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Resumo

Nesta dissertação, investigamos estimativas para as áreas de superfícies imersas em 3-
variedades Riemannianas com curvatura escalar positiva. Em particular, exploramos as
técnicas apresentadas por D. Stern, ver [Ste22], que faz uso dos conjuntos de nível de uma
aplicação harmônica não trivial u : M → S1. Essas técnicas são utilizadas para estabelecer
um resultado de rigidez relacionado a desigualdades sistólicas. Posteriormente, adaptamos
essa abordagem ao contexto de funções u : M → R que são soluções de uma equação
de Poisson com um potencial não-crescente. Com essa adaptação, deduzimos uma nova
desigualdade sistólica que mantém o mesmo espírito da apresentada por Stern.

Palavras-chave: Estimativas de área; Conjuntos de nível; Desigualdades sistólicas;
Equação de Poisson; Rigidez.



Abstract

In this dissertation, we investigate estimates for the areas of surfaces immersed in 3-
dimensional Riemannian manifolds with positive scalar curvature. In particular, we
explore the techniques presented by D. Stern (see [Ste22]), which utilize the level sets
of a nontrivial harmonic map u : M → S1. These techniques are employed to establish
a rigidity result related to a systolic inequality. Subsequently, we adapt this approach
to the context of functions u : M → R that are solutions of a Poisson equation with a
non-increasing potential. Through this adaptation, we derive a new systolic inequality
that preserves the same spirit as the one presented by Stern.

Keywords: Area estimates; Level sets; Systolic inequalities; Poisson equation; Rigidity.
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Introdução

Um resultado clássico em geometria diferencial, devido a Toponogov [Top63] em 1963,
afirma que, se Σ é uma superfície fechada com curvatura gaussiana positiva, K > 0, então
qualquer geodésica simples fechada γ em Σ satisfaz a seguinte estimativa:

length(γ)2 inf
Σ

(K) ≤ 4π2,

onde a igualdade ocorre se e somente se Σ é isométrica à esfera S2. Esse resultado revelou
um fenômeno interessante que conecta a positividade da curvatura com a existência de
curvas que minimizam o comprimento.

Em 1979, considerando uma 3-variedade Riemanniana M com curvatura escalar positiva,
Scal > 0, Schoen e Yau apresentaram um teorema em [SY79] que garante que qualquer
superfície Σ que minimiza área em M é homeomorfa a esfera S2 ou ao plano projetivo
RP2. O caso específico em que Σ é homeomorfa a planos projetivos que minimizam área
foi estudado em 2010 por Bray, Brendle, Eichmair e Neves no artigo [BBEN10]. Eles
definiram

A(M) := inf {Area(Σ) ; Σ ∈ F} ,

onde F denota o conjunto de todas as superfícies Σ ⊂ M tais que Σ é homeomorfa a RP2.
Com isso, obtiveram a seguinte estimativa de área:

A(M) inf
M

(Scal) ≤ 12π,

onde igualdade ocorre se e somente se M é isométrica a RP3.
No mesmo ano, Bray, Brendle, Eichmair e Neves, em [BBN10], investigaram 3-

variedades Riemannianas compactas com curvatura escalar positiva, Scal > 0, e com
segundo grupo de homotopia não trivial, π2(M) ̸= 0. Eles definiram

A(M, g) := inf
{
Area(S2, f ∗g) : f ∈ F

}
,

onde F é o conjunto de todas as aplicações suaves f : S2 → M que representam um
elemento não trivial de π2(M). E estabelecem a seguinte estimativa de área:

A(M, g) inf
M

(Scal) ≤ 8π,



onde, se a igualdade ocorrer, então o recobrimento universal de M é isométrico a um
cilindro S2 × R.

Em 2022, no artigo [Ste22], D. Stern empregou uma abordagem baseada nos conjuntos
de nível de uma aplicação harmônica u : M → S1 para estudar 3-varieades Riemannianas
fechadas, orientadas, com segundo grupo de homologia não trivial e curvatura escalar
positiva. Definindo a 2-sístole homólogica

sys2(M) := inf {Area(Σ) | Σ ⊂ M, [Σ] ̸= 0 ∈ H2(M ;Z)} ,

onde Σ são superfícies em M , ele obteve a seguinte estimativa:

sys2(M) min
M

(ScalM) ≤ 8π,

com igualdade ocorrendo se, e somente se, o recobrimento universal de M for isométrico a
um cilindro S2 × R.

Com base nesses resultados, empregando uma abordagem baseada nos conjuntos de
nível de funções u : M → R que são soluções da equação de Poisson, obtemos o seguinte
resultado:

Lema. Seja M uma 3-variedade Riemanniana fechada e orientada. Se u : M → I, com
I ⊂ R compacto, é uma solução não trivial da equação ∆u = −f(u), com f não-crescente,
então

2π
∫

t∈I
χ(Σt) ≥ 1

2

∫
t∈I

∫
Σt

(
|∇u|−2(|f(u)|−|Hess u|)2 + ScalM −f ′(u)

)
. (1)

Além disso, considerando M com segundo grupo de homologia não trivial e com
curvatura escalar limitada inferiormente, obtemos uma nova desigualdade sistólica:

Teorema. Seja M uma 3-variedade fechada, orientada e com segundo grupo de homologia
não trivial, H2(M ;Z) ̸= 0. Suponha que u : M → I, com I ⊂ R compacto, é uma solução
não trivial da equação ∆u = −f(u), com f não-crescente, e que a curvatura escalar de M

é tal que ScalM − f ′ ≥ 0. Então,

(
min

M
(ScalM) − max

I
(f ′)

)
sys2(M) ≤ 8π. (2)
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Capítulo 1

Preliminares

O objetivo principal deste capítulo é introduzir definições e resultados fundamentais da
geometria das variedades Riemannianas, os quais são essenciais para o desenvolvimento da
teoria ao longo desta dissertação. Partiremos de um ponto em que se presume conhecimento
prévio sobre variedades Riemannianas, métricas, a conexão de Levi-Civita e geodésicas.
Para um estudo mais detalhado, recomenda-se consultar: [DC19], [Pet16], [Lee18b],
[Cha84] e [Cam14].

1.1 Curvaturas

Seja M uma variedade Riemanniana de dimensão n. Denotaremos por X(M) o espaço
dos campos de vetores suaves em M , ou seja, campos cujas componentes possuem derivadas
parciais de todas as ordens, e essas derivadas são contínuas. Usaremos C∞(M) para denotar
o conjunto das funções suaves.

Definição 1.1 (Tensor de curvatura). O tensor de curvatura R de uma variedade Riema-
nianna M é uma aplicação R : X(M) × X(M) × X(M) → X(M), definida por:

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, Z ∈ X(M), (1.1)

onde ∇ é a conexão de Levi-Civita de M .

Proposição 1.2. Sejam W, X, Y, Z ∈ X(M) e f, g ∈ C∞(M). O tensor de curvatura R

goza das seguintes propriedades:

a) R(X, Y )Z = −R(Y, X)Z;

b) R(X, Y )(Z + W ) = R(X, Y )Z + R(X, Y )W ;

c) R(fX + gY, Z)W = fR(X, Z)W + gR(Y, Z)W ;

d) R(X, fY + gZ)W = fR(X, Y )W + gR(X, Z)W ;
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e) R(X, Y )fZ = fR(X, Y )Z.

Demonstração. As demonstrações dos itens a) e b) seguem direto da definição. Vamos
demonstrar o item c), usaremos a definição de R para obter:

R(fX + gY, Z) = ∇fX+gY ∇Z − ∇Z∇fX+gY − ∇[fX+gY,Z].

Desenvolvendo cada termo do lado direito da igualdade, obtemos

∇fX+gY ∇Z = f∇X∇Z + g∇Y ∇Z ;

∇Z∇fX+gY = f∇Z∇X + Z(f)∇X + g∇Z∇Y + Z(g)∇Y + g∇Z∇Y ;

∇[fX+gY,Z] = f∇[X,Z] − Z(f)∇X + g∇[Y,Z] − Z(g)∇Y .

Reagrupando os termos, vem que

R(fX + gY, Z) = f(∇X∇Z − ∇Z∇X − ∇[X,Z]) + g(∇Y ∇Z − ∇Z∇Y − ∇[Y,Z])

= fR(X, Z) + gR(Y, Z).

A demonstração do item d) procede de maneira análoga. Por fim, para demonstrar o item
e), observe que

∇X∇Y (fZ) = ∇X(f∇Y Z + Y (f)Z)

= f∇X∇Y Z + X(f)∇Y Z + Y (f)∇XZ + X(Y (f))Z.

Portanto,

∇X∇Y (fZ) − ∇Y ∇X(fZ) = f(∇X∇Y − ∇Y ∇X)Z + (XY − Y X)(f)Z,

ou ainda,

R(X, Y )fZ = f∇X∇Y Z − f∇Y ∇XZ + ([X, Y ] (f))Z − f∇[X,Y ]Z + ([Y, X] (f))Z

= fR(X, Y )Z.

Quando estudamos o tensor de curvatura no contexto de uma métrica Riemanniana
⟨·, ·⟩ em M , nos deparamos com uma série de simetrias e assimetrias. No resultado a
seguir, trataremos de duas assimetrias relevantes para o nosso estudo.

Proposição 1.3. Seja M uma variedade Riemanniana munida com um métrica ⟨·, ·⟩.
Dados W, X, Y, Z ∈ X(M), temos as seguintes propriedades:

a) ⟨R(X, Y )Z, W ⟩ = −⟨R(Y, X)Z, W ⟩;
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b) ⟨R(X, Y )Z, W ⟩ = −⟨R(X, Y )W, Z⟩.

Demonstração. O item a) é imediato. Já o item b) é equivalente a ⟨R(X, Y )Z, Z⟩ = 0, o
que provaremos a seguir. Inicialmente, temos que

⟨R(X, Y )Z, Z⟩ = ⟨∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, Z⟩.

Perceba que
⟨∇X∇Y Z, Z⟩ = X⟨∇Y Z, Z⟩ − ⟨∇Y Z, ∇XZ⟩,

⟨∇Y ∇XZ, Z⟩ = Y ⟨∇XZ, Z⟩ − ⟨∇XZ, ∇Y Z⟩

e
⟨∇[X,Y ]Z, Z⟩ = 1

2 [X, Y ] ⟨Z, Z⟩.

Logo,

⟨R(X, Y )Z, Z⟩ = X⟨∇Y Z, Z⟩ − Y ⟨∇XZ, Z⟩ − 1
2 [X, Y ] ⟨Z, Z⟩

= 1
2X(Y ⟨Z, Z⟩) − 1

2Y (X⟨Z, Z⟩) − 1
2 [X, Y ] ⟨Z, Z⟩

= 1
2 [X, Y ] ⟨Z, Z⟩ − 1

2 [X, Y ] ⟨Z, Z⟩ = 0.

Como queríamos demonstrar.

Para menções futuras, é conveniente expressar o tensor curvatura R em um sistema de
coordenadas (x1, . . . , xn) em torno de um ponto p ∈ M . Indicando os vetores coordenados
ei = ∂

∂xi , temos que

R(ei, ej)ek =
∑

l

Rl
ijkel,

onde Rl
ijk = ⟨R(ei, ej)ek, el⟩. Perceba que Rl

ijk = −⟨R(ei, ej)el, ek⟩ = −∑
l Rk

ijl. Daí,
podemos escrever

R(ei, ej)ek = −
∑

l

Rk
ijlel. (1.2)

Intimamente relacionado com o tensor de curvatura de uma variedade Riemanniana
está o tensor de Ricci, que passamos a definir por:

Definição 1.4 (Tensor de Ricci). Dado um ponto p ∈ M e os vetores u, v, w ∈ TpM . O
tensor de Ricci em p é definida como o traço tr(w → R(w, u)v), isto é,

Ric(u, v) =
n∑

i=1
⟨R(ei, u)v, ei⟩,
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onde {e1, . . . , en} é uma base ortonormal para TpM .

Da linearidade de R e da métrica ⟨·, ·⟩, temos que o tensor de Ricci é uma aplicação
multilinear. Além disso, note que

Ric(u, v) =
n∑

i=1
⟨R(ei, u)v, ei⟩ =

n∑
i=1

⟨R(u, ei)ei, v⟩ = ⟨
n∑

i=1
R(u, ei)ei, v⟩.

Daí, definimos a aplicação

Ric(u) =
n∑

i=1
R(u, ei)ei,

utilizada para analisar a curvatura em uma direção específica na variedade. Esta aplicação
será empregada para introduzirmos a seguinte definição:

Definição 1.5 (Curvatura escalar). Dado um ponto p ∈ M , a curvatura escalar de M em
p é definida como o traço tr(u → Ric(u)), ou seja,

Scal(p) =
n∑

j=1
⟨Ric(ej), ej⟩ =

n∑
i,j=1

⟨R(ej, ei)ei, ej⟩,

onde {e1, . . . , en} é uma base ortonormal para TpM .

1.2 Imersões isométricas

Denotaremos por Σ e M variedades Riemannianas de dimensões m e n, respectivamente.
Uma aplicação suave φ : Σ → M é chamada de imersão quando a sua diferencial
dφp : TpΣ → Tφ(p)M é injetiva para todo p ∈ Σ. O número k = n − m é chamado de
codimensão de φ. Usualmente, nos referimos a φ(Σ) como uma subvariedade imersa de M

e denotamos Σ ⊂ M .

Definição 1.6 (Imersão isométrica). Uma imersão φ : Σ → M entre variedades Rieman-
nianas com métricas ⟨·, ·⟩Σ e ⟨·, ·⟩M é dita ser uma imersão isométrica quando

⟨u, v⟩Σ = ⟨dφp(u), dφp(v)⟩M ,

para todo p ∈ Σ e u, v ∈ TpΣ.

Perceba que, quando ocorre uma imersão isométrica, a métrica Riemanniana em M

induz naturalmente uma métrica Riemanniana em Σ. Essa nova métrica é chamada de
métrica induzida por φ. Quando não houver perigo de confusão, denotaremos as métricas
de Σ e M por ⟨·, ·⟩.
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Para cada ponto p ∈ Σ, o produto interno do espaço TpM induz a seguinte decomposição
ortogonal:

TpM = TpΣ ⊕ (TpΣ)⊥,

onde (TpΣ)⊥ denota o complemento ortogonal de TpΣ em TpM .
Além disso, a imersão permite estender um campo local de vetores em Σ a um campo

local de vetores em M . Em outras palavras, para cada X ∈ X(Σ), existe X ∈ X(M) tal
que X = dφp(X). Nesse contexto, diremos que X é a extensão de X a M via imersão φ.

Para demonstração do resultado a seguir, é útil notar que, dado f ∈ C∞(Σ), pela
linearidade do diferencial dφp, temos fX = dφpfX = fdφpX = fX.

Proposição 1.7. Sejam φ : Σ → M uma imersão isómetrica, ∇ e ∇ as conexões de
Levi-Civita de Σ e M , respectivamente. Para X, Y ∈ X(Σ), temos

∇XY = (∇XY )

⊥

, (1.3)

onde (·)

⊥

é a projeção ortogonal do fibrado TM|Σ sobre o fibrado TΣ.

Demonstração. Pela unicidade da conexão de Levi-Civita, basta mostrar que (1.3) é uma
conexão afim, simétrica e compatível com a métrica ⟨·, ·⟩Σ.

i) É uma conexão linear. De fato, sejam X, Y, Z ∈ X(Σ) e f, g ∈ C∞(Σ), então valem
as seguintes propriedades:

∇fX+gY Z = (∇fX+gY Z)

⊥

= (f∇XZ + g∇Y Z)

⊥

= f(∇XZ)

⊥

+ g(∇Y Z)

⊥

= f∇XZ + g∇Y Z;

∇X(Y + Z) = (∇X(Y + Z))

⊥

= (∇XY + ∇XZ)

⊥

= (∇XY )

⊥

+ (∇XZ)

⊥

= ∇XY + ∇XZ;

∇X(fY ) = (∇XfY )

⊥

= (f∇XY )

⊥

+ (X(f)Y )

⊥

= f(∇XY )

⊥

+ X(f)Y

= f∇XY + X(f)Y.

ii) É simétrica. Com efeito,

∇XY − ∇Y X = (∇XY )

⊥

− (∇Y X)

⊥

= (∇XY − ∇Y X)

⊥

=
[
X, Y

] ⊥

= [X, Y ] .
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iii) É compatível com a métrica ⟨·, ·⟩Σ. De fato,

X⟨Y, Z⟩Σ = X⟨Y , Z⟩M = ⟨∇XY , Z⟩M + ⟨Y , ∇XZ⟩M

= ⟨(∇XY )⊥ + (∇XY )

⊥

, Z⟩M + ⟨Y , (∇XZ)⊥ + (∇XZ)

⊥

⟩M

= ⟨(∇XY )

⊥

, Z⟩M + ⟨Y , (∇XZ)

⊥

⟩M

= ⟨∇XY, Z⟩Σ + ⟨Y, ∇XZ⟩Σ.

Como queríamos demonstrar.

Sejam X, Y ∈ X(Σ). Observe que se X1 e X2 são extensões de X a M e Y 1 e Y 2 são
extensões de Y a M , então

∇X1
Y 1 − ∇X2

Y 1 = ∇X1−X2
Y 1 = 0,

pois X1 − X2 = 0 em Σ. Como também,

∇X1
Y 1 − ∇X1

Y 2 = ∇X1
(Y 1 − Y 2) = 0,

pois Y 1 − Y 2 = 0 ao longo de uma trajetória de X. Daí segue que

∇X1
Y 1 = ∇X2

Y 2.

Portanto, escrevendo ∇XY para denotar ∇XY , onde X e Y denotam extensões quaisquer
de X e Y a M , obtemos um campo vetorial bem definido ∇XY ∈ TM|Σ .

1.2.1 Segunda forma fundamental

Seja φ : Σ → M uma imersão isométrica. Para as conexões ∇ e ∇, respectivamente,
de M e Σ, temos

∇XY = (∇XY )

⊥

+ (∇XY )⊥ = ∇XY + (∇XY )⊥, X, Y ∈ X(Σ),

onde (·)⊥ é a projeção ortogonal do fibrado tangente TM|Σ sobre o fibrado normal TΣ⊥.
Escrevendo α(X, Y ) := (∇XY )⊥, definimos a segunda forma fundamental de φ como a
aplicação bilinear simétrica α : X(Σ) × X(Σ) → X(Σ)⊥ dada por

α(X, Y ) = ∇XY − ∇XY.
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A prova de que α é bilinear segue direto das propriedades de uma conexão linear. A prova
de que α é simétrica também é direta, uma vez que

α(X, Y ) − α(Y, X) = (∇XY )⊥ − (∇Y X)⊥ = [X, Y ]⊥ = 0.

Seja ∇XN a derivada covariante de um campo normal N ∈ X(Σ)⊥ na direção de um
campo tangente X ∈ X(Σ). Pela decomposição ortogonal, podemos escrever

∇XN = (∇XN )

⊥

+ (∇XN )⊥

Definindo AN X := −(∇XN )

⊥

e ∇⊥
XN := (∇XN )⊥, obtemos a equação de Weingarten:

∇XN = −AN X + ∇⊥
XN . (1.4)

Definimos ainda o operador de Weingarten da imersão φ na direção N , como sendo o
operador AN : X(M) → X(M), definido por X 7→ AN X. O operador de Weingarten se
relaciona com a segunda forma fundamental a partir do seguinte resultado:

Proposição 1.8. Se X, Y ∈ X(Σ) e N ∈ X(Σ)⊥, então

⟨AN X, Y ⟩ = ⟨α(X, Y ), N ⟩. (1.5)

Demonstração. Inicialmente observe que X⟨Y, N ⟩ = 0, pois ⟨Y, N ⟩ = 0. Daí,

⟨∇XY, N ⟩ + ⟨∇XN , Y ⟩ = 0

e como ⟨(∇XY )

⊥

, N ⟩ = 0, segue que

−⟨∇XN , Y ⟩ = ⟨∇XY − (∇XY )

⊥

, N ⟩ = ⟨∇XY − ∇XY, N ⟩ = ⟨α(X, Y ), N ⟩.

Por outro lado, temos

−⟨∇XN , Y ⟩ = −⟨(∇XN )

⊥

+ (∇XN )⊥, Y ⟩ = −⟨(∇XN )

⊥

, Y ⟩ = ⟨AN X, Y ⟩.

Logo, ⟨AN X, Y ⟩ = ⟨α(X, Y ), N ⟩, como desejado.

Segue direto de (1.5) e da simétria da segunda forma fundamental, que o operador de
Weingarten é auto-adjunto. De fato,

⟨AN X, Y ⟩ = ⟨α(X, Y ), N ⟩ = ⟨α(Y, X), N ⟩ = ⟨AN Y, X⟩.
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1.2.2 As equações fundamentais

Para referências posteriores, precisamos discutir algumas relações entre a curvatura
intrínseca e extrínseca de uma subvariedade em uma variedade ambiente. Uma ferramenta
essencial para tal discussão é a igualdade

∇XY = ∇XY + α(X, Y ), (1.6)

conhecida na literatura como fórmula de Gauss. Por meio dela, conseguimos relacionar
o tensor de curvatura RM da variedade M com o tensor de curvatura RΣ da variedade
Σ. Com efeito, se φ : Σ → M é uma imersão isométrica e X, Y, Z ∈ X(Σ), podemos usar
(1.6), para reescrever (1.1) da seguinte forma:

RM(X, Y )Z =∇X(∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z

=∇X(∇Y Z + α(Y, Z)) − ∇Y (∇XZ + α(X, Z)) − (∇[X,Y ]Z + α([X, Y ] , Z))

=∇X∇Y Z + ∇Xα(Y, Z) − ∇Y ∇XZ − ∇Y α(X, Z) − ∇[X,Y ]Z

− α((∇XY − ∇Y X), Z)

=∇X∇Y Z + α(X, ∇Y Z) + ∇Xα(Y, Z) − ∇Y ∇XZ − α(Y, ∇XZ)

− ∇Y α(X, Z) − ∇[X,Y ]Z − α(∇XY, Z) + α(∇Y X, Z)

Reagrupando os termos, temos

RM(X, Y )Z =RΣ(X, Y )Z + {∇Xα(Y, Z) − α(∇XY, Z) − α(Y, ∇XZ)}

− {∇Y α(X, Z) − α(∇Y X, Z) − α(X, ∇Y Z)}.

Aplicando a equação de Weingarten (1.4), segue que

RM(X, Y )Z =RΣ(X, Y )Z + {−Aα(Y,Z)X + ∇⊥
Xα(Y, Z) − α(∇XY, Z) − α(Y, ∇XZ)}

− {−Aα(X,Z)Y + ∇⊥
Y α(X, Z) − α(∇Y X, Z) − α(X, ∇Y Z)}

=RΣ(X, Y )Z + {∇⊥
Xα(Y, Z) − α(∇XY, Z) − α(Y, ∇XZ)}

− {∇⊥
Y α(X, Z) − α(∇Y X, Z) − α(X, ∇Y Z)} + Aα(X,Z)Y − Aα(Y,Z)X.

Definindo o operador (∇⊥
Xα) : X(Σ) × X(Σ) → X(Σ)⊥, pondo

(∇⊥
Xα)(Y, Z) = ∇⊥

Xα(Y, Z) − α(∇XY, Z) − α(Y, ∇XZ).
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Obtemos,

RM(X, Y )Z =RΣ(X, Y )Z + (∇⊥
Xα)(Y, Z) − (∇⊥

Y α)(X, Z)

+ Aα(X,Z)Y − Aα(Y,Z)X. (1.7)

A partir de (1.7) obtemos os itens a) e b) a seguir, conhecidos na literatura como as
equações fundamentais de Gauss e Codazzi.

Proposição 1.9. Se φ : Σ → M é uma imersão isométrica, e W, X, Y, Z ∈ X(Σ) e
N ∈ X(Σ)⊥, então

a) (Gauss). ⟨RM(X, Y )Z, W ⟩ = ⟨RΣ(X, Y )Z, W ⟩ + ⟨Aα(X,Z)Y, W ⟩ − ⟨Aα(Y,Z)X, W ⟩;

b) (Codazzi). ⟨RM(X, Y )Z, N ⟩ = ⟨(∇⊥
Xα)(Y, Z) − (∇⊥

Y α)(X, Z), N ⟩.

Demonstração. O resultado segue direto da equação (1.7), para obter a equação de Gauss
basta tomar o produto com o campo tangente W , para obter a equação de Codazzi, basta
tomar o produto com o campo normal N .

Observe ainda que, utilizando (1.5), podemos reescrever a Equação de Gauss, pondo:

⟨RM(X, Y )Z, W ⟩ =⟨RΣ(X, Y )Z, W ⟩ + ⟨α(Y, W ), α(X, Z)⟩

− ⟨α(X, W ), α(Y, Z)⟩. (1.8)

1.2.3 Hipersuperfícies

Seja Σ ⊂ M uma subvariedade imersa de M . Quando a codimensão da imersão é igual
a 1, dizemos que Σ é uma hipersuperfície de M . Além disso, para o que se segue, usaremos
o termo hipersuperfície 2-lados para nos referirmos a hipersuperfícies que possuem um
campo normal unitário contínuo globalmente definido. No caso particular em que Σ é uma
hipersuperfície 2-lados, temos que dim((TpΣ)⊥) = 1. Logo, existe um único campo normal
unitário N ∈ X(Σ)⊥. Neste caso, denotaremos o operador de Weingarten simplesmente
por A := AN.

Já que α(X, Y ) ∈ X(Σ)⊥, existe uma constante não nula c0 ∈ R tal que α(X, Y ) = c0N.
Perceba que de (1.5) segue que

c0 = ⟨α(X, Y ), N⟩ = ⟨AX, Y ⟩.

Analogamente, existem c1, c2 ∈ R tais que

c1 = ⟨α(Y, W ), N⟩ = ⟨AY, W ⟩;

c2 = ⟨α(X, Z), N⟩ = ⟨AX, Z⟩.
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Logo, vale que

⟨α(Y, W ), α(X, Z)⟩ = ⟨c1N, c2N⟩ = c1c2 = ⟨AY, W ⟩⟨AX, Z⟩.

Da mesma forma, temos

⟨α(X, W ), α(Y, Z)⟩ = ⟨AX, W ⟩⟨AY, Z⟩.

Substituindo estes termos na equação (1.8), obtemos uma nova expressão para a
equação de Gauss:

⟨RM(X, Y )Z, W ⟩ =⟨RΣ(X, Y )Z, W ⟩ + ⟨AY, W ⟩⟨AX, Z⟩ − ⟨AX, W ⟩⟨AY, Z⟩.

Para o resultado a seguir, definiremos a curvatura média de φ em p ∈ Σ, como sendo o
traço do operador de Weingarten, ou seja,

H = tr(X → AX) =
n−1∑
i=1

⟨Aei, ei⟩,

onde {e1, . . . , en−1} é uma base ortonormal para TpΣ.

Proposição 1.10. Sejam Σ uma hipersuperfície de M e u, v ∈ TpΣ. Se Σ é uma
subvariedade 2-lados, então

RicΣ(u, v) = RicM(u, v) − ⟨RM(u, ν)ν, v⟩ + H⟨Au, v⟩ − ⟨Au, Av⟩, (1.9)

onde ν ∈ (TpΣ)⊥ é o vetor normal unitário.

Demonstração. Seja {e1, . . . , en = ν} uma base ortonormal para TpM , temos

RicM(u, v) =
n∑

i=1
⟨RM(u, ei)ei, v⟩

=⟨RM(u, ν)ν, v⟩ +
n−1∑
i=1

⟨RM(u, ei)ei, v⟩

=⟨RM(u, ν)ν, v⟩ +
n−1∑
i=1

(
⟨RΣ(u, ei)ei, v⟩ + ⟨Aei, v⟩⟨Au, ei⟩

− ⟨Au, v⟩⟨Aei, ei⟩
)

=⟨RM(u, ν)ν, v⟩ + RicΣ(u, v) + ⟨Au, Av⟩ − ⟨Au, v⟩H.

Reagrupando os termos obtemos o resultado desejado.

Com este resultado, conseguimos chegar a uma expressão conhecida como truque de
Schoen-Yau bastante utilizada no contexto de hipersuperfícies, ela relaciona a curvatura
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escalar da variedade ambiente com a curvatura escalar da hipersuperfície.

Proposição 1.11 (Truque de Schoen-Yau). Se Σ ⊂ M é uma hipersuperficie 2-lados,
então

ScalΣ = ScalM −2 RicM(ν, ν) + H2 − |A|2. (1.10)

Demonstração. Tomando uma base ortonormal {e1, . . . , en = ν} para TpM , por (1.9)
temos que

RicΣ(ei, ei) = RicM(ei, ei) − ⟨RM(ei, ν)ν, ei⟩ + H⟨Aei, ei⟩ − ⟨Aei, Aei⟩.

Fazendo o somatório, temos

ScalΣ = ScalM −2 RicM(ν, ν) + H2 − |A|2.

Como queriamos demonstrar.

1.3 Operadores diferenciais em variedades

1.3.1 Gradiente; Divergência; Laplaciano; Hessiano

Definição 1.12 (Gradiente). Dada uma função suave f ∈ C∞(M), definimos o gradiente
de f como sendo o único campo vetorial ∇f que satisfaz

⟨∇f, X⟩ = df(X) = X(f), (1.11)

para todo X ∈ X(M).

Proposição 1.13. Para funções suaves f, g ∈ C∞(M), valem as seguintes propriedades:

a) ∇(f + g) = ∇f + ∇g;

b) ∇(fg) = g∇f + f∇g.

Demonstração. Tomando um campo X ∈ X(M), temos que

⟨∇(f + g), X⟩ = X(f + g) = X(f) + X(g) = ⟨∇f, X⟩ + ⟨∇g, X⟩ = ⟨∇f + ∇g, X⟩.

Da mesma forma, segue que

⟨∇(fg), X⟩ = X(fg) = gX(f) + fX(g) = g⟨∇f+, X⟩ + f⟨∇g, X⟩ = ⟨g∇f + f∇g, X⟩.

Logo, pela arbitráriedade de X, fica demostrado a proposição.
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Ao expressar o campo X ∈ X(M) em um referencial ortonormal {e1, . . . , en} em torno
de um ponto p ∈ M , temos X = ∑n

j=1 Xjej. Assim,

X(f) =
n∑

j=1
Xjej(f) =

n∑
i,j=1

⟨Xjej, ei(f)ei⟩ = ⟨X,
n∑

i=1
ei(f)ei⟩.

Dessa forma, pela definição de gradiente, podemos escrever

∇f =
n∑

i=1
ei(f)ei.

Definição 1.14 (Divergência). Dado um campo suave X ∈ X(M). A divergência de X no
ponto p ∈ M é a função suave div X : M → R definida pelo traço div X(p) = tr{Y (p) →
(∇Y X)(p)}, isto é,

div X =
n∑

i=1
⟨∇ei

X, ei⟩,

onde {e1, . . . , en} é um referencial ortonormal em torno de um ponto p ∈ M .

Proposição 1.15. Para X, Y ∈ X(M) e f ∈ C∞(M), a divervgência de um campo
vetorial possui as seguintes propriedades:

a) div (X + Y ) = div X + div Y ;

b) div(fX) = fdiv X + ⟨∇f, X⟩.

Demonstração. O item a) segue direto da definição de divergência e da linearidade da
métrica. Para o item b), temos

div(fX) =
n∑

i=1
⟨∇ei

fX, ei⟩ =
n∑

i=1
⟨ei(f)X + f∇ei

X, ei⟩

=
n∑

i=1
⟨ei(f)ei, X⟩ +

n∑
i=1

f⟨∇ei
X, ei⟩

= ⟨
n∑

i=1
ei(f)ei, X⟩ + f

n∑
i=1

⟨∇ei
X, ei⟩

= ⟨∇f, X⟩ + fdiv X.

Teorema 1.16 (Teorema da Divergência). Seja M uma variedade Riemanniana compacta
e orientada com bordo. Para qualquer X ∈ X(M), temos

∫
M

div(X) dVM =
∫

∂M
⟨X, N⟩dVMg̃,

onde N é o campo vetorial normal unitário e g̃ é a métrica Riemanniana induzida em ∂M .
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Demonstração. Ver Teorema 16.32 de [Lee12].

No caso em que M variedade Riemanniana compacta e orientada sem bordo (∂M = 0),
o teorema implica que

∫
M

div(X) dVM = 0.

Definição 1.17 (Laplaciano de Beltrami). Dada uma função suave f ∈ C∞, definimos o
laplaciano de Beltrami de f como sendo a função suave ∆f , dada por

∆f = div(∇f). (1.12)

Ao tomar X = ∇f , com f ∈ C∞(M), segue do Teorema da Divergência que
∫

M
∆f dVM = 0. (1.13)

Proposição 1.18. Sejam f, g ∈ C∞, vale que

∆(fg) = f∆g + g∆f + 2⟨∇f, ∇g⟩.

Demonstração. De fato, pela Proposição 1.13 e Preposição 1.15, segue que

∆(fg) = div(∇(fg)) = div(f∇g + g∇f)

= div(f∇g) + div(g∇f)

= (fdiv(∇g) + ⟨∇f, ∇g⟩) + (gdiv(∇f) + ⟨∇g, ∇f⟩)

= f∆g + g∆f + 2⟨∇f, ∇g⟩.

Um referencial ortonormal {e1, . . . , en} em um aberto U ⊂ M é dito geodésico em
p ∈ M quando (∇ei

ej)(p) = 0 para todo 1 ≤ i, j ≤ n.
Fixado p ∈ M e tomando {e1, . . . , en} um referencial ortonormal em uma vizinhança

U ⊂ M de p que é geodésico em p, temos que

∆f = div(∇f) =
n∑

i=1
⟨∇ei

∇f, ei⟩ =
n∑

i=1
(ei⟨∇f, ei⟩ − ⟨∇f, ∇ei

ei)⟩)

=
n∑

i=1
ei⟨∇f, ei⟩ =

n∑
i=1

ei⟨
n∑

j=1
ej(f)ej, ei⟩ =

n∑
i=1

ei(ei(f)).
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Definição 1.19 (Hessiano). Dada uma função suave f ∈ C∞(M), definimos o hessiano
de f como sendo o tensor Hess f : X(M) × X(M) → R, definido por

(Hess f)(X, Y ) = ⟨∇X∇f, Y ⟩,

para todo X, Y ∈ X(M).

Observe que o hessiano é um tensor símetrico. Com efeito,

(Hess f)(X, Y ) = ⟨∇X∇f, Y ⟩ = X⟨∇f, Y ⟩ − ⟨∇f, ∇XY ⟩

= X(Y (f)) − ∇XY (f) (cf. (1.11))

= Y (X(f)) + [X, Y ] (f) − ∇Y X(f)

= Y (X(f)) − ∇Y X(f)

= Y ⟨∇f, X⟩ − ⟨∇f, ∇Y X⟩

= (Hess f)(Y, X).

Outra propriedade interessate do hessiano é que seu traço corresponde ao operador
laplaciano. De fato, seja {e1, . . . , en} um referencial ortonormal, temos que

tr(Hess f) =
n∑

i=1
(Hess f)(ei, ei) =

n∑
i=1

⟨∇ei
∇f, ei⟩ = div(∇f) = ∆f.

1.3.2 Desigualdade de Kato e Fórmula de Bochner

Sejam |∇f | e |Hess f | as normas do vetor gradiente e do operador hessiano, respectiva-
mente. Tomando um referencial ortonormal {e1, . . . , en}, temos que

|∇f |2=
n∑

i=1
= (ei(f))2 e |Hess f |2=

n∑
i,j=1

(⟨∇ei
∇f, ej⟩)2.

Para referências futuras neste trabalho, destacamos que

|∇f |2=
∑

i

(ei(f))2 =
∑

i

⟨∇f, ei⟩2 =
∑

i

(df(ei))2 = |df |2. (1.14)

Agora, vamos retomar o foco no tema principal desta subseção:

Proposição 1.20 (Desigualdade de Kato). Dada uma função suave f ∈ C∞(M), vale a
seguinte desigualde

|Hess f |2−|∇|∇f ||2≥ 0. (1.15)

Demonstração. Inicialmente, observe que se ∇f = 0 o resultado é trivial, considere então
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∇f ̸= 0. Tome um referencial ortonormal {e1, . . . , en} com e1 = ∇f
|∇f | e escreva

|∇|∇f ||2=
n∑

i=1
(ei(|∇f |))2 = (e1(|∇f))2 +

n∑
i=2

(ei(|∇f |))2.

Perceba que

(e1(|∇f |))2 =
(
e1(
√

⟨∇f, ∇f⟩)
)2

=
( 1

|∇f |
⟨∇e1∇f, ∇f⟩

)2
= (Hess(e1, e1))2.

Por outro lado, temos

n∑
i=2

(ei(|∇f |))2 =
n∑

i=2

(
ei(
√

⟨∇f, ∇f⟩)
)2

=
n∑

i=2

( 1
|∇f |

⟨∇ei
∇f, ∇f

)2

=
n∑

i=2
(⟨∇ei

∇f, e1⟩)2 =
n∑

i=2
(Hess f(ei, e1))2.

Logo,

|∇|∇f ||2= (Hess(e1, e1))2 +
n∑

i=2
(Hess f(ei, e1))2. (1.16)

Agora, olhando para |Hess f |2, podemos ver que

|Hess f |2 =
n∑

i,j=1
(⟨∇ei

∇f, ej⟩)2 =
n∑

i=1
(⟨∇ei

∇f, e1⟩)2 +
n∑

i=1
j=2

(⟨∇ei
∇f, ej⟩)2

= (⟨∇e1∇f, e1⟩)2 +
n∑

i=2
(⟨∇ei

∇f, e1⟩)2 +
n∑

i=1
j=2

(⟨∇ei
∇f, ej⟩)2

= (Hess(e1, e1))2 +
n∑

i=2
(Hess f(ei, e1))2 +

n∑
i=1
j=2

(⟨∇ei
∇f, ej⟩)2.

Pela a expressão (1.16), segue que

|Hess f |2= |∇|∇f ||2+
n∑

i=1
j=2

(⟨∇ei
∇f, ej⟩)2 ≥ |∇|∇f ||2.

Daí, cocluimos que |Hess f |2−|∇|∇f ||2≥ 0.

Observe que da definição Hess f(X, Y ) = ⟨∇X∇f, Y ⟩, utilizando um referencial orto-
normal, podemos escrever ∇ei

∇f = ∑n
j=1⟨∇ei

∇f, ej⟩ej, daí vale

|Hess f |2=
n∑

i,j=1
(⟨∇ei

∇f, ej⟩)2 =
n∑

i=1
(∇ei

∇f)2 = |∇∇f |2. (1.17)
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Proposição 1.21 (Fórmula de Bochner). Se f ∈ C∞(M), então vale

1
2∆|∇f |2= Ric(∇f, ∇f) + ⟨∇f, ∇(∆f)⟩ + |Hess f |2. (1.18)

Demonstração. Fixe p ∈ M e tome (e1, . . . , en) um referencial ortonormal, geodésico em
p. Então, temos em p que

1
2∆|∇f |2 = 1

2 tr(Hess|∇f |2) = 1
2

n∑
i=1

( Hess|∇f |2)(ei, ei)

= 1
2

n∑
i=1

ei(ei⟨∇f, ∇f⟩) =
n∑

i=1
ei⟨∇ei

∇f, ∇f⟩

=
n∑

i=1
⟨∇ei

∇ei
∇f, ∇f⟩ + |∇∇f |2

=
n∑

i=1
⟨∇ei

∇ei
∇f, ∇f⟩ + |Hess f |2 (1.19)

Agora, para X ∈ X(M) temos que

n∑
i=1

⟨R(X, ei)∇f, ei⟩ =
n∑

i=1
⟨∇X∇ei

∇f, ei⟩ −
n∑

i=1
⟨∇ei

∇X∇f + ∇[X,ei]∇f, ei⟩. (1.20)

Como o referencial é geodésico em p, temos que (∇Xei)(p) = 0, para todo 1 ≤ i ≤ n, de
sorte que

n∑
i=1

⟨∇X∇ei
∇f, ei⟩ =

n∑
i=1

(X⟨∇ei
∇f, ei⟩ − ⟨∇f, ∇Xei⟩) = X(∆f) = ⟨X, ∇(∆f)⟩ (1.21)

em p. Utilizando novamente que o referencial é geodésico em p, juntamente com o fato de
Hess f ser um operador símetrico, obtemos sucessivamente, em p,

n∑
i=1

⟨∇ei
∇X∇f + ∇[X,ei]∇f, ei⟩

=
n∑

i=1

(
ei⟨∇X∇f, ei⟩ − ⟨∇X∇f, ∇ei

ei⟩ + ⟨∇[X,ei]∇f, ei⟩
)

=
n∑

i=1
(ei⟨∇ei

∇f, X⟩ + ⟨∇ei
∇f, [X, ei]⟩)

=
n∑

i=1
(⟨∇ei

∇ei
∇f, X⟩ + ⟨∇ei

∇f, ∇ei
X⟩ + ⟨∇ei

∇f, ∇Xei − ∇ei
X⟩)

=
n∑

i=1
(⟨∇ei

∇ei
∇f, X⟩. (1.22)
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Substituindo (1.21) e (1.22) em (1.20), segue que

n∑
i=1

⟨R(X, ei)∇f, ei⟩ = ⟨X, ∇(∆f)⟩ −
n∑

i=1
(⟨∇ei

∇ei
∇f, X⟩. (1.23)

Em particular,

n∑
i=1

⟨∇ei
∇ei

∇f, X⟩ = ⟨X, ∇(∆f)⟩ −
n∑

i=1
⟨R(X, ei)∇f, ei⟩

= ⟨X, ∇(∆f)⟩ +
n∑

i=1
⟨R(ei, X)∇f, ei⟩

= ⟨X, ∇(∆f)⟩ + Ric(X, ∇f).

Agora, fazendo X = ∇f na última relação acima e substituindo em (1.19) obtemos
(1.18).
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Capítulo 2

Formas Diferenciais e Aplicações
Harmônicas

Este capítulo foi elaborado com o objetivo principal de apresentar os argumentos
utilizados na abordagem das estimativas de área, com aplicações harmônicas u : M → S1.
Tomamos [Lee12], [Jos08], [Wu13] e [LW08] como referências para o desenvolvimento desse
capítulo.

2.1 Formas diferenciais

Seja M uma n-variedade Riemanniana e (x1, . . . , xn) um sistema de coordenadas locais
em uma vizinhança de p ∈ M . A base natural do espaço TpM correspondente a esse
sistema é {e1 = ∂

∂x1 , . . . , en = ∂
∂xn }. A base dual associada no espaço cotangente (TpM)∗ é

o conjunto {dx1, . . . , dxn} definido de tal maneira que satisfaça a relação

dxi(ej) = δi
j,

onde δj
i é o delta de Kronecker.

Podemos definir o espaço produto exterior em p como sendo

Λk(T ∗
p (M)) = T ∗

p (M) ∧ . . . ∧ T ∗
p (M)

e Λk(M) o espaço de produto exterior sobre M com fibrado T ∗
p (M) sobre p ∈ M . Denota-

remos por Ω(M) o espaço das seções de Λk(M)), isto é, o espaço cujos elementos ω podem
ser escrito como

ω =
∑

i1<···<ik

ωi1i2...ik
dxi1 ∧ · · · ∧ dxik ,

Por simplicidade, definindo I = {1 ≤ ι1 < · · · < ιk ≤ n} um conjunto de multi-índices,



Capítulo 2. Formas Diferenciais e Aplicações Harmônicas 22

denotaremos

ω =
∑

I

ωIdxI .

Os elementos ω são aplicações multilineares e anti-simétricas, e são chamados de k-formas
diferenciais.

Definição 2.1 (Produto exterior). Dadas as formas ω ∈ Ωk e η ∈ Ωr(M). Definimos o
produto exterior ω ∧ η como sendo a (k + r)-forma dada por

ω ∧ η =
∑
IJ

ωIηJdxI ∧ dxJ .

Definição 2.2 (Produto Interior). Seja X ∈ X(M) e ω ∈ Ωk(M). Definimos a aplicação
ιX : Ωk(M) → Ωk−1(M), chamada de produto interior em X, pondo

ιXω(Y1, . . . , Yk−1) = ω(X, Y1, . . . , Yk−1),

onde Y1, . . . , Yk−1 ∈ X(M).

Definição 2.3 (Derivada exterior). A derivada exterior d : Ωk(M) → Ωk+1(M) é dada por

dω = d
(∑

I

ωIdxI
)

=
∑

I

∑
j

∂ωI

∂xj
dxj ∧ dxI .

Proposição 2.4. Se ω ∈ Ωk(M), então d2ω = (d ◦ d)ω = 0.

Demonstração. É suficiente provar o resultado para formas do tipo

ω(p) = f(p)dxi1 ∧ dxik ,

em que f é uma função suave. O resultado geral, segue pela linearidade da soma. Neste
caso,

(d ◦ d)ω = d
(∑

i

∂f

∂xi
dxn ∧ dxi1 ∧ · · · ∧ dxik−1

)
=
∑

j

∑
i

∂2ωi1,...,ik

∂xj∂xi
dxj ∧ dxn ∧ dxi1 ∧ · · · ∧ dxik

= 0,

pois
∂2ηi1,...,ik−1

∂xj∂xi
=

∂2ηi1,...,ik−1

∂xi∂xj
e dxj ∧ dxn = −dxi ∧ dxj.
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Proposição 2.5. Dados ω ∈ Ωk(M) e η ∈ Ωr(M), valem as seguintes propriedades:

a) ω ∧ η = (−1)kr(η ∧ ω);

b) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη;

c) ιX(ω ∧ η) = ιXω ∧ η + (−1)kω ∧ ιXη.

Demonstração. Ver Proposição 14.11, Lema 14.13 e Teorema 14.24 de [Lee12].

Teorema 2.6 (Teorema de Stokes). Sejam M uma n-variedade Riemanniana orientada
com fronteira e ω uma (n − 1)-forma diferenciável com suporte compacto em M . Então

∫
M

dω =
∫

∂M
ω.

Demonstração. Ver Teorema 16.11 de [Lee12].

Em uma variedade Riemanniana M , a métrica g = ⟨·, ·⟩ fornece uma maneira natural
de identificar os espaços Ω1(M) e TM por meio do operador sustenido ♯, que mapeia uma
1-forma ω ∈ Ω1(M) em um vetor ω♯ ∈ TM , definido implicitamente pela relação

⟨ω♯, X⟩ = ω(X), (2.1)

para todo X ∈ TM. Em um sistema de coordenadas, temos

ω =
n∑

i=1
ωidxi e ω♯ =

n∑
i=1

ωiei,

onde as componentes ωi são definidas pela relação ωi = gijωj , com gij sendo as componentes
da inversa da métrica g.

Comparando (2.1) com (1.11) na definição de gradiente, podemos ver que o vetor
gradiente ∇f está relacionado a forma diferencial df através do operador sustenido, ou
seja,

df ♯ = ∇f. (2.2)

2.1.1 O Laplaciano de Hodge

É necessário realizar algumas preparações em álgebra linear. Seja V um espaço vetorial
real de dimensão finita n ≥ 1 com produto interno ⟨·, ·⟩, e seja Λk(V ) o produto exterior
(k vezes) de V . Definimos o produto interno ⟨·, ·⟩ : Λk(V ) × Λk(V ) → R por

⟨v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp⟩ = det(⟨vi, wj⟩). (2.3)
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Se e1, . . . , en é uma base ortonormal de V , então ei1 ∧ · · · ∧ eip , 1 ≤ i1 < · · · < ip ≤ n,
forma uma base ortonormal de Λk(V ).

Uma orientação em V é obtida distinguindo-se uma base de V como positiva. Qualquer
outra base obtida a partir dessa por uma mudança de base com determinante positivo
também é chamada de positiva, e as bases restantes são chamadas de negativas.

Fixada uma orientação em V e uma base ortonormal {e1, . . . , en} de V , definimos o
operador linear estrela

⋆ : Λk(V ) → Λn−k(V ), (0 ≤ k ≤ n)

por
⋆(ei1 ∧ · · · ∧ eik

) = ej1 ∧ · · · ∧ ejn−k
,

onde j1, . . . , jn−k são selecionados de tal maneira que ei1 , . . . , eik
, ej1 , . . . , ejn−k

forma uma
base positiva de V . Em particular, se e1, . . . , en é uma base ortonormal positiva, então

⋆ (e1 ∧ · · · ∧ en) = 1, (2.4)

⋆ (1) = e1 ∧ · · · ∧ en, (2.5)

O operador ⋆ está bem definida, ou seja, não depende da base ortonormal escolhida
(ver [Jos08], Seção 3.3).

Lema 2.7. Dados ω, η ∈ Λk(V ), nós temos

⟨ω, η⟩ = ⋆(ω ∧ ⋆η).

Demonstração. É suficiente demonstrarmos o resultado para elementos de uma base
ortonormal de Λk(V ). Considere {e1, . . . , en} uma base ortonormal positiva de V , e escreva
ω = ei1 ∧ · · · ∧ eik

, η = ej1 ∧ · · · ∧ ejk
e ⋆η = eh1 ∧ · · · ∧ ehn−k

.
Se {i1, . . . , ik} ̸= {j1, . . . , jk}, então hl ∈ {i1, . . . , ik} para algum hl ∈ {h1, . . . , hn−k}.

Assim, ω ∧ η = 0, e consequentemente ⟨ω, η⟩ = 0 = ⋆(ω ∧ ⋆η).
Podemos então supor que ω = η = ej1 ∧ · · · ∧ ejk

. Assim,

⋆(ω ∧ ⋆η) = ⋆(ej1 ∧ · · · ∧ ejk
∧ ⋆(ej1 ∧ · · · ∧ ejk

))

= ⋆(ej1 ∧ · · · ∧ ejk
∧ eh1 ∧ · · · ∧ ehn−k

)

= 1 (cf. (2.4))

= det(⟨ejr , ejs⟩)

= ⟨ω, η⟩ (cf. (2.3)).
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Lema 2.8. O operador estrela satisfaz

⋆⋆ = (−1)k(n−k) : Λk(V ) → Λk(V ).

Demonstração. Seja ω = ei1 ∧ · · · ∧ eik
, onde e1, . . . , en é uma base ortonormal de V . Por

definição,
⋆ω = ⋆(ei1 ∧ · · · ∧ eik

) = ej1 ∧ · · · ∧ ejn−k
,

onde ei1 , . . . , eik
, ej1 , . . . , ejn−k

é uma base ortonormal positiva de V . Portanto,

⋆ ⋆ ω = ⋆(ej1 ∧ · · · ∧ ejn−k
) = ϵ ei1 ∧ · · · ∧ eik

= ϵ ω,

onde ϵ = 1 ou ϵ = −1 dependendo se a base ortonormal ej1 , . . . , ejn−k
, ei1 , . . . , eik

é positiva
ou negativa, respectivamente. Por outro lado, segue do lema anterior que

1 = ⟨⋆ω, ⋆ω⟩ = ⋆(⋆ω ∧ ⋆ω) = ⋆(⋆ω ∧ ω) = ϵ(−1)k(n−k) ⋆ (ω ∧ ⋆ω) = ϵ(−1)k(n−k)⟨ω, ω⟩.

Portanto, ϵ = (−1)k(n−k), o que garante ⋆ ⋆ ω = (−1)k(n−k)ω. O caso geral segue por
linearidade.

Lema 2.9. Seja v1, . . . , vn uma base positiva qualquer de V . Então

⋆(1) = 1√
det(⟨vi, vj⟩)

v1 ∧ · · · ∧ vn.

Demonstração. Seja e1, . . . , en uma base ortonormal positiva. Então,

v1 ∧ · · · ∧ vn =
√

det(⟨vi, vj⟩)e1 ∧ · · · ∧ en,

e o resultado decorre direto de (2.5).

Seja M uma n-variedade Riemanniana orientada. Fixemos uma orientação em cada
um dos espaços tangentes TpM , assim como nos espaços cotangentes T ∗

p M . Como M

possui uma estrutura Riemanniana, temos um produto interno em cada T ∗
p M , tal que

⟨dxi, dxj⟩ = gij,

onde gij é a matriz inversa da métrica Riemanniana gij. Assim, obtemos um operador
estrela

⋆ : Ωk(M) → Ωn−k(M).

Já que a métrica em T ∗
p M é dada por gij = (gij)−1, pelo Lema 2.9, segue que em

coordenadas locais
⋆(1) =

√
det(gij)dx1 ∧ · · · ∧ dxn.
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Essa expressão é chamada de forma de volume. Em particular,

Vol(M) :=
∫

M
⋆(1). e dVM = ⋆(1),

onde dVM representa o elemento de volume de M .
Para ω, η ∈ Ωk(M) com suporte compacto. O L2-produto em Ωk(M) é definido como

(ω, η) =
∫

M
⟨ω, η⟩ ⋆ (1),

ou ainda, pelo Lema 2.7,
(ω, η) =

∫
M

ω ∧ ⋆η.

Vamos usar o operador estrela para introduzirmos os conceitos de operação adjunta e
Laplaciano dentro da teoria de Hodge para k-formas.

Daqui em diante vamos trabalhar com variedades fechadas (compacta e sem bordo).

Definição 2.10 (Operador adjunto). A adjunta da derivada exterior d, em relaçao ao
produto interno L2, é uma aplicação δ : ωk(M) → Ωk−1(M) definida de forma que

(dω, η) = (ω, δη),

com ω ∈ Ωk−1(M) e η ∈ Ωk(M).

Lema 2.11. O operador δ : Ωk(M) → Ωk−1(M) satisfaz

δ = (−1)n(k+1)+1 ⋆ d ⋆ .

Demonstração. Sejam ω ∈ Ωk−1(M) e η ∈ Ωk(M). Temos

d(ω ∧ ⋆η) = dω ∧ ⋆η + (−1)k−1ω ∧ d ⋆ β

= dω ∧ ⋆η + (−1)k−1(−1)(k−1)(n−k+1)ω ∧ ⋆ ⋆ (d ⋆ η) (cf. Lema 2.8).

= dω ∧ ⋆η − (−1)n(k+1)+1ω ∧ ⋆(⋆d ⋆ η),

onde acima usamos que d ⋆ η ∈ Ωn−k+1(M) e (k − 1)(n − k + 2) ≡ n(k + 1) + 2 mod 2.
Portanto, segue do Teorema de Stokes que

(dω, η) =
∫

M
dω ∧ ⋆η

=
∫

M
(−1)n(k+1)+1ω ∧ ⋆(⋆d ⋆ η)

= (ω, (−1)n(k+1)+1 ⋆ d ⋆ η).

Como isto vale para todo ω ∈ Ωk−1(M), segue da definição que δη = (−1)n(p+1)+1 ⋆ d ⋆ β,
como queríamos demonstrar.
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Definição 2.12 (Laplaciano de Hodge). O Laplaciano de Hodge em Ωk(M) é definido por

∆H = −(dδ + δd) : Ωk(M) → Ωk(M), para 1 ≤ k ≤ n;

∆H = −(δd) : Ω0(M) → Ω0(M), para k = 0.

Dizemos que uma k-forma ω ∈ Ωk(M) é harmônica quando ∆Hω = 0.

Observe que o operador ∆ é formalmente auto-adjunto, pois,

(∆Hω, η) = −((dδω, η) + (δdω, η)) = −((δω, δη) + (dω, dη)) = −((ω, dδη) + (ω, δdη))

= (ω, ∆Hη).

Proposição 2.13. Para qualquer ω ∈ Ωk(M), ∆Hω = 0 se, e somente se, dω = δω = 0.

Demonstração. Suponha que ∆Hω = 0. Observe que

(∆Hω, ω) = −((dδω, ω) + (δdω, ω)) = −(δω, δω) − (dω, dω).

Ambos os termos do lado direito são não-positivos. Logo dω = δω = 0. A recíproca é
imediata.

Proposição 2.14. Para ω ∈ Ω1(M) temos que

δω = −div(ω♯).

Demonstração. Tome f ∈ C∞(M). Observe que
∫

M
f δω dM = (δω, f) = (ω, df) =

∫
M

⟨ω, df⟩ dM

=
∫

M

∑
i

⟨ωei, dfei⟩ dVM

=
∫

M

∑
i

(⟨⟨ω♯, ei⟩, ⟨df ♯, ei⟩⟩) dVM

=
∫

M
⟨ω♯, df ♯⟩dVM

=
∫

M
⟨ω♯, ∇f⟩dVM .

Por outro lado, pela Preposição 1.15, temos

div(fω♯) = ⟨∇f, ω♯⟩ + f div(ω♯).

Logo, ∫
M

⟨ω♯, ∇f⟩dVM =
∫

M
(div(fω♯) − fdiv(ω♯)) dVM .
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Pelo Teorema da Divergência,
∫

M
div(fω♯) dVM = 0.

Portanto, ∫
M

⟨ω♯, ∇f⟩dM =
∫

M
−fdiv(ω♯)dM.

Assim, concluiomos que
∫

M
f δω dM =

∫
M

−fdiv(ω♯)dM.

O que implica no resultado desejado.

Em particular, para f ∈ C∞(M)

∆Hf = −(δdf) = −δ(df) = div(df ♯) = div(∇f) = ∆f.

Ou seja, o Laplaciano de Hodge é uma generalização do Laplaciano de Beltrami (1.12).
Assim, denotaremos o Laplaciano de Hodge por ∆.

2.1.2 Identidade de Bochner-Weitzenböck

Definição 2.15. Sejam X, Y ∈ X(M) e ω ∈ Ω1(M), definimos uma conexão D em Ω1(M)
pondo:

(DXω)(Y ) = X(ω(Y )) − ω(∇XY ).

Proposição 2.16. Sejam X, Y, Z ∈ X(M) e ω, η ∈ Ω1(M) e f, g ∈ C∞(M). A conexão
D goza das seguintes propriedades:

a) D(fX+gY )ω = fDXω + gDY ω;

b) DX(ω + η) = DXω + DXη;

c) DX(fω) = fDXω + X(f)ω.

Demonstração. Com efeito,

(D(fX+gY )ω)(Z) = (fX + gY )(ω(Z)) − ω(∇(fX+gY )Z)

= fX(ω(Z)) + gY (ω(Z)) − ω(f∇XZ + g∇Y Z)

= fX(ω(Z)) − ω(f∇XZ) + gY (ω(Z)) − ω(g∇Y Z)

= f
(
X(ω(Z)) − ω(∇XZ)

)
+ g

(
Y (ω(Z)) − ω(∇XZ)

)
= f(DXω)(Z) + g(DY ω)(Z).
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(DX(ω + η))(Y ) = X
(
(ω + η)(Y )

)
− (ω + η)(∇XY )

= X(ω(Y ) + η(Y )) − ω(∇XY ) − η(∇XY )

= X(ω(Y )) + X(η(Y )) − ω(∇XY ) − η(∇XY )

= X(ω(Y )) − ω(∇XY ) + X(η(Y )) − η(∇XY )

= (DXω)(Y ) + (DXη)(Y ).

(DX(fω))(Y ) = X(fω(Y )) − fω(∇XY )

= X(f)ω(Y ) + fX(ω(Y )) − fω(∇XY )

= f
(
X(ω(Y )) − ω(∇XY )

)
+ X(f)ω(Y )

= f(DXω)(Y ) + X(f)ω(Y ).

Proposição 2.17. Sejam X ∈ X(M) e ω, η ∈ Ω1(M). Vale a seguinte proprieadade:

DX(ω ∧ η) = DXω ∧ η + ω ∧ DXη.

Demonstração. Ver Proposição 36 de [Pet06].

Fixado um ponto p ∈ M , seja exp a aplicação exponencial definida em uma vizinhança
aberta de 0 no espaço TpM . Se {v1, . . . , vn} é uma base ortonormal de TpM , então
o sistema de coordenadas (x1, . . . , xn) definido por xi = vi ◦ exp−1 é tal que a base
{e1 = ∂

∂x1 , . . . , en = ∂
∂xn } é geodésica em p.

Definição 2.18 (Coordenadas normal). As coordenadas locais definidas pela aplicação
(U, exp−1

p ) são chamadas de coordenadas normais (Riemannianas) com centro em p.

Lema 2.19. Em um sistema de coordenadas normal, valem as seguintes propriedades:

a) dxk0(∇ei
Y ) = ei(Y k0), onde 1 ≤ k0 ≤ n é um índice fixado e Y ∈ Tp(M);

b) Dei
dxj = 0, para todo 1 ≤ i, j ≤ n;

c) ιej

(
Dei

)
= Dei

ιej
, para todo 1 ≤ i, j ≤ n.

Demonstração. Fixe p ∈ M e considere (x1, . . . , xn) um sistema de coordenadas normal em
p. A base associada ao sistema de coordenadas será denotada por {e1 = ∂

∂x1 , . . . , en = ∂
∂xn },

e sua base dual por {dx1, . . . dxn}, escreva Y = ∑
Y jej. Considerando que ∇ é a conexão

de Levi-Civita em M , temos

∇ei
Y =

∑
j,k

(
ei(Y k) + Y jΓk

ij

)
ek,
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onde Γk
ij são os símbolos de Christoffel da conexão de Levi-Civita. observe que

dxk0(∇ei
Y ) =

∑
j

(
ei(Y k0) + Y jΓk0

ij

)
.

Como (x1, . . . , xn) é um sistema de coordenada normal, então Γk0
ij = 0, daí segue que

dxk0(∇ei
Y ) = ei(Y k0),

em p. O que conclui a demonstração do item a). Para a demonstração do item b) vamos
usar a Definição 2.15 para obter

Dei
dxj(Y ) = ei(dxj(Y )) − dxj(∇ei

Y ),

Pelo item a), que acabamos de provar, segue que

dxj(∇ei
Y ) = ei(Y j),

em p. Por outro lado, perceba que

dxi(Y ) = dxi
(∑

j

Y jej

)
=
∑

j

Y jdxi(ej) = Y i.

Logo,

Dei
dxj(Y ) = ei(Y j) − ei(Y j) = 0.

Por fim, para a demonstração do item c), tome ω = ∑
ωkdxk e perceba que

Dei
ω =

n∑
k=1

Dei
(ωkdxk) =

n∑
k=1

(ωkDei
dxk + ei(ωk)dxk) =

n∑
k=1

ei(ωk)dxk.

Daí, como ιej
(dxk) = δi

j, segue que

ιej
(Dei

ω) =
n∑

k=1
ei(ωk)ιej

(dxk) = ei(ωj).

Por outro lado,

ιej
(ω) = ιej

( n∑
k=1

ωkdxk
)

=
n∑

k=1
ωkιej

(dxk) = ωj.

Logo,
Dek

ιej
(ω) = ei(ωj).
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Portanto,
ιej

(Dei
) = ei(ωj) = Dei

ιej
.

Pela discursão feita na subseção anterior, temos que o produto interno ⟨·, ·⟩ : Ω1(M) ×
Ω1(M) → R, é definido por

⟨ω, η⟩ =
∑
i,j

gij ωi ηj,

onde ω = ωi dxi, η = ηj dxj e gij são as componentes da matriz inversa da métrica
Riemanniana g = ⟨·, ·⟩. Em particular, como em um sistema de coordenadas normal
gij(p) = δj

i , temos
⟨ω, η⟩ =

∑
i

ωi ηi.

Lema 2.20. Dados ω, η ∈ Ω1(M), vale

X⟨ω, η⟩ = ⟨DXω, η⟩ + ⟨ω, DXη⟩.

Demonstração. Inicialmente, escrevendo ω = ∑
ωidxi e usando item c) da Proposição 2.16

temos a seguinte expressão:

DXω = DX

( n∑
i=1

ωidxi
)

=
n∑

i=1
ωiDXdxi +

n∑
i=1

X(ωi)dxi.

Observe que

DXdxi(Y ) = X(dxi(Y )) − dxi(∇XY ) = X(Y i) − dxi(∇XY ).

Aplicando o item a) do Lema 2.19 no termo dxi(∇XY ), temos que

dxi(∇XY ) = dxi
( n∑

j=1
Xj∇ej

Y
)

=
n∑

j=1
Xjdxi(∇ej

Y ) =
n∑

j=1
Xjej(Y i) = X(Y i).

Logo,
DXdxi = 0.

Daí, segue que
DXω =

n∑
i=1

X(ωi)dxi.

Agora vamos demonstrar o resultado desejado, escreva η = ∑n
j=1 ηjdxj. Temos

X⟨ω, η⟩ = X
( n∑

i

ωiηi

)
=

n∑
i

X(ωi)ηi +
n∑
i

ωiX(ηi) = ⟨DXω, η⟩ + ⟨ω, DXη⟩.
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Definição 2.21. Definimos o tensor de curvatura em Ω1(M) como sendo a aplicação
R : X(M) × X(M) × Ω1(M) → Ω1(M), dado por:

R(X, Y )ω = DXDY ω − DY DXω − D[X,Y ]ω,

para todo X, Y ∈ X(M) e ω ∈ Ω1(M).

Fazendo uma analogia com (1.2), em coordenadas escrevemos:

R(ei, ej)dxk = −
∑

l

Rk
ijldxl.

Proposição 2.22. Seja ω ∈ Ω1(M) e ω♯ ∈ X(M) o vetor associado a ω. O tensor de Ricci
definida em ω♯ é dada por:

Ric(ω♯, ω♯) = −
〈
ω,

n∑
i,j=1

(
dxi ∧ ιej

(R(ei, ej)ω)
)〉

.

Demonstração. Inicialmente, já que R(ei, ej)ω = −∑
k,l Rk

ijlωkdxl, obtemos

ιej
(R(ei, ej)ω) = −

∑
j,k,l

Rk
ijlωkιej

(dxl) = −
∑
j,k,l

Rk
ijlωkdxl(ej) = −

∑
k

Rk
ijjωk.

Por outro lado,

Ric(ω♯, ω♯) =
∑

j

⟨R(ω♯, ej)ej, ω♯⟩ = −
∑

j

⟨R(ω♯, ej)ω♯, ej⟩ = −
∑
i,j,k

⟨R((ωiei), ej)ωkek, ej⟩

= −
∑
i,j,k

⟨R(ei, ej)ek, ej⟩ωiωk =
∑
i,j,k

⟨R(ei, ej)ej, ek⟩ωiωk =
∑
i,j,k

Rk
ijjωiωk.

Portanto, usando as duas expressões obtidas acima, concluimos que

〈
ω,

n∑
i,j=1

(
dxi ∧ ιej

(R(ei, ej)ω)
)〉

=
〈
ω, −

∑
i,j,k

Rk
ijjωkdxi

〉
= −

∑
i,j,k

Rk
ijjωiωk = − Ric(ω♯, ω♯).

Lema 2.23. Seja {e1, . . . , en} uma base ortonormal de TpM , e seja dx1, . . . , dxn sua base
dual (dxj(ei)) = δj

i . Então, a derivada exteior satisfaz

d =
n∑

i=1
dxi ∧ Dei

e sua adjunta é dada por
δ = −

n∑
j=1

ιej
(Dej

).

Demonstração. Ver Lema 3.3.4 de [Jos08].
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Proposição 2.24. Sobre as hipoteses do lema anterior, o Laplaciano de Hodge pode ser
escrito por

∆H =
∑

i

Dei
Dei

+
∑
i,j

dxi ∧ ιej
(R(ei, ej)). (2.6)

Demonstração. Fixado p ∈ M , em um sistema de coordenada normal, observe que

dδ =
∑

i

dxi ∧ Dei

(
−
∑

j

ιej
(Dej

)
)

= −
∑
i,j

dxi ∧ ιej
(Dei

Dej
) (cf. Lema 2.19)

e

δd = −
∑

j

ιej

(
Dej

(
∑

i

dxi ∧ Dei
)
)

= −
∑
i,j

ιej

(
Dej

(dxi ∧ Dei
)
)

= −
∑
i,j

ιej

(
Dej

(dxi) ∧ Dei
+ dxi ∧ Dej

Dei

)
= −

∑
i,j

ιej
(dxi ∧ Dej

Dei
) (cf. Lema 2.19)

= −
∑
i,j

(
ιej

(dxi) ∧ Dej
Dei

− dxi ∧ ιej
(Dej

Dei
)
)

= −
∑
i,j

(
dxi(ej) ∧ Dej

Dei
− dxi ∧ ιej

(Dej
Dei

)
)

= −
∑

i

Dei
Dei

+
∑
i,j

dxi ∧ ιej
(Dej

Dei
).

Unindo as duas expressões segue que

dδ + δd = −
∑
i,j

dxi ∧ ιej
(Dei

Dej
) −

∑
i

Dei
Dei

+
∑
i,j

dxi ∧ ιej
(Dej

Dei
)

= −
∑

i

Dei
Dei

−
∑
i,j

dxi ∧ ιej
(Dei

Dej
− Dej

Dei
)

= −
∑

i

Dei
Dei

−
∑
i,j

dxi ∧ ιej
(R(ei, ej)).

Teorema 2.25 (Identidade de Bochner-Weitzenböck). Seja M uma variedade Riemanniana
e ω ∈ Ω1(M) uma 1-forma sobre M . Se ω é harmônica, então

1
2∆|ω|2= |Dω|2+Ric(ω♯, ω♯). (2.7)

Demonstração. Inicialmente, fixe p ∈ M e considere um sistema de coordenadas normais
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em p, para obter uma base {ei} ortonormal e geodésica em p. Agora, como |ω|2= ⟨ω, ω⟩ é
uma função real, temos que

∆|ω|2 =
∑

i

Dei
Dei

(⟨ω, ω⟩) = 2
∑

i

Dei
(⟨Dei

ω, ω⟩)

= 2
∑

i

(
⟨Dei

ω, Dei
ω⟩ + ⟨ω, Dei

Dei
ω⟩
)

= 2
∑

i

|Dei
|2+2

∑
i

⟨ω, Dei
Dei

ω⟩

= 2|Dω|2+2⟨ω,
∑

i

Dei
Dei

ω⟩.

Por outro lado, usando (2.6) e a hipotese de ω ser harmonica, temos

∑
i

Dei
Dei

ω = −
∑
i,j

dxi ∧ ιej
(R(ei, ej))ω.

Logo, segue que

∆|ω|2 = 2|Dω|2−2⟨ω,
∑
i,j

dxi ∧ ιej
(R(ei, ej))ω⟩

= 2|Dω|2+2 Ric(ω♯, ω♯).

Seja f ∈ C∞(M). Fixemos p ∈ M e consideremos um sistema de coordenadas normais
centrado em p. Nesse sistema obtemos uma base {ei} ortonormal e geodésica em p. Nessas
condições, temos

Dei
df(ej) = ei(df(ej)).

Assim,

|Ddf |2 =
∑
i,j

(
ei(df(ej))

)2
=
∑
i,j

(
ei(⟨∇f, ej⟩)

)2

=
∑
i,j

(
⟨∇ei

∇f, ej⟩
)2

= |Hess f |2. (2.8)

2.2 Aplicações harmônicas

Aplicações harmônicas são extensões não lineares de funções harmônicas. Uma aplicação
não constante é chamada de não trivial.

Seja (M, g) uma n-variedade Riemanniana, dotada de uma métrica Riemanniana g.
Denotaremos gαβ a matriz simétrica n × n definida positiva. Seja gαβ = (gαβ)−1 a matriz
inversa de (gαβ) e dvg = √

g dx =
√

det(gαβ) dx o elemento de volume de (M, g). Seja (N, h)
uma l-variedade Riemanniana compacta, sem bordo, dotada de uma métrica Riemanniana
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h.
Para qualquer aplicação u ∈ C2(M, N), podemos definir a densidade de energia de

Dirichlet e(u) pondo:

e(u)(x) = |du|2.

O funcional energia de Dirichlet é então definida por:

E(u) =
∫

M
e(u) dvg.

Vamos definir uma variação da aplicação u tomando ϕ ∈ C2(M,Rl) e pondo

ut(x) = u(x) + tϕ(x), t ∈ (−ϵ, ϵ)

onde a soma u(x) + tϕ(x) é dada em coordenadas. Assim, um ponto crítico do funcional
energia de Dirichlet é uma aplicação u tal que

d

dt
(E(ut))|t=0 = 0,

para toda variação de u.

Definição 2.26 (Aplicação harmônica). Uma aplicação u ∈ C2(M, N) é chamada de
harmônica se for um ponto crítico do funcional energia de Dirichlet.

Pelo teorema de imersão isométrica de Nash [Nas56], podemos assumir que (N, h) está
isometricamente imersa em um espaço Euclidiano RL para algum L ≥ 1. Assim, temos:

C2(M, N) =
{
u = (u1, · · · , uL) ∈ C2(M,RL) | u(M) ⊆ N

}
.

Como N ⊂ RL é uma subvariedade compacta, existe um δ = δ(N) > 0 tal que a projeção
de vizinhança ΠN : Nδ → N é suave, onde:

Nδ = {y ∈ RL | d(y, N) := inf
z∈N

|y − z|< δ},

e ΠN(y) ∈ N é tal que |y − ΠN(y)|= d(y, N) para y ∈ Nδ.
Observe que P (y) = d(ΠN(y)) : RL → TyN, y ∈ N , é uma projeção ortogonal, e

A(y) = ∇P (y) : TyN ⊗ TyN → (TyN)⊥, y ∈ N,

é a segunda forma fundamental de N ⊂ RL.
Agora temos a seguinte proposição:
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Proposição 2.27. Uma aplicação u ∈ C2(M, N) é um mapa harmônico se, e somente se,
u satisfaz:

∆gu ⊥ TuN,

onde ∆g é o Laplaciano de Beltrami em M .

Demonstração. Para ϕ ∈ C0(M,RL), vamos definir a variação ut(x) = Π(u(x) + tϕ(x)).
Assim, para (x, t) ∈ M × (−ϵ, ϵ), temos:

E(ut) =
∫

M
|d(Π(u + tϕ))|2dvg =

∫
M

|P (u + tϕ)|2dvg.

Perceba que

d

dt
|P (u + tϕ)|2 = d

dt
⟨P (u + tϕ), P (u + tϕ)⟩ = 2⟨d(P (u + tϕ))(ϕ), P (u + tϕ)⟩.

Portanto,

0 = d

dt

∣∣∣∣∣
t=0

∫
M

|P (u + tϕ)|2dvg

= 2
∫

M
⟨d(P (u))(ϕ), P (u)⟩dvg

= 2
∫

M
⟨d(P (u))(ϕ), d(Π(u))⟩dvg

= 2
∫

M
⟨d(P (u))(ϕ), du⟩dvg.

Por outro lado,
∫

M
⟨d(P (u)(ϕ)), du⟩ dvg =

∫
M

∑
i

⟨d(P (u)(ϕ))(ei), du(ei)⟩ dvg

=
∫

M

∑
i,j

d(P (u)(ϕ))j(ei), duj(ei) dvg

=
∫

M

∑
i,j

⟨∇(P (u)(φ))j, ei⟩ ⟨∇uj, ei⟩ dvg

=
∫

M

∑
i

⟨∇(P (u)(φ))i, ∇ui⟩ dvg.

Pelo Teorema da Divergência, segue que
∫

M
⟨∇(P (u)(φ))i, ∇ui⟩ dvg = −

∫
M

(P (u)(φ))i∆gui dvg.

Logo,
∫

M
⟨d(P (u)(ϕ)), du⟩ dvg = −

∫
M

∑
i

(P (u)(φ))i∆gui dvg = −
∫

M
⟨P (u)(ϕ), ∆gu⟩.
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Contudo,

0 = 2
∫

M
⟨d(P (u))(ϕ), du⟩dvg = −2

∫
M

⟨P (u)(ϕ), ∆gu⟩ = −2
∫

M
⟨ϕ, P (u)(∆gu)⟩.

Isso implica que a projeção de ∆gu é nula em TuM , ou seja, ∆gu ⊥ TuN .

No caso em que ∆gu ⊥ TuN, podemos escrever

∆gu =
L∑

i=l+1
ai(x)vi(x),

onde {vl+1, . . . , vL} é uma base ortonormal de (TuN)⊥. Além disso, como

∆gu =
L∑

j=1
∆gujej,

com ej = (0, . . . , 1, . . . , 0), temos

ai = ⟨∆gu, vi⟩ =
L∑

j=1
∆guj⟨vi, ej⟩.

Por simplicidade, escreveremos apenas

ai = ∆guj⟨vi, ej⟩.

Usando a Preposição 1.15, temos

ai = ∆gu⟨vi, ej⟩ = div(⟨vi, ej⟩∇uj) − ⟨∇uj, ∇⟨vi, ej⟩⟩. (2.9)

Por outro lado, já que

du(w) = (du1(w), . . . , duL(w)).

Podemos escrever duj(w) = ⟨du(w), ej⟩. Daí,

∇uj = duj(ek)ek,

para ek base ortonormal de TM . Portanto, em relação ao primeiro termo do lado direito
da última igualdade de (2.9), temos:

div(⟨vi, ej⟩∇uj) = div(⟨vi, ej⟩duj(ek)ek) = div(⟨vi, ej⟩⟨du(ek), ej⟩ek) = div(⟨vi, du(ek)⟩ek)

= div(0 · ek) = 0.
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Em relação ao segundo termo do lado direito de (2.9), temos:

∇uj = duj(ek)ek, e ∇⟨vi, ej⟩ = ek(⟨vi, ej⟩)ek.

Logo,

⟨∇uj, ∇⟨vi, ej⟩⟩ = ⟨duj(ek)ek, ek(⟨vi, ej⟩)ek⟩ = duj(ek)ek(⟨vi, ej⟩)

= duj(ek)(⟨∇RL

ek
vi, ej⟩) = duj(ek)(⟨∇RL

ek
vi(u), ej⟩)

= duj(ek)⟨∇du(ek)vi, ej⟩ = ⟨du(ek), ej⟩⟨∇du(ek)vi, ej⟩

= ⟨du(ek), ∇du(ek)vi⟩ = Avi
(du(ek), du(ek))

:= Ai(∇u, ∇u).

Portanto,

∆gu =
L∑

i=l+1
−Ai(∇u, ∇u)vi = −AN

u(x)(∇u, ∇u). (2.10)

Corolário 2.28. Seja u : M → Sn ⊂ Rn+1. Então, u é harmônica se, e somente se,

∆gu = −|∇u|2u.

Demonstração. Temos que

ASn

u(x)(·, ·) = A(·, ·)u(x) = ⟨·, ·⟩u(x).

Afinal, em Sn, a segunda forma fundamental A tem autovalor 1 e v ∈ (Tu(x)Sn)⊥ é o vetor
posição u(x). Desta forma,

ASn

u(x)(∇u, ∇u) = |∇u|2u(x).

Pelo que foi discutido acima, concluimos a demonstração.

2.2.1 Aplicações harmônicas para o círculo unitário

Definição 2.29 (Pullback). Sejam M, N variedades Riemannianas de dimenções arbitra-
rias, e seja u : M → N uma aplicação suave. Dada uma 1-forma ω ∈ Ω1(N), definimos o
pullback de ω como uma aplicação u∗ : Ω1(N) → Ω1(M) dada por

u∗(ω)p(X) = ωu(p)(dup(X)),

para todo p ∈ M e X ∈ TpM .
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No caso particular em que θ ∈ C∞(N), temos

d(θ ◦ u)p(X) = dθu(p)(dup(X)),

com X ∈ TpN . Por outro lado, como dθ ∈ Ω1(N) é uma 1-forma diferencial, podemos
usar a definição de pullback para obter

u∗(dθu(p))(X) = dθu(p)(dup(X)).

Comparando as expressões acima, concluímos que

u∗(dθu(p))(X) = d(θ ◦ u)p(X).

Assim, denotaremos

u∗(dθ) = d(θ ◦ u).

Observe ainda que, pela Proposição 2.4, temos

d(u∗(dθ)) = d(d(θ ◦ u)) = 0

Lema 2.30. A aplicação u : M → S1 é harmônica se e somente se a 1-forma h := u∗(dθ)
é harmônica.

Demonstração. Vamos relembrar a aplicação de recobrimento,definida por

exp(θ) = (cos(θ), sin(θ)).

Essa aplicação associa a cada ponto θ ∈ R um ponto no círculo unitário S1, identificando
θ com θ + 2πk, para todo k ∈ Z.

Inicialmente, observe que dθ está bem definida em S1. Com efeito, sejam x1 e x2 ∈ S1,
com x1 ̸= x2. Consideremos duas parametrizações locais:

θ1 : S1- {x1} → [0, 2π),

θ2 : S1- {x2} → [t0, t0 + 2π),

onde t0 ∈ R é uma constante arbitrária. Essa função fornece coordenadas angulares locais
em S1, diferenciando-se por um multiplo inteiro de 2π nas suas regiões de sobreposição.
No conjunto S1- {x1, x2}, onde ambas as parametrizações são validas, temos

θ1(x) − θ2(x) = 2πk, para algum k ∈ Z.
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Diferenciando ambos os lados obtemos

0 = d(θ1(x) − θ2(x)) = d(θ1(x)) − d(θ2(x)).

Logo, dθ1(x) = dθ2(x). O que implica dizer que dθ não depende da escolha da parametri-
zação local, e portanto está bem definida em S1.

Agora, defina ũ = θ ◦ u : M → R. Como dθ está bem definido, podemos considerar dũ

e ∇ũ. Note que

dũ = d(θ ◦ u) = u∗(dθ) = h e

h(X) = ⟨h♯, X⟩ = ⟨(dũ)♯, X⟩ = ⟨∇ũ, X⟩ ⇒ h♯ = ∇ũ.

Alem disso, pela Corolário 2.14, temos

∆ũ = div(∇ũ) = div(h♯) = −δh.

Assim, pela Proposição 2.13, ũ é harmônica se, e somente se h é 1-forma harmônica.
Por outro lado, pela Preposição 2.28, temos que u é harmônica se e somente se

∆u = −|∇u|2u. Escreva u = (u1, u2), para ũ = (θ ◦ u) temos

u1 = cos(ũ) e u2 = sin(ũ).

Daí, u é harmônica se e somente se

∆u1 = −|∇u|2u1 e ∆u2 = −|∇u|2u2

Usando a Preposição 1.15 para calcular o Laplaciano de u1 e u2, obtemos

∆ cos(ũ) = div(∇ cos(ũ)) = div(− sin(ũ)∇ũ)

= − sin(ũ)div(∇ũ) + ⟨∇ũ, −∇ sin(ũ)⟩

= − sin(ũ)∆ũ − ⟨∇ũ, cos(ũ)∇ũ⟩

= − sin(ũ)∆ũ − cos(ũ)|∇ũ|2

e

∆ sin(ũ) = div(∇ sin(ũ)) = div(cos(ũ)∇ũ)

= cos(ũ)div(∇ũ) + ⟨∇ũ, ∇ cos(ũ)⟩

= cos(ũ)∆ũ − ⟨∇ũ, − sin(ũ)∇ũ⟩

= cos(ũ)∆ũ − sin(ũ)|∇ũ|2.
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Assim,

− sin(ũ)∆ũ − cos(ũ)|∇ũ|2 = −|∇u|2cos(ũ);

cos(ũ)∆ũ − sin(ũ)|∇ũ|2 = −|∇u|2sin(ũ).

Donde,

sin2(ũ)∆ũ + sin(ũ) cos(ũ)|∇ũ|2 = |∇u|2cos(ũ) sin(ũ);

cos2(ũ)∆ũ − cos(ũ) sin(ũ)|∇ũ|2 = −|∇u|2sin(ũ) cos(ũ).

Somando as igualdades, temos que ∆ũ = 0 e portanto ũ é harmônica.

Antes de encerrar a discussão neste capítulo, é interessante observar que

h = u∗(dθ) = d(θ ◦ u);

Dh = D(u∗(dθ)) = D(d(θ ◦ u)) = D(dũ) = Hess(ũ) = Hess(θ ◦ u).
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Capítulo 3

Resultados Auxiliares

Neste capítulo, apresentamos um argumento desenvolvido por Cheeger e Gromoll
em [JD71] para a demonstração do Teorema de Decomposição, aplicável a variedades
Riemannianas completas com curvatura de Ricci não-negativa. Em seguida, exploramos
o conceito de recobrimento universal. Além disso, introduziremos de forma sucinta os
conceitos de homologia singular e da característica de Euler-Poincaré em 2-variedades. Por
fim, enunciaremos dois teoremas clássicos da análise geométrica, os quais desempenham
um papel fundamental na demonstração dos principais resultados desta dissertação.

3.1 Argumento de Cheeger-Gromoll

Sejam M uma variedade Riemanniana e α : I → M uma curva diferenciável. Um
campo V ao longo de uma curva α é dito paralelo se

DV

dt
= 0,

onde D
dt

denota a derivada covariante. Dizemos que α é uma geodésica em t ∈ I se

D

dt
α′(t) = ∇α′(t)α

′(t) = 0.

Dados p ∈ M e v ∈ TpM , vamos denotar por γv a única geodésica de M que passa por p

com velocidade v. Também definiremos o seguinte conjuto:

Υp =: {v ∈ TpM | γv está definida em um intervalo contendo [0, 1]}.

Quando v ∈ Υ, estamos considerando que γp(0) = p e γ′(0) = v.

Definição 3.1 (Aplicação exponencial). A aplicação expp : Υp → M , definida por

expp(v) = γv(1),
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é denominada aplicação exponencial.

A aplicação exponencial é um difeomorfismo local tal que expp(tv) = γv(t) para todo
t ∈ R (ver pag. 73 de [DC19]).

Definição 3.2 (Fluxo). Seja M uma variedade Riemanniana, e X ∈ X(M) um campo
vetorial suave em M . O fluxo associado ao campo X é uma aplicação Φ : R × M → M ,
que satisfaz as seguintes condições:

a) Para cada ponto p ∈ M , a aplicação t 7→ Φt(p) := Φ(t, p) é tal que

∂

∂t
Φt(p) = X(Φt(p)).

b) Para cada p ∈ M , quando t = 0, temos Φ(0, p) = p.

De acordo com o Teorema de Peano (ver Teorema 12.10 de [Lee03]), existe pelo menos
uma solução para a equação diferencial


∂
∂t

Φt(p) = X(Φt(p));

Φ(0, p) = p.

Seja M uma n-variedade Riemanniana e Σ ⊂ M uma hipersuperfície de M . Considere
a variedade produto R × Σ. Seu espaço tangente T(t,p)(R × Σ) no ponto (t, p) ∈ R × Σ
pode ser identificado pela soma direta TtR ⊕ TpΣ (ver Proposição 3.13 de [Lee12]). Dessa
forma, dado v ∈ T(t,p)(R × Σ), localmente, podemos escrever

v = λ
∂

∂t
+

n−1∑
i=1

λi
∂

∂xi
= λ

∂

∂t
+ v, v ∈ TpΣ,

onde ∂
∂t

e { ∂
∂xi } são, respectivamente, elementos da base natural de TtR e de TpΣ.

Dessa forma, se considerarmos uma aplicaçao diferenciável Φ : R × Σ → M e sua
diferencial dΦ : T(t,p)(R × Σ) → TpM , temos que

dΦ(t,p)(v) = λ
∂Φ
∂t

(t, p) +
n−1∑
i=1

λi
∂Φ
∂xi

(t, p).

Proposição 3.3 (Argumento de Cheeger-Gromoll). Sejam M uma variedade Riemanniana,
u : M → R uma função suave e u−1(θ) = Σ ⊂ M uma subvariedade de M . Se Hess u = 0
e o vetor gradiente é tal que |∇u|= 1, então o fluxo gradiente Φ : R× Σ → M , definido por

Φ(t, p) = expp

(
t ∇u(p)

)
, (3.1)

é uma isómetria.
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Demonstração. Inicialmente vamos mostrar que dΦ(t,p)( ∂
∂t

) = ∇u(γ∇u(t)). Com efeito,
considere a geodésica

γ∇u(t) = expp(t∇u(p)) = Φ(t, p),

com γ∇u(0) = p e γ′
∇u(0) = ∇u(p). Pela definição de fluxo, temos que

γ′
∇u(t) = ∇u(γ∇u(t)).

Por outro lado,
γ′

∇u(t) = ∂

∂t
γ∇u(t) = ∂Φ

∂t
(t, p) = dΦ(t, p)

( ∂

∂t

)
.

Daí, como desejado,
dΦ(t,p)

( ∂

∂t

)
= ∇u(γ∇u(t)).

Agora, vamos mostrar que Φ é uma isómetria. Para os vetores em TtR, perceba que

〈
dΦ(t,p)

( ∂

∂t

)
, dΦ(t,p)

( ∂

∂t

)〉
=
〈
∇u, ∇u

〉
= 1 =

〈 ∂

∂t
,

∂

∂t

〉
.

Para os vetores v, w ∈ TpΣ, defina

f(t) := ⟨dΦ(t,p)(v), dΦ(t,p)(w)⟩.

Considere uma curva α : (−ϵ, ϵ) → M tal que α(0) = p e α′(0) = v. Defina Ψ :
(−ϵ, ϵ) × R → M , pondo Ψ(t, s) = Φ(t, α(s)). Pelo Lema de Simetria (Ver Lema 3.4 de
[DC19]), obtemos

∇ ∂Ψ
∂t

∂Ψ
∂s

= ∇ ∂Ψ
∂s

∂Ψ
∂t

.

Porém, em (0, t), temos ∂Ψ
∂t

(0, t) = ∇u(Φ(t, p)) e ∂Ψ
∂s

(0, t) = dΦ(t,p)(v). Logo,

f ′(t) =
〈
∇∇u(Φ(t,p))dΦ(t,p)(v), dΦ(t,p)(w)

〉
+
〈
dΦ(t,p)(v), ∇∇u(Φ(t,p))dΦ(t,p)(w)

〉
=
〈
∇dΦ(t,p)∇u(Φ(t, p)), dΦ(t,p)(w)

〉
+
〈
dΦ(t,p)(v), ∇dΦ(t,p)∇u(Φ(t, p))

〉
.

E como Hess u = 0, temos que ∇u é paralelo, portanto f ′(t) = 0. O que implica que f é
constante. Logo,

〈
dΦ(t,p)(v), dΦ(t,p)(w)

〉
=
〈
dΦ(0,p)(v), dΦ(0,p)(w)

〉
= ⟨v, w⟩ ,

pois dΦ(0,p)(v) = d
ds

Φ(0, α(s)) = α′(0) = v.
De maneira analoga, para os vetores ∂

∂t
∈ Tt(R) e v ∈ TpΣ, conseguimos mostrar que

〈
dΦ(t,p)(v), dΦ(t,p)

( ∂

∂t

)〉
=
〈

dΦ(0,p)(v), dΦ(0,p)
( ∂

∂t

)〉
.
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Já que dΦ(0,p)
(

∂
∂t

)
= γ′

∇u(0) = ∇u, concluimos que

〈
dΦ(t,p)(v), dΦ(t,p)

( ∂

∂t

)〉
= ⟨v, ∇u⟩ = 0,

pois ∇u é normal a TP Σ.
Contudo, dados v, w ∈ T(t,p)(R × Σ), isto é, v = λ ∂

∂t
+ v e w = ξ ∂

∂t
+ w. Temos que

〈
dΦ(t,p)(v), dΦ(t,p)(w)

〉
=
〈
λ

∂

∂t
, ξ

∂

∂t

〉
+ ⟨v, w⟩ = ⟨v, w⟩.

Logo, Φ é uma isometria.

3.2 Recobrimento universal

Uma aplicação contínua e sobrejetiva φ : M → N é chamada de recobrimento quando,
para cada ponto p ∈ N , existe uma vizinhança aberta V ⊂ N de p tal que

φ−1(V ) =
⋃
α

Uα

é uma união de conjuntos abertos Uα disjuntos dois a dois, de modo que, para cada
α, a restrição φ|Uα : Uα → V é um homeomorfismo. Nessa situação, M é chamado de
recobrimento de N .

Definição 3.4 (Recobrimento universal). Seja φ : M → N um recobrimento. Quando M

é uma variedade simplesmente conexa, dizemos que φ é um recobrimento universal e que
M é o recobrimento universal de N .

Uma variedade Riemanniana M é dita completa se, para todo p ∈ M , a aplicação
exponencial está definida para todo v ∈ TpM , isto é, as geodésicas γ que partem de p

estão definidas para todos os valores do parâmetro t ∈ R. Pelo Teorema de Hopf-Rinow
(ver Teorema 6.13 em [Lee18b]), se M é uma variedade compacta, então M é completa.

Lema 3.5. Seja M uma variedade Riemanniana Completa e seja φ : M → N um
difeomorfismo local sobre uma variedade Riemanniana N que possui a seguinte propriedade:
para todo p ∈ M e todo v ∈ TpM , tem-se |dφp(v)|≥ |v|. Então, φ é um recobrimento.

Demonstração. Ver Lema 3.3 do Capítulo 7 do livro [DC19].

Considere que Σ é uma superfície compacta e possui curvatura escalar constante.
Assumindo que Σ é conexa (caso não seja basta tomar uma componentes conexa), segue
do Teorema da Classificação dos Espaços de Curvatura Constante (Ver Corolário 5.6.14 de
[Pet16]) que existe uma isómetria φ : S2 → Σ.
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Dessa forma, tomando Φ : R × Σ → M (definida por (3.1)) e φ : S2 → Σ, defina

F (t, q) := Φ(t, φ(q)). (3.2)

Pelo argumento de Cheeger-Gromoll, temos que F : R × S2 → M é uma isómetria local.
Agora, pelo Lema 3.5, concluímos que a isometria φ : R × S2 → M , definida por (3.2),

é um recobrimento. Além disso, como o cilindro R × S2 é simplesmente conexo, segue que
φ : R × S2 → M é um recobrimento universal.

3.3 Homologia singular

Seja M uma variedade Riemanniana. Usando cadeias singulares, abordaremos breve-
mente a definição dos grupos de homologia singulares Hi(M,Z) com coeficientes inteiros,
para um estudo mais detalhado, consulte [Bre93] e [Tre16].

Considerando Rn como o subconjunto de Rn+1 composto pelos vetores cujo (n + 1)-
ésimo coordenado é igual a 0, podemos considerar a união R∞ = ⋃

n≥1 Rn. Para n ≥ 1,
seja en o vetor cuja n-ésima coordenada é 1 e as demais coordenadas são 0, e seja e0 o
vetor cujas coordenadas são todas 0. Para r ≥ 0, o simplexo ∆r de dimensão r é dado
pelo conjunto

∆r =
{

r∑
i=0

λiei; λi ≥ 0 e
r∑

i=0
λi = 1

}
.

Um r-simplexo singular na variedade M é uma aplicação contínua σ : ∆r → M . As
r-cadeias singulares Cr(M) em M são as combinações lineares finitas, com coeficientes
inteiros, dos r-simplexos singulares. Elas formam um grupo abeliano.

Para r ≥ 1 e k = 0, . . . , r, definimos a k-ésima face de um simplexo ∆r como a
aplicação ∂k

r : ∆r−1 → ∆r dada por

∂k
r

(
k−1∑
i=0

λiei

)
=

k−1∑
i=0

λiei +
r∑

i=k+1
λi−1ei, k = 1, . . . , i − 1,

com
∂i

r

(
k−1∑
i=0

λiei

)
=

r∑
i=k+1

λiei, k = i

e
∂0

r

(
k−1∑
i=0

λiei

)
=

r∑
i=k+1

λi−1ei, k = 0.

O operador bordo ∂ : Cr(M) → Cr−1(M) é definido como a soma alternada

∂s =
r∑

i=0
(−1)ks ◦ ∂k

r , s ∈ Cr(M).
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Tal operador satisfaz ∂∂ = 0, de modo que a sequência

· · · → Cr+1(M) ∂−→ Cr(M) ∂−→ Cr−1(M) ∂−→ · · · ∂−→ C0(M)

é um complexo de cadeias, chamado o complexo singular da variedade M e definimos os
grupos de homologia singular como o anel:

Hr(M,Z) = ker(∂ : Cr(M) → Cr−1(M))
Im(∂Cr+1(M)) . (3.3)

Seus elementos são as classes de homologia

[z] = z + ∂Cr+1 = {z + ∂s; s ∈ Cr+1},

onde z ∈ ker(∂ : Cr → Cr−1(M)). Dizemos que z, z′ ∈ ker(∂ : Cr → Cr−1(M)) são
homólogos quando z − z′ = ∂s. Quando z, z′ são homólogos, então [z] = [z′].

O Teorema de Thom garante que em toda n-variedade Riemanniana M orientada e
fechada, as classes de homologia em Hn−1(M ;Z) podem ser representadas por uma classe
fundamental de uma subvariedade. De fato,

Teorema 3.6 (Thom). Se M é uma n-variedade Riemanniana fechada e orientada,
então qualquer classe de homologia em (Hn−1(M ;Z)) é representada por uma classe de
subvariedade Riemanniana. Isto é, dado [z] ∈ Hn−1(M ;Z), exite uma subvariedade Σ ⊂ M

tal que
[z] = [Σ].

Demonstração. Ver Teorema 11.16 do Capítulo VI do livro [Bre93].

Em particular, sobre as hipoteses do teorema, se Σ ⊂ M não é um bordo, isto é, não
existe uma n-subvariedade W ⊂ M com ∂W = Σ, então Σ define um elemento não trivial
de Hn−1(M ;Z), o qual denotamos por [Σ] ̸= 0. Quando o grupo de homologia possui
pelo menos um elemento não trivial, dizemos que ele é um grupo não trivial e denotamos
Hn−1(M ;Z) ̸= 0.

3.4 Característica de Euler-Poincaré

Seja Σ uma 2-variedade. Se Σ for compacta, conexa e orientada, então ela é homeomorfa
a esfera S2 ou a soma conexa de g toros T2 (essa classificação topológica é garantida pelo
Teorema 6.12 de [Lee10]), o número g é chamado de gênero de Σ. Nessas condições a
característica de Euler-Poincaré em Σ é expressa como

χ(Σ) = 2 − 2g. (3.4)
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Se, por outro lado, Σ for compacta e orientada, mas não necessariamente conexa, ela
pode ser decomposta como a união disjunta de um número finito de componentes conexas
{Si}, isto é,

Σ =
N⊔

i=1
Si,

onde N denota o número de componentes conexas de Σ, e cada Si ⊂ Σ é uma subvariedade
compacta, conexa e orientada. Para cada Si, sua característica de Euler-Poincaré é dada
por

χ(Si) = 2 − 2gi,

onde gi denota o gênero de Si. Assim, a característica de Euler-Poincaré de Σ é

χ(Σ) = χ
( N⊔

i=1
Si

)
= (2 − 2g1) + (2 − 2g2) + · · · + (2 − 2gN)

= 2N − 2(g1 + g2 + · · · + gN).

Consequentemente, para qualquer 2-variedade Σ compacta e orienteada, temos que

χ(Σ) ≤ 2N, (3.5)

onde N denota o número de componentes conexas de Σ.
A seguir, apresentamos o Teorema de Gauss-Bonnet, um resultado que estabelece uma

relação entre a curvatura escalar de Σ e sua característica de Euler-Poincaré.

Teorema 3.7 (Gauss-Bonnet). Seja Σ uma 2-variedade Riemanniana compacta e orientada,
então

∫
Σ

Scal dVΣ = 4πχ(Σ). (3.6)

Demonstração. Ver Teorema 9.7 de ([Lee18a]).

3.5 Fórmula da Co-área e Teorema de Sard

Enunciaremos a seguir dois teoremas clássicos, seguidos de adaptações e interpretações
que os tornam diretamente aplicáveis às nossas necessidades.

Teorema 3.8 (Fórmula da co-área). Seja f ∈ C∞(M) uma função suave em uma variedade
Riemanniana M , e g : M → [0, ∞) uma função mensurável. Então

∫
M

g|∇f | dVM =
∫ ∞

0

(∫
f−1(t)

g dVf−1(t)

)
dt.
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Demonstração. Ver Teorema 0.4.5 de [Wan06].

Em particular, seja A ⊂ R um conjunto mensurável, tal que f−1(A) ⊂ M , tomando g

como a função característica de f−1(A), definida por

g(p) =

1, p ∈ f−1(A)
0, p /∈ f−1(A),

obtemos
∫

f−1(A)
|∇f | dVf−1(A) =

∫
A

(∫
f−1(t)

dVf−1(t)

)
dt. (3.7)

Teorema 3.9 (Sard). Sejam M e N variedades Riemannianas e f : M → N uma aplicação
suave. Então, o conjuto dos valores críticos de f tem médida nula em N .

Demonstração. Ver Capítulo 6 de [Lee12].

Sejam A e B conjuntos quaisquer. Denotamos por |A| e |B| as medidas de A e B,
respectivamente. Usamos a notação |A|→ |B| para indicar que a medida do conjunto A

tende à medida do conjunto |B|. Em particluar, quando |A|→ 0, dizemos que A tende a
ter medida nula.

Se A tem medida nula, então para qualquer aplicação F diferenciável em A, temos que
∫

A
F = 0.
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Capítulo 4

Estimativas de Área

Neste capítulo, estabelecemos uma desigualdade geométrica que relaciona a caracte-
rística de Euler-Poincaré de uma superfície de nível, obtida por meio de uma aplicação
harmônica. Com base nessa desigualdade, exploramos novos resultados sobre desigualdades
sistólicas, incluindo uma estimativa para superfícies de área minimizante. Essa abordagem
constitui a base de alguns dos resultados apresentados em [Ste22], de D. Stern, que serviu
como principal referência para o desenvolvimento desta dissertação.

Seguindo a técnica desenvolvida no artigo citado, e estendendo-a ao contexto das
soluções de equações de Poisson, conseguimos obter um novo resultado relacionado a
uma desigualdade sistólica. Esse resultado estabelece uma relação entre a curvatura
escalar da variedade ambiente, a função potencial envolvida na equação de Poisson e as
propriedades geométricas das superfícies associadas. A abordagem explorada permite
identificar novos vínculos entre a geometria global da variedade e sístole, contribuindo
para uma compreensão mais profunda das interações entre curvatura e topologia.

4.1 Uma abordagem com aplicações harmônicas

Apresentaremos, a seguir, algumas ideias empregadas em [Ste22].

Teorema 4.1 (D. Stern). Seja M uma 3-variedade Riemanniana fechada e orientada, e
seja u : M → S1 uma aplicação harmônica não trivial. Então, para Σθ := u−1(θ), temos:

2π
∫

θ∈S1
χ(Σθ) ≥ 1

2

∫
θ∈S1

∫
Σθ

(|du|−2|Hess u|2+ ScalM). (4.1)

Demonstração. Antes de iniciar a demonstração, estabelecemos as seguintes notações:

h := u∗(dθ), |du|= |h|= |d(θ ◦ u)| e |Hess u|= |Dh|= |Hess(θ ◦ u)|,

onde u∗(dθ) ∈ Ω1(M) é o pullback de dθ ∈ Ω1(S1) por u.
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Prosseguindo com a demonstração, como u é uma aplicação harmônica, segue do
Lema 2.30 que a 1-forma h = u∗(dθ) é uma forma harmônica. Assim, pela Identidade de
Bochner-Weitzenböck, temos que

1
2∆|h|2= |Hess u|2+ Ric(h♯, h♯). (4.2)

Por outro lado, tomando δ > 0 e definindo a função φδ = (|h|2+δ) 1
2 , obtemos:

∆φδ = div(∇φδ) = div
(

1
2φδ

∇|h|2
)

= 1
2φδ

div(∇|h|2) +
〈

∇
( 1

2φδ

)
, ∇|h|2

〉
(cf. Proposição 1.15)

= 1
2φδ

∆|h|2− 1
2φ2

δ

⟨∇φδ, ∇|h|2⟩

= 1
2φδ

∆|h|2− 1
4φ3

δ

|∇|h|2|2

= 1
2φδ

∆|h|2− 1
4φ3

δ

|2|h|∇|h||2

= 1
2φδ

∆|h|2−|h|2

φ3
δ

|∇|h||2

= 1
φδ

(1
2∆|h|2−|h|2

φ2
δ

|∇|h||2
)
.

Substituindo (4.2) na igualdade acima, chegamos a:

∆φδ = 1
φδ

(
|Hess u|2+ Ric(h♯, h♯) − |h|2

φ2
δ

|∇|h||2
)
.

Perceba que, |h|2= φ2
δ − δ < φ2

δ implica que |h|2
φ2

δ
< 1. Logo, alcançamos a seguinte

desigualdade:

∆φδ ≥ 1
φδ

(
|Hess u|2−|∇|h||2+ Ric(h♯, h♯)

)
. (4.3)

Agora, utilizando a hipótese de que u é não trivial e aplicando o Teorema de Sard,
conclui-se que, para quase todo θ ∈ S1, o nível Σθ := u−1(θ) é uma hipersuperfície suave.

Consequentemente, o vetor normal é dado por ν = h♯

|h♯| . Aplicando o Truque de
Schoen-Yau para Σθ ⊂ M , obtemos

Ric(ν, ν) = 1
2(ScalM − ScalΣθ

+H2
Σθ

− |AΣθ
|2). (4.4)

Vamos explorar os termos |AΣθ
|2 e H2

Σθ
presentes na igualdade acima.
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Tomando X ∈ X(Σθ) arbitrário, o operador de Weingarten AΣθ
é definido por

AΣθ
X = −(∇Xν)

⊥

= −
(

∇X
h♯

|h♯|

) ⊥

= −
(

X
( 1

|h♯|
)
h♯ + 1

|h♯|
∇Xh♯

) ⊥

= − 1
|h♯|

∇Xh♯.

Daí, obtemos a seguinte expressão:

∇Xh♯ = −|h♯|AΣθ
X. (4.5)

Vamos escrever ⟨∇Xh♯, Y ⟩ = (Hess u)(X, Y ), assim

|Hess u|2 = |∇h♯|2=
3∑

i=1
(∇ei

h♯)2 =
3∑

i=1

3∑
j=1

⟨∇ei
h♯, ej⟩2

=
2∑

i,j=1
⟨∇ei

h♯, ej⟩2 + ⟨∇νh♯, ν⟩2 +
2∑

j=1
⟨∇νh♯, ej⟩2 +

2∑
i=1

⟨∇ei
h♯, ν⟩2

=
2∑

i,j=1
⟨∇ei

h♯, ej⟩2 + ⟨∇νh♯, ν⟩2 +
2∑

j=1
⟨∇ej

h♯, ν⟩2 +
2∑

i=1
⟨∇ei

h♯, ν⟩2

=
2∑

i,j=1
⟨∇ei

h♯, ej⟩2 + ⟨∇νh♯, ν⟩2 + 2
2∑

i=1
⟨∇ei

h♯, ν⟩2

= |h♯|2
2∑

i,j=1
⟨AΣθ

ei, ej⟩2 + ⟨∇νh♯, ν⟩2 + 2
2∑

i=1
⟨∇ei

h♯, ν⟩2 (cf. (4.5))

= |h♯|2|AΣθ
|2+(Hess u)2(ν, ν) + 2

2∑
i=1

⟨∇ei
h♯, ν⟩2.

Perceba ainda que

|∇|h||2 =
3∑

i=1

(
ei(|h|)

)2
=

3∑
i=1

(
1

2|h|
ei(|h|2)

)2

= 1
4|h|2

3∑
i=1

(
ei(|h|2)

)2
,

e como |h|2= |h♯|2 (ver (1.14)), segue que

|∇|h||2 = 1
4|h♯|2

3∑
i=1

(ei(|h♯|2))2 = 1
4|h♯|2

3∑
i=1

(2⟨∇ei
h♯, h♯⟩)2

=
3∑

i=1
⟨∇ei

h♯, ν⟩2 =
2∑

i=1
⟨∇ei

h♯, ν⟩2 + ⟨∇νh♯, ν⟩2

=
2∑

i=1
⟨∇ei

h♯, ν⟩2 + (Hess u)2(ν, ν).

Logo,
2∑

i=1
⟨∇ei

h♯, ν⟩2 = |∇|h||2−(Hess u)2(ν, ν).
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Daí, temos que

|Hess u|2 = |h♯|2|AΣθ
|2+(Hess u)2(ν, ν) + 2|∇|h||2−2(Hess u)2(ν, ν)

= |h♯|2|AΣθ
|2+2|∇|h||2−(Hess u)2(ν, ν).

Portanto,

|h♯|2|AΣθ
|2= |∇h♯|2−2|∇|h||2+(Hess u)2(ν, ν). (4.6)

A curvatura média HΣθ
, satisfaz:

|h♯|HΣθ
=

2∑
i=1

⟨|h♯|AΣθ
(ei), ei⟩

=
2∑

i=1
⟨−∇ei

h♯, ei⟩ (cf. (4.5))

= −
2∑

i=1
(Hess u)(ei, ei)

= −
3∑

i=1
(Hess u)(ei, ei) + (Hess u)(ν, ν)

= −∆u + (Hess u)(ν, ν).

Já que u é harmônica, temos que ∆u = 0. Dessa forma, podemos concluir que

|h♯|2H2
Σθ

= (Hess u)2(ν, ν). (4.7)

Utilizando (4.6) e (4.7), obtemos a seguinte relação

|h♯|2(H2
Σθ

− |AΣθ
|2) = (|h♯|HΣθ

)2 − (|h♯||AΣθ
|)2

= (Hess u)2(ν, ν) − |Hess u|2+2|∇|h||2−(Hess u)2(ν, ν)

= 2|∇|h||2−|Hess u|2. (4.8)

Substituindo (4.8) em (4.4), podemos escrever

Ric(h♯, h♯) = |h♯|2Ric(ν, ν)

= 1
2 |h♯|2(ScalM − ScalΣθ

+H2
Σθ

− |AΣθ
|2)

= 1
2 |h♯|2(ScalM − ScalΣθ

) + 1
2 |h♯|2(H2

Σθ
− |AΣθ

|2)

= 1
2 |h♯|2(ScalM − ScalΣθ

) + 1
2(2|∇|h||2−|Hess u|2)
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Novamente usando |h|2= |h♯|2, chegamos em

Ric(h♯, h♯) = 1
2 |h|2(ScalM − ScalΣθ

) + 1
2(2|∇|h||2−|Hess u|2). (4.9)

Substituindo (4.9) em (4.3), obtemos

∆φδ ≥ 1
φδ

(
|Hess u|2−|∇|h||2+1

2 |h|2(ScalM − ScalΣθ
) + 1

2(2|∇|h||2−|Hess u|2)
)

= 1
2φδ

(
2|Hess u|2−2|∇|h||2+|h|2(ScalM − ScalΣθ

) + 2|∇|h||2−|Hess u|2
)

= 1
2φδ

(
|Hess u|2+|h|2(ScalM − ScalΣθ

)
)

= 1
2φδ

(
|Hess u|2+|du|2(ScalM − ScalΣθ

)
)

. (4.10)

Agora, seja A ⊂ S1 um conjunto aberto que contém o conjunto C := Crit(u) dos valores
críticos de u, e seja B = S1 \ A o subconjunto complementar fechado dos valores regulares
de u, de modo que B ⊂ Reg(u). Integrando (4.10) sobre u−1(B), vem que

∫
u−1(B)

1
2φδ

(
|Hess u|2+|du|2(ScalM − ScalΣθ

)
)

≤
∫

u−1(B)
∆φδ.

Pelo Teorema da Divergência sabemos que
∫

M ∆φδ = 0. Consequentemente
∫

u−1(B)
∆φδ = −

∫
u−1(A)

∆φδ.

Por outro lado, pela Desigualdade de Kato, obtemos |Hess u|2−|∇|h||2≥ 0. Assim, por
(4.3), temos que

∆φδ ≥ 1
φδ

Ric(h♯, h♯).

Por sua vez, como o Ric é uma forma bilinear e M3 é uma variedade fechada, tomando
CM = maxM |Ric|, temos que |Ric(h♯, h♯)|≤ CM |h|2. Logo,

∆φδ ≥ −CM |h|2

φδ

= −CM |h|· |h|
φδ

≥ −CM |h|.

Daí,
∫

u−1(B)
∆φδ = −

∫
u−1(A)

∆φδ ≤ CM

∫
u−1(A)

|h|.
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Pela Fórmula da co-área, vem que

CM

∫
u−1(A)

|h|= CM

∫
A

(∫
u−1(θ)

dΣθ

)
dθ = CM

∫
A

Area(Σθ) dθ.

Logo,

∫
u−1(B)

1
2φδ

(
|Hess u|2+|du|2(ScalM − ScalΣθ

)
)

≤ CM

∫
A

Area(Σθ) dθ. (4.11)

Sendo M3 uma variedade fechada, temos que |du| é limitado em M , e fazendo δ → 0,
vem que φδ → |du|. Logo,

1
2

∫
u−1(B)

|du|
(

|Hess u|2

|du|2
+ ScalM − ScalΣθ

)
≤ CM

∫
A

Area(Σθ) dθ.

No entanto, aplicando a Fórmula da co-área e o Teorema de Gauss-Bonnet, perceba que

1
2

∫
u−1(B)

|du|
(

|Hess u|2

|du|2
+ ScalM − ScalΣθ

)
=1

2

∫
B

(∫
Σθ

(
|Hess u|2

|du|2
+ ScalM − ScalΣθ

))
dθ

=1
2

∫
B

(∫
Σθ

(
|Hess u|2

|du|2
+ ScalM

))
dθ

− 2π
∫

B
X (Σθ) dθ.

Desse modo, a estimativa (4.11) se torna:

1
2

∫
B

(∫
Σθ

(
|Hess u|2

|du|2
+ ScalM

))
dθ ≤ 2π

∫
B

X (Σθ) dθ + CM

∫
A

Area(Σθ) dθ. (4.12)

Finalmente, pelo Teorema de Sard, o cojunto C tem médida nula em S1; Tomando a
médida de A arbitrariamente pequena de modo que |A|→ |C|, concluimos de (4.12) que

1
2

∫
θ∈S1

(∫
Σθ

(
|Hess u|2

|du|2
+ ScalM

))
dθ ≤ 2π

∫
θ∈S1

X (Σθ) dθ.

Corolário 4.2 (D. Stern). Seja M uma 3-variedade Riemanniana fechada e orientada, e
u : M → S1 uma aplicação harmônica não trivial. Se M possui curvatura escalar positiva
ScalM > 0, então

2π
∫

θ∈S1
χ(Σθ) ≥ 1

2 min
M

(ScalM)
∫

θ∈S1
Area(Σθ), (4.13)

onde a igualdade ocorre apenas se o recobrimento universal de M for o cilindro S2 × R.
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Demonstração. Pelo Teorema de D. Stern

2π
∫

θ
χ(Σθ) ≥ 1

2

∫
θ

∫
Σθ

(|du|−2|Hess u|2+ ScalM).

Tomando o minM(ScalM) e usando o fato de |du|2|Hess u|2≥ 0, temos que

2π
∫

θ
χ(Σθ) ≥ 1

2

∫
θ

∫
Σθ

ScalM ≥ 1
2 min

M
(ScalM)

∫
θ
Area(Σθ).

Vamos analisar o caso da igualdade. Por Guass-Bonnet e pelo Teorema de D. Stern,
obtemos

1
2

(∫
S1

∫
Σθ

ScalΣθ

)
dθ = 2π

∫
S1

χ(Σθ) ≥ 1
2

∫
S1

∫
Σθ

(|du|−2|Hess u|2+ ScalM) dθ.

Onde, a igualdade ocorre se e somente se ScalM = const. e Hess u = 0. Neste caso,
tomando ∇u = h♯

|h♯| , pela Preposição 3.3, o fluxo gradiente

Φ : R × Si0 → M,

onde Siθ
é uma componente conexa fixada de Σθ, fornece uma isometria local (em particular,

um recobrimento) entre M e R × S2. O que conclui a demonstração.

O Teorema de D. Stern também pode ser utilizado nas demonstrações de alguns
teoremas de rigidez relacionados à superfícies minimizantes de área. No contexto em que
M é uma 3-variedade fechada e orientada, define-se a 2-sístole homológica por:

sys2(M) := inf {Area(Σ) | Σ ⊂ M, [Σ] ̸= 0 ∈ H2(M ;Z)}

como sendo a menor área entre superfícies que não são bordos em M .

Teorema 4.3 (D. Stern). Seja M uma 3-variedade Riemanniana fechada e orientada. Se
M possui curvatura escalar positiva, ScalM > 0, e segundo grupo de homologia não trivial,
H2(M ;Z) ̸= 0, então

min
M

(ScalM)sys2(M) ≤ 8π, (4.14)

onde a igualdade ocorre apenas se o recobrimento universal de M for o cilindro S2 × R.

Demonstração. Seja N(θ) o número de componentes conexas {Si} de Σθ. Por (3.5), temos
χ(Σθ) ≤ 2N(θ). Além disso,

Area(Σ) =
N(θ)∑
i=1

Area(Si) ≥ N(θ)sys2(M).
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Assim, aplicando o Corolário anterior, obtemos

min
M

(ScalM)sys2(M)
∫
S1

N(θ) dθ ≤ min
M

(ScalM)
∫
S1

Area(Σθ)dθ

≤ 4π
∫
S1

χ(Σθ)dθ

≤ 8π
∫
S1

N(θ)dθ.

Ou seja,
min

M
(ScalM)sys2(M) ≤ 8π,

ocorrendo a igualdade apenas se M for recoberta por um cilindro S2 × R.

4.2 Uma abordagem para a equação de Poisson

Seja M uma n-variedade Riemanniana, e seja u : M → I ⊂ R uma função suave
definida em M . Consideremos a equação de Poisson definida por:

∆u = −f(u), (4.15)

onde f : R → R é uma função suave, chamada de função potencial.

Lema 4.4. Seja M uma 3-variedade Riemanniana fechada e orientada. Se u : M → I, com
I ⊂ R compacto, é uma solução não trivival da equação ∆u = −f(u), com f não-crescente,
então

2π
∫

t∈I
χ(Σt) ≥ 1

2

∫
t∈I

∫
Σt

(
|∇u|−2(|f(u)|−|Hess u|)2 + ScalM −f ′(u)

)
. (4.16)

Demonstração. Já que u é solução da equação de Poisson, conclui-se que u é suave. Assim,
aplicando a Fórmula de Bochner, obtemos:

1
2∆|∇u|2 = Ric(∇u, ∇u) + ⟨∇u, ∇(∆u)⟩ + |Hess u|2

= Ric(∇u, ∇u) − ⟨∇u, ∇f(u)⟩ + |Hess u|2

= Ric(∇u, ∇u) − f ′(u)⟨∇u, ∇u⟩ + |Hess u|2

= Ric(∇u, ∇u) − f ′(u)|∇u|2+|Hess u|2. (4.17)

Por outro lado, tomando δ > 0 e definindo a função φδ := (|∇u|2+δ) 1
2 , temos a seguinte

expressão

∆φδ = 1
φδ

(1
2∆|∇u|2−|∇u|2

φ2
δ

|∇|∇u||2
)

(4.18)



Capítulo 4. Estimativas de Área 58

Substituindo (4.17) em (4.18), vem que

∆φδ = 1
φδ

(
|Hess u|2−f ′(u)|∇u|2+ Ric(∇u, ∇u) − |∇u|2

φ2
δ

|∇|∇u||2
)

.

Perceba que |∇u|2= φ2
δ − δ < φ2

δ implica em |∇u|2
φ2

δ
< 1. Logo,

∆φδ ≥ 1
φδ

(
|Hess u|2−|∇|∇u||2−f ′(u)|∇u|2+ Ric(∇u, ∇u)

)
. (4.19)

Agora, utilizando a hipótese de que u é não trivial e aplicando o Teorema de Sard,
conclui-se que, para quase todo t ∈ I, o nível Σt := u−1(t) é uma hipersuperfície suave.

Consequentemente, o vetor normal é dado por ν = ∇u
|∇u| . Aplicando o Truque de

Schoen-Yau a Σt ⊂ M , obtemos

Ric(ν, ν) = 1
2(ScalM − ScalΣt +H2

Σt
− |AΣt |2). (4.20)

Vamos explorar os termos |AΣt |2 e H2
Σt

.
Tomando X ∈ X(Σt) arbitrário, o operador de Weingarten AΣt é definido por

AΣtX = −(∇Xν)

⊥

= −
(

X
( 1

|∇u|
)
∇u + 1

|∇u|
∇X∇u

) ⊥

= − 1
|∇u|

∇X∇u.

Daí, obtemos a seguinte expressão:

∇X∇u = −|∇u|AΣtX. (4.21)

Usando (4.21), temos que

|Hess u|2 =
3∑

i=1

3∑
j=1

⟨∇ei
∇u, ej⟩2

=
2∑

i,j=1
⟨∇ei

∇u, ej⟩2 + ⟨∇ν∇u, ν⟩2 +
2∑

j=1
⟨∇ν∇u, ej⟩2 +

2∑
i=1

⟨∇ei
∇u, ν⟩2

=
2∑

i,j=1
⟨∇ei

∇u, ej⟩2 + ⟨∇ν∇u, ν⟩2 +
2∑

j=1
⟨∇ej

∇u, ν⟩2 +
2∑

i=1
⟨∇ei

∇u, ν⟩2

=
2∑

i,j=1
⟨∇ei

∇u, ej⟩2 + ⟨∇ν∇u, ν⟩2 + 2
2∑

j=1
⟨∇ej

∇u, ν⟩2

= |∇u|2
2∑

i,j=1
⟨AΣθ

ei, ej⟩2 + ⟨∇ν∇u, ν⟩2 + 2
2∑

i=1
⟨∇ei

∇u, ν⟩2

= |∇u|2|AΣθ
|2+(Hess u)2(ν, ν) + 2

2∑
i=1

⟨∇ei
∇u, ν⟩2.
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Perceba ainda que

|∇|∇u||2 =
3∑

i=1

(
ei(|∇u|)

)2
=

3∑
i=1

(
1

2|∇u|
ei(|∇u|2)

)2

= 1
4|∇u|2

3∑
i=1

(
ei(|∇u|2)

)2

= 1
4|∇u|2

3∑
i=1

(ei(⟨∇u, ∇u⟩))2 = 1
4|∇u|2

3∑
i=1

(2⟨∇ei
∇u, ∇u⟩)2 =

3∑
i=1

⟨∇ei
∇u, ν⟩2

=
2∑

i=1
⟨∇ei

∇u, ν⟩2 + ⟨∇ν∇u, ν⟩2 =
2∑

i=1
⟨∇ei

∇u, ν⟩2 + (Hess u)2(ν, ν).

Logo,
2∑

i=1
⟨∇ei

∇u, ν⟩2 = |∇|∇u||2−(Hess u)2(ν, ν).

Daí, temos que

|Hess u|2 = |∇u|2|AΣθ
|2+(Hess u)2(ν, ν) + 2|∇|∇u||2−2(Hess u)2(ν, ν)

= |∇u|2|AΣθ
|2+2|∇|∇u||2−(Hess u)2(ν, ν).

Portanto,

|∇u|2|AΣθ
|2= |Hess u|2−2|∇|∇u||2+(Hess u)2(ν, ν). (4.22)

A curvatura média HΣt , juntamente com (4.21), nos fornece a seguinte expressão:

|∇u|HΣt =
2∑

i=1
⟨|∇u|AΣθ

(ei), ei⟩ =
2∑

i=1
⟨−∇ei

∇u, ei⟩ = −
2∑

i=1
(Hess u)(ei, ei)

= −
3∑

i=1
(Hess u)(ei, ei) + (Hess u)(ν, ν) = −∆u + (Hess u)(ν, ν)

= f(u) + (Hess u)(ν, ν)

Daí, segue que

|∇u|2H2
Σθ

= f 2(u) + 2f(u) Hess u(ν, ν) + (Hess u)2(ν, ν). (4.23)

Utilizando (4.22) e (4.23), obtemos a seguinte relação

|∇u|2(H2
Σθ

− |AΣθ
|2) =f 2(u) + 2f(u) Hess u(ν, ν) + (Hess u)2(ν, ν)

− |Hess u|2+2|∇|∇u||2−(Hess u)2(ν, ν)

=f 2(u) + 2f(u) Hess u(ν, ν) − |Hess u|2+2|∇|∇u||2. (4.24)

Diante das expressões obtidas calculando a curvatura média e o operador de Weigarten,
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substituindo (4.24) em (4.20), podemos escrever

Ric(∇u, ∇u) =|∇u|2Ric(ν, ν)

=1
2 |∇u|2(ScalM − ScalΣt +H2

Σt
− |AΣt |2)

=1
2 |∇u|2(ScalM − ScalΣt) + 1

2 |∇u|2(H2
Σt

− |AΣt|2)

=1
2 |∇u|2(ScalM − ScalΣt)

+ 1
2(f 2(u) + 2f(u) Hess u(ν, ν) − |Hess u|2+2|∇|∇u||2).

No entanto, denotando □ = f 2(u) + 2f(u) Hess u(ν, ν) − |Hess u|2+2|∇|∇u||2, perceba que

□ ≥ |f(u)|2−2|f(u)||Hess u(ν, ν)|−|Hess u|2+2|∇|∇u||2

=
(
|f(u)|−|Hess u|

)2
− 2|Hess u|2+2|∇|∇u||2.

Portanto,

Ric(∇u, ∇u) ≥1
2 |∇u|2(ScalM − ScalΣt)

+ 1
2

((
|f(u)|−|Hess u|

)2
− 2|Hess u|2+2|∇|∇u||2

)
. (4.25)

Agora, substituindo (4.25) em (4.19), obtemos

∆φδ ≥ 1
φδ

[
|Hess u|2−|∇|∇u||2−f ′(u)|∇u|2+1

2 |∇u|2(ScalM − ScalΣt)

+ 1
2

((
|f(u)|−|Hess u|

)2
− 2|Hess u|2+2|∇|∇u||2

)]

= 1
φδ

[
1
2 |∇u|2(ScalM − ScalΣt) + 1

2
(
|f(u)|−|Hess u|

)2
− f ′(u)|∇u|2

]

= 1
2φδ

[(
|f(u)|−|Hess u|

)2
+ |∇u|2(ScalM − ScalΣt) − f ′(u)|∇u|2

]
. (4.26)

Seja A ⊂ I um conjunto aberto que contém o conjunto C := Crit(u), e seja B = I \ A

o subconjunto complementar fechado dos valores regulares de u. Integrando (4.26) sobre
u−1(B), vem que

∫
u−1(B)

1
2φδ

((
|f(u)|−|Hess u|

)2
+ |∇u|2(ScalM − ScalΣt) − f ′(u)|∇u|2

)
≤
∫

u−1(B)
∆φδ.
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Pelo Teorema da Divergência sabemos que
∫

M ∆φδ = 0. Consequentemente
∫

u−1(B)
∆φδ = −

∫
u−1(A)

∆φδ.

Por outro lado, pela Desigualdade de Kato, obtemos |Hess u|2−|∇|∇u||2≥ 0. Assim,
por (4.19), temos que

∆φδ ≥ 1
φδ

(
Ric(∇u, ∇u) − f ′(u)|∇u|2

)
.

Por sua vez, como o Ric é uma forma bilinear e M3 é uma variedade fechada, tomando
CM = maxM |Ric|, temos que |Ric(∇u, ∇u)|≤ CM |∇u|2. Logo,

∆φδ ≥ −CM |∇u|2−f ′(u)|∇u|2

φδ

= −|∇u|(CM − f ′(u)) |∇u|
φδ

≥ −|∇u|(CM − f ′(u)).

Por sua vez, como f é não-crescente, existe CI = maxI(f ′). Então

∆φδ ≥ −|∇u|(CM − CI).

Daí,
∫

u−1(B)
∆φδ = −

∫
u−1(A)

∆φδ ≤ (CM − CI)
∫

u−1(A)
|∇u|.

Pela Fórmula da co-área, vem que

(CM − CI)
∫

u−1(A)
|∇u|= (CM − CI)

∫
A

(∫
u−1(t)

dΣt

)
dt = (CM − CI)

∫
A

Area(Σt) dt.

Logo,

∫
u−1(B)

1
2φδ

((
|f(u)|−|Hess u|

)2
+ |∇u|2(ScalM − ScalΣt) − f ′(u)|∇u|2

)

≤ (CM − CI)
∫

A
Area(Σt) dt. (4.27)

Sendo M3 uma variedade fechada, temos que |∇u| é limitado em M , e fazendo δ → 0,
vem que φδ → |∇u|. Logo,

1
2

∫
u−1(B)

|∇u|
((|f(u)|−|Hess u|

)2

|∇u|2
+ ScalM − ScalΣt −f ′(u)

)

≤ (CM − CI)
∫

A
Area(Σt) dt.
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Perceba ainda que, ao aplicar a Fórmula da co-área e o Teorema de Gauss-Bonnet, temos:

1
2

∫
u−1(B)

|∇u|
((|f(u)|−|Hess u|

)2

|∇u|2
+ ScalM − ScalΣt −f ′(u)

)

= 1
2

∫
B

[ ∫
Σt

((|f(u)|−|Hess u|
)2

|∇u|2
+ ScalM − ScalΣt −f ′(u)

)]
dt

= 1
2

∫
B

[ ∫
Σt

((|f(u)|−|Hess u|
)2

|∇u|2
+ ScalM −f ′(u)

)]
dt − 2π

∫
B

χ(Σθ) dt.

Assim, a estimativa (4.27) pode ser reescrita da seguinte forma:

1
2

∫
B

[ ∫
Σt

((|f(u)|−|Hess u|
)2

|∇u|2
+ ScalM −f ′(u)

)]
dt ≤2π

∫
B

χ(Σt) dt

+ (CM − CI)
∫

A
Area(Σt) dt.

Finalmente, pelo Teorema de Sard, o cojunto C tem médida nula em I, tomando a
médida de A arbitrariamente pequena de modo que |A|→ |C|, concluímos que

1
2

∫
t∈I

[ ∫
Σt

((|f(u)|−|Hess u|
)2

|∇u|2
+ ScalM −f ′(u)

)]
dt ≤ 2π

∫
t∈I

χ(Σt) dt.

Por fim, vamos usar a desigualdade obtida acima para obter uma estimativa sistólica.

Teorema 4.5. Seja M uma 3-variedade fechada, orientada e com segundo grupo de
homologia não trivial, H2(M ;Z) ̸= 0. Suponha que u : M → I, com I ⊂ R compacto, é
uma solução não trivial da equação ∆u = −f(u), com f não-crescente, e que a curvatura
escalar de M é tal que ScalM − f ′ ≥ 0. Então,

(
min

M
(ScalM) − max

I
(f ′)

)
sys2(M) ≤ 8π. (4.28)

Demonstração. Do Lema anterior, temos que

2π
∫

I
χ(Σt) dt ≥ 1

2

∫
I

(∫
Σt

(
|∇u|−2(|f(u)|−|Hess u|)2 + ScalM −f ′(u)

))
dt.

Já que |∇u|−2(|f(u)|−|Hess u|)2 ≥ 0, podemos escrever:

2π
∫

I
χ(Σt) dt ≥ 1

2

∫
I

(∫
Σt

ScalM −f ′(u)
)

dt.

Agora, perceba que ScalM ≥ minM (ScalM ) e −f ′ ≥ − maxI(f ′). Assim, usando a hipótese
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de que ScalM − f ′ ≥ 0, vem que ScalM − f ′ ≥ minM(ScalM) − maxI(f ′). Daí,

2π
∫

I
χ(Σt) dt ≥ 1

2

(
min

M
(ScalM) − max

I
(f ′)

)∫
I

Area(Σt) dt.

Por fim, usando o fato de que 2N(t) ≥ χ(Σt) e Area(Σt) ≥ N(t)sys2(M), obtemos

8π
∫

I
N(t) dt ≥

(
min

M
(ScalM) − max

I
(f ′)

)
sys2(M)

∫
I

N(t) dt.

O que conclui a demonstração.



64

Bibliografia

[BBEN10] Hubert Bray, Simon Brendle, Michael Eichmair, and André Neves. Area-
minimizing projective planes in 3-manifolds. Communications on pure and
applied mathematics, 63(9):1237–1247, 2010.

[BBN10] Hubert Bray, Simon Brendle, and Andre Neves. Rigidity of area-minimizing
two-spheres in three-manifolds. Commun. Anal. Geom., 18(4):821–830, 2010.

[Bre93] Glen E. Bredon. Topology and Geometry, volume 139 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1993.

[Cam14] Antônio Caminha. Tópicos de Geometria Diferencial. Sociedade Brasileira de
Matemática, Rio de Janeiro, 2014.

[Cha84] Isaac Chavel. Eigenvalues in Riemannian geometry. With a chapter by Burton
Randol. With an appendix by Jozef Dodziuk, volume 115 of Pure and Applied
Mathematics (Academic Press). Academic Press, New York, NY, 1984.

[DC19] Manfredo Perdigao Do Carmo. Geometria Riemanniana. Projeto Euclides. Rio
de Janeiro: IMPA, 6th edition, 2019.

[JD71] Cheeger J. and Gromoll D. The splitting theorem for manifolds of nonnegative
ricci curvature. Journal of Differential Geometry, 6:119–128, 1971.

[Jos08] Jürgen Jost. Riemannian Geometry and Geometric Analysis. Universitext.
Springer, 6th edition, 2008.

[Lee03] John M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts
in Mathematics. Springer, New York, 2003.

[Lee10] John M. Lee. Introduction to Topological Manifolds, volume 202 of Graduate
Texts in Mathematics. Springer, New York, 2nd edition, 2010.

[Lee12] John M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts
in Mathematics. Springer, 2nd edition, 2012.



65

[Lee18a] John M. Lee. Introduction to Riemannian Manifolds, volume 176 of Graduate
Texts in Mathematics. Springer, Cham, 2nd edition, 2018.

[Lee18b] John M. Lee. Riemannian Manifolds: An Introduction to Curvature, volume
176 of Graduate Texts in Mathematics. Springer, New York, 2nd edition, 2018.

[LW08] Fanghua Lin and Changyou Wang. The Analysis of Harmonic Maps and Their
Heat Flows. World Scientific, Singapore, 2008.

[Nas56] J. Nash. The imbedding problem for riemannian manifolds. Annals of Mathe-
matics, 63:20–63, 1956.

[Pet06] Peter Petersen. Riemannian Geometry, volume 171 of Graduate Texts in
Mathematics. Springer, New York, second edition, 2006.

[Pet16] Peter Petersen. Riemannian Geometry, volume 171 of Graduate Texts in
Mathematics. Springer, Cham, 3rd edition, 2016.

[Ste22] Daniel L. Stern. Scalar curvature and harmonic maps to S1. J. Differ. Geom.,
122(2):259–269, 2022.

[SY79] Richard Schoen and Shing-Tung Yau. Existence of incompressible minimal
surfaces and the topology of three dimensional manifolds with non-negative
scalar curvature. Annals of Mathematics, 110(1):127–142, 1979.

[Top63] V. A. Toponogov. Estimation of the length of a convex curve on a two-
dimensional surface. Sibirsk. Mat. Zh.l 4, 1963.

[Tre16] Paula B. Tretkoff. Complex Ball Quotients and Line Arrangements in the
Projective Plane, volume 51 of Mathematical Notes. Princeton University Press,
Princeton, NJ, 2016.

[Wan06] Feng-Yu Wang. Functional Inequalities, Markov Semigroups and Spectral The-
ory, volume 18 of Mathematical Monographs Series. Science Press, Beijing/New
York, 2006.

[Wu13] Hung-Hsi Wu. The Bochner Technique in Differential Geometry, volume
174. Mathematical Surveys and Monographs, American Mathematical Society,
Providence, RI, 2013.


	05cb8f4b87038fabe8468181b3fd2eb3e1f01626d96ac8dc3e3a8a7ca856a7e5.pdf
	Microsoft Word - Fichacat16995-2025-M-MATEMATICA-LUCAS CAVALCANTE BARRETO-Equacao de Poisson e uma desigualdade sistolica
	05cb8f4b87038fabe8468181b3fd2eb3e1f01626d96ac8dc3e3a8a7ca856a7e5.pdf
	Introdução
	Preliminares
	Curvaturas
	Imersões isométricas
	Segunda forma fundamental
	As equações fundamentais
	Hipersuperfícies

	Operadores diferenciais em variedades
	Gradiente; Divergência; Laplaciano; Hessiano
	Desigualdade de Kato e Fórmula de Bochner


	Formas Diferenciais e Aplicações Harmônicas 
	Formas diferenciais
	O Laplaciano de Hodge
	Identidade de Bochner-Weitzenböck

	Aplicações harmônicas
	Aplicações harmônicas para o círculo unitário


	Resultados Auxiliares
	Argumento de Cheeger-Gromoll
	Recobrimento universal
	Homologia singular
	Característica de Euler-Poincaré
	Fórmula da Co-área e Teorema de Sard

	Estimativas de Área
	Uma abordagem com aplicações harmônicas
	Uma abordagem para a equação de Poisson

	Referências Bibliográficas


		2025-03-12T07:06:52-0300


		2025-03-14T14:25:06-0300


		2025-03-17T08:25:29-0300




