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Resumo

Nesta dissertacao, investigamos estimativas para as areas de superficies imersas em 3-
variedades Riemannianas com curvatura escalar positiva. Em particular, exploramos as
técnicas apresentadas por D. Stern, ver [Ste22], que faz uso dos conjuntos de nivel de uma
aplicacdo harmoénica nao trivial u : M — S'. Essas técnicas sao utilizadas para estabelecer
um resultado de rigidez relacionado a desigualdades sistélicas. Posteriormente, adaptamos
essa abordagem ao contexto de fungoes u : M — R que sdo solugdes de uma equagao
de Poisson com um potencial nao-crescente. Com essa adaptagao, deduzimos uma nova

desigualdade sistélica que mantém o mesmo espirito da apresentada por Stern.

Palavras-chave: Estimativas de area; Conjuntos de nivel; Desigualdades sistolicas;

Equacao de Poisson; Rigidez.



Abstract

In this dissertation, we investigate estimates for the areas of surfaces immersed in 3-
dimensional Riemannian manifolds with positive scalar curvature. In particular, we
explore the techniques presented by D. Stern (see [Ste22]), which utilize the level sets
of a nontrivial harmonic map u : M — S!. These techniques are employed to establish
a rigidity result related to a systolic inequality. Subsequently, we adapt this approach
to the context of functions u : M — R that are solutions of a Poisson equation with a
non-increasing potential. Through this adaptation, we derive a new systolic inequality

that preserves the same spirit as the one presented by Stern.

Keywords: Area estimates; Level sets; Systolic inequalities; Poisson equation; Rigidity.
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Introducao

Um resultado cldssico em geometria diferencial, devido a Toponogov [Top63] em 1963,
afirma que, se ¥ é uma superficie fechada com curvatura gaussiana positiva, K > 0, entao

qualquer geodésica simples fechada v em 3 satisfaz a seguinte estimativa:
length(’y)QirElf(K) < 47

onde a igualdade ocorre se e somente se ¥ é isométrica a esfera S?. Esse resultado revelou
um fenémeno interessante que conecta a positividade da curvatura com a existéncia de
curvas que minimizam o comprimento.

Em 1979, considerando uma 3-variedade Riemanniana M com curvatura escalar positiva,
Scal > 0, Schoen e Yau apresentaram um teorema em [SY79] que garante que qualquer
superficie ¥ que minimiza 4drea em M é homeomorfa a esfera S? ou ao plano projetivo
RP?. O caso especifico em que ¥ é homeomorfa a planos projetivos que minimizam &rea
foi estudado em 2010 por Bray, Brendle, Eichmair e Neves no artigo [BBEN10]. Eles
definiram

A(M) := inf {Area(X) ; ¥ € F'},

onde F denota o conjunto de todas as superficies ¥ C M tais que ¥ é homeomorfa a RP?

Com isso, obtiveram a seguinte estimativa de area:
A(M) iJI\}f(Scal) < 127,

onde igualdade ocorre se e somente se M é isométrica a RIP?.
No mesmo ano, Bray, Brendle, Eichmair e Neves, em [BBN10], investigaram 3-
variedades Riemannianas compactas com curvatura escalar positiva, Scal > 0, e com

segundo grupo de homotopia nao trivial, mo(M) # 0. Eles definiram

A(M, g) := inf {Area(SQ,f*g)  fe F},

onde F' é o conjunto de todas as aplicacoes suaves f : S?> — M que representam um

elemento nao trivial de my(M). E estabelecem a seguinte estimativa de drea:

A(M, g) iﬂr}jf(Scal) < 8,



onde, se a igualdade ocorrer, entdo o recobrimento universal de M ¢ isométrico a um
cilindro S? x R.

Em 2022, no artigo [Ste22], D. Stern empregou uma abordagem baseada nos conjuntos
de nivel de uma aplicacdo harmonica u : M — S! para estudar 3-varieades Riemannianas
fechadas, orientadas, com segundo grupo de homologia nao trivial e curvatura escalar

positiva. Definindo a 2-sistole homologica
sysy(M) :=inf {Area(X) | ¥ C M, [X] #0 € Hy(M;Z)},
onde ¥ sao superficies em M, ele obteve a seguinte estimativa:
sysy(M) mA}n(ScalM) < 8,

com igualdade ocorrendo se, e somente se, o recobrimento universal de M for isométrico a
um cilindro S? x R.

Com base nesses resultados, empregando uma abordagem baseada nos conjuntos de
nivel de fungoes u : M — R que sao solugoes da equagao de Poisson, obtemos o seguinte

resultado:

Lema. Seja M uma 3-variedade Riemanniana fechada e orientada. Se u : M — I, com
I C R compacto, é uma solugdo nao trivial da equagdo Au = — f(u), com f nao-crescente,

entao

o /te[ X() 2 ;/tel /2t <|V“|_2(|f(u)|—|Hess u|)® + Scaly, —f’(u)), (1)

Além disso, considerando M com segundo grupo de homologia nao trivial e com

curvatura escalar limitada inferiormente, obtemos uma nova desigualdade sistoélica:

Teorema. Seja M uma 3-variedade fechada, orientada e com segundo grupo de homologia
nao trivial, Hy(M;Z) # 0. Suponha que u : M — I, com I C R compacto, é uma solugao
nao trivial da equacdo Au = —f(u), com f nao-crescente, e que a curvatura escalar de M
é tal que Scaly; — f > 0. Entao,

(mj\}n(ScalM) — mIaX(f’))sySQ(M) < 8. (2)



Capitulo 1
Preliminares

O objetivo principal deste capitulo é introduzir definigbes e resultados fundamentais da
geometria das variedades Riemannianas, os quais sao essenciais para o desenvolvimento da
teoria ao longo desta dissertacao. Partiremos de um ponto em que se presume conhecimento
prévio sobre variedades Riemannianas, métricas, a conexao de Levi-Civita e geodésicas.
Para um estudo mais detalhado, recomenda-se consultar: [DC19], [Petl6], [Leel8b],
[Cha84] e [Cam14].

1.1 Curvaturas

Seja M uma variedade Riemanniana de dimensao n. Denotaremos por X(M) o espago
dos campos de vetores suaves em M, ou seja, campos cujas componentes possuem derivadas
parciais de todas as ordens, e essas derivadas sao continuas. Usaremos C*° (M) para denotar

o conjunto das fungoes suaves.

Definig¢ao 1.1 (Tensor de curvatura). O tensor de curvatura R de uma variedade Riema-
nianna M é uma aplicagdo R : X(M) x X(M) x X(M) — X(M), definida por:

R(X, Y)Z =VxVyZ —-VyVxZ7 — V[X7y]Z, Z € %(M), (11)

onde V é a conexao de Levi-Civita de M.

Proposicao 1.2. Sejam W, XY, Z € X(M) e f,g € C°(M). O tensor de curvatura R

goza das seguintes propriedades:
a) R(X,Y)Z =—-R(Y,X)Z;
b) RIX,Y)(Z+W)=R(X,Y)Z+ R(X,Y)W;
c) R(fX+gY, 2)W = fR(X, Z)W + gR(Y, Z)W,

d) R(X,fY +gZ2)W = fR(X, Y)W + gR(X, Z)W,
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e) R(X,Y)fZ = fR(X,Y)Z.

Demonstragio. As demonstragoes dos itens a) e b) seguem direto da definigdo. Vamos

demonstrar o item c), usaremos a definigdo de R para obter:
R(fX +9Y,Z) = VixigvVz = VzVixigr — Visxigrz)-
Desenvolvendo cada termo do lado direito da igualdade, obtemos

Vix4evVz = fVxVz+gVyVy;
VzVixigy = fV2Vx+Z(f)Vx +9VzVy + Z(g)Vy + gV Vy;
Vifx+gv,2] = fv[X,Z] - Z(f)Vx + 9Viy,z) — Z(g)Vy.

Reagrupando os termos, vem que

R(fX+9Y,Z)= f(VxVz =VzVx —=Vixz)+9(VyVz =VzVy = Vyz)
— fR(X,Z) + gR(Y. Z).

A demonstracao do item d) procede de maneira andloga. Por fim, para demonstrar o item

e), observe que

VxVy(fZ) =Vx(fVyZ +Y(f)Z)
= fVxVyZ+X()\VyZ+Y(/)IVxZ+ X(Y(f))Z.

Portanto,
VxVy(fZ2) = VyVx(fZ) = f(VxVy = VyVx)Z + (XY - YX)(f)Z,
ou ainda,

RIX,YV)fZ = [VxVyZ — fVyNxZ+ ((X.Y]())Z - [VixnZ + (Y. X] () Z
= fR(X,Y)Z.

O

Quando estudamos o tensor de curvatura no contexto de uma métrica Riemanniana
(-,-) em M, nos deparamos com uma série de simetrias e assimetrias. No resultado a

seguir, trataremos de duas assimetrias relevantes para o nosso estudo.

Proposicao 1.3. Seja M uma variedade Riemanniana munida com um métrica (-, -).
Dados W, XY, Z € X(M), temos as seguintes propriedades:

a) (R(X,Y)Z,W) =—(R(Y,X)Z,W);
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b) (R(X,Y)Z,W) = —(R(X, Y)W, Z).

Demonstragio. O item a) é imediato. J& o item b) ¢é equivalente a (R(X,Y)Z,Z) =0, o

que provaremos a seguir. Inicialmente, temos que
(R(X,Y)Z,Z) =(VxVyZ —=VyVxZ - Vxv|Z,Z).

Perceba que
(VxVyZ,7)=X(NyvZ,7Z) — (Vv Z,NVxZ),

(VyVxZ,2) =Y(VxZ, Z) — (VxZ,Vy Z)

e
1
(VixvZ, Z) = 3 (X, Y](Z, 7).
Logo,
1
<R(X> Y)27 Z> = X<VYZ> Z> - Y<VXZ> Z> - 5 [X7 Y] <Za Z>
1 1 1
1 1
Como queriamos demonstrar. O
Para mencoes futuras, é conveniente expressar o tensor curvatura R em um sistema de
coordenadas (x!,...,2") em torno de um ponto p € M. Indicando os vetores coordenados

_ 9
€ = 375 temos que
R(ei, e;)er = E kael,

onde Rl = (R(e; e;)er,er). Perceba que R, = —(R(e;ej)er, ex) = — 3 RY,;. Dali,

podemos escrever
R(ei, e;)er = ZRmel (1.2)

Intimamente relacionado com o tensor de curvatura de uma variedade Riemanniana

esta o tensor de Ricci, que passamos a definir por:

Definicao 1.4 (Tensor de Ricci). Dado um ponto p € M e os vetores u,v,w € T,M. O

tensor de Ricci em p é definida como o trago tr(w — R(w,u)v), isto é,

n

Ric(u,v) =Y (R(e;,u)v, e;),

=1
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onde {ey,...,e,} é uma base ortonormal para T, M.

Da linearidade de R e da métrica (-,-), temos que o tensor de Ricci é uma aplicacao

multilinear. Além disso, note que

n n n

Ric(u,v) =Y (R(e;, u)v, e;) = > (R(u, €;)e;,v) = (O R(u,€;)e;,v).

i=1 i=1 i=1
Dai, definimos a aplicagao

n
Ric(u) = > R(u, €)e;,
i=1
utilizada para analisar a curvatura em uma diregao especifica na variedade. Esta aplicagao

sera empregada para introduzirmos a seguinte defini¢ao:

Definigao 1.5 (Curvatura escalar). Dado um ponto p € M, a curvatura escalar de M em

p é definida como o trago tr(u — Ric(u)), ou seja,

n

Scal(p) = > (Ric(ej), ej) = > (R(ej, e)es ¢5),
7=1

i,j=1

onde {ey,...,e,} é uma base ortonormal para T, M.

1.2 Imersoes isométricas

Denotaremos por X e M variedades Riemannianas de dimensoes m e n, respectivamente.
Uma aplicacao suave ¢ : ¥ — M ¢é chamada de imersao quando a sua diferencial
dpy : TyX — T, M € injetiva para todo p € M. O nimero & = n —m é chamado de
codimensao de . Usualmente, nos referimos a ¢(X) como uma subvariedade imersa de M
e denotamos ¥ C M.

Definicao 1.6 (Imersdo isométrica). Uma imersao ¢ : ¥ — M entre variedades Rieman-

nianas com métricas (-, )y e (-, )y é dita ser uma imersdao isométrica quando

(u, v} = {dpy(u), dpp(v))

para todop € Y e u,v € T,X.

Perceba que, quando ocorre uma imersao isométrica, a métrica Riemanniana em M
induz naturalmente uma métrica Riemanniana em . Essa nova métrica é chamada de

métrica induzida por . Quando nao houver perigo de confusao, denotaremos as métricas
de ¥ e M por (-, ).
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Para cada ponto p € X, o produto interno do espago 7, M induz a seguinte decomposigao

ortogonal:
T,M =T,Y & (T,%)*,

onde (7,%)* denota o complemento ortogonal de 7,3 em T, M.

Além disso, a imersao permite estender um campo local de vetores em ¥ a um campo
local de vetores em M. Em outras palavras, para cada X € X(X), existe X € X(M) tal
que X = dp,(X). Nesse contexto, diremos que X ¢é a extensio de X a M via imersdo .

Para demonstragao do resultado a seguir, é ttil notar que, dado f € C*®(X), pela
linearidade do diferencial dy,, temos fX = dp,fX = fdp,X = fX.

Proposigao 1.7. Sejam ¢ : ¥ — M uma imersao isémetrica, V e V as conexoes de

Levi-Civita de ¥ e M, respectivamente. Para X,Y € X(X), temos
VxY = (VgY)T, (1.3)

onde (-)" é a projegao ortogonal do fibrado T'M,,, sobre o fibrado T'X.

Demonstrag¢io. Pela unicidade da conexao de Levi-Civita, basta mostrar que (1.3) é uma

conexao afim, simétrica e compativel com a métrica (-, -)x.

i) E uma conexao linear. De fato, sejam X,Y,Z € X(X) e f,g € C™(X), entio valem

as seguintes propriedades:

= fVxZ +gVyZ;

Vx(Y+2)=Vzx(Y +2) = VgV +Vz2) = (V) + (Vg2) '
=VxY +VxZ;

Vx(fY) = (VxfY)T = (fVzY)T + (X(NY)" = f(VY) + X(f)Y
= VY + X())Y.

ii) E simétrica. Com efeito,

VxY —VyX = (Ve?)T = (VeX) = (V¥ - VX)) = [X,7] = (X7
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Como queriamos demonstrar. O

Sejam X, Y € X(X). Observe que se X, e X, sdo extensoes de X a M e Y, e Y, sdao

extensoes de Y a M, entao

7)3171 — VXIYQ = Vyl (Yl — 72) = O,

pois Y| — Yy = 0 ao longo de uma trajetéria de X. Dai segue que

)?ZYQ.

<

Ve Vh =

Portanto, escrevendo VY para denotar VY, onde X e Y denotam extensdes quaisquer
de X e Y a M, obtemos um campo vetorial bem definido VxY & TM,s,.

1.2.1 Segunda forma fundamental

Seja ¢ : ¥ — M uma imersao isométrica. Para as conexdes V e V, respectivamente,
de M e X, temos

VxY = (Vi) + (VxY)' =VxY + (VxY)5H X Y € (),

onde (-)* é a projecao ortogonal do fibrado tangente T'M |y, sobre o fibrado normal T+
Escrevendo a(X,Y) := (VxY)t, definimos a sequnda forma fundamental de o como a
aplicacdo bilinear simétrica a : X(X) x X(X) — X(X)* dada por

a(X,Y) = VxY — VyY.
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A prova de que « é bilinear segue direto das propriedades de uma conexao linear. A prova

de que « é simétrica também é direta, uma vez que
a(X,Y) — (Y, X) = (VxY)r = (Vy X))t = [X, Y] =0.

Seja VxA a derivada covariante de um campo normal N € X(X)* na direcdo de um

campo tangente X € X(X). Pela decomposi¢ao ortogonal, podemos escrever
VN = (VxN)T + (VxN)*
Definindo Ay X := —(VxN) T e VXN = (VxN)+L, obtemos a equagio de Weingarten:
VxN = —AyX + VxN. (1.4)

Definimos ainda o operador de Weingarten da imersao ¢ na direcao N, como sendo o
operador Ay : X(M) — X(M), definido por X — Ay X. O operador de Weingarten se

relaciona com a segunda forma fundamental a partir do seguinte resultado:

Proposicao 1.8. Se X,Y € X(X) e N € X(X)™, entdo
(AN X,)Y) = (a(X,Y),N). (1.5)
Demonstragio. Inicialmente observe que X (Y, N') = 0, pois (Y, N') = 0. Daf,
(VxY,N)+(VxN,Y)=0
e como ((VxY)T,N) =0, segue que
—(VxN,Y) = (VxY — (VxY)" N) = (VxY = VxYV,N) = (a(X,Y), N).
Por outro lado, temos
—(VxNY) = ~((VxN) T+ (VxN) 5 Y) = —(VxN) 1Y) = (AvX,Y).

Logo, (A X,Y) = (a(X,Y), ), como desejado. O

Segue direto de (1.5) e da simétria da segunda forma fundamental, que o operador de

Weingarten é auto-adjunto. De fato,

(AnX,Y) = (a(X,Y),N) = (a(Y. X),N) = (A, X).
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1.2.2 As equagoes fundamentais

Para referéncias posteriores, precisamos discutir algumas relagoes entre a curvatura
intrinseca e extrinseca de uma subvariedade em uma variedade ambiente. Uma ferramenta

essencial para tal discussao é a igualdade
VXY:VXY+04(X,Y), (16)

conhecida na literatura como férmula de Gauss. Por meio dela, conseguimos relacionar
o tensor de curvatura R,; da variedade M com o tensor de curvatura Ry da variedade
Y. Com efeito, se ¢ : ¥ — M é uma imersao isométrica e X,Y, Z € X(X), podemos usar

(1.6), para reescrever (1.1) da seguinte forma:

Rur(X.Y)Z =Vx(Vy Z) = Vy(Vx Z) — Vixw Z
=Vx(VwZ+aY,2)) = Vy(VxZ + (X, Z)) — (Vixy)Z + o([X,Y], Z))
=VxVyZ +Vxa(Y,Z)—VyVxZ - Vya(X,Z) — Vixy)Z
—a((VxY = VyX), 2)
VAV Z + (X, VyZ) + Vxa(Y, Z) — VyVxZ — alY,VxZ)
_Vya(X,Z) — VixyZ — a(VxY, Z) + a(Vy X, 2)

Reagrupando os termos, temos

Ryu(X,Y)Z =Rs(X,Y)Z + {Vxa(Y,Z) — a(VxY, Z) — a(Y,VxZ)}
— {VyOé(X, Z) — Oé(VyX, Z) — OJ(X, VYZ)}

Aplicando a equagao de Weingarten (1.4), segue que

Ru(X,Y)Z =Rs(X,Y)Z + {~Auayy X + Vxa(Y, Z) — a(VxY,Z) — a(Y,VxZ)}
—{~Aux2)Y + Vya(X,Z) —a(Vy X, Z) — a(X,VyZ)}
=R (X, Y)Z +{VxalY,Z) —a(VxY,Z) —a(Y,VxZ)}
—{Vya(X,Z) — a(VyX,Z) — a(X,VyZ)} + Aux.2)Y — Aaivz) X.

Definindo o operador (Vxa) : X(X) x X(X) — X(X)*, pondo

(Vxa)(Y,Z) =VxalY,Z) — a(VxY,Z) — a(Y,VxZ).
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Obtemos,

—I—AQ(X’Z)Y — Aa(Y,Z)X- (17)

A partir de (1.7) obtemos os itens a) e b) a seguir, conhecidos na literatura como as

equagoes fundamentais de Gauss e Codazzi.

Proposicao 1.9. Se ¢ : ¥ — M é uma imersao isométrica, e W, XY, Z € X(X) e
N € X(¥)*, entdo

a) (Gauss). <RM(X, Y)Z, W> = <RZ(X7 Y)Z, W> + <AQ(X72)YV, W> - <Aa(y7z)X, W>,
b) (Codazzi). (Ry(X,Y)Z,N) = {((Vxa)(Y,Z) — (Vya)(X, Z),N).

Demonstragio. O resultado segue direto da equacao (1.7), para obter a equagao de Gauss
basta tomar o produto com o campo tangente W, para obter a equacao de Codazzi, basta

tomar o produto com o campo normal N ]

Observe ainda que, utilizando (1.5), podemos reescrever a Equagao de Gauss, pondo:

(Rni(X,Y)Z, W) =(Rs(X,Y)Z, W) + (a(Y, W), (X, Z))
—{a(X, W), (Y, Z)). (1.8)

1.2.3 Hipersuperficies

Seja > C M uma subvariedade imersa de M. Quando a codimensao da imersao é igual
a 1, dizemos que X é uma hipersuperficie de M. Além disso, para o que se segue, usaremos
o termo hipersuperficie 2-lados para nos referirmos a hipersuperficies que possuem um
campo normal unitario continuo globalmente definido. No caso particular em que ¥ é uma
hipersuperficie 2-lados, temos que dim((7,,X)*) = 1. Logo, existe um tinico campo normal
unitario N € X(X)*. Neste caso, denotaremos o operador de Weingarten simplesmente
por A := Ax.

Ja que a(X,Y) € X(X)*, existe uma constante nio nula ¢y € R tal que a(X,Y") = ¢oN.
Perceba que de (1.5) segue que

co = (a(X,Y),N) = (AX,Y).
Analogamente, existem c1, ¢y € R tais que
€= <Oé(Y, W>7 N> = <AY7 W)?

o =(a(X,Z),N) = (AX, Z).
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Logo, vale que
(Y, W), a(X, Z)) = (1N, aN) = c1¢9 = (AY, W) (AX, Z).
Da mesma forma, temos
(a(X, W), (Y, Z)) = (AX,W)(AY, Z).

Substituindo estes termos na equacao (1.8), obtemos uma nova expressao para a

equacao de Gauss:
(R (X, Y)Z, W) =(Rs(X,Y)Z, W) + (AY,W)Y(AX, Z) — (AX, W)(AY, Z).

Para o resultado a seguir, definiremos a curvatura média de ¢ em p € 3, como sendo o
trago do operador de Weingarten, ou seja,
n—1

H=t(X = AX) =Y (Ae;,e;),

i=1
onde {ej,...,e,_1} é uma base ortonormal para T),%.

Proposicao 1.10. Sejam ¥ uma hipersuperficie de M e u,v € T,2. Se ¥ é uma

subvariedade 2-lados, entao
Rics(u, v) = Ricpr(u, v) — (Rpr(u, v)v,v) + H(Au,v) — (Au, Av), (1.9)

onde v € (T,X)* é o vetor normal unitario.

Demonstragio. Seja {ei, ..., e, = v} uma base ortonormal para T,M, temos

n

Ricar(u,v) =Y (Ru(u, e;)e;,v)
i=1
n—1

=(Ry(u,v)v,v) + ;<RM<U, €;)ei, v)

=(Ry(u,v)v,v) + Z ((Rg(u, ei)e;, v) + (Ae;, v)(Au, e;)

i=1

— (Au, v)(Ae;, ei>)
=(Ry(u,v)v,v) + Ricg(u,v) + (Au, Av) — (Au,v)H.

Reagrupando os termos obtemos o resultado desejado. O]

Com este resultado, conseguimos chegar a uma expressao conhecida como truque de

Schoen-Yau bastante utilizada no contexto de hipersuperficies, ela relaciona a curvatura
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escalar da variedade ambiente com a curvatura escalar da hipersuperficie.

Proposicao 1.11 (Truque de Schoen-Yau). Se ¥ C M é uma hipersuperficie 2-lados,

entao

Scaly, = Scaly; —2 Ricy (v, v) + H? — |A]?. (1.10)
Demonstra¢io. Tomando uma base ortonormal {ei,...,e, = v} para T,M, por (1.9)
temos que

Rics(e;, ;) = Ricar(es, ;) — (Rar(es, v)v, e;) + H(Ae;, e;) — (Ae;, Ae;).
Fazendo o somatoério, temos
Scaly, = Scaly —2 Ricy (v, v) + H* — |A]*.

Como queriamos demonstrar. O]

1.3 Operadores diferenciais em variedades

1.3.1 Gradiente; Divergéncia; Laplaciano; Hessiano

Defini¢ao 1.12 (Gradiente). Dada uma fungao suave f € C*°(M), definimos o gradiente

de f como sendo o Unico campo vetorial V f que satisfaz
(Vf, X) =df(X) = X(f), (1.11)
para todo X € X(M).
Proposicao 1.13. Para fungoes suaves f,g € C*°(M), valem as seguintes propriedades:
a) V(f+9) =V[f+Vyg;
b) V(fg) =gV +[fVy.
Demonstragio. Tomando um campo X € X(M), temos que
(V(f +9). %) = X(f +9) = X(f) + X(g) = (V£ X) + (Vg X) = (Vf + Vg, X)

Da mesma forma, segue que

(V(f9), X) = X(fg) = gX(f) + fX(9) = ¢(Vf+,X) + [(Vg,X) = (V[ + [Vyg,X).

Logo, pela arbitrariedade de X, fica demostrado a proposicao. O
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Ao expressar o campo X € X(M) em um referencial ortonormal {ey, ..., e,} em torno

de um ponto p € M, temos X = 37| X7e;. Assim,

X(f) = i:lXjej(f) = 'Zn_:1<Xj€j,€7;<f)€i> = (X, ‘: ei(f)ei).

Dessa forma, pela definicdo de gradiente, podemos escrever
i=1

Definicao 1.14 (Divergéncia). Dado um campo suave X € X(M). A divergéncia de X no
ponto p € M é a funcdo suave div X : M — R definida pelo trago div X (p) = tr{Y (p) —
(VyX)(p)}, isto ¢,

n
div X =) (V. X, e;),
i=1
onde {ey,...,e,} é um referencial ortonormal em torno de um ponto p € M.

Proposicao 1.15. Para XY € X(M) e f € C®(M), a divervgéncia de um campo

vetorial possui as seguintes propriedades:
a) div (X +Y)=div X +divY;
b) div(fX) = fdiv X + (Vf, X).

Demonstragio. O item a) segue direto da definigdo de divergéncia e da linearidade da

métrica. Para o item b), temos

3

n

diV(fX) = <veifX7 62‘) = Z<€Z(f>X + fvein ei>

; =1

e X) +3° F(Va X, )

i=1

ei( fen X) + D (Ve X, ei)
i=1

N
I
—

|
M=

<.
Il

&1

=

= (Vf, X) + fdiv X.

1

]

Teorema 1.16 (Teorema da Divergéncia). Seja M uma variedade Riemanniana compacta

e orientada com bordo. Para qualquer X € X(M), temos
/ div(X) dVay = / (X, N)dVas,
M oM

onde N é o campo vetorial normal unitario e § é a métrica Riemanniana induzida em 0M.
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Demonstragio. Ver Teorema 16.32 de [Leel2)]. O

No caso em que M variedade Riemanniana compacta e orientada sem bordo (9M = 0),

o teorema implica que
/ div(X) dVas = 0.
M

Definigao 1.17 (Laplaciano de Beltrami). Dada uma funcao suave f € C*°, definimos o

laplaciano de Beltrami de f como sendo a funcao suave Af, dada por
Af =div(VYf). (1.12)
Ao tomar X =V f, com f € C®(M), segue do Teorema da Divergéncia que
| aravi=o. (1.13)
M

Proposicao 1.18. Sejam f,g € C*°, vale que

A(fg) = fAg+gAf+2(Vf, Vg).

Demonstragao. De fato, pela Proposicao 1.13 e Preposicao 1.15, segue que

A(fg) = div(V(fg)) = div(fVg + gV f)
=div(fVyg) + div(gV f)
= (fdiv(Vg) +(V[,Vg)) + (gdiv(V f) + (Vg,V[))
= fAg+gAf+2(Vf,Vg).

[
Um referencial ortonormal {eq,...,e,} em um aberto U C M é dito geodésico em

p € M quando (V,e;)(p) =0 para todo 1 <i,j < n.
Fixado p € M e tomando {ey,...,e,} um referencial ortonormal em uma vizinhanga

U C M de p que é geodésico em p, temos que

n n
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Defini¢ao 1.19 (Hessiano). Dada uma funcao suave f € C°(M), definimos o hessiano
de f como sendo o tensor Hess f : X(M) x X(M) — R, definido por

(Hess f)(X,Y) = (VxV/[,Y),

para todo X,Y € X(M).

Observe que o hessiano é um tensor simetrico. Com efeito,

(Hess f)(X,Y) =(VxV/[Y) = X(V[Y) = (V[,VxY)
=X(Y(f)=VxY(f)  (cf (1.11))
=Y(X(N) + X, Y](f) = Vv X()
= Y/(X(f)) = Vy X(f)
=Y(Vf,X)—(V[,VyX)
= (Hess f)(Y, X).

f
f

Outra propriedade interessate do hessiano é que seu traco corresponde ao operador
laplaciano. De fato, seja {ey,...,e,} um referencial ortonormal, temos que
n n

tr(Hess f) =Y _(Hess f)(ei, e;) = > (Ve, V[, &) =div(V[f) = Af.

=1 =1
1.3.2 Desigualdade de Kato e Férmula de Bochner

Sejam |V f| e |Hess f| as normas do vetor gradiente e do operador hessiano, respectiva-

mente. Tomando um referencial ortonormal {es, ..., e,}, temos que

VIP=S = (@) e [HessfP= 3 (VaVf.c))

i=1 ij=1

Para referéncias futuras neste trabalho, destacamos que

V=D (e()* =D (Ve =D (df (e:)” = |df . (1.14)

7 2 7

Agora, vamos retomar o foco no tema principal desta subsecao:

Proposigao 1.20 (Desigualdade de Kato). Dada uma fungao suave f € C*°(M), vale a

seguinte desigualde
[Hess f|*—|V|V f]|*> 0. (1.15)

Demonstragao. Inicialmente, observe que se V f = 0 o resultado ¢ trivial, considere entao
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V[ # 0. Tome um referencial ortonormal {ey, ..., e,} com e; = e escreva

i
IVIVAP= 3 (VD)) = (V) 2+Z e(IVf1)*

i=1

Perceba que

V2 = (a7 VN) = (1gq(Va VI V0) = (Hess(er,e0)*

(o7

Por outro lado, temos

S @V =3 (a(9190) =3 (g7 (Ve £97)
= ;((VQV]” e1))? = ;(Hess fles,er))?
Logo,
VIV f||*= (Hess(er, e1))* + ZnQ(Hess fles,e))? (1.16)

Agora, olhando para |Hess f|?, podemos ver que

Hess fI* = > ((Ve,Vf,e)))? =D ((Ve, Vi e) + D ((Ve,VFe))
i,j=1 i=1 i=1

<.
N}

(Ve VS e5))?

-

([N
[Nl

— (Vo Vfee) + Y (Ve V i er) P+

= (Hess(er, e1))” + Y _(Hess f(es, e1))” + > _((Ve, V£, e))
=2 i=1
=2

Pela a expressao (1.16), segue que

Hess f|*= [VIVfIP+Y_((Ve,Vf,e)* > VIV FI*
i=1

i=2
Daf, cocluimos que |Hess f|*—|V|V f]|?>> 0. O

Observe que da definigdo Hess f(X,Y) = (VxV f,Y), utilizando um referencial orto-
normal, podemos escrever V.,V f =37, (Ve, V£ eje;, dai vale

n

Hess fP= 3 (Ve Vfie)))? = S (Va V) = VO FP. (1.17)

ij=1 i=1
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Proposigao 1.21 (Férmula de Bochner). Se f € C°°(M), entao vale
—A|Vf|2 Ric(Vf, V) + (VF, V(Af)) + [Hess f|*. (1.18)

Demonstragio. Fixe p € M e tome (eq,...,e,) um referencial ortonormal, geodésico em

p. Entao, temos em p que

_ !

1
ZA 2
SAIVIP = 5

tr(Hess|V f]?) > (Hess|Vf*)(e;, )
i=1

[\DM—* [\3\»—

zn:el (e(Vf,Vf)) iez (Ve, VL, V)
=1

=1

(Ve Ve VEVE) + VYV

I
NERS

1

.
Il

<V61VelVf Vf) + |Hess f|? (1.19)

I
NgE

.
I

Agora, para X € X(M) temos que

n n

Z<R(X, €i)Vf, 61'> = Z(VXVein, €i> — i<veleVf + V[X,ei]Vf, 6@). (120)

i=1 i=1 i=1

Como o referencial é geodésico em p, temos que (Vxe;)(p) =0, para todo 1 < i < n, de
sorte que

D AVxV Ve =Y (X(V, V&) = (V. Vxe)) = X(Af) = (X, V(Af)) (1.21)

i=1 i=1

em p. Utilizando novamente que o referencial é geodésico em p, juntamente com o fato de

Hess f ser um operador simetrico, obtemos sucessivamente, em p,

<V VXVf + V[X ez]vf7 el)

M= 1M

(ez<vXVf, ei) = (VxV.Veer) + (Vixe) Vi, e)

s
Il
—

I
M3

(€Z<V Vf X> <veivf7 [X7 61]>)

s
Il
R

I
M=

(<v€zvezvf X> <v6ivf7 veiX> + <v€ivf7 vXei - V61X>>

s
I
—

I
M=

(Ve,Ve, VS, X). (1.22)

s
I
—
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Substituindo (1.21) e (1.22) em (1.20), segue que

S R(X,0)Vf.0) = (X, V(M) = ST T X). (1.23)
Em particular,
;:(Veivein, X) =(X,V(Af)) — i(R(X, ei)Vf, e
= (X.V(AN) + 3 (Rle. X)V e

= (X,V(Af)) + Ric(X, V).

Agora, fazendo X = V[ na tltima relacdo acima e substituindo em (1.19) obtemos
(1.18). m
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Capitulo 2

Formas Diferenciais e Aplicacoes

Harmonicas

Este capitulo foi elaborado com o objetivo principal de apresentar os argumentos
utilizados na abordagem das estimativas de 4rea, com aplicacoes harmoénicas u : M — S
Tomamos [Leel2], [Jos08], [Wul3] e [LWO08] como referéncias para o desenvolvimento desse

capitulo.

2.1 Formas diferenciais

Seja M uma n-variedade Riemanniana e (z!,...,2") um sistema de coordenadas locais
em uma vizinhanca de p € M. A base natural do espaco T,M correspondente a esse
8 d . ,
501>+ €n = 5o0m 1 A base dual associada no espaco cotangente (7, M)* é

o conjunto {dx!,... dz"} definido de tal maneira que satisfaca a relagao

sistema é {e; =

dxi(ej) = 5;,

onde 07 é o delta de Kronecker.

Podemos definir o espago produto exterior em p como sendo

AT (M) =Tp(M)A ... ATy (M)

p

e A¥(M) o espago de produto exterior sobre M com fibrado T;;(M) sobre p € M. Denota-
remos por §2(M) o espaco das secdes de A¥(M)), isto é, o espaco cujos elementos w podem

ser escrito como

w= Z Wiyig..ipdT™ N - - N dz'™,

11 <<l

Por simplicidade, definindo I = {1 <4 < -+ < 1, < n} um conjunto de multi-indices,
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denotaremos
w= Zw rdat
T

Os elementos w sao aplicagdoes multilineares e anti-simétricas, e sao chamados de k-formas

diferenciais.

Definigao 2.1 (Produto exterior). Dadas as formas w € Q% e n € Q"(M). Definimos o

produto exterior w A n como sendo a (k + r)-forma dada por

wAn= Zw;mdwl A dx?.
1J

Definigdo 2.2 (Produto Interior). Seja X € X(M) e w € Q¥(M). Definimos a aplicagao
tx 1 QF(M) — QFY(M), chamada de produto interior em X, pondo

LXw(Yi, R 7Yk—1) = W(X, Yi, ce >Yk:—1)a
onde Yi,..., Y, 1 € X(M).
Definigao 2.3 (Derivada exterior). A derivada exterior d : Q¥(M) — Q*1(M) é dada por

= d(Zwlda:I) ZZ —dx] Adzl.

Proposigao 2.4. Se w € Q¥(M), entdo d*w = (d o d)w = 0.

Demonstracio. E suficiente provar o resultado para formas do tipo
w(p) = f(p)dz™ A dx™,

em que f é uma funcdo suave. O resultado geral, segue pela linearidade da soma. Neste

caso,
(dod)w = d(Z of ——dz" ANdx A A dxik_l)
oxt
_ ZZ P i 417\ g p i A - A da
0xi dx?
= 0’
pois

e dx’ Adx" = —dx' Ada’.
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Proposigao 2.5. Dados w € QF(M) e n € Q"(M), valem as seguintes propriedades:
a) wAn= (=" Aw);
b) d(w An)=dwAn+ (—1)"w A dn;
c) tx(wAn) =ixwAn+ (=1)kw Awxn.
Demonstrag¢io. Ver Proposigao 14.11, Lema 14.13 e Teorema 14.24 de [Leel2]. H

Teorema 2.6 (Teorema de Stokes). Sejam M uma n-variedade Riemanniana orientada

com fronteira e w uma (n — 1)-forma diferencidvel com suporte compacto em M. Entao

/dw:/ w.
M oM

Demonstragio. Ver Teorema 16.11 de [Leel2)]. O

Em uma variedade Riemanniana M, a métrica g = (-, -) fornece uma maneira natural
de identificar os espagos Q' (M) e T M por meio do operador sustenido £, que mapeia uma,

1-forma w € Q*(M) em um vetor w* € TM, definido implicitamente pela relacio
(W X) = w(X), (2.1)

para todo X € TM. Em um sistema de coordenadas, temos
w = Zwidxz e W= szei,
i=1 i=1

onde as componentes w’ sdo definidas pela relagio w' = g”w;, com ¢g* sendo as componentes
da inversa da métrica g.

Comparando (2.1) com (1.11) na definicdo de gradiente, podemos ver que o vetor
gradiente V f esta relacionado a forma diferencial df através do operador sustenido, ou

seja,
df* = Vf. (2.2)

2.1.1 O Laplaciano de Hodge

E necessdrio realizar algumas preparacoes em algebra linear. Seja V um espaco vetorial
real de dimensdo finita n > 1 com produto interno (-, -), e seja A*(V) o produto exterior
(k vezes) de V. Definimos o produto interno {-,-) : A¥(V) x A¥(V) — R por

(Vi A= Avp,wy A -+ Awy) = det((v;, wy)). (2.3)
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Se eq,...,e, ¢ uma base ortonormal de V', entao e;; A---Ae;,, 1 <ip <--- <1y <,
forma uma base ortonormal de A*(V).

Uma orientacdo em V' é obtida distinguindo-se uma base de V' como positiva. Qualquer
outra base obtida a partir dessa por uma mudanca de base com determinante positivo
também ¢é chamada de positiva, e as bases restantes sao chamadas de negativas.

Fixada uma orientagdo em V e uma base ortonormal {ej,...,e,} de V, definimos o

operador linear estrela

*x: AF(V) = A" F(V), (0<k<n)

por
*(el-l VAN /\6%) =€ JANRR /\€J'717,97
onde ji,. .., jn—i sdo selecionados de tal maneira que e;,,...,¢;,,€j,...,¢; , forma uma
base positiva de V. Em particular, se ey, ..., e, é uma base ortonormal positiva, entao
*x(eg N+ Ney) =1, (2.4)
*(1)=e1 A+ Nep, (2.5)

O operador * estd bem definida, ou seja, nao depende da base ortonormal escolhida
(ver [Jos08], Segao 3.3).

Lema 2.7. Dados w,n € A¥(V), nés temos

(w,m) = *(w A*n).

Demonstragio. E suficiente demonstrarmos o resultado para elementos de uma base
ortonormal de A¥(V). Considere {ey, ..., e,} uma base ortonormal positiva de V, e escreva
w=ey;, N---Nej,n=e; N---Nej, exn=ep N---Nep,_,.

Se {i1, ... ir} # {J1,..-,Jr}, entdo hy € {iy,... i} para algum h; € {hy, ..., h,_x}.
Assim, w A = 0, e consequentemente (w,n) =0 = *(w A ).

Podemos entao supor que w =n =-¢e; A--- Aej,. Assim,

*(wA*n) =*(ej, N Nej, Ax(ej, A+ Nej))
=x(ej, N Neju Nep, A+ Nep, )

. (cf. (2.4))
= det((ej,,e;.))
_ <Wa77> (Cf. (2.3))'
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Lema 2.8. O operador estrela satisfaz
Jox = (= D)FOR) ARV — AR(V).

Demonstragao. Seja w =e;; A--- Ae;,onde ey, ..., e, é¢ uma base ortonormal de V. Por
definicao,

xw=x(e;, N Nej ) =ej, N---Nej_,,

onde ¢€;,,...,€;,€j,...,€j _, ¢ uma base ortonormal positiva de V. Portanto,
xxw=x(ej, N---Nej, ) =€ey N Nej, = €w,

onde € = 1 ou € = —1 dependendo se a base ortonormal €;,,...,€; _,,€i,...,€;, € positiva

ou negativa, respectivamente. Por outro lado, segue do lema anterior que

1 = (kw, %w) = x(*w A *w) = (3w Aw) = e(=1) ) & (W A xw) = (=) P (W, w).

Portanto, € = (—1)*"=%) o que garante x x w = (—1)*™* . O caso geral segue por
linearidade. O]
Lema 2.9. Seja vy,...,v, uma base positiva qualquer de V. Entao

1
*(1) = ———v; A--- Ay,
\/det({vi, v3))
Demonstracdo. Seja eq,. .., e, uma base ortonormal positiva. Entao,
vr A A, = yJdet((v,v5))er A Aey,
e o resultado decorre direto de (2.5). O

Seja M uma n-variedade Riemanniana orientada. Fixemos uma orientagao em cada
um dos espagos tangentes T),M, assim como nos espagos cotangentes 7M. Como M

possui uma estrutura Riemanniana, temos um produto interno em cada T M, tal que
(da', da’) = g,

onde ¢ é a matriz inversa da métrica Riemanniana g;;. Assim, obtemos um operador
estrela
*: QF (M) — Q" F(M).

J& que a métrica em T*M é dada por g = (g;;)”', pelo Lema 2.9, segue que em

*(1) = y/det(gi;)dz" A -+ A da™.

coordenadas locais
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Essa expressao é chamada de forma de volume. Em particular,

Vol(M) = /M*u). e dVir = (1),

onde dV); representa o elemento de volume de M.

Para w,n € QF(M) com suporte compacto. O L2-produto em QF(M) ¢ definido como

w.n) = [ o m)* (1),
M
ou ainda, pelo Lema 2.7,
(w,n) =/ w A *1).
M

Vamos usar o operador estrela para introduzirmos os conceitos de operacao adjunta e
Laplaciano dentro da teoria de Hodge para k-formas.

Daqui em diante vamos trabalhar com variedades fechadas (compacta e sem bordo).

Definicao 2.10 (Operador adjunto). A adjunta da derivada exterior d, em relacao ao

produto interno L2, é uma aplicacio ¢ : w*(M) — QF"1(M) definida de forma que

(dw,n) = (w, ),
com w € QY M) en e QF(M).
Lema 2.11. O operador § : QF(M) — Q"1 (M) satisfaz
6= (=)D L g
Demonstragio. Sejam w € Q1 (M) e n € QF(M). Temos

d(w A*n) = dw Axn+ (=) T Adxp
= dw Axn + (—1)F (=) EDOED G A ws (dx ) (cf. Lema 2.8).
= dw A xn — (1) A w(xd x 1),

onde acima usamos que dxn € Q" ¥ Y(M)e (k—1)(n —k+2)=n(k+1)+2 mod 2.
Portanto, segue do Teorema de Stokes que
(dw,n) :/ dw N *n
M

= / (—=1)"FHEDHLG A we(xd % 1)
M
= (w

7(_1)71(16-1—1)—&-1 *d*n)~

Como isto vale para todo w € QF1(M), segue da definicao que 6n = (—1)"P+H+1 5 d« 3,

como queriamos demonstrar. O
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Definigao 2.12 (Laplaciano de Hodge). O Laplaciano de Hodge em QF(M) é definido por

Ay = —(dé + dd) : Q¥ (M) — QF (M), para 1l < k <n;
Ag = —(6d) : Q°(M) — Q°(M), para k = 0.

Dizemos que uma k-forma w € QF(M) é harménica quando Agw = 0.

Observe que o operador A é formalmente auto-adjunto, pois,

(Apw,n) = =((déw, n) + (0dw, n)) = —=((6w, o) + (dw, dn)) = —((w, don) + (w, ddn))
- (wa AHn>

Proposicgao 2.13. Para qualquer w € QF(M), Ayw = 0 se, e somente se, dw = dw = 0.

Demonstragio. Suponha que Ayw = 0. Observe que
(Agw,w) = —((déw,w) + (0dw,w)) = —(dw, dw) — (dw, dw).

Ambos os termos do lado direito s@o nao-positivos. Logo dw = dw = 0. A reciproca é

imediata. O

Proposigao 2.14. Para w € Q'(M) temos que
Sw = —div(wh).
Demonstra¢io. Tome f € C°°(M). Observe que
[ FowdM = (6w, ) = (@, df) = [ (w,df) dM
M M
:/ Z(wei,dfei> AV
M
= [ Xt e, (df ) aVig

i

Por outro lado, pela Preposicao 1.15, temos
div(fw?) = (Vf,w*) + f div(w?).

Logo,
/ (W, V f)dVay = / (div(fw?) — fdiv(w)) dVar.
M M
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Pelo Teorema da Divergéncia,
/ div(fw?) dViy = 0.
M

Portanto,
f — —£di i
/M(w ,V)YdM / fdiv(w*)dM.

Assim, concluiomos que

/ fowdM = / — fdiv(wh)dM
M M
O que implica no resultado desejado. [

Em particular, para f € C*°(M)

Anf = —(6df) = —o(df) = div(df*) = div(Vf) = Af.

Ou seja, o Laplaciano de Hodge é uma generalizagdo do Laplaciano de Beltrami (1.12).

Assim, denotaremos o Laplaciano de Hodge por A.

2.1.2 Identidade de Bochner-Weitzenbock

Defini¢ao 2.15. Sejam X,Y € X(M) e w € Q'(M), definimos uma conexdo D em Q' (M)
pondo:

(Dxw)(Y) = X(w(Y)) —w(VxY).

Proposigao 2.16. Sejam XY, Z € X(M) e w,n € Q' (M) e f,g € C®°(M). A conexao

D goza das seguintes propriedades:
a) D(fx+gy)w = fDXw + gDyw;
b) Dx<w + 7]) = Dxw + DXU;
¢) Dx(fw) = fDxw+ X(f)w.
Demonstragao. Com efeito,
(Disx+grw)(Z2) = (X +gY)(w(Z)) — w(V(rx+91)Z)
= [X(w(2)) +9Y(w(Z)) —w(fVxZ + gVy Z)
= [X(w(Z)) —w(fVxZ) + gY (w(Z)) — w(gVy Z)

= f(X(w(2)) —w(Vx2)) + (Y (@(2)) = w(Vx2))
= f(Dxw)(Z) + g(Dyw)(2).
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(Dx(w+n)(Y) = X((w+n)(Y)) = (w+n)(VxY)
= X(@(Y) +n(Y)) = w(VxY) = n(VxY)
= X(@(Y)) + X(n(Y)) = w(VxY) = n(VxY)
= X(w(Y)) —w(VxY) + X(n(Y)) = n(VxY)

= (Dxw)(Y) + (Dxm)(Y).

—~

(Dx(fw)(Y) = X(fw(Y)) = fu(VxY)
= X(Nw(Y) + fX(w(Y)) - fu(VxY)

= f(X(@(Y)) = w(VxY)) + X (fw(Y)
= [(Dxw)(Y) + X (f)w(Y).
O
Proposigao 2.17. Sejam X € X(M) e w,n € Q'(M). Vale a seguinte proprieadade:
Dx(wAn)=DxwAn+wADxn.
Demonstrag¢io. Ver Proposi¢ao 36 de [Pet06]. ]

Fixado um ponto p € M, seja exp a aplicacao exponencial definida em uma vizinhanca

aberta de 0 no espago T,M. Se {vy,...,v,} é uma base ortonormal de T,M, entao
o sistema de coordenadas (z!,...,z") definido por z° = v; o exp™! é tal que a base
{e1 = %, ey = 6%} ¢ geodésica em p.

Definig¢ao 2.18 (Coordenadas normal). As coordenadas locais definidas pela aplicacao

(U,exp, ") sdo chamadas de coordenadas normais (Riemannianas) com centro em p.
Lema 2.19. Em um sistema de coordenadas normal, valem as seguintes propriedades:
a) dz*(V.Y) = e;(Y*), onde 1 < ky < n é um indice fixado e Y € T,,(M);
b) D..dx? =0, para todo 1 <, < n;

c) Le, (Dei) = D,te;, para todo 1 <i,j <n.

Demonstragio. Fixe p € M e considere (x!,. .., 2™") um sistema de coordenadas normal em
p. A base associada ao sistema de coordenadas sera denotada por {e; = %, B %},
e sua base dual por {dz?,...daz"}, escreva Y =Y Y7e;. Considerando que V é a conexao

de Levi-Civita em M, temos

VeiY = Z <€Z(Yk) + eri‘gj’)eka

Jk
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onde Fk’ sao os simbolos de Christoffel da conexao de Levi-Civita. observe que

A (V, V) =Y (e,»(YkO) + Yf'rf;).

J

Como (x x™) é um sistema de coordenada normal, entao Ffj‘? = 0, dai segue que

dz™ (V,Y) = e;(Y*),

em p. O que conclui a demonstracao do item a). Para a demonstragao do item b) vamos

usar a Definicdo 2.15 para obter
D.,d2(Y) = e(da’ (V) — da? (V.. Y),
Pelo item a), que acabamos de provar, segue que
2’ (V. Y) = e;(Y7),
em p. Por outro lado, perceba que
dz'(Y) = d$i<ZYjej) => " Y/dz'(e;) =Y".
J J
Logo,
D, dv? (Y) = e;(Y7?) — e;(Y?) = 0.
Por fim, para a demonstracio do item c), tome w = 3" wpdx® e perceba que

Dew =" D, (wpdz") =3 (wpDe,da” + e;(wy)da™) = e;(wy)da”.
k=1 k=1 k=1
Dai, como ¢, (dz*) = 0%, segue que

Le;(De,w) =Y e5(wy)te, (dz”) = e;(w;).

k=1

Por outro lado,

Le; (W (Z widx ) = Z kaej(dxk) =
k=1

Logo,
Digtey (@) = ei(w).
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Portanto,
Lej<D€i) = 6i(wj) = Deiljej'

]

Pela discursdo feita na subsegao anterior, temos que o produto interno (-,-) : Q1(M) x
QY M) — R, é definido por
(wom) =>_g" winj,

Y]
onde w = w;dz',n = n;dx? e g” sdo as componentes da matriz inversa da métrica
Riemanniana ¢ = (-,-). Em particular, como em um sistema de coordenadas normal
9i(p) = 67, temos

<w>77> = Z Wi ;.

Lema 2.20. Dados w,n € Q'(M), vale
X(w,n> = <DXWJI> + <wv DXn>'

Demonstragio. Inicialmente, escrevendo w = 3" w;dx® e usando item c) da Proposi¢io 2.16

temos a seguinte expressao:
Dxw = Dy ( Z wida:i) = Z w; Dxdx’ + Z X (w;)da".
i=1 i=1 i=1

Observe que
Dxdx'(Y) = X(dz'(Y)) — dz"(VxY) = X (V") — dz"(VxY).
Aplicando o item a) do Lema 2.19 no termo dx(VxY), temos que

dr'(VY) = dx’(Z vaejy) =Y XA (V. Y) = 3 Xle, (YY) = X (YY),
=1 =1 =1
Logo,
Dxdiﬂi =0.

Dai, segue que
Dyw =Y X(w;)dz".
i=1

Agora vamos demonstrar o resultado desejado, escreva n = 37, n;dz?. Temos

n

Xwoyn) = X (S wim) = 3 X + 3 wX(m) = (Dye,n) + (w, Dxn).

2
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Defini¢ao 2.21. Definimos o tensor de curvatura em Q'(M) como sendo a aplicagio
R:X(M)x X(M)x QYM) — Q(M), dado por:

R(X, Y)w == Dnyw - DyDXw — D[ny}w

para todo X,Y € X(M) e w € QL(M).

Fazendo uma analogia com (1.2), em coordenadas escrevemos:

R(e;, ej)d —ZRfjldx

Proposigdo 2.22. Seja w € QY(M) e w* € X(M) o vetor associado a w. O tensor de Ricci

definida em w* é dada por:

n

Ric(w?, w?) = —<w, > (dxi A te, (R(es, ej)w))>.

ij=1
Demonstragio. Inicialmente, ja que R(e;, e;)w = — >, Rfjlwkdxl, obtemos
le; (R(€i7 ej) Z Rz]lka€] d]? Z Rz]lwkdx eJ Z Rz]]
Jikl 7.k,

Por outro lado,

Ric(wh o) = SDUR(, eg) ) = = SR, eg)e5) = = S (R e )ncns o)

J i,5,k

= — Z (€i,€j)ek, e;)wiwy = Z(R(ei,ej)ej,ek>wiwk = Z Rfjjwiwk.

4,5,k 4,7,k 0,4,k

Portanto, usando as duas expressoes obtidas acima, concluimos que

<W7 Zn:l <d$i A te;(R(e;, €5)w) >> = < Zkmekdx > QRijiwk = — Ric(w?, wh).
©J= 75 VA

O

Lema 2.23. Seja {ey,...,e,} uma base ortonormal de T),M, e seja dz', ..., dz"™ sua base

dual (dz?(e;)) = 6. Entéo, a derivada exteior satisfaz
d=> dz' A D,
i=1
e sua adjunta é dada por

= — Z Le; (D
=1

Demonstragdo. Ver Lema 3.3.4 de [Jos08]. O
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Proposicao 2.24. Sobre as hipoteses do lema anterior, o Laplaciano de Hodge pode ser

escrito por

Apg =Y DD+ dr' A, (R(e;, e5)). (2.6)

2%
Demonstracao. Fixado p € M, em um sistema de coordenada normal, observe que
do = Z dz’ A Dei( — Z Lej(Dej>)
( J

=—> da' A, (De,De,) (cf. Lema 2.19)

1,

J

D,,(da’) A D¢, + da’ A D, D)
= — Z Le; (d;cl A DejDei) (Cf Lema 219)
= =" (te,(da’) A De, Do, — da* Ave,(De, De,))
2%
= =" (da*(e) A De, De, = da’ Ate,(De, De,))
2%

=—> D, De, + > da’ A, (D, D.,).

Z’?j

Unindo as duas expressoes segue que

ds +6d == dz" Nie,(De,De,) = > De,De, + > dx’ Ae,(De,De,)
1,J ) ,J
=—> D.D., - di' A, (DD, — De,D,,)
) ,J
== D¢ D, =Y da' A, (R(e;,¢5)).
i 1,
O

Teorema 2.25 (Identidade de Bochner-Weitzenbock). Seja M uma variedade Riemanniana

e w € QY(M) uma 1-forma sobre M. Se w é harmonica, entao
LAl (DwlP+Ric(wh wf
2A|w| = |Dw|*+Ric(w*,w*). (2.7)

Demonstragao. Inicialmente, fixe p € M e considere um sistema de coordenadas normais
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em p, para obter uma base {e;} ortonormal e geodésica em p. Agora, como |w|?*= (w,w) é

uma funcgao real, temos que

A|W|2 = ZDeiDez'((WuW)) = QZDei“meaw»
=2 ({(Dew, De,w) + (w, De, Dew))
=2Y|D,*+2> (w, D, D,,w)

= 2|Dw|*+2{w, ZDeiDeiw>.
Por outro lado, usando (2.6) e a hipotese de w ser harmonica, temos
> DeDew == dz' Ave;(R(e;, j))w.
i j
Logo, segue que
Alw|* = 2|Dw|*~2(w, Z dz' A te;(R(e, 5))w)
= 2|Dwl|*+2 Ric(zjﬁ,wﬁ).

[]

Seja f € C*°(M). Fixemos p € M e consideremos um sistema de coordenadas normais
centrado em p. Nesse sistema obtemos uma base {e;} ortonormal e geodésica em p. Nessas

condicoes, temos

D, df (e;) = ei(df (ej))-

Assim,

DAf? =Y (eldf(e;)” = 3 (a(Vfie))

) 1,J

=Y ((Ve,-Vf, €j>)2 = |Hess f|*. (2.8)

2.2 Aplicagcoes harmonicas

Aplicagoes harmonicas sao extensoes nao lineares de fun¢oes harmonicas. Uma aplicacao
nao constante é chamada de nao trivial.

Seja (M, g) uma n-variedade Riemanniana, dotada de uma métrica Riemanniana g.
Denotaremos g5 a matriz simétrica n x n definida positiva. Seja g% = (gag)~" a matriz

inversa de (gag) € dvg = /g dx = \/det(gas) dx o elemento de volume de (M, g). Seja (N, h)

uma [-variedade Riemanniana compacta, sem bordo, dotada de uma métrica Riemanniana
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Para qualquer aplicagio u € C*(M, N), podemos definir a densidade de energia de
Dirichlet e(u) pondo:

e(u)(r) = |dul?.
O funcional energia de Dirichlet ¢ entao definida por:
E(u) = [ e(u)du,
()= [ e(wdy,
Vamos definir uma variagio da aplica¢do u tomando ¢ € C%(M,R!) e pondo
w(x) = ulz) +to(z), L€ ()

onde a soma u(x) + to(z) é dada em coordenadas. Assim, um ponto critico do funcional

energia de Dirichlet é uma aplicacao u tal que

d
a(E(Utmt:o =0,
para toda variacao de u.

Defini¢ao 2.26 (Aplicagdo harménica). Uma aplicagdo u € C*(M, N) é chamada de

harmonica se for um ponto critico do funcional energia de Dirichlet.

Pelo teorema de imersao isométrica de Nash [Nas56], podemos assumir que (N, h) estd

isometricamente imersa em um espaco Euclidiano R para algum L > 1. Assim, temos:
C*(M,N) = {u= (- ,u") € C*(M,R") |u(M) C N}.

Como N C RE ¢ uma subvariedade compacta, existe um § = 6(N) > 0 tal que a projecio

de vizinhanca Ily : Ny — N é suave, onde:
Ns ={y € R" | d(y, N) == inf |y — 2|< 6},

e Ilx(y) € N é tal que |y —Ty(y)|= d(y, N) para y € N;.
Observe que P(y) = d(lly(y)) : RY — T,N, y € N, é uma projegdo ortogonal, e

Aly) = VP(y) : TN ®T,N - (T,N)*, y € N,

¢ a segunda forma fundamental de N C R%.

Agora temos a seguinte proposigao:
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Proposigao 2.27. Uma aplicagao u € C*(M, N) é um mapa harmonico se, e somente se,
u satisfaz:
Agu L T,N,

onde A, é o Laplaciano de Beltrami em M.

Demonstragio. Para ¢ € CO°(M,RL), vamos definir a variacio u(z) = I(u(z) + to(z)).
Assim, para (z,t) € M x (—¢,¢€), temos:

Blu) = [ |d(T(u+ t6)Pdv, = [ |P(u+10) dv,.
Perceba que

d< Plu+19), P(u+1t¢)) = 2(d(P(u+1¢))(¢), P(u+t9)).

St = 5

Portanto,

_ i >
0= /M|P(u+t¢>)| dv,

=2/<an»wxP<»mg
=2 [ (ap (u)))dv,

—2/ ), du) dvg

Por outro lado,

(PN ) doy = [ STHAPC)@)) (e, dufen)) doy

—/ Zd ) (e;), du? (e;) dv,
—/ Z ) (V! e;) dv,
—/ Z )’ Vu'y do,.

Pelo Teorema da Divergéncia, segue que

V(P Vulydv, = = [ (P)(e))Agu do,

Logo,

J, (APCO@), ) dey = = || S(PL) @) By iy = = [ (P(u)(6), A
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Contudo,
0=2 [ (d(P()(6),duydv, = =2 [ (P@)(@). Agu) = =2 [ (6, P(u)(B,u).
Isso implica que a projecao de Aju é nula em T,,M, ou seja, Aju L T, N. n
No caso em que Aju L T, N, podemos escrever
L
Agu= > az)v(z),
i=1+1
onde {vi41,...,vr} é uma base ortonormal de (T, N)*. Além disso, como
L .
Agu = Z Agule;,
j=1
come; = (0,...,1,...,0), temos
L .
a; = (Agu,v;) =D Agu (v, €5).
j=1
Por simplicidade, escreveremos apenas
a; = Al (v;, ;).
Usando a Preposicao 1.15, temos
a; = Agu(vg, e;) = div({v;, e,) Vil ) — (V! , V(v e;)). (2.9)

Por outro lado, ja que
du(w) = (du*(w), ..., du"(w)).
Podemos escrever du’ (w) = (du(w), e;). Dai,

V! = du? (ex)ex,

para e base ortonormal de T'M. Portanto, em relagao ao primeiro termo do lado direito

da tltima igualdade de (2.9), temos:

div((v;, e;)Vu?) = div({v;, e;)du? (ex)ex) = div({v;, e;) {du(er,), e;)er) = div({(vi, du(er))ey,)
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Em relagao ao segundo termo do lado direito de (2.9), temos:

V! = du(ey)er, e V(v,e;) = er((vie;))er.

Logo,
(Vu?, V(v;,e5)) = (du? (ex)ex, ex((vi, €5))ex) = du (ex)ex((vi, €5))
= du? (e) (V5 vi, €5)) = du? (ex,) ((VE v;(u), e;))
= du’ (ex) (Vau(ey)Vis €5) = (duler), €3)(Vau(e) vis €)
= (du(er), Vau(e,)vi) = A, (du(er), du(ey))
= A;(Vu, Vu).
Portanto,
L
Agu= > —A(Vu,Vu); = —Ai\f(l,)(Vu, Vu). (2.10)
i=l+1

Corolario 2.28. Seja u : M — S® € R**!. Entdo, u é harmonica se, e somente se,
Aju = —|Vulu.
Demonstracao. Temos que

Aua () = AC, Ju(z) =, u(@).

Afinal, em S", a segunda forma fundamental A tem autovalor 1 e v € (Ty,,;)S™)* é o vetor
posicao u(x). Desta forma,
S’I’L
Ay (Vu, Vu) = |Vul?u(z).
Pelo que foi discutido acima, concluimos a demonstracao. O

2.2.1 Aplicagoes harmoénicas para o circulo unitario

Definigao 2.29 (Pullback). Sejam M, N variedades Riemannianas de dimengoes arbitra-
rias, e seja v : M — N uma aplicagdo suave. Dada uma 1-forma w € Q'(N), definimos o

pullback de w como uma aplicagao u* : QY(N) — Q*(M) dada por
u(w)p(X) = wu(p) (dup(X)),

para todop € M e X € T,M.
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No caso particular em que § € C*(N), temos
(6 0 u)p(X) = dfy)(dup(X)),

com X € T,N. Por outro lado, como df € Q'(N) é uma 1-forma diferencial, podemos

usar a definicdo de pullback para obter
w(du() ) (X) = dbup) (duy(X)).
Comparando as expressoes acima, concluimos que
W (dBu(p)) (X) = d(6 0 u)p(X).
Assim, denotaremos
u*(df) = d(0 o u).
Observe ainda que, pela Proposicao 2.4, temos
d(u*(df)) =d(d(@owu)) =0

Lema 2.30. A aplicacio u : M — S ¢ harmonica se e somente se a 1-forma h := u*(df)

¢ harmonica.

Demonstragio. Vamos relembrar a aplicagdo de recobrimento,definida por
exp(f) = (cos(h),sin(H)).

Essa aplicacdo associa a cada ponto § € R um ponto no circulo unitario S!, identificando
0 com 0 + 27k, para todo k € Z.
Inicialmente, observe que df estd bem definida em S'. Com efeito, sejam 1 e x5 € S*,

com x1 # x5. Consideremos duas parametrizagoes locais:

0, : St- {Q?l} — [O, 271'),
92 : Sl— {132} — [to,to + 27T),

onde ty € R é uma constante arbitraria. Essa funcao fornece coordenadas angulares locais
em S!, diferenciando-se por um multiplo inteiro de 27 nas suas regioes de sobreposicao.

No conjunto S'- {z, x5}, onde ambas as parametrizacdes sio validas, temos

01(x) — Oz(x) = 27k, para algum k € Z.
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Diferenciando ambos os lados obtemos
0=d(01(z) — Oa()) = d(01(z)) — d(02()).

Logo, db;(x) = dby(z). O que implica dizer que df nao depende da escolha da parametri-
zacao local, e portanto estd bem definida em S!.

Agora, defina @ =0 ou : M — R. Como df estd bem definido, podemos considerar da
e Vu. Note que

di=d(@ou) =u"(df) =h e
h(X) = (W, X) = ((du)*, X) = (Va, X) = b = Vi

Alem disso, pela Corolario 2.14, temos
At = div(Va) = div(hf) = —dh.

Assim, pela Proposicao 2.13, @ é harmonica se, e somente se h é 1-forma harmonica.
Por outro lado, pela Preposicao 2.28, temos que u é harmoénica se e somente se

Au = —|Vu|?u. Escreva u = (uy,us), para @ = ( o u) temos
uy = cos(a) e ug = sin ().
Dai, v é harmonica se e somente se
Auy = —|Vul*uy e Aug = —|Vuluy
Usando a Preposicao 1.15 para calcular o Laplaciano de u; e uy, obtemos

Acos(u) = div(V cos(@t)) = div(—sin(a)Va)
= —sin(a)div(Va) + (Va, —Vsin(a))
= —sin(a)Au — (Va, cos(a)Va)

= —sin(@) A — cos(a)|Val?

Asin(a) = div(Vsin(a)) = div(cos(a) V)

I
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Assim,
— sin(@) At — cos(@)|Via|* = —|Vul*cos(@);
cos(@) At — sin(@)|Vi|* = —|Vu|?sin(a).
Donde,
sin?(@) A + sin(@) cos(@)|Va|* = |Vul*cos(@) sin(@);
cos? (%) At — cos(@) sin(@)|Vii|]* = —|Vul|*sin(@) cos(i).
Somando as igualdades, temos que Au = 0 e portanto @ é harmdnica. O

Antes de encerrar a discussao neste capitulo, é interessante observar que

h =u*(df) = d(f o u);
Dh = D(u*(df)) = D(d(f o u)) = D(du) = Hess(u) = Hess(6 o u).
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Capitulo 3
Resultados Auxiliares

Neste capitulo, apresentamos um argumento desenvolvido por Cheeger e Gromoll
em [JDT71] para a demonstracao do Teorema de Decomposigao, aplicdvel a variedades
Riemannianas completas com curvatura de Ricci nao-negativa. Em seguida, exploramos
o conceito de recobrimento universal. Além disso, introduziremos de forma sucinta os
conceitos de homologia singular e da caracteristica de Euler-Poincaré em 2-variedades. Por
fim, enunciaremos dois teoremas classicos da andlise geométrica, os quais desempenham

um papel fundamental na demonstracao dos principais resultados desta dissertacao.

3.1 Argumento de Cheeger-Gromoll

Sejam M uma variedade Riemanniana e « : I — M uma curva diferenciavel. Um

campo V ao longo de uma curva « é dito paralelo se

DV
T

onde % denota a derivada covariante. Dizemos que « é uma geodésica em t € I se

D

%O/(t) = Va/(t)o/(t) = 0.

Dados p € M e v € T,M, vamos denotar por 7, a tnica geodésica de M que passa por p

com velocidade v. Também definiremos o seguinte conjuto:
T, = {veT,M|~, estd definida em um intervalo contendo [0, 1]}.

Quando v € T, estamos considerando que 7,(0) = p e v/ (0) = v.

Definigao 3.1 (Aplicacdo exponencial). A aplicacdo exp, : T, — M, definida por

exp,(v) = (1),
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¢ denominada aplicacao exponencial.

A aplicacao exponencial é um difeomorfismo local tal que expp(tv) = v, (t) para todo

t € R (ver pag. 73 de [DC19)).

Definicao 3.2 (Fluxo). Seja M uma variedade Riemanniana, e X € X(M) um campo
vetorial suave em M. O fluxo associado ao campo X é uma aplicagdo ® : R x M — M,

que satisfaz as seguintes condigoes:
a) Para cada ponto p € M, a aplicacao t — ®.(p) := (¢, p) é tal que

0

acbt(p) = X (D(p)).

b) Para cada p € M, quando t = 0, temos ®(0,p) = p.

De acordo com o Teorema de Peano (ver Teorema 12.10 de [Lee03]), existe pelo menos

uma solucao para a equagao diferencial

F0,(p) = X (P4(p));
®(0,p) = p.

Seja M uma n-variedade Riemanniana e ¥ C M uma hipersuperficie de M. Considere
a variedade produto R x . Seu espaco tangente T{;,) (R x ) no ponto (¢,p) € R x ¥
pode ser identificado pela soma direta T;R & T,,¥ (ver Proposicao 3.13 de [Leel2]). Dessa

forma, dado 7 € Ti;p) (R x ¥), localmente, podemos escrever

n—1

Z —)\aa—l—v v e Ty,
=1

e
o7

onde % e { a?:i} sao, respectivamente, elementos da base natural de T;R e de T,,X.
Dessa forma, se considerarmos uma aplicacao diferenciavel ® : R x ¥ — M e sua
diferencial d® : T(; ;) (R x X) — T, M, temos que

0P 9o
dq)(t,p)@) = )\E(t’p) + Z “ox z( p)

Proposigao 3.3 (Argumento de Cheeger-Gromoll). Sejam M uma variedade Riemanniana,
u: M — R uma funcio suave e u~(f) = ¥ C M uma subvariedade de M. Se Hessu = 0
e o vetor gradiente é tal que |Vu|= 1, entao o fluxo gradiente ® : R x ¥ — M, definido por

(t,p) = exp, (t Vu(p)), (3.1)

é uma isOmetria.
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Demonstragio. Inicialmente vamos mostrar que d®,)(2) = Vu(yyu(t)). Com efeito,

considere a geodésica
/qu(t) - epr(tVU(p)) = q)(tvp)v

com Yy, (0) = p e 75,(0) = Vu(p). Pela definigdo de fluxo, temos que

You(t) = Vu(ywu(t)).

Por outro lado,
, 0 0P B 0
Toult) = grva(t) = - () = dq)tp)(at)

Dai, como desejado,

1 (o)

Agora, vamos mostrar que ® é uma isémetria. Para os vetores em T;R, perceba que

(d®, (jt) i®, (§t>>:<vu,vu>:1:<§t,§t>.

Para os vetores v, w € T3, defina

= Vu(yvu (t)) .

f(t) = <d¢)(t7p) (U),d@(tp)(w)).

Considere uma curva « : (—e,e) — M tal que a(0) = p e o/(0) = v. Defina ¥ :
(—€,¢) x R — M, pondo ¥(t,s) = ®(t,a(s)). Pelo Lema de Simetria (Ver Lema 3.4 de

[DC19]), obtemos

8\11 ov

Porém, em (0,¢), temos 22(0,t) = Vu(®(t,p)) e ZL(0,t) = dP ) (v). Logo,

F'(#) = (Vou(@ d®ep) (), APy (w)) + (APt ) (0), Vou(a(p d@ ) (w))
— <qu><t,p> Vu(®(t, p)), dD(.p (w)> + <dc1>(t,p)(v), Vs, Vu(®(t, p))> .

E como Hessu = 0, temos que Vu é paralelo, portanto f'(t) = 0. O que implica que f é

constante. Logo,

(A1) (0),dD(r ) (w)) = (AD(0) (1), AP0y (w)) = (v,0) ,

pois d® ) (v) = L0(0,a(s)) = &/(0) = v.

De maneira analoga, para os Vetores - € T,(R) e v € T,X, conseguimos mostrar que

0 0
<d<I>(t,p) (v),dP g p (816)> = <d®(0,p) (v), dPo,p) (8t>> '
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Ja que d® g ) (%) = 74,(0) = Vu, concluimos que

9,
<d‘1’<t,p>(v), d<1>(t,p)(at)> — (v, Vu) = 0,

pois Vu é normal a Tp>.

Contudo, dados 7,@ € T(; ) (R x ), isto é, T = )\% +vew= é% + w. Temos que

(000039 () 0y () = (A €Y 4 (v, 0) = (1.7).

Logo, ® é uma isometria. O

3.2 Recobrimento universal

Uma aplicagdo continua e sobrejetiva ¢ : M — N é chamada de recobrimento quando,

para cada ponto p € N, existe uma vizinhanca aberta V' C N de p tal que
‘P_l(v) = U Ua

¢ uma uniao de conjuntos abertos U, disjuntos dois a dois, de modo que, para cada
a, a restrigdo ¢|y,: Uy, — V é um homeomorfismo. Nessa situacdo, M é chamado de

recobrimento de N.

Defini¢ao 3.4 (Recobrimento universal). Seja ¢ : M — N um recobrimento. Quando M
¢ uma variedade simplesmente conexa, dizemos que ¢ é um recobrimento universal e que

M ¢é o recobrimento universal de N.

Uma variedade Riemanniana M ¢é dita completa se, para todo p € M, a aplicacao
exponencial estd definida para todo v € T,M, isto ¢, as geodésicas vy que partem de p
estao definidas para todos os valores do parametro ¢t € R. Pelo Teorema de Hopf-Rinow

(ver Teorema 6.13 em [Leel8b]), se M é uma variedade compacta, entao M é completa.

Lema 3.5. Seja M uma variedade Riemanniana Completa e seja ¢ : M — N um
difeomorfismo local sobre uma variedade Riemanniana N que possui a seguinte propriedade:

para todo p € M e todo v € T,M, tem-se |dy,(v)|> |v|. Entao, ¢ é um recobrimento.
Demonstragio. Ver Lema 3.3 do Capitulo 7 do livro [DC19]. O

Considere que ¥ é uma superficie compacta e possui curvatura escalar constante.
Assumindo que X é conexa (caso nao seja basta tomar uma componentes conexa), segue
do Teorema da Classificacdo dos Espacgos de Curvatura Constante (Ver Corolario 5.6.14 de

[Pet16]) que existe uma isémetria o : S* — 3.
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Dessa forma, tomando @ : R x ¥ — M (definida por (3.1)) e ¢ : S* — X, defina

F(t,q) == ®(t,0(q)). (3.2)

Pelo argumento de Cheeger-Gromoll, temos que F': R x S? — M ¢é uma isémetria local.
Agora, pelo Lema 3.5, concluimos que a isometria ¢ : R x S? — M, definida por (3.2),
¢ um recobrimento. Além disso, como o cilindro R x S? é simplesmente conexo, segue que

0 : R xS? — M é um recobrimento universal.

3.3 Homologia singular

Seja M uma variedade Riemanniana. Usando cadeias singulares, abordaremos breve-
mente a defini¢do dos grupos de homologia singulares H;(M,Z) com coeficientes inteiros,
para um estudo mais detalhado, consulte [Bre93] e [Trel6].

Considerando R" como o subconjunto de R"*! composto pelos vetores cujo (n + 1)-
ésimo coordenado ¢ igual a 0, podemos considerar a uniao R* = {J,~; R". Paran > 1,
seja e, o vetor cuja m-ésima coordenada é 1 e as demais coordenadas sao 0, e seja eg 0
vetor cujas coordenadas sao todas 0. Para r > 0, o simplexo A, de dimensao r é dado

pelo conjunto
i=0 i=0

Um r-simplezo singular na variedade M é uma aplicagao continua o : A, — M. As
r-cadeias singulares C,.(M) em M sdo as combinagoes lineares finitas, com coeficientes
inteiros, dos r-simplexos singulares. Elas formam um grupo abeliano.

Para r > 1 e k = 0,...,r, definimos a k-ésima face de um simplexo A, como a

aplicagao 8,’? : A,_1 — A, dada por

k—1 k—1 r
8,’?(2)\@):2)\,624— Z )\i_lei, kﬁzl,...,i—l,
=0 =0

i=k+1
com
] k—1 r
1=0 i=k+1
(S

k—1 T
ag(zo )\161> = Z /\Z-_lei, k=0.

i=k+1

O operador bordo 0 : C.(M) — C,_1(M) é definido como a soma alternada

ds =Y (—1)Fsody, s € Cp(M).

1=0
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Tal operador satisfaz 90 = 0, de modo que a sequéncia

% 0 %

= Copi(M) = Co (M) = Croy (M) = -+ = Co(M)

é um complexo de cadeias, chamado o complexo singular da variedade M e definimos os

grupos de homologia singular como o anel:

ker(0: Cp.(M) — Cr_1(M))
Im(0C,41(M))

H,(M,7) = (3.3)

Seus elementos sao as classes de homologia
2] =24 0C, 41 ={2+0s; s € Crp1},

onde z € ker(0 : C. — C,_1(M)). Dizemos que z,z" € ker(d : C, — C,_1(M)) sdo
homoélogos quando z — 2’ = ds. Quando z, 2’ sdo homodlogos, entao [z] = [2/].

O Teorema de Thom garante que em toda n-variedade Riemanniana M orientada e
fechada, as classes de homologia em H,,_;(M;Z) podem ser representadas por uma classe

fundamental de uma subvariedade. De fato,

Teorema 3.6 (Thom). Se M é uma n-variedade Riemanniana fechada e orientada,
entdo qualquer classe de homologia em (H,,_1(M;Z)) é representada por uma classe de
subvariedade Riemanniana. Isto é, dado [z] € H,,_1(M;Z), exite uma subvariedade > C M

tal que

Demonstragio. Ver Teorema 11.16 do Capitulo VI do livro [Bre93]. O]

Em particular, sobre as hipoteses do teorema, se ¥ C M nao é um bordo, isto é, nao
existe uma n-subvariedade W C M com 0W = ¥, entao ¥ define um elemento nao trivial
de H, 1(M;Z), o qual denotamos por [X] # 0. Quando o grupo de homologia possui
pelo menos um elemento nao trivial, dizemos que ele é um grupo nao trivial e denotamos

3.4 Caracteristica de Euler-Poincaré

Seja X uma 2-variedade. Se ¥ for compacta, conexa e orientada, entao ela é homeomorfa
a esfera S? ou a soma conexa de g toros T? (essa classificacio topoldgica é garantida pelo
Teorema 6.12 de [Leel0]), o ntimero g é chamado de género de ¥. Nessas condigdes a

caracteristica de Euler-Poincaré em X é expressa como

X(X)=2-2g. (3.4)
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Se, por outro lado, ¥ for compacta e orientada, mas nao necessariamente conexa, ela
pode ser decomposta como a unido disjunta de um ntmero finito de componentes conexas

{S;}, isto é,

onde N denota o niimero de componentes conexas de X, e cada S; C X é uma subvariedade
compacta, conexa e orientada. Para cada S;, sua caracteristica de Euler-Poincaré é dada
por

x(8i) =2 —2g,,

onde g; denota o género de S;. Assim, a caracteristica de Euler-Poincaré de X é

=(2-291) +(2—2¢2) + - + (2 — 29n)
=2N —2(g1 + g2+ -+ gn)-

Consequentemente, para qualquer 2-variedade Y compacta e orienteada, temos que
x(X) < 2N, (3.5)

onde N denota o nimero de componentes conexas de X.
A seguir, apresentamos o Teorema de Gauss-Bonnet, um resultado que estabelece uma

relacdo entre a curvatura escalar de ¥ e sua caracteristica de Euler-Poincaré.

Teorema 3.7 (Gauss-Bonnet). Seja ¥ uma 2-variedade Riemanniana compacta e orientada,

entao
/E Scal dVi, = 47x(%). (3.6)

Demonstragio. Ver Teorema 9.7 de ([Leel8al). O

3.5 Formula da Co-area e Teorema de Sard

Enunciaremos a seguir dois teoremas classicos, seguidos de adaptacoes e interpretacoes

que os tornam diretamente aplicaveis as nossas necessidades.

Teorema 3.8 (Férmula da co-drea). Seja f € C°(M) uma fungao suave em uma variedade

Riemanniana M, e g : M — [0, 00) uma fungao mensuravel. Entao

| alviiav= | ( / gdvf—ut))dt
M 0 =1
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Demonstragio. Ver Teorema 0.4.5 de [Wan06]. O

Em particular, seja A C R um conjunto mensurdvel, tal que f~'(A) C M, tomando g

como a fungdo caracteristica de f~1(A), definida por

MMZ{L pes )
0, p¢& fH(4),

obtemos

V| dV-s ::/ ./ V-1 )dt 3.7
S [ 4V A<f_1(t) 10 (37)

Teorema 3.9 (Sard). Sejam M e N variedades Riemannianas e f : M — N uma aplicac¢ao

suave. Entao, o conjuto dos valores criticos de f tem médida nula em V.

Demonstragio. Ver Capitulo 6 de [Leel2]. O

Sejam A e B conjuntos quaisquer. Denotamos por |A| e |B| as medidas de A e B,
respectivamente. Usamos a notagdo |A|— | B| para indicar que a medida do conjunto A
tende a medida do conjunto |B|. Em particluar, quando |A|— 0, dizemos que A tende a
ter medida nula.

Se A tem medida nula, entdo para qualquer aplicagdo F' diferencidvel em A, temos que

/F:O
A
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Capitulo 4
Estimativas de Area

Neste capitulo, estabelecemos uma desigualdade geométrica que relaciona a caracte-
ristica de Euler-Poincaré de uma superficie de nivel, obtida por meio de uma aplicacao
harmonica. Com base nessa desigualdade, exploramos novos resultados sobre desigualdades
sistélicas, incluindo uma estimativa para superficies de area minimizante. Essa abordagem
constitui a base de alguns dos resultados apresentados em [Ste22], de D. Stern, que serviu
como principal referéncia para o desenvolvimento desta dissertacao.

Seguindo a técnica desenvolvida no artigo citado, e estendendo-a ao contexto das
solugoes de equagoes de Poisson, conseguimos obter um novo resultado relacionado a
uma desigualdade sistolica. Esse resultado estabelece uma relagao entre a curvatura
escalar da variedade ambiente, a funcao potencial envolvida na equagao de Poisson e as
propriedades geométricas das superficies associadas. A abordagem explorada permite
identificar novos vinculos entre a geometria global da variedade e sistole, contribuindo

para uma compreensao mais profunda das interacoes entre curvatura e topologia.

4.1 Uma abordagem com aplicagcoes harmonicas

Apresentaremos, a seguir, algumas ideias empregadas em [Ste22].

Teorema 4.1 (D. Stern). Seja M uma 3-variedade Riemanniana fechada e orientada, e

seja u : M — S' uma aplicagdo harmonica nao trivial. Entao, para 3y := u~1(#), temos:

1
2n [ x(Z) 25 [ [ (ldul"?Hess uf*+ Scalyy). 41
7 [ X025 [ [ (dul e uf+-Sealy) (4.1
Demonstragio. Antes de iniciar a demonstragao, estabelecemos as seguintes notagoes:
h:=u*(df), |du|=|h|=|d(@owu)] e |Hessu|=|Dh|= |Hess(fou),

onde u*(df) € Q' (M) é o pullback de df € Q'(S!) por u.
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Prosseguindo com a demonstragao, como u ¢ uma aplicagao harmonica, segue do
Lema 2.30 que a 1-forma h = u*(df) é uma forma harménica. Assim, pela Identidade de
Bochner-Weitzenbock, temos que

—A|h]2 |Hess u|*4 Ric(h*, h?). (4.2)
Por outro lado, tomando § > 0 e definindo a fungao @5 = (|h|240)2, obtemos:
. (1 2
Aps = div(Ves) = div| —V|h|
205

1 1
= —div(V!hlz) + <V(>7V|h|2> (cf. Proposigao 1.15)
205
1

—7Ah2 Vs, V|h|?
2 h %< 5 V1)
—AhQ V|h|??
Al 4§| )

1
— 5 A= AV
h2

= 5 AP v
1

1 |h|
= — fAhZ Vh

Substituindo (4.2) na igualdade acima, chegamos a:
Aps = i<|Hess ul|?+ Ric(hf, h¥) — W|V|h||2)
¥s ’ 3

Perceba que, |h|?= p2 —§ < 3 implica que k};—‘; < 1. Logo, alcancamos a seguinte
8
desigualdade:

|
Aps > ;(IHessu|2—|V|hH2+ Ric(h#, h¥)). (4.3)
4

Agora, utilizando a hipdtese de que u é nao trivial e aplicando o Teorema de Sard,

conclui-se que, para quase todo 6 € S, o nivel ¥y := u~1(#) é uma hipersuperficie suave.

Consequentemente, o vetor normal é dado por v = % Aplicando o Truque de
Schoen-Yau para ¥y C M, obtemos
1
Ric(v,v) = §(Sca1M —Scaly, +H3, — |As, [*). (4.4)

Vamos explorar os termos |Ay,|* e Hg, presentes na igualdade acima.
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Tomando X € X(Xy) arbitrario, o operador de Weingarten Ay, é definido por

R\ T
Ap, X = —(Vxv)' = —(VX> = —(X h* + Vxhﬁ> = VXhti
’ |¥| (!h \) || |
Dai, obtemos a seguinte expressao:
Vxh? = —|h?|Ag, X. (4.5)

Vamos escrever (Vxh*Y) = (Hessu)(X,Y), assim

3 3
[Hessu|? = |VR*|*= Z (Ve, D)2 =33 (Ve hej)?
i=1

i=1j5=1

(Vs + (V0 YAV e 4 3 (b )

Il
Mw

4,j=1 Jj=1 i=1
2 2 2
= > (Velbie)? + (VA 0)? 4+ 3 (Ve lE0)? + 3 (Ve b, v)?
i,5=1 J=1 i=1
2
= Y (Ve bt e))? + (V0 v)? + 2 <Veihﬁ,y>2
i,j=1 i=1
2 2
= [R*2 Y (As,eie5)? + (VR v)? + 23 (Ve hhv)?  (cf. (4.5))
i,j=1 i=1
2
= |h*]?|As, |+ (Hess u)?(v,v) + 2 (V.. v)
=1

Perceba ainda que

P = 3 () = 3 e ) — i 2 ()’

i=1

e como |h|?= |h*|? (ver (1.14)), segue que

2
VIR = 4\hﬁl2 Z ei(|h*?) 4|hﬁ|2 Z (2(V, b, hF))?

(Ve hi v)? Z(Veihﬁ,uf—l—(V,,hﬁ,wQ

1 i=1

I
NE

.
Il

(Ve hf, v)? + (Hessu)*(v, v).

I
]~

@
Il
—_

Logo,
2
Z(Veihﬁ, v)? = |V|h||*—(Hess u)?(v, v).

=1
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Dali, temos que

[Hessu|? = |h*|?| As, |24 (Hess u)*(v, v) + 2|V|h||*—2(Hess u)*(v, v)
= |h¥ | As, | +2|V | h| 2 —(Hess u)* (v, v).

Portanto,
\hu] \AEGIZ \Vh”\ —2|V|h|[*+(Hess u)*(v, v). (4.6)

A curvatura média Hy,, satisfaz:
2

|PF|Hy, = > (|h¥| Az, (e:), €:)

=1

Z ~V.hie) (cf. (4.5))

S Z(Hess u)(e;, e;)

i=1

= — > (Hessu)(e;, ¢;) + (Hess u) (v, v)

= —ZA:; + (Hessu) (v, v).
Ja que u é harmonica, temos que Au = 0. Dessa forma, podemos concluir que
|hﬁ|2H%9 = (Hessu)*(v,v). (4.7)
Utilizando (4.6) e (4.7), obtemos a seguinte relagao

PF2(HS, — |As, [*) = (1K Hs,)* = (1W¥|As,])?
= (Hessu)*(v,v) — |Hess u|*+2|V|h||*~(Hess u)*(v, v)
= 2|V |h||*—|Hess u|*. (4.8)

Substituindo (4.8) em (4.4), podemos escrever
Ric(h*, h*) = |h*|*Ric(v, v)
= ;]hﬁ|2(ScalM — Scaly, +H3, — |As,?)
= ;]hﬁ|2(ScalM —Scaly, ) + ;\hﬂIQ(H%G —|As, )

1 1
= §|hﬁ|2(ScalM —Scaly, ) + 5(2]V|h|]2—|Hessu]2)
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Novamente usando |h|?= |h*|?, chegamos em
. f o7t 1 2 1 2 2
Ric(h*, h*) = §|h| (Scalps — Scaly,)) + 5(2|V|h|| —|Hess u|?). (4.9)
Substituindo (4.9) em (4.3), obtemos
1 1 1
Aps > o <|Hessu|2—|V|h||2+2|h|2(ScalM —Scaly, ) + 2(2|V|h||2—|Hessu|2)>
5

<2|Hess u|*—2|V|h||>+|h|*(Scalys — Scals, ) + 2|V|h||>—|Hess u|2>

— T%
1
= —— | |Hess u|*+|h|*(Scaly; — Scaly;,)
205
1
= %o (\Hess u|?+|du|?(Scaly; — Scalgg)> : (4.10)
5

Agora, seja A C S* um conjunto aberto que contém o conjunto C := Crit(u) dos valores
criticos de u, e seja B =S'\ A o subconjunto complementar fechado dos valores regulares

de u, de modo que B C Reg(u). Integrando (4.10) sobre u™!(B), vem que

1
——( [Hess u|>+|du[?(Scaly — Scal </ Aws.
[ 2%Q ess ul? +]du[? (Scal ca§b>) < [ 000

Pelo Teorema da Divergéncia sabemos que [;; Aps = 0. Consequentemente

/ o Aps = —/ Agps.
u=1(B) u~1(A)

Por outro lado, pela Desigualdade de Kato, obtemos |Hess u|?>—|V|h|[*> 0. Assim, por
(4.3), temos que

1
Ayp; > — Ric(hf, h¥).
¥s

Por sua vez, como o Ric é uma forma bilinear e M? é uma variedade fechada, tomando
Cyr = maxyy|Ric|, temos que |Ric(hf, h*)|< Ci|h|?. Logo,

—Cvlh|? h
Aps > = o s Zo .
©s ©s

Dali,

A :_/ A <C/ b,
/ul(B) ¥s - 1(4) Y5 =~ Cm qu(A)||
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Pela Férmula da co-area, vem que

CM/ Ih|= C’M/ (/ d29>d0: CM/ Area(Sy) df.
u—1(A4) A u=1(0) A

Logo,

1
/ul(B) 2906<|Hessu!2—|-|d7,L|2(Scal]\4 - Scalgg)> < C’M/AArea(Eg) do. (4.11)

Sendo M3 uma variedade fechada, temos que |du| é limitado em M, e fazendo § — 0,

vem que 5 — |dul. Logo,

1 |<|Hessu|2

TP + Scaly — Sca129> <Cu /AArea(E@) db.

5 u*l(B)|

No entanto, aplicando a Formula da co-area e o Teorema de Gauss-Bonnet, perceba que

1 |Hess u? 1 |Hess u?
5 /u_l(B)|du| <|du|2 + Scaly, — Scalg€> =3 /B </20 (’dU’Q + Scalpys — Scaly, | |d0
1 |Hess ul?
=5 ———— + Scal do
2 (L (5 5o )
p / X () db.
B

Desse modo, a estimativa (4.11) se torna:

1 |Hess u?
- (Hess uj” < | |
5 /B </Ee < dul? + ScalM>>d0 < 27T/BX(29) df + C’M/AArea(Eg) dh. (4.12)

Finalmente, pelo Teorema de Sard, o cojunto C tem médida nula em S'; Tomando a,

médida de A arbitrariamente pequena de modo que |A|— |C|, concluimos de (4.12) que

1 |Hess u|?
- P2 4 Sealy | do < 2 / X (S) db.
2 Jpest </Ee < |dul? + caM>> <27 et (39)

]

Corolario 4.2 (D. Stern). Seja M uma 3-variedade Riemanniana fechada e orientada, e
w: M — S uma aplicacdo harmdnica nao trivial. Se M possui curvatura escalar positiva

Scal,r > 0, entao

1 .
2 /9681 X(2g) > 5 mA}n(ScalM) e Area(Xy), (4.13)

onde a igualdade ocorre apenas se o recobrimento universal de M for o cilindro S? x R.
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Demonstracio. Pelo Teorema de D. Stern
1
QW/X(EQ) > f// (|du|?|Hess u|*+ Scaly).
0 2 JoJs,

Tomando o miny(Scalys) e usando o fato de |du|*|Hess u|?*> 0, temos que

1
27T/X Yg) > / . Scaly; > = 5 mln (Scalyy) /Area o).
6

Vamos analisar o caso da igualdade. Por Guass-Bonnet e pelo Teorema de D. Stern,

obtemos

1

1
2 (/51 o Scals, >d9 =27 /Sl X(2g) > ) /Sl /Eg(’du|_2|HeSS u|2—|— Scalyy) df.

Onde, a igualdade ocorre se e somente se Scaly; = const. e Hessu = 0. Neste caso,

tomando Vu = | h” pela Preposicao 3.3, o fluxo gradiente
¢:R xS, = M,

onde S;, ¢ uma componente conexa fixada de ¥y, fornece uma isometria local (em particular,

um recobrimento) entre M e R x S2. O que conclui a demonstracao. O

O Teorema de D. Stern também pode ser utilizado nas demonstragoes de alguns
teoremas de rigidez relacionados a superficies minimizantes de area. No contexto em que

M é uma 3-variedade fechada e orientada, define-se a 2-sistole homologica por:
sysy(M) = inf {Area(X) | X C M, [X] #0 € Hy(M;Z)}

como sendo a menor area entre superficies que nao sao bordos em M.

Teorema 4.3 (D. Stern). Seja M uma 3-variedade Riemanniana fechada e orientada. Se

M possui curvatura escalar positiva, Scaly; > 0, e segundo grupo de homologia nao trivial,
Hy(M;Z) # 0, entao

mj\/i[n(ScalM)sySQ(M) < 8, (4.14)

onde a igualdade ocorre apenas se o recobrimento universal de M for o cilindro S? x R.

Demonstragio. Seja N(f) o nimero de componentes conexas {.S;} de ¥y. Por (3.5), temos
X(2g) < 2N(#). Além disso,

Area(X Z Area(S;) > N(0)sysy(M).
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Assim, aplicando o Corolario anterior, obtemos

mj\}n(ScalM)sySQ(M) /Sl N(0) do < mA}n(ScalM) /Sl Area(Xy)do

< dm / X(Xq)d0
Sl
< 87 / N(6)de.
Sl
Ou seja,
mj\}n(ScalM)sySQ(M) < 8,
ocorrendo a igualdade apenas se M for recoberta por um cilindro S? x R. O]

4.2 Uma abordagem para a equacao de Poisson

Seja M uma n-variedade Riemanniana, e seja v : M — [ C R uma funcao suave

definida em M. Consideremos a equacao de Poisson definida por:
Au = —f(u), (4.15)

onde f: R — R é uma funcao suave, chamada de funcao potencial.

Lema 4.4. Seja M uma 3-variedade Riemanniana fechada e orientada. Se v : M — I, com
I C R compacto, é uma solugao nao trivival da equacao Au = — f(u), com f nao-crescente,

entao

o [ x(E) = ;/te[ [ (7l ()|~ [Hess ul)* + Sealys /(). (4.16)

Demonstragao. Ja que u é solucao da equacao de Poisson, conclui-se que u é suave. Assim,

aplicando a Férmula de Bochner, obtemos:

;A\VU\Q = Ric(Vu, Vu) + (Vu, V(Au)) + [Hess ul?

(Vu, Vf(u)) + |Hess u|?

"(u){Vu, Vu) + [Hess ul®

'(u)|Vu|*+|Hess u|?. (4.17)

= Ric(Vu, Vu
= Ric(Vu, Vu

( )
= Ric(Vu, Vu)
( )—f
( )= f
Por outro lado, tomando ¢ > 0 e definindo a funcao ¢s := (|Vu|2—|—5)%, temos a seguinte

expressao

1 /1
Aps = —(=A|Vul*—
o5 = -(3AIVu

[Vul?

©3

V| Vul[?) (4.18)
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Substituindo (4.17) em (4.18), vem que

[Vu |2

1
Aps = §0<|Hessu|2—f’(u)|VU\2+ Ric(Vu, Vu) — VIVu ||2>
5

IVU\

Perceba que |Vul|?= ¢% — § < ¢? implica em < 1. Logo,

1
Aps > o <|Hess ul?—|V|Vul[>—f'(u)|[Vu[*+ Ric(Vu, Vu)) : (4.19)
5

Agora, utilizando a hipdtese de que u é nao trivial e aplicando o Teorema de Sard,

conclui-se que, para quase todo t € I, o nivel 3; := u~'(¢) ¢ uma hipersuperficie suave.

Consequentemente, o vetor normal é dado por v = %. Aplicando o Truque de
Schoen-Yau a ¥; C M, obtemos
1
Ric(v,v) = 5(ScalM — Scaly, +Hs., — |As,]?). (4.20)

Vamos explorar os termos |Ay,|* e H,.

Tomando X € X(X;) arbitrario, o operador de Weingarten Ay, é definido por

1 T
As, X = — T=—(X =
5 (Vxv) ( (Wu')vu + |vU|VXV“> |Vu]vau
Dai, obtemos a seguinte expressao:
VxVu=—|Vu|As, X. (4.21)

Usando (4.21), temos que

|Hess u|? = Z > (Ve Vu, e;)?

Mw

= > (Ve Vu,e;)* +(V,Vu,v)* +
ij=1

2

= > (Ve Vu,e;)* +(V,Vu,v)* +

,j=1

(V,Vu,e;)? + (V Vu,v)?

MME
Mmﬁmw

<V6J Vu, v)? + Y (V. Vu,v)?

=1

<.
Il
_

2 2
=Y (Ve,Vu,e;)* +(V,Vu,v) Z Ve, Vu,v)

i,7=1

2 2

= |Vul* Y (As e, e)° + (V,Vu, v) Z Ve, Vu,v)?

ij=1 i—1
2

= |Vul?|As,|*+(Hess u)?*(v,v) + 2> (V,,Vu,v)>.

i=1
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Perceba ainda que

3

!WWHQ:;(eiuwo)?:;(méulei(wu\?)) . PZ(ez Vuf?))’
1 3 3

4]Vu]2 Z (V,,Vu, Vu))? = Z(VeiVu, v)?

=1
2

=> (Ve,Vu,v)* +(V,Vu,v)’> =3 (V. Vu,v)* + (Hessu)*(v,v).

i=1 i=1

Logo,
> (V. Vu,v)? = |V|Vul*—(Hess u)*(v, v).

i=1

Dai, temos que

[Hess u|? = |Vul?|As, |*+(Hess u)?(v, v) + 2|V|Vu||*~2(Hess u)? (v, v)
= |Vul?|As, *+2|V|Vu||*—(Hess u)*(v, v).

Portanto,
|Vul?|As,|*= |Hess u|*—2|V|Vul|*+(Hess u)?(v, v). (4.22)

A curvatura média Hy,, juntamente com (4.21), nos fornece a seguinte expressao:

2 2 2

|Vu|Hs, => (|Vu|As,(e:),e:) =D (=Ve,Vu,e;) = =Y (Hessu)(e;, €;)

i=1 i=1 i=1
23: Hessu)(e;, e;) + (Hessu)(v,v) = —Au + (Hess u) (v, v)
_ )+ (Hess (1)

Dai, segue que
\Vul?H3, = f*(u) + 2f(u) Hess u(v,v) + (Hess u)*(v, v). (4.23)

Utilizando (4.22) e (4.23), obtemos a seguinte relagao

|Vu|2(H§0 — |A29|2) :fQ(u) + 2f(u) Hessu(v, v) + (Hess u)Q(V, v)
— [Hess u|*+2|V|Vu||*— (Hess u)?(v, v)
=f%(u) + 2f (u) Hess u(v, v) — |Hess u|*+2|V|Vul|?. (4.24)

Diante das expressoes obtidas calculando a curvatura média e o operador de Weigarten,
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substituindo (4.24) em (4.20), podemos escrever
Ric(Vu, Vu) =|Vu|*Ric(v, v)
:;|Vu|2(ScalM — Scaly, +H3, — |As,|?)
— 2 [Vuf*(Sealys — Sealy,) + 3 |VuP(H3, — |As, )
:;|Vu|2(ScalM — Scaly,, )
+ ;(f2(u) + 2f (u) Hess u(v, v) — |Hess u*4+2|V|Vul|[?).

No entanto, denotando [ = f2(u) +2f(u) Hess u(v, v) — |Hess u|*+2|V|Vul|?, perceba que

O > |f(u)]*=2|f(u)||Hess u(v, v)|—|Hess u|*+2|V|Vul|?
= (|f(u)|—|Hess u|)2 — 2|Hess u|*+2|V|Vul|>.

Portanto,
1
Ric(Vu, Vu) 2§|Vu|2(ScalM — Scaly;,)
1
+3 <(|f(u)|—\Hess u|)2 — 2]Hessu\2+2|V|VuH2>. (4.25)
Agora, substituindo (4.25) em (4.19), obtemos
1 2 2 g 2, 1 2
Aps Z; |Hess u|*—|V|Vul||*— f'(u)| Vul —|—§|Vu| (Scalys — Scaly,)
5
1 2 9 9
+3 (|f(u)|—|Hessu|) — 2|Hess u|*+2|V|Vul|
— L1 Qu(scaly - Scals,) + L (1)~ Hessul)” = 7/(w)] Vuf?
=2 ul*(Scalys —Seals, ) + 5 (| f(u essu u)|Vu
1
=50 [(\f(u)]—|Hess u\)Q + |Vul?(Scalys — Scaly, ) — f’(u)]Vu|2] : (4.26)
5

Seja A C I um conjunto aberto que contém o conjunto C := Crit(u), e seja B =1\ A
o subconjunto complementar fechado dos valores regulares de u. Integrando (4.26) sobre

u~Y(B), vem que

1 2
— —|H %(Scaly; — Scaly,) — f/ 2l < Aps.
[y s (7@ sl 4 19 Seaty — eals) = FIVaP) < [ A



Capitulo 4. Estimativas de Area 61

Pelo Teorema da Divergéncia sabemos que [,; Aps = 0. Consequentemente

A :-/ A,
A_I(B) ¥s 1(4) ¥s

Por outro lado, pela Desigualdade de Kato, obtemos |Hess u|>—|V|Vu||?> 0. Assim,
por (4.19), temos que

1 ) ,
Aps > @(RIC(VU, Vu) — f (u)|Vu|2>

Por sua vez, como o Ric é uma forma bilinear e M? é uma variedade fechada, tomando
Cy = maxy|Ric|, temos que |Ric(Vu, Vu)|< Cy|Vul?. Logo,

—Cu| Vul>—f'(w)[Vul* _
©s

[Vl

e ~[Vul(Cor = )

> =|Vu|(Crr = f(u).

Por sua vez, como f é ndo-crescente, existe C7 = maxy(f’). Entao
Aps > —|Vu|(Cy — C).
Dali,
Ags=— [ Bps<(Cu-Cp) [ |Vl

/U_I(B) ¥s 1(A) s < (Cu — C1) (A)| ul

Pela Férmula da co-area, vem que
(Cas — Cy) / Vul= (Cas — Cy) / ( / d2t>dt = (Cy — Cy) / Area(S,) dt.
u—1(A) A u~1(t) A
Logo,
1
/ ) 3o <(|f( )\—]Hessu])z + |Vu|?*(Scalys — Scals,) — f’(u)]VuP)
<(Cy—CY) /AArea(Zt) dt.  (4.27)

Sendo M? uma variedade fechada, temos que |Vu| é limitado em M, e fazendo § — 0,

vem que p; — |Vu|. Logo,

2
—|H
2/ |V |< (u)llvlugssuo © Sealy — Scal, —f’(u))

< (Cy —Cy) /AArea(Zt) dt.
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Perceba ainda que, ao aplicar a Férmula da co-area e o Teorema de Gauss-Bonnet, temos:

(1 (w)|—[Hess ul)
; ufl(B)\Vul ( Vup + Scaly; — Scaly, —f'(u))
2
= ;/B [/2 <<|f(u) |’;|j2essu|> + Scaly; — Scaly, —f’(u))] dt

u)|—|Hess u ?
- ;/B [/Et <(|f( )||V’u|2 |) + Scalyy —f’(u))}dt — 27T/BX(29) dt.

Assim, a estimativa (4.27) pode ser reescrita da seguinte forma:

;/B [/E ((!f(u)n;\j:%“'f + Scaly —f’(u))

dt <2m / (5 dt
B

+ (CM — C[) /AArea(Et) dt.

Finalmente, pelo Teorema de Sard, o cojunto C tem médida nula em I, tomando a

médida de A arbitrariamente pequena de modo que |A|— |C|, concluimos que

L ((’f w‘;‘jfs”')? sy 7))

dt < 2r / (%) dt.
tel

m
Por fim, vamos usar a desigualdade obtida acima para obter uma estimativa sistélica.

Teorema 4.5. Seja M uma 3-variedade fechada, orientada e com segundo grupo de
homologia nao trivial, Hy(M;Z) # 0. Suponha que v : M — I, com I C R compacto, é
uma solugdo ndo trivial da equagdo Au = —f(u), com f nao-crescente, e que a curvatura
escalar de M é tal que Scaly; — f > 0. Entao,

(mj\}n(ScalM) — m;xx(f’))sysQ(M) < 8. (4.28)
Demonstracao. Do Lema anterior, temos que
1
27?/)((20 dt > f/ (/ <|Vu|_2(|f(u)|—|Hessu|)2 + Scalyy —f’(u)))dt.
I 2J1 \ Js,

J& que |Vu|=2(]f(u)|—|Hess u|)? > 0, podemos escrever:
2 / () dt > » / Scaly — f(u) | dt
m - - .

X —2Jr\\Us, M

Agora, perceba que Scaly; > miny,(Scaly) e —f' > —max;(f’). Assim, usando a hipdtese
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de que Scaly, — f' > 0, vem que Scaly; — f' > miny,(Scaly,) — max;(f’). Dali,
1
QW/X(Zt) dt > (min(ScalM) - max(f’)) /Area(Et) dt.
I 2 M I I
Por fim, usando o fato de que 2N (t) > x(3%;) e Area(X;) > N(t)sysy(M), obtemos

87 /1 N(t) dt > (min(Scaly) — max(f'))sys,(M) /1 N(1) dt.

O que conclui a demonstragao. O
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