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Orientador: Prof. Dr. Rafael Nóbrega de
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expresso minha gratidão à professora Elaine Silva, pelo incentivo e pela alegria genúına ao receber
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Resumo

O principal objetivo deste texto é apresentar uma prova clara do teorema de existência de me-

didas invariantes, além de esclarecer os diferentes caminhos encontrados na literatura para alcançar

esse resultado. Consequentemente, busca servir como referência para alunos de iniciação cient́ıfica,

graduação e pós-graduação.
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Caṕıtulo

1

Introdução

Seja f :M Ñ M uma aplicação definida em um conjunto qualquer. Dado x P M , podemos iterar

f sucessivamente: Aplicando f uma vez, obtemos fpxq. Aplicando duas vezes, obtemos f 2pxq “

pf ˝ fqpxq, e de maneira geral, definindo a n´ésima iteração de f como

fn
pxq “ pf ˝ fn´1

qpxq,

podemos nos perguntar: O que acontece com a sequência de pontos gerada por essa iteração a

medida que n cresce? Ou seja, definindo como a órbita de x o conjunto

Opxq “ tfn
pxq;n P Nu,

existe algum ”lugar” em M tal que a órbita de x passa infinitas vezes? Existe alguma ”região” desse

conjunto em que a órbita de x nunca passa? Esse é um exemplo de um Sistema Dinâmico, que para

nós, consiste apenas de um conjunto e uma aplicação definida nesse conjunto, e será nosso objetivo

nesse texto responder perguntas semelhantes a essas.

No nosso texto, tentaremos responder essas questões de um ponto de vista probabiĺıstico. Ou

seja, procuramos responder perguntas da seguinte natureza: dado x P M , qual a probabilidade de x

gozar de alguma propriedade P? Onde P pode ser, por exemplo, visitar um conjunto infinitas vezes.

Com esse intuito, utilizaremos de um conceito muito importante e que desempenha um papel

fundamental para estudarmos a dinâmica de uma aplicação. Este conceito é a noção de medida

invariante, cuja definição damos a seguir:

DEFINIÇÃO 1.0.1. Seja pµ,Σ, Xq um espaço de medida e f : X Ñ X uma transformação mensurável.
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9

Diremos que a medida µ é invariante por f, ou que f preserva µ, se µpf´1pEqq “ µpEq para

todo E mensurável.

Provar a existência desse objeto para certos tipos de sistemas dinâmicos é o tema central desse

texto.
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2

Preliminares: Teoria da Medida

O propósito dessa parte do texto é definir e reunir as principais ferramentas que serão utilizadas

para o desenvolvimento da teoria. O principal teorema é o Teorema da Convergência Dominada,

que será utilizado algumas vezes para demonstrar alguns resultados da parte principal do texto.

Até chegar lá, definiremos os conceitos de σ-álgebra, funções mensuráveis, medidas e a integral de

Lebesgue.

2.1 σ-Álgebras e Funções Mensuráveis

Uma medida, objeto cuja definição será dada mais adiante, é um tipo de função que, fixado um

conjunto X, possui como domı́nio um certo subconjunto de conjuntos de X. Para que esta função

esteja bem definida, precisaremos que essa coleção de subconjuntos de X seja bem comportada em

relação às operações usuais de conjuntos. O que queremos dizer por bem comportada é expresso na

definição de uma σ´álgebra, que daremos em alguns instantes. Antes disso, definiremos o seguinte:

DEFINIÇÃO 2.1.1. Uma álgebra de subconjuntos de um conjunto X é uma famı́lia A de subconjuntos

de X que contém X, o conjunto vazio e é fechado para as operações elementares de conjuntos:

(i) X,H P A;

(ii) A P A ùñ Ac P A;

(iii) A,B P A ùñ A Y B P A;

(iv) A,B P A ùñ A X B P A;

(v) A,B P A ùñ A ´ B P A.

DEFINIÇÃO 2.1.2. Dado um conjunto X, uma σ-álgebra de conjuntos de X é uma álgebra de X que é

10
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fechada para união enumerável de elementos de X. Isto é, é um subconjunto do conjunto das partes

de X, Σ, que satisfaz:

i) X,H P Σ;

ii) A P Σ ùñ Ac P Σ;

iii) se pAnqn é uma sequência de elementos em Σ, então
Ť8

n“1An P Σ.

Do fato que p
Ť8

n“1Anqc “
Ş8

n“1A
c
n, e de iiq, segue que a interseção de uma quantidade enumerável

de elementos A1, A2, ... P Σ também pertence à Σ.

DEFINIÇÃO 2.1.3. O par ordenado pX,Σq, que consiste de um conjunto e uma σ-álgebra nessse con-

junto, é dito ser um espaço mensurável.

Exemplo 2.1.4. Dado um conjunto X, pode-se verificar facilmente que A “ tX,Hu e PpXq “ tB;B Ď

Xu são σ-álgebras de X.

Exemplo 2.1.5. Seja X um conjunto enumerável. Considere A como sendo o conjunto formado pelos

subconjuntos enumeráveis de X, ou pelos subconjuntos de X cujo complemento é enumerável.

X P A, pois X é enumerável, e H P A, pois H “ Xc.

Dado Y Ă A, se Y é enumerável, tem-se que Y c é tal que seu complemento é enumerável, então

Y c P X. Se Y é não enumerável, então Y c é enumerável(por definição de A), donde Y c P X.

Dado uma quantidade enumerável de conjuntos A1, A2, ... P A, tem-se que a união
Ş

An P A,

pois é a união enumerável de conjuntos enumeráveis.

Exemplo 2.1.6. Seja X um espaço topológico1. A σ-álgebra de Borel de X, B, é a σ-álgebra gerada

pelos abertos da topologia de X. Quando X “ R, temos que a σ-álgebra de Borel é gerada pelos

intervalos abertos de R. Um elemento E P B é chamado de boreliano.

DEFINIÇÃO 2.1.7. Seja A uma coleção não vazia de subconjuntos de X. Denotamos por σpAq como

sendo a menor σ-álgebra de X contendo A. Isto é, se A é uma σ-álgebra de X tal que A Ă A, então

σpAq Ď A. Chamaremos σpAq de σ´álgebra gerada por A.

PROPOSIÇÃO 2.1.8. σpAq “
Ş

λPΛAλ, onde tAλuλPΛ é a famı́lia formada por todas as σ-álgebras que

contêm A.

1Para mais detalhes, ver [2].
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DEMONSTRAÇÃO. Primeiramente, note que a intersecção arbitrária
Ş

λPΛAλ de σ-álgebras de X também

é uma σ-álgebra, pois dado A P
Ş

λPΛ Aλ, tem-se Ac P Aλ, para todo λ P Λ, donde Ac P
Ş

λPΛAλ, e

também dada uma quantidade enumerável de conjuntos A1, A2, ... P
Ş

λPΛAλ, tem-se
Ť

nPNAn P A,

o que implica em
Ť

nPNAn P
Ş

λPΛAλ.

Seja B uma σ-álgebra contendo A. Como vale B X C Ă B, para qualquer C Ď X, segue que
Ş

λPΛAλ Ă B. O que implica na igualdade σpAq “
Ş

λPΛAλ.

DEFINIÇÃO 2.1.9. Uma famı́lia C não vazia de subconjuntos de X é dita ser uma Classe Monótona

se X Ă C e para toda sequência pAnqn crescente A1 Ă A2 Ă ... de elementos de C, a união Y8
n“1An

pertence a C, e para toda sequência pBnqn decrescente B1 Ą B2 Ą ... de elementos de C, a interseção

X8
n“1Bn pertence a C.

TEOREMA 2.1.10. (Teorema das Classe Monótonas) A menor classe monótona que contém uma

álgebra A coincide com a σ´álgebra σpAq gerada por A.

DEMONSTRAÇÃO. O leitor interessado pode ver a demonstração em [6].

Apesar de o ambiente principal de trabalho do nosso texto ser um espaço mensurável, a noção de

uma álgebra de conjuntos de um conjunto X e o teorema acima não estão no texto atoa. Posterior-

mente, ambos serão importantes para encontrar medidas invariantes de alguns sistemas dinâmicos.

DEFINIÇÃO 2.1.11. Dados dois espaços mensuráveis quaisquer, pX,Σ1q e pY,Σ2q, dizemos que f :

X Ñ Y é Σ1´mensurável se, para todo E P Σ2, f´1pEq P Σ1.

Se temos um espaço mensurável pX,Σq e o espaço pR,Bq, então a função f : X Ñ R é dita ser

Σ-mensurável se para todo α P R, o conjunto tx P X : fpxq ą αu pertence a Σ.

Exemplo 2.1.12. Se X “ R e Σ “ B, então toda função monótona f é mensurável.

Exemplo 2.1.13. Considere X “ R e Σ como sendo a σ´álgebra de Borel, B. Então qualquer função

cont́ınua f : R Ñ R é Borel-mensurável. De fato, dado α P R, o conjunto tx P R; fpxq ą αu “

f´1pα,`8q é a pré-imagem de um conjunto aberto. Como f é continua, f´1pα,`8q também é

aberto. Consequentemente, pode ser expresso com a união enumerável de intervalos abertos.

LEMA 2.1.14. Sejam f, g : X Ñ R funções mensuráveis e c P R. Então, as funções cf, fg, f 2, f+g e |f|

também são mensuráveis.

DEMONSTRAÇÃO. [1]
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LEMA 2.1.15. Seja pfnqn uma sequência de funções em MpX,Σq. Se definirmos

fpxq “ inftfnpxq;n P Nu,

F pxq “ suptfnpxq;n P Nu,

f˚
pxq “ lim inf fnpxq,

F ˚
pxq “ lim sup fnpxq.

Então f, F, f˚ e F ˚ são mensuráveis.

DEMONSTRAÇÃO. O leitor pode encontrar a demonstração em [1]

DEFINIÇÃO 2.1.16. Seja pfnqn uma sequência de funções fn : X Ñ R. Diremos que f : X Ñ R é o

limite da sequência pfnqn se, para todo x P X, lim fnpxq “ fpxq.

PROPOSIÇÃO 2.1.17. Seja pfnqn uma sequência de funções em MpX,Σq. Se f “ lim fn, então f P

MpX,Σq.

DEMONSTRAÇÃO. Uma sequência de números reais converge se, e somente se, lim an “ lim sup an “

lim inf an
2. No nosso caso, como pfnqn converge para f, isto é, para cada x P X, a sequência de

números reais pfnpxqqn converge para fpxq, temos que fpxq “ lim fnpxq “ lim sup fnpxq “ F ˚pxq.

Como F ˚ P MpX,Σq, segue o resultado.

DEFINIÇÃO 2.1.18. Uma função φ : X Ñ R é dita ser simples se é da forma

φ “

n
ÿ

j“1

ajχEj
,

onde E1, E2, ..., En P Σ, χEj
pxq “ 1, se x P Ej, e χEj

pxq “ 0, caso contrário.

Dizemos que uma representação da forma acima é dita representação padrão de φ se X “

Ťn
j“1Ej e se Ei X Ej “ H, quando i ‰ j.

PROPOSIÇÃO 2.1.19. Seja f P M`pX,Σq. Então, existe uma sequência de psnqn de funções simples

convergindo para f , tal que snpxq ď sn`1pxq para todo n e todo x.

2Para mais detalhes, ver [3]
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DEMONSTRAÇÃO. Fixado n P N, defina, para k P t0, 1, ..., n2n ´ 1u, o conjunto Ekn “ tx P X : k
2n

ď

fpxq ă k
2n´1

u, e para k = n2n, Ekn “ tx P X : fpxq ě nu. Então, cada Ekn é mensurável, e

vale
Ťn2n

k“1Ekn “ X. Defina então cada sn pondo snpxq “ k
2n
, se x P Ekn. Segue por definição dos

conjuntos Ekn’s que vale snpxq ď sn`1pxq para todo n, e que vale também snpxq ď fpxq ă sn`1pxq.

Como a sequência snpxq é monótona, e limitada superiormente por n, é convergente. Dáı, tem-se

snpxq ď fpxq ă sn`1pxq

ùñ lim
n
snpxq ď fpxq ď lim

n
sn`1pxq “ lim

n
snpxq,

ùñ fpxq “ lim snpxq.

A partir disso, podemos demonstrar também o seguinte:

PROPOSIÇÃO 2.1.20. Seja f P MpX,Σq. Então, existe uma sequência de funções simples psnqn, tal

que lim sn “ f e |snpxq| ď |fpxq| para todo n e todo x.

DEMONSTRAÇÃO. Note primeiramente que f pode ser expressa como f “ f` ´ f´, onde f` e f´,

chamadas de parte positiva e parte negativa de f, respectivamente, são definidas por

f`
pxq “ maxtfpxq, 0u,

f´
pxq “ maxt´fpxq, 0u.

Temos também a igualdade |f | “ f` ` f´, donde f` “
|f |`f

2
e f´ “

|f |´f
2

. Por serem soma

de funções mensuráveis, conclúımos que f´, f` P M`pX,Σq. Do que provamos no Lema anterior,

sabemos que existem sequências de funções simples pwnqn, phnqn, tais que limwn “ f`, limhn “ f´,

wnpxq ď wn`1pxq, e hnpxq ď hn`1pxq, para todo x em X e todo n natural. Portanto, chamando
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sn “ wn ´ hn, temos que sn ÝÑ f e

|snpxq| “ |wnpxq ´ hnpxq|

ď |wnpxq| ` |hnpxq|

ď |f`
pxq| ` |f´

pxq|

“ f`
pxq ` f´

pxq

“ |fpxq|.

Definiremos agora a noção de medida. De maneira intuitiva, dado um conjunto X, uma medida é

uma maneira de atribuir um ”peso”a subconjuntos de X, permitindo que alguns conjuntos sejam des-

tacados ou ”enxergados”com maior ênfase. Dependendo das propriedades que considerarmos, certos

subconjuntos podem receber um peso maior, e, assim, serem mais relevantes para nossa análise. Além

disso, uma medida também nos fornece a capacidade de falar sobre ”tamanho” de determinados sub-

conjuntos de X. Considerando todas essas interpretações, podeŕıamos discutir o que caracteriza uma

medida ”boa” e ”ruim. Algumas medidas podem não fornecer uma boa noção de tamanho, atribuindo

valores excessivamente grandes ou pequenos a todos os conjuntos. Dependendo da caracteŕıstica que

considerarmos, duas medidas distintas podem atribuir valores muito diferentes ao mesmo conjunto,

dependendo das caracteŕısticas que consideram.

Em alguns momentos, é interessante considerar a medida de um conjunto como sendo infinita,

então consideraremos o conjunto dos números Reais Estendidos, denotado por R, que consiste de

R “ R Y t´8,`8u.

Ao considerarmos esse novo conjunto, formado por R e esses dois śımbolos(que não são números),

faremos a conveção de que ´8 ă x ă `8 para todo x real.

Neste novo ambiente, definimos as seguintes operações entre ˘8 e elementos x P R:

p˘8q ` p˘8q “ x ` p˘8q “ p˘8q ` x “ ˘8,
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p˘8qp˘8q “ `8, p˘8qp¯8q “ ´8,

xp˘8q “ p˘8qx “

$

’

’

’

’

’

&

’

’

’

’

’

%

˘8, if x ą 0,

0, if x “ 0,

¯8, if x ă 0.

Observe que estamos somando apenas `8 com `8 e o mesmo para ´8. Não definiremos

`8 ` p´8q, ´8 ´ p`8q e nem quocientes cujo denominador são ˘8.

Para mais detalhes sobre R, ver [1].

2.2 Medidas

DEFINIÇÃO 2.2.1. Seja X um conjunto e Σ uma σ´álgebra de subconjuntos de X. Uma medida é

uma função µ : Σ Ñ R satisfazendo:

• µpEq ě 0, para todo E P Σ,

• µpHq “ 0, e

• µp
Ť8

n“1q “
ř8

n“1 µpEnq, para toda coleção pEnqn dois a dois disjunta de elementos de Σ.

Note que estamos considerando um tipo de função que pode assumir o ”valor” `8. Se para todo

X P Σ, µpXq ‰ `8, dizemos que µ é finita. Se existe uma sequência pEnqn P Σ tal que X “
Ť8

n“1En,

e µpEnq ă `8 para todo n, então dizemos que µ é σ´finita. Se µpXq “ 1, então µ é dita ser uma

medida de probabilidade.

OBSERVAÇÕES: Em textos de Teoria de Probabilidade, uma Probabilidade é um tipo de função

definida da mesma maneira como definimos uma medida acima, exceto pelo fato de que a medida do

conjunto todo é igual a 1. Em Probabilidade, os conjuntos mensuráveis são os eventos, e o conjunto

X é o que chamamos de espaço amostral. O fato de que µpXq “ 1 se expressa na ideia de que o

espaço amostral contém todos os resultados posśıveis do nosso experimento, então a probabilidade

dele deve ser total.
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Exemplo 2.2.2. Um dos motivos de considerarmos o conjunto dos números reais estendidos é dar

significado a um conjunto ter ”medida infinita”. Como exemplo, se definirmos a medida de um

intervalo como λpra, bsq “ b ´ a, então poderiamos dizer que λpra,`8qq “ `8, que é o que nos diz

a intuição.

A função λ definida acima é de fato uma medida, chamada medida de Lebesgue, definida na

σ´álgebra de algum subconjunto de R. Ou seja, a noção intuitiva que temos de ”tamanho” de um

intervalo, como sendo a diferença dos extremos desse intervalo, é de fato uma medida. Na verdade,

pode-se mostrar que existe uma única medida λ tal que λppa, bsq “ b ´ a. Uma demonstração desse

fato é dada em [1].

Exemplo 2.2.3. Seja X “ N e Σ a σ´álgebra formada por todos os subconjuntos de N. Então, dado

E P Σ, se E é finito, definimos µpEq como sendo o número de elementos de E. Se E é infinito, então

pomos µpEq “ `8.

Exemplo 2.2.4. Seja X um conjunto qualquer e P a σ´álgebra formada por todos os subconjuntos de

X. Fixado p P X, defina µp por

µppEq “ 0, p R E,

µppEq “ 1, p P E.

µp é chamada de Medida de Dirac de p.

LEMA 2.2.5. Seja µ uma medida definida em uma σ´álgebra Σ. Se E,F P Σ, e E Ď F , então µpEq ď

µpF q. Se µpEq ă `8, então µpF zEq “ µpF q ´ µpEq.

DEMONSTRAÇÃO. Note que F pode ser expresso como F “ E Y pF zEq, e que E X pF zEq “ H. Assim,

µpF q “ µpEq ` µpF zEq ě µpEq,

pois µpF zEq ě 0. Se µpEq ă `8, podemos subtrair µpEq de ambos os lados, obtendo

µpF zEq “ µpF q ´ µpEq.
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LEMA 2.2.6. Seja µ uma medida definida em uma σ´álgebra Σ.

(a) Se pEnqn é uma sequência crescente E1 Ď E2 Ď ... em A, então

µp

8
ď

n“1

Enq “ lim
nÑ8

µpEnq.

DEMONSTRAÇÃO. (a) Para cada n, defina os conjuntos An, pondo A1 “ E1 e An “ En ´ En´1, para

n>1. Temos que An X Am “ H, se n ‰ m, e que valem as igualdades:

En “

n
ď

i“1

Ai,

ď

nPN

En “
ď

nPN

n
ď

i“1

Ai “
ď

nPN

An.

Assim,

µp
ď

nPN

Enq “ µp
ď

nPN

Anq “ lim
m
ÿ

n“1

µpAnq.

Note que, por definição de An e pelo Lemma 1.1.27, µpAnq “ µpEnq ´ µpEn´1q, para n>1.

Logo,

m
ÿ

n“1

µpAnq “ µpE1q ` µpE2q ´ µpE1q ` ... ` µpEm´1q ´ µpEm´2q ` µpEmq ´ µpEm´1q

“ µpEmq.

Portanto,

µp
ď

nPN

Enq “ lim
mÑ8

m
ÿ

n“1

µpAnq “ lim
mÑ8

µpEmq

DEFINIÇÃO 2.2.7. Um espaço de medida é uma tripla pX,Σ, µq, que consiste de um conjunto X,

uma σ´álgebra Σ de subconjuntos de X, e uma medida µ definida em Σ.
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DEFINIÇÃO 2.2.8. Dizemos que uma certa propriedade ou proposição é válida µ´quase todo ponto, ou

µ´ q.t.p, se existe N P Σ com µpNq “ 0, tal que a propriedade ou proposição vale para todo x P N c.

Dizemos que duas funções f, g são iguais µ ´ q.tp se fpxq “ gpxq, para todo x P N c, onde N P Σ e

µpNq “ 0.

Dizemos que uma sequência de funções pfnqn definidas em X converge µ´quase todo ponto se

existe N P Σ, com µpNq “ 0, tal que f(x) = lim fnpxq, para todo x P N c. Escreveremos f “

limfn, µ´q.t.p. Em geral, caso estiver claro qual medida está sendo utilizada, escreveremos ”converge

quase todo ponto”, ou converge ”q.t.p”, omitindo a medida.

DEFINIÇÃO 2.2.9. Fixado um espaço de medida pX,Σ, µq, denotaremos por MpX,Σq como sendo o

conjunto de todas as funções Σ´mensuráveis de X em R, e por M` “ M`pX,Σq como o conjunto

de todas as funções Σ´mensuráveis não negativas.

DEFINIÇÃO 2.2.10. Uma função φ : X Ñ R é dita ser simples se é da forma

φ “

n
ÿ

j“1

ajχEj
,

onde E1, E2, ..., En P Σ, χEj
pxq “ 1, se x P Ej, e χEj

pxq “ 0, caso contrário.

Dizemos que uma representação da forma acima é dita representação padrão de φ se EiXEj “

H, quando i ‰ j e se X “
Ťn

j“1Ej.

2.3 Integral

Definiremos agora a Integral de Lebesgue para funções simples. Mostraremos que vale a linea-

ridade da integral, e posteriormente, definiremos a integral também para funções mensuráveis não

negativas, e por fim, para funções mensuráveis quaisquer.

DEFINIÇÃO 2.3.1. Definimos a Integral de uma função simples φ P M`pX,Σq com respeito à medida

µ como sendo o seguinte número:

ż

φdµ “

n
ÿ

j“1

ajµpEjq.

LEMA 2.3.2. Seja µ medida em Σ. Dado M P Σ, se definirmos µ˚ : Σ Ñ R por µ˚pEq “ µpM X Eq,

então µ˚ também é uma medida.
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DEMONSTRAÇÃO. Assumiremos M ‰ H, pois caso o fosse, µ˚ seria identicamente nula. Seja E P Σ.

Como E,M P Σ,M X E “ X P Σ. Então,

µ˚
pEq “ µpM X Eq “ µpXq ě 0, e

µ˚
pHq “ µpHq “ 0.

Se pEnqn é coleção dois a dois disjunta de elementos de Σ, então a coleção pM XEnqn também é dois

a dois disjunta, e

µ˚
p

8
ď

n“1

Enq “ µpM X

8
ď

n“1

Enq

“ µp

8
ď

n“1

pM X Enqq

“

8
ÿ

n“1

µpM X Enq

“

8
ÿ

n“1

µ˚
pEnq.

LEMA 2.3.3. Sejam µ1, µ2, ..., µn medidas definidas em Σ e α1, α2, ..., αn P r0,`8q. Então, se definirmos

µ : Σ Ñ R por µpEq “
řn

i“1 αiµipEq, temos que µ também é uma medida.

DEMONSTRAÇÃO.

Seja E P Σ.

µpEq “

n
ÿ

i“1

αiµipEq ě 0, e

µpHq “

n
ÿ

i“1

αiµipHq “ 0.
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Se pEkqk é coleção dois a dois disjunta de elementos de Σ, então

µp

8
ď

k“1

Ekq “

n
ÿ

i“1

αiµip

8
ď

k“1

Ekq

“

n
ÿ

i“1

αi

8
ÿ

k“1

µipEkq

“

8
ÿ

k“1

α1µ1pEkq `

8
ÿ

k“1

α2µ2pEkq ` ... `

8
ÿ

k“1

αnµnpEkq

“

8
ÿ

k“1

rα1µ1pEkq ` α2µ2pEkq ` ... ` αnµnpEkqs

“

8
ÿ

k“1

µpEkq.

LEMA 2.3.4. Sejam φ, ψ funções simples c ě 0. Então, vale

piqc

ż

φdµ “

ż

cφ dµ,

piiq

ż

pφ ` ψq dµ “

ż

φdµ `

ż

ψ dµ.

Além disso, dada φ simples se definirmos λ : Σ Ñ R̄ por

λpEq “

ż

φχE dµ,

então λ é uma medida em Σ.

DEMONSTRAÇÃO. Seja c ą 0. Se φ “
řn

j“1 ajχEj
é a representação padrão de φ, então

c

ż

φdµ “

n
ÿ

j“1

cajµpEjq “

ż

cφ dµ.

onde a função cφ tem representação padrão cφ “
řn

j“1 cajχEj.

(ii) Seja ψ “
řm

k“1 bkχFk
a representação padrão de ψ e considere φ também com sua representação
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padrão. Então,

pφ ` ψqpxq “ p

n
ÿ

j“1

ajχEj
`

m
ÿ

k“1

bkχFk
qpxq

“

n
ÿ

j“1

ajχEj
pxq `

m
ÿ

k“1

bkχFk
pxq

“

n
ÿ

j“1

m
ÿ

k“1

paj ` bjqχEjXFk
pxq.

Note que a representação acima é de fato válida. Isso pode ser visto tomando x P Ei X Fl, para

pi, lq P t1, 2, ..., nu ˆ t1, 2, ...,mu. Temos

n
ÿ

j“1

m
ÿ

k“1

paj ` bkqχEjXFk
pxq “

n
ÿ

j“1

paj ` b1qχEjXF1pxq ` ... `

n
ÿ

j“1

paj ` bmqχEjXFmpxq

“

n
ÿ

j“1

paj ` blqχEjXFl
pxq

“ pa1 ` blqχE1XFl
pxq ` pa2 ` blqχE2XFl

pxq ` ... ` pan ` blqχEnXFl
pxq

“ pa1 ` blqχE1XFl
pxq

“ ai ` bl.

Entretanto, observe que a representação dada acima não necessariamente é a representação padrão

de φ ` ψ, pois não sabemos se Ej X Fk “ H e se os números aj ` bk são todos distintos para todo

pi, jq P t1, 2, ..., nu
Ś

t1, 2, ...,mu. Para contornar esse problema, chame de ch, h P t1, 2, ..., pu(p é no

máximo nm) os valores distintos do conjunto taj `bk; pj, kq P t1, 2, ..., nu
Ś

t1, 2, ...,mu, e Gh a união

dos Ej X Fk ‰ H tais que aj ` bk “ ch. Então,

µpGhq “
ÿ

phq

µpEj X Fkq,

onde phq “ tpj, kq P t1, 2, ..., nu
Ś

t1, 2, ...,mu; aj ` bk “ chu.

Assim,

φ ` ψ “

p
ÿ

h“1

chχGh
.
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é a representação padrão de φ ` ψ.

Portanto,

ż

pφ ` ψq dµ “

p
ÿ

h“1

chχGh

“

p
ÿ

h“1

ch
ÿ

phq

µpEj X Fkq

“

p
ÿ

h“1

paj ` bkq
ÿ

phq

µpEj X Fkq

“

n
ÿ

j“1

paj ` bkq

m
ÿ

k“1

µpEj X Fkq

“

n
ÿ

j“1

aj

m
ÿ

k“1

µpEj X Fkq `

n
ÿ

j“1

`bk

m
ÿ

k“1

µpEj X Fkq.

Desde que X “
Ťn

j“1Ej “
Ťm

k“1 Fk,

µpEjq “ µpEj X pYFkqq

µpFkq “ µpFk X pYEjqq, donde

µpEjq “

m
ÿ

k“1

µpEj X Fkq

e µpFkq “

n
ÿ

j“1

µpFk X Ejq.

.

Dáı, segue que

ż

pφ ` ψqdµ “

n
ÿ

j“1

ajµpEjq `

m
ÿ

k“1

bkµpFkq

“

ż

φdµ `

ż

ψ dµ.

Para mostrar que λ é de fato uma medida, note primeiramente que

φχE “

n
ÿ

j“1

ajχEjXE.
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De fato, se x P Ej X X, então

pφχEqpxq “

n
ÿ

j“1

ajχEj
pxqχEpxq

“ ajχpEkqpxqχEpxq

“ aj.

se x P E mas x R Ej, para todo j, ou x P Ek, para algum k, mas x R E, então φχEpxq “ 0. Como

essa é precisamente a definição de
řn

j“1 ajχEjXE, vale a igualdade.

Usando o fato provado acima e indução em n, pode-se mostrar que a integral da soma de n funções

é a soma em n das integrais dessas funções. Logo,

λpEq “

ż

φχE dµ

“

ż n
ÿ

j“1

ajχEjXE dµ

“

n
ÿ

j“1

aj

ż

χEjXE dµ

“

n
ÿ

j“1

ajµpEj X Eq.

Denotemos por H “ HpX,Rq como sendo o conjunto das funções simples de X em R.

DEFINIÇÃO 2.3.5. Dada f P M`pX,Σq, definimos a integral de f com respeito à medida µ como

ż

f dµ “ supt

ż

φdµ;φ P H, 0 ď φpxq ď fpxq, @x P Xu.

Por fins de simplicidade, escreveremos apenas

ż

f dµ “ sup

ż

φdµ.

Se f P M`pX,Σq E E P Σ, então a função fχE também é mensurável, e podemos definir a



25

integral de f sobre E, com respeito à medida µ, pondo

ż

E

f dµ “

ż

fχE dµ.

LEMA 2.3.6. (a) Sejam f, g P M`pX,Σq tais que f ď g. Então,

ż

f dµ ď

ż

g dµ.

(b) Se h P M`pX,Σq, E,F P Σ, com E Ď F , então

ż

E

f dµ ď

ż

F

f dµ.

DEMONSTRAÇÃO. (a) Se φ P H X M`, e φ ď f , então φ ď g. Dáı, tem-se a continência

t

ż

φdµ;φ P H, 0 ď φpxq ď fpxq, @x P Xu Ď t

ż

φdµ;φ P H, 0 ď φpxq ď gpxq, @x P Xu.

Por definição de supremo de um conjunto, conclui-se a desigualdade.

(b) Basta observar que, como E Ď F , vale a desigualdade hχE ď hχF , e aplicar o item (a).

TEOREMA 2.3.7. (Teorema da Convergência Monótona)

Seja pfnqn uma sequência de funções crescentes em M`pX,Σq, convergindo para f. Então,

ż

f dµ “ lim
n

ż

fn dµ.

DEMONSTRAÇÃO.

De acordo com a proposição 1.12, f P M`pX,Σq. Como vale fn ď fn`1 ď f , temos que

ż

fn dµ ď

ż

fn`1 dµ ď

ż

f dµ.

Assim, tomando o limite em n,

lim
n

ż

fn dµ ď

ż

f dµ.

Para provar a outra desigualdade, defina, para α P R, 0 ă α ă 1, e para φ P H X M`pX,Σq com
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0 ď φ ď f fixados, o seguinte conjunto:

An “ tx P X : fnpxq ě αφpxqu.

An Ď An`1, pois se x P An, então fn`1pxq ě fnpxq ě αφpxq, e X “
Ť8

n“1An, pois dado x P X, caso

fosse fnpxq ă αφpxq, para todo n, teŕıamos, tomando o limite em ambos os lados, fpxq ď αφpxq ă

φpxq.

Provamos no Lema 1.1.20 que, quando φ é função simples, λpEq “
ş

φχE dµ “
ş

E
φdµ é uma

medida em Σ. Utilizando desse fato, do fato que X “
Ť8

n“1An, e do Lema 1.15, temos

λpXq “ λp

8
ď

n“1

q “

ż

Ť8
n“1 An

φdµ

“

ż

φdµ

“ lim
n

ż

An

φdµ.

Como αφ ď fn e An Ď X, temos que

ż

An

αφdµ ď

ż

An

φdµ ď

ż

fn dµ,

donde

lim
n

ż

An

αφdµ “

ż

αφdµ ď lim
n

ż

An

fn dµ.

Como isso vale para todo 0 ă α ă 1, podemos tomar, para todo k ą 1, α “ 1 ´ 1{k. Assim,

ż

φdµ “ lim
k

p1 ´ 1{kq

ż

φdµ ď lim
n

ż

fn dµ.

Como tomamos φ simples arbitraria satisfazendo 0 ď φ ď f , obtemos uma cota superior para o

conjunto t
ş

φdµ;φ P H, 0 ď φpxq ď fpxq, @x P Xu. Logo, por definicao de sup, conclúımos que
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ż

f dµ “ sup
φ

ż

φdµ ď lim
n

ż

fn dµ,

donde

ż

f dµ “ lim
n

ż

fn dµ.

PROPOSIÇÃO 2.3.8. Sejam φ, ψ P M`pX,Σq e c P R. Então, φ ` ψ P M`pX,Σq, cφ P M`pX,Σq e

vale

ż

pφ ` ψqdµ “

ż

φdµ `

ż

ψdµ,

c

ż

φdµ “

ż

cφdµ.

DEMONSTRAÇÃO. Sejam psnqn, phnqn sequências de funções simples convergindo para φ e ψ, respectiva-

mente. Então, a sequência de funções simples psn ` hnqn, definidas por psn ` hnqpxq “ snpxq ` hnpxq

converge para φ` ψ. Portanto, pelo fato de que vale a linearidade da integral para funções simples,

e pelo Teorema da Convergência Dominada, temos

ż

pφ ` ψqdµ “

ż

lim
n

psn ` hnqdµ

“ lim
n

ż

psn ` hnqdµ

“ lim
n

p

ż

sndµ `

ż

hndµq

“ lim
n

ż

sndµ ` lim
n

ż

hndµ

“

ż

φdµ `

ż

ψdµ.

De maneira análoga, temos que se psnqn é sequência de funções simples convergindo para φ, então
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pcsnqn converge para cφ, donde

c

ż

φdµ “ c

ż

lim sndµ

“ lim
n

ż

csndµ

“

ż

c lim
n
sndµ

“

ż

cφdµ.

Observe o que acabamos de fazer acima. Utilizamos um fato já conhecido para a integral de

funções simples, e o estendemos para funções mensuráveis não negativas, utilizando que toda função

emM`pX,Σq pode ser aproximada pontualmente por funções simples, e o Teorema da Convergência

Monótona.

Este é um tipo de construção que será frequente tanto nesta parte introdutória sobre teoria da

medida, quanto na parte em que de fato falaremos de teoria ergódica.. Quando queremos provar

alguma proposição para funções mensuráveis quaisquer, começamos por funções simples, e dáı utili-

zamos duas ferramentas muito poderosas: o fato de que toda função mensurável é o limite de funções

simples, e o Teorema da Convergência Dominada.

Prosseguiremos agora para provar outro teorema que será extremamente útil para demonstrar

proposições atráves de um argumento análogo ao que acabamos de usar, isto é, provar primeiro a

proposição para uma classe menor de funções, e utilizando do fato que as nossas funções podem ser

aproximadas pontualmente por essa classe menor de funções, e do fato que é suficiente a convergên-

cia pontual para que o limite entre dentro da integral de Lebesgue, para provar para o caso maior.

Antes disso, provaremos alguns lemas que nos serão úteis, e definiremos a integral para uma função

mensurável qualquer.

TEOREMA 2.3.9. (Lema de Fatou) Se pfnqn é uma sequência em M`pX,Σq, então

ż

lim inf fn dµ ď lim inf

ż

fn dµ.
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DEMONSTRAÇÃO. Seja gm “ inftfm, fm`1, ...u.

Como

tfm, fm`1, ...u Ą tfm`1, fm`2, ...u,

vale que

gm “ inftfm, fm`1, ...u ď gm`1 “ inftfm`1, fm`2, ...u.

Ou seja, pgmqm é uma sequência monótona, e limitada. Portanto, converge. Chame

g “ lim
m
gm “ lim

m
inf fm.

Como gm ď fn, sempre que m ď n, temos que

ż

gm dµ ď

ż

fn dµ.

.

Repetindo o processo acima e definindo

sn “ inft

ż

fn dµ,

ż

fn`1 dµ, ...u “ infK,

temos que
ş

gm dµ é cota inferior de K, e, portanto, deve ser menor que a maior cota inferior de K.

Ou seja,

ż

gm dµ ď sn.

Como isso vale para todo m ď n, segue que

ż

gm dµ ď lim
n
sn “ lim

n
inf

ż

fn dµ,

para todo m ď n.

Do fato que pgmq é crescente e que lim gm “ lim inf fm, segue pelo Teorema Da Convergência
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Monótona que

ż

lim inf fm dµ “ lim

ż

gm dµ ď lim inf

ż

fn dµ.

LEMA 2.3.10. Seja f P M`pX,Σq. Se definirmos λ por

λ : Σ Ñ R

λpEq “

ż

E

fdµ,

então λ é uma medida em Σ.

DEMONSTRAÇÃO. Se E ‰ H, então χE ‰ 0. Como f ě 0, fχE ě 0. Segue, pela monotonicidade da

integral, que

ż

fχE dµ “

ż

E

f dµ ě 0.

Se E “ H, então fχE é a função identicamente nula, o que implica em
ş

E
f dµ “ 0.

Para provar a aditividade de λ, considere pEnqn uma sequência de conjuntos em Σ, dois a dois

disjuntos, tal que E “
Ť8

n“1En.

Defina a sequência de funções pfnqn pondo

fn “

n
ÿ

k“1

fχEk
.

Note que para todo x P E, vale lim fnpxq “ fpxqχE. De fato, x P Ei, para algum i P N e i R Ek, para

todo k ‰ i. Logo, para n ě i, vale

|fnpxq ´ fpxqχEpxq| “ |

n
ÿ

k“1

fpxqχEk
pxq ´ fpxq| “ |fpxqχEi

pxq ´ fpxq| “ |fpxq ´ fpxq| “ 0.
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Portanto, pelo Teorema da Convergência Monótona,

λpEq “ λp

8
ď

n“1

Enq “

ż

fχE dµ

“ lim
n

ż

fn dµ

“ lim
n

ż n
ÿ

k“1

fχEk
dµ

“ lim
n

n
ÿ

k“1

ż

fχEk
dµ

“ lim
n

n
ÿ

k“1

λpEkq

“

8
ÿ

k“1

λpEkq.

DEFINIÇÃO 2.3.11. Seja f P MpX,Σq. Lembre que f pode ser escrita como f “ f` ´ f´. Se

f`, f´ P M`pX,Σq, e tanto f` quanto f´ possuem integrais finitas com respeito à medida µ, então

dizemos que f é integrável, e definimos a integral de f com respeito à µ por

ż

f dµ “

ż

f`dµ ´

ż

f´dµ.

PROPOSIÇÃO 2.3.12. Seja f função mensurável. Então, f é integravel com respeito à µ se, e somente

se, |f | o é, e vale

|

ż

fdµ| ď

ż

|f |dµ.

DEMONSTRAÇÃO. Primeiramente, note que

|f |
`

“ maxt|f |, 0u “ |f | “ f ` f´,

|f |
´

“ maxt´|f |, 0u “ 0.
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Se f é integrável, então

ż

|f |dµ “

ż

|f |
`dµ `

ż

|f |
´dµ

“

ż

fdµ `

ż

f´dµ ă 8.

Suponha agora |f | integrável. Desde que f` ď |f | e f´ ď |f |, e que ambas f` e f´ pertencem a

M`pX,Σq, temos

ż

f`dµ ď

ż

|f |dµ

e

ż

f´dµ ď

ż

|f |dµ,

donde

ż

fdµ “

ż

f`dµ ´

ż

f´dµ ă 8.

Além disso,

|

ż

fdµ| “ |

ż

f`dµ ´

ż

f´dµ| ď |

ż

f`dµ| ` |

ż

f´dµ|

“

ż

f`dµ `

ż

f´dµ

“

ż

|f |dµ.

PROPOSIÇÃO 2.3.13. Se f é mensurável, g é integrável e |f | ď |g|, então f é integrável,

ż

|f |dµ ď

ż

|g|dµ

e f é integrável.
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DEMONSTRAÇÃO. Como |f |, |g| P M`pX,Σq, segue a primeira parte, e a segunda segue do que acabamos

de provar na proposição anterior.

TEOREMA 2.3.14. Sejam φ, ψ funções integráveis com respeito à medida µ. Então, αφ e φ` ψ são

integráveis, e vale

α

ż

φdµ “

ż

αφdµ,
ż

pφ ` ψqdµ “

ż

φdµ `

ż

ψdµ.

DEMONSTRAÇÃO. Se α ě 0, então pαfq`pxq “ maxtαfpxq, 0u “ αfpxq, se fpxq ą 0 e pαfq`pxq “ 0,

caso contrário, donde pαfq` “ αf`. De maneira análoga, mostra-se que pαfq´ “ αf´. Portanto,

α

ż

φdµ “ αp

ż

φ`dµ ´

ż

φ´dµq

“ p

ż

αφ`dµ ´

ż

αφ´dµq

“ p

ż

pαφq
`

´

ż

pαφ´
qdµq

“

ż

αφdµ.

O caso α ă 0 é similar.

Se φ e ψ são integráveis, então |φ| e |ψ| também o são. Como |φ ` ψ| ď |φ| ` |ψ|, segue que

|φ ` ψ| também é integrável, o que implica em φ ` ψ integrável.

Por fim, como

pφ ` ψq “ pφ`
´ φ´

q ` pψ`
´ ψ´

q

“ pφ`
` ψ`

q ´ pφ´
´ ψ´

q,
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segue que

ż

pφ ` ψqdµ “

ż

pφ`
` ψ`

qdµ ´

ż

pφ´
` ψ´

qdµ

“

ż

φ`dµ `

ż

ψ`dµ ´

ż

φ´dµ ´

ż

ψ´dµ

“ p

ż

φ`dµ ´

ż

φ´dµq ` p

ż

ψ`dµ ´

ż

ψ´dµq

“

ż

φdµ `

ż

ψdµ.

(Utilizamos do fato que a linearidade da integral vale para funções mensuráveis não negativas).

TEOREMA 2.3.15. (Teorema da Convergência Dominada) Seja pfnqn uma sequência de funções inte-

gráveis que convergem q.t.p para uma f : X Ñ R mensurável. Se existe g integrável tal que |fn| ď |g|

para qualquer n, então f é integrável e

ż

fdµ “ lim

ż

fndµ

Antes de demonstrarmos o Teorema, provaremos um fato que será utilizado na demonstração.

LEMA 2.3.16. Seja A um subconjunto limitado e não vazio de R. Se definirmos o conjunto -A por

´ A :“ t´x : x P Au,

então

infp´Aq “ ´ supA,

supp´Aq “ ´ inf A.

DEMONSTRAÇÃO.

Se x P A, então x ď supA ùñ ´x ě ´ supA. Ou seja, ´ supA é cota inferior de -A. Mos-

traremos agora que ´ supA é a maior cota inferior desse conjunto. Dado ε ą 0, existe x P A tal

que x ą supA ´ ε, donde ´x ă ´ supA ` ε. Segue então a igualdade. A ideia para provar a outra

igualdade é análoga.
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DEMONSTRAÇÃO. (Teorema) Começemos redefinindo f e cada fn em algum conjunto E tal que µpEq “ 0.

Assim, podemos assumir que a convergência de pfnqn se dá em todo X. Como |f | “ lim |fn| ď g, segue

que |f | é integrável, o que implica em f integrável. Além disso, g ě |fn| ě ´fn ùñ g ` fn ě 0.

Como g e fn são ambas mensuráveis, podemos aplicar o Lema de Fatou:

ż

gdµ `

ż

fdµ “

ż

pg ` fqdµ

“

ż

limpg ` fnqdµ

“

ż

lim infpg ` fnqdµ

ď lim inf

ż

pg ` fnqdµ

“ lim infp

ż

gdµ `

ż

fndµq

“

ż

gdµ ` lim inf

ż

fndµ

Subtraindo
ş

gdµ em ambos os lados, obtemos

ż

fdµ ď lim inf

ż

fndµ.

Por outro lado, como também vale g ´ fn ě 0,

ż

gdµ ´

ż

fdµ “

ż

pg ´ fqdµ

“

ż

limpg ´ fnqdµ

“

ż

lim infpg ´ fnqdµ

ď lim inf

ż

pf ´ gnqdµ

“ lim infp

ż

gdµ ´

ż

fndµq

“

ż

gdµ ´ lim sup

ż

fndµ,

implicando em

lim sup

ż

fndµ ď

ż

fdµ ď lim inf

ż

fndµ.
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PROPOSIÇÃO 2.3.17. Sejam µ1, µ2, ..., µn medidas definidas em Σ, α1, α2, ..., αn P R e f função men-

surável definida em X. Então,

ż

f dp

n
ÿ

i“1

αiµiq “

n
ÿ

i“1

αi

ż

f dµi

DEMONSTRAÇÃO. Se f “ χE, para algum E P Σ, então

ż

f dp

k
ÿ

i“1

αiµiq “ p

k
ÿ

i“1

αiµiqpEq “

n
ÿ

i“1

αiµipEq “

n
ÿ

i“1

ż

αif dµi.

Se f é simples, segue o resultado pela linearidade da integral. Se f é uma função mensurável qual-

quer, então considere psnqn sequência de funções simples não negativas, tal que |snpxq| ď |fpxq| e

lim snpxq “ fpxq. Segue, pelo Teorema da Convergência Dominada, que

ż

φdp

n
ÿ

i“1

αiµiq “ lim
k

ż

sk dp

n
ÿ

i“1

αiµiq “ lim
k

n
ÿ

i“1

αi

ż

sk dµi “

n
ÿ

i“1

αi

ż

φdµi.
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3

Medidas Invariantes

Começamos relembrando a definição de Medida Invariante dada na introdução do texto.

3.1 Definição de Medida Invariante e ferramentas para provar existência

DEFINIÇÃO 3.1.1. Seja pµ,Σ, Xq um espaço de medida e f : X Ñ X uma transformação mensurável.

Diremos que a medida µ é invariante por f, ou que f preserva µ, se µpf´1pEqq “ µpEq para

todo E mensurável.

PROPOSIÇÃO 3.1.2. Seja f : M Ñ M uma transformação mensurável e µ uma medida finita em M.

Suponha que existe alguma álgebra A de conjuntos mensuráveis de M tal que A gera a σ´álgebra de

Borel de M e µpEq “ µpf´1pEqq para todo E P A. Então, µ é invariante por f.

DEMONSTRAÇÃO. Começaremos mostrando que a coleção C “ tE P B : µpEq “ µpf´1pEqqu é uma

classe monótona(2.1.9). Dada uma sequência crescente E1 Ď E2 Ď ... de elementos de B, temos, pelo

Lema 2.2.6, que

µpEq “ lim
iÑ8

µpEiq,

µpf´1
pEqq “ lim

iÑ8
µpf´1

pEiqq.

37
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Como cada Ei pertence a C, segue que

µpEq “ lim
iÑ8

µpEiq

“ lim
iÑ8

µpf´1
pEiqq

“ µpf´1
pEqq.

De maneira análoga, mostra-se que a interseção de uma sequência decrescente de elementos de C

também pertence a C, e C é uma classe monótona. Como C contém A, contém também, pelo Teorema

2.1.10, a σ´álgebra gerada pela álgebra A, que é justamente a σ´álgebra de borel de M.

PROPOSIÇÃO 3.1.3. Seja pM,dq um espaço métrico, x0 P M e f :M Ñ M mensurável com relação à

σ´álgebra de Borel. Então, δx0 é uma medida invariante por f se, e somente se, fpx0q “ x0, onde a

medida δx0 é a Medida de Dirac de x0 (ver Exemplo 2.2.4).

DEMONSTRAÇÃO. Suponha δx0 invariante por f. Caso fpx0q ‰ x0, então x0 R f´1px0q, donde tx0u X

f´1px0q “ H. Assim,

δx0ptx0uq “ 1

“ δx0pf´1
px0qq

“ 0,

absurdo. Logo, fpx0q “ x0.

Reciprocamente, suponha fpx0q “ x0. Dado A mensurável, podemos ter x0 P A ou x0 R A. Caso

x0 P A, então x0 P f´1pAq, pois fpx0q “ x0. Dáı,

δx0pAq “ 1 (3.1)

“ δx0pf´1
pAqq. (3.2)

Caso x0 R A, então f´1px0q R A, pois f´1px0q “ tx0u. Portanto,

δx0pAq “ 0

“ δx0pf´1
pAqq.
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Como tomamos A mensurável qualquer, δx0 é invariante por f .

PROPOSIÇÃO 3.1.4. Sejam f :M Ñ M uma transformação mensurável e µ uma medida em Σ. Então

f preserva µ se, e somente se,

ż

φdµ “

ż

φ ˝ f dµ,

para toda φ :M Ñ R µ´integrável.

DEMONSTRAÇÃO. Para provar a ida, provaremos inicialmente para funções caracteŕısticas e funções

simples, e depois utilizaremos o fato de que toda função mensurável é o limite de uma sequência de

funções simples.

Se B P Σ, então

ż

χB dµ “ µpBq,

por definição. Note que pχB ˝ fqpxq “ 0, se fpxq R B, e pχB ˝ fqpxq “ 1, caso contrário. Ou seja

χB ˝ f “ χf´1pBq.

Assim, como f preserva µ,

ż

χB dµ “ µpBq “ µpf´1
pBqq “

ż

χB ˝ f dµ.

Se φ é uma função simples, então vale o resultado por linearidade da integral.

Se φ : M Ñ R é uma função mensurável qualquer, considere uma sequência psnqn de funções

simples, tal que sn Ñ φ, e |snpxq| ď |φpxq|, para todo n e x em M . Pelo Teorema da Convergência

Dominada (2.3.15),

ż

φdµ “ lim
n

ż

sn dµ “ lim
n

ż

psn ˝ fq dµ “

ż

φ ˝ f dµ.

Para demonstrar a volta, basta considerar, para cada B P Σ, a função caracteŕıstica de B, χB. Por
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hipótese, vale

ż

φdµ “

ż

φ ˝ f dµ

para toda φ :M Ñ R, µ ´ integrvel. Em particular, para χB,

µpBq “

ż

χB dµ “

ż

χB ˝ f dµ “

ż

χf´1pBq dµ “ µpf´1
pBqq,

e o resultado está provado.

3.2 Exemplos

Exemplo 3.2.1. Considere o espaço mensurável pf,Bq, onde B é a σ´álgebra de Borel de r0, 1s e

f : r0, 1s Ñ r0, 1s é dada por fpxq “ x2.

Igualando fpxq “ x, conclúımos que seus únicos pontos fixos são x “ 0 e x “ 1. Pela proposição

3.1.3, temos que f possui pelo menos duas medidas invariantes, a saber: as medidas de Dirac δ0 e

δ1.

Exemplo 3.2.2. (Mapa Tenda) Considere agora o espaço mensurável pT,Bq, onde B é a σ´álgebra

de Borel de r0, 1s e T : r0, 1s Ñ r0, 1s é o mapa

T pxq “

$

’

&

’

%

2x, 0 ď x ď 1{2,

2p1 ´ xq, 1{2 ď x ď 1.

cujo nome é justificado pelo seu gráfico, que tem o formato de uma tenda:

Note que para todo intervalo I “ ra, bs Ď r0, 1s, sua pré imagem é a união dos intervalos ra
2
. b
2
s,

r1´b
2
, 1´a

2
s. Como cada um desses intervalos tem medida de Lebesgue λ(2.2.2) igual a 1

2
pb ´ aq, vale

a igualdade
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0.5 1

0.5

1

Figura 3.1: Gráfico do Mapa Tenda. Fonte: Autor.

λpIq “ b ´ a

“
1

2
pb ´ aq `

1

2
pb ´ aq

“ λpr
a

2
,
b

2
sq ` λpr

1 ´ b

2
,
1 ´ a

2
sq

“ λpr
a

2
,
b

2
s Y r

1 ´ b

2
,
1 ´ a

2
sq

“ λpT´1
pIqq.

Por consequência do que mostramos acima, vale também que λpT´1pYInqq “ λpYInq, para qual-

quer coleção finita de intervalos contidos em r0, 1s. Agora, perceba que a famı́lia formada pelas uniões

finitas de intervalos de r0, 1s é uma álgebra que gera a σ´álgebra de borel de r0, 1s (veja [1]). Pela

proposição 3.1.2, segue que λ é invariante por T.

Exemplo 3.2.3. (Expansão decimal) Seja pf,Bq um espaço mensurável, onde B é a σ´álgebra de

Borel de [0,1], f : r0, 1s Ñ r0, 1s é a função definida por

fpxq “ 10x ´ r10xs

e [y] = o maior inteiro menor ou igual a y. Note que f leva x na parte decimal de x. Afirmamos

que medida a de Lebesgue λ é invariante por f. De fato, da imagem acima, podemos ver que dado um
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Figura 3.2: Gráfico de f . Fonte: [4].

intervalo I Ă B, a pré imagem de I é composta por 10 intervalos com comprimento 10 vezes menor

que I. Assim, λpIq “ λpf´1pIqq. Por consequência disso, vale a invariância também para uma união

finita de elementos de B. Analogamente ao exemplo anterior, segue pela Proposição 3.1.2 que λ é

invariante por f .

Surge então a dúvida: qual a vantagem de ter uma medida invariante por f? Por que motivo

estudar Sistemas Dinâmicos com medidas invariantes? Uma posśıvel aplicação e motivação para o

estudo da existência de uma medida invariante é o seguinte teorema:

TEOREMA 3.2.4. (Recorrência de Poincaré) Seja f : M Ñ M uma transformação mensurável e µ

uma medida finita invariante por f. Seja E Ă M um conjunto mensurável com µpEq ą 0. Então,

para µ-quase todo ponto x P E, existem infinitos valores de n para os quais fnpxq P E.

DEMONSTRAÇÃO. Começemos definindo o conjunto

E0 “ tx P E : fn
pxq R E @n P Nu.

O primeiro passo é mostrar que µpE0q “ 0. Para isso, provaremos que para todo n,m P N, os

conjuntos da forma f´npE0q f
´mpE0q tem interseção vazia. De fato, suponha existente x P f´npE0qX

f´mpE0q. Assumindo m ą n sem perda de generalidade, temos y “ fnpxq, donde y P E0 e f
m´npyq “
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fmpxq P E0. Do fato que E0 está contido em E, conclúımos que y P E, o que entra em contradição

com a definição de E0. Isso nos mostra que a coleção de conjuntos tf´npE0qunPN é de fato dois a dois

disjunta.

Do fato que µ é invariante, temos que µpf´npE0qq “ µpE0q para todo n ě 1. Então,

µp

8
ď

n“1

f´n
pE0qq “

8
ÿ

n“1

µpf´n
pE0qq “

8
ÿ

n“1

µpE0q.

Do lado esquerdo da igualdade, temos uma expressão com valor finito, pois µ é uma medida

finita, por hipótese. Do lado direito, estamos somando infinitamente o mesmo valor. A única maneira

posśıvel para que o lado direito seja finito é que µpE0q “ 0.

Seja agora F o conjunto dos elementos de E que retornam para E apenas uma quantidade finita

de vezes.

Por definição, pode-se ver que para todo ponto x P F , existe algum j tal que f jpxq P E0. Ou seja,

F Ă

8
ď

j“0

f´j
pE0q.

Pelo fato de que µpE0q “ 0 e µ é invariante, segue que

µpF q ď µp

8
ď

j“0

f´j
pE0qq

ď

8
ÿ

j“0

µpf´j
pE0qq

“

8
ÿ

j“0

µpE0q

“ 0.

E µpF q “ 0, como queŕıamos demonstrar.

Esse teorema é muito interessante para responder o tipo de pergunta que nos fizemos na intro-

dução do texto. Se considerarmos o subconjunto mensurável E Ă M como o ”lugar” que estávamos

falando no começo, então conclúımos que, a partir da perspectiva da medida invariante por f con-
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siderada, temos a informação de que quase todo ponto cuja trajetória é determinada pelo sistema

dinâmico f passa infinitas vezes por esse lugar. Isso nos dá uma informação muito útil sobre a dinâ-

mica de f .

Tal resultado evidencia a importância de uma medida invariante para uma transformação f ,

quando se tem por interesse estudar a dinâmica dessa transformação. Surge então um novo questio-

namento: Dada uma transformação mensurável f : M Ñ M , quando podemos garantir a existência

de uma medida µ que é preservada por f?

Responder essa pergunta é o objetivo principal desse texto. E ela é respondida pelo seguinte

teorema:

TEOREMA 3.2.5. Seja f : M Ñ M uma transformação cont́ınua em um espaço métrico compacto.

Então, existe uma medida de probabilidade µ invariante por f.
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4

Existência de Medidas Invariantes

A ideia para a demonstração desse teorema é definir uma certa topologia no conjunto das probabi-

lidades emM , e, a partir dáı, elaborar uma ”máquina de construção” de medidas invariantes, através

da definição de sequências que admitem subsequências convergentes nessa topologia, de modo que

todo limite dessas subsequências (todo ponto de acumulação da sequência principal) é uma medida

f invariante. Comecemos, então, definindo essa topologia.

A partir de agora, fixaremos alguns parâmetros adotados no texto daqui para frente. Seja M

um espaço métrico compacto e Σ sua σ´álgebra de Borel (ver exemplo 2.1.13). Denotaremos por

M1pMq como sendo o conjunto formado por todas as medidas de probabilidade definidas em M.

4.0.1 A Topologia fraca*

Definiremos agora uma topologia em M1pMq, chamada topologia fraca*. Dado ε ą 0, µ P

M1pMq e Φ “ tφ1, φ2, ..., φnu um conjunto finito formado por funções φi : M Ñ R cont́ınuas,

definimos o seguinte conjunto:

V pε, µ,Φq :“ tν P M1pMq : |
ş

φi dν ´
ş

φi dµ | ă ε, para todo i}.

PROPOSIÇÃO 4.0.2. Seja pVλqλPΛ a famı́lia formada por todos os conjuntos da forma (4.0.1). Então,

pVλqλPΛ pela satisfaz:

• Para toda medida µ P M1pMq, existe algum λ P Λ tal que µ P Vλ.

45
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• Se µ P Vλ1 X Vλ2, então existe Vλ3 P pVλqλPΛ tal que

µ P Vλ3 Ă Vλ1 X Vλ2 . (4.1)

DEMONSTRAÇÃO.

Note que para toda µ P M1pMq, µ P V pε, µ,Φq, onde ε ą 0 e Φ é conjunto qualquer como definido

acima. Além disso, se ν P V pε1, µ1,Φq XV pε2, µ2,Ψq, onde Φ “ tφ1, φ2, ..., φnu e Ψ “ tψ1, ψ2, ..., ψmu

então denotando por Ω o conjunto Ω “ Φ Y Ψ, por ki e wj, com i e j variando de 1 até n e de 1 até

m, respectivamente, os valores da forma

ki “ ε1 ´ |

ż

φidµ1 ´

ż

φidν|

wi “ ε2 ´ |

ż

ψidµ2 ´

ż

φidν|

e tomando ε “ mintk1, k2, ..., kn, w1, w2, ..., wmu, vale que para toda medida µ P V pε, ν,Ωq,

|

ż

φidµ ´

ż

φidµ1| “ |

ż

φidµ ´

ż

φidν `

ż

φidν ´

ż

φidµ1|

ď |

ż

φidµ ´

ż

φidν| ` |

ż

φidν ´

ż

φidµ1|

ă ε1 ´ |

ż

φidν ´

ż

φidµ1| ` |

ż

φidν ´

ż

φidµ1|

“ ε1,

para todo i P t1, 2, ..., nu. Ou seja, µ pertence a V pε1, µ1,Φq, e de maneira análoga, mostra-se que

µ P V pε, µ,Ωq. Portanto, V pε, ν,Ωq Ă V pε1, µ1,Φq X V pε2, µ2,Ψq.

Isso justifica a seguinte definição: 1

DEFINIÇÃO 4.0.3. A topologia fraca* é a topologia que se obtém considerando os conjuntos da forma

V pε, µ,Φq como base de abertos.

Com o intuito de fazer o que dissemos no ińıcio desta seção, devemos definir também o que

1Mostramos que os conjuntos da forma V pµ, ε,Φq satisfazem as condições suficientes para que possam ser tomados
como base de uma topologia. Para mais detalhes, ver [2].
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significa uma sequência de medidas convergir nesta topologia.

DEFINIÇÃO 4.0.4. Seja pµnqn uma sequência de elementos de M1pMq. Diremos que essa sequência

converge para µ P M1pMq na topologia fraca*, e escreveremos µn
˚
ÝÑ µ, se, para todo ε ą 0 e

todo conjunto finito Φ “ tφ1, φ2, ..., φnu de funções cont́ınuas φi : M Ñ R, existe n0 P N tal que

n ą n0 ùñ µn P V pε, µ,Φq.

Observação 4.0.5. A definição que demos acima é mesma definição que se dá ao falar de convergência

de sequências em espaços topológicos quaisquer, a única diferença é que se considera os abertos do

espaço em questão, ao invés dos abertos da forma V pε, µ,Φq. O leitor interessado pode consultar [2].

LEMA 4.0.6. Uma sequência pµnqn converge para µ em M1pMq na topologia fraca* se, e somente se,

ż

φdµn ÝÑ

ż

φdµ, (4.2)

para toda φ :M Ñ M cont́ınua.

DEMONSTRAÇÃO. Seja pµnqn uma sequência em M1pMq e µ P M1pMq tal que µn
˚
ÝÑ µ. Por definição,

para todo ε ą 0 e todo conjunto finito Φ “ tφ1, φ2, ..., φnu de funções cont́ınuas, temos que existe

n0 P N tal que n ą n0 ùñ µn P V pε, µ,Φq. Isto é,

|

ż

φi dµn ´

ż

φi dµ| ă ε,

para todo i de 1 até n. Assim, dada φ : M Ñ R e ε ą 0, considere o conjunto unitário Φ “ tφu, e

V pε, µ,Φq. Existe então n0 P N tal que n ą n0

ùñ |

ż

φdµn ´

ż

φdµ| ă ε.

Em outros termos, p
ş

φdµnqn converge para
ş

φdµ. Reciprocamente, dados Φ “ tφ1, φ2, ..., φmu e

ε ą 0, queremos mostrar que existe n1 P N tal que n ą n1 ùñ µn P V pε, µ,Φq. Por hipótese, temos

que para cada i de 1 até m, existe ni P N tal que n ą ni implica

|

ż

φi dµn ´

ż

φi dµ| ă ε.
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Portanto, tomando n1 “ maxtn1, n2, ..., nmu, tem-se para n ą n1 que

|

ż

φi dµn ´

ż

φi dµ| ă ε,

para todo i. Isto é, φn P V pε, µ,Φq.

TEOREMA 4.0.7. Toda sequência pµnqn Ă M1pMq admite uma subsequência que converge na topo-

logia fraca*. Ou seja, M1pMq, munido da topologia fraca* é sequencialmente compacto.

DEMONSTRAÇÃO. Seja C0pMq o espaço de todas as funções cont́ınuas de M em R, e D um subconjunto

enumerável e denso da bola unitária em C0pMq([4], Teo A.3.13, página 419). Note que, para cada

n P N,

|

ż

φn dµk| ď

ż

|φn| dµk ď

ż

1 dµk “ 1.

Assim, para cada n natural, a sequência p
ş

φn dµkqk é limitada. Como se trata de uma sequên-

cia de números reais, temos, por Bolzano-Weierstrass, que existe, para cada n, uma subsequência

p
ş

φn dµknj
qj que converge para algum número real, que denotaremos por Φn.

Efetuado o processo acima para n = 1, obtemos a sequência de ı́ndices pk1j qj “ pk11, k
1
2, k

1
3, ...q tal

que
ş

φ1dµk1j
converge para Φ1. Caso a subsequência p

ş

φ2 dµk1j
qj de p

ş

φ2 dµkqk não seja convergente,

podemos, pelo mesmo argumento anterior, extrair uma outra subsequência, obtendo assim uma nova

sequência de ı́ndices, que denotaremos por pk2j qj “ pk21, k
2
2, k

2
3, ...q, tal que a subsequência p

ş

φ2 dµk2j
qj

é convergente.

Indutivamente, supondo que a sequência de ı́ndices pkn´1
j q é tal que p

ş

φn´1 dµkn´1
j

qj converge para

Φn´1, podemos extrair uma subsequência pknj q de pkn´1
j q de modo que p

ş

φn´1 dµkn´1
j

qj converge para

Φn.

Em outras palavras, extraindo uma subsequência convergente para n = 1, podemos obter, a

partir dessa, uma subsequência convergente de p
ş

φn dµkqk, tal que, para cada n, a sequência pknj qj

está contida em pkn´1
j qj.

Defina então a sequência de ı́ndices pljqj pondo lj “ kjj . Observe que pljqj está contida inteiramente

em pk1j qj, por construção de pknj qj, e que está contida em pknj qj, exceto possivelmente por um número

finito de termos l1, l2, ..., ln´1.

Assim, p
ş

φn dµljqj está contida em p
ş

φn dµknj
qj, a menos de uma quantidade finita de termos.
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Segue então, por ser uma subsequência de uma sequência convergente, que
ş

φn dµlj Ñ Φn.

Defina agora o operador Φ, por

Φ : C0
pMq Ñ R,

φ ÞÝÑ lim

ż

φdµlj .

Mostraremos que de fato Φ está bem definido. A ideia é mostrar que p
ş

φdµljqj é de Cauchy. Como

R é completo2, a sequência deve convergir. Dados ε ą 0 e φ P Bp0, 1q, existe uma sequência pφkqk de

elementos de D tal que ∥φn ´φ∥0 ă ε{3, para todo n ą n0, onde ∥φn ´φ∥0 “ supxPM |φnpxq ´φpxq|.

Como p
ş

φdµljqj é convergente para elementos de D, é uma sequência de Cauchy. Assim, fixado

n P N, existe k0 P N tal que i, j ą k0 implica em |
ş

φn dµlj ´
ş

φn dµli | ă ε{3.

Então, para n ą n0 e i, k ą k0, temos

|
ż

φdµlj ´

ż

φdµli | “ |
ż

φdµlj ´

ż

φn dµlj `

ż

φn dµlj ´

ż

φn dµli `

ż

φn dµli ´

ż

φdµli|

ď |
ż

φn dµlj ´

ż

φn dµli | ` |
ż

φn dµli ´

ż

φdµli | ` |
ż

φn dµlj ´

ż

φdµlj |

ă
ε

3
`
ε

3
`
ε

3

“ ε.

Se φ R Bp0, 1q, e φ ‰ 0, considere φ̄ “
φ

∥φ∥ P Bp0, 1q.

Φpφ̄q “ lim

ż

φ

∥φ∥
dµlj

“
φ

∥φ∥
lim

ż

φdµlj

ùñ lim

ż

φdµlj “ Φpφq “ ∥φ∥Φpφ̄q.

2O conjunto dos números Reais é um espaço métrico completo. Ou seja, toda sequência de Cauchy é convergente.
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Por fim, observe que

Φpφ1 ` αφ2q “ lim

ż

pφ1 ` αφ2q dµlj

“ lim

ż

φ1 dµlj ` α lim

ż

φ2 dµlj

“ Φpφ1q ` αΦpφ2q,

Φpφq ě 0, para qualquer φ ě 0 e que se φ ” 1, então Φpφq “ 1. Pelo Teorema de Riesz-

Markov([4], Teo A.3.11, página 467), existe uma medida de probabilidade µ P M1pMq tal que

Φpφq “ lim

ż

φdµlj

“

ż

φdµ.

Em outras palavras, µlj
˚
ÝÑ µ. Portanto, M1pMq é sequencialmente compacto.

Observação 4.0.8. Uma outra opção seria ter mostrado que M1pMq é compacto na topologia

fraca*. Ou seja, toda cobertura de M1pMq por meio de abertos admite uma subcobertura finita.

De fato, há essa possibilidade pois a topologia fraca* é metrizável. Isto é, existe uma métrica em

M1pMq tal que a topologia gerada pelas bolas abertas dessa métrica coincide com a topologia gerada

pelos conjuntos da forma V pε, µ,Φq. Como consequência disso, obtem-se a equivalência de compa-

cidade e compacidade sequencial. Para mais detalhes sobre a metrizabilidade de pM1pMq, fraca*q,

ver [4]. Para mais detalhes sobre compacidade e compacidade sequencial, ver [2].

Seja f :M Ñ M . Dada η medida em M1pMq, defina o mapa

f˚ :M1pMq Ñ M1pMq,

η ÞÝÑ f˚η, pondo

f˚ηpBq “ ηpf´1
pBqq.

Note que f˚pηq “ η ðñ ηpBq “ ηpf´1pBqq, para todo B P Σ. Isto é, f é invariante por η se, e

somente se, η é ponto fixo de f˚. A ideia para demonstrar o Teorema 3.2.5 está centrada em construir

uma sequência de medidas que tem a propriedade de que todo ponto de acumulação é ponto fixo de

f˚.
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LEMA 4.0.9. Sejam η medida e φ uma função mensurável. Então,

ż

φdf˚η “

ż

φ ˝ f dη.

DEMONSTRAÇÃO. A ideia é análoga à proposição anterior.

Suponha que φ “ χB, B P Σ.

ż

χB df˚η “ f˚ηpBq “ ηpf´1
pBqq “

ż

χf´1pBq dµ “

ż

χB ˝ f dη.

Se φ é função simples, o resultado segue da linearidade da integral. Se φ é função mensurável

qualquer, considere uma sequência psnqn de funções simples tal que |snpxq| ď |φpxq|, para todo n e

todo x. Logo,

ż

φdf˚η “ lim
n

ż

sn df˚η “ lim
n

ż

psn ˝ fq dη “

ż

φ ˝ f dη.

PROPOSIÇÃO 4.0.10. (Continuidade de f˚) Seja pµnqn uma sequência de medidas em M1pMq conver-

gente na topologia fraca˚. Então, existe lim f˚pµnq e vale

lim f˚pµnq “ f˚plimµnq.

Onde o limite significa que a sequência f˚pµnq converge para f˚pµq na topologia fraca*.

DEMONSTRAÇÃO. Seja µ “ limµn.

lim f˚pµnq “ f˚plimµnq ðñ

para todo ε ą 0 e todo Φ “ tφ1, φ2, ..., φmu conjunto formado por funções cont́ınuas φi : M Ñ R,

existe n0 P N tal que n ą n0 ùñ µn P V pµ,Φ, εq.

Ou seja,

|

ż

φi df˚pµnq ´

ż

φi df˚µ| “ |

ż

φi ˝ f dµ ´

ż

φi ˝ f dµ| ă ε,
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para todo i. Pelo lema 2.1.1,

µn Ñ µ ðñ

ż

φdµn Ñ

ż

φdµ,

para qualquer φ :M Ñ R cont́ınua.

Assim, dados ε ą 0 e Φ conjunto como acima, temos que desde que f é cont́ınua, cada φi ˝ f

também o é. Logo, para cada i, deve existir ni P N tal que

n ą ni ùñ |

ż

φi ˝ f dµn ´

ż

φi ˝ f dµ| ă ε

Tome n0 “ maxtn1, n2, ..., nmu. Então, n ą n0 implica

|

ż

φi ˝ f dµn ´

ż

φi ˝ f dµ| ă ε,

para todo i P t1, 2, ...,mu, e o resultado está provado.

4.0.11 Demonstração do Teorema de Existência

Temos o necessário para provar o resultado principal. Provamos anteriormente que o conjunto

das medidas de probabilidade em M é sequencialmente compacto na topologia fraca*. Dada uma

probabilidade ν qualquer, constrúıremos uma sequência de medidas, e usaremos desse fato para

mostrar que qualquer subsequência convergente dessa sequência que constrúımos a partir de ν deve

ser uma medida invariante por f. Com efeito, dada ν P M1pMq, defina a seguinte sequência de

probabilidades:

µn “
1

n

n´1
ÿ

j“0

f j
˚ν.

TEOREMA 4.0.12. Todo ponto de acumulação de uma sequência do tipo acima é uma probabilidade

invariante por f.

DEMONSTRAÇÃO.

Devemos mostrar que, se pµnk
q é uma subsequência convergente de pµnq, convergindo na topologia
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fraca* para µ P M1pMq, então f˚pµq “ µ. Note que

f˚pµq “ f˚
plim

k
µnk

q “ f˚plim
k

1

nk

nk´1
ÿ

j“0

f j
˚νq

“ lim
k

1

nk

nk´1
ÿ

j“0

f j`1
˚ ν

“ lim
k

1

nk

nk
ÿ

j“1

f j
˚ν

“ lim
k

1

nk

p

nk´1
ÿ

j“0

f j
˚ν ` fnk

˚ ν ´ νq

“ lim
k

pµnk
`

1

nk

fnk
˚ ν ´ νq.

A tarefa agora será mostrar que de fato µnk
` 1

nk
fnk

˚ ν ´ ν Ñ µ. Isso ocorre se, e somente se, para

todo ε ą 0, e para toda φ :M Ñ M cont́ınua, existe nk0 P N tal que nk ą nk0 implica em

|

ż

φdpµnk
`

1

nk

pfnk
˚ ν ´ νqq ´

ż

φdµ| “ |

ż

φdµnk
´

1

nk

ż

φdfnk
˚ ν ´

1

nk

ż

φdν ´

ż

φdµ|

ă ε.

Ora, do fato que µnk
Ñ µ, sabemos que existe nk1 P N tal que

nk ą nk1 ùñ |

ż

φdµnk
´

ż

φdµ| ă
ε

2
.
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Olhemos então para a parte restante.

|
1

nk

ż

φdfnk
˚ ν ´

1

nk

ż

φdν| “ |
1

nk

ż

φ ˝ fnk
˚ dν ´

1

nk

ż

φdν|

“
1

nk

|

ż

φ ˝ fnk
˚ ´ φdν|

ď
1

nk

ż

|φ ˝ fnk
˚ ´ φ|dν

ď
1

nk

ż

|φ ˝ fnk
˚ | ` |φ|dν

ď
1

nk

ż

sup |φ ˝ fnk
˚ | ` sup |φ|dν

ď
1

nk

ż

2 sup |φ|dν

“
1

nk

2 sup |φ|.

Tomando então nk2 P N tal que

nk ą nk2 ùñ
1

nk

ă
ε

4 sup |φ|
,

teremos, tomando nk0 “ maxtnk1 , nk2u, que para todo nk ą nk0 , vale

|

ż

φdpµnk
`

1

nk

pfnk
˚ ν ´ νqq ´

ż

φdµ| “ |

ż

φdµnk
´

1

nk

ż

φdfnk
˚ ν ´

1

nk

ż

φdν ´

ż

φdµ|

ď |

ż

φdµnk
´

ż

φdµ| `
1

µnk

|

ż

φdfnk
˚ ν ´

ż

φdν|

ď
ε

2
`

ε

4 sup |φ|
2 sup |φ|

“
ε

2
`
ε

2

“ ε.

4.0.13 Para quase todo número cuja expansão decimal começa com 19, 19 aparece

infinitas vezes em sua expansão decimal

Para finalizar, daremos uma breve aplicação do Teorema de Recorrência de Poincaré.

Considere novamente o mapa da Expansão Decimal (3.2.3). Dado x P p0, 1q, x é da forma
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x “ 0, a1a2a3..., onde ai P t0, 1, 2, 3, ..., 9u, para todo i. Aplicando f em x, temos que

fpxq “ a1, a2a3... ´ a1

“ 0, a2a3...

E no geral, para todo n P N,

fn
pxq “ 0, an`1an`2an`3...

Considere agora o subintervalo r 19
100
, 20
100

q de r0, 1s. Note que para todo x “ 0, a1a2a3... P r 19
100
, 20
100

q,

vale que a1 “ 1 e a2 “ 9. De fato, se

0, 19 ď 0, a1a2a3... ă 0, 2,

então a1 não pode ser maior que 1, pois seria igual ou maior que 0, 2 e não pode ser menor que

1, pois seria menor que 0, 19. Pelo mesmo motivo, a2 deve ser igual a 9. Assim, encontramos um

subconjunto de r0, 1s satisfazendo uma propriedade interessante, cuja medida de Lebesgue é não nula,

a saber:

r
19

100
,
20

100
q “ t0, a1a2a3... P r0, 1s : ai P N @i P t0, 1, ..., 9u, a1 “ 1, a2 “ 9u.

Note que no exemplo 3.2.3 provamos que a medida de Lebesgue λ é invariante por f . Dessa forma,

conclui-se pelo Teorema da Recorrência de Poincaré que para λ´quase todo ponto3 x P r 19
100
, 20
100

q,

existem infinitos valores de n para os quais fnpxq P r 19
100
, 20
100

q. Isto é, para quase todo número cuja

expansão decimal começa com o número 19, o número 19 aparece infinitas vezes em sua expansão

decimal.

A escolha do número 19 foi inteiramente pessoal. Na verdade, pode-se provar que para todo k ě 1

e todo bloco de números com k d́ıgitos, para quase todo número cuja sua expansão decimal começa

com esse bloco, tal bloco aparecerá infinitas vezes em sua expansão decimal. Para mostrar isso, se o

3Ou seja, para todo ponto x P r 19
100 ,

20
100 q, a menos de um conjunto N, onde λpNq “ 0.
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bloco é da forma a1a2...ak, basta considerar o intervalo

r
a1a2...ak
10k`1

,
a1a2...pak ` 1q

10k`1
s,

e repetir o processo feito acima.



Caṕıtulo

5

Considerações Finais

No nosso texto, exploramos apenas um de vários caminhos dispońıveis para se provar a existência

de medidas invariantes. Para concluir, teceremos alguns breves comentários acerca de outros posśıveis

caminhos para se provar o teorema de existência.

Figura 5.1: Fonte: Autor.

Caminho Rosa: Ao definir a Topologia Fraca*, podeŕıamos diretamente mostrar que ela é com-

pacta, utilizando o Teorema de Banach Alaoglu.

Seja E um espaço de Banach, isto é, um espaço vetorial munido de uma norma que faz de E um

espaço métrico completo com a métrica induzida por essa norma. O espaço dual de E é o espaço E*

57



58

de todos os funcionais lineares cont́ınuos definidos em E. E˚ também é um espaço de Banach, com

a norma

∥g∥ “ supt
|gpvq|

∥v∥
: v P Ezt0uu.

A topologia fraca* em E é a topologia obtida ao se considerar a seguinte base de vizinhanças:

V pv, tg1, ..., gNu, εq “ tw P E : |g1pvq ´ gipwq| ă ε @iu,

onde g1, ..., gN P E˚.

A topologia fraca* no espaço dual E˚ é a topologia definida pela seguinte base de vizinhanças:

V ˚
pg, tv1, ..., vNu, εq “ th P E˚ : |gpviq ´ hpviq| ă ε u,

onde v1, ..., vN P E.

TEOREMA 5.0.1. (Banach-Alaoglu) A bola fechada unitária de E˚ é compacta na topologia fraca*.

No nosso texto, o espaço vetorial considerado é E “ C0pMq, o conjunto das funções cont́ınuas

definidas em um espaço métrico compacto M, e E˚ “ MpMq, o conjunto de todas as medidas

complexas definidas em M. Isso foi posśıvel pois através do Teorema de Riesz-Markov, associamos

cada medida µ P MpMq com o funcional linear

Iµpφq “

ż

φdµ.

Como o conjunto M1pMq de todas as medidas de probabilidade está contida na bola unitária de

M1pMq, e é fechado para a topologia fraca*, obtem-se a compacidade de pM1pMq, fraca*q.

Caminho Laranja:

Considerados uma tranformação cont́ınua em um espaço métrico compacto f : M Ñ M e seu

respectivo operador f˚ : MpMq Ñ MpMq, µ ÞÝÑ f˚µ, defina também o operador

Uf :C0
pMq Ñ C0

pMq

φ ÞÝÑ φ ˝ f.
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Uf é chamado operador de Koopman de f .

Pelo Lema(4.0.9), vale que

ż

Uf pφqdµ “

ż

pφ ˝ fqdµ “

ż

φdpf˚µq.

Por essa relação, o operador dual

U˚
f : C0

pMq
˚

Ñ C0
pMq

˚

pode ser identificado com f˚ : MpMq Ñ MpMq.

Além disso, Uf é um operador linear positivo, pois Uf pφq ě 0 em µ´quase todo ponto sempre

que φ ě 0 em µ´quase todo ponto.

Seja E um espaço de Banach. Um subconjunto fechado e convexo C é chamado um cone de E se

satisfaz λC Ă C para todo λ ě 0 e C X p´Cq “ t0u.

Diremos que o cone C é normal se

inft∥x ` y∥ : x, y P C : ∥x∥ “ ∥y∥ “ 1u ą 0.

Fixe um cone C de E. Dado um operador linear cont́ınuo T : E Ñ E, diremos que T é positivo

sobre C se a imagem T pCq está contida em C. Dado um funcional linear φ : E Ñ R, diremos que φ

é positivo sobre C se φpvq ě 0 para todo v P C.

Defina também o raio espectral do operador linear cont́ınuo T por:

rpT q “ lim
nÑ8

∥T n∥
1
n .

Vale que rpT q “ rpT ˚q, onde T ˚ : E˚ Ñ E˚ representa o operador linear dual de T.

A partir do Teorema de Banach Mazur([5], página 19), pode-se concluir o seguinte resultado:

TEOREMA 5.0.2. Seja C um cone normal de um espaço de Banach E e T : E Ñ E um operador

linear positivo sobre C. Então, rpT ˚q é um autovalor do operador dual T ˚ : E˚ Ñ E˚ e admite algum

autovalor v˚ P C˚.

Considere o cone C “ C0
`pMq “ tφ P C0pMq : φ ě 0u, de E “ C0pMq. O cone dual de C0

` é

naturalmente identificado com o espaço de medidas finitas positivas em M, pelo Teorema de Riesz-
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Markov. O operador T “ Uf é positivo sobre C e além disso, como sup |T pφq| ď sup |φ| para toda

φ P C0pMq e T p1q “ 1, segue que seu raio espectral é igual a 1. Pelo Teorema acima, existe alguma

medida finita positiva µ em M tal que µ é autovalor do operador dual T ˚ “ f˚ associado com o

autovalor 1. Ou seja, µ é invariante. A menos de uma multiplicação por uma constante adequada,

podemos assumir que µ é uma probabilidade.

Caminho Azul:

Um espaço vetorial topológico é um espaço vetorial V munido de uma topologia pra qual ambas

as operações de V (soma e multiplicação por escalar) são cont́ınuas. Um conjunto K Ă V é dito ser

convexo se p1 ´ tqx ` ty P K para todo x, y P K e todo t P r0, 1s.

TEOREMA 5.0.3. (Schauder-Tychonoff). Seja F : V Ñ V uma transformação cont́ınua definida em

um espaço vetorial topológico V. Suponha que existe um conjunto convexo e compacto K Ă V tal que

F pKq Ă K. Então, F pvq “ v para algum v P K.

Se considerarmos V “ MpMq o conjunto de todas as medidas complexas em M, K “ M1pMq o

espaço de todas as probabilidades em M e F “ f˚, então nos deparamos justamente com o objetos de

com os quais trabalhamos em nosso texto. Entretanto, no nosso caso, além de todas as hipóteses do

Teorema de Schauder-Tychonoff, temos também a informação extra de que f˚ é linear. Isso fez uma

enorme diferença: não só foi posśıvel uma demonstração direta e construtiva desse resultado, como

também pudemos exibir quem são os pontos fixos de F . Ou seja, não só provamos a existência de

algum v que é ponto fixo de F, como também o explicitamos.

Caminho Verde: Esse foi o caminho tomado em nosso texto.

Para mais detalhes acerca dessas maneiras alternativas para a demonstração da existência de

medidas invariantes, ver a referência principal desse texto, [4].
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