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Resumo

A previsão da evolução das matrículas escolares é essencial para o planejamento educacional,
possibilitando uma alocação eficiente de recursos e a formulação de políticas públicas funda-
mentadas em dados. Este estudo analisa os fatores que influenciam a quantidade de matrículas
nos ensinos infantil, fundamental e médio na rede pública de Maceió, utilizando redes neurais
Long Short-Term Memory (LSTM) para análise de séries temporais. A pesquisa foi conduzida
com dados do Censo Escolar do INEP, abrangendo um período de dez anos. Além da análise
preditiva, foram aplicadas técnicas de inteligência artificial explicável, como SHAP (SHapley

Additive Explanations) e Causalidade de Granger, a fim de interpretar os fatores mais relevan-
tes na variação das matrículas. Os resultados indicam que, no ensino infantil, a infraestrutura
escolar, incluindo banheiros adaptados, equipamentos multimídia e parques infantis, influencia
diretamente a decisão dos pais em matricular seus filhos. No ensino fundamental, a manutenção
de um corpo docente adequado e a presença de bibliotecas bem estruturadas foram identificadas
como fatores fundamentais para a retenção dos alunos. No ensino médio, a existência de labo-
ratórios de ciências, infraestrutura esportiva e acesso à tecnologia demonstrou ser essencial para
a permanência dos estudantes. Além disso, a análise revelou interdependências entre variáveis,
sugerindo que cortes orçamentários em determinados setores podem gerar impactos negativos
indiretos sobre a taxa de matrículas. Assim, os achados deste estudo fornecem subsídios para
que gestores educacionais adotem estratégias baseadas em evidências, garantindo um plane-
jamento mais eficiente e políticas educacionais voltadas à melhoria da qualidade da educação
pública.

Palavras-chave: Matrícula escolar; Análise de séries temporais; Long Short-Term Memory;
Inteligência artificial explicável; Educação pública.



Abstract

The prediction of school enrollment trends is essential for educational planning, enabling the
efficient allocation of resources and the formulation of data-driven public policies. This study
analyzes the factors influencing enrollment rates in preschool, elementary, and high school
education in the public network of Maceió, using Long Short-Term Memory (LSTM) neural
networks for time series analysis. The research was conducted with data from the INEP School
Census, covering a ten-year period. In addition to predictive analysis, Explainable Artificial
Intelligence techniques such as SHAP (SHapley Additive Explanations) and Granger Causa-
lity were applied to interpret the most relevant factors affecting enrollment trends. The results
indicate that, in preschool education, school infrastructure, including adapted restrooms, mul-
timedia equipment, and playgrounds, directly impacts parents’ decisions regarding enrollment.
In elementary school, maintaining an adequate teaching staff and providing well-structured li-
braries were identified as crucial factors for student retention. In high school, the availability of
science laboratories, sports infrastructure, and access to technology proved to be essential for
student retention. Furthermore, the analysis revealed interdependencies among variables, sug-
gesting that budget cuts in specific areas may indirectly impact enrollment rates. Therefore, the
findings of this study provide valuable insights for educational policymakers to adopt evidence-
based strategies, ensuring more efficient planning and public policies aimed at improving the
quality of public education.

Key-words: School enrollment; Time series analysis; Long Short-Term Memory; Explai-
nable artificial intelligence; Public education.
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1
Introdução

A gestão educacional eficiente exige um entendimento aprofundado dos fatores que influenciam
a variação no número de matrículas ao longo dos anos. O Censo Escolar, conduzido pelo INEP,
é a principal base de dados sobre a educação básica no Brasil, reunindo informações detalhadas
sobre matrículas, infraestrutura escolar, disponibilidade de professores e características socioe-
conômicas dos alunos. A análise dessas variáveis permite compreender quais fatores impactam
diretamente o comportamento das matrículas escolares, auxiliando na tomada de decisões es-
tratégicas para o planejamento educacional.

Segundo [Lima e Sousa 2014], “os dados levantados subsidiam a elaboração de diagnóstico
educacional do Brasil com objetivo de criar estratégias para acesso, permanência e sucesso
dos alunos na escola”. Isso demonstra que a análise do Censo Escolar não apenas permite
acompanhar o número de matrículas ao longo do tempo, mas também oferece informações
essenciais para identificar desigualdades regionais e propor ações corretivas para fortalecer o
sistema educacional.

Os dados mais recentes do Censo Escolar 2023 revelam uma tendência preocupante de
redução no número de matrículas na educação básica no Brasil. Entre 2022 e 2023, a rede
pública registrou cerca de 77 mil matrículas a menos, totalizando 500 mil estudantes a menos
em comparação com 2022. Em contrapartida, a rede privada teve um crescimento de 4,7%
no número de alunos. O ensino fundamental apresentou um total de 26,1 milhões de estudan-
tes matriculados, uma redução de 3% em relação a 2019, com os anos iniciais sofrendo uma
queda mais acentuada (3,9%) do que os anos finais (1,9%). No ensino médio, foram registra-
dos 7,7 milhões de estudantes, representando uma redução de 2,4% em relação ao ano anterior
[EPSJV, Fiocruz 2024]. Esse cenário reforça a necessidade de analisar os fatores que afetam a
permanência dos estudantes na escola e a distribuição de matrículas em diferentes regiões do
país.

O município de Maceió representa um caso relevante dentro desse contexto nacional uma
vez que enfrenta desafios significativos relacionados à evasão escolar e à regularidade das ma-
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trículas. De acordo com o Painel dos Indicadores Educacionais, divulgado pelo INEP, a cidade
registrou, em 2019, uma das maiores taxas de abandono escolar entre as capitais brasileiras,
atingindo 2,1% no ensino fundamental da rede municipal [TATU 2021]. Além disso, um estudo
do UNICEF aponta que, embora a taxa de abandono tenha diminuído nos últimos anos, ainda
há disparidades regionais significativas identificadas [UNICEF 2020].

Outro fator relevante na dinâmica educacional de Maceió é a distorção idade-série, que
afeta diretamente a progressão escolar e pode influenciar a continuidade dos estudos. Em 2016,
40,9% dos alunos do ensino fundamental estavam dois anos ou mais atrasados em relação à
série ideal, totalizando cerca de 47 mil estudantes. Embora essa taxa tenha reduzido para 31,7%
em 2019, o número ainda é expressivo e reforça a necessidade de análises detalhadas sobre os
fatores que interferem na regularidade das matrículas escolares [UNICEF 2020].

Com base nesses desafios educacionais, este estudo tem como objetivo analisar as variáveis
do Censo Escolar que impactam a quantidade de matrículas ao longo dos anos em Maceió. A
identificação desses fatores pode fornecer subsídios valiosos para a gestão educacional, auxili-
ando na formulação de políticas públicas e na otimização da alocação de recursos, garantindo
um planejamento mais eficiente para o setor educacional.

1.1 Justificativa

A previsão e o acompanhamento das matrículas escolares são fundamentais para o planeja-
mento educacional e a gestão de recursos na educação pública. A análise das variáveis do
Censo Escolar possibilita compreender quais fatores estruturais, pedagógicos e socioeconômi-
cos influenciam diretamente a dinâmica das matrículas ao longo dos anos. Essas informações
são essenciais para evitar superlotação de turmas, fechamento de escolas e a má distribuição de
professores e infraestrutura.

Para [Souza e Oliveira 2012], diante dos dados do Censo Escolar, “são estabelecidas as po-
líticas de correção dos desequilíbrios regionais e de promoção da equidade na oferta do ensino
público”. Isso ressalta a relevância da análise dessas informações para identificar desigualdades
educacionais e auxiliar na formulação de políticas públicas. Ao entender a influência das va-
riáveis educacionais sobre as matrículas, torna-se possível adotar estratégias mais eficazes para
reduzir distorções no acesso à educação e melhorar a qualidade do ensino.

A escolha de Maceió como objeto de estudo se justifica pelos desafios educacionais iden-
tificados nos últimos anos. Dados do INEP indicam que a cidade enfrenta altos índices de
abandono escolar e distorção idade-série, refletindo a complexidade do cenário educacional
[TATU 2021]. Embora esses problemas sejam significativos, o objetivo deste estudo não é fo-
car exclusivamente na evasão, mas sim analisar como diferentes variáveis coletadas no Censo
Escolar impactam o número de matrículas ao longo do tempo.

Para alcançar esse objetivo, este estudo emprega técnicas avançadas de inteligência arti-
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ficial, especificamente redes neurais Long Short-Term Memory (LSTM), para modelar séries
temporais e prever a evolução das matrículas. A abordagem baseada em LSTM permite captu-
rar padrões históricos e dependências temporais entre os dados, proporcionando maior precisão
na previsão de tendências futuras. Essa abordagem possibilita não apenas antecipar variações
no número de matrículas, mas também identificar os fatores com maior impacto na dinâmica
educacional, fornecendo subsídios estratégicos para a formulação de políticas públicas baseadas
em dados.

Ao compreender os principais fatores que influenciam essa dinâmica, espera-se contribuir
para a melhoria da distribuição de recursos, estruturação do ensino e planejamento estratégico
da educação municipal. Dessa forma, o estudo não apenas impulsiona o uso de inteligência
artificial na análise educacional, mas também pode ser utilizado como referência para estudos
semelhantes em outras regiões do país.

1.2 Objetivo Geral

Analisar o impacto de variáveis educacionais no número de matrículas escolares no munícipio
de Maceió na rede pública nos ensinos infantil, fundamental e médio, utilizando modelos de
séries temporais (LSTM) e ferramentas de explicabilidade de IA.

1.3 Objetivos Específicos

• Consolidar e processar os dados educacionais do Censo Escolar de 2013 a 2022 filtrando
apenas o município de Maceió.

• Aplicar modelos de aprendizado profundo baseados em LSTM para prever o número de
matrículas nos ensinos infantil, fundamental e médio.

• Utilizar ferramentas de IA Explicável para interpretar os fatores mais importantes que
influenciam o número de matrículas.

• Propor recomendações com base nos resultados obtidos para orientar gestores educacio-
nais.

1.4 Estrutura

Com essa abordagem, este trabalho organiza-se em cinco capítulos. O Capítulo 1 apresenta a
introdução, motivação e objetivos do estudo. No Capítulo 2, revisamos a literatura sobre apren-
dizado de máquina, interpretabilidade de modelos e estudos relacionados à análise de dados
educacionais. O Capítulo 3 descreve a metodologia adotada e o processamento dos dados. O
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Capítulo 4 traz os resultados e discussões, enquanto o Capítulo 5 conclui o trabalho, destacando
as contribuições e sugestões para estudos futuros.



2
Fundamentação

Este capítulo apresenta os conceitos teóricos fundamentais para o desenvolvimento deste tra-
balho. Inicialmente, são discutidos aspectos relacionados às séries temporais, incluindo sua
definição e principais características. Em seguida, aborda-se o papel do Machine Learning na
modelagem de séries temporais, com destaque para as Redes Neurais Recorrentes (RNNs) e
Redes LSTM (Long Short-Term Memory). Por fim, exploram-se as métricas de desempenho
utilizadas para avaliar a acurácia dos modelos e os conceitos relacionados à Explainable AI,
incluindo SHAP e Causalidade de Granger.

2.1 Séries Temporais

Uma série temporal é um conjunto de observações ordenadas no tempo, não necessariamente
igualmente espaçadas, que apresentam dependência serial, isto é, dependência entre instantes de
tempo. A notação usada aqui para denotar uma série temporal é S1,S2,S3...,ST que indica uma
série de tamanho T. Uma grande quantidade de fenômenos de natureza física, biológica, econô-
mica, etc. pode ser enquadrada nesta categoria. A maneira tradicional de analisar uma série
temporal é através da sua decomposição nas componentes de tendência, ciclo e sazonalidade.
[Morettin 1987].

A tendência de uma série indica o seu comportamento “de longo prazo”, isto é, se ela
cresce, decresce ou permanece estável, e qual a velocidade destas mudanças. Nos casos mais
comuns trabalha-se com tendência constante, linear ou quadrática, como ilustrado na Figura
2.1.

5
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Figura 2.1: Tendências de uma série temporal [Barros 2003].

Os ciclos são caracterizados pelas oscilações de subida e de queda nas séries, de forma suave
e repetida, ao longo da componente de tendência. Por exemplo, ciclos relacionados à atividade
econômica ou ciclos meteorológicos.

A sazonalidade em uma série corresponde às oscilações de subida e de queda que sempre
ocorrem em um determinado período do ano, do mês, da semana ou do dia. A diferença es-
sencial entre as componentes sazonal e cíclica é que a primeira possui movimentos facilmente
previsíveis, ocorrendo em intervalos regulares de tempo, enquanto que movimentos cíclicos
tendem a ser irregulares.

O ruído (ou componente aleatório) representa as variações imprevisíveis e não sistemáticas
presentes nos dados. Essas flutuações são causadas por fatores não modelados, erros de medição
ou aleatoriedades intrínsecas ao fenômeno estudado. Diferentemente dos demais componentes,
o ruído não segue um padrão reconhecível e é geralmente tratado como um resíduo após a
remoção da tendência, ciclo e sazonalidade.

Em geral ao estudarmos uma série temporal estamos interessados em:
a) Análise e modelagem da série temporal - descrever a série, verificar suas características

mais relevantes e suas possíveis relações com outras séries;
b) Previsão na série temporal - a partir de valores históricos da série (e possivelmente de

outras séries também) procura-se estimar previsões de curto prazo (forecast). O número de
instantes à frente para o qual é feita a previsão é chamado de horizonte de previsão.

2.2 Machine Learning

O Machine Learning (Aprendizado de Máquina) é uma subárea da Inteligência Artificial que
desenvolve algoritmos capazes de aprender padrões complexos a partir de dados, sem serem
explicitamente programados. Esses algoritmos podem ser categorizados em três abordagens
principais: aprendizado supervisionado, aprendizado não supervisionado e aprendizado por re-
forço.

• Aprendizado supervisionado: No aprendizado supervisionado, o modelo é treinado uti-
lizando um conjunto de dados rotulados, ou seja, dados que já possuem uma classificação
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ou resultado esperado. Essa abordagem permite que o modelo aprenda a mapear entra-
das para saídas específicas, tornando-o capaz de realizar previsões precisas com base em
novos dados de entrada [Bochie et al. 2020]. É amplamente utilizada em cenários onde
há uma grande quantidade de dados disponíveis e os valores de saída do processo são
conhecidos.

• Aprendizado não supervisionado: Essa abordagem é aplicada quando não há um con-
junto de dados rotulados disponível. Nesse contexto, o objetivo principal é identificar pa-
drões ou estruturas ocultas nos dados, o que pode ser útil em diversas situações, como de-
tecção de anomalias ou agrupamento de dados semelhantes [Goodfellow e Bengio 2016].
Essa técnica é particularmente adequada para problemas em que a saída esperada não é
clara ou quando o conjunto de dados é muito extenso para ser rotulado manualmente.

• Aprendizado por reforço: No aprendizado por reforço, o modelo aprende por meio de
interações com um ambiente dinâmico, recebendo recompensas ou penalidades com base
nas ações que realiza. O objetivo é que o modelo maximize a recompensa acumulada
ao longo do tempo, aprendendo a tomar decisões que otimizem o desempenho em uma
determinada tarefa. Essa abordagem é amplamente utilizada em áreas como robótica,
jogos e controle de sistemas, onde a tomada de decisões sequenciais é crucial.

Dentre as técnicas avançadas de Machine Learning, destaca-se o Deep Learning (Aprendizado
Profundo), que busca desenvolver modelos capazes de interpretar e aprender a partir de da-
dos complexos e de alta dimensionalidades. Esses modelos são construídos com redes neurais
profundas, projetadas para representar os dados de forma hierárquica, extraindo características
progressivamente mais abstratas em suas camadas mais profundas [Bochie et al. 2020]. Essas
redes são especialmente eficazes em tarefas que envolvem dados complexos, como imagens,
áudios ou sequências temporais.

As redes neurais artificiais profundas são formadas por múltiplas camadas de neurônios,
que funcionam como unidades de processamento. Esses neurônios recebem entradas, reali-
zam cálculos matemáticos e produzem saídas. Cada camada da rede aplica uma transformação
não-linear aos dados, permitindo que o modelo aprenda a identificar características cada vez
mais complexas [Goodfellow e Bengio 2016]. A camada inicial recebe os dados brutos, como
imagens ou áudios, enquanto as camadas subsequentes refinam essas informações, gerando re-
presentações mais sofisticadas.

Nesse contexto, dentre as técnicas de Deep Learning, as Recurrent Neural Networks (RNNs)
e suas variantes, como as Long Short-Term Memory (LSTM), têm se destacado por sua capa-
cidade de lidar com dados sequenciais, como séries temporais. Tais arquiteturas permitem a
modelagem de padrões dinâmicos ao longo do tempo e têm aplicações práticas em áreas como
previsão de demanda, análise financeira e previsão de matrículas educacionais. A seguir, explo-
raremos essas arquiteturas em detalhes.
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2.2.1 Recurrent Neural Networks - RNNs

As Redes Neurais Recorrentes (RNNs – Recurrent Neural Networks) foram desenvolvidas para
modelar relações temporais em dados sequenciais, permitindo que informações de estados an-
teriores influenciem previsões futuras. Diferente das redes neurais tradicionais, que assumem
independência entre as entradas, as RNNs mantêm uma memória interna por meio de conexões
recorrentes, tornando-as ideais para tarefas como reconhecimento de fala, processamento de
texto e previsão de séries temporais [Christoper 2015].

Uma das principais características dessas redes é sua capacidade de armazenar e processar
informações ao longo do tempo, utilizando mecanismos que ajustam a influência de estados
passados sobre o estado atual. Isso é possível através da atualização periódica dos pesos e viés
da rede, permitindo uma adaptação contínua aos dados [Bakhtierzhon e Petrusevich 2024]).

Figura 2.2: RNN desmembrada (Christopher, 2015).

No entanto, RNNs tradicionais enfrentam dificuldades ao capturar dependências de longo
prazo, pois sofrem com desaparecimento do gradiente (vanishing gradient) e explosão do gra-
diente (exploding gradient), o que prejudica o treinamento e a eficiência da rede. Esses desa-
fios foram amplamente discutidos por Bengio e Simard [Bengio e Simard 2019] e também por
[Josef 1991], destacando a limitação das RNNs na aprendizagem de padrões temporais distan-
tes.

O problema do desaparecimento do gradiente ocorre quando uma rede neural recorrente não
consegue transmitir informações úteis do gradiente da saída de volta para as entradas iniciais,
prejudicando o aprendizado. Por outro lado, a explosão do gradiente acontece quando os gradi-
entes de erro se acumulam excessivamente, resultando em grandes atualizações nos pesos du-
rante o treinamento. Esses fenômenos tornam os modelos instáveis e dificultam o aprendizado
adequado a partir dos dados de treinamento, comprometendo sua eficiência [Brownlee 2019].

O gradiente descendente (gradient descent) é um método de otimização amplamente utili-
zado para encontrar o mínimo local de uma função de perda (loss function). Em algoritmos de
aprendizado de máquina, o processo geralmente começa em um ponto inicial, onde o gradiente
da função de perda é calculado para orientar a minimização do erro. De forma simplificada, o
cálculo do gradiente envolve a derivada da função de perda em um ponto específico, indicando
a direção de maior crescimento da função. A partir dessa informação, é possível ajustar os
parâmetros do modelo para reduzir gradualmente o erro [Kirsten 2019].
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Considere o caso clássico do mercado de ações, onde é necessário prever o preço de um
ativo com base em eventos que podem ocorrer de forma esporádica, como crises econômicas
ou lançamentos de novos produtos. Em situações como essa, é fundamental que o modelo
seja capaz de considerar um contexto abrangente, incluindo informações históricas distantes.
No entanto, à medida que essas lacunas temporais aumentam, as Redes Neurais Recorrentes
(RNNs) enfrentam dificuldades em aprender a conectar essas informações de forma eficiente,
tornando-se incapazes de capturar relações de longo prazo, conforme ilustrado na Figura 2.3.

Figura 2.3: RNNs com dependências de longo prazo (Christopher, 2015)

Após identificar as limitações das Redes Neurais Recorrentes (RNNs), como o desapa-
recimento do gradiente (vanishing gradient) e a explosão do gradiente (exploding gradient),
[Hochreiter e Schmidhuber 1997] propuseram a arquitetura Long Short-Term Memory (LSTM).
Esse modelo aprimorado introduz portas de entrada, esquecimento e saída, que regulam o fluxo
de informações, permitindo a retenção seletiva de estados relevantes ao longo do tempo. Dessa
forma, as LSTMs conseguem preservar informações importantes mesmo em sequências de
longo prazo, superando as dificuldades das RNNs tradicionais.

Estudos recentes apontam que as LSTMs apresentam desempenho superior na modelagem
de séries temporais, principalmente quando comparadas a métodos estatísticos tradicionais,
como ARIMA e ETS. Isso se deve à sua capacidade de capturar padrões temporais complexos
e minimizar a perda de informações ao longo do processo [Bakhtierzhon e Petrusevich 2024].

2.2.2 Redes LSTM (Long Short-Term Memory)

As LSTMs foram propostas para superar as limitações das RNNs tradicionais ao capturar de-
pendências mais extensas — algo fundamental em séries temporais que apresentam tendências
de longo prazo ou picos sazonais. Em vez de permitir que informações antigas se percam ra-
pidamente, as LSTMs incluem mecanismos internos capazes de selecionar quais dados devem
ser mantidos ou descartados em cada passo de tempo, garantindo que “memórias” relevantes
permaneçam disponíveis mesmo em sequências longas. A Figura 2.4 ilustra detalhadamente
essa estrutura.
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Figura 2.4: Unidade LSTM (Christopher, 2015).

O comportamento da memória interna é regulado por estruturas chamadas de portões ou
(gates), em inglês. Eles são compostos de uma função de ativação sigmoide e uma operação de
multiplicação por pontos, conforme ilustrado na Figura 2.5.

Figura 2.5: Ilustração de um gate. (Christopher, 2015).

A primeira função realizada por uma unidade LSTM é decidir quais informações do estado
anterior serão descartadas e quais serão mantidas. Esse papel é desempenhado pela forget gate,
que avalia a saída do estado anterior (ht−1) em conjunto com a entrada atual (xt). A partir
dessa análise, a porta de esquecimento gera um vetor de valores ( ft) que varia entre 0 e 1 para
cada elemento da memória anterior (ct−1). Um valor próximo de 0 indica que a informação
será descartada, enquanto valores próximos de 1 permitem que a informação seja preservada e
utilizada no estado atual [Lv et al. 2022].

A operação realizada pela forget gate é representada pela Equação 2.1:

ft = σ
(
Wf · [ht−1,xt ]+b f

)
(2.1)

Nessa equação (Wf ) corresponde à matriz de pesos que relaciona (ht−1) e (xt), enquanto (b f ) é
o vetor de bias que ajusta as ativações resultantes. Já (σ) indica a função de ativação sigmoide,
cujo intervalo de saída varia entre 0 e 1, permitindo filtrar de forma gradativa as informações
não essenciais.

Essa etapa é essencial para que a unidade LSTM processe dados sequenciais de forma efi-
ciente, filtrando informações irrelevantes ou desnecessárias e mantendo apenas os elementos
essenciais para compor o contexto da memória no estado atual.
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Figura 2.6: Ilustração de um forget gate. (Christopher, 2015).

O próximo passo no funcionamento da unidade LSTM é determinar quais novas informa-
ções serão incorporadas ao estado da célula. Esse processo é controlado pela input gate (it),
que utiliza uma função de ativação sigmoide para avaliar e selecionar os valores que devem ser
atualizados [Ni et al. 2020]. Essa avaliação é descrita matematicamente pela Equação 2.2:

it = σ(Wi · [ht−1,xt ]+bi) (2.2)

Nessa equação (Wi) corresponde à matriz de pesos que relaciona (ht−1) e (xt), enquanto (bi)
responsável pelo ajuste fino da ativação resultante. A função de ativação (σ) representa a sig-
moide.

Em seguida, uma função tangente hiperbólica (tanh) gera um vetor de novos valores candi-
datos (C̃t), que representa informações potenciais a serem adicionadas ao estado atual da célula.
Esse cálculo pode ser expresso pela Equação 2.3:

C̃t = tanh(WC · [ht−1,xt ]+bC) (2.3)

Nessa expressão (Wc) corresponde à matriz de pesos que relaciona (ht−1) e (xt), enquanto (bc)
responsável pelo ajuste fino da ativação resultante. A função de ativação (σ) representa a sig-
moide. Já a tangente hiperbólica (tanh) produz valores na faixa de −1 a 1, permitindo que o
modelo represente tanto variações negativas quanto positivas na informação a ser incorporada
ao estado atual da célula.

A combinação desses dois componentes — it e C̃t — resulta na atualização do estado da
célula, permitindo que apenas as informações mais relevantes sejam incorporadas. Esse meca-
nismo garante que o modelo armazene novos dados enquanto substitui aqueles que já não são
necessários.

A Figura 2.7 ilustra o funcionamento da input gate, destacando como as entradas (ht−1) e
(xt) são processadas para gerar os valores de atualização (it) e os novos candidatos (C̃t). Esse
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processo é fundamental para o aprendizado eficiente em dados sequenciais.

Figura 2.7: Ilustração de um input gate. (Christopher, 2015).

Após decidir quais informações serão mantidas e quais serão atualizadas, o próximo passo
é calcular o novo estado da célula (Ct). Esse processo combina informações do estado anterior
(Ct−1) com os novos valores gerados nas etapas anteriores.

Primeiro, o estado anterior é multiplicado pelo vetor da forget gate ( ft), descartando as
informações consideradas irrelevantes. Em seguida, os valores candidatos gerados pela função
tangente hiperbólica (C̃t) são ponderados pelo vetor da input gate (it), adicionando ao estado
atual apenas as informações relevantes. Esse cálculo é descrito pela Equação 2.4:

Ct = ft ∗Ct−1 + it ∗C̃t (2.4)

Nessa fórmula, o operador (∗) representa a multiplicação elemento por elemento, garantindo
que cada valor seja ajustado de maneira controlada.

Esse mecanismo assegura que o modelo consiga manter informações essenciais do passado
enquanto incorpora novas informações ao estado da célula. A Figura 2.8 ilustra esse processo,
destacando como os vetores ft , Ct−1, it e C̃t interagem para produzir o novo estado Ct . Essa
atualização é fundamental para que a unidade LSTM capture dependências temporais de forma
eficiente e robusta.
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Figura 2.8: Processo de atualização do estado da célula (Christopher, 2015).

O último passo na unidade LSTM é determinar a saída (ht) que será enviada para o próximo
estado da rede. Essa saída é baseada no estado atual da célula (Ct), mas em uma versão filtrada
e transformada.

Primeiramente, a output gate (ot) avalia quais partes do estado da célula serão utilizadas na
saída. Essa decisão é realizada por meio de uma função de ativação sigmoide, que processa as
entradas ht−1 e xt , conforme a seguinte Equação 2.5:

ot = σ(Wo[ht−1,xt ]+bo) (2.5)

Nessa expressão (Wo) corresponde à matriz de pesos que relaciona (ht−1) e (xt), enquanto (bo)
responsável pelo ajuste fino da ativação resultante. A função de ativação (σ) representa a sig-
moide gera valores no intervalo de 0 a 1, permitindo determinar o grau de influência que a
memória da célula exercerá sobre a saída final.

Em seguida, o estado da célula (Ct) passa por uma função tangente hiperbólica (tanh), que
normaliza os valores para o intervalo entre -1 e 1. A saída final é obtida multiplicando-se o
resultado da tangente hiperbólica pelo vetor (ot), resultando na seguinte Equação 2.6:

ht = ot ∗ tanh(Ct) (2.6)

Esse processo garante que a unidade LSTM produza uma saída que reflete tanto o estado
interno atual quanto os ajustes definidos pela porta de saída, permitindo que informações essen-
ciais sejam propagadas ao próximo estado da rede.

A Figura 2.9 ilustra esse mecanismo, destacando como as entradas ht−1, xt , Ct , e as portas
de saída interagem para gerar a saída ht . Esse passo é crucial para garantir que a rede capture e
transmita as informações mais relevantes de forma eficiente em tarefas sequenciais.
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Figura 2.9: Ilustração de um output gate. (Christopher, 2015).

2.3 Métricas de Desempenho

Para verificar o desempenho de Redes Neurais em problemas de séries temporais é comum
utilizar métricas que comparem os valores preditos com valores reais. Após uma pesquisa na
literatura foi possível entender que existem algumas métricas que são bastantes utilizadas, então
para acompanhar a literatura foram utilizadas as métricas:

2.3.1 Mean Squared Error – MSE

O erro quadrático médio (MSE) é uma medida comumente utilizada para avaliar a acurácia
de modelos de aprendizado de máquina. O MSE é calculado elevando ao quadrado cada erro
individual (diferença entre o valor real Yi e o valor previsto Ŷi) e, em seguida, calculando a média
desses erros quadráticos para todas as N observações do conjunto de dados. Matematicamente,
o MSE é definido pela Equação 2.7:

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2 (2.7)

Ao elevar ao quadrado cada erro, o MSE atribui maior peso a erros maiores, o que pode ser útil
para penalizar discrepâncias significativas. No entanto, essa característica torna o MSE sensível
a valores extremos (outliers), limitando sua aplicação em cenários com alta variabilidade nos
dados [Géron 2019].

2.3.2 Root Mean Squared Error – RMSE

O erro quadrático médio da raiz (RMSE) é uma métrica derivada do MSE, amplamente utilizada
em problemas de regressão e séries temporais. O RMSE é obtido calculando a raiz quadrada
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da média dos erros quadráticos entre os valores reais Yi e os previstos Ŷi, para um total de N

observações. Sua principal vantagem é expressar o erro na mesma escala dos dados originais,
facilitando a interpretação. A Equação 2.8 abaixo define o RMSE:

RMSE =

√
1
N

N

∑
i=1

(
Yi − Ŷi

)2 (2.8)

Assim como o MSE, o RMSE penaliza erros grandes de forma acentuada, o que o torna
igualmente sensível a outliers [Géron 2019]. Por isso, embora seja uma métrica valiosa para
avaliar desempenho global, seu uso deve considerar a natureza dos dados e os objetivos especí-
ficos do modelo.

2.3.3 Mean Absolute Error – MAE

O erro médio absoluto (MAE) é uma medida de avaliação utilizada em modelos de aprendizado
de máquina, calculado a partir da média dos erros absolutos entre os valores reais Yi e os valores
previstos Ŷi, onde Yi representa o valor real da i-ésima observação, Ŷi é o valor previsto pelo
modelo para a mesma observação, e N corresponde ao número total de observações no conjunto
de dados. Ao utilizar o módulo de cada erro, o MAE evita que erros positivos e negativos
se cancelem, tornando-o menos sensível a valores extremos (outliers) em comparação com
métricas como o MSE [Géron 2019]. A Equação 2.9 apresenta o cálculo do MAE:

MAE =
1
N

N

∑
i=1

|Yi − Ŷi| (2.9)

2.3.4 Coeficiente de determinação - R2

O coeficiente de determinação (R2) é uma métrica utilizada em modelos de regressão para
avaliar a proporção da variância da variável dependente Y que é explicada linearmente pelo
modelo. Valores de R2 variam entre 0 e 1, sendo que valores próximos de 1 indicam que o
modelo explica grande parte da variabilidade dos dados por meio da relação linear, enquanto
valores próximos de 0 sugerem que o modelo não captura adequadamente a relação linear entre
as variáveis. O R2 é calculado conforme a Equação 2.10, comparando a soma dos quadrados
dos resíduos (SSR), que corresponde a ∑

N
i=1(Yi − Ŷi)

2, com a soma total dos quadrados (SST ),
definida como ∑

N
i=1(Yi − Ȳ )2, onde Ȳ é a média dos valores reais Yi:

R2 = 1− SSR
SST

= 1− ∑
N
i=1(Yi − Ŷi)

2

∑
N
i=1(Yi − Ȳ )2

(2.10)
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2.4 Explainable AI

A Inteligência Artificial Explicável (Explainable AI - XAI) é um campo emergente da inteli-
gência artificial que busca reduzir o gap entre a complexidade dos modelos de aprendizado de
máquina e a compreensão humana. Com o aumento do uso de modelos de machine learning em
decisões críticas, como saúde, finanças e justiça, a transparência e interpretabilidade tornaram-
se essenciais para aumentar a confiança nos sistemas automatizados. Modelos baseados em
aprendizado profundo (deep learning) são frequentemente considerados “caixas-pretas” devido
à dificuldade de explicar suas decisões, o que pode gerar preocupações éticas e viés algorítmico
em aplicações sensíveis [Velden 2024].

Atualmente, os principais métodos de XAI podem ser classificados em três categorias:

• Explicações visuais, como heatmaps e mapas de saliência, que destacam as áreas de uma
imagem utilizadas na tomada de decisão;

• Explicações textuais, que fornecem descrições interpretáveis sobre o funcionamento do
modelo;

• Explicações baseadas em exemplos, que usam casos similares para justificar as predições
da IA.

Entre essas abordagens, as explicações visuais são amplamente utilizadas, especialmente na
área médica, onde modelos XAI ajudam a identificar padrões em imagens de diagnóstico mé-
dico [Velden 2024].

A XAI enfrenta um desafio conhecido como trade-off entre interpretabilidade e desempe-
nho:

• Modelos simples, como regressões lineares, são altamente interpretáveis, mas muitas ve-
zes incapazes de capturar relações complexas nos dados;

• Modelos mais sofisticados, como redes neurais profundas, oferecem alta precisão, mas
funcionam como “caixas-pretas”, tornando difícil entender suas decisões [Velden 2024]

Para mitigar esse problema, pesquisas recentes sugerem o uso de abordagens explicáveis
por design (explainable-by-design), que incorporam a interpretabilidade desde a concepção do
modelo. Além disso, novas direções para XAI incluem técnicas de IA causal, que buscam expli-
car não apenas correlações, mas também relações de causa e efeito nos modelos de aprendizado
de máquina [Velden 2024].

Dentre as técnicas mais utilizadas na XAI, duas abordagens serão detalhadas neste trabalho:
o SHAP (SHapley Additive Explanations) e o uso de Causalidade de Granger, que permitem
analisar, respectivamente, os impactos das variáveis nas predições e as relações causais entre as
variáveis no contexto temporal.
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2.4.1 SHAP - SHapley Additive Explanations

O SHAP, baseado na teoria dos jogos, é uma das ferramentas mais poderosas na XAI. Ele utiliza
os valores de Shapley, que fornecem uma maneira matemática de calcular as contribuições
individuais de cada variável na predição de um modelo, sendo útil tanto em explicações locais
quanto globais [Lundberg e Lee 2017].

No nível local, o SHAP calcula como cada variável contribuiu para a predição de uma ins-
tância específica. O gráfico de força é amplamente utilizado para destacar essas contribuições,
onde a combinação de fatores positivos e negativos resulta no valor predito pelo modelo.

Figura 2.10: Resultado do SHAP Local.

No nível global, o SHAP gera gráficos de resumo que mostram o impacto médio das variá-
veis no modelo. Esses gráficos permitem identificar quais variáveis mais influenciam o desem-
penho do modelo e de que forma elas afetam a saída, considerando valores baixos e altos para
cada variável.

Figura 2.11: Resultado do SHAP Global.

Os valores de Shapley são calculados conforme a Equação 2.11:

φi = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

· [v(S∪{i})− v(S)] (2.11)
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Onde:
- φi: valor de Shapley para a variável i;
- S: subconjunto de variáveis sem i;
- N: conjunto completo de variáveis;
- v(S): função de predição considerando o subconjunto S.

2.4.2 Causalidade de Granger

A Causalidade de Granger é um método estatístico amplamente utilizado para determinar a
relação causal entre variáveis temporais, especialmente em análises de séries temporais multi-
variadas. Proposta por Clive Granger [Granger 1969], essa abordagem testa se o histórico de
uma variável pode melhorar as previsões de outra variável, estabelecendo uma relação de causa
e efeito no contexto temporal. No entanto, é importante destacar que a Causalidade de Gran-
ger não implica causalidade verdadeira no sentido filosófico, mas sim uma capacidade preditiva
fundamentada em correlações temporais.

Uma variável Xt é considerada causal no sentido de Granger para uma variável Yt se os
valores passados de Xt melhorarem a previsão de Yt , além do que seria possível apenas com
os dados históricos de Yt . O teste utiliza modelos autorregressivos, como o VAR (Modelos
Autorregressivos Vetoriais), para avaliar se os lags de Xt são estatisticamente significativos ao
prever Yt .

A ideia por trás da Causalidade de Granger (para séries temporais univariadas) é considerar
o modelo descrito pela Equação 2.12:

Yt = β0 +
k

∑
i=1

βiYt−i +
m

∑
j=1

α jXt− j + εt (2.12)

Onde:
- Yt é a variável dependente;
- Xt é a variável independente testada como causal;
- k é o número de defasagens (lags) para Yt ;
- m é o número de defasagens (lags) para Xt ;
- β0 é a constante do modelo;
- βi e α j são os coeficientes a serem estimados;
- εt é o termo de erro ou ruído branco.

Dizemos que Xt Granger-causa Yt se os valores passados de Xt ajudam a prever o valor
presente de Yt . Para testar se Xt Granger-causa Yt , considera-se o seguinte teste:

H0 : α1 = · · ·= αm = 0 vs. H1 : αs ̸= 0, para pelo menos um s ∈ {1, · · · ,m}.
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No teste acima, com a rejeição da hipótese nula, pode-se concluir que Xt Granger-causa Yt .
Semelhantemente, considerando o modelo dado pela Equação 2.13:

Xt = β0 +
k

∑
i=1

βiYt−i +
m

∑
j=1

α jXt− j + εt (2.13)

Para testar se Yt Granger-causa Xt , considera-se o seguinte teste:

H0 : β1 = · · ·= βk = 0 vs. H1 : βs ̸= 0, para pelo menos um s ∈ {1, · · · ,k}.

Causalidade de Granger e Estacionariedade

Antes de aplicar o método de Causalidade de Granger, precisa-se verificar se as séries são ou não
estacionárias, e para isso são utilizados testes como o de Phillips-Perron [Phillips e Perron 1988].
Nesse teste a hipótese nula é de que a série apresenta pelo menos uma raiz unitária (série não
estacionária) e a hipótese alternativa é a ausência de raiz unitária. Desse modo, a série será
considerada estacionária se rejeitar-se a hipótese nula. Uma análise gráfica preliminar pode au-
xiliar na decisão da aplicação ou não de testes de estacionariedade. A ausência de tendências
determinísticas visíveis e/ou sazonalidades aparentes são índices de estacionariedade. Entre-
tanto, não são suficientes para tomada de decisão, que, preferencialmente, deve ser feita através
de um teste apropriado como o Phillips-Perron ou ADF [Dickey e Fuller 1981].

No método de Causalidade de Granger, caso ambas séries forem estacionárias, deve-se se-
guir as seguintes etapas:

1. Verificar se as séries temporais cointegram utilizando o teste de cointegração de Phillips-
Ouliaris [Phillips e Ouliaris 1990].

2. Ajustar um modelo VAR(p), onde p é o número de defasagens. Esse número de defasa-
gens pode ser escolhido utilizando métodos usuais.

3. Aplicar o teste de Causalidade Granger no modelo VAR definido anteriormente. Nele
precisa-se declarar qual variável acredita-se que Granger causa a outra. A rejeição da
hipótese nula indica a existência de Causalidade de Granger.

Uma forma de aplicar o método de Causalidade de Granger, caso as séries não sejam es-
tacionárias, é utilizar o procedimento de Toda e Yamamoto [Toda e Yamamoto 1995], no qual
compreende os seguintes passos:

1. Verificar se as séries cointegram. Duas séries cointegram se possuem a mesma ordem de
integração, digamos m, e se o resíduo da regressão de uma série pela outra for estacioná-
rio, o que pode ser determinado utilizando-se testes como o de Phillips-Perron.
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2. Ajustar um modelo VAR(p).

3. Para aplicar o Teste de Wald, precisa-se ajustar um modelo VAR(p+m) aos dados. Este
modelo incorpora a ordem de integração m às defasagens p, e, assim, permite verificar se
os coeficientes são estatisticamente significativos.

Aplicações de Causalidade de Granger

O método de Causalidade de Granger possui ampla aplicabilidade, sendo amplamente explo-
rado, especialmente no campo da economia. Diversos estudos utilizam essa abordagem para
investigar relações entre variáveis, oferecendo insights relevantes. Alguns exemplos práticos de
sua aplicação são apresentados a seguir.

No âmbito econômico, pesquisas analisaram a interdependência entre as principais bolsas
de valores globais, avaliando como os mercados interagem entre si e se algum deles exerce
influência predominante sobre os outros [Farias e Sáfadi 2010]. Os resultados demonstraram
que o mercado brasileiro exerce uma influência significativa sobre os mercados chinês e russo,
embora o inverso não tenha sido observado.

Outra aplicação relevante é apresentada por [Dantas e Weydmann 2009], que investigaram
a relação entre os preços internos e externos da carne de frango. A pesquisa revelou a existência
dessa conexão, evidenciando que os preços internacionais podem ser um indicador útil para o
planejamento da produção no mercado interno.



3
Metodologia

Neste capítulo, são descritas as etapas metodológicas seguidas neste trabalho, abrangendo desde
a obtenção e preparação dos dados até o desenvolvimento, treinamento e avaliação do modelo
LSTM, que constitui a primeira etapa do estudo. Adicionalmente, a segunda etapa aborda a
análise das variáveis mais relevantes utilizando métodos de correlação, SHAP e a Causalidade
de Granger.

A Figura 3.1 ilustra o fluxograma da primeira etapa do trabalho, que se concentra no
desenvolvimento do modelo preditivo LSTM. Este processo inclui desde a coleta e o pré-
processamento dos dados até a avaliação do modelo utilizando métricas específicas de desem-
penho.

Figura 3.1: Fluxograma da primeira etapa (Autor, 2024).

21
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Posteriormente, a segunda etapa do trabalho, destacada na Figura 3.2, apresenta o fluxo de
análise das variáveis de maior impacto. Nessa etapa, foram utilizados métodos de explicação e
análise estatística, com o objetivo de identificar relações de Causalidade de Granger e correlação
entre as variáveis explicativas e a variável alvo. Essa abordagem permite aprofundar a compre-
ensão dos fatores que influenciam os resultados previstos pelo modelo, além de proporcionar
uma interpretação mais transparente e robusta dos dados.

Figura 3.2: Fluxograma da segunda etapa (Autor, 2024).

Com essa estrutura, busca-se proporcionar uma visão detalhada das fases metodológicas,
alinhando as etapas práticas do trabalho aos objetivos estabelecidos.

3.1 Base de dados

Os dados utilizados neste estudo são provenientes do Censo Escolar, realizado anualmente pelo
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP), disponíveis
publicamente em seu portal de dados. O conjunto de dados abrange informações detalhadas
sobre escolas, turmas, docentes e matrículas de municípios de todo o Brasil. Para este trabalho,
a análise foi restrita às escolas públicas urbanas localizadas no município de Maceió, Alagoas,
com dados coletados no período de 2013 a 2022.

https://www.gov.br/inep/pt-br/areas-de-atuacao/pesquisas-estatisticas-e-indicadores/censo-escolar
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Estrutura e granularidade da base:

• Granularidade: Cada linha da base representa uma escola, com informações agregadas
por ano letivo.

• Período: Dados anuais de 2013 a 2022, totalizando 10 anos de observação.

• Variáveis principais: Número de matrículas, infraestrutura escolar, qualificação docente,
localização geográfica e indicadores socioeconômicos associados às escolas.

• Filtros aplicados:

– Foram consideradas apenas escolas públicas (municipais e estaduais).

– Excluíram-se unidades inativas ou com dados incompletos no período analisado.

• Tamanho da amostra: A base final contém 228 escolas.

3.2 Pré-processamento dos dados

O pré-processamento dos dados foi realizado com o auxílio da biblioteca scikit-learn, priori-
zando a normalização das variáveis de entrada. A normalização desempenha um papel funda-
mental no treinamento de redes neurais, especialmente em arquiteturas como LSTM, que são
sensíveis às escalas das variáveis. Esse processo visa garantir que todas as variáveis sejam
ajustadas para uma escala comum, eliminando diferenças que possam impactar negativamente
o desempenho do modelo.

Os dados foram inicialmente selecionados a partir do Censo Escolar, considerando apenas
as variáveis relevantes ao estudo. As variáveis categóricas, foram codificadas numericamente
para integração no modelo. Além disso, aplicou-se o método de normalização min-max, que
ajusta os valores das variáveis para o intervalo de [0,1]. Essa abordagem é amplamente utilizada
em aprendizado de máquina devido à sua capacidade de reduzir a influência de escalas desiguais
entre as variáveis.

Uma etapa crucial foi a transformação dos dados em séries temporais, implementada por
meio de janelas deslizantes. Esse método organiza os dados em sequências, permitindo que o
modelo capture dependências temporais de longo prazo. As janelas deslizantes foram configu-
radas para dividir as séries temporais em conjuntos de entrada e saída, facilitando a previsão de
valores futuros com base em padrões históricos. O resultado desse pré-processamento foi uma
base de dados consistente, normalizada e adequada para o treinamento do modelo LSTM.
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3.3 Implementação

Os desenvolvimentos computacionais realizados neste trabalho, voltados para o tratamento dos
dados e a aplicação de técnicas de machine learning, foram implementados utilizando diversas
ferramentas e bibliotecas especializadas. A linguagem de programação Python foi o núcleo
principal, com destaque para a utilização de bibliotecas como scikit-learn, TensorFlow e Keras,
que suportaram os processos de modelagem e treinamento.

O TensorFlow é uma biblioteca Python desenvolvida pela Google que reúne vários modelos
e algoritmos de aprendizado de máquina. Sua estrutura é composta por grafos, onde cada nó
representa uma operação matemática e cada conexão é uma matriz multidimensional, conhe-
cida como tensor [Yegulalp 2019]. Além disso, ferramentas como SHAP e Statsmodels foram
empregadas para interpretação e análise dos modelos, contribuindo para uma compreensão mais
aprofundada dos resultados.

Contudo, devido a limitações de compatibilidade do SHAP, foi necessário utilizar versões
mais antigas de algumas bibliotecas para garantir seu pleno funcionamento. As bibliotecas e
versões utilizadas são apresentadas de forma detalhada na Tabela 3.1.

Ferramentas/Bibliotecas

Scikit-learn (1.3.2)
Keras/TensorFlow (2.4.1)
SHAP (0.38.1)
NumPy (1.19.5)
Pandas (0.41.0)
Matplotlib (3.4.3)
Statsmodels (0.14.1)

Linguagem de Programação Python (3.8.19)

Tabela 3.1: Ferramentas computacionais utilizadas para o desenvolvimento do trabalho

3.4 Metodologia

3.4.1 Arquitetura da Rede

O modelo utilizado neste trabalho é baseado em redes neurais recorrentes, especificamente na
arquitetura Long Short-Term Memory (LSTM). Este tipo de rede foi escolhido devido à sua
capacidade de capturar dependências de longo prazo em dados temporais.

3.4.2 Construção de Séries Temporais com Janela Deslizante

Para capturar as dependências temporais e permitir que o modelo aprenda padrões históricos
relevantes, os dados foram organizados utilizando a técnica de janela deslizante. Nesta aborda-
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gem, cada exemplo de entrada é composto por uma sequência de observações consecutivas de
um período fixo, e a predição consiste no valor imediatamente subsequente a essa sequência.
No presente estudo, optou-se por uma janela deslizante de 3 anos.

Especificamente, para cada ano de previsão, o modelo utiliza os dados referentes aos três
anos anteriores. Por exemplo, se tivermos dados de 2013 a 2022, uma janela deslizante de
3 anos gera uma sequência composta pelos dados de 2013, 2014 e 2015 para prever o valor
de 2016; em seguida, a janela desliza para englobar 2014, 2015 e 2016 para prever 2017, e
assim sucessivamente. Essa abordagem permite que o modelo LSTM incorpore informações
históricas suficientes para capturar tendências e variações sazonais ou cíclicas, fundamentais na
análise de séries temporais.

A escolha de uma janela de 3 anos baseia-se na hipótese de que os fatores que influenciam
o comportamento das matrículas escolares possuem uma persistência temporal que pode ser
adequadamente modelada utilizando os dados dos três anos anteriores. Assim, a técnica de
janela deslizante não só organiza os dados em um formato compatível com redes LSTM, mas
também maximiza a extração de padrões relevantes, contribuindo para a precisão das previsões.

3.4.3 Treinamento

O modelo proposto foi desenvolvido utilizando a biblioteca Keras, amplamente reconhecida
por sua flexibilidade e desempenho em tarefas de aprendizado profundo. A arquitetura adotada
consistiu em duas camadas LSTM, otimizadas para capturar padrões temporais complexos nos
dados.

A primeira camada LSTM foi configurada com 300 unidades e configurada com return_

sequences=True, permitindo que as saídas fossem encaminhadas para camadas subsequentes.
Em seguida, foi aplicada uma camada Dropout com taxa de 0,05 para minimizar o risco de
overfitting. A segunda camada LSTM, composta por 200 unidades e configurada com return_

sequences=False, foi responsável por sintetizar as informações em uma única saída. Por fim,
uma camada densa com uma unidade foi adicionada para realizar a previsão final.

O modelo foi compilado utilizando o otimizador Adam (Adaptive Moment Estimation) po-
pularmente utilizado em algoritmos de aprendizado de máquina, especialmente em redes neu-
rais profundas [Kingma e Ba 2014], que combina eficiência computacional e adaptabilidade ao
ajustar os pesos da rede, e a função de perda Mean Squared Error (MSE), amplamente utilizada
para avaliar regressões. O treinamento do modelo foi realizado com um conjunto de dados di-
vidido em 80 para treinamento e 20 para validação. O número máximo de épocas foi fixado em
100, com um tamanho de lote de 256.

Essas configurações garantiram um equilíbrio entre desempenho e eficiência, resultando em
um modelo robusto e capaz de capturar as complexidades dos dados analisados.



METODOLOGIA 26

3.4.4 Teste

A segunda etapa deste trabalho consiste na análise estatística e explicativa das variáveis mais
relevantes que influenciam a variável alvo, utilizando métodos como correlação, SHAP (SHa-

pley Additive Explanations) e Causalidade de Granger. Esta etapa tem como objetivo principal
compreender as relações e dependências entre as variáveis do conjunto de dados, proporcio-
nando uma interpretação mais aprofundada e explicável dos fatores que impactam os resultados
do modelo.

Para melhor compreensão dos resultados apresentados neste capítulo, a Tabela 3.2 lista as
variáveis utilizadas no estudo, juntamente com seus respectivos significados.

Variável Descrição
QT_MAT_INF Quantidade de matrículas no ensino infantil

QT_MAT_FUND Quantidade de matrículas no ensino fundamental

QT_MAT_MED Quantidade de matrículas no ensino médio

QT_DOC_INF Quantidade de docentes no ensino infantil

QT_DOC_FUND Quantidade de docentes no ensino fundamental

QT_DOC_MED Quantidade de docentes no ensino médio

QT_TUR_INF Quantidade de turmas no ensino infantil

QT_TUR_FUND Quantidade de turmas no ensino fundamental

QT_TUR_MED Quantidade de turmas no ensino médio

QT_SALAS_EXISTENTES Quantidade de salas existentes

QT_FUNCIONARIOS Quantidade de funcionários

QT_COMPUTADOR Quantidade de computadores

QT_COMP_ALUNO Quantidade de computadores por aluno

IN_QUADRA_ESPORTES Existência de quadra esportiva

IN_EQUIP_MULTIMIDIA Existência de equipamentos multimídia

IN_PARQUE_INFANTIL Existência de parque infantil

IN_BANHEIRO_EI Existência de banheiro adequado à educação infantil

IN_EQUIP_RETROPROJETOR Existência de retroprojetor

IN_BIBLIOTECA_SALA_LEITURA Existência de biblioteca ou sala de leitura

IN_LABORATORIO_INFORMATICA Existência de laboratório de informática

IN_LABORATORIO_CIENCIAS Existência de laboratório de ciências

Tabela 3.2: Variáveis utilizadas no estudo e seus respectivos significados.

Análise de Correlação

A análise de correlação foi realizada para identificar a força e a direção das relações lineares
entre as variáveis. Este processo fornece uma visão inicial sobre quais variáveis têm maior
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influência nas variáveis-alvo QT_MAT_INF (matrículas no ensino infantil), QT_MAT_FUND (ma-
trículas no ensino fundamental) e QT_MAT_MED (matrículas no ensino médio), permitindo filtrar
aquelas que são mais relevantes para análises posteriores.

Os coeficientes de correlação foram calculados utilizando o método de Pearson, que mede a
linearidade entre dois conjuntos de dados. Valores próximos de +1 ou -1 indicam uma forte cor-
relação positiva ou negativa, respectivamente, enquanto valores próximos de 0 indicam pouca
ou nenhuma correlação.

As variáveis selecionadas para cada nível de ensino, com base na análise de correlação,
estão apresentadas na Tabela 3.3.

Nível de Ensino Variável-Alvo Variáveis Relevantes Coeficiente de
Correlação

Ensino Infantil QT_MAT_INF QT_DOC_INF

QT_TUR_INF

IN_EQUIP_MULTIMIDIA

IN_BANHEIRO_EI

IN_PARQUE_INFANTIL

IN_LABORATORIO_INFORMATICA

0.88
0.85
0.56
0.64
0.56
0.55

Ensino
Fundamental

QT_MAT_FUND QT_DOC_FUND

QT_TUR_FUND

QT_SALAS_EXISTENTES

QT_FUNCIONARIOS

IN_BIBLIOTECA_SALA_LEITURA

IN_EQUIP_RETROPROJETOR

0.89
0.82
0.60
0.65
0.56
0.55

Ensino Médio QT_MAT_MED QT_DOC_MED

QT_TUR_MED

IN_LABORATORIO_CIENCIAS

QT_FUNCIONARIOS

QT_COMPUTADOR

QT_COMP_ALUNO

IN_QUADRA_ESPORTES

0.85
0.83
0.58
0.56
0.60
0.58
0.55

Tabela 3.3: Análise das variáveis relevantes e suas correlações

De forma geral, observa-se uma forte correlação positiva entre as variáveis relevantes e
a variável alvo (número de matrículas) em todos os níveis de ensino (Infantil, Fundamental
e Médio). Isso indica que as variáveis selecionadas desempenham um papel importante na
previsão do número de matrículas.

Interpretação com SHAP

Após identificar as variáveis relevantes por meio da correlação, foi aplicado o método SHAP
para interpretar o impacto de cada variável nos resultados do modelo. O SHAP, baseado na
teoria dos valores de Shapley, fornece uma medida quantitativa da contribuição de cada variável
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para a predição final do modelo.

• Beeswarm Plot: Este gráfico foi utilizado para visualizar a densidade das contribuições
de cada variável. Ele permite identificar quais variáveis possuem maior impacto nas pre-
dições ao longo do conjunto de dados.

• Importância Global: A soma das magnitudes dos valores SHAP foi utilizada para ran-
quear as variáveis em ordem de importância, destacando aquelas com maior relevância
no modelo.

Análise de Causalidade com Granger

Para investigar as relações de causa e efeito entre as variáveis, foi aplicada a Causalidade de
Granger. Este método estatístico avalia se uma variável pode ser utilizada para prever outra,
considerando séries temporais.

Foram avaliadas todas as combinações de variáveis dependentes e independentes para deter-
minar relações significativas de Causalidade de Granger. As variáveis com valores-p abaixo do
nível de significância (geralmente 0,05) foram consideradas como causalmente relacionadas.

3.4.5 Análise Explicativa e de Causalidade de Granger

A apresentação dos resultados deste estudo iniciou-se com a organização e análise dos dados
provenientes das etapas de treinamento e validação do modelo LSTM. Esses resultados refle-
tiram o desempenho do modelo ao prever as matrículas em séries temporais, considerando as
variáveis selecionadas. A estruturação dos dados e das previsões possibilitou uma análise deta-
lhada e abrangente, permitindo identificar padrões e tendências significativas no comportamento
dos dados ao longo do tempo.

Os resultados foram avaliados com base em métricas amplamente aceitas na área de apren-
dizado de máquina para problemas de regressão, como o erro quadrático médio (MSE), erro
absoluto médio (MAE) e o coeficiente de determinação (R²). Essas métricas permitiram medir
a precisão e a eficácia do modelo, avaliando o alinhamento entre as previsões e os valores reais
observados. Além disso, análises complementares foram realizadas utilizando o SHAP para in-
terpretar a importância das variáveis no modelo, fornecendo uma visão explicativa dos fatores
que mais influenciaram as matrículas previstas.

Adicionalmente, a segunda etapa do trabalho abordou a análise de correlação e Causali-
dade de Granger. O método de Causalidade de Granger foi aplicado para verificar relações de
dependência entre as variáveis consideradas, enquanto o SHAP forneceu insights sobre a contri-
buição de cada variável para os resultados do modelo. Essa combinação de métodos estatísticos
e explicativos garantiu uma análise robusta e fundamentada dos fatores determinantes para as
previsões realizadas.
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Por fim, a apresentação dos resultados contemplou uma análise comparativa das variáveis
relacionadas às matrículas em diferentes etapas de ensino (infantil, fundamental e médio), des-
tacando as diferenças de impacto entre elas. Essa abordagem permitiu uma compreensão mais
profunda do comportamento das variáveis ao longo do tempo e em diferentes contextos educaci-
onais, enriquecendo as discussões e contribuindo para o entendimento das dinâmicas envolvidas
no problema.



4
Resultados

Neste capítulo, são apresentados os resultados obtidos a partir da análise das séries temporais
referentes às matrículas escolares no município de Maceió da rede pública. As análises foram
realizadas considerando os diferentes níveis de ensino — Infantil, Fundamental e Médio —
com o objetivo de identificar os fatores que mais influenciam o comportamento das matrículas
ao longo do tempo.

Inicialmente, é realizada uma decomposição das séries temporais para explorar seus com-
ponentes de tendência, sazonalidade e ruído. Em seguida, os modelos de previsão baseados em
LSTM são aplicados para cada nível de ensino, e as métricas de desempenho como MAE, MSE,
RMSE e R² são calculadas para avaliar a precisão das previsões.

Por fim, as seções dedicadas a cada nível de ensino detalham as principais descobertas,
correlacionando os resultados obtidos com a literatura existente e destacando as implicações
para políticas educacionais e gestão escolar.

4.1 Ensino Infantil

A Figura 4.1 ilustra o desempenho do modelo na previsão de matrículas para o Ensino Infantil.
Observa-se um razoável alinhamento entre as linhas de valores previstos e reais, indicando que
o modelo consegue capturar parte da tendência das matrículas neste segmento. No entanto,
existem alguns pontos de divergência, sugerindo limitações do modelo em prever flutuações
mais abruptas nos dados.

30
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Figura 4.1: Comparação entre matrículas reais e previstas - Ensino Infantil (Autor, 2024).

A Tabela 4.1 complementa a análise visual, fornecendo as métricas de desempenho do mo-
delo para o Ensino Infantil.

Métrica Valor
MAE 137.41

RMSE 166.32

MSE 27663.03

R² 0.51

Tabela 4.1: Métricas de desempenho do modelo - Ensino Infatil (Autor, 2024).

• MAE: 137.41 (Erro Médio Absoluto). O modelo erra em média 137 matrículas, repre-
sentando aproximadamente 2% de erro relativo (média de 7000 matrículas), resultando
em uma média ligeiramente superior ou inferior a 2%.

• RMSE: O RMSE de 166.32 matrículas indica que, em média, as previsões do modelo
desviam-se dos valores reais em 166.32 matrículas. Esta métrica é sensível a erros maio-
res, penalizando-os mais fortemente.

• MSE: O MSE de 27663.03 representa a média dos erros quadrados das previsões. É uma
métrica útil para comparar o desempenho de diferentes modelos e para otimização.

• R2: 0.51 (Coeficiente de Determinação). O modelo explica 51% da variabilidade dos
dados.

As Figuras 4.2 e 4.3 apresentam análises de interpretabilidade no qual foi conduzida usando
valores SHAP para identificar as variáveis que mais influenciam o número de matrículas do
ensino infantil.
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Figura 4.2: Beeswarm Plot - Ensino Infantil (Autor, 2024).

Figura 4.3: Feature Importance - Ensino Infantil (Autor, 2024).

A análise revela que IN_BANHEIRO_EI (existência de banheiro adequado para a Educação
Infantil) é a variável mais influente. Escolas com essa infraestrutura (pontos vermelhos) tendem
a ter valores SHAP positivos (à direita), indicando um impacto positivo nas matrículas, enquanto
escolas sem essa estrutura (pontos azuis) apresentam valores SHAP negativos (à esquerda) ou
próximos de zero, sugerindo um impacto negativo ou nulo. A variável IN_EQUIP_MULTIMIDIA
(presença de equipamentos multimídia) aparece como a segunda variável mais importante,
com um padrão semelhante: escolas com mais equipamentos multimídia (pontos vermelhos)
correlacionam-se com valores SHAP positivos, sugerindo um impacto positivo na atratividade
da escola. A ausência desses equipamentos (pontos azuis) está associada a valores SHAP mais
baixos.

A variável QT_TUR_INF (quantidade de turmas no ensino infantil) surge como a terceira
variável em importância. Um maior número de turmas (pontos vermelhos) está associado a va-
lores SHAP positivos, indicando que escolas com maior oferta de turmas tendem a apresentar
mais matrículas. A variável IN_LABORATORIO_INFORMATICA (presença de laboratório de in-
formática) aparece na sequência, com uma influência moderada. A presença de laboratórios de
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informática está associada a valores SHAP positivos, embora haja uma dispersão nos valores,
sugerindo que sua contribuição pode variar conforme o contexto da escola.

A variável IN_PARQUE_INFANTIL (presença de parque infantil) apresenta uma relação me-
nos expressiva, mas ainda positiva. A presença dessa estrutura pode contribuir para o au-
mento das matrículas, embora com menor peso comparado às demais variáveis. A variável
QT_DOC_INF (quantidade de docentes no ensino infantil) aparece com a menor importância no
modelo. Diferentemente do ensino fundamental, onde o número de docentes tem um impacto
mais relevante, na Educação Infantil essa variável não se mostra decisiva na previsão das matrí-
culas.

A Figura 4.4 apresenta os resultados da análise de Causalidade de Granger em uma repre-
sentação de grafo bipartido, no qual os nós em azul representam as variáveis independentes
e os nós em laranja representam as variáveis dependentes. Isso permite verificar se as variá-
veis identificadas como relevantes pelo SHAP também influenciam outras variáveis ao longo
do tempo.

Figura 4.4: Causalidade de Granger - Ensino Infantil (Autor, 2024).

Para QT_MAT_INF_x, há evidência de Causalidade de Granger para as variáveis QT_TUR_INF
_y (p=0,0006), IN_EQUIP_MULTIMIDIA_y (p=0,0000) e IN_PARQUE_INFANTIL_y (p=0,0000).
Não se verifica relação estatisticamente significativa com banheiros infantis, laboratórios de
informática e docentes.

No caso de QT_DOC_INF_x, p-valores significativos em IN_EQUIP_MULTIMIDIA_y (p=0,0000)
QT_TUR_INF_y (p=0,0000) e IN_PARQUE_INFANTIL_y (p=0,0000). Em contrapartida, não há
evidência de Causalidade de Granger em matrículas, banheiros e laboratórios (p=0,4776, 0,4187
e 0,8465, respectivamente).

Para QT_TUR_INF_x, destaca-se efeito sobre QT_MAT_INF_y (p=0,0000), QT_DOC_INF_y
(p=0,0000), IN_EQUIP_MULTIMIDIA_y (p=0,0000) e IN_PARQUE_INFANTIL_y (p=0,0019).
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Não se observa Causalidade de Granger em banheiros infantis (p=0,2302) nem em laboratórios
(p=0,0525).

Para IN_EQUIP_MULTIMIDIA_x, observam-se p-valores muito baixos ao explicar QT_MAT
_INF_y (p=0,0000), QT_DOC_INF_y (p=0,0000) e QT_TUR_INF_y (p=0,0000), indicando que
a disponibilidade de equipamentos multimídia pode influenciar matrículas, docentes e turmas.
Também há significância estatística em relação a IN_BANHEIRO_EI_y (p=0,0378), revelando
possível impacto de equipamentos multimídia sobre a presença de banheiros na Educação In-
fantil. Em contrapartida, não se detecta Causalidade de Granger para IN_PARQUE_INFANTIL_y
(p=0,4269) nem IN_LABORATORIO_INFORMATICA_y (p=0,2156).

No caso de IN_BANHEIRO_EI_x, os p-valores também são significativos em QT_MAT_INF

_y (p=0,0000), QT_DOC_INF_y (p=0,0000) e QT_TUR_INF_y (p=0,0000), apontando influência
sobre matrículas, docentes e turmas. Destacam-se ainda IN_EQUIP_MULTIMIDIA_y (p=0,0000),
IN_PARQUE_INFANTIL_y (p=0,0098) e IN_LABORATORIO_INFORMATICA_y (p=0,0011), o que
sugere influência dos banheiros sobre diversos recursos escolares.

Para IN_PARQUE_INFANTIL_x, os p-valores também são significativos em IN_LABORATORIO

_INFORMATICA_y (p=0,0455) e IN_EQUIP_MULTIMIDIA_y (p=0,0155), nas demais variáveis
não se observa Causalidade de Granger.

Por fim, IN_LABORATORIO_INFORMATICA_x, os p-valores também são significativos em IN

_PARQUE_INFANTIL_y (p=0,0157) e IN_EQUIP_MULTIMIDIA_y (p=0,0009). Nos demais cru-
zamentos, como matrículas, docentes, turmas ou a existência de banheiro infatil, os p-valores
não indicam associação estatisticamente significativa.

4.2 Ensino Fundamental

A Figura 4.5 ilustra o desempenho do modelo na previsão de matrículas para o Ensino Funda-
mental. Observa-se um alinhamento considerável entre as linhas de valores previstos e reais,
especialmente nos anos iniciais e finais da série histórica. Isso indica uma boa capacidade do
modelo em capturar a tendência geral das matrículas neste segmento.
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Figura 4.5: Comparação entre matrículas reais e previstas - Ensino Fundamental (Autor, 2024).

A Tabela 4.2 fornece as métricas de desempenho do modelo ao contexto do Ensino Funda-
mental e complementa a análise visual.

Métrica Valor
MAE 6534.19

RMSE 7708.74

MSE 59424611.42

R² 0.72

Tabela 4.2: Métricas de desempenho do modelo - Ensino Fundamental (Autor, 2024)

• MAE: 6534.19 (Erro Médio Absoluto). Erro médio de 1.6% (média de 400.000 matrícu-
las). Assim como no caso anterior, a média dos erros absolutos pode variar ligeiramente,
situando o erro relativo um pouco acima ou abaixo de 1.6%.

• RMSE: O RMSE de 7708.74 matrículas indica que, em média, as previsões do modelo
desviam-se dos valores reais em 7708.74 matrículas. Esta métrica penaliza erros maiores.

• MSE: O MSE de 59424611.42 representa a média dos erros quadrados das previsões,
sendo útil para comparação de modelos.

• R2: 0.72 (Coeficiente de Determinação). Explica 72% da variação dos dados de matrícu-
las.

As Figuras 4.6 e 4.7 apresentam as análises de interpretabilidade para o Ensino Funda-
mental, utilizando valores SHAP para avaliar o impacto de diferentes variáveis no número de
matrículas.
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Figura 4.6: Beeswarm Plot - Ensino Fundamental (Autor, 2024).

Figura 4.7: Feature Importance - Ensino Fundamental (Autor, 2024).

A análise revela que QT_DOC_FUND (quantidade de docentes do ensino fundamental) é a
variável mais influente. Escolas com mais docentes (pontos vermelhos) tendem a ter valores
SHAP positivos (à direita), indicando um aumento nas matrículas, enquanto escolas com me-
nos docentes (pontos azuis) apresentam valores SHAP negativos (à esquerda) ou próximos de
zero, sugerindo um impacto negativo ou nulo. A variável QT_TUR_FUND (quantidade de tur-
mas do ensino fundamental) aparece como a segunda variável mais importante, com um padrão
semelhante: mais turmas (pontos vermelhos) correlacionam-se com valores SHAP positivos,
impactando positivamente as matrículas.

A variável IN_BIBLIOTECA_SALA_LEITURA (existência de biblioteca ou sala de leitura)
surge como a terceira variável em importância. A presença de biblioteca ou sala de leitura
(pontos vermelhos) está associada a valores SHAP positivos, embora haja alguma dispersão,
sugerindo uma contribuição positiva para a atratividade da escola.

A variável QT_SALAS_EXISTENTES (quantidade de salas de aula existentes) vem na sequên-
cia, com uma influência mais moderada, mas ainda positiva: mais salas (pontos vermelhos)
tendem a valores SHAP ligeiramente positivos.
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A variável QT_FUNCIONARIOS (quantidade de funcionários) apresenta uma relação menos
clara, com pontos vermelhos e azuis distribuídos próximos ao zero, indicando um impacto baixo
ou nulo no número de matrículas. Por fim, a variável IN_EQUIP_RETROPROJETOR (existência
de retroprojetor) demonstra ser a menos influente, com a maioria dos pontos agrupada em torno
de zero, indicando impacto mínimo ou inexistente.

A Figura 4.8 apresenta os resultados da análise de Causalidade de Granger para o Ensino
Fundamental em uma representação de grafo bipartido, no qual os nós em azul representam as
variáveis independentes e os nós em laranja representam as variáveis dependente, permitindo
identificar relações temporais entre as variáveis analisadas.

Figura 4.8: Causalidade de Granger - Ensino Fundamental (Autor, 2024).

Para IN_BIBLIOTECA_SALA_LEITURA_x, observam-se p-valores abaixo de 0,05 em QT_MAT

_FUND_y (p=0,0062), QT_DOC_FUND_y (p=0,0129) e QT_TUR_FUND_y (p=0,0001), indicando
que a presença histórica de bibliotecas ou salas de leitura Granger-causa o aumento de ma-
trículas, docentes e turmas. Em contrapartida, não se verifica Causalidade de Granger es-
tatisticamente significativa em QT_SALAS_EXISTENTES_y (p=0,5143), QT_FUNCIONARIOS_y

(p=0,4274), IN_EQUIP_RETROPROJETOR_y (p=0,1460).
Para IN_EQUIP_RETROPROJETOR_x, os p-valores confirmam efeito significativo sobre QT

_MAT_FUND_y (p=0,0466), QT_SALAS_EXISTENTES_y (p=0,0001) e QT_FUNCIONARIOS_y
(p=0,0000), sugerindo que o uso de retroprojetores influi em matrículas, número de salas e
número de funcionários. Entretanto, não há evidências de Causalidade de Granger em relação
a QT_DOC_FUND_y (p=0,3504), QT_TUR_FUND_y (p=0,0907), IN_BIBLIOTECA_SALA_LEITURA
_y (p=0,3452).

Para QT_MAT_FUND_x, observam-se valores de p significativos ao explicar QT_DOC_FUND

_y (p=0,0000), QT_TUR_FUND_y (p=0,0000), IN_BIBLIOTECA_SALA_LEITURA_y (p=0,0170) e
IN_EQUIP_RETROPROJETOR_y (p=0,0175), o que indica relação de Granger-causalidade das
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matrículas sobre docentes, turmas e certos recursos de infraestrutura. Não há evidência de
Causalidade de Granger para QT_SALAS_EXISTENTES_y (p=0,1147) nem QT_FUNCIONARIOS

_y (p=0,0851).
Já QT_DOC_FUND_x se mostra relevante para QT_MAT_FUND_y (p=0,0266), IN_BIBLIOTECA

_SALA_LEITURA_y (p=0,0164) e IN_EQUIP_RETROPROJETOR_y (p=0,0112), mas não se relaci-
ona a QT_TUR_FUND_y (p=0,0710), QT_SALAS_EXISTENTES_y (p=0,0918) nem com a quanti-
dade de funcionários QT_FUNCIONARIOS_y (p=0,0656).

Para QT_TUR_FUND_x, os valores de p confirmam que turmas Granger-causam QT_MAT_FUND

_y (p=0,0006) e QT_DOC_FUND_y (p=0,0001), além de IN_BIBLIOTECA_SALA_LEITURA_y
(p=0,0000) e IN_EQUIP_RETROPROJETOR_y (p=0,0087). Por outro lado, não há Causalidade de
Granger para QT_SALAS_EXISTENTES_y (p=0,0744) e QT_FUNCIONARIOS_y (p=0,0527), que
exibem p-valores acima do limiar de significância.

Para QT_SALAS_EXISTENTES_x, observa-se relação de Granger-causalidade com as variá-
veis QT_FUNCIONARIOS_y (p=0,0298) e IN_EQUIP_RETROPROJETOR_y (p=0,0001), indicando
que a quantidade de salas existentes pode influenciar tanto o número de funcionários quanto a
adoção de retroprojetores. Em contrapartida, não há evidência de Causalidade de Granger para
QT_MAT_FUND_y, QT_DOC_FUND_y, QT_TUR_FUND_y e IN_BIBLIOTECA_SALA_LEITURA_y, cu-
jos p-valores excedem o limite de significância.

No caso de QT_FUNCIONARIOS_x, verifica-se Causalidade de Granger em relação a QT

_SALAS_EXISTENTES_y (p=0,0294) e IN_EQUIP_RETROPROJETOR_y (p=0,0000), ou seja, o his-
tórico de funcionários parece influenciar o número de salas disponíveis e a presença de retro-
projetores. Nos demais cruzamentos, como matrículas, docentes, turmas ou biblioteca/sala de
leitura, os p-valores não indicam associação estatisticamente significativa.

4.3 Ensino Médio

A Figura 4.9 ilustra o desempenho do modelo na previsão de matrículas para o Ensino Médio.
Nota-se um alinhamento expressivo entre as linhas de valores previstos e reais, revelando um
bom ajuste do modelo aos dados e sua capacidade de capturar as tendências das matrículas neste
segmento educacional.



RESULTADOS 39

Figura 4.9: Comparação entre matrículas reais e previstas - Ensino Médio (Autor, 2024).

A Tabela 4.3 fornece as métricas de desempenho do modelo aplicado especificamente aos
dados do Ensino Médio.

Métrica Valor
MAE 247.43

RMSE 271.24

MSE 73569.59

R² 0.86

Tabela 4.3: Métricas de desempenho do modelo - Ensino Médio (Autor, 2024)

• MAE: 247.43 (Erro Médio Absoluto). O modelo erra em média 247.43 matrículas (1%),
assim como nos casos anteriores, a média dos erros absolutos pode variar ligeiramente,
situando o erro relativo um pouco acima ou abaixo de 1%.

• RMSE: 271.24 (Raiz do Erro Quadrático Médio). As previsões do modelo desviam-se
dos valores reais em média 271.24 matrículas, com penalização para erros maiores.

• MSE: 73569.59 (Erro Quadrático Médio). A média dos erros quadrados das previsões é
73569.59, útil para comparação de modelos.

• R2: 0.86 (Coeficiente de Determinação). O modelo explica 86% da variabilidade dos
dados.

As Figuras 4.10 e 4.11 apresentam as análises de interpretabilidade para o Ensino Médio, utili-
zando valores SHAP para avaliar o impacto de diferentes variáveis no número de matrículas.
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Figura 4.10: Beeswarm Plot - Ensino Médio (Autor, 2024).

Figura 4.11: Feature Importance - Ensino Médio (Autor, 2024).

A análise revela que QT_TUR_MED (quantidade de turmas do ensino médio) é a variável mais
influente. Escolas com mais turmas (pontos vermelhos) tendem a ter valores SHAP positivos
(à direita), indicando um aumento nas matrículas, enquanto escolas com menos turmas (pon-
tos azuis) apresentam valores SHAP negativos (à esquerda) ou próximos de zero, sugerindo
um impacto negativo ou nulo. A variável QT_FUNCIONARIOS (quantidade de funcionários) apa-
rece como a segunda mais importante, com um padrão semelhante: mais funcionários (pontos
vermelhos) correlacionam-se com valores SHAP positivos, impactando positivamente as matrí-
culas.

A variável IN_QUADRA_ESPORTES (existência de quadra de esportes) surge como a terceira
em importância. Embora a dispersão seja menor que nas variáveis anteriores, a presença de
quadra (pontos vermelhos) está mais associada a valores SHAP positivos, sugerindo uma con-
tribuição positiva para a atratividade da escola. Já a variável QT_DOC_MED (quantidade de do-
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centes do ensino médio) apresenta uma influência mais moderada, mas ainda positiva: mais
professores (pontos vermelhos) tendem a valores SHAP ligeiramente positivos.

A variável QT_COMPUTADOR (quantidade de computadores) apresenta uma relação simi-
lar a variável anterior, porém com menor impacto no número de matrículas. A variável IN
_LABORATORIO_CIENCIAS (existência de laboratório de ciências) mostra uma influência sutil:
a presença de laboratório (pontos vermelhos) tende a valores SHAP ligeiramente positivos, mas
a dispersão é pequena. Por fim, a variável QT_COMP_ALUNO (quantidade de computadores por
aluno) demonstra ser a menos influente, com a maioria dos pontos agrupada em torno de zero,
indicando impacto mínimo ou inexistente.

A Figura 4.12 apresenta os resultados da análise de Causalidade de Granger para o En-
sino Médio em uma representação de grafo bipartido, no qual os nós em azul representam as
variáveis independentes e os nós em laranja representam as variáveis dependente, permitindo
identificar relações temporais entre as variáveis analisadas.

Figura 4.12: Causalidade de Granger - Ensino Médio (Autor, 2024).

Para QT_MAT_MED_x, verificam-se p-valores menores que 0,05 em praticamente todas as
combinações, exceto na própria QT_MAT_MED_y (p=1,0000). Assim, há evidência de Granger-
causalidade sobre QT_DOC_MED_y (p=0,0004), QT_TUR_MED_y (p=0,0040), IN_LABORATORIO
_CIENCIAS_y (p=0,0309), QT_FUNCIONARIOS_y (p=0,0008), QT_COMPUTADOR_y (p=0,0011),
QT_COMP_ALUNO_y (p=0,0000) e IN_QUADRA_ESPORTES_y (p=0,0001). Esses resultados indi-
cam que o histórico de matrículas exerce influência importante sobre docentes, turmas, funci-
onários, computadores e outros recursos, bem como na presença de laboratórios de ciências e
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quadras esportivas.
Para QT_DOC_MED_x, nota-se Granger-causalidade nas variáveis QT_MAT_MED_y (p=0,0000),

QT_TUR_MED_y (p=0,0000), IN_LABORATORIO_CIENCIAS_y (p=0,0001), QT_FUNCIONARIOS_y
(p=0,0171), QT_COMPUTADOR_y (p=0,0000) e QT_COMP_ALUNO_y (p=0,0000). Entretanto, não
há relação estatisticamente significativa com IN_QUADRA_ESPORTES_y (p=0,0748). Dessa forma,
a quantidade de docentes no Ensino Médio aparenta influenciar matrículas, turmas, laboratório
de ciências e equipamentos de TI, além do corpo de funcionários.

Quanto a IN_LABORATORIO_CIENCIAS_x, evidencia-se p-valores significativos paras todas
as demais variáveis QT_MAT_MED_y (p=0,0000), QT_DOC_MED_y (p=0,0019), QT_TUR_MED_y
(p=0,0001), QT_COMP_ALUNO_y (p=0,0126), QT_COMPUTADOR_y (p=0,0020), QT_FUNCIONARIOS
_y (p=0,0000) e IN_QUADRA_ESPORTES_y (p=0,0000). Isto indica que a presença de laboratório
de ciências possui forte influencia nos últimos anos da escola.

Quanto a QT_FUNCIONARIOS_x, evidencia-se p-valores significativos paras as variáveis QT
_MAT_MED_y (p=0,0000), QT_DOC_MED_y (p=0,0000), QT_TUR_MED_y (p=0,0012), IN_QUADRA
_ESPORTES_y (p=0,0005). QT_COMP_ALUNO_y (p=0,0013) e QT_COMPUTADOR_y (p=0,0000).
Por outro lado, não há indícios Causalidade de Granger para a variável IN_LABORATORIO

_CIENCIAS_y (p=0,2738).
Quanto a QT_TUR_MED_x, evidencia-se p-valores significativos para a variável QT_MAT_MED

_y (p=0,0001), QT_DOC_MED_y (p=0,0352), QT_COMPUTADOR_y (p=0,0033), QT_COMP_ALUNO
_y (p=0,0029) e IN_QUADRA_ESPORTES_y (p=0,0029). Por outro lado, não há Causalidade de
Granger para a variável IN_LABORATORIO_CIENCIAS_y (p=0,1532) nem QT_FUNCIONARIOS

_y (p=0,2761). Isso sugere que o número de turmas influencia variáveis como matrículas,
docentes, computadores, razão computador/aluno e quadra esportiva, mas não apresenta relação
estatisticamente significativa com o laboratório de ciências ou com a quantidade de funcionários
no período analisado.

Para QT_COMPUTADOR_x, observa-se relação de Granger-causalidade com a variável QT_MAT
_MED_y (p=0,0000), QT_DOC_MED_y (p=0,0152), QT_TUR_MED_y (p=0,0000), IN_LABORATORIO
_CIENCIAS_y (p=0,0000), QT_COMP_ALUNO_y (p=0,0031) e para IN_QUADRA_ESPORTES_y
(p=0,0007). Por outro lado, não há indícios de Causalidade de Granger para a variável QT
_FUNCIONARIOS_y (p=0,0664).

Para QT_COMP_ALUNO_x, p-valores significativos em QT_MAT_MED_y (p=0,0000), QT_TUR
_MED_y (p=0,0000), IN_LABORATORIO_CIENCIAS_y (p=0,0000), QT_COMPUTADOR_y (p=0,0033)
e IN_QUADRA_ESPORTES_y (p=0,0022) apontam influência sobre essas variáveis. Já QT_DOC

_MED_y (p=0,0766), QT_FUNCIONARIOS_y (p=0,2598).
Quanto a IN_QUADRA_ESPORTES_x, os p-valores mostram Causalidade de Granger para as

variáveis QT_MAT_MED_y (p=0,0000), QT_DOC_MED_y (p=0,0000), QT_TUR_MED_y (p=0,0000),
IN_LABORATORIO_CIENCIAS_y (p=0,0258), QT_FUNCIONARIOS_y (p=0,0011), QT_COMPUTADOR
_y (p=0,0004) e QT_COMP_ALUNO_y (p=0,0009).
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4.4 Discussão dos Resultados

Os resultados indicam que a quantidade de matrículas nos ensinos Infantil, Fundamental e Mé-
dio não depende apenas de fatores isolados, mas de um conjunto de interações entre infraes-
trutura, corpo docente e disponibilidade de recursos pedagógicos e tecnológicos. Além disso,
algumas variáveis apresentam relações entre si, o que reforça a necessidade de uma gestão es-
colar integrada, onde decisões sobre investimentos e cortes orçamentários devem considerar
impactos diretos e indiretos no funcionamento da escola.

No ensino infantil, a infraestrutura da escola se mostrou essencial não apenas para a atrativi-
dade da instituição, mas também para a manutenção de um ambiente adequado para o desenvol-
vimento das crianças. A presença de banheiros adequados à educação infantil está fortemente
associada à existência de outros recursos estruturais, como parques infantis e equipamentos
multimídia. Escolas que investem na qualidade desses espaços tendem a criar um ambiente
mais adequado para a aprendizagem e mais confiável para os pais, aumentando a procura por
matrículas. Se o gestor precisar fazer cortes orçamentários, deve evitar reduzir a qualidade
da infraestrutura básica, pois isso pode afastar os responsáveis e diminuir o número de novas
matrículas. Caso precise priorizar investimentos, os banheiros adequados e os parques infantis
devem ser mantidos, pois possuem impacto direto na escolha das famílias.

Além disso, a presença de laboratórios de informática está relacionada à disponibilidade
de equipamentos multimídia, sugerindo que escolas que adotam uma abordagem tecnológica
fazem isso de forma integrada. Esse fator demonstra que, para que a introdução de novas tecno-
logias seja eficiente, não basta apenas adquirir computadores ou dispositivos multimídia isola-
damente, mas garantir que o ambiente escolar esteja preparado para oferecer suporte adequado
ao uso desses recursos. Se um gestor deseja modernizar a escola sem comprometer recursos es-
senciais, deve planejar a integração entre laboratórios e equipamentos multimídia, assegurando
que ambos possam ser utilizados de forma complementar.

O número de turmas e docentes também exerce influência sobre a dinâmica do ensino in-
fantil, mas sua relação com a infraestrutura merece atenção. Escolas que possuem um menor
número de turmas tendem a contar com menos recursos estruturais, indicando que a capacidade
de atendimento e a qualidade da infraestrutura escolar caminham juntas. Se houver necessidade
de redução no número de turmas, é fundamental que isso seja feito sem comprometer a quali-
dade dos espaços físicos e dos recursos pedagógicos oferecidos. O gestor que precisar reduzir
turmas deve, ao mesmo tempo, buscar estratégias para manter a infraestrutura em bom estado,
pois a falta de recursos pode afetar a atratividade da escola e, consequentemente, reduzir ainda
mais as matrículas ao longo do tempo.

No ensino fundamental, os fatores que influenciam a atratividade e permanência dos alunos
incluem a disponibilidade de professores, a quantidade de turmas e a infraestrutura educacio-
nal. Além de afetar diretamente o número de matrículas, a quantidade de professores e turmas
também se relaciona com a presença de funcionários administrativos. Escolas que possuem um
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corpo técnico mais estruturado tendem a oferecer um ambiente de ensino mais organizado, o
que pode impactar indiretamente a retenção dos alunos e o desempenho escolar. Isso indica que
cortes no quadro de funcionários administrativos devem ser planejados com cautela, pois uma
equipe reduzida pode sobrecarregar os professores e comprometer a qualidade da gestão esco-
lar. Caso o gestor precise otimizar os recursos, deve priorizar a manutenção do quadro docente
e, se necessário, redistribuir funções dentro da equipe administrativa para evitar a sobrecarga
dos professores.

A presença de bibliotecas e salas de leitura demonstrou ter um impacto positivo na retenção
dos alunos, mas sua eficácia é ampliada quando combinada com o uso de equipamentos multi-
mídia. Escolas que contam com bibliotecas estruturadas e, ao mesmo tempo, possuem tecnolo-
gia de apoio, como retroprojetores e computadores, proporcionam um ambiente de aprendizado
mais dinâmico. Isso sugere que, caso haja necessidade de cortes em tecnologia, as bibliotecas
devem ser preservadas para minimizar os impactos sobre a qualidade do ensino. Se não for
possível manter o investimento total em tecnologia, o gestor pode adotar medidas como a reor-
ganização do uso de retroprojetores e a ampliação de horários de funcionamento das bibliotecas
para compensar a possível perda de outros recursos.

Além disso, foi observado que a mera existência de salas de aula não é um fator isolado
determinante para a taxa de matrículas. Para que novas salas de aula tenham um impacto posi-
tivo, elas devem ser acompanhadas de investimentos em professores e recursos pedagógicos que
garantam um ensino de qualidade. Caso o gestor precise expandir a escola, deve garantir que
a construção de novas salas seja acompanhada pela contratação de professores e pela aquisição
de materiais didáticos. Se não houver um planejamento adequado, a ampliação física pode não
gerar os resultados esperados e acabar gerando espaços subutilizados.

No ensino médio, a retenção dos alunos está fortemente associada à presença de labora-
tórios de ciências, infraestrutura esportiva e acesso à tecnologia. A existência de laboratórios
permite um ensino mais dinâmico, principalmente em disciplinas como física, química e bio-
logia, o que pode tornar o aprendizado mais atrativo e reduzir as taxas de evasão escolar. No
entanto, a eficácia desses espaços depende da disponibilidade de professores capacitados e de
uma infraestrutura tecnológica que permita a utilização plena desses ambientes. Isso indica
que, se um gestor deseja tornar o ensino médio mais envolvente sem necessariamente aumentar
o quadro de docentes, o investimento em laboratórios pode ser uma solução estratégica para me-
lhorar a qualidade do aprendizado. Caso não haja recursos para expandir todos os laboratórios,
o gestor pode focar na otimização dos espaços já existentes, garantindo que sejam utilizados
por diferentes turmas e disciplinas de forma eficiente.

O acesso à tecnologia também demonstrou ser um fator relevante para a permanência dos
alunos. A quantidade de computadores por aluno e a disponibilidade geral de computadores na
escola afetam a forma como os estudantes se relacionam com o aprendizado. Escolas que ofe-
recem melhores condições tecnológicas tendem a ter maior engajamento por parte dos alunos,
o que reforça a importância de manter esses equipamentos disponíveis. Caso haja necessidade
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de ajustes orçamentários, uma alternativa seria a reorganização do uso dos computadores em
horários compartilhados, evitando uma redução drástica no acesso à tecnologia. Se a escola
precisar reduzir o investimento em equipamentos, é recomendável buscar parcerias externas ou
iniciativas governamentais que possam suprir essa demanda sem comprometer o ensino.

A infraestrutura esportiva, representada pela presença de quadras poliesportivas, demons-
trou ter um papel significativo na retenção dos alunos. Atividades extracurriculares, como es-
portes, contribuem para o engajamento dos estudantes e para a construção de um ambiente
escolar mais atrativo. A relação entre educação e práticas esportivas sugere que cortes na in-
fraestrutura esportiva podem afetar indiretamente o desempenho e a permanência dos alunos.
Se não for possível expandir as instalações esportivas, uma alternativa seria incentivar parcerias
com espaços comunitários ou ampliar o uso de atividades extracurriculares dentro da própria
escola. Se o gestor precisar priorizar investimentos, manter quadras em bom estado e promover
eventos esportivos pode ser uma estratégia para manter os alunos engajados sem necessidade
de grandes gastos estruturais.

Diante desses achados, fica evidente que a gestão escolar deve considerar não apenas os
fatores que impactam diretamente as matrículas, mas também as conexões internas entre os di-
ferentes aspectos da escola. Se houver necessidade de reduzir custos, a prioridade deve ser a
preservação do quadro docente, da infraestrutura básica e dos espaços pedagógicos que tenham
impacto comprovado na retenção e aprendizado dos alunos. Construir novas salas sem garan-
tir professores suficientes ou cortar investimentos em laboratórios sem compensar com outras
estratégias podem gerar impactos negativos a longo prazo.

Assim, qualquer tomada de decisão deve considerar não apenas o impacto imediato, mas
também os efeitos indiretos que determinadas mudanças podem causar no funcionamento geral
da escola. O equilíbrio entre a infraestrutura, o corpo docente e os recursos tecnológicos deve
ser mantido para garantir um ambiente escolar funcional e atrativo, permitindo que os alunos
tenham acesso a um ensino de qualidade e que a escola mantenha sua capacidade de reter
estudantes ao longo dos anos.



5
Conclusão

Este estudo teve como objetivo analisar os fatores que influenciam a quantidade de matrículas
nos ensinos infantil, fundamental e médio na rede pública de Maceió, utilizando redes neu-
rais LSTM para modelagem de séries temporais e técnicas de Explainable AI, como SHAP e
Causalidade de Granger, para interpretar as variáveis mais relevantes. A partir dos dados do
Censo Escolar do INEP, cobrindo um período de dez anos, foi possível identificar padrões que
auxiliam na compreensão da dinâmica das matrículas e fornecem subsídios para uma gestão
educacional mais eficiente.

Os resultados sugerem que fatores como infraestrutura escolar, disponibilidade de professo-
res, acesso a tecnologia e oferta de atividades complementares desempenham papéis importan-
tes na decisão dos alunos e suas famílias de permanecerem na escola. Além disso, identificou-
se interdependência entre variáveis estruturais e pedagógicas, reforçando a necessidade de um
planejamento integrado para evitar cortes orçamentários que possam impactar negativamente a
retenção de alunos.

Apesar dos avanços obtidos, o estudo apresenta limitações. A análise restringiu-se à ci-
dade de Maceió, o que limita a generalização dos achados para outras regiões. Além disso, a
escolha da arquitetura LSTM, embora eficaz, poderia ser comparada com outros modelos de
aprendizado de máquina para avaliar diferenças de desempenho.

Dessa forma, recomenda-se que pesquisas futuras ampliem a análise para outras cidades de
Alagoas e estados do Brasil, considerando um conjunto de dados mais abrangente. Também
seria interessante incorporar novas variáveis socioeconômicas e demográficas, a fim de refinar
ainda mais as previsões. Além disso, o desenvolvimento de sistemas preditivos interativos
baseados em dashboards educacionais pode auxiliar gestores na tomada de decisões estratégicas
em tempo real, promovendo uma gestão mais dinâmica e orientada por dados.

Por fim, este estudo reforça a importância do uso de modelos preditivos e inteligência arti-
ficial explicável na educação, demonstrando que abordagens baseadas em aprendizado de má-
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quina podem contribuir significativamente para o planejamento educacional, auxiliando na oti-
mização de recursos e na formulação de políticas públicas mais eficazes.
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