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RESUMO 

Tendo em vista a preocupação com a preservação ambiental, devido à constatação de que as 

atividades antrópicas podem causar profundos impactos, os trabalhos de pesquisa têm levado a 

uma mudança da agricultura dita convencional, que utiliza produtos agroquímicos e 

fertilizantes, para uma agricultura que busca formas de manejo menos nocivos ao ambiente. As 

rizobactérias promotoras de crescimento de plantas (RPCP) são micro-organismos que podem 

viver livremente na rizosfera, formar associações simbióticas com plantas e colonizar os tecidos 

internos dos vegetais. Essas bactérias são conhecidas assim, por poder potencializar o 

crescimento das plantas, principalmente do sistema radicular, o que proporciona maior acesso 

e aproveitamento de nutrientes e água. Dentre os mecanismos responsáveis pela promoção de 

crescimento vegetal por bactérias, freqüentemente estão envolvidos: a produção de ácido 

indolacético - AIA por meio da enzima indolpiruvato descarboxilase na presença do aminoácido 

triptofano, onde o seu principal efeito é promover o crescimento de raízes e caules, através do 

alongamento das células recém-formadas nos meristemas.  Outro mecanismo é a solubilização 

de fosfato, pela ação de ácidos orgânicos e fosfatases, facilitando a conversão das formas 

insolúveis em solúveis, disponibilizando esse nutriente para as plantas, sendo de importância 

fundamental devido ser o segundo mineral limitante do crescimento vegetal, como também a 

produção de antibióticos difusíveis e enzimas líticas como quitinases, propiciando um eficiente 

controle biológico de fitopatógenos na natureza. Objetivou-se com esta revisao coletar 

informacoes disponiveis sobre o papel de rizobactérias na promoção de crescimento de plantas. 

Foi realizada a pesquisabibliografica de artigos, recorrendo a bases de dados cientificos digitais, 

utilizando palavras chaves como:  fosfato inorgânico; exopolissacarídeo; inoculantes. 

biofilmes, fitohormonios, estresse hídrico e indução de crescimento. Ao final da leitura 

dosresumos, foram escolhidos os artigos mais relevantes e atuais, e assim cumprindo o objetivo 

proposto.  

 

Palavras-chave: fosfato inorgânico, exopolissacarídeo, inoculantes. 

biofilmes,fitohormonios, estresse hídrico e indução de crescimento 

 

 

 

 



 

 

ABSTRACT 

In view of the concern with environmental preservation, due to the observation that human 

activities can cause profound impacts, research work has led to a change from so-called 

conventional agriculture, which uses agrochemical products and fertilizers, to agriculture that 

seeks forms less harmful to the environment. Plant growth-promoting rhizobacteria (PGPR) are 

microorganisms that can live freely in the rhizosphere, formsymbiotic associations with plants 

and colonize the internal tissues of plants. Thesebacteria are known as they can enhance the 

growth of plants, especially the root system,which provides greater access and use of nutrients 

and water. Among the mechanismsresponsible for promoting plant growth by bacteria, the 

following are often involved: the production of indoleacetic acid - IAA through the enzyme 

indolepyruvatedecarboxylase in the presence of the amino acid tryptophan, where its main 

effect is topromote the growth of roots and stems, through the elongation of newly formed cells 

inthe meristems. Another mechanism is the solubilization of phosphate, through the action of 

organic acids and phosphatases, facilitating the conversion of insoluble forms into soluble ones, 

making this nutrient available to plants, being of fundamental importance due to it being the 

second limiting mineral for plant growth, as well as the production of diffusible antibiotics and 

lytic enzymes such as chitinases, providing efficient biological control of phytopathogens in 

nature. The objective of this review was to collect available information on the role of 

rhizobacteria in promoting plant growth. Bibliographical research of articles was carried out, 

using digital scientific databases, using key words such as: inorganic phosphate; 

exopolysaccharide, inoculants, biofilms, phytohormones, water stress and growth induction. At 

the end of reading the abstracts, the most relevant and current articles were chosen, thus 

fulfilling the proposed objective. 

 

Keywords: inorganic phosphate, exopolysaccharide, inoculants. biofilms, phytohormones, 

water stress and growth induction 
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1. INTRODUÇÃO   

O método de produção atual baseia-se no uso de pesticidas químicos e fertilizantes 

aplicados anualmente. Apesar da eficiência desses métodos na agricultura, os mesmos geram 

custos cada vez mais significativos para o meio ambiente e saúde humana (GUNNELL et 

al., 2007; LEACH et al., 2008), além de uma forte elevação nos custos de produção, 

reduzindo as margens de lucro do setor e revelando grande dependência de insumos 

importados. 

Entre as tecnologias que poderão contribuir para o aumento da produtividade uma 

das mais estudadas baseia-se no uso de bactérias promotoras do crescimento vegetal. Os 

efeitos positivos observados em vários estudos revelam o potencial dessa prática como 

ferramenta biotecnológica para os sistemas de produção, proporcionando vantagens para 

produtores e a agroindústria. Nas estirpes bacterianas, espera-se àquelas que se destaquem, 

apresentando as melhores respostas aos testes realizados de forma criteriosa a seleção em 

ambiente controlado, procurando agregar conhecimento dos bioprocessos relacionados aos 

efeitos desses micro-organismos à cultura, visando à produção de um inoculante.   

Segundo Thakore (2006) baseados nos mecanismos de promoção de crescimento, 

diversos inoculantes microbianos já estão no mercado e, nos últimos anos, a popularidade 

de inoculantes microbianos aumentou substancialmente, devido às pesquisas extensivas, a 

qual tem reforçado a sua coerência e eficácia. Um inoculante é caracterizado como o material 

que contém micro-organismos que atuam favoravelmente no desenvolvimento das plantas, 

composto por estirpes específicas para cada espécie vegetal. Esse veículo atua de maneira a 

aumentar a produtividade de determinada cultura, além de melhorar a qualidade dos solos, 

reduzir os custos e a quantidade de adubos com vistas à preservação ambiental. Bactérias 

que compõem inoculantes podem promover o crescimento das plantas produzindo 

substâncias que resultam em crescimento radicular e consequente aumento na absorção de 

água e nutrientes, o que acarreta em incremento geral de crescimento na planta.   

Neste sentido, bactérias que possuem mais de uma característica são almejadas e 

rastreadas para uma possível aplicação no campo com o intuito de aumentar a produção 

agrícola (VERMA et al., 2001). Os efeitos positivos exercidos sobre plantas por estes micro-

organismos são produção de reguladores de crescimento de plantas, tais como auxinas, 

giberelinas e citocininas, melhoria de processos como a germinação de sementes, nutrição 

mineral, desenvolvimento radicular, o uso da água, solubilização de fosfatos, fixação 

biológica de nitogênio e controle de fitopatógenos. 
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  Objetivou-se com este trabalho, realizar uma revisão bibliográfica sobre o papel de 

rizobactérias na  promoção de crescimento vegetal. 
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2. MATERIAL E MÉTODOS 

Foi realizada a pesquisa bibliográfica de artigos, recorrendo a bases de dados científicos digitais 

como o Pubmed, Google Acadêmico, SciELO e o banco de referências da plataforma 

FastFormat, também foi realizada uma busca recursiva, usando as bibliografias de artigos 

obtidos. Uma busca eletrônica foi realizada usando as seguintes palavras-chave pertinentes ao 

tema, em combinaões variadas:  

• fosfato inorgânico; 

• exopolissacarídeo; 

• inoculantes;  

• biofilmes;  

• fitohormonios; 

• estresse hídrico; 

• indução de crescimento. 

  Inicialmente foi realizada a seleção dos títulos e dos resumos, sendo escolhidos os mais 

relevantes. As informações de cada fonte selecionada, foram compiladas considerando os 

tópicos mais importantes. Posteriormente, foram obtidos os textos integrais daqueles que 

cumpriram os criterios de elegibilidade. Os artigos foram recuperados do Pubmed, Google 

Acadêmico, Scielo e periodicos individuais. 
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3. REVISÃO DE LITERATURA 

3.1. Rizobactérias 

No solo existe um grande número de bactérias que se localizam na rizosfera, e 

aproximadamente cerca de 7 a 15% da superfície total das raízes é ocupada por estas células 

microbianas (GRAY; SMITH, 2005).  

Vários estudos da atividade microbiológica que ocorre na rizosfera, que é a zona de 

influência das raízes que vai desde sua superfície até uma distância de 1 a 3 mm (MOREIRA; 

SIQUEIRA, 2006), levaram ao descobrimento de diversos grupos de micro-organismos 

importantes para o desenvolvimento vegetal. Dentre eles estão as rizobactérias que são 

capazes de colonizar as raízes, estimulando-as diretamente ou beneficiando o crescimento e 

o desenvolvimento de diversas plantas. Essas bactérias são chamadas de “Plant growth-

promoting rhizobacteria” (PGPR) (BISWAS et al., 2000; GYANESHWAR et al., 2001; 

GRAY; SMITH, 2005; BARRIUSO et al., 2005; KOKALIS-BURELLE et al., 2006) ou 

rizobactérias promotoras de crescimento em plantas (RPCP).  

As rizobactérias promotoras de crescimento de plantas foram primeiramente 

definidas por Kloepper e Schroth (1978) para definir um grupo de bactérias rizosféricas que 

atuavam no biocontrole, causando a supressão de doenças por substâncias inibidoras de 

patógenos ou pelo aumento da resistência vegetal. Entretanto, conforme aumentaram os 

estudos realizados neste campo, controvérsias apareceram com relação ao nome dado a este 

grupo de bactérias. Bashan e Holguim (1998) propuseram dois novos termos que pareciam 

abranger todos os benefícios que as bactérias têm a oferecer às plantas de acordo com o papel 

desempenhado. São eles: Bactérias biocontroladoras promotoras de crescimento de plantas 

(Biocontrol-Plant Growth-Promoting Bacteria (biocontrol-PGPB)) e Bactérias promotoras 

de crescimento de plantas (BPCPs), pois segundo os autores, o termo RPCP deixava de 

englobar as bactérias com interações não-rizosfericas, além de ser um termo muito geral e 

inespecífico. Cassán et al. (2009) introduziram um novo termo: Plant Stress Homeostasis-

Regulating Rhizobacteria (PSHR), que seriam bactérias reguladoras de estresse em plantas. 

Então, as RPCPs podem ser divididas em três grupos funcionais: BPCPs, BPCPs 

biocontroladoras e PSHR, que podem promover o crescimento vegetal sob condições 

abióticas de estresse.   

Qualquer que seja a definição adotada, essas bactérias promovem o crescimento de 

plantas de duas maneiras: fitoestimulação e/ou biofertilização (KUMAR et al., 2011) e para 

isto, possuem vários mecanismos (SARAF et al., 2011). Entre eles podemos citar: 
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Solubilização de fosfato e produção de fitohormônios como ácido indol acético (AIA), 

giberelina e citocinina.  

Além disso, estas estirpes bacterianas também contribuem indiretamente para o 

desenvolvimento das plantas com a produção de diversos antibióticos ou outros mecanismos 

de biocontrole, os quais inibem o crescimento de diversos micro-organismos considerados 

fitopatogênicos (GRAY; SMITH, 2005). 

A maioria das RPCPs estudadas na literatura tem como principal efeito sobre as 

plantas o fornecimento de fitormônios de crescimento, como auxinas, várias giberelinas e 

citocininas. Esses produtos auxiliam o crescimento da raiz e consequentemente da parte 

aérea do vegetal, aumentando assim, a captação de nutrientes pela planta (ASGHAR et al., 

2002).  

A inoculação de micro-organismos benéficos em plantas tem sido empregada para 

melhorar seu desenvolvimento, através da captação de nutrientes (CARAVACA et al., 

2002), aumentando a tolerância à doenças, além de favorecer seu estabelecimento frente a 

condições adversas, como salinidade e estresse hídrico (GIRI; MUKERJI, 2004). 

3.2. Solubilização de Fosfato 

 O fósforo (P) é um dos principais macronutrientes essenciais para o crescimento e 

desenvolvimento das plantas devido à sua atuação em processos biológicos, tais como 

metabolismo energético, biossíntese de fosfolipídios e ácido nucléico, transdução de sinal e 

regulação de atividade enzimática (ROCHA et al., 2007). 

Apesar de abundante nos solos, tanto na forma orgânica quanto inorgânica, o fósforo 

é o segundo nutriente limitante ao crescimento de plantas no solo. A baixa disponibilidade 

de P, principalmente nos solos ácidos das regiões tropicais e subtropicais, é um dos fatores 

limitantes para a produção de culturas vegetais. Sendo necessária altas dosagens de adubos 

fosfatados para a obtenção de alta produtividade (RAIJ, 1991).  

No Brasil, em geral, os solos apresentam baixo teor de fósforo total e muito baixo 

teor de fósforo disponível para as plantas, devido a problemas de fixação que ocorrem com 

solos que apresentam ferro e alumínio, e de características ácidas. Do fósforo adicionado ao 

solo através de fertilizantes químicos, até 25% é aproveitado pelas plantas. Essas adubações 

são realizadas principalmente com fosfatos solúveis em água, atingindo dosagens de fósforo 

muito superiores às necessidades das culturas, pois a maior parte do adicionado torna-se 

indisponível às plantas (BRAGA, 2006). 
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Os micro-organismos solubilizadores de fosfatos desempenham importante papel na 

disponibilização de formas inorgânicas de fosfatos (Ca-P, Al-P e Fe-P), considerando o 

aumento do teor de fósforo na solução, que propicia melhor crescimento e maior rendimento 

das culturas (CHABOT et al., 1993).  

Esses micro-organismos estão presentes na matéria orgânica do solo, ao qual 

representa um dos componentes da fertilidade do solo. Aparecem na formação do solo, na 

decomposição dos resíduos orgânicos, na formação da matéria orgânica e na reciclagem dos 

nutrientes (BRAGA, 2006). 

O fósforo (P) é adsorvido aos coloides do solo ou transformado em compostos de 

ferro e alumínio pouco solúveis para as plantas. Por isto é que as formulações de fertilizantes 

são representadas por altos teores de P. Com isto, maiores quantidades de P são adicionadas 

ao solo para que a planta aproveite 25%, o que se traduz numa baixa eficiência dos 

fertilizantes fosfatados.  Neste sentido, os micro-organismos do solo têm um papel 

preponderante na mineralização e solubilização do fósforo. As formas orgânicas de P são 

mineralizadas pelos micro-organismos produtores das enzimas fosfatases (BRAGA, 2006). 

O P orgânico é transformado em P solúvel pela ação das fosfatases, enzimas que 

catalizam a hidrólise de ésteres de fosfatos, liberando fosfato solúvel. As fosfatases são 

secretadas pelas raízes das plantas e pelos micro-organismos do solo (NAHAS et al., 1994).  

Esta enzima, a fosfatase, no meio vegetal pode ser constitutiva ou induzida por 

fatores externos como deficiência de fósforo inorgânico ou dificuldade de absorver fósforo 

em condições de falta de água.  Tarafdard et al (1981) verificaram que a atividade da 

fosfatase ácida apresenta uma correlação significativa com o fósforo inorgânico. A 

concentração de fósforo inorgânico no tecido da planta constitui um parâmetro de eficiência 

ao uso de fósforo. Quanto menor o teor de fósforo inorgânico no tecido, maior a atividade 

da fosfatase ácida no mecanismo de uso de fósforos pelas plantas (OLIVEIRA et al., 1999).  

As fosfatases bacterianas são enzimas secretadas e produzidas como proteínas 

periplasmáticas solúveis ou ligadas à membrana, que geralmente são capazes de 

desfosforilar a estrutura de um substrato e exibir atividade catalítica ótima em valores de pH 

ácidos, neutros e alcalinos (ROSSOLINI et al., 1998). Muitas das enzimas fosfatases 

microbianas são secretadas para fora da membrana plasmática, onde são liberadas em forma 

solúvel, outras são mantidas ligadas a membrana (WANNER, 1996) e outras ainda, 

encontradas no citoplasma e envolvidas em reações de desfosforilação que ocorrem durante 

sinais de transdução e vias metabólicas dos micro-organismos (STOCK et al., 1995). 
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A classificação das fosfatases, incluindo aquelas de origem bacteriana, é baseada em 

critérios bioquímicos e biofísicos da enzima, como pH ótimo (ácido, neutro ou alcalino), 

especificidade de substrato (específico ou não específico) e tamanho molecular. Seguindo o 

critério de pH ótimo, as fosfatases são divididas em dois grandes grupos, o grupo das 

fosfatases alcalinas, com pH ótimo na faixa de 8 a 10,5 e o grupo das fosfatases ácidas com 

pH ótimo de 2,5 a 6 (DVORAK et al., 1988).  

Os micro-organismos influem na habilidade das plantas em absorver P do solo, ou 

seja: aumentando a área de contato das raízes pelo desenvolvimento do sistema radicular 

(micorrizas); promovendo o crescimento das raízes laterais e pêlos radiculares; transferência 

de íon fosfato para a solução do solo; aumentando formas orgânicas de P; estimulando 

processos metabólicos que são importantes na solubilização e mineralização do P (BRAGA, 

2006). 

A inoculação de micro-organismos solubilizadores de fosfatos no solo tem sido 

sugerida como alternativa para substituir ou diminuir o uso de fertilizantes fosfatados 

solúveis, mediante melhor aproveitamento dos fosfatos naturais (IGUAL et al., 2001; 

VESSEY, 2003), existentes ou adicionados ao solo e dos formados pela aplicação de fontes 

solúveis, para incrementar a concentração de fósforo solúvel na rizosfera e promover a 

nutrição das plantas com fósforo (PEIX et al., 2001; GYANESHWAR et al., 2002). 

3.3 Exopolissacarídeos 

Os exopolissacarídeos (EPS) são definidos como polissacarídeos extracelulares 

produzidos por alguns fungos e bactérias, os quais são encontrados ligados à superfície das 

células ou são excretados para o meio. A maioria dos micro-organismos possui a habilidade 

de sintetizar polissacarídeos e excretar polímeros solúveis ou insolúveis, para fora das 

células, com várias funções (SEESURIYACHAN et al., 2012).  

Os exopolissacarídeos possuem a função de proteger a célula bacteriana contra 

dessecação e ataque de fagos, bem como de antibióticos, compostos tóxicos e protozoários. 

Outra possível função do exopolissacarídeo inclui sequestrar cátions essenciais e o 

envolvimento na aderência em superfícies sólidas e formação de biofilmes (DE VUYST et 

al., 2001). A verdadeira função dos EPS, contudo, depende da ecologia da célula bacteriana 

que o produz 

A produção de EPS pelos micro-organismos pode auxiliar na sobrevivência do 

vegetal em várias situações de estresses ambientais, como estresse salino, hídrico, variações 
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de temperatura, entre outros. Esse composto possibilita a bactéria aderência e colonização 

às superfícies sólidas onde os nutrientes se acumulam (SILVA et al., 2013). Além disso, o 

EPS envolve as membranas das células protegendo-as do dessecamento e outros estresses 

ambientais, além de poder ajudar na fixação de minerais e nutrientes próximos à bactéria 

(BARRETO et al., 2011; LIU et al., 2013).  

Alguns exopolissacarídeos são sintetizados durante todo o crescimento bacteriano, 

enquanto que outros são produzidos somente durante a fase logarítmica ou na fase 

estacionária. A síntese de todos esses exopolissacarídeos é um processo intracelular, 

utilizando açúcares difosfato nucleotídeos (DE SOUZA; SUTHERLAND, 1994).  

Embora sejam conhecidos dois mecanismos diferentes para a síntese de 

exopolissacarídeos por bactérias, o utilizado na formação de dextrana, envolvendo enzimas 

extracelulares lipoprotéicas secretadas na superfície da célula de bactérias Gram-positivas, 

tal como Leuconostoc mesenteroides, não se aplica às espécies Gram-negativas. Nestas, os 

exopolissacarídeos (heteropolissacarídeos e homopolissacarídeos) são sintetizados 

intracelularmente. Os açúcares nucleotídeos (açúcar difosfato nucleotídio) fornecem as 

formas ativa de monossacarídeos e também fornecem à célula bacteriana um meio de 

interconversão dos vários monossacarídeos através de reações de epimerização, 

desidrogenação e descarboxilação (HARDING et al., 1993). 

A formação de agregados celulares extremamente organizados e envoltos por uma 

matriz composta principalmente por polissacarídeos, muitas vezes é chamada de biofilme 

(COSTERTON et al., 1995). A maioria dos micro-organismos não existe naturalmente em 

comunidades planctônicas, sendo, portanto encontrados aderidos à diversas superfícies e 

formando biofilmes que contém colônias organizadas (SUTHERLAND, 2001).  

O processo de adesão celular e formação de biofilmes mostrou-se ser extremamente 

complexo, onde as células bacterianas alteram seus fenótipos em resposta à proximidade da 

superfície. Durante a fase inicial da formação do biofilme, bactérias sésseis encontram-se 

justapostas com células da mesma espécie ou espécies diferente dentro da matriz 

exopolissacarídica, condicionando o microambiente e respondendo de maneira distinta à 

influência do ambiente, dependendo da posição ocupada pela célula (XAVIER; FOSTER, 

2007). A cooperatividade fisiológica é um fator chave para a arquitetura do biofilme e para 

o estabelecimento das microcolônias, tornando o biofilme uma comunidade dinâmica e 

eficiente aderida às superfícies (DAVIES et al, 1998). 

Depois da polimerização das unidades repetidas, o polissacarídeo é excretado através 

do complexo parede/membrana para a superfície celular no ambiente extracelular. Este 
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estágio final da secreção do exopolissacarídeo na membrana citoplasmática envolve a 

passagem pelo periplasma, pela membrana e finalmente sua excreção para o ambiente 

extracelular (SUTHERLAND, 2001). 

Diversas pesquisas têm tentado elucidar a rota biossintética, as condições de 

crescimento e a fisiologia bacteriana que leva à produção de polissacarídeos. Geralmente, a 

produção de exopolissacarídeo em um micro-organismo é induzida pela limitação de um 

nutriente essencial, que não seja o carbono ou outra fonte de energia. Frequentemente uma 

relação C:N alta tem sido considerada como a condição ambiental mais significativa para a 

produção de polissacarídeo (NAMPOOTHIRI et al., 2003). 

No processo de produção de polissacarídeos, deve-se considerar desde o micro-

organismo em estudo até a determinação dos parâmetros de fermentação, onde se destaca o 

meio de produção e sua influência na síntese, no rendimento e na composição dos 

exopolissacarídeos (FARIA, 2002). Os parâmetros que mais influenciam o processo de 

biossíntese de exopolissacarídeos são a bactéria, a composição do meio de cultivo, o pH e a 

temperatura de incubação (NAMPOOTHIRI et al., 2003).  

Nestes têm sido pesquisadas as limitações das fontes de nitrogênio, fosfato ou 

enxofre em presença de excesso de carboidrato e foi observado que podem conduzir a um 

aumento na síntese de polissacarídeo, embora a quantidade seja também afetada pelo teor de 

oxigênio, pH e temperatura. Cada cepa bacteriana difere em sua resposta ao efeito destas 

mudanças ambientais e à fonte de carbono utilizada (FARIA, 2002). 

Na literatura estão descritos vários meios de produção, entretanto a composição 

qualitativa é a mesma e cada suplemento apresenta uma determinada função na produção de 

polissacarídeo. Basicamente, os meios para produção de polissacarídeos apresentam uma 

fonte de fósforo (fosfato de potássio) e nitrogênio (sulfato de amônio) em concentrações 

adequadas para o crescimento do micro-organismo; uma fonte de carbono (glicose, sacarose, 

manose, frutose e outras) como reserva energética e ainda oligoelementos como Na+1, K+1, 

Ca2+, Mg2+, Fe2+ e outros, os quais têm um papel importante como cofatores enzimáticos nas 

vias de produção do polissacarídeo (MADI et al., 1997). 

A produção de EPS pelos micro-organismos pode auxiliar na sobrevivência da planta 

a determinados tipos de estresse ambientais, quando inoculadas com micro-organismos de 

interesse (KAVAMURA, 2012). O estudo de bactérias produtoras de EPS é de suma 

importância, com a finalidade de encontrar novas aplicações, representando fontes 

promissoras para exploração desses micro-organismos na interação solo/planta. (SILVA et 

al., 2013) 
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3.4 Biofilme 

Os biofilmes bacterianos são agregados multicelulares aderidos a um substrato 

biótico ou não, inseridos em matrizes poliméricas (DANHORN; FUQUA, 2007). Estas 

matrizes conectam as células e consistem basicamente de polissacarídeos extracelulares 

(EPS) e podem conter DNA e proteínas (COSTERTON et al., 1999).  Também podendo ser 

definido como uma estrutura comunitária de células microbianas protegidas por uma matriz 

polissacarídica ou protéica que é sintetizada pelas células e aderente tanto a superfícies 

inertes ou vivas. Esta matriz é formada fundamentalmente por água e substâncias 

poliméricas extracelulares (“extracelular polymeric substances”) (WIMPENNY, MANZ; 

SZEWZYK, 2000; DONLAN, 2002). 

Além do EPS, um biofilme também contém variadas partículas, como proteínas, 

lipídeos e outros tipos de carboidratos. A maioria destas moléculas são provenientes da fase 

aquosa e, desta forma, quanto mais rica esta for, maior será a quantidade e a variedade desses 

componentes em um biofilme (PARIZZI, 1998).  

Os biofilmes podem ser constituídos por uma única espécie microbiana (por 

exemplo, alguns biofilmes associados à infecções e biofilmes que crescem em implantes 

médicos) ou, mais frequentemente, por várias espécies formando consórcio de fungos, algas, 

bactérias e outros micro-organismos (WIMPENNY et al., 2000). No interior dos biofilmes 

se encontram partículas de matéria orgânica e inorgânica que servem como nutriente aos 

micro-organismos e quanto maior a diversidade destes, maior a diversidade do consórcio 

(CAPPELLI et al., 2007).  

O desenvolvimento e persistência dos biofilmes são afetados não somente pelo 

ambiente circunvizinho, mas também pela variedade de espécies presentes (KOMLOS et al., 

2005). Nos ecossistemas terrestres e aquáticos os micro-organismos aparecem como células 

livres (estado planctônico) ou sob forma de biofilmes ligados à suportes sólidos.  

A formação e desenvolvimento dos biofilmes ocorrem em etapas iniciando com a 

adesão das células a superfície, maturação, onde ocorre a produção de polímeros e 

reprodução celular até o desprendimento, onde pode ocorrer a liberação de células do 

biofilme, as quais podem voltar ao seu estado planctônico (DONLAN, 2002).  

Como etapas importantes para sua formação são descritas as bioadesões iniciais, 

passando os micro-organismos de seu estilo de vida planctônico ao séssil, a formação de 

microcolonias, a maturação do biofilme e o destacamento de células, retornando estas ao seu 

estilo de vida planctônico. 
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Em todas estas etapas, uma série de transformações ocorre no íntimo do micro-

organismo e na sua relação com os demais indivíduos e, em razão deste fato o seu processo 

de formação corresponde a um interessante objeto para se estudar o desenvolvimento 

microbiano (O’TOOLE et al., 2000).  

São percebidas muitas alterações fenotípicas, principalmente nos aparatos de 

motilidade, no tamanho da célula e no metabolismo, recorrentes da restrição de nutrientes e 

de oxigênio em algumas fases, da variação na taxa de reprodução e em toda regulação gênica 

(STOODLEY et al., 2002). Estas adaptações determinadas por condições físicas, 

bioquímicas e genéticas são interessante estratégia de sobrevivência (JOHNSON, 2007). 

Tais modificações, segundo Sauer et al. (2002) seriam o produto da ativação de algo em 

torno de 30 a 40 genes. 

Monds e O’Toole (2009) afirmam que a formação de biofilme é um fenômeno 

biológico complexo, pois vários parâmetros ambientais podem influenciar o padrão de 

formação de biofilme. Nos biofilmes as células se comunicam através da elaboração e do 

reconhecimento de pequenas moléculas, tal mecanismo é conhecido como quorum sensing 

(QS) (SAKURAGI; KOLTER, 2007). Os sistemas QS estão envolvidos na regulação de uma 

variedade de processos fisiológicos incluindo biossíntese de antibióticos, motilidade, 

transferência de plasmídeos, produção de biofilme entre outros (JUHAS et al., 2005). 

A produção de metabólitos secundários e a formação de biofilme podem ser 

reguladas pelo mecanismo de monitoramento populacional ou “quorum sensing” (QS) 

(CHOWDHURY et al., 2009). Por meio desse sistema, seres unicelulares produzem 

substâncias sinalizadoras, denominadas autoindutores, que se difundem livremente através 

da membrana celular para o meio. A partir de determinada concentração, estas substâncias 

desencadeiam alterações na expressão de genes específicos. Desta forma, o QS permite uma 

resposta coordenada do organismo em função da densidade populacional (RUMJANEK et 

al., 2004). 

 O sistema QS está envolvido com a competência rizosférica para regular a mobilidade, 

tolerância a estresses, transferência horizontal de genes, surfactantes, antibióticos, enzimas 

extracelulares e formação de biofilmes (BODMAN, 2003; DECHO et al., 2010). 

A formação de biofilmes protege a população bacteriana quando inoculada no solo e 

nas sementes e favorece a manutenção de uma densidade populacional para que se iniciem 

interações benéficas ou deletérias entre a planta e a bactéria (DANHORN; FUQUA, 2007). 
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3.5.  Estresse Hídrico 

Um fator significativo que deve ser destacado visto a influência na produtividade das 

culturas, é a disponibilidade de água e de nutrientes. Com relação à água, nem sempre as 

chuvas atendem a real necessidade hídrica das plantas; daí a importância da irrigação a qual, 

quando bem planejada tem retorno econômico inquestionável (AZEVEDO, 2002). 

A necessidade hídrica da cana-de-açúcar varia com o estádio vegetativo em que a 

cultura se encontra e a cultivar utilizada (AUDE, 1993) sendo, portanto função da área foliar, 

estádio fisiológico e densidade radicular.  

O Nordeste brasileiro vem sofrendo com as baixas precipitações ocorridas na região 

nos últimos anos, que ocasionaram queda na produção de cana-de-açúcar, levando os 

produtores a recorrerem a novas técnicas como a irrigação suplementar, para a melhoria do 

cultivo, mas para uma eficiência melhor do uso da água de irrigação, é conveniente a 

utilização de fertilização equilibrada, de maneira eficiente e lucrativa.  

 Em regiões áridas e semiáridas, a falta de água, juntamente com o aumento das áreas 

em processo de desertificação, reduz a produtividade agrícola (BRASIL, 2004). O aumento 

da temperatura e a redução substancial das precipitações, em última instância, são traduzidos 

em aumento da demanda de água pelas culturas agrícolas. Com este cenário, aumenta-se a 

preocupação em busca por alternativas para reduzir o consumo de água pelas culturas, 

promover o crescimento de plantas em solos com baixa precipitação hídrica, como o 

observado na região nordeste (KAVAMURA, 2012). 

Estresse é uma força ou uma condição adversa que inibe o funcionamento de um 

sistema biológico.  Uma das primeiras respostas das plantas ao estresse, mais 

especificamente ao hídrico, ocorre por processos de sinalização envolvendo o ácido 

abscísico (AAB), que ocasionará o fechamento estomático, reduzindo a perda de água pela 

planta (SCHROEDER et al., 2001).  

O espaço de tempo para a insuficiência de suprimento de água, necessário para causar 

reduções de crescimento depende do tipo de planta, da capacidade de retenção de água no 

solo, das condições atmosféricas, principalmente da diferença de pressão de vapor entre a 

folha e o ar (DPV) e da temperatura e de fatores que controlam a evapotranspiração 

(PIMENTEL, 2004). As respostas das plantas à seca são caracterizadas por alterações 

morfológicas como diminuição da área foliar, reduzida pelo enrolamento das folhas e 

diminuição do crescimento (PIMENTEL, 2004). 
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A diminuição da área foliar é uma estratégia para limitar a transpiração. Folhas 

jovens de cana-de-açúcar são capazes de se enrolar e reduzir a área foliar projetada e com 

isso reduzir a radiação recebida. Inman-Bamber e Smith (2005) relatam o enrolamento a 

partir de um potencial de -1,0 MPa ao meio dia, podendo ser esse considerado como 

suscetibilidade do genótipo à seca, como também uma estratégia de evitar o estresse. 

O estresse hídrico afeta todos os aspectos ligados ao crescimento da planta. Os micro-

organismos são capazes de sobreviver a várias condições de estresse pela formação de 

biofilme, exopolissacarideos, entre outros (CHAVES et al. 2002; LINDOW, 2003)  

Em plantas tratadas com bactérias em situação de estresse, Mayak et al. (2004) 

encontraram estímulo de crescimento. Já Liddycoat et al. (2009) observaram crescimento 

diferencial dependendo do genótipo de aspargo, para um deles o crescimento foi favorecido 

pela presença de bactérias apenas sob condições ideais de irrigação, enquanto que para outro 

genótipo o favorecimento ocorreu em situação de estresse hídrico. Os autores demonstraram 

assim uma resposta diferencial da interação entre bactéria e planta, associada à condição 

hídrica.  

O estresse hídrico é a principal causa de perdas agrícolas e entender como as plantas 

respondem a essa alteração ambiental é importante para traçar estratégias e evitar prejuízos. 

Assim, a utilização de micro-organismos tolerantes à seca e que sejam capazes de proteger 

as plantas e promover seu crescimento sob estresse hídrico, poderá ser uma alternativa a esse 

problema (KAVAMURA, 2012). 

3.6. Fitormônios 

Fitormônios são substâncias químicas que em baixas concentrações promovem o 

crescimento das plantas, influenciando no seu crescimento, desenvolvimento e diferenciação 

celular de tecidos (SPAEPEN et al., 2009). Por causa da capacidade de estimular ou inibir o 

crescimento de plantas, estes também são chamados de reguladores de crescimento de 

plantas. Cinco principais grupos de fitormônios são reconhecidos: auxinas, giberelinas, 

etileno, citocininas e ácido abscísico (SAHARAN; NEHRA, 2011). 

A produção de fitormônios citocinas e giberelinas por bactérias é de grande interesse 

para estudos de crescimento vegetal (GRAY; SMITH, 2005). Estas substâncias são 

reguladoras naturais de crescimento das plantas e também, são capazes de interferir 

diretamente nos processos fisiológicos relacionados com o desenvolvimento vegetal 

(PEDRINHO, 2009). 
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As auxinas são compostos que estimulam o crescimento, sendo o ácido -3 

indolacético a principal auxina encontrada nas plantas, nos quais é produzido no meristema 

apical do caule, folhas jovens, flores, frutos em desenvolvimento e sementes, sendo também 

encontrados em raízes. O seu transporte ocorre unidirecionalmente, através das células 

parenquimáticas do floema e parenquimática que circulam os tecidos vasculares (RAVEN 

et al., 2001).  

Este fitormônio funciona como uma chave reguladora para muitos aspectos do 

crescimento e desenvolvimento de plantas, incluindo divisão e elongação, diferenciação, 

tropismo, dominância apical, senescência, abscisão e floração (WOODWARD; BARTEL, 

2005; TEALE, W. D. et al., 2006).  

Este efeito no desenvolvimento da planta é dependente da concentração do hormônio 

auxina (BARAZANI; FRIEDMAN, 1999). Concentrações muito altas de auxina inibem a 

alongação celular e, portanto, o crescimento de órgãos. Adicionalmente, a sensibilidade das 

células a auxina varia nas diferentes partes da planta. O caule, por exemplo, é menos sensível 

a auxina, quando comparado à raiz (TAIZ; ZAIGER, 2004). 

A biossíntese de auxina nas plantas é bastante complexa. As duas principais vias de 

biossíntese de AIA tem sido proposta para plantas; uma via dependente de triptofano (Trp) 

biossíntese do acido 3-indol acetico (AIA), a partir do aminoácido triptofano e outra 

triptofano independente (WOODWARD; BARTEL, 2005; SPAEPEN et al., 2007; 

CHANDLER, 2009; NORMANLY, 2010) (Figura 1). 
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Figura 1. Descrição geral das diferentes vias de síntese dependente e independente de triptofano de AIA 

em bactérias. IAAld, Indol-3-acetaldeído; IAM, Indol-3-acetamida; IPCD, Indol-3-piruvato 

descarboxilase; Trp, Triptofano. 

 

 

Fonte: Spaepen, Vanderleyden e Remans (2007) 

Na biossíntese de AIA Trp-independente, o glicerol-3-indol fosfato ou indol é 

provavelmente o precurssor, porém pouco é conhecido sobre a via bioquímica para AIA 

(OUYANG et al., 2000; ZHANG et al., 2008). Na biossíntese de AIA Trp-dependente, várias 

vias têm sido propostas: (i) via do Indol-3-Acetamida (IAM); (ii) via do Ácido Indol-3-

Pirúvico (IPA); (iii) via da Triptamina (TAM) e (4) via do Indol 3-Acetaldoxima (IAOX) 

(WOODWARD; BARTEL, 2005; POLLMANN et al., 2006; CHANDLER, 2009; MANO 

et al., 2010; NORMANLY, 2010; ZHAO, 2010). 

O aminoácido L- triptofano, funciona como precursor fisiológico na biossíntese de 

auxinas em plantas e em micro-organismos (KHALID et al., 2004). Cinco diferentes vias 

utilizando o triptofano como precurssor foram identificadas em bactérias: (i) via IAM, (ii) 

via IPA, (iii) TAM, (iv) via da Indol-3-Acetonitrila (IAN) e (v) via da Oxidase da Cadeia 

Lateral do Triptofano (TSO) (SPAEPEN et al, 2007). 

Interações entre bactérias produtoras de AIA e plantas resultam em diferentes 

resultados, podendo variar de efeitos benéficos à patogenia. Quando secretado por bactérias, 

o fitormônio pode afetar de forma direta a morfologia das raízes, aumentando o comprimento 

e o número de pêlos radiculares ou, indiretamente, pela influência sobre a atividade da ACC 

desaminase (1-aminociclopropano-1-carboxilato, um precursor 13 do etileno) (PATTEN et 
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al., 2002). Neste sentido, micro-organismos que sintetizam o AIA são considerados 

importantes promotores de crescimento vegetal, podendo melhorar o rendimento das 

culturas (ARKHIPOVA et al., 2005). 

Evidências sobre a ação do AIA, no desenvolvimento radicular, foram obtidas pela 

inoculação de um mutante de Azospirillum deficiente na produção desse fitormônio 

(DOBBELAERE et al., 1999). Este aumento da raiz, facilita a captação de nutrientes pelas 

plantas e na liberação de exudatos. Estudos, demonstraram que a inoculação de mutantes 

espontâneos de B. japonicum, que produziam mais AIA resultou num aumento do volume 

do nódulo da raiz (KHALID et al., 2004). 

Foram descritas, em Azospirillum, pelo menos três vias metabólicas responsáveis 

pela produção de AIA. Duas dessas vias são dependentes de triptofano, denominadas indole-

3- acetamida (IAM) e indole-3-piruvato (IpyA). Já a terceira via é independente de triptofano 

(DOBBELAERE et al., 1999; LAMBRECHT et al., 2000).  

O triptofano tem sido identificado como um precursor principal nas vias de 

biossíntese de AIA em bactérias. A transformação de triptofano em AIA pode ser realizada 

por micro-organismos que produzem uma conversão oxidativa quando o triptofano se 

encontra em presença de peroxidases e de radicais livres. As vias de sínteses do AIA se 

baseiam na evidência obtida a partir da presença de intermediários, atividade biológica e 

enzimas capazes de converter in vivo estes intermediários em AIA. 

 A produção destes reguladores já foi relatada em bactérias dos gêneros 

Gluconacetobacter, Azospirillum, Herbaspirillum, Methylobacterium, Erwinia, Pantoea e 

Pseudomonas (CASSÁN et al., 2001, VERMA et al., 2001; KOENIG et al., 2002). 

Chagas-Junior et al. (2009) avaliaram, em meio de cultura a produção de AIA de 

rizóbios isolados de solos da Amazônia, verificando que as 92 estirpes produziram AIA, sem 

a adição de triptofano, porém, em 52 isolados, a adição e a elevação da concentração de 

tiptofano, aumentaram a produção do fitormônio. 

3.7. Citocininas e giberelinas 

Certas bactérias também podem produzir citocininas, substâncias conhecidas por 

induzirem processos mitóticos nas células vegetais e promovem o retardo do envelhecimento 

das plantas. Sintetizadas nas raízes, essas moléculas são transportadas para todas as partes 

da planta através do xilema. As citocininas podem ainda interagir com as auxinas e, desta 

forma, atuam sobre a formação de células precursoras do sistema vascular e aumentam a 
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sensibilidade dessas células à auxina, induzindo de forma indireta o processo de 

diferenciação dos vasos e o desenvolvimento vegetal (OLIVEIRA et al., 2008), além disso, 

pode estimular ou inibir uma variedade de processos metabólicos, fisiológicos e bioquímicos 

em plantas superiores.  

Elas estão envolvidas na regulação do crescimento e diferenciação, incluindo a 

divisão celular, dominância apical, formação de órgãos, retardamento da quebra de clorofila, 

desenvolvimento dos cloroplastos, senescência das folhas, abertura e fechamento dos 

estômatos, desenvolvimento das gemas e brotações, metabolismo dos nutrientes e como 

reguladores da expressão dos genes (VIEIRA; MONTEIRO, 2002). Entre as bactérias 

capazes de produzir citocininas pode ser mencionada a espécie Pseudomonas fluorescens, 

que produz elevadas concentrações deste fitormônio (GRAY; SMITH, 2005). 

 As giberelinas são hormônios sintetizados essencialmente nas raízes e nos brotos 

foliares, onde estimulam o crescimento de caules e folhas, mas, no entanto apresentam baixo 

efeito sobre o crescimento das raízes. Quando em associação com as auxinas, as giberelinas 

auxiliam no desenvolvimento dos frutos e junto à citocininas, executam um importante papel 

nos mecanismos voltados a germinação das sementes (ROSS et al., 2002). Bactérias como o 

Bacillus sp. produzem altos níveis de giberelinas que apresentam ação positiva no 

crescimento de caules e galhos de diversas plantas (GRAY; SMITH, 2005). 

3.8. Indução de crescimento 

As rizobactérias promotoras de crescimento de plantas (RPCPs) interferem 

positivamente no crescimento das plantas. Podem conferir as plantas: maior resistência às 

condições de estresse, alterações nas condições fisiológicas, proteção contra organismos 

patogênicos, solubilização de fosfato, promoção de crescimento diretamente pela produção 

de fitormônios, dentre outros. 

As bactérias que vivem na rizosfera, ou seja, na região do solo sob influência das 

raízes, são capazes de promover o crescimento das plantas numa relação não simbiótica, 

trazem benefícios diretos para a produção agrícola, e ao mesmo tempo, uma alternativa de 

cultivo com menor uso de insumos agrícolas.  

A promoção de crescimento pode ser resultado de diversos mecanismos como: 

controle biológico pela competição por nutrientes com o patógeno; produção de antibióticos; 

resistência induzida à doenças; produção de crescimento diretamente pela produção de 
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fitormônios e aumento da disponibilidade de nutrientes pela fixação de nitrogênio ou 

solubilização de fósforo (WHIPPS, 2001).  

Com o propósito de obter aumento no crescimento e rendimento das plantas, iniciou-

se na Rússia e Ucrânia em 1885, pesquisas com as rizobactérias não simbióticas Azotobacter 

chroococcum, Bacillus megaterium e outras espécies de Bacillus. Na época se contestou que 

a promoção de crescimento era devido à inoculação com as rizobactérias, devido a falta de 

identificação do mecanismo envolvido que justificassem os resultados (QUEIROZ, 2003). 

Alguns pesquisadores detectaram a produção de reguladores químicos vegetais como 

o ácido giberélico e o ácido indol-acético por alguns micro-organismos em meio de cultura, 

sendo sugerida a sua produção como possível mecanismo na promoção de crescimento de 

plantas. Com os trabalhos de Burr et al. (1978) em batata e de Kloepper e Schroth (1978) 

em rabanete, ficou estabelecido a denominação rizobactérias promotoras de crescimento de 

plantas ou RPCP (Plant growth-promoting rizobacteria –PGPRs).  

São encontrados também exemplos de bactérias endofíticas apresentando aumento 

em vários tipos de plantações, incluindo tomate (BASHAN et al., 1989b), batata (STURZ, 

1995), milho (HINTON; BACON, 1995), pepino (VAN PEER; SCHIPPERS, 1989), arroz 

(HUREK et al., 1994) e algodão (BASHAN et al., 1989a). De acordo com Sturz (1995), 

aproximadamente 10 % de isolados benéficos recuperados de batatas mostraram promover 

crescimento. A inoculação de arroz com um endófito diazotrófico, Azoarcus sp linhagem 

BH72, resultou numa promoção de crescimento significante (HUREK et al., 1994).  

A capacidade das bactérias endofíticas em solubilizar fosfato inorgânico tem sido 

alvo de grande interesse por parte dos microbiologistas agrícolas, pois esta característica 

apresenta um grande potencial para a promoção de crescimento vegetal. É interessante 

ressaltar que as bactérias endofíticas com capacidade de solubilizar fosfato inorgânico 

ganham importância durante o processo de colonização, pois podem inicialmente colonizar 

superficialmente o hospedeiro e, consequentemente, provê-lo deste mineral essencial para o 

desenvolvimento vegetal (CERIGIOLI, 2005). 

Para uma possível aplicação no campo, objetivando o aumento da produção agrícola, 

há um grande interesse no isolamento de linhagens bacterianas que apresentem mais de uma 

característica para a promoção de crescimento vegetal, como fixar nitrogênio e sintetizar 

auxina, solubilizar fosfato e produzir sideróforos ou produzir antibióticos e fixar nitrogênio 

(VERMA et al., 2001). Neste aspecto as bactérias endofíticas levam vantagem, pois estão 

sujeitas a uma menor competição e estão livres de predação dentro dos tecidos das plantas 
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se comparado com o solo. Poucos trabalhos explorando estes aspectos foram realizados 

(CERIGIOLI, 2005). 
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4. CONSIDERAÇÕES FINAIS 

Considerando os resultados da presente pesquisa, se verifica que as rizobactérias promovem o 

crescimento de plantas, os efeitos positivos observados em vários estudos revelam o potencial 

do uso desses micro-organismos  como ferramenta biotecnológica para os sistemas de 

produção, proporcionando vantagens para produtores e a agroindústria. 
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