is detected, the anomalous data is passed to binary classifiers, which
attempt to categorize it into known classes. The binary classifiers operate on the encoder
output, derived from an autoencoder trained on both normal and anomalous data, enabling
effective feature extraction and dimensionality reduction. The primary classifiers consist
of dense deep learning models, supplemented by One-Class Support Vector Machines
(OCSVMs) for handling borderline cases and improving generalization. If the anomaly

does not match a known class, it is treated as unknown and forwarded for clustering.

Figure 4.1 — Flowchart of the proposed methodology.
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To organize unknown anomalies into potential new classes, the system clusters the encoder’s
latent representation of the data. First, a combination of Meanshift (Comaniciu and
Meer, 2002) and DBSCAN (Deng, 2020) is used to determine whether the data can be
grouped or if it consists only of noise. Then, the clustering process is executed using
a combined approach of K-means and Meanshift. The number of clusters is estimated
using a Random Forest regressor, which learns from previous anomaly distributions to

provide an adaptive cluster estimation. Validation results (Subsection 5.4.3) show that
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while K-means often produces better clustering results, some anomalies fit better with the
Meanshift algorithm due to its non-parametric nature. By overlapping the results of both
techniques and selecting the best fit based on clustering quality metrics, the proposed
methodology identifies candidates for newly discovered classes that align more closely with

ground-truth anomaly patterns.

The clustered data represent candidate new anomaly classes, which undergo operator-
driven validation. This human-in-the-loop process allows experts to confirm or refine
cluster assignments, ensuring the accuracy and relevance of newly identified anomaly types.
Importantly, this validation process forms a closed-loop feedback system in which newly
labeled anomalies are incorporated into the training of new binary classifiers, expanding
the system’s ability to detect them in the future. At the same time, existing binary
classifiers are updated with these newly identified negative samples, improving their
robustness against false positives. This continuous reintegration of labeled anomalies into
the classification pipeline enhances the adaptability of the Open-World Learning system,
allowing it to progressively learn and improve its detection of novel anomaly types in

real-world oil well monitoring.

4.2.1 Anomaly Detection with Autoencoder Reconstruction Error

The first stage of the methodology is anomaly detection using an autoencoder (Chen et al.,
2018). As in Aranha et al. (2024a), the autoencoder is trained using normal operational
data from the 3W dataset (Vargas et al., 2019b), as described in Chapter 2.

Specifically, and inspired by Aranha et al. (2024a), the input data consists of sequences of
200 time steps from four sensors: temperature and pressure readings from the Pressure
Downhole Gauge (PDG) and temperature and pressure readings from the Temperature and
Pressure Transducer (TPT). These sequences provide a detailed view of well conditions over
time, allowing the model to capture the temporal dependencies and patterns associated
with normal operations. The inherent parameters of this method are described in Chapter
2.

After the model is trained and the threshold is defined, it is possible to apply the trained
autoencoder to detect abnormal behaviors in newly acquired data. Various network
configurations are tested, and an LSTM-based network, as proposed by Larzalere (2019),
is ultimately selected for its ability to capture temporal dependencies in sequential data.
The architecture of this LSTM-based autoencoder is illustrated in Figure 4.2.

Figure 4.2 shows the main layers that compose the trained autoencoder, namely the LSTM
layers and the dense layers, the decoder in the first row and the decoder in the second
row. Based on the input dimension (4,200), an important hyper parameter that is tuned

using greed search from a range between 50% of the original dimension and 1% of this
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Figure 4.2 — Autoencoder proposed architecture
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value is the latent space size. The value 16, equivalent to 2% of the original dimension, is

obtained after a careful test of the anomaly detection response.

4.2.2 Training an Autoencoder on All Available Data

The second part of the methodology involves training a new autoencoder using all available
data, both normal and anomalous, to obtain a meaningful latent representation of the
sensor data. The autoencoder is designed to compress the input data into a lower-
dimensional latent space that captures essential features representing the operating state
of the well. This latent representation, extracted from the encoder, serves as the basis for
further analysis, enabling dimensionality reduction while preserving the most informative
characteristics of the data (Wang et al., 2019; Marchi et al., 2015).

Obtaining an effective autoencoder for this purpose goes beyond simple hyperparameter
optimization tools such as Keras-Tuner (Chollet, 2015), as these tools do not account for
the latent space’s ability to separate and cluster anomaly classes. Instead, the architecture
is chosen based on the tests performed in Lopes et al. (2024), where both binary and
multiclass configurations incorporate an LSTM layer and a dense layer. This design
is optimized for the characteristics of the 3W dataset, specifically to capture temporal
dependencies in sequences. The best architecture is illustrated in Figure 4.3, showing the
layers that process sequences of 200 time steps with input from four sensors: temperature
and pressure from both the Temperature and Pressure Transducer (TPT) and the Downhole
Gauge (PDG). Similar to Figure 4.2, Figure 4.3 depicts the main LSTM and dense layers,

with the encoder in the first row and the decoder in the second row.

The model from Lopes et al. (2024) utilized 900-second sequences that focused on hydrate
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Figure 4.3 — Autoencoder main architecture
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anomalies. However, to encompass a broader range of anomalies in this study, the length
of the input sequence is adjusted to 200 seconds, integrating additional sensor data (PDG

temperature and pressure) to maintain a comprehensive representation of various anomaly
types.

The resulting latent representations from the encoder are then used for clustering. Figure
4.4 compares the original eight labeled anomaly types from the 3W dataset (left) with the
clustering results of K-means applied to the latent space (right). In the left visualization,
each cluster represents a distinct labeled anomaly from the 3W dataset, while in the right
visualization, each cluster is created by K-means clustering. This comparison highlights
the clustering potential of the latent space, as clusters derived from K-means exhibit a

separation pattern that approximates the distribution of the original labeled anomalies.

In the left plot, each color corresponds to a distinct labeled anomaly from the original
dataset, visualized in a t-SNE plot that reflects how different anomaly types are distributed
throughout the latent space. On the right, the same t-SNE visualization shows the
clustering results of K-means applied to the latent representation, with colors representing
the clusters formed by the algorithm. A close correspondence between the colors on the
left and right plots indicates that the latent space effectively captures the characteristics

of each anomaly class, even in an unsupervised setting.

Autoencoders are valuable for reducing dimensionality and isolating important features in
the data, which facilitates the clustering of similar anomaly classes. This approach could be

further enhanced by exploring alternative architectures such as Variational Autoencoders
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Figure 4.4 — Comparison of the original eight anomalies from the 3W dataset and the
K-means clustering of the latent representation of the encoder.
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(VAEs) (Xu et al., 2018) and Deep Cluster Networks (DCNs) (Ren et al., 2022), which
offer variations in the structure and distribution of the latent space. By applying the same
autoencoder architecture but with VAE or DCN configurations, different latent space
representations could be obtained, that could lead to different clustering performance and

providing additional insights into anomaly separability in the latent space.

When using other losses metrics to obtain more regular distributions for the latent space
using Variational Autoencoders and Deep Clustering Networks, reaching similar accuracy,

as shown in Table 4.1.

Table 4.1 — Autoencoders, VAE and DCNs Accuracy Comparison

Network | Accuracy
VAE 0.727
DCN 0.725

AE 0.73

Regular autoencoders are slighly better in these experiments, but there are othe benefits
than using the Variational Autoencoders and Deep Clustering Networks. Autoencoders
have an interesting property that they are mainly weak in reconstructing new unseen data,
placing them at the edges of the latent space as presented in Figure 4.8. In other hand,
both VAE and DCN changes the latent space in order to accommodate the new data into
clusters (DCN) or to regularize and place the data along with the know data (VAE). Both

behaviors result in similar problems, as seen in Figure 4.5.

Figure 4.5 presents a t-SNE visualization of the latent space produced by a deep clustering

network (DCN), showing how the network organizes known and anomalous data. Different
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Figure 4.5 — DCN latent space clustering
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colors represent distinct classes, while the black polygon outlines the ICV (Inter-Class
Variability) region. The ICV data are spread in the known clusters, so it is difficult to

separate them from the other classes in a single new cluster.

4.2.3 Binary Classifiers for Known Anomalies

To determine whether a detected anomaly corresponds to a known event, binary classifiers
are pre-trained for each known anomaly class using all available labeled data. The
autoencoder, including its encoder component, is also pre-trained with this data to capture
essential features of both normal and anomalous patterns. This pretraining phase ensures
that both the autoencoder and the binary classifiers are fully prepared for evaluation

before any real-time detection begins.

During training, the autoencoder learns to reconstruct production operational data—both
anomalous and normal—while the encoder captures a compressed latent representation
of the input. The extracted latent features serve as input for the binary classifiers, each
designed to recognize a specific anomaly type (e.g., hydrate formation or flow instability).
The main classifiers use the latent representation from the encoder, which is fed directly

into a series of dense layers forming the binary one-vs-all classifier network.

The proposed binary classifier methodology builds directly on Lopes et al. (2024), where
binary one-vs-all classifiers were similarly trained for specific anomaly types—such as

hydrate anomalies—using LSTM layers for temporal feature extraction followed by dense
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layers for classification. In the present work, the binary classifiers use the pre-trained
encoder as a feature extractor, with its output passed to a dense layer network, as shown

in Figure 4.6.

Figure 4.6 — Binary classifier architecture used to identify specific known anomalies.
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Figure 4.6 illustrates the primary dense layers of the binary classifiers, excluding support

layers such as dropout.

Alongside the one-vs-all classifiers, this study also employs auxiliary methods, such as
One-Class Support Vector Machines (OCSVMs), to address certain limitations, which
are further discussed in the results section. In summary, each classifier outputs a binary
decision: 1 if the anomaly matches the specific class it was trained to detect, and 0 for all

other classes, including unknown anomalies.

Training the binary classifiers involves labeling each data point as positive (belonging to
a specific anomaly class) or negative (representing all other known anomalies, excluding
normal data). By excluding normal data from binary classifier training, it is designed
that these classifiers focus solely on distinguishing between different types of anomalies,
as normal data is already filtered out by the autoencoder reconstruction error during the
anomaly detection stage. In cases where the reconstruction error detects a new anomalous
state, the data is evaluated by all binary classifiers. If any classifier outputs a positive
decision, the anomaly is categorized as the corresponding class. If none of the classifiers
identify it as a known anomaly, the data is flagged as an unknown anomaly, leading to

further clustering analysis.

Both the autoencoder and the binary classifiers are retrained after unknown anomaly
data has been discovered, clustered, and introduced as new classes through the operator
validation process. This approach ensures that the models remain up-to-date with the
evolving anomaly landscape without requiring frequent retraining, thereby maintaining

system stability and efficiency.

4.2.4 Estimating the Number of Anomaly Clusters

The first step in estimating anomaly clusters is to assess whether the data has sufficient
structure to form clusters or whether it primarily consists of noise. This is achieved using
the Meanshift (Comaniciu and Meer, 2002) and DBSCAN (Deng, 2020) algorithms, with
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hyperparameters tuned based on the labeled dataset. DBSCAN is particularly effective
for identifying dense clusters and labeling sparse points as noise, while Meanshift clusters
data based on density peaks, offering a preliminary check: if these methods detect mostly
noise, the data is deemed unsuitable for further clustering; otherwise, the process proceeds

to the next stage.

To estimate the number of potential anomaly classes within the detected anomalies, a
Random Forest regression model is used. This model, trained on batches of latent repre-
sentations of known anomalies, predicts the optimal number of clusters based on various
clustering metrics. While individual metrics—such as the silhouette score (Shahapure and
Nicholas, 2020), Davies-Bouldin index (Davies and Bouldin, 1979), and Calinski-Harabasz
score (Calinski and JA, 1974)—ecach suggest cluster counts, the Random Forest model
integrates them to generate a robust prediction, leveraging the unique insights of each

metric regarding data structure (Bodesheim et al., 2013; Pimentel et al., 2014).

Each batch is evaluated with these metrics, creating features that serve as input for
training the Random Forest model. Key metrics include the silhouette score, Davies-
Bouldin index, Calinski-Harabasz score, and density-based measures such as bounding
box volume, calculated as the average radius from cluster centers to points in the 128-
dimensional latent space. The model’s final predicted cluster count combines two values:
the average of each metric’s optimal cluster count and an entropy-weighted score, refining

the estimate:

averagey + entropyy

5 (4.1)

estimated;, =

Once estimated), is determined, it is used to fit a K-means clustering model on the latent
batch data, generating cluster labels based on this estimated number of clusters. Using
these labels, additional metrics are computed, including the silhouette score, Davies-
Bouldin score, Calinski-Harabasz score, and K-means inertia. These values, along with
the number of points in the batch and the bounding box volume, are compiled as feature
inputs for training the Random Forest model. The bounding box volume is calculated
as the average radius from the center of each cluster to its points in the 128-dimensional

latent space.

The final set of input features for each batch is summarized in Table 4.2. This combination
of features allows the Random Forest Regressor to integrate multiple clustering metrics,
each capturing different aspects of the data structure, resulting in a reliable prediction of

the cluster count.

The table above summarizes the key clustering metrics used as input features for the
Random Forest Regressor. Each metric captures a distinct characteristic of the clustering

structure, providing a comprehensive view of the data attributes. The "Number of Points'
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Metric Description
Number of Points Number of points in the batch.
Silhouette Score Cluster cohesion and separation.
Davies-Bouldin Index Inter-cluster distance ratio.
Calinski-Harabasz Score | Compactness and separation.
Inertia Squared distances to cluster centers.
Average K Average optimal cluster number.
Entropy K Entropy-weighted estimate for K.
Bounding Box Volume Average cluster radius.

Table 4.2 — Summary of clustering variables used for the Random Forest model.

reflects the size of the dataset batch, serving as a baseline for scale. The "Silhouette Score"
and "Davies-Bouldin Index" focus on cluster quality by measuring cohesion, separation,
and inter-cluster distance. Similarly, the "Calinski-Harabasz Score" evaluates compactness
and separation. The "Inertia" metric quantifies the total squared distance of points to
their cluster centers, highlighting overall cluster tightness. Advanced metrics like "Average
K" and "Entropy K" provide insights into the optimal cluster count and its weighted
distribution, while the "Bounding Box Volume" estimates the spatial extent of clusters.
Together, these features ensure a multidimensional approach to predicting the optimal

cluster count.

4.2.5 Clustering of Unknown Anomalies

The final stage clusters the latent representations of unknown anomalous data to identify
potential new anomaly classes. This process combines the clustering algorithms K-means
and Meanshift (dong Qi, 2013) to balance a predefined structure with flexible density-based
grouping. K-Means uses the estimated number of clusters provided by the Random Forest
model, while Meanshift relies on tuned hyperparameters to detect clusters based on density

peaks without a fixed cluster count (Comaniciu and Meer, 2002).

After applying K-means and Meanshift clustering, a third clustering step is performed
based on the intersection of the clusters produced by both methods. To further refine these
clusters, a distance threshold is introduced. This threshold retains only the points within
a specified distance from the cluster center, thereby reducing the impact of outliers. The
thresholding process is inspired by the distance-based rejection mechanism of Open-Set
Nearest Neighbor (OSNN) (Zhu et al., 2024b). This intersection-based clustering approach

improve the resulting clusters to represent the core structure of the data.

The distance threshold is dynamically determined to account for variations in cluster point
cloud distributions. The results are inspired by the statistical threshold from Aranha et al.
(2024a), and slightly modified after studying the results on the validation experiments

presented in Section 5. First, the mean (u) and standard deviation (o) of the distances
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from the center of the cluster are calculated. The threshold (T) is computed as:

T'=p+k-o (4.2)

where k is a dynamically determined scaling factor based on the ratio between the mean

and standard deviation:

r=" (4.3)

g

The scaling factor k is dynamically determined as:

2, if R > 4,
k=q{1+ 82 if2<R<4, (4.4)
0, if R < 2.

This dynamic adjustment ensures that the threshold adapts to the characteristics of the
point cloud distribution. For R > 4, the distribution is considered highly normal, allowing
the threshold to include most points. For 2 < R < 4, k is linearly interpolated between 1
and 2. For R < 2, the threshold is equal to the mean. If the threshold removes more than
two-thirds of the points, the closest two-thirds points to the cluster center are kept. By
maintaining at least two-thirds of the points within the threshold, this approach balances

outlier exclusion with good cluster refinement.

Each clustering configuration (from K-means, Meanshift, and the intersection) is then
evaluated using clustering metrics, such as silhouette score, Davies-Bouldin index, and
Calinski-Harabasz score. A voting mechanism based on these metrics determines the best
clustering structure, with the majority vote indicating the final choice. This combined
clustering approach enables the strategy to identify distinct patterns within the unknown
anomaly data, facilitating the discovery of potential new anomaly classes. Detailed results

and comparisons with literature benchmarks are presented in Section 4.3.

4.2.6 New Classes Validation, Continuous Learning and Virtual Classes

The proposed strategy includes a validation process for newly clustered anomalies, which is
important for maintaining an accurate and adaptable monitoring system. Validated classes
are used to train new binary classifiers, allowing the system to recognize these anomalies
in future operations, similar to the methods of Aranha et al. (2024a) and Lopes et al.
(2024). To facilitate this validation, algorithms are developed to assist human operators
by eliminating problematic points, regrouping points into other clusters, and creating new
clusters as needed. Although this human intervention is important at this stage, it could

later be replaced by models or automated logic to streamline the validation process.
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It is possible to bypass human validation and use the newly proposed classes as they are
clustered. However, this can impact the number of new classes, as human operators can
identify when separate clusters actually belong to the same anomaly. Without validation,
multiple classes may be created for a single anomaly category. Another consequence is
that informative names cannot yet be assigned to the proposed clusters, requiring them to
be identified by surrogate labels. Therefore, while the proposed method can continuously
learn virtual classes, it does so with these limitations, allowing the system to function in

real-time while awaiting class validation.

4.2.7 Training and Updating Binary Classifiers

Once new anomaly classes are validated, the system must update its binary classifiers to
recognize these classes in future operations. This process consists of two key steps: (1)
training new classifiers for each newly validated anomaly class and (2) updating existing

binary classifiers to improve their ability to distinguish between similar anomalies.

Newly validated anomaly classes serve as examples for training new binary classifiers and
the supporting OCSVM models. Each binary classifier is trained in a one-vs-all fashion,
where the new class is treated as the positive class and all other anomaly and normal data
serve as negative examples. The autoencoder’s latent space representations are used as
input features, ensuring that the new classifiers are aligned with the strategy’s existing
feature extraction pipeline. This enables seamless integration of the new classifiers into

the broader anomaly detection system.

Once a new class is introduced, existing classifiers must be retrained to prevent mis-
classification. For example, if a previously unknown anomaly shares similarities with a
known anomaly, the binary classifier for the known anomaly may need adjustment to avoid
mislabeling the new class as part of the existing one. To achieve this, previously trained
classifiers are fine-tuned using a combination of old and new labeled data, incorporating

the newly validated class as a negative example where necessary.

The iterative cycle of anomaly detection, classification, clustering, validation (or adopting
virtual classes), and retraining classifiers enables the system to continuously learn and
evolve. With each validation round, newly discovered anomalies are incorporated into
the monitoring system, improving its robustness and its ability to detect both known and
unknown anomalies in a dynamic environment. This ensures that the system remains
adaptable to new operational conditions and can progressively refine its anomaly detection

capabilities over time.
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4.3 Results and Discussions

This section presents a comprehensive evaluation of the proposed methodology, encom-
passing two distinct analyses: a validation analysis on the 3W dataset and a test analysis
on the newly introduced Downhole Interval Control Valve (ICV) fault data. The new data
are extracted from nine production oil wells—specifically, anonymized sensor data from
wells 1 to 9 available in the supplementary material. In the validation analysis, the 3W
dataset anomalies are treated as known classes, allowing us to assess the performance of
each stage in the pipeline, from anomaly detection with autoencoders through to clustering

and validation.

To provide a clear roadmap for the results and discussions, the following research questions
are addressed in each subsection. The following results are structured to respond to specific

research questions, facilitating a focused and coherent analysis:

Research Question 1: How effective is the autoencoder reconstruction error in

detecting anomalies on new data? (subsection 5.1)

« Research Question 2: How well does the latent space representation capture and

separate known and unknown anomaly classes? (subsection 5.2)

« Research Question 3: Can binary classifiers reliably identify known anomalies

and distinguish them from novel ones? (subsection 5.3)

+ Research Question 4: How effective is the clustering methodology in grouping
unknown anomalies and estimating the number of new anomaly classes? (subsection

5.4)

e Research Question 5: How well does the system adapt and improve after inte-

grating new anomaly classes into its knowledge base? (subsection 5.5)

These questions are addressed sequentially in the subsections that follow, ensuring a
systematic exploration of the performance and adaptability of the proposed methodology.
The test analysis with ICV data introduces an entirely new anomaly class, used to evaluate
the system’s ability to detect, classify, and cluster unknown anomalies within the complete
pipeline. This analysis tests the system’s adaptability and continuous learning capabilities
by incorporating a previously unclassified anomaly type. Performance metrics are reported
for both analyses and compared to the relevant literature, as detailed in the subsections
that follow.
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4.3.1 Autoencoder Anomaly Detection

Autoencoder reconstruction loss is a well-established method for anomaly detection, as
demonstrated by Aranha et al. (2024a), which also utilized the 3W Dataset. In this
study, the autoencoder model is trained on normal data from both the 3W Datastet and
newly acquired real-world data, with a focus on ICV fault detection. Building on the
foundation of Aranha et al. (2024a), which presented separate models for each oil well,
the proposed approach modifies the autoencoder architecture to create a unified model
trained on all available normal data. This single model is then applied to assess both
normal and anomalous conditions across multiple wells exhibiting the ICV fault. The

current architecture is illustrated in Figure 4.2.

Figure 4.7 — Reconstruction loss threshold applied to the ICV fault data.
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Figure 4.7 presents the data as an interpolated density distribution, where the area under
each colored curve sums to one. The x-axis represents the Mean Absolute Error, while
the y-axis denotes the density of points corresponding to each error value. The plot
demonstrates that normal data predominantly exhibit error values below the probabilistic
threshold, whereas ICV fault data present values above this threshold.

After training, an anomaly threshold is determined using the validation set. When applied
to reconstruction loss on the normal and ICV fault test data, the threshold effectively

distinguishes most normal and abnormal samples, as illustrated in Figure 4.7.

Figure 4.7 visualizes the density of points on the y-axis against the mean squared error of

points on the x-axis, providing a smooth interpolation for graphical representation.
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Some false positives arise, primarily due to valve opening and closing events, along with a
few false negatives. These false positives are one of the key reasons Aranha et al. (2024a)
opted to retrain models for specific wells and valve settings. However, within the scope of
this Chapter, the results are acceptable, providing a strong initial filter for subsequent
processing stages. The presented results, along with those from Aranha et al. (2024a),
address Research QQuestion 1, demonstrating that reconstruction error can distinguish

normal data from abnormal behavior given a calculated threshold.

4.3.2 |ICV Latent Space Representation

A key aspect of the proposed method is reducing the encoder dimension to group similar
data together. To illustrate the effectiveness of this approach and address Research
Question 2, Figure 4.8 shows the representation of the nine anomaly types from the 3W
dataset along with the ICV fault anomaly (highlighted as black points).

Figure 4.8 — Two-dimensional representation of the latent space from nine 3W dataset
anomalies and the ICV fault data, highlighting ICV Fault points.
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This Figure illustrates a two-dimensional t-Distributed Stochastic Neighbor Embedding
(t-SNE) representation (van der Maaten and Hinton, 2008) of the encoder’s latent space.
It reveals distinct regions where points corresponding to different anomaly types are
concentrated. Anomaly data tend to cluster within a localized region of the latent space.
However, it is also evident that anomaly 4, namely Flow Instability, is more widely spread
across the latent space. This suggests that this anomaly class is among the most difficult

to classify and separate from others.
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4.3.3 Binary Classifiers

The binary classifiers are trained on the nine known anomalies of the 3W dataset and
tested with ICV fault data. The main advantage of the binary classifier method is its
ability to incorporate new knowledge as data are collected, either by training new classifiers

or retraining existing ones. Before testing, a validation process using unseen random data

is conducted, as shown in Table 4.3.

Table 4.3 — Performance Metrics for Trained Binary Classifiers by Class.

Class | Exp. Acc. | Exp. F1-Scr | Mean + STD Acc. | Ins. Mean == STD Acc.
1 0.92 0.93 0.82 + 0.04 1.00
2 0.90 0.90 0.85 + 0.03 0.98 £+ 0.05
3 0.85 0.87 0.89 £+ 0.02 1.00
4 0.69 0.68 0.64 £+ 0.03 1.00
5 0.82 0.83 0.75 £ 0.03 0.76 £ 0.05
6 0.94 0.95 0.75 £ 0.13 0.34 + 0.42
7 0.79 0.83 0.80 £+ 0.01 1.00
8 0.90 0.91 0.80 £+ 0.06 0.94 + 0.12
9 0.92 0.92 0.81 £+ 0.05 1.00

The results in Table 4.3 are presented in five columns. The first column lists the 3W
dataset classes. The second column shows the validation accuracy (Exp. Acc.) of the
models used in the ICV fault case study experiment. The third column (Exp. F1-Scr)
presents the Fl-score for the case study, while the fourth column displays the mean and
standard deviation obtained from 100 train-validation splits, randomly selected from the
3W dataset, using 40% of the real data for validation. The last column shows both the

mean and standard deviation across all time series and at the instance level.

It is important to highlight that all classifiers are trained and validated using the same
dataset split. Therefore, Exp. Acc. represents the best validation accuracy observed in
the ICV case study, even though some classifiers may show lower Mean Acc. values over
multiple training runs. The mean + standard deviation reflects the overall performance
distribution of the models. The best-performing models achieved accuracy values near the

upper bound of this range (mean + 2 standard deviations).

Instance-level accuracy is calculated as the ratio of instances with at least one positive

detection to the total number of instances for that specific anomaly.

These results partially address Research Question 3. Notably, class 4 (Flow Instability)
exhibits the weakest performance metrics among all classifiers. This suggests that the
anomaly shares similarities with other classes, leading to misclassifications. Class 6 has
the worst instance level accuracy, leading to most of the instance files to be misclassified

for that anomaly.

The evaluation of ICV fault data using these binary classifiers is shown in Figure 4.9.
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Figure 4.9 — Prediction Distributions by Class Predictor for the ICV Anomaly Problem
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Figure 4.9 presents density interpolation curves for the predictions of each of the nine
binary classifiers. In this figure, each curve represents the distribution of prediction
outputs for a binary classifier trained on one of the known anomaly classes from the 3W
dataset. The x-axis represents the classifier’s output, which corresponds to the probability
that the input data belong to the anomaly class the classifier represents. If the output
exceeds 0.5, it indicates that the data point has been classified as belonging to that
specific class. The y-axis represents the density of these predictions, where the area under
each curve sums to one. This visualization provides insight into the distribution and
concentration of prediction scores across different thresholds, highlighting how well each
classifier distinguishes the ICV anomaly from known classes. The threshold line at 0.5,

marked in red, represents the decision boundary for classification into a given class.

Ideally, to correctly treat ICV fault data as a new anomaly, all points should fall to the
left of the red line (below 0.5), as they theoretically do not belong to any of the known
classes. However, when using solely the binary classifiers with the 0.5 threshold, many
points are unexpectedly classified as belonging to a combination of two classes: Class 2 -
Spurious Closure of DHSV and Class 5 - Rapid Productivity Loss. This misclassification
is reasonable, as these anomalies share similarities with ICV faults. This pattern is also
observed in Figure 4.8, where the ICV fault data region overlaps with points from Classes
2 and 5.

The class intersections highlight the limitations of binary classifiers. When one or more
known anomaly classes are too similar to the new data, the predictions may incorrectly
assign the data to those classes. To mitigate this issue, two combined processes are used:

introducing an auxiliary classifier with a non-class detection mechanism and applying a
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multi-classifier consensus approach with a One-Class Support Vector Machine (OCSVM).
The multi-classifier consensus also ensures a single definitive classification when multiple

classes are detected.

A two-stage approach combining One-Class Support Vector Machines (OCSVM) and a
pre-trained autoencoder is employed to tackle the challenge of detecting samples that
belong to none of the known classes (non-class) in the absence of explicit "none" examples.
The OCSVM is trained on the latent representations generated by the autoencoder to learn
a decision boundary that encapsulates the distribution of the positive class, effectively
identifying samples that deviate significantly from this boundary. Additionally, the
autoencoder provides the reconstruction error as an auxiliary signal to quantify how well
a sample conforms to the known data distribution. These two complementary signals are
then integrated into a new classifier, which is utilized alongside binary dense classifiers to

enhance the detection capability.

Figure 4.10 — OCSVM decision boundary, separating "known" classes and the non-class
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Figure 4.10 illustrates the t-SNE visualization of the SVM decision boundary, highlighting
its role in separating "known" classes from non-class samples. The red-to-blue gradient
represents the SVM decision function values: blue regions correspond to areas confidently
classified as "known" data, while red regions indicate non-class samples. The plot overlays
three categories of data: validation data (blue points), ICV data (green points), and

non-class samples (red points).
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In this case, a strategy such as the multiclassifier consensus approach can be applied. If
all classifiers are uncertain or produce low confidence scores, the input can be classified as
"none of the classes." The classifier outputs are normalized, and a threshold is applied to
the maximum probability across all classifiers. If this probability is below the threshold,
the sample is classified as "none"; otherwise, it is assigned to the class with the highest

probability value.

OCSVMs serve as auxiliary classifiers, complementing this strategy by modeling the
distribution of each individual class. Unlike binary classifiers, which rely on comparisons
between positive and negative samples, OCSVMs define the regions of feature space
occupied by the positive class. This makes them particularly effective at identifying

outliers or novel inputs that deviate significantly from the known class distributions.

The Weighted Voting Scheme provides a structured approach for classifying samples and
detecting those that do not belong to any predefined class. This scheme integrates the
outputs of binary classifiers and auxiliary OCSVMs through weighted contributions. Each
classifier produces a normalized score that reflects its confidence in assigning the sample
to a given class. Weights are assigned to both the binary classifier scores and OCSVM

scores based on their performance during training and validation.

The final score for each class 7 is calculated as:

S; = wgb)s(b) + w(o)sl@, (4.5)

% i

)

where wng) and w§0 are the weights of the binary classifier and OCSVM scores, respectively,

) and SEO) are the normalized scores for the 7 -th class of the binary classifier and

OCSVM.

and sz(b
The predicted class ¢ is then determined as follows:

. arg max; Sj, if max; S; > 7,

“none of the classes”, otherwise.
Here, 7 is a threshold calibrated through validation experiments to ensure that samples
with low confidence across all classes are correctly identified as belonging to none of the
classes. The threshold 7 is calibrated through validation experiments to optimize the
classification results through greed search, where certain classes are randomly hidden to

simulate novel class detection, and its value may vary accordingly. For the ICV detection

fault case study, the value is set to 0.65.

By tuning the weights wgb) and wl@ and the threshold 7, the Weighted Voting Scheme
effectively integrates binary classifiers and OCSVMs, providing a flexible and reliable
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(b)

%

classification framework. w; ’ is related to the autoencoder reconstruction error classifier

for the "no class". For the autoencoder, the probability of anomaly is defined by:

Lerror - if - < tols
predict 4 = { 014 e (4.7)

1.0, otherwise.

In this equation, ..., represents the reconstruction error and tol;4 is defined in Equation
8 from Chapter 2. The results of the combined binary classifiers and OCSVM, namely

accuracies and weights, are described in Table 4.4.

Table 4.4 — Updated Classifier Performance Metrics
Q) (0)

Class | Accuracy | w, w;
1 0.92 0.65 | 0.35
2 0.87 0.54 | 0.46
3 0.91 0.75 | 0.25
4 0.68 0.52 | 0.48
5 0.82 0.58 | 0.42
6 0.93 0.77 | 0.23
7 0.79 0.62 | 0.38
8 0.90 0.53 | 0.47
9 0.90 0.54 | 0.46

Class | Accuracy | w™® | w!”

None 0.55 0.26 | 0.74

The table shows that the weights assigned to the binary classifiers are generally higher
than those for the OCSVMs. Additionally, the combined accuracy is often lower than that
of the binary classifiers alone. However, the combined approach is necessary to reduce
false positives and effectively detect non-class samples. The application of the combined
binary classifier approach resulted in 48% of ICV fault data being classified into one of
Classes 2 and 5. This means that for the next steps in the proposed Open-World Learning
pipeline, 52% of the anomalous data are classified as unknown and will be used in the

clustering process.

4.3.4 Clustering of Unknown Anomalies

To address Research Question 4, after the binary classifiers fail to assign an anomaly
to any known class, the combined random forest and clustering algorithm, composed of
K-means and Meanshift, is applied to the latent representations of the unknown anomalies.
Similar to the validation process for binary classifiers, this step is validated using the 3W
dataset and tested with the ICV fault data.
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4341 Random Forest Estimation of Number of clusters

The random forest algorithm provides a method for estimating the number of clusters within
a given point cloud. Table 4.5 presents clustering performance metrics, demonstrating the

model’s accuracy and reliability in estimating the number of unknown anomaly classes.

Table 4.5 — Clustering Performance Metrics

Metric Value
Accuracy | 98.3%
Precision 0.98
Recall 0.86
F1-Score 0.87

Table 4.5 shows that the model performs with high accuracy across all metrics. In cases
where the estimated cluster count deviates from the actual count, the average error margin
remains small (1.12 clusters). This accuracy provides a good foundation for the subsequent
clustering process, helping the cluster process of unknown anomalies. The methodology
allows the system to dynamically estimate the number of unknown anomaly clusters,

thereby improving its ability to adapt to new anomaly types as they emerge.

4.3.4.2 K-means Clustering Experimentation

To evaluate the model’s ability to generalize to different unknown anomaly combinations,
scenarios are simulated where only six of the nine known anomalies are used for training,
treating the remaining three as unknown. An example of this setup involves treating

anomaly classes 3, 6, and 8 as unknown and applying clustering.

Figure 4.11 illustrates the original data distribution per class for this sample, while Figure
4.12 displays the results of clustering using K-means. The performance metrics for this
specific case are summarized in Table 4.6. For this selection of three unknown anomalies,

the clustering results closely align with the original classes, as reflected in the metrics.

Table 4.6 — Per-Class Metrics of a sample set of 3 unknown anomalies

Class | Accuracy | Precision | Recall | F1 Score
3 0.62 0.83 0.62 0.71
6 1.00 0.94 1.00 0.97
8 0.83 0.70 0.83 0.76

The selection of the 3 remaining anomalies is done, to obtain a more accurate result, by
using all possible combinations of trios from 9 elements, totaling 168 different groups of
clusters. Table 4.7 shows the best result using K-means clustering method, and Figure

4.13 shows the normalized confusion matrix.

Similar to the binary classifiers in Table 4.3, Table 4.7 presents accuracy and F'1-score values

from the main experiment, along with the mean and standard deviation obtained from
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Figure 4.11 — Original data from the anomalies 3, 6 and 8 (represented respectively as
clusters 0, 1 and 2)
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Figure 4.12 — K-means clusters for the anomalies 3, 6 and 8.
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100 different random validation splits. The results highlight the classification challenges

associated with class 4, as reflected in both the table and the confusion matrix.
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Table 4.7 — K-means Clustering Metrics Comparison.

Class | Exp. Acc. | Exp. F1-Scr | Mean &= STD Acc. | Ins. Mean Acc.
1 0.71 0.72 0.57 £ 0.16 0.95
2 0.44 0.52 0.49 + 0.13 0.46
3 0.88 0.73 0.72 £ 0.19 0.92
4 0.38 0.41 0.48 £ 0.13 0.67
5) 0.74 0.72 0.77 £ 0.07 0.60
6 0.99 0.71 0.93 £ 0.10 0.93
7 0.81 0.71 0.66 + 0.18 0.87
8 0.93 0.75 0.92 £ 0.04 0.88
9 0.72 0.70 0.81 £ 0.15 0.73

Global 0.73 0.67 0.71 £ 0.15 0.78

4.3.4.3 Combined Clustering with Distance Filter

Table 4.8 presents the clustering results when a distance filter is applied, excluding data

points that are far from the cluster center. Table 4.9 displays the best results for the

combined clustering approach using K-means, Meanshift, and the distance filter. Similar

to Table 4.7, the columns from both Tables are described as follows: Exp. Acc. represents

the validation accuracy in the ICV case study, Exp. F1-Scr represents the validation
Fl-score in the ICV case study, Mean + STD Acc. denotes the mean and standard
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deviation of accuracy, and Ins. Mean Acc. represents the mean instance-level accuracy.
Both tables compare accuracy and F1-score for the main experiment, along with the mean
and standard deviation of accuracy computed across 100 randomly selected validation

splits.

Table 4.8 — K-means Clustering Performance After Applying Distance Filter.

Class | Exp. Acc. | Exp. F1-Scr | Mean &= STD Acc. | Ins. Mean Acc.
1 0.61 0.68 0.58 + 0.11 0.95
2 0.56 0.71 0.60 = 0.19 0.46
3 0.89 0.83 0.70 = 0.20 0.93
4 0.52 0.62 0.58 = 0.13 0.67
5 0.78 0.76 0.83 + 0.10 0.71
6 0.95 0.95 0.96 + 0.07 0.99
7 0.71 0.76 0.74 + 0.18 0.84
8 0.98 0.93 0.98 + 0.02 0.99
9 0.94 0.83 0.94 + 0.08 0.89

Global 0.77 0.76 0.77 £ 0.15 0.82

Table 4.9 — Performance of the Combined Clustering Approach (Distance Filtering + K-
means + Meanshift).

Class | Exp. Acc. | Exp. F1-Scr | Mean &= STD Acc. | Ins. Mean Acc.
1 0.80 0.73 0.60 £+ 0.10 0.96
2 0.61 0.69 0.64 £ 0.16 0.51
3 0.91 0.75 0.73 £ 0.19 0.92
4 0.52 0.57 0.60 £+ 0.12 0.68
5 0.80 0.71 0.84 + 0.09 0.74
6 0.99 0.94 0.98 £ 0.04 0.98
7 0.71 0.73 0.77 £ 0.16 0.85
8 0.99 0.90 0.98 £+ 0.02 1.0
9 0.94 0.83 0.96 £+ 0.06 0.92

Global 0.81 0.74 0.79 £ 0.15 0.84

The clustering results across the nine anomaly classes demonstrate consistent performance,
with the highest accuracy observed for class 6. Conversely, class 4 exhibits the lowest
accuracy (52%), a trend also observed in binary classifiers and pure K-means clustering.
The overall accuracy of 81% highlights the model’s ability to correctly cluster most
unknown anomalies. While certain classes show strong clustering performance, others

achieve moderate to low accuracy, reflecting the inherent complexity of certain anomaly

types.

To benchmark the clustering performance against supervised approaches, the results of
the proposed method are compared to those reported in Marins et al. (2021b) and to the
supervised multi-class models of Lopes et al. (2024). Table 4.10 presents a comparison

between accuracy results from different methods and works. Although the clustering
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method is unsupervised, the results demonstrate competitive performance relative to fully
supervised methods, particularly for classes 8 and 9, which achieved accuracy rates close
to those of the supervised approaches. However, for certain anomaly classes, such as class
2 and class 4, supervised methods performed better. It is important to highlight that the
these are results with different goals, so accuracy values is only a first hint when selecting

a strategy between the presented from Table 4.10.

Table 4.10 — Comparison of Clustering Accuracy with Supervised Methods.

Columns Description: *Lopes et al. (2024); **Marins et al. (2021b); Proposed 1:
Unsupervised Clustering of the Latent Space; Proposed 2: Binary Supervised Classifiers.

Class | Literature 1* | Literature 2** | Proposed 1 | Proposed 2
1 0.92 0.79 0.92
2 0.92 0.89 0.61 0.90
3 0.87 0.79 0.90 0.85
4 0.76 0.95 0.52 0.69
) 0.95 0.83 0.79 0.82
6 0.61 0.71 0.99 0.94
7 0.87 - 0.70 0.79
8 0.99 - 0.98 0.90
9 0.98 - 0.94 0.92
Global | 0.86 0.93 0.81 0.92

When comparing clustering performance with other supervised methods, the proposed
approach performed competitively for some classes. It is important to highlight that a
direct accuracy comparison is not possible since the classifiers have distinct objectives;
the comparison only provides a general indication of overall performance. The global
accuracy of 81% is not far behind the results achieved by Marins et al. (2021b), which
obtained a global accuracy of 93% in a fully supervised scenario, and Lopes et al. (2024),
which achieved 83%. However, the proposed method has the advantage of autonomously
discovering new anomalies without requiring extensive labeled data. When compared to
binary classifiers, the performance of the proposed method is similar to approaches found

in the literature.

4.3.5 Testing the combined clustering in the ICV Fault Data

The first step in analyzing the remaining 52% of ICV data, which is classified as negative
by all trained binary classifiers (indicating it is unseen data), is to determine whether it
can be grouped into a distinct cluster. When applying DBSCAN and Meanshift to all
ICV data, including the portion classified as other anomalies, both algorithms identify

two distinct clusters along with some noise, as illustrated in Figures 4.14 and 4.15.

The existence of two clusters is logical, as part of the data exhibit behavior similar to

known anomalies, leading them to be classified into existing anomaly classes. The figures
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Figure 4.14 — DBSCAN clustering of ICV Fault Data
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Figure 4.15 — Meanshift clustering of ICV Fault Data
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indicate that the misclassified region corresponds to one of the clusters for both Meanshift

and DBSCAN.

Since at least one cluster exists in the region classified as unknown, the Random Forest

regressor also estimated one cluster as the probable number of classes. In this particular

case, it is unnecessary to apply the combined algorithm to determine that the 52% of ICV
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data classified as unknown belong to a single class. Given that only one cluster is detected,

there is no need to separate the data further.

4.3.6 Validation and Train New Binary Classifiers

Table 4.11 — Performance Metrics for Trained Binary Classifiers by Class

Class | Accuracy | Precision | Recall | F1 Score
1 0.93 0.89 0.99 0.93
2 0.89 0.91 0.88 0.89
3 0.85 0.89 0.82 0.85
4 0.67 0.66 0.73 0.69
5 0.77 0.86 0.67 0.75
6 0.94 0.92 0.98 0.95
7 0.82 0.75 0.95 0.84
8 0.90 0.86 0.96 0.91
9 0.93 0.93 0.94 0.93
10 0.99 0.98 0.98 0.98

Figure 4.16 — New Prediction Distributions by Class Predictor for the ICV Anomaly
problem
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The newly introduced 10th classifier is trained exclusively on the data previously classified
as unknown. This dataset now serves as positive samples for the new class and negative
samples for all other classes. The new validation metrics for the binary classifiers are
presented in Table 4.11.

To assess the improvement in the system’s knowledge, Figure 4.16 illustrates the same

scenario as Figure 4.9, but with 10 classifiers, including the newly learned ICV Fault
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Anomaly. Despite a few false positives, which could be considered noise, the majority of
the previously misclassified data is now correctly classified as an ICV Fault anomaly. This

result effectively addresses Research Question 5.

4.3.7 Training and Execution Times

Table 4.12 — Training and Execution Times for Different Model Components

Process Time

Train autoencoder for anomaly detection ~ 1.37 min

Train binary classifiers ~ 1.02 min per classifier

Train encoder (autoencoder) ~ 1.24 min

Detect anomaly 6 ms per batch of 32 sequences
(Classify anomaly 7 ms per batch of 32 sequence/classifier
Noise detector (DBSCAN + MeanShift) ~ 2 sec per 200 points

Cluster data ~ 3 sec per 200 points

Retrain classifiers ~ 1.02 min per classifier + new classifiers

All GPU-based training experiments were conducted on a system equipped with an Intel
Xeon CPU with 2 vCPUs, 13GB of RAM, and an NVIDIA T4 GPU. The computational
constraints of this hardware setup may have influenced model training efficiency, hyper-
parameter optimization, and overall performance. Table 4.12 presents the training and
execution times for several stages of the proposed methodology, including autoencoder

training, binary classifier training, anomaly detection, and clustering processes.

4.4 Partial Remarks

This Chapter presented a system for detecting, classifying, and clustering unknown
anomalies in oil wells, applying Open-World Learning principles to a domain where labeled
anomaly data are often scarce. The proposed approach integrates autoencoder-based
anomaly detection, binary classifiers for known anomalies, and a hybrid K-means and
Meanshift clustering method for unknown anomaly discovery. This enables the system to
autonomously detect, classify, and continuously adapt to previously unseen anomalies—an
essential capability for dynamic and complex operational environments such as oil well

monitoring.

The key contributions of this Chapter include the application of latent space representations
for anomaly clustering, the hybrid clustering strategy combining K-means and Meanshift,
and the integration of an operator-driven validation system that enables continuous

learning.

The autoencoder successfully detected anomalous states based on reconstruction errors,

achieving 95% accuracy for the unseen ICV fault data. Binary classifiers demonstrated high
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accuracy across most known anomaly classes, with 90% and 92% accuracy for anomalies
in Classes 3 and 8, respectively. For unclassifiable anomalies, the Random Forest regressor
reliably estimated the number of clusters with 98.3% accuracy. The combined K-means
and Meanshift clustering method aligned well with ground-truth labels, achieving a global

accuracy of 81%, approaching the performance of supervised methods in many cases.

Testing the pipeline on the ICV fault dataset confirmed the adaptability of the approach.
The system successfully identified the ICV fault as a new anomaly class and integrated it
into the model, leading to significant improvements in classification accuracy for this fault
type. This demonstrates the system’s ability to dynamically learn and incorporate new

anomalies without requiring extensive labeled datasets.

Despite strong performance, supervised methods still achieved higher accuracy for certain
challenging classes, particularly Class 4, where supervised models reached 95% accuracy,
compared to 69% for binary classifiers and 52% for clustering. However, the Open-World
Learning approach offers a key advantage: the ability to autonomously discover and classify
new anomalies without relying on predefined labels, a critical requirement for real-time

industrial applications.

Future work can focus on automating the operator-driven validation step, potentially
replacing it with machine learning models capable of handling point elimination, cluster
adjustment, and autonomous validation of new classes. Another key improvement will
focus on enhancing feature extraction and developing specialized architectures to better
differentiate classes with similar behavior, particularly Flow Instability (Class 4), which
has consistently struggled with categorization and grouping. Additional enhancements
will aim to distinguish anomalies caused by sensor interference from those arising from
genuine operational issues, thereby reducing false positives and further refining the model’s

accuracy for improved predictive maintenance and operational safety.



90

5 Final Remarks

This Thesis presents a comprehensive set of contributions that aim to advance the field
of anomaly detection and classification in oil well monitoring. By integrating machine
learning techniques, rule-based approaches, and Open-World Learning principles, this
work addresses challenges in ensuring operational safety, efficiency, and adaptability in
highly dynamic oil production environments. The proposed strategy and models span
anomaly detection for known faults, early-stage fault detection, and adaptive systems
capable of identifying and incorporating new, previously unseen anomalies. Together,
these contributions provide a strong foundation for the development of intelligent and

scalable monitoring systems for the oil and gas industry.

Chapter 2 introduced a system that combines LSTM-based autoencoders with a rule-
based analytical approach to detect general anomalies in oil wells. This system effectively
monitored the behavior of pressure and temperature sensors, adapted to various valve
configurations, and identified faults such as spurious closures of the DHSV. Using the
autoencoder reconstruction error and the interpretability of rule-based logic, the system
achieved high precision and adaptability, consistently detecting anomalies in the early
stage with a true positive detection rate exceeding 90% on sample level. Moreover, its
practical implementation across more than 20 FPSOs, monitoring over 250 subsea wells
in real-time, demonstrates its robustness, scalability, and ability to function within the
computational constraints of the rigsite infrastructure. This study also highlighted the
importance of using hybrid approaches to integrate human expertise and domain-specific

knowledge into machine learning systems.

Chapter 3 presents the study of binary classifiers capable of detecting anomalies in oil
well operations, with the detection of hydrate formation serving as a study case for
verification and validation. Binary classifiers based on LSTM-based Deep Neural Networks
(DNN) demonstrated their effectiveness in identifying hydrate-related anomalies with
precision exceeding 90% 90% on sample level. This achievement ensured timely detection
within a 15-minute window, within the 30-minute response time required to mitigate
the risks of hydrate formation, which carry significant economic and safety implications.
By reducing the false negative rate, the detection model validated the reliability of this
binary classification approach compared to traditional analytical methods. In addition,
the study underscored the versatility of binary classifiers in multiclass anomaly detection
contexts, showing that variations in pressure and temperature in different faults provided
distinct characteristics for training models capable of accurately classifying various types
of anomalies. This work presented a method using a reduced number of sensors (only

TPT data), emphasizing its broad applicability in diverse oil well setups. Furthermore,
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the study proposed a staged detection system, where an initial anomaly detection model
distinguishes normal from abnormal states before forwarding data to the appropriate

binary classifier, enhancing overall accuracy and efficiency of the system.

Chapter 4 represents a major contribution to the field of oil well monitoring by introducing
an Open-World Learning (OWL) strategy for anomaly detection, anomaly and novelty
classification, and novelty clustering. This methodology addresses a critical limitation of
traditional machine learning approaches: the reliance on fixed, labeled datasets that cannot
adapt to new, unseen anomaly types. The OWL strategy combines autoencoder-based
anomaly detection, binary classification for known anomalies, and clustering methods
(k-means and MeanShift) to identify and organize previously unknown anomalies. A
human-in-the-loop validation step is integrated into the pipeline, allowing operators to
confirm or adjust clusters, register new anomaly classes, and incrementally update the

model.

A key achievement of this study is the successful validation of the OWL pipeline on new
data involving Downhole Interval Control Valve (ICV) faults. These faults, previously
unrepresented in 3W dataset, were identified as distinct classes and integrated into the
system. The clustering methodology demonstrated robust performance, achieving an
overall clustering accuracy of 80.8% and nearly 95% for certain events, while the binary
classifiers achieved high accuracy for most known anomaly classes. This shows the system’s
ability to dynamically learn and adapt to new operational conditions without the need
for extensive retraining. The OWL strategy thus fills the gap between detecting known
faults and discovering new ones, providing a truly adaptive monitoring system for complex

real-time operational environments.

This Thesis not only delivers practical methodology, but also highlights implications for
the oil and gas industry:

o Real-Time Application: The methodologies have been implemented and validated in
real-world operations, showcasing their scalability and robustness in monitoring over

250 subsea wells.

o Dynamic Adaptation: The OWL strategy enables systems to evolve continuously,
addressing the challenge of identifying new types of anomalies in a highly dynamic
field.

o Cost and Safety Improvements: Early-stage fault detection, as demonstrated in the
hydrate formation and ICV Fault cases, reduces nonproductive time and minimizes

risks to equipment and personnel.
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5.1 Limitations and Future Work

While the proposed methodologies exhibit promising results, certain limitations remain.
Along with all cited limitations described in Section 1.5, early-stage anomaly detection
could benefit from further refinement, particularly for anomalies with subtle signatures.
Automating the operator-driven validation step in the OWL pipeline remains an open
challenge, and future work could explore the use of advanced clustering algorithms
or reinforcement learning models to handle this process autonomously. Additionally,
distinguishing between operational anomalies caused by sensor interference (e.g. human
interventions) and genuine faults is an area that requires further exploration to reduce

false positives.

Future research can focus on expanding the detection capabilities to encompass more
uncharted anomalies and exploring advanced architectures such as transformers and
gated recurrent units to enhance the efficiency of sequential data processing. Finally,
integrating predictive maintenance systems with the proposed methodologies could unlock

new possibilities for proactive decision-making and operational optimization.

5.2 Final Considerations

This Thesis represents an advancement in anomaly detection and classification for oil
well monitoring, offering a suite of robust, scalable, and adaptive solutions. By bridging
rule-based methods with state-of-the-art machine learning techniques and introducing Open-
World Learning principles, this work lays the foundation for monitoring systems capable
of addressing the evolving challenges of the oil and gas industry. These contributions
provide a roadmap for safer and more efficient operations, ensuring that oil well monitoring

systems can adapt and thrive in increasingly complex environments.
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