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Resumo

O principal objetivo deste texto é apresentar uma prova clara do teorema de existéncia de me-
didas invariantes, além de esclarecer os diferentes caminhos encontrados na literatura para alcangar
esse resultado. Consequentemente, busca servir como referéncia para alunos de iniciacao cientifica,

graduagao e pos-graduagao.
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Introducao

Seja f : M — M uma aplicagao definida em um conjunto qualquer. Dado x € M, podemos iterar
f sucessivamente: Aplicando f uma vez, obtemos f(z). Aplicando duas vezes, obtemos f?(r) =

(f o f)(x), e de maneira geral, definindo a n—ésima iteragao de f como

fi@) = (fo fr)(2),

podemos nos perguntar: O que acontece com a sequéncia de pontos gerada por essa iteragao a

medida que n cresce? Ou seja, definindo como a érbita de x o conjunto
O(z) = {f"(x);n e N},

existe algum "lugar” em M tal que a érbita de x passa infinitas vezes? Existe alguma "regiao” desse
conjunto em que a érbita de x nunca passa? Esse é um exemplo de um Sistema Dinamico, que para
nos, consiste apenas de um conjunto e uma aplicacao definida nesse conjunto, e serd nosso objetivo
nesse texto responder perguntas semelhantes a essas.

No nosso texto, tentaremos responder essas questoes de um ponto de vista probabilistico. Ou
seja, procuramos responder perguntas da seguinte natureza: dado x € M, qual a probabilidade de x
gozar de alguma propriedade P? Onde P pode ser, por exemplo, visitar um conjunto infinitas vezes.

Com esse intuito, utilizaremos de um conceito muito importante e que desempenha um papel
fundamental para estudarmos a dinamica de uma aplicacao. Este conceito é a nocao de medida

invariante, cuja definicao damos a seguir:

DEFINICAO 1.0.1. Seja (u, X, X) um espago de medida e f : X — X wma transformagdo mensurdvel.



Diremos que a medida j1 é tnvariante por f, ou que f preserva u, se u(f 1 (E)) = u(E) para

todo E mensurdvel.

Provar a existéncia desse objeto para certos tipos de sistemas dinamicos é o tema central desse

texto.
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Preliminares: Teoria da Medida

O proposito dessa parte do texto é definir e reunir as principais ferramentas que serao utilizadas
para o desenvolvimento da teoria. O principal teorema é o Teorema da Convergéncia Dominada,
que sera utilizado algumas vezes para demonstrar alguns resultados da parte principal do texto.
Até chegar 14, definiremos os conceitos de o-dlgebra, funcoes mensuraveis, medidas e a integral de

Lebesgue.

2.1 J—Algebras e Fungoes Mensuréaveis

Uma medida, objeto cuja definicao serd dada mais adiante, é um tipo de funcao que, fixado um
conjunto X, possui como dominio um certo subconjunto de conjuntos de X. Para que esta funcao
esteja bem definida, precisaremos que essa colecao de subconjuntos de X seja bem comportada em
relacao as operagoes usuais de conjuntos. O que queremos dizer por bem comportada é expresso na

definicao de uma o—algebra, que daremos em alguns instantes. Antes disso, definiremos o seguinte:

DEFINIGAO 2.1.1. Uma dlgebra de subconjuntos de um conjunto X € uma familia A de subconjuntos

de X que contém X, o conjunto vazio e € fechado para as operacoes elementares de conjuntos:
(1) X, e A;
(ii) Ac A = A°e A;
(iii)) AABe A = AuBeA;
(w) AABe A = AnBeA;
(vJA,Be A — A—-Be A

DEFINIGAO 2.1.2. Dado um conjunto X, uma o-dlgebra de conjuntos de X é uma dlgebra de X que é

10
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fechada para uniao enumerdvel de elementos de X. Isto €, é um subconjunto do conjunto das partes

de X, 33, que satisfaz:

i) X, Jex;
i) Ae Y = AceX;

, A . ~ o0
iii) se (An)n € uma sequéncia de elementos em ¥, entdo | J,_, A, € X.

Do fato que (| J7_, A,)¢ = o, AS, e de i1), segue que a intersegao de uma quantidade enumerdvel

de elementos Aq, As, ... € ¥ também pertence a 3.

DEFINICAO 2.1.3. O par ordenado (X,X), que consiste de um conjunto e uma o-dlgebra nessse con-

Junto, é dito ser um espa¢o mensurdvel.

Exemplo 2.1.4. Dado um conjunto X, pode-se verificar facilmente que A = {X, &} e P(X) = {B; B <
X} sdo o-dlgebras de X.

Exemplo 2.1.5. Seja X um conjunto enumerdvel. Considere A como sendo o conjunto formado pelos
subconjuntos enumerdveis de X, ou pelos subconjuntos de X cujo complemento é enumerdvel.

X e A, pois X € enumerdvel, e & € A, pois @& = X©.

Dado Y < A, se Y € enumerdvel, tem-se que Y° € tal que seu complemento é enumerdvel, entdo
Ye¢e X. Se Y € nao enumerdvel, entao Y° € enumeravel(por defini¢ao de A), donde Y° € X.

Dado uma quantidade enumerdvel de conjuntos Ay, As, ... € A, tem-se que a unido [ A, € A,

pois € a uniao enumerdvel de conjuntos enumerdveis.

Exemplo 2.1.6. Seja X um espaco topoldgico'. A o-dlgebra de Borel de X, B, € a o-dlgebra gerada
pelos abertos da topologia de X. Quando X = R, temos que a o-dlgebra de Borel é gerada pelos

intervalos abertos de R. Um elemento E € B é chamado de boreliano.

DEFINICAO 2.1.7. Seja A uma cole¢io ndao vazia de subconjuntos de X. Denotamos por o(A) como
sendo a menor o-dlgebra de X contendo A. Isto €, se A é uma o-dlgebra de X tal que A < A, entdo

o(A) € A. Chamaremos o(A) de o—dlgebra gerada por A.

PROPOSICAO 2.1.8. 0(A) = [),.p Ax, onde {A\}ren € a familia formada por todas as o-dlgebras que

contém A.

'Para mais detalhes, ver [2].
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DEMONSTRAGAO. Primeiramente, note que a intersecgao arbitraria [ ,_, A\ de o-dlgebras de X também
é uma o-algebra, pois dado A € (), , Ax, tem-se A° € A,, para todo A € A, donde A° € (), Ax, €
também dada uma quantidade enumeravel de conjuntos Ay, Ay, ... € (,cp An, tem-se |, An € A,
o que implica em | J, y An € (yep An-

Seja B uma o-algebra contendo A. Como vale B n C < B, para qualquer C' € X, segue que

MNaen Ar © B. O que implica na igualdade o(A) = [ycp Ax- m

DEFINIGAO 2.1.9. Uma familia C ndo vazia de subconjuntos de X é dita ser uma Classe Mondtona
se X < C e para toda sequéncia (A,), crescente Ay < Ay < ... de elementos de C, a unido UX_ A,

pertence a C, e para toda sequéncia (By,), decrescente By D By O ... de elementos de C, a interse¢ao

o0
N1 B, pertence a C.

TEOREMA 2.1.10. (Teorema das Classe Mondtonas) A menor classe mondtona que contém uma

dlgebra A coincide com a o—dlgebra o(A) gerada por A.

DeMONSTRAGAO. O leitor interessado pode ver a demonstragao em [6]. ]
Apesar de o ambiente principal de trabalho do nosso texto ser um espago mensuravel, a nocao de
uma algebra de conjuntos de um conjunto X e o teorema acima nao estao no texto atoa. Posterior-

mente, ambos serao importantes para encontrar medidas invariantes de alguns sistemas dinamicos.

DEFINIGAO 2.1.11. Dados dois espacos mensurdveis quaisquer, (X,%1) e (Y,3), dizemos que f :
X —Y éX—mensurdvel se, para todo E € ¥y, f71(E)e Y.
Se temos um espago mensurdvel (X,3) e o espago (R, B), entao a funcio f: X — R € dita ser

Y -mensurdvel se para todo o € R, o conjunto {x € X : f(z) > a} pertence a ¥.
Exemplo 2.1.12. Se X =R e X = B, entdo toda fung¢ao mondtona f € mensurdvel.

Exemplo 2.1.13. Considere X = R e X como sendo a o—dlgebra de Borel, B. Entao qualquer func¢ao
continua f : R — R ¢ Borel-mensurdvel. De fato, dado o € R, o conjunto {x € R; f(z) > a} =
Yo, +0) € a pré-imagem de um conjunto aberto. Como f é continua, f~'(a,+o0) também é

aberto. Consequentemente, pode ser expresso com a uniao enumerdvel de intervalos abertos.

LEMA 2.1.14. Sejam f,g : X — R fungoes mensurdveis e c € R. Entdo, as funcoes cf, fg, f2, f+g e |/]

também sao mensurdveis.

DEMONSTRACAO. [!] n
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LEMA 2.1.15. Seja (fn)n uma sequéncia de fungoes em M(X,X). Se definirmos

f(@) = inf{fn(z);n € N},
F(x) = sup{fu(x);n € N},
(z)
()

f*(z) = liminf f,(z),

F*(x) = limsup f,(z).

Entao f, F, f* e F* sao mensurdveis.

DeMoNsTRACAO. O leitor pode encontrar a demonstra¢ao em [1]

DEFINICAO 2.1.16. Seja (fn)n uma sequéncia de funcoes f, : X — R. Diremos que f : X - R € o

limite da sequéncia (f,)n se, para todo x € X, lim f,(x) = f(x).

PROPOSICAO 2.1.17. Seja (f,)n, uma sequéncia de fungoes em M(X,Y). Se f = lim f,, entdo [ €
M(X,3).

DemonsTRAGA0. Uma sequéncia de nimeros reais converge se, e somente se, lima, = limsupa, =

lim inf a,,”.

No nosso caso, como (f,), converge para f, isto é, para cada = € X, a sequéncia de
nimeros reais (f,(x)), converge para f(x), temos que f(z) = lim f,(z) = limsup f,(x) = F*(x).

Como F* e M(X,>), segue o resultado. n

DEFINIGAO 2.1.18. Uma fungdo ¢ : X — R ¢é dita ser simples se é da forma

Y= Z ajXE;>
j=1

onde By, Ey, ..., B, € X, xg,(v) =1, sex € Ej, e xg;(v) =0, caso contrdrio.
Dizemos que uma representacao da forma acima € dita representacao padrao de p se X =

Ui Ej e se Bin Ej = &, quando i # j.

PROPOSICAO 2.1.19. Seja f € M (X,Y). Entao, existe uma sequéncia de (s,), de fungoes simples

convergindo para f, tal que s,(x) < spy1(x) para todo n e todo x.

2Para mais detalhes, ver [3]
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DeMonsTRAGAO. Fixado n € N, defina, para k € {0,1,...,n2" — 1}, o conjunto Ej, = {x € X : Zﬁn <
f(z) < 75}, e para k = n2", Ey, = {x € X : f(z) > n}. Entdo, cada Ej, ¢ mensurdvel, e
vale UZinl Ek, = X. Defina entao cada s, pondo s,(x) = %, se x € Ey,. Segue por definicdo dos
conjuntos Fy,’s que vale s,(x) < s,11(x) para todo n, e que vale também s, (z) < f(z) < spi1(x).

Como a sequéncia s, (z) é mondtona, e limitada superiormente por n, é convergente. Dai, tem-se

sp(z) < f(2) < Spy1(2)

= lims,(z) < f(z) < lim s,41(x) = lim s, (z),

= f(z) = lims,(x).

A partir disso, podemos demonstrar também o seguinte:

PROPOSICAO 2.1.20. Seja f € M(X,X). Entao, existe uma sequéncia de funcgoes simples (sp)n, tal

que lim s, = f e |s,(z)| < |f(x)| para todo n e todo x.

Y

DemMonsTRAGAO. Note primeiramente que f pode ser expressa como f = ft — f~, onde f* e f

chamadas de parte positiva e parte negativa de f, respectivamente, sao definidas por

f7 (@) = max{f(z),0},
[~ () = max{—f(z),0}.
Temos também a igualdade |f| = f* + f~, donde f* = mT+f e [T = If\T—f Por serem soma
de fungdes mensuraveis, concluimos que f~, f* € M*(X,X). Do que provamos no Lema anterior,
sabemos que existem sequéncias de fungoes simples (wy,)n, (hy)n, tais que limw, = f*, limh, = f~,

wy(z) < wopi(x), e hy(z) < hyyi(x), para todo x em X e todo n natural. Portanto, chamando



15

Sp = W, — h,, temos que s,, — f e

|8n(2)| = [wn(z) — hn(2)]

N
=

+
&
_|_
=
&

Definiremos agora a nocao de medida. De maneira intuitiva, dado um conjunto X, uma medida é
uma maneira de atribuir um "peso”’a subconjuntos de X, permitindo que alguns conjuntos sejam des-
tacados ou "enxergados”’com maior énfase. Dependendo das propriedades que considerarmos, certos
subconjuntos podem receber um peso maior, e, assim, serem mais relevantes para nossa andalise. Além
disso, uma medida também nos fornece a capacidade de falar sobre "tamanho” de determinados sub-
conjuntos de X. Considerando todas essas interpretacoes, poderiamos discutir o que caracteriza uma
medida "boa” e "ruim. Algumas medidas podem nao fornecer uma boa nog¢ao de tamanho, atribuindo
valores excessivamente grandes ou pequenos a todos os conjuntos. Dependendo da caracteristica que
considerarmos, duas medidas distintas podem atribuir valores muito diferentes ao mesmo conjunto,
dependendo das caracteristicas que consideram.

Em alguns momentos, é interessante considerar a medida de um conjunto como sendo infinita,

entdo consideraremos o conjunto dos nimeros Reais Estendidos, denotado por R, que consiste de
R=RuU {—00, +0}.

Ao considerarmos esse novo conjunto, formado por R e esses dois simbolos(que nao sdo numeros),
faremos a convecao de que —o0 < x < 400 para todo x real.

Neste novo ambiente, definimos as seguintes operacoes entre +oo e elementos x € R:

(£0) + (£w) =z + (£w0) = (£©) + . = +o,
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+oo, if x>0,

r(t0) = (£0)r =40,  ifz=0,

Foo, ifx <.

Observe que estamos somando apenas +00 com 400 e 0 mesmo para —oo. Nao definiremos
+0 + (—0), —00 — (4+00) e nem quocientes cujo denominador sao +oo.

Para mais detalhes sobre R, ver [1].

2.2 Medidas

DEFINICAO 2.2.1. Seja X um conjunto e ¥ uma o—dlgebra de subconjuntos de X. Uma medida é

uma funcio p: ¥ — R satisfazendo:

e u(E) =0, para todo E € &,

o n(UJr) =" u(E,), para toda colegio (E,), dois a dois disjunta de elementos de 3.

n=

Note que estamos considerando um tipo de func¢ao que pode assumir o "walor” +o0. Se para todo
X e X, u(X) # +ow, dizemos que u € finita. Se existe uma sequéncia (E,), € ¥ tal que X = J_, E,,
e W(Ey,) < +9 para todo n, entdo dizemos que p € o—finita. Se p(X) = 1, entdo p é dita ser uma

medida de probabilidade.

OBSERVACOES: Em textos de Teoria de Probabilidade, uma Probabilidade é um tipo de funcao
definida da mesma maneira como definimos uma medida acima, exceto pelo fato de que a medida do
conjunto todo € igual a 1. Em Probabilidade, os conjuntos mensuraveis sao os eventos, e o conjunto
X é o que chamamos de espago amostral. O fato de que pu(X) = 1 se expressa na ideia de que o
espaco amostral contém todos os resultados possiveis do nosso experimento, entao a probabilidade

dele deve ser total.
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Exemplo 2.2.2. Um dos motivos de considerarmos o conjunto dos nimeros reais estendidos € dar
significado a um conjunto ter “medida infinita”. Como exemplo, se definirmos a medida de um
intervalo como A([a,b]) = b — a, entdo poderiamos dizer que \([a,+0)) = +00, que € o que nos diz
a ntuigcao.

A funcao X\ definida acima € de fato uma medida, chamada medida de Lebesgue, definida na
o—algebra de algum subconjunto de R. Ou seja, a nocao intuitiva que temos de “tamanho” de um
intervalo, como sendo a diferenca dos extremos desse intervalo, ¢ de fato uma medida. Na verdade,

pode-se mostrar que eziste uma unica medida A tal que A((a,b]) = b — a. Uma demonstragio desse

fato € dada em [1].

Exemplo 2.2.3. Seja X =N e ¥ a o—dlgebra formada por todos os subconjuntos de N. Entao, dado
E € X, se E € finito, definimos u(E) como sendo o nimero de elementos de E. Se E € infinito, entdo

pomos j(E) = +o0.

Exemplo 2.2.4. Seja X um conjunto qualquer e P a o—dlgebra formada por todos os subconjuntos de

X. Fizado p e X, defina u, por

/J“P(E) = O7p¢E7

Mp(E) = 17pe E

tp € chamada de Medida de Dirac de p.

LEMA 2.25. Seja p uma medida definida em uma o—dlgebra ¥. Se E,F € ¥, e E € F, entao u(E) <
pu(F). Se p(E) <+, entao u(F\E) = p(F) — pu(E).

DeMoNsTRACAO. Note que F pode ser expresso como F'= E U (F\E), e que E n (F\E) = &. Assim,

u(F) = p(E) + n(F\E) = u(E),

pois p(F\E) = 0. Se u(F) < +oo, podemos subtrair u(E) de ambos os lados, obtendo

P(F\E) = u(F) — p(E).
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LEMA 2.2.6. Seja p uma medida definida em uma o—dlgebra 3.

(a) Se (E,), € uma sequéncia crescente By € Ey < ... em A, entdo

G ) = lim u(E,).

n—o0

DEMONSTRACAO. (a) Para cada n, defina os conjuntos A,, pondo A, = Ey e A, = E, — E,_1, para

n>1. Temos que A, N A,, = &, se n # m, e que valem as igualdades:

n
:II )

%

L En 0 A= |4,

neN neNi=1 neN
Assim,
n(\J Bn) = p(| ] An) = lim ) (A
neN neN n=1

Note que, por definigao de A,, e pelo Lemma 1.1.27, u(A,) = u(E,) — u(E,_1), para n>1.
Logo,

i p(E) + p(E2) — p(Er) + o+ p(Epe1) — p(En—2) + p(Em) — p(Ep-1)

3
—_

Portanto,

neN n=1

DEFINICAO 2.2.7. Um espaco de medida é uma tripla (X,3, 1), que consiste de um conjunto X,

uma o—dlgebra 3 de subconjuntos de X, e uma medida p definida em .
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DEFINIGAO 2.2.8. Dizemos que uma certa propriedade ou proposicao € vdlida p— quase todo ponto, ou
p—q.t.p, se existe N € ¥ com pu(N) =0, tal que a propriedade ou proposi¢ao vale para todo x € N€.
Dizemos que duas fungoes f,g sao iguais i — q.tp se f(x) = g(x), para todo x € N¢, onde N € ¥ e
u(N) = 0.

Dizemos que uma sequéncia de funcgoes (fn)n definidas em X converge u—quase todo ponto se
exriste N € ¥, com u(N) = 0, tal que f(z) = lim f,(z), para todo x € N°. FEscreveremos f =
limf,, u—q.t.p. Em geral, caso estiver claro qual medida esta sendo utilizada, escreveremos “converge

quase todo ponto”, ou converge “q.t.p”, omitindo a medida.

DEFINICAO 2.2.9. Fizado um espago de medida (X,%, 1), denotaremos por M(X,X) como sendo o
conjunto de todas as fungoes Y—mensurdveis de X em R, e por MT = M+ (X, %) como o conjunto

de todas as fungoes X—mensurdveis nao negativas.

DEFINIGAO 2.2.10. Uma funcdo ¢ : X — R ¢é dita ser stmples se é da forma

Y= Z ajXE;>
j=1

onde By, Ey, ..., B, € X, xg;(v) =1, sex € Ej, e xg;(v) =0, caso contrdrio.
Dizemos que uma representacao da forma acima é dita representacao padrao de ¢ se B;nE; =

&, quando i # j e se X = Jj_, Ej.

2.3 Integral

Definiremos agora a Integral de Lebesgue para funcoes simples. Mostraremos que vale a linea-
ridade da integral, e posteriormente, definiremos a integral também para fungoes mensuraveis nao

negativas, e por fim, para fun¢des mensuraveis quaisquer.

DEFINICAO 2.3.1. Definimos a Integral de uma fungio simples p € M*(X,X) com respeito a medida

[ como sendo o sequinte numero:
fsodu = 2, au(E)).
j=1

LEMA 23.2. Seja o medida em . Dado M € X, se definirmos p* : ¥ — R por p*(E) = p(M n E),

entao p* também € uma medida.
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DEMONSTRAGAO. Assumiremos M # ¢, pois caso o fosse, p* seria identicamente nula. Seja E € X.

Como E,M € ¥, M n E = X € 3. Entao,

Se (Ey,), é colegao dois a dois disjunta de elementos de ¥, entao a cole¢ao (M n E,,),, também é dois

a dois disjunta, e

LEMA 2.3.3. Sejam ji1, fia, ..., b, medidas definidas em 3 € oy, ag, ..., ap, € [0, +00). Entao, se definirmos

p:X - R por w(E) =", aipi(E), temos que p também é uma medida.

DEMONSTRACAO.

Seja E € ..
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Se (Ey)r é colecao dois a dois disjunta de elementos de X, entao

=1 k=1
o] 0 [ee}
= Z g (Ey) + Z asia(Ey) + ... + Z A pln (Ey)
k=1 k=1 k=1
o]
= Z[qu(Ek) + aopta(Ek) + ... + anpin(E)]
k=1
0
= Z (B
k=1

LEMA 2.3.4. Sejam ¢, funcoes simples ¢ = 0. Entao, vale

(i)CJsodu = Japdu,
(17) f(wﬂ/))du = Jsodwr Jd}du-

Além disso, dada ¢ simples se definirmos X : ¥ — R por

A(E) = JSOXE dp,

entao \ € uma medida em 2.

DEMONSTRACAO. Seja ¢ > 0. Se ¢ = Z?:1 ajxg,; ¢ a representagao padrao de ¢, entao

CJsodu = > ca;p(E;) = fcso dp.

7j=1

onde a fungao cp tem representagao padrao cp = Z?zl ca;jxEj.

(i) Seja i) = >, | bixr, arepresentacao padrao de v e considere ¢ também com sua representacao
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padrao. Entao,

m

(o +9)(z Z ajXE, +ZkaFk )

k=1

ajx, () + 2 bexF, (2)

i
)

Z (aj + bj)XE;~F, (T).

Note que a representacao acima é de fato vélida. Isso pode ser visto tomando x € E; n F}, para

(i,1) € {1,2,....,n} x {1,2,...,m}. Temos

n o m n
ZZ a]+bk XE' ka Z Q;
j=1k=1 j=1
n
&

+ 00X B R (%) + o+ (a5 + bn) X B AE, (2)
j=1

+ b)XE;~F (T)

= (a1 + b)) XEnR (T) + (a2 + b)) XEonr (2) + .. + (an + b)XE, AR (T)
= (a1 + b)) XEnR (T)

Zai-i-bl.

Entretanto, observe que a representacao dada acima nao necessariamente é a representacao padrao
de ¢ + 1, pois nao sabemos se E; N Fj, = (J e se os nimeros a; + b, sao todos distintos para todo
(1,7) € {1,2,....,n} X{1,2,...,m}. Para contornar esse problema, chame de ¢;,h € {1,2,...,p}(p é no
maximo nm) os valores distintos do conjunto {a; +b; (4, k) € {1,2,...,n} X{1,2,...,m}, e G}, a unido

dos K n Iy, # & tais que a; + by = ¢,. Entao,

Gn) = > u(E; 0 Fy),

(h)

onde (h) = {(j, k) € {1,2,...,n} X{1,2,....m};a; + by, = c1}.

Assim,

p
P+ = anxa,.

h=1
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¢ a representacgao padrao de ¢ + 1.

Portanto,

Desde que X = (J;_, E; = Uy, Fr,

p(E;) = p(Ej 0 (VF))

pw(Fy) = p(Fyr n (UE;)), donde

n(E;) = i u(E; 0 Fy)

Dai, segue que

JSOJFde Z%M ZbkﬂFk

= fgpdu%—fwdu.

Para mostrar que A é de fato uma medida, note primeiramente que

YXE = Z AiXE;nE-
j=1
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De fato, se x € E; n X, entao

(oxE)(r) = Z anE,-(fB)XE(fB)
= a;Xx(Ek)(z)xE(T)

= aj.

se x € E'mas x ¢ E;, para todo j, ou x € Ej, para algum k, mas x ¢ E, entdo pxg(z) = 0. Como
essa é precisamente a definicao de Z?:I ajXE;~E, vale a igualdade.
Usando o fato provado acima e inducao em n, pode-se mostrar que a integral da soma de n fungoes

é a soma em n das integrais dessas funcoes. Logo,

ME) = J‘PXE dp

= JZ ajXE;nE At

fXE nE du

E’mE

i

Denotemos por H = H(X,R) como sendo o conjunto das fungoes simples de X em R.

DEFINICAO 2.3.5. Dada f € M (X,Y), definimos a integral de f com respeito a medida p como

deu = sup{fgpdu;gpe%,() < p(z) < f(z), Vo e X}

Por fins de simplicidade, escreveremos apenas

deu:supfwdu-

Se fe MT(X,X) EE € X, entio a funcao fxg também é mensurdvel, e podemos definir a
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integral de f sobre E, com respeito a medida p, pondo

Lfdu = ffXE dp.

LEMA 2.36. (a) Sejam f,ge M*(X,) tais que f < g. Entao,

deuéjgdu.

(b) Se he M*(X,X), E,FeX, com E< F, entao

e so

DEMONSTRAGAO. (a) Se p e Hn M™, e ¢ < f, entdo ¢ < g. Dal, tem-se a continéncia
{Jsodu;so eH,0< p(z) < f(z),Vre X} c {deusw €H,0 < p(z) < g(x), Vo e X}.

Por defini¢ao de supremo de um conjunto, conclui-se a desigualdade.

(b) Basta observar que, como E < F, vale a desigualdade hxg < hxp, e aplicar o item (a). m

TEOREMA 2.3.7. (Teorema da Convergéncia Mondtona)

Seja (fn)n uma sequéncia de fungoes crescentes em M*(X,Y), convergindo para f. Entdo,

deu - lignjfnd,u.

DEMONSTRACAO.

De acordo com a proposicao 1.12, f e M*(X,X). Como vale f, < f,11 < f, temos que

| i< [ fuvrdi < [ an

Assim, tomando o limite em n,

1i£nffndu< ffdu.

Para provar a outra desigualdade, defina, para « € R,0 < o < 1, e para p € H n M (X, 3) com
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0 < ¢ < f fixados, o seguinte conjunto:
A= {re X : fulz) = ap(@)}

A, S Ay, pois se T € Ay, entdo foy1(z) = fu(x) = ap(z), e X = J_, A,, pois dado x € X, caso
fosse f,(z) < ap(x), para todo n, terfamos, tomando o limite em ambos os lados, f(z) < ap(z) <
o(x).

Provamos no Lema 1.1.20 que, quando ¢ ¢ funcéo simples, A(E) = §oxpdp = {, ¢ dp é uma
medida em Y. Utilizando desse fato, do fato que X = J”_, A,, e do Lema 1.15, temos

—fsodu

= limf wdp.
n A,

W =x= | e

Como ayp < f, e A, € X, temos que

f p dp <f pdp < andu,
An An

donde

limf agpduzfagod,uélimf fndu.
noJa, noJa,

Como isso vale para todo 0 < o < 1, podemos tomar, para todo k > 1, « = 1 — 1/k. Assim,

Jgod,u = h,?l(l —1/k) f(pd,u < limffn djs.

Como tomamos ¢ simples arbitraria satisfazendo 0 < ¢ < f, obtemos uma cota superior para o

conjunto {§ ¢ du; o € H,0 < ¢(x) < f(x),Vx € X}. Logo, por definicao de sup, concluimos que
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deu = Supfsodu < limffndu,
) n

donde

deu - li}}ljfndu.

PROPOSICAO 2.3.8. Sejam ¢, € MT(X,X) e ce R. Entio, o+ € MT(X,X), cpe MT(X,X) e

vale

J(so +)dp = Jsodu + fwdu,

c J pdp = f cdp.

DEMONSTRACAO. Sejam (S, ), (hy), sequéncias de fungoes simples convergindo para ¢ e v, respectiva-
mente. Entao, a sequéncia de fungoes simples (s, + hy,),, definidas por (s, + hy)(x) = s,(x) + hy(x)
converge para ¢ + 1. Portanto, pelo fato de que vale a linearidade da integral para fungoes simples,

e pelo Teorema da Convergéncia Dominada, temos

f(cp +)dp = fliin(sn + hy)dp
~tim [ (s + o)
= 1i7rln(f Sndp + Jhndu)

= lim f Spdpt 4+ lim J hndp

= Jgpd,u + f@bdﬂ.

De maneira analoga, temos que se (s,), é sequéncia de fungoes simples convergindo para ¢, entao
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(csp)n converge para cp, donde

cfgpdu = cflim Sndjt
= lim J cspdp

= f clim s, dpu

= fcgodu.

Observe o que acabamos de fazer acima. Utilizamos um fato ja conhecido para a integral de

funcoes simples, e o estendemos para funcoes mensuraveis nao negativas, utilizando que toda funcao
em M™*(X,Y) pode ser aproximada pontualmente por fungées simples, e o Teorema da Convergéncia

Mondtona.

Este é um tipo de construcao que sera frequente tanto nesta parte introdutéria sobre teoria da
medida, quanto na parte em que de fato falaremos de teoria ergddica.. Quando queremos provar
alguma proposicao para fungoes mensuraveis quaisquer, comecamos por fungoes simples, e dai utili-
zamos duas ferramentas muito poderosas: o fato de que toda funcao mensuravel é o limite de fungoes

simples, e o Teorema da Convergéncia Dominada.

Prosseguiremos agora para provar outro teorema que serd extremamente util para demonstrar
proposicoes atraves de um argumento analogo ao que acabamos de usar, isto é, provar primeiro a
proposicao para uma classe menor de fungoes, e utilizando do fato que as nossas funcoes podem ser
aproximadas pontualmente por essa classe menor de fungoes, e do fato que é suficiente a convergen-
cia pontual para que o limite entre dentro da integral de Lebesgue, para provar para o caso maior.
Antes disso, provaremos alguns lemas que nos serao tteis, e definiremos a integral para uma funcao

mensuravel qualquer.

TEOREMA 2.3.9. (Lema de Fatou) Se (f,), ¢ uma sequéncia em M*(X,Y), entdo

flim inf f,, dpu < lim infffn dp.
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DEMONSTRAGAO. Seja ¢, = inf{ fo, fins1, .- }-

Como

{fm; fm+17 } = {fm+17fm+27 }7

vale que
Gm = If{ frn; frnsts -} < Gmar = Inf{ frni1, frnso, -}
Ou seja, (gm)m é uma sequéncia mondtona, e limitada. Portanto, converge. Chame
g = linrlngm = lirglinf fn-

Como ¢,, < f,, sempre que m < n, temos que
fgmdu < andu-

Repetindo o processo acima e definindo

Sy = inf{ffn d,u,ffnﬂ du, ...} = inf K|

temos que § g,,, dpu é cota inferior de K, e, portanto, deve ser menor que a maior cota inferior de K.

Ou seja,
ng dp < sy.
Como isso vale para todo m < n, segue que
fgm dp < liTan Sp = liqgn inf J frndpu,

para todo m < n.

Do fato que (g,,) é crescente e que limg,, = liminf f,,, segue pelo Teorema Da Convergéncia
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Monétona que

Jlim inf f,,, dp = lim ng dp < liminf J fndp.
LeEMA 2.3.00. Seja f € M1 (X,X). Se definirmos X\ por

: R
NE) = | fin,
E
entao \ € uma medida em 2.

DEMONSTRAGAO. Se E # (F, entao xyg # 0. Como f = 0, fxg = 0. Segue, pela monotonicidade da

integral, que

JfXEdN: Lfdu>0-

Se £ = ¥, entao fxp ¢ a funcao identicamente nula, o que implica em SE fdu=0.
Para provar a aditividade de A, considere (E,), uma sequéncia de conjuntos em Y, dois a dois
disjuntos, tal que E = | J"_, E,.

Defina a sequéncia de fungoes ( f,,), pondo
fo =2 X5
k=1

Note que para todo x € E, vale lim f,,(z) = f(z)xg. De fato, x € E;, para algum i € N e i ¢ Ej, para

todo k # i. Logo, para n > 1, vale

@) = f@)xp(@)] = | )] f@)xm (@) = f(@)] = |f(@)xe @) = f@)] = [f() = f@)] = 0.
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Portanto, pelo Teorema da Convergéncia Mondtona,

NE) = M| B = [ fredu

DEFINICAO 2.3.11. Seja f € M(X,X). Lembre que f pode ser escrita como f = f* — f=. Se
fr fre MY (X,X), e tanto f* quanto f~ possuem integrais finitas com respeito a medida p, entao

dizemos que f € integrdvel, e definimos a integral de f com respeito a p por

| rauw={sedu—| 1 an

PROPOSICAO 2.3.12. Seja f fungdo mensurdvel. Entdo, f € integravel com respeito a i se, e somente

| saui < [ 171dn

se, | f| o € e wvale

DEMONSTRACAO. Primeiramente, note que

1" = max{|f|,0} = [f| = f+ [,
[fI7 = max{~[f],0} = 0.
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Se f é integravel, entao

[ 1= [1r1vau+ [ 151 a

szdu+ffdu<oo.

Suponha agora |f| integravel. Desde que f* < [f| e f~ < |f|, e que ambas f* e f~ pertencem a

M*(X,Y), temos
Jf*du < flfldu

ff‘du < Jlfldu,

donde

deu = Jf*du - ffdu < .

Além disso,

g =1 [ £rau = | gau <) [ a1 [ du
= [ s [
= Jlfldu-

PROPOSIGAO 2.3.13. Se f é mensurdvel, g € integrdvel e |f| < |g|, entdo f é integrdvel,

flfldu < flgldu

e [ € integrdvel.
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DeMonsTRAGA0. Como |f], |g] € M (X, X)), segue a primeira parte, e a segunda segue do que acabamos

de provar na proposicao anterior. [

TEOREMA 2.3.14. Sejam o, fungoes integrdveis com respeito a medida . Entdo, ap e @ + 1 sdo

o J pdp = J apdp,

J(so +¥)dp = fs@du + fwdw

integraveis, e vale

DEMONSTRACAO. Se v = 0, entdo (af)t(z) = max{af(z),0} = af(x), se f(z) > 0e (af)"(zx) = 0,

caso contréario, donde (af)* = af*. De maneira analoga, mostra-se que (af)” = af~. Portanto,

O caso o < 0 € similar.
Se ¢ e 1 s@o integraveis, entdo |¢| e |¢| também o sdo. Como |p + | < |p| + ||, segue que
| + 1| também é integravel, o que implica em ¢ + 1) integréavel.

Por fim, como

(p+9)=(p" =)+ @ —47)
= (" +9") = (¢~ —97),
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segue que

[+ w1t = [t + 0= (o + v )an
= ﬁp*du + Jzﬁdu - f@du - deﬁb
= (J ' dp — f@‘du) + (J Y dp — Jw‘du)
= Japdu + deu.
(Utilizamos do fato que a linearidade da integral vale para fungdes mensurdveis nao negativas). m

TEOREMA 2.3.15. (Teorema da Convergéncia Dominada) Seja (f,), uma sequéncia de funcoes inte-
grdveis que convergem q.t.p para uma [ : X — R mensurdvel. Se existe g integrdvel tal que |f,| < |g]

para qualquer n, entao f € integravel e

J fdu = limf Fadp

Antes de demonstrarmos o Teorema, provaremos um fato que sera utilizado na demonstracao.

LEMA 2.3.16. Seja A um subconjunto limitado e ndao vazio de R. Se definirmos o conjunto -A por
—A:={—x:xe A},
entao

inf(—A) = —sup A4,
sup(—A) = —inf A.

DEMONSTRACAO.

Sexe A, entao r < supA = —x > —supA. Ou seja, —sup A é cota inferior de -A. Mos-
traremos agora que —sup A é a maior cota inferior desse conjunto. Dado ¢ > 0, existe z € A tal
que x > sup A — ¢, donde —x < —sup A + €. Segue entao a igualdade. A ideia para provar a outra

igualdade é andaloga. u
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DEMONSTRACAO. (Teorema) Comegemos redefinindo f e cada f,, em algum conjunto E tal que pu(FE) = 0.
Assim, podemos assumir que a convergéncia de (f,), se dd em todo X. Como |f| = lim | f,| < g, segue
que |f| é integrével, o que implica em f integravel. Além disso, g = |f.| = —f, = g+ fu = 0.
Como g e f, s@o ambas mensuraveis, podemos aplicar o Lema de Fatou:
Jgdu + deu = J(g + f)dp

= Jhm(g + fo)dp

= Jlim inf(g + fn)dp

< liminf J(g + fn)dp

= lim inf(f gdu + andu)

= Jgdu + lim inf J frdu

Subtraindo § gdp em ambos os lados, obtemos

deu < lim infffnd,u.

Por outro lado, como também vale g — f,, = 0,

Jgdu - ffdu = P(g — fldu
= [ im(g = f)au

.
= | liminf(g — f,)du

J

< lim infj(f — gn)dp
= lim inf(Jgd,u — ffnd,u)
= fgdu — lim supf Tndp,

implicando em

lim supjfndu < ffdu < lim infffnd,u.
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PROPOSIGAO 2.3.17. Sejam iy, ji2, ..., itn, medidas definidas em 3, oy, s, ..., € R e f fungcdo men-

surdvel definida em X. Entado,

ffd(gaim) - gaiffdui

DEMONSTRAGAO. Se f = xg, para algum F € X, entao

k k n n
f FaCy an) = (Vo) (B) = Y B) = 3. f of dyis

Se f é simples, segue o resultado pela linearidade da integral. Se f é uma funcao mensuravel qual-
quer, entao considere (s,), sequéncia de func¢oes simples nao negativas, tal que |s,(z)| < |f(z)] e

lim s, (z) = f(z). Segue, pelo Teorema da Convergéncia Dominada, que

f(p d(z Qfl;) = liIIgIl J Sp; d(z Qfl;) = lillcrnz o, Jsk dp; = Z o Jgp dp;.
i=1 i=1 i=1 i=1



Capitulo

3

Medidas Invariantes

Comecamos relembrando a definicao de Medida Invariante dada na introducao do texto.

3.1 Definicao de Medida Invariante e ferramentas para provar existéncia

DEFINICAO 3.1.1. Seja (u, X, X) um espago de medida e f : X — X wma transformagdo mensurdvel.
Diremos que a medida p ¢ tnvariante por f, ou que f preserva u, se u(f~(F)) = u(E) para

todo E mensurdvel.

PROPOSICAO 3.1.2. Seja f : M — M uma transformagdo mensurdvel e u uma medida finita em M.

Suponha que existe alguma dlgebra A de conjuntos mensurdveis de M tal que A gera a o—dlgebra de

Borel de M e u(E) = u(f~*(F)) para todo E € A. Entao, pu € invariante por f.

DemonsTRAGA0. Comegaremos mostrando que a colegao C = {E € B : u(E) = pu(f~Y(E))} é uma
classe mondtona(2.1.9). Dada uma sequéncia crescente E; € Ey < ... de elementos de B, temos, pelo
Lema 2.2.6, que

u(E) = lim p(E;),

1—00

p(f~H(E)) = lim p(f 1 (E3)).

37
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Como cada FE; pertence a C, segue que

p(E) = lim pu(E;)

1—00

= lim pu(f~(E))

1—00

= u(f7H(E)).

De maneira andloga, mostra-se que a intersecao de uma sequéncia decrescente de elementos de C
também pertence a C, e C é uma classe monétona. Como C contém A, contém também, pelo Teorema

2.1.10, a o—algebra gerada pela algebra A, que é justamente a o—algebra de borel de M. [ ]

PROPOSICAO 3.1.3. Seja (M, d) um espago métrico, xo € M e f: M — M mensurdvel com relagio a
o—dlgebra de Borel. Entao, ., é uma medida invariante por f se, e somente se, f(xo) = xg, onde a

medida 0., ¢ a Medida de Dirac de xy (ver Exemplo 2.2./).

DEMONSTRACAO. Suponha §,, invariante por f. Caso f(zg) # o, entao zg ¢ f~ (o), donde {zo} N

fHxo) = . Assim,

absurdo. Logo, f(zg) = xo.
Reciprocamente, suponha f(zg) = z9. Dado A mensuravel, podemos ter zo € A ou xy ¢ A. Caso

T € A, entdao zg € f71(A), pois f(xg) = xo. Dal,
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Como tomamos A mensuravel qualquer, d,, é invariante por f. [ ]

PROPOSICGAO 3.1.4. Sejam f : M — M uma transformagdo mensurdvel e yu uma medida em Y. Entdo

f preserva p se, e somente se,

fsodu = JSOOfdlh

para toda ¢ : M — R p—integravel.

DeMonsTRAGAO0. Para provar a ida, provaremos inicialmente para fungoes caracteristicas e fungoes
simples, e depois utilizaremos o fato de que toda funcao mensuravel é o limite de uma sequéncia de
fungoes simples.

Se B € X, entao
JXB dp = p(B),
por definigao. Note que (xgo f)(x) =0, se f(x) ¢ B, e (xgo f)(x) = 1, caso contrario. Ou seja
XB o f = Xf18)

Assim, como f preserva u,

| xadn = By = s (B) = [ e sl

Se ¢ é uma funcgao simples, entao vale o resultado por linearidade da integral.
Se ¢ : M — R é uma funcao mensurdvel qualquer, considere uma sequéncia (s,), de fungoes
simples, tal que s, — ¢, e |s,(z)| < |¢(x)], para todo n e x em M. Pelo Teorema da Convergéncia

Dominada (2.3.15),

Jgod,u = hmfsndu = limJ(snof)d,u = Jgpofd,u.

Para demonstrar a volta, basta considerar, para cada B € X, a funcao caracteristica de B, xg. Por
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hipétese, vale

fs@du=f900fdu

para toda ¢ : M — R, y — integrvel. Em particular, para xp,

w(B) = JXB dp = JXB ofdu= JXf—l(B) dp = p(f~1(B)),

e o resultado estd provado. [ ]

3.2  Exemplos

Exemplo 3.2.1. Considere o espaco mensurdvel (f,B), onde B é a o—dlgebra de Borel de [0,1] e
f:10,1] = [0,1] € dada por f(z) = z*.
Iqualando f(x) = x, concluimos que seus tinicos pontos fixos sio x =0 e x = 1. Pela proposi¢ao

3.1.3, temos que f possui pelo menos duas medidas invariantes, a saber: as medidas de Dirac dg e

1.

Exemplo 3.2.2. (Mapa Tenda) Considere agora o espago mensurdvel (T,B), onde B é a o—dlgebra

de Borel de [0,1] e T : [0,1] — [0,1] € o mapa

2z, 0<z<1/2,
T(x) =

21 —2), 1/2<z<l.
cujo nome € justificado pelo seu grdfico, que tem o formato de uma tenda:
Note que para todo intervalo I = [a,b] < [0, 1], sua pré imagem € a uniao dos intervalos [%%],
[L52, 2], Como cada um desses intervalos tem medida de Lebesque A (2.2.2) igual a 3(b— a), vale

a iqualdade
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0.5

0.5 1

Figura 3.1: Grafico do Mapa Tenda. Fonte: Autor.

Por consequéncia do que mostramos acima, vale também que \(T~*(Ul,)) = A(ul,,), para qual-
quer colegao finita de intervalos contidos em [0, 1]. Agora, perceba que a familia formada pelas unioes
finitas de intervalos de [0,1] é uma dlgebra que gera a o—dlgebra de borel de [0,1] (veja [1]). Pela

proposicao 5.1.2, seque que A € invariante por T.

Exemplo 3.2.3. (Ezpansao decimal) Seja (f,B) um espaco mensurdvel, onde B € a o—dalgebra de

Borel de [0,1], f:[0,1] — [0,1] € a funcao definida por

f(z) = 10x — [10x]

e [y = o maior inteiro menor ou igual a y. Note que f leva x na parte decimal de x. Afirmamos

que medida a de Lebesque A € invariante por f. De fato, da imagem acima, podemos ver que dado um
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0 2/10 4/10 6/10 8/10

Figura 3.2: Grafico de f. Fonte: [1].

intervalo I < B, a pré imagem de I € composta por 10 intervalos com comprimento 10 vezes menor

que I. Assim, AN(I) = X(f~*(I)). Por consequéncia disso, vale a invaridncia também para uma unido

1
finita de elementos de B. Analogamente ao exemplo anterior, seque pela Proposicao 5.1.2 que \ é

invariante por f.
Surge entao a duvida: qual a vantagem de ter uma medida invariante por f? Por que motivo

estudar Sistemas Dinamicos com medidas invariantes? Uma possivel aplicacao e motivacao para o
estudo da existéncia de uma medida invariante é o seguinte teorema:

TEOREMA 3.2.4. (Recorréncia de Poincaré) Seja f : M — M uma transformacgdao mensurdvel e pu

uma medida finita invariante por f. Seja E < M um conjunto mensurdvel com u(E) > 0. Entao,

para p1-quase todo ponto x € E, existem infinitos valores de n para os quais f"(z) € E.

DemonsTRAGA0. Comegemos definindo o conjunto

Ey={zeE: f"(z)¢ E Vne N}

O primeiro passo é mostrar que p(Fy) = 0. Para isso, provaremos que para todo n,m € N, os
conjuntos da forma f~"(FEy) f~"(Ey) tem interse¢ao vazia. De fato, suponha existente x € f~"(FEy) N

f~™(Eyp). Assumindo m > n sem perda de generalidade, temos y = f™(x), donde y € Ey e f™ " (y)
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f™(z) € Ey. Do fato que Ej esté contido em E, concluimos que y € E, o que entra em contradigao
com a defini¢ao de Fy. Isso nos mostra que a colegao de conjuntos {f~"(Fo)}nen é de fato dois a dois
disjunta.

Do fato que p é invariante, temos que u(f~"(Ep)) = u(Ep) para todo n = 1. Entao,

o0 o0 o0
U Eo = 2 Eo = Z 2 Eo
n=1 n=1 n=1

Do lado esquerdo da igualdade, temos uma expressao com valor finito, pois u é uma medida
finita, por hipétese. Do lado direito, estamos somando infinitamente o mesmo valor. A tnica maneira
possivel para que o lado direito seja finito é que pu(Ep) = 0.

Seja agora F o conjunto dos elementos de E que retornam para E apenas uma quantidade finita
de vezes.

Por defini¢ao, pode-se ver que para todo ponto x € F', existe algum j tal que f?(z) € Ey. Ou seja,
m .
Fel (5.
5=0

Pelo fato de que pu(Ep) = 0 e p é invariante, segue que

E u(F) =0, como querfamos demonstrar. u

Esse teorema é muito interessante para responder o tipo de pergunta que nos fizemos na intro-
dugao do texto. Se considerarmos o subconjunto mensuravel £ < M como o "lugar” que estavamos

falando no comeco, entao concluimos que, a partir da perspectiva da medida invariante por f con-
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siderada, temos a informacgao de que quase todo ponto cuja trajetéria é determinada pelo sistema
dinamico f passa infinitas vezes por esse lugar. Isso nos da uma informagao muito 1til sobre a dina-

mica de f.

Tal resultado evidencia a importancia de uma medida invariante para uma transformacao f,
quando se tem por interesse estudar a dinamica dessa transformacao. Surge entdao um novo questio-
namento: Dada uma transformacao mensuravel f : M — M, quando podemos garantir a existéncia

de uma medida p que é preservada por {7

Responder essa pergunta é o objetivo principal desse texto. E ela é respondida pelo seguinte

teorema:

TEOREMA 3.2.5. Seja f : M — M uma transformacdo continua em wm espaco métrico compacto.

Entao, existe uma medida de probabilidade p invariante por f.
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4

Existéencia de Medidas Invariantes

A ideia para a demonstracao desse teorema ¢é definir uma certa topologia no conjunto das probabi-
lidades em M, e, a partir dai, elaborar uma "maquina de construcao” de medidas invariantes, através
da definicao de sequéncias que admitem subsequéncias convergentes nessa topologia, de modo que
todo limite dessas subsequéncias (todo ponto de acumulacao da sequéncia principal) é uma medida

f invariante. Comecemos, entao, definindo essa topologia.

A partir de agora, fixaremos alguns parametros adotados no texto daqui para frente. Seja M
um espag¢o métrico compacto e ¥ sua o—algebra de Borel (ver exemplo 2.1.13). Denotaremos por

M (M) como sendo o conjunto formado por todas as medidas de probabilidade definidas em M.

4.0.1 A Topologia fraca™

Definiremos agora uma topologia em M;(M), chamada topologia fraca*. Dado ¢ > 0, p €
Mi(M) e & = {p1,p2,..., pn} um conjunto finito formado por fungoes ¢; : M — R continuas,

definimos o seguinte conjunto:
Vie,u, @) :={ve My(M) :|{pidv—§p;du| < e, para todo i}.

PROPOSICAO 4.0.2. Seja (Vy)xea a familia formada por todos os conjuntos da forma (4.0.1). Entao,

(V\)xea pela satisfaz:

e Para toda medida p € My (M), eziste algum X € A tal que € V.

45
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o SepeVy nV,,, entao eziste Vy, € (V))rea tal que

peVy < Vi, nVy,. (4.1)

DEMONSTRACAO.

Note que para toda € My(M), pe Ve, u, ), onde e > 0 e ® é conjunto qualquer como definido
acima. Além disso, se v € V (e, 1, ®) NV (eg, pa, V), onde ® = {1, 02, ..., o} € U = {11, Y9, ..., U}
entao denotando por €2 o conjunto 2 = ® U ¥, por k; e w;, com i e j variando de 1 até n e de 1 até

m, respectivamente, os valores da forma

ki=¢e1— ’J%dﬂl - J%’d’/\

w; = €9 — |f¢z‘d/vbz - J%‘dﬂ

e tomando € = min{ky, ko, ..., ky, w1, Wo, ..., Wy, }, vale que para toda medida p € V (e, v, Q),

|f¢idﬂ - J%’dul\ = !Jsoidu - fsoidv + J@idV — Jsoz-dm!
< lfsoidu - fgaidw n |fgaz-du - Jsoidm
<eér— \J%dv - Jsﬁidm\ + |fsoidv - J‘pid/M‘

=&,

para todo i € {1,2,...,n}. Ou seja, u pertence a V(eq, 1, P), e de maneira andloga, mostra-se que

pe Ve, u, Q). Portanto, V(e,v, Q) < Ve, u1, ®) 0 V(ea, p2, V).

Isso justifica a seguinte definicao:

DEFINICAO 4.0.3. A topologia fraca* é a topologia que se obtém considerando os conjuntos da forma

Ve, u, @) como base de abertos.

Com o intuito de fazer o que dissemos no inicio desta secao, devemos definir também o que

'Mostramos que os conjuntos da forma V' (y, e, ®) satisfazem as condigoes suficientes para que possam ser tomados
como base de uma topologia. Para mais detalhes, ver [2].
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significa uma sequéncia de medidas convergir nesta topologia.

DEFINICAO 4.0.4. Seja (i), uma sequéncia de elementos de My(M). Diremos que essa sequéncia
converge para i € Mi(M) na topologia fraca*, e escreveremos p, —> p, se, para todo ¢ > 0 e
todo conjunto finito ® = {1, e, ..., pn} de fungoes continuas ¢; : M — R, existe ng € N tal que

n>ng = , € V(e u®).

Observagao 4.0.5. A definicao que demos acima € mesma definicao que se dd ao falar de convergéncia
de sequéncias em espacos topologicos quaisquer, a unica diferenca € que se considera os abertos do

espago em questdo, ao invés dos abertos da forma V (e, u, ®). O leitor interessado pode consultar [”].

LeEMA 40.6. Uma sequéncia (i), converge para i em My(M) na topologia fraca™® se, e somente se,

f@dmf—*dem (4.2)
para toda ¢ : M — M continua.

DEMONSTRACAO. Seja (ji,), ma sequéncia em My (M) e e My (M) tal que pi,, — p1. Por definicio,
para todo € > 0 e todo conjunto finito ® = {1, @a, ..., ¢, } de funcdes continuas, temos que existe

no € N tal que n > ny = p, € V(e, u, ®). Isto é,

|f%@m—f%@ﬁ<&

para todo i de 1 até n. Assim, dada ¢ : M — R e € > 0, considere o conjunto unitario ® = {¢}, e

Ve, p, @). Existe entdo ng € N tal que n > ny

=$|f¢@%*fw@4<&

Em outros termos, ({¢du,), converge para §¢odu. Reciprocamente, dados ® = {1, @a, ..., o} €
e > 0, queremos mostrar que existe n’ € N tal que n > n’ = pu, € V(e, u, ®). Por hipdtese, temos

que para cada i de 1 até m, existe n; € N tal que n > n; implica

|f%@m—J%@d<a



48

Portanto, tomando n’ = max{ni, ng, ..., N, }, tem-se para n > n' que

!Jsoidun—fsoidu! <e,

para todo i. Isto é, @, € V(e, u, D). [

TEOREMA 4.0.7. Toda sequéncia (i), = Mi(M) admite uma subsequéncia que converge na topo-

logia fraca®. Ou seja, My (M), munido da topologia fraca™® é sequencialmente compacto.

DEMONSTRACAO. Seja C°(M) o espago de todas as fungoes continuas de M em R, e D um subconjunto
enumerével e denso da bola unitdria em C°(M)([4], Teo A.3.13, pgina 419). Note que, para cada
neN,

|fcpnduk| <J|<pn|d,uk <Jld,uk = 1.

Assim, para cada n natural, a sequéncia (S ©n dpg) € limitada. Como se trata de uma sequén-
cia de nuimeros reais, temos, por Bolzano-Weierstrass, que existe, para cada n, uma subsequéncia
(§ on duk?) ; que converge para algum numero real, que denotaremos por ®,,.

Efetuado o processo acima para n = 1, obtemos a sequéncia de indices (kj); = (k{, ky, k3, ...) tal
que Sgplduk}_ converge para ®;. Caso a subsequéncia ({ oo d,ukjl_ ); de (§ 2 dug)r, nao seja convergente,
podemos, pelo mesmo argumento anterior, extrair uma outra subsequéncia, obtendo assim uma nova
sequéncia de indices, que denotaremos por (k2); = (k7, k3, k3, ...), tal que a subsequéncia (§ ¢, d,uka_) j
é convergente.

Indutivamente, supondo que a sequéncia de indices (k?_l) é tal que ({1 d,uk;;fl) ;j converge para
®,,_1, podemos extrair uma subsequéncia (k%) de (k;?’l) de modo que (§¢,—1 duk;;—1)j converge para
D,,.

Em outras palavras, extraindo uma subsequéncia convergente para n = 1, podemos obter, a
partir dessa, uma subsequéncia convergente de (¢, dux)k, tal que, para cada n, a sequéncia (k?) j
estd contida em (k7~1);.

Defina entao a sequéncia de indices (I;); pondo [; = k:g Observe que (/;); esta contida inteiramente
em (k;);, por construgao de (k});, e que estd contida em (k7);, exceto possivelmente por um niimero
finito de termos Iy, 1, ..., l,_1.

Assim, (§ ¢, du,); esté contida em (§ o, dpkr);, a menos de uma quantidade finita de termos.
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Segue entao, por ser uma subsequéncia de uma sequéncia convergente, que § ¢, dp; — @y,

Defina agora o operador ®, por

®:C°(M) - R,

p— limfcpdmj.

Mostraremos que de fato ® estd bem definido. A ideia é mostrar que (§ ¢ dpy;); ¢ de Cauchy. Como
R é completo?, a sequéncia deve convergir. Dados € > 0 e ¢ € B(0, 1), existe uma sequéncia (ipy,);, de
elementos de D tal que ||¢, — ¢|lo < €/3, para todo n > ng, onde ||@, — ¢llo = Sup,earlen(z) — o(2)].
Como (Sgodulj ); é convergente para elementos de D, é uma sequéncia de Cauchy. Assim, fixado
n € N, existe ko € N tal que 7, j > ko implica em |§ @, duy, — § @, dpu,| < €/3.

Entao, para n > ng e i, k > kg, temos

Ifsodmj - Jsodmi = \fs&duzj - fsonduzj + fsonduzj - fsonduzi + fsonduzi - fs&duzi

< \fson 1, —fsonduzi +|f¢nduzi—fs0dmi +|f<pndmj —f@duzj\
19 9 19

<3+3+3

= E.

Se p ¢ B(0,1), e ¢ # 0, considere ¢ = 2= € B(0, 1).

[l
_ . ¥
®(p) = lim J Tl dpu,
= % lim J o dp;
el

— lim f odp, = () = [ ol|® ().

20 conjunto dos ntimeros Reais é um espaco métrico completo. Ou seja, toda sequéncia de Cauchy é convergente.
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Por fim, observe que

D1 + apy) = lim J(% + aps) dpu,
= limf@l dp; + alimf@ dyu,

= ®(p1) + a®(pa),

®(p) = 0, para qualquer ¢ > 0 e que se ¢ = 1, entdo ®(¢) = 1. Pelo Teorema de Riesz-
Markov([1], Teo A.3.11, pagina 467), existe uma medida de probabilidade u € My (M) tal que

P(p) = lim f @ dyu,

= fgpd,u.

Em outras palavras, p; = . Portanto, M (M) é sequencialmente compacto. [ ]

Observagao 4.0.8. Uma outra op¢ao seria ter mostrado que My(M) é compacto na topologia
fraca*. Ou seja, toda cobertura de My(M) por meio de abertos admite uma subcobertura finita.
De fato, hd essa possibilidade pois a topologia fraca* é metrizdvel. Isto é, existe uma métrica em
My (M) tal que a topologia gerada pelas bolas abertas dessa métrica coincide com a topologia gerada
pelos conjuntos da forma V (e, pu, ®). Como consequéncia disso, obtem-se a equivaléncia de compa-
cidade e compacidade sequencial. Para mais detalhes sobre a metrizabilidade de (My(M), fraca*®),

ver [/]. Para mais detalhes sobre compacidade e compacidade sequencial, ver [2].

Seja f : M — M. Dada n medida em M; (M), defina o mapa

fo My(M) — My (M),
n > f«n, pondo
fan(B) = n(f~(B)).

Note que f.(n) =n < n(B) = n(f~(B)), para todo B € X. Isto é, f é invariante por 7 se, e
somente se, 17 é ponto fixo de f,. A ideia para demonstrar o Teorema 3.2.5 esta centrada em construir

uma sequéncia de medidas que tem a propriedade de que todo ponto de acumulacao é ponto fixo de

fs-
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LEMA 4.0.9. Sejam n medida e ¢ uma fungdo mensurdvel. FEntao,

|edtn=[oran

DEMONSTRAGAO. A ideia é analoga a proposicao anterior.

Suponha que ¢ = xg, B € 3.

| xmdren = fonB) = nsB) = [ di = [ xno san

Se ¢ é funcao simples, o resultado segue da linearidade da integral. Se ¢ é funcao mensuravel
qualquer, considere uma sequéncia (s, ), de fungoes simples tal que |s,(z)| < |¢(z)|, para todo n e

todo x. Logo,

Js@df*n = lignfsndf*n = 1i7rlnf(sn0f) dn = JsOOfdn.

PROPOSICAO 4.0.10. (Continuidade de f*) Seja (1), uma sequéncia de medidas em Mi(M) conver-

gente na topologia fraca*. Entao, existe lim f,(u,) e vale

lm fo(pn) = fo(lim py).

Onde o limite significa que a sequéncia f.(u,) converge para fi(p) na topologia fraca*.

DEMONSTRAGAO. Seja pn = lim pu,,.

lim f*(,un) = f*(hmﬂn) D

para todo € > 0 e todo ® = {©1, P2, ..., om} conjunto formado por funcoes continuas p; : M — R,
existe ng € N tal que n > ng = u, € V(u, ®,¢).

Ou seja,

vt = [ondronl =1 [ o s dn= [ oo paul <
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para todo 1. Pelo lema 2.1.1,

i = Jo = Js@dun - Js@du,

para qualquer ¢ : M — R continua.
Assim, dados € > 0 e ® conjunto como acima, temos que desde que f é continua, cada p; o f

também o €. Logo, para cada i, deve existir n; € N tal que

n>n; = ]Jgpiofdun—fgpiofdu|<5

Tome ng = max{ny, na, ...,y }. Entdo, n > ng implica

|f%of¢w—fwmf@d<&

para todo 1 € {1,2,...,m}, e o resultado estd provado. [ |

4.0.11 Demonstracao do Teorema de Existéncia

Temos o necessario para provar o resultado principal. Provamos anteriormente que o conjunto
das medidas de probabilidade em M é sequencialmente compacto na topologia fraca®*. Dada uma
probabilidade v qualquer, construiremos uma sequéncia de medidas, e usaremos desse fato para
mostrar que qualquer subsequéncia convergente dessa sequéncia que construimos a partir de v deve
ser uma medida invariante por f. Com efeito, dada v € M;(M), defina a seguinte sequéncia de

probabilidades:

1 n—1 _
=~ D, flv.
7=0
TEOREMA 4.0.12. Todo ponto de acumulacio de uma sequéncia do tipo acima é uma probabilidade
imvariante por f.

DEMONSTRACAO.

Devemos mostrar que, se (4, ) ¢ uma subsequéncia convergente de (j,), convergindo na topologia
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fraca™* para pe My(M), entao f,(u) = p. Note que

ne—1

1 .
Jo(w) = J* Qi pon,) = fo(lim - ZO fiv)

ng—1
1 k

= lim — Z fitly

k
N oy

nk—l

1 )
— lim — J Ny,
SO fiv e gy

J=0

A tarefa agora serd mostrar que de fato p,, + % fixv —v — u. Isso ocorre se, e somente se, para

todo € > 0, e para toda ¢ : M — M continua, existe ng, € N tal que n, > ny, implica em

1 1 1
Ifsod(unk + —(fitv —v)) - fsodu\ = Ifsadunk - —fsodff’“v - — fsodv - fsodul
ng ng ng

< E.

Ora, do fato que p,, — p, sabemos que existe ny, € N tal que

€
ng > Ngpp — |J‘Pdﬂnk - f(de <3
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Olhemos entao para a parte restante.

1 1
\—Js&d v —JsodV\
N N

1 1
|— Jgp o firdy — —Jgpdz/\
N N

1 n
= —|J¢O 2E = pd|
N
1 -
|Q00f* —90|dl/
Nk

1 n
—jwom £ lldv
N

N

N

N

1 n
— Jsup | o fi*[ + sup |p|dv
ng

N

1
— J2 sup |¢|dv
M,

1
= —2sup|p|.
g

Tomando entao ng, € N tal que

1 €

> _ < —
T = Tk ng  4sup|o|’

teremos, tomando ng, = max{ng,, nk, }, que para todo ny > ny,, vale

1 1 1
|Jsod(unk + —(fi*v—v)) - fsodM = |fs&dunk - —de MR —fs&dvf Js@dul
Ny g N

1
< !Js@dun —Jsodu! + = Ifsod f’“v—fsodV\
n

k
€ €
S o
2 4dsup|y| sup |
_€+5
202
=e.

4.0.13 Para quase todo nimero cuja expansao decimal comeca com 19, 19 aparece

infinitas vezes em sua expansao decimal

Para finalizar, daremos uma breve aplicacao do Teorema de Recorréncia de Poincaré.

Considere novamente o mapa da Expansao Decimal (3.2.3). Dado =z € (0,1), x é da forma
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xr = 0, aasa3..., onde a; € {0,1,2,3,...,9}, para todo i. Aplicando f em x, temos que

f(x) = a, asas... — a;

= O, asas...
E no geral, para todo n € N,

fn(x) = 07 Ap+10p4+20pn+3...

19 20

49 &Y 19 20)
100’ 100 )

) de [0, 1]. Note que para todo = = 0, ajasas... € [+, 2

Considere agora o subintervalo [ 100° 100

vale que a; = 1 e as = 9. De fato, se
0, 19 < O, ajasas... < 0, 2,

entao a; nao pode ser maior que 1, pois seria igual ou maior que 0,2 e nao pode ser menor que
1, pois seria menor que 0,19. Pelo mesmo motivo, as deve ser igual a 9. Assim, encontramos um
subconjunto de [0, 1] satisfazendo uma propriedade interessante, cuja medida de Lebesgue é nao nula,

a saber:

19 20

[m, m) = {O,alagag... € [0, 1] La; € NV e {O, 1, ...,9},(11 = 1,(1,2 = 9}

Note que no exemplo 3.2.3 provamos que a medida de Lebesgue A\ é invariante por f. Dessa forma,

: Ao : ; 3 19 20

conclui-se pelo Teorema da Recorréncia de Poincaré que para A—quase todo ponto® = € [155, 155)
. . . . n 19 20 ’ . .

existem infinitos valores de n para os quais f"(x) € [155, 105) ISto ¢é, para quase todo nimero cuja

expansao decimal comeca com o nimero 19, o nimero 19 aparece infinitas vezes em sua expansao
decimal.

A escolha do nimero 19 foi inteiramente pessoal. Na verdade, pode-se provar que para todo k > 1
e todo bloco de nimeros com k digitos, para quase todo niimero cuja sua expansao decimal comeca

com esse bloco, tal bloco aparecerd infinitas vezes em sua expansao decimal. Para mostrar isso, se o

30u seja, para todo ponto = € [%, %), a menos de um conjunto N, onde A(NV) = 0.
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bloco é da forma ajas...a, basta considerar o intervalo

ajay...ar a1as...(ag + 1)

[ 10k+1 ’ 10k+1

e repetir o processo feito acima.

I,
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5

Consideracoes Finais

No nosso texto, exploramos apenas um de varios caminhos disponiveis para se provar a existéncia

de medidas invariantes. Para concluir, teceremos alguns breves comentarios acerca de outros possiveis

caminhos para se provar o teorema de existéncia.

[ Teorema de Banach-AIaoglu]

Metrizabilidade I_ﬂwjl

\[) fraca®)

~ Compacidade
Sequencial
( -
Continuidade de f»

( Convexidade de' M(M) e

fo-invariancia
Todo ponto de acumulagédo de

.
PR + I Teorema de Schauder-Tychonoff
=)
é ponto fixo para /.

Existéncia de Medidas Invariantes
para Transformagdes Continuas
em Compactos

Abordagem Funcional Analitica: Banach Mazur.

Figura 5.1: Fonte: Autor.

Ao definir a Topologia Fraca*, poderfamos diretamente mostrar que ela é com-

pacta, utilizando o Teorema de Banach Alaoglu.

Seja E um espaco de Banach, isto é, um espaco vetorial munido de uma norma que faz de E um

espaco métrico completo com a métrica induzida por essa norma. O espaco dual de E é o espaco E*

o7
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de todos os funcionais lineares continuos definidos em E. E* também é um espaco de Banach, com

a norma

lgll = sup{% :ve E\{0}}.

A topologia fraca* em E ¢ a topologia obtida ao se considerar a seguinte base de vizinhancas:

V(v Agr;gnte) = {we B gi(v) = gi(w)| < e Vij,

onde gy, ...,gn € E*.
A topologia fraca* no espaco dual E* é a topologia definida pela seguinte base de vizinhancas:

V*(g,{v1,...,on},e) ={h e E*:|g(v;) — h(v)| < e},

onde vy, ...,y € F.
TEOREMA 5.0.1. (Banach-Alaoglu) A bola fechada unitdria de E* é compacta na topologia fraca*.
= C%M), o conjunto das funcdes continuas

No nosso texto, o espaco vetorial considerado é E
M(M), o conjunto de todas as medidas

definidas em um espago métrico compacto M, e E*
complexas definidas em M. Isso foi possivel pois através do Teorema de Riesz-Markov, associamos

cada medida p € M(M) com o funcional linear
Lu(p) = Jsodu-

Como o conjunto My (M) de todas as medidas de probabilidade estd contida na bola unitéria de

My (M), e é fechado para a topologia fraca*, obtem-se a compacidade de (M;(M), fraca™).

Considerados uma tranformacao continua em um espaco métrico compacto f : M — M e seu

respectivo operador f, : M(M) — M(M), g+ fypi, defina também o operador

Us :CO(M) — C°(M)

o +—> o f.
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U; é chamado operador de Koopman de f.

Pelo Lema(4.0.9), vale que

JUf@)d,u = J(w o f)dp = fsod(f*u)-

Por essa relagao, o operador dual
Uy : CO(M)* — C°(M)*

pode ser identificado com f, : M(M) — M(M).

Além disso, Uy é um operador linear positivo, pois Us(¢) = 0 em p—quase todo ponto sempre
que ¢ = 0 em p—quase todo ponto.

Seja E um espaco de Banach. Um subconjunto fechado e convexo C é chamado um cone de E se
satisfaz A\C' < C para todo A = 0 e C n (—=C) = {0}.

Diremos que o cone C é normal se
inf{|lz +yll - 2,y € C: [z = |lyl] = 1} > 0.

Fixe um cone C de E. Dado um operador linear continuo 7' : E — FE, diremos que T é positivo
sobre C se a imagem T'(C) estd contida em C. Dado um funcional linear ¢ : E — R, diremos que ¢
¢ positivo sobre C se ¢(v) = 0 para todo v € C.

Defina também o raio espectral do operador linear continuo T por:
r(T) = lim || T .
n—0oo
Vale que r(T') = r(T*), onde T* : E* — E* representa o operador linear dual de T.

A partir do Teorema de Banach Mazur([5], pdgina 19), pode-se concluir o seguinte resultado:

TEOREMA 5.0.2. Seja C um cone normal de um espaco de Banach E ¢ T : E — E um operador
linear positivo sobre C. Entao, r(T*) é um autovalor do operador dual T* : E* — E* e admite algum

autovalor v* € C*.

Considere o cone C = CU(M) = {p e CO(M) : ¢ = 0}, de E = C°(M). O cone dual de C9 ¢

naturalmente identificado com o espaco de medidas finitas positivas em M, pelo Teorema de Riesz-
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Markov. O operador T' = Uy é positivo sobre C e além disso, como sup |T'(¢)| < sup |¢| para toda
@ e CYM)eT(1) =1, segue que seu raio espectral é igual a 1. Pelo Teorema acima, existe alguma
medida finita positiva © em M tal que p é autovalor do operador dual T* = f, associado com o
autovalor 1. Ou seja, p € invariante. A menos de uma multiplicagdo por uma constante adequada,
podemos assumir que p ¢ uma probabilidade.

Caminho Azul:

Um espaco vetorial topoldgico é um espaco vetorial V munido de uma topologia pra qual ambas
as operagoes de V (soma e multiplicagao por escalar) sdo continuas. Um conjunto K < V' é dito ser

convexo se (1 —t)x + ty € K para todo z,y € K e todo t € [0, 1].

TEOREMA 5.0.3. (Schauder-Tychonoff). Seja F : V — V uma transformagdo continua definida em
um espago vetorial topoldgico V. Suponha que existe um conjunto convexo e compacto K < 'V tal que
F(K) c K. Entao, F(v) = v para algum v € K.

Se considerarmos V.= M(M) o conjunto de todas as medidas complezas em M, K = M1(M) o
espaco de todas as probabilidades em M e F = f,, entao nos deparamos justamente com o objetos de
com 0s quais trabalhamos em nosso texto. Entretanto, no nosso caso, além de todas as hipoteses do
Teorema de Schauder-Tychonoff, temos também a informacgao extra de que f, € linear. Isso fez uma
enorme diferenca: ndao so foi possivel uma demonstracao direta e construtiva desse resultado, como
também pudemos exibir quem sao os pontos fizos de F. Ou seja, nao sé provamos a existéncia de

algum v que € ponto fixo de F, como também o explicitamos.

: Esse foi o caminho tomado em nosso texto.

Para mais detalhes acerca dessas maneiras alternativas para a demonstracao da existéncia de

medidas invariantes, ver a referéncia principal desse texto, [1].
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