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Resumo

Universidades e indústrias produzem uma enorme quantidade de dados, muitas vezes caracteri-
zados por alta dimensionalidade, o que pode afetar negativamente o desempenho de algoritmos
de Aprendizagem de Máquina. A redução de dimensionalidade se torna uma solução fundamen-
tal para simplificar esses dados sem perder informações importantes, permitindo uma análise
mais eficiente. No entanto, a escolha manual do algoritmo de redução de dimensionalidade
mais adequado para cada conjunto de dados é um processo complexo e demorado. Com o obje-
tivo de automatizar essa seleção, este trabalho propõe o desenvolvimento de um meta-aprendiz
que possa prever qual algoritmo de redução de dimensionalidade será mais eficiente para um
determinado conjunto de dados. Este trabalho aborda a seleção automatizada de algoritmos
de redução de dimensionalidade em cenários de Big Data, utilizando meta-aprendizagem para
aprender padrões entre os conjuntos de dados e os algoritmos que produzem os melhores re-
sultados. A proposta é testar diferentes técnicas de redução de dimensionalidade e, por meio
da construção de rankings comparativos, verificar se o modelo de recomendação de algoritmos
consegue prever corretamente o algoritmo mais adequado.

Palavras-chave: Meta aprendizagem, Algoritmos, Dados. Redução, Aprendizagem de má-
quina



Abstract

Universities and industries generate vast amounts of data, often characterized by high dimensi-
onality, which can negatively impact the performance of Machine Learning algorithms. Dimen-
sionality reduction becomes a crucial solution to simplify these data without losing important
information, allowing for more efficient analysis. However, manually selecting the most sui-
table dimensionality reduction algorithm for each dataset is a complex and time-consuming
process. To automate this selection, this study proposes the development of a meta-learner ca-
pable of predicting which dimensionality reduction algorithm will be most efficient for a given
dataset. This work focuses on the automated selection of dimensionality reduction algorithms
in Big Data scenarios, utilizing meta-learning to identify patterns between datasets and the
algorithms that yield the best results. The approach involves testing different dimensionality
reduction techniques and, through the construction of comparative rankings, verifying whether
the algorithm recommendation model can accurately predict the most suitable algorithm.

Palavras-chave: Meta-learning, Algorithms, Data, Reduction, Machine Learning.
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1
Introdução

A inteligência artificial (IA) (McCarthy, 2007) é um termo amplamente reconhecido no campo
da Ciência da Computação, tendo ganhado notoriedade desde os anos 50. De acordo com Alan
Turing, o funcionamento de uma máquina tão inteligente que poderia se passar por um humano
sem ser detectada como uma máquina, conhecido como o teste de Turing (Turing, 2009).

Ao longo dos tempos, vários cientistas buscam aprimorar algoritmos que possam realizar
tarefas mais rápidas/eficientes do que os humanos, para isso, a máquina precisa aprender e
entender padrões por meio de algum tipo de aprendizagem que, por sua vez, demanda uma
grande quantidade de dados para que os algoritmos entendam e conheçam padrões, pois tais
algoritmos são alimentados por esses dados.

Observa-se, com o avanço da internet e de seu acesso facilitado, que os algoritmos de IA
estão sendo cada vez mais procurados e utilizados em aplicações do dia a dia, como, por exem-
plo, redes sociais, sistemas de banco, sistemas hospitalares e entre outras aplicações para di-
versos problemas (Fetzer and Fetzer, 1990). A IA tornou-se uma grande facilitadora para a
humanidade e, com isso, tornou-se um grande campo da ciência que engloba subáreas como
aprendizagem de máquina, aprendizagem profundo e visão computacional, entre outras.

A Aprendizagem de Máquina (Zhou, 2021) é um campo que se utiliza de técnicas com-
putacionais para realizar tarefas como classificação, agrupamento e previsão a partir de dados
(Mitchell, 1997). Os algoritmos de Aprendizagem de Máquina são usualmente empregados em
soluções para problemas reais, seja usando regressão, classificação ou outras técnicas, existem
diversos algoritmos de Aprendizagem de Máquina conhecidos, como: Árvore de Decisão, Flo-
resta Aleatória, Máquina de Vetores de Suporte, Redes Neurais, K-Means. Essa variedade se
origina principalmente pela especificidade que cada algoritmo trás para solucionar problemas.
(Muhammad and Yan, 2015).

Com a grande quantidade de dados disponíveis, muitos pesquisadores recorrem a algoritmos
na expectativa de que estes aprendam (Soofi and Awan, 2017a), através do conjunto de suposi-
ções embutidas, as características derivadas dos dados. Nesse sentido, a busca por um modelo
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eficaz que se adeque aos dados e aprenda com eles(Novaković et al., 2017), aumentando seu
desempenho ao longo do tempo, reveste-se de fundamental importância tanto para pesquisas
quanto para a indústria.

A disponibilidade de dados tem impulsionado significativamente as pesquisas em Aprendi-
zagem de Máquina e ciência de dados (Van Der Aalst and van der Aalst, 2016). No entanto, o
aumento simultâneo no volume de dados frequentemente desafia a capacidade dos modelos de
aprendizagem de máquina em extrair informações relevantes de maneira eficaz. Para abordar
essa complexidade, técnicas de Redução de Dimensionalidade (Van Der Maaten et al., 2009a)
emergem como ferramentas cruciais para lidar com esse dilema, tornando os dados mais geren-
ciáveis e facilitando a compreensão de dados de alta dimensão (Jia et al., 2022).

A capacidade de aprender com experiências anteriores por meio de dados e gerar conheci-
mento desempenha um papel crucial na melhoria do processo de seleção de modelos eficientes
para tomada de decisão. O Meta-Aprendizagem (Vanschoren, 2019) possibilita que sistemas de
Aprendizagem de Máquina adquiram conhecimento sobre o desempenho de diferentes algorit-
mos e técnicas em diversos conjuntos de dados. Esse conhecimento prévio capacita o sistema
a selecionar automaticamente as abordagens mais adequadas para novos conjuntos de dados,
simplificando o processo de análise e interpretação de grandes volumes de informações (Far-
rell, 1983).

Meta-Aprendizagem (Vanschoren, 2019), ou aprender a aprender, é a ciência de aprender
sistematicamente observando o desempenho de diferentes abordagens de aprendizagem de má-
quina em uma ampla gama de tarefas de aprendizagem. A partir dessa experiência, ou meta-
dados, o sistema aprende a lidar com novas tarefas de forma muito mais rápida do que seria
possível sem essa base de conhecimento. Isso não apenas acelera e melhora dramaticamente o
design de pipelines de aprendizagem de máquina ou arquiteturas neurais, mas também permite
substituir algoritmos projetados manualmente por novas abordagens aprendidas de maneira ba-
seada em dados (Vilalta and Drissi, 2002).

Neste campo fascinante e em constante evolução, o Meta-Aprendizagem apresenta uma vi-
são inovadora para a construção de sistemas de aprendizagem de máquina mais eficientes e
adaptáveis (Scheinker, 2021). Ele oferece uma metodologia robusta para a seleção de mode-
los, otimizando o processo de tomada de decisão e potencializando a capacidade de análise e
interpretação de dados em diversas aplicações.

Este estudo apresenta uma investigação aprofundada sobre a seleção de algoritmos de redu-
ção de dimensionalidade, empregando o Meta-Aprendizagem (Pavel Brazdil, 2009). como uma
abordagem automatizada para aprimorar a prática da ciência de dados. O objetivo é construir
um sistema de Meta-Aprendizagem que ofereça a melhor estratégia para selecionar esses algo-
ritmos (Giraud-Carrier et al., 2004). A proposta involves a combinaço de diversos algoritmos de
redução de dimensionalidade, empregando técnicas de classificação tanto antes quanto depois
da aplicação dos algoritmos de redução. Isso possibilita uma avaliação comparativa dos resul-
tados antes e depois da redução, visando identificar melhorias no desempenho dos algoritmos.
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1.1 Motivação

A redução de dimensionalidade (Van Der Maaten et al., 2009b) é crucial no contexto de Big
Data, onde lidar com grandes conjuntos de dados complexos pode ser desafiador. Essa técnica
visa simplificar a representação dos dados sem perder informações essenciais, facilitando a aná-
lise e o processamento computacional. Este estudo aborda a seleção automatizada de técnicas
de redução de dimensionalidade, visando resolver desafios que podem acelerar a pesquisa ci-
entífica e industrial. A complexidade dos dados de alta dimensionalidade impõe desafios aos
algoritmos de aprendizagem de máquina.

Investigar a aplicação do Meta-Aprendizagem para selecionar as técnicas de redução mais
adequadas oferece oportunidades para contribuir com soluções práticas e eficazes em proble-
mas reais. Este trabalho contribui para o avanço do conhecimento em um campo em rápido
desenvolvimento. A automação da seleção de técnicas de redução de dimensionalidade tem
implicações práticas em diversos setores, como análises financeiras e diagnósticos médicos.
Realizar um estudo sobre esse tema permite o aprimoramento de habilidades em áreas como
análise de dados, aprendizagem de máquina, programação e interpretação de resultados.

1.2 Objetivo Geral

Este trabalho tem como objetivo criar um meta-aprendiz que busca prever qual algoritmo de
redução de dimensionalidade é eficiente para determinado conjunto de dados. Para avaliar
sua eficácia, serão criados dois rankings: um sem algoritmos de redução e outro com eles, a
fim de verificar se o meta-aprendiz consegue prever de forma correta. Apesar da importância
de reduzir a dimensão dos dados, há poucos estudos sobre a automatização da escolha desses
algoritmos. Portanto, este trabalho propõe uma automação da análise dos algoritmos de redução
de dimensionalidade.

1.3 Objetivo Específico

Desenvolver um meta-aprendiz que selecione automaticamente os algoritmos de redução de
dimensionalidade mais apropriados para diferentes conjuntos de dados. Implementar e testar
uma variedade de algoritmos de redução de dimensionalidade e técnicas de classificação para
avaliar a eficácia do meta-aprendiz. A avaliação será feita através da comparação de rankings
de desempenho dos algoritmos de redução de dimensionalidade antes e depois da sua aplicação,
medindo o impacto das reduções.

A automatização do processo de seleção de algoritmos de redução de dimensionalidade
visa simplificar a análise de dados em cenários de Big Data. Isso contribuirá para o avanço
do conhecimento em meta-aprendizagem e redução de dimensionalidade, fornecendo uma base
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para futuros estudos e aplicações.

1.4 Organização do documento

Após esse capítulo de instrodução desse trabalho de conclusão de curso, o mesmo foi organiza-
doda seguinte forma:

Capítulo 2 explica a fundamentação teórica, como o conceito de aprendizagem de máquina,
aprendizagem supervisionada, a partir de técnicas usadas para descoberta do conhecimento.
Será explicado o funcionamente de alguns algoritmos de redução de dimensionalidade. Além
disso, as meta features usandas seram mecionada, por fim, os algoritmos usados para classifica-
ção e métricas de avaliação de algoritmos.

Capítulo 3 descreve a metodologia usada, serão explicados os motivos das escolhas da bases
de dados, metafeatures e como foi feita a seleção das componentes dos algoritmos de redução
de dimensionalidade. Como também, motivo de reduzir para ter uma melhor desempenho.

Capítulo 4 descreve os resultados e discussões, os dados coletados durante a pesquisa são
apresentados de forma organizada, acompanhados de análises e interpretações. São discutidas
as descobertas em relação aos objetivos da pesquisa, destacando-se as conclusões principais e
como estas contribuem para a compreensão do tema em questão.

Capítulo 5 são retomados os principais pontos abordados na pesquisa e ressaltadas as contri-
buições para o conhecimento na área de estudo. Além disso, são discutidas possíveis limitações
do estudo e sugestões para pesquisas futuras.



2
Fundamentação Teórica

Este capítulo tem como objetivo apresentar alguns dos conceitos essenciais para a compre-
ensão deste trabalho, abordando tópicos fundamentais da Inteligência Artificial, Aprendiza-
gem de Máquina e aspectos críticos da análise de dados. Serão exploradas diferentes aborda-
gens de aprendizagem, desde métodos supervisionados até técnicas avançadas, como a meta-
aprendizagem e a descoberta de conhecimento em grandes volumes de dados.

2.1 Inteligência Artificial

A Inteligência Artificial (IA) (McCarthy, 2007) é um campo de estudo da Ciência da Compu-
tação voltado para o desenvolvimento de sistemas e máquinas capazes de executar tarefas que,
tradicionalmente, requerem inteligência humana. Entre essas capacidades, destacam-se a apren-
dizagem, o raciocínio, a tomada de decisões, o reconhecimento de padrões, o processamento de
linguagem natural e a resolução de problemas complexos. Diferentemente da simulação da in-
teligência humana, a IA pode empregar métodos computacionais que não são necessariamente
observáveis em seres humanos, possibilitando que as máquinas realizem atividades de forma
eficaz e, em muitos casos, em larga escala.

2.2 Aprendizagem de Máquina

A Aprendizagem de Máquina (AM) (Zhou, 2021) é a área de estudo que possibilita a melhoria
do desempenho de sistemas por meio da aprendizagem com a experiência, utilizando métodos
computacionais. Dessa forma, os sistemas adquirem habilidades de aprendizagem sem a neces-
sidade de uma programação explícita para cada tarefa, conforme postulado por A. L. Samuel
(Samuel, 2000). Este domínio de investigação pertence ao campo da Inteligência Artificial (IA),
que, por sua vez, faz parte do espectro mais amplo da Ciência da Computação (Mitchell and
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Mitchell, 1997). Conforme ilustrado na figura acima, a Aprendizagem de Máquina (AM) repre-
senta uma vertente mais específica da IA, focada em capacitar máquinas a aprenderem a partir
de dados disponíveis.

Em vez de serem programados explicitamente para realizar tarefas específicas, os sistemas
de AM são treinados utilizando grandes conjuntos de dados. Nesses conjuntos, padrões e rela-
ções são identificados pelos algoritmos desenvolvidos (Heil et al., 2021).

Dessa forma, o conhecimento é adquirido por meio de representações matemáticas (Ragone
et al., 2022) e é avaliado por modelos criados por esses algoritmos, permitindo que os compu-
tadores aprendam a partir dos dados e façam previsões ou tomem decisões sem a necessidade
de programação explícita para cada tarefa específica.

A Aprendizagem de Máquina (AM) (Zhou, 2021) visa resolver uma variedade de proble-
mas, que podem ser abordados usando algoritmos de classificação, clusterização, regressão,
entre outros (Sarker, 2021). Estes problemas representam desafios distintos, cada um com suas
características e métodos específicos de resolução.

Por meio de técnicas e algoritmos especializados, a AM busca não apenas identificar pa-
drões e tendências nos dados, mas também fornecer soluções eficazes para uma ampla gama de
aplicações práticas em diversos domínios.

A classificação (Sarker, 2021) é uma tarefa na qual o objetivo é atribuir categorias ou rótulos
a instâncias de dados com base em características observadas. A resolução de problemas de
classificação na AM requer a aplicação de uma variedade de algoritmos disponíveis. A escolha
do algoritmo adequado depende da natureza específica do problema em questão, demandando
uma análise cuidadosa das características dos dados e dos requisitos da aplicação.

Os algoritmos de AM são geralmente categorizados em três paradigmas principais: Apren-
dizagem Supervisionada, Aprendizagem não Supervisionada e Aprendizagem por Reforço (Li,
2017). A seguir, cada um desses paradigmas será detalhado em termos de princípios fundamen-
tais, métodos de aplicação e exemplos de algoritmos relevantes.
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Figura 2.1: Relação entre Inteligência Artificial (IA) e Aprendizagem de Máquina (AM). Figura
produzida pelo autor.

2.2.1 Aprendizagem supervisionada

Existem diversas estratégias de aprendizagem que podem ser utilizadas para desenvolver algo-
ritmos de Aprendizagem de Máquina (AM). Atualmente, a mais estudada baseia-se no conceito
de indução, segundo o qual é possível obter conclusões a partir de fatos ou observações par-
ticulares (de Souza, 2011). Sendo assim, a indução forma-se a partir de inferências lógicas,
permitindo obter resultados genéricos sobre um conjunto específico de exemplos. A aprendiza-
gem supervisionada é uma facilitadora para resolver problemas de classificação e regressão.

A aprendizagem indutiva pode ser dividida em aprendizagem supervisionada e não supervi-
sionada, que será abordada na subseção seguinte. Na aprendizagem supervisionada, é fornecido
ao algoritmo de aprendizagem um conjunto de exemplos de treinamento para os quais o rótulo
da classe associada é conhecido.

A aprendizagem supervisionada (Cunningham et al., 2008) é essencial para extrair padrões
e realizar previsões a partir de dados rotulados. Cada exemplo no conjunto de dados possui
um rótulo conhecido, permitindo que o algoritmo aprenda a mapear os padrões nos dados de
entrada para os rótulos correspondentes.

K-Vizinhos Mais Próximos

O K-Vizinhos Mais Próximos (K-Nearest Neighbors - KNN) (Abu Alfeilat et al., 2019)
é um algoritmo de aprendizagem supervisionada utilizado principalmente para problemas de
classificação e regressão. Ele pertence à classe de métodos de aprendizagem baseados em
instâncias, onde o modelo não é explicitamente treinado, mas armazena todos os exemplos de
treinamento. A classificação de novas instâncias é determinada pela maioria das classes dos
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K exemplos de treinamento mais próximos de cada ponto: um ponto de consulta é atribuído
à classe de dados que tem mais representantes dentro dos vizinhos mais próximos do ponto,
medida através de uma função de distância, como a distância Euclidiana (Danielsson, 1980).

Fórmula da distância euclidiana entre duas instâncias P = (p1, . . . , p2, . . . , pn) e
Q = (q1, . . . ,q2, . . . ,1n) é definida como:

√
(p1 −q1)2 +(p2 −q2)2 + ...+(pn −qn)2 =

√
n

∑
i=1

(pi −qi)2 (2.1)

pi e qi para i = 1, ... , n são os n atributos que descrevem as instâncias pi e qi, respectiva-
mente.

Figura 2.2: Classificação usando KNN. Figura do site scikit-learn
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Floresta Aleatória (Random Forest)

O algoritmo Random Forest (Biau and Scornet, 2016), respresentado pelo campo da apren-
dizagem supervisionada, conhecido pela sua capacidade de lidar com uma veriedade de pro-
blemas de classificação e regressão. Como também, tem habilidade para mitigar problemas de
overfitting (Ying, 2019), ao mesmo tempo que é capaz de oferecer alta precisão preditiva.

Em sua essência, uma Random Forest é composta por um conjunto de árvores de decisão
individuais. Cada árvore é construída de forma independente, utilizando uma amostra aleatória
dos dados de treinamento e um subconjunto aleatório de características. Esse processo de amos-
tragem aleatória introduz diversidade entre as árvores, garantindo que cada uma contribua com
diferentes perspectivas para o modelo final. Durante a fase de previsão, as previsões de todas
as árvores na floresta são combinadas, geralmente por meio de uma média (para problemas de
regressão) ou votação majoritária (para problemas de classificação).

A principal vantagem é sua capacidade de lidar com conjuntos de dados complexos e de
grande escala, capturando eficientemente relações não lineares e interações entre variáveis.

2.2.2 Aprendizagem não supervisionada

Na aprendizagem não supervisionada (Barlow, 1989), ao contrário da aprendizagem supervi-
sionada onde as informações possuem rótulos e a saída desejada é conhecida, os dados estão
desprovidos de rótulos e não há uma saída esperada. Nesse contexto, os algoritmos, durante
o processo de treinamento, não recebem resultados pré-determinados, sendo responsáveis por
descobrir padrões e relações intrínsecas entre os dados de maneira autônoma (Chinnamgari,
2019).

O objetivo da aprendizagem não supervisionada é identificar regularidades nos dados com o
intuito de agrupá-los ou organizá-los com base nas similaridades que apresentam entre si (Hastie
et al., 2009). Dessa forma, o processo de aprendizagem busca explorar e revelar estruturas
subjacentes nos dados, promovendo a descoberta de grupos ou a organização dos mesmos em
função de suas características comuns.

a. Representação esquemática de um modelo de aprendizagem não supervisionada:

Em aprendizagem de máquina não supervisionada (Chinnamgari, 2019), os algoritmos são
aplicados a dados não rotulados para descobrir padrões ou agrupamentos intrínsecos nos dados.
O objetivo é identificar estruturas ocultas sem a necessidade de pré-rotulação. Um exemplo
comum é o algoritmo de clustering, como o K-Means, onde dados são agrupados em clusters
baseados em similaridades intrínsecas.

b. Representação esquemática de um modelo de aprendizagem supervisionada:
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Figura 2.3: Aprendizagem de máquina supervisionada e não supervisionada. Scientific Figure
on ResearchGate

Na aprendizagem de máquina supervisionada (Cunningham et al., 2008) o algoritmo é trei-
nado usando um conjunto de dados rotulados, onde cada entrada de dados está associada a uma
saída desejada. O objetivo é aprender uma função de mapeamento a partir dos dados de entrada
para as saídas.

2.3 Processo de descoberta de conhecimento

Nas subseções anteriores, Aprendizagem de Máquina (AM) foi um dos pontos principais. Usar
algoritmos de AM para extrair conhecimento a partir de dados e produzir bons resultados é um
trabalho demorado, principalmente devido aos grandes volumes de dados existentes. Seria in-
viável que humanos analisassem esses dados manualmente e extrair informações significativas.
Portanto, antes mesmo de aplicar algoritmos de AM, é crucial seguir conceitos bem conso-
lidados na literatura, como os do processo de Descoberta de Conhecimento(KDD) (Frawley
et al., 1992). O KDD envolve 5 etapas essenciais para realizar a extração de conhecimento,
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demonstrado na figura abaixo (Mariscal et al., 2010).

Figura 2.4: O processo de descoberta de conhecimento (KDD)

Ao escolher a base de dados(Mariscal et al., 2010), devem ser considerados vários critérios,
como a relevância das variáveis para a tarefa de mineração e a disponibilidade dos dados. Em
seguida, realiza-se o pré-processamento desses dados, que consiste em limpeza, remoção de
valores ausentes, correção de erros e outras técnicas para transformar dados brutos em um
formato adequado para análise. Esse pré-processamento pode ser feito em colunas, linhas ou
em várias partes dos dados. Tal passo é responsável por enriquecer a base de dados e, além
disso, deve garantir a qualidade e a consistência dos dados.

A transformação dos dados envolve modificar os dados para que se ajustem melhor aos al-
goritmos. Isso inclui identificar atributos que sejam realmente úteis para o modelo, levando em
consideração o problema abordado. O formato atual dos dados pode dificultar o processamento
pelo modelo, especialmente se contiver textos. Nesta etapa, os dados são adequados de forma
que a máquina possa processá-los sem perda de informação. A transformação busca melhorar a
eficiência e a eficácia dos métodos de mineração de dados que serão aplicados. Algumas técni-
cas responsáveis pela transformação dos dados incluem agregação, normalização e construção
de novos atributos a partir dos dados originais.

A fase de mineração dos dados é a aplicação de métodos e algoritmos para extrair padrões
e conhecimentos dos dados. Nessa etapa, os dados já estão pré-processados e transformados,
e são divididos em conjuntos de treino e teste para o treinamento e validação do modelo. Esta
é a etapa central do processo, onde técnicas como classificação, regressão e outros métodos de
mineração são aplicados para descobrir padrões e relações nos dados.

Por fim, a interpretação e a avaliação dos dados são de fundamental importância para a
obtenção de resultados válidos. Os resultados obtidos na etapa de mineração de dados devem
ser avaliados quanto à qualidade dos padrões descobertos e à determinação de sua utilidade e
relevância (Frawley et al., 1992). Isso é feito por meio de métricas de avaliação, como validação
cruzada e acurácia do modelo. Após obter os resultados dos testes, com a acurácia do modelo,
realiza-se a interpretação do conhecimento descoberto. Para isso, é importante ter conhecimento
do problema.
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2.4 Big Data

Big Data (Sagiroglu and Sinanc, 2013) refere-se ao grande volume de dados, sejam eles estrutu-
rados ou não, que empresas e indivíduos geram diariamente. Esses dados não abrangem apenas
o volume, mas também a variedade, a velocidade, a veracidade e o valor com que são gerados e
processados (Taurion, 2013).

As fontes desses dados são diversas, incluindo transações financeiras e mídias sociais. A
análise de Big Data (Tsai et al., 2015) permite a descoberta de padrões e correlações ocultas,
proporcionando insights valiosos que podem melhorar a tomada de decisões. Isso pode levar à
otimização de operações, ao aumento da lucratividade e ao impulso da inovação.

A importância do Big Data reside na capacidade de transformar dados brutos em informa-
ções acionáveis (Taurion, 2013). Com o advento de tecnologias avançadas, as organizações
podem agora analisar grandes volumes de dados, melhorar a eficiência operacional e oferecer
experiências personalizadas aos clientes.

Uma das características do conceito de Big Data são os "Vs"(Younas, 2019) : volume,
que se refere à quantidade massiva de dados gerados diariamente; variedade, que se refere aos
diferentes tipos de dados disponíveis, como imagens e textos; velocidade, que se refere à rapidez
com que os dados são gerados e precisam ser processados, facilitando a tomada de decisão; e
valor, que se refere à utilidade dos dados para gerar insights valiosos.

No entanto, trabalhar com Big Data apresenta desafios significativos (Fasel and Meier,
2014), incluindo o armazenamento, a gestão e a proteção desses dados, bem como a neces-
sidade de ferramentas e técnicas avançadas para uma análise eficiente.

2.5 Redução de dimensionalidade

Redução de dimensionalidade (Sorzano et al., 2014) é uma técnica utilizada em AM e estatística
para simplificar conjuntos de dados, diminuindo o número de variáveis sob consideração. É
útil para melhorar a performance dos algoritmos, reduzir o tempo de computação e ajudar na
visualização dos dados.Algumas das técnicas mais comuns incluem:

Principal Component Analysis-PCA (Análise de Componentes Principais)

É uma técnica estatística usada para simplificar a complexidade de conjuntos de dados de alta
dimensionalidade, transformando-os em um novo conjunto de variáveis não correlacionadas,
conhecidas como componentes principais (Kurita, 2019).

De modo mais matemático utiliza uma transformação ortogonal (ortogonalização de veto-
res) para converter um conjunto de observações de variáveis possivelmente correlacionadas num
conjunto de valores de variáveis linearmente não correlacionadas chamadas de componentes
principais (Abdi and Williams, 2010).. Esse processo pode ser entendido como a construção de
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uma nova base ortogonal no espaço vetorial das variáveis originais. Uma das formas de realizar
essa ortogonalização é através do processo de Gram-Schmidt (Björck, 1994), que transforma
vetores correlacionados em vetores mutuamente ortogonais, removendo as projeções lineares
de cada vetor nas direções já ortogonalizadas.

Figura 2.5: Principal Component Analysis (PCA) . Figura Mina Nashed

Matematicamente, a PCA é definida da seguinte maneira:
Dados de entrada: Considere uma matriz de dados X com n observações e p variáveis.
Centragem: Subtrai-se a média de cada variável para centralizar os dados na origem:

X̃ = X − X̄ (2.2)

onde X̄ é o vetor de médias das variáveis.
Cálculo da matriz de covariância: A matriz de covariância é calculada como:

C =
1

n−1
X̃T X̃ (2.3)

Autovalores e autovetores: Os autovalores λ e autovetores v da matriz de covariância C

são determinados pela equação característica:

Cv = λv (2.4)

Ordenação: Os autovetores são ordenados em função de seus autovalores, do maior para o
menor.

Projeção: Os dados são projetados nos componentes principais:

Z = X̃vk (2.5)
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onde vk são os autovetores correspondentes aos k maiores autovalores

Independent Component Analysis - ICA (Análise de Componentes Independentes)

A Análise de Componentes Independentes (ICA) é uma técnica estatística utilizada para separar
um conjunto de sinais misturados em suas fontes independentes (Stone, 2004). Diferentemente
da Análise de Componentes Principais (PCA), que se concentra em componentes não correla-
cionados, a ICA busca identificar componentes que são estatisticamente independentes entre si,
permitindo a recuperação de informações de fontes que podem estar sobrepostas ou misturadas.

Matematicamente, a ICA é definida da seguinte maneira:

Considere um conjunto de sinais misturados X, onde X ∈Rn×m é uma matriz que contém n

observações de m sinais misturados. O modelo de mistura linear pode ser expresso como:

X = A ·S (2.6)

onde:

• X é a matriz de sinais observados.

• A é a matriz de mistura (ou matriz de coeficientes) que relaciona os sinais independentes
S aos sinais observados X.

• S ∈ Rn×m é uma matriz cujas colunas representam os m sinais independentes que deseja-
mos recuperar.

O objetivo da ICA é encontrar uma matriz W tal que, ao aplicar essa matriz aos sinais
observados, obtemos uma estimativa dos sinais independentes:

S ≈ W ·X (2.7)

onde S são os sinais recuperados.
Os componentes recuperados S são considerados independentes se a seguinte condição for

satisfeita: para quaisquer duas variáveis si e s j de S, a seguinte relação de independência é
verdadeira:

P(si,s j) = P(si) ·P(s j) (2.8)

onde P denota a função de densidade de probabilidade.
Para encontrar a matriz W, várias abordagens podem ser empregadas, como a maximização

da não-gaussianidade dos componentes recuperados. A não-gaussianidade pode ser medida
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usando o conceito de kurtose ou a entropia. Um método comum é o uso do algoritmo FastICA,
que aplica a seguinte fórmula:

S = g(W ·X) (2.9)

onde g(·) é uma função de ativação não linear que ajuda a separar os sinais.

T-Distribuição Stochastic Neighbor Embedding - t-SNE (Incrustação Estocástica de Vizi-
nhos Próximos com Distribuição)

A T-Distribuição Stochastic Neighbor Embedding (t-SNE) é uma técnica de redução de dimen-
sionalidade não linear que visa preservar as relações locais entre pontos de dados de alta dimen-
são em um espaço de menor dimensão, geralmente 2D ou 3D. O t-SNE é particularmente eficaz
para a visualização de dados de alta dimensão, pois mantém a estrutura dos dados e facilita a
identificação de padrões, clusters e agrupamentos que poderiam ser ocultos em representações
de alta dimensão. (Belkina et al., 2019)

Matematicamente, o t-SNE é definida da seguinte maneira:

O t-SNE transforma a representação de dados de alta dimensão X ∈ Rn×m (onde n é o
número de amostras e m é o número de dimensões) em uma nova representação Y ∈ Rn×d ,
onde d é a nova dimensão (tipicamente 2 ou 3). O algoritmo t-SNE opera em duas etapas
principais: a conversão de distâncias em probabilidades e a minimização de divergência.

Etapa 1: Cálculo das Probabilidades
Para cada ponto de dados xi, a t-SNE calcula a similaridade de cada par de pontos xi e x j em

alta dimensão usando uma distribuição Gaussiana, onde a probabilidade de x j ser semelhante a
xi é dada por:

p j|i =
exp
(
−∥xi−x j∥2

2σ2
i

)
∑k ̸=i exp

(
−∥xi−xk∥2

2σ2
i

) (2.10)

onde σi é a largura da distribuição Gaussiana para o ponto xi, que pode ser determinada por
uma abordagem baseada em vizinhos mais próximos.

A probabilidade simétrica pi j entre os pontos xi e x j é então calculada como:

pi j =
p j|i + pi| j

2n
(2.11)

Etapa 2: Minimização da Divergência
Em seguida, o t-SNE modela a distribuição de similaridade nos dados de baixa dimensão yi e

y j usando uma distribuição t de Student com 1 grau de liberdade (equivalente a uma distribuição
Cauchy):



FUNDAMENTACÃO TÉORICA 16

qi j =
(1+∥yi − y j∥2)−1

∑k ̸=l(1+∥yi − yk∥2)−1 (2.12)

O objetivo do t-SNE é minimizar a divergência de Kullback-Leibler entre as distribuições
de probabilidade de alta e baixa dimensão:

KL(P∥Q) = ∑
i

∑
j

pi j log
(

pi j

qi j

)
(2.13)

onde P e Q representam as distribuições de probabilidade nos espaços de alta e baixa di-
mensão, respectivamente.

Latent Dirichlet Allocation - LDA (Atribuição de Dirichlet Latente)

O Latent Dirichlet Allocation (LDA) é um modelo generativo probabilístico amplamente uti-
lizado para a modelagem de tópicos em coleções de documentos. Ele assume que cada docu-
mento é uma mistura de tópicos, onde cada tópico é representado como uma distribuição sobre
palavras. O LDA é especialmente eficaz para descobrir a estrutura latente em grandes conjuntos
de dados textuais, permitindo a extração de temas subjacentes que caracterizam os documentos
(Jelodar et al., 2019).

Matematicamente, o LDA é definida da seguinte maneira:
Considere um conjunto de documentos D contendo N palavras. O LDA é definido por três
componentes principais: tópicos, palavras e documentos.

Componentes do Modelo
Tópicos: Cada tópico k é representado como uma distribuição sobre um vocabulário V :

φk ∼ Dirichlet(β) (2.14)

onde β é um vetor de parâmetros que controla a distribuição de palavras em cada tópico.
Documentos: Cada documento d é representado como uma mistura de tópicos. A distribui-

ção de tópicos em um documento d é dada por:

θd ∼ Dirichlet(α) (2.15)

onde α é um vetor de parâmetros que controla a distribuição de tópicos em cada documento.
Palavras: Para cada palavra wd,n no documento d, o processo de geração é descrito da

seguinte forma:
1. Escolha um tópico zd,n de acordo com a distribuição de tópicos θd . 2. Escolha uma

palavra wd,n a partir da distribuição de palavras do tópico zd,n:

wd,n ∼ Multinomial(φzd,n) (2.16)
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O objetivo do LDA é inferir as distribuições θd e φk a partir dos dados observados (as
palavras nos documentos). Isso é feito usando o método de inferência, que pode ser realizado
por técnicas como Variational Inference ou Gibbs Sampling.

A função de verossimilhança do modelo é dada por:

p(w,z,θ,φ|α,β) =
D

∏
d=1

(
Nd

∏
n=1

p(wd,n|zd,n,φ) · p(zd,n|θd)

)
· p(θd|α) · p(φk|β) (2.17)

onde:
- w são as palavras observadas, - z são os tópicos latentes, - θ é a distribuição de tópicos para

cada documento, - φ é a distribuição de palavras para cada tópico.
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Técnica Tipo Considera Classes Linearidade Principal Aplicação

PCA Linear Não Linear Redução de dimensionalidade e visualização
ICA Linear Não Não-linear Separação de sinais misturados
t-SNE Não Linear Não Não-linear Visualização de dados de alta dimensão
LDA Linear Sim Linear Classificação supervisionada

Tabela 2.1: Comparação das Técnicas de Redução de Dimensionalidade

O objetivo é reduz o número de variáveis (dimensões) em um conjunto de dados enquanto
retém a maior parte da informação relevante. Facilita a visualização de dados em um espaço de
menor dimensão, geralmente em 2D ou 3D. Com isso, melhora a eficiência computacional ao
reduzir a carga de processamento e armazenamento. Elimina ou minimiza o ruído nos dados,
focando nas variáveis que mais contribuem para a variabilidade dos dados.

2.6 Meta-aprendizagem

O Meta-aprendizagem (do inglês, Meta-Learning, abreviado por MtL) é um campo de estudo
dentro da aprendizagem de máquina (AM) que se concentra em como otimizar o desempenho de
algoritmos de aprendizagem (Pavel Brazdil, 2009). O objetivo é reduzir o custo computacional
e economia de tempo, permitindo que modelos desenvolvam suas próprias estratégias de apren-
dizagem com base na análise passada. Para atingir esse aprimoramento, a Meta-aprendizagem
utiliza o conceito de meta-dados, que consiste em uma coleção de meta-features e a performance
de algoritmos avaliados.

Além disso, a Meta-aprendizagem, ou "aprender a aprender"(Vanschoren, 2019), é uma
área de crescente interesse na inteligência artificial (IA), especialmente com o avanço das redes
neurais profundas. O motivo é que redes neurais profundas são geralmente inicializadas com
pesos aleatórios e possuem vieses indutivos muito fracos, o que gera a necessidade de aprender
ou projetar vieses indutivos para melhorar a aprendizagem. Isso levou a um crescente interesse
em abordagens de Meta-aprendizagem, que focam em como construir um modelo que aprende a
aprender, em vez de apenas aprender, além do aprimoramento de sistemas de Aprendizagem de
Máquina. Este conceito, que tem raízes nas ciências cognitivas e na psicologia (Wang, 2021),
refere-se à capacidade de um sistema de melhorar seu desempenho em novas tarefas com base
em experiências anteriores.

Diferentemente das abordagens tradicionais de Aprendizagem de Máquina, que são proje-
tadas para resolver uma tarefa específica, a Meta-aprendizagem permite que um sistema utilize
seu histórico de aprendizagem para se adaptar mais rapidamente a novos desafios, acelerando o
processo de aprendizagem ao longo do tempo (Vanschoren, 2018).

Um dos princípios centrais da Meta-aprendizagem é a capacidade de adquirir viéses indu-
tivos ou conhecimentos que facilitam a aprendizagem futura. Isso é alcançado por meio da
construção de mecanismos que identificam padrões em processos de aprendizagem anteriores,
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otimizando as decisões e a seleção de modelos mais adequados para diferentes tipos de proble-
mas.

2.6.1 Arquitetura do Meta-aprendiz

Figura 2.6: Arquitetura do meta-aprendiz, adaptada de (Pavel Brazdil, 2009)

A arquitetura de Meta-aprendizagem visa otimizar a seleção de algoritmos em tarefas de
mineração de dados, utilizando informações extraídas de metadados. Esses meta-dados são
compostos por características dos conjuntos de dados (meta-features) e pelo desempenho de
diferentes algoritmos em problemas anteriores. A partir disso, o sistema é capaz de recomendar
algoritmos mais adequados para novos datasets, reduzindo o tempo e os recursos gastos em
experimentação, sem que haja perda significativa da qualidade dos resultados obtidos.

Esse processo utiliza Aprendizagem de Máquina para mapear as características dos dados
ao desempenho relativo dos algoritmos, priorizando a recomendação de algoritmos que tendem
a apresentar melhor performance. A arquitetura facilita a tomada de decisões ao guiar o usuá-
rio na escolha de algoritmos, evitando a necessidade de testar múltiplas opções manualmente.
Isso torna a Meta-aprendizagem uma ferramenta eficaz para aplicações em que há uma grande
variedade de algoritmos disponíveis e recursos computacionais limitados.

2.6.2 Meta-features

Meta-features são características extraídas de conjuntos de dados ou modelos de aprendiza-
gem que fornecem informações valiosas sobre as propriedades e a estrutura dos dados (Rivolli
et al., 2022). Elas são utilizadas em Meta-aprendizagem (do inglês, Meta-learning, abreviado
por MtL) para permitir que modelos aprendam a escolher o algoritmo ou a abordagem mais
adequada para um determinado conjunto de dados.
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As meta-features ajudam a entender melhor as características dos dados, facilitando a se-
leção de algoritmos, ajustes de hiperparâmetros e a previsão de desempenho. Elas podem ser
divididas em várias categorias, cada uma com suas particularidades:

Categoria Exemplo Descrição

Meta-feature
Simples

Número de instâncias Contagem total de observações no dataset.

Número de features Número total de variáveis explicativas.
Número de classes Quantidade de classes de saída em problemas

de classificação.

Meta-feature
Statistical

Média e desvio padrão
dos atributos

Estatísticas descritivas para os atributos numé-
ricos do dataset.

Curtose e assimetria Medidas de distribuição dos dados, indicando
simetria e picos.

Correlação entre atribu-
tos

Mede a relação linear entre os atributos, útil
para identificar redundâncias.

Meta-feature
Info-Theory

Entropia da classe Medida da incerteza ou impureza da variável de
classe.

Entropia dos atributos Avalia a incerteza ou dispersão dos atributos in-
dividuais.

Informação mútua en-
tre atributos e a classe

Quantifica a dependência entre atributos e a
classe de saída.

Tabela 2.2: Exemplos de Meta-features

2.6.3 Meta-data

No contexto do Meta-aprendizagem, a meta-data desempenha um papel crucial na eficácia dos
Meta-aprendizes (Castiello et al., 2005). Ela consiste na combinação de duas principais fontes
de informação: as meta-features, que descrevem as características e propriedades dos conjuntos
de dados utilizados, e o ranking de desempenho dos modelos testados. Essa junção fornece uma
visão abrangente do problema que se busca resolver, permitindo que os meta-aprendizes façam
previsões mais precisas e informadas.

A qualidade da meta-data é vital; ela deve refletir de maneira fiel as nuances do problema
real que se pretende solucionar. Caso contrário, o meta-aprendiz pode falhar em generalizar
e apresentar um desempenho insatisfatório em situações práticas. Além disso, o uso de bases
de dados sintéticas para gerar meta-data é desencorajado, pois essas bases frequentemente não
capturam adequadamente as complexidades dos dados reais, resultando em meta-aprendizes
que não são adequados para serem aplicados em problemas do mundo real. Assim, garantir a
relevância e a qualidade da meta-data (Vanschoren, 2018) é fundamental para o sucesso dos
meta-aprendizes.
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2.6.4 Meta-Aprendiz

O Meta-aprendiz é um sistema ou algoritmo dentro do campo da meta-aprendizagem que se
caracteriza pela capacidade de "aprender a aprender". Utilizando o conhecimento adquirido
a partir de tarefas anteriores, o meta-aprendiz otimiza seu desempenho em novas tarefas de
Aprendizagem de Máquina. Ao analisar Meta-dados, como Meta-features e o histórico de de-
sempenho de algoritmos em diferentes problemas, o sistema ajusta automaticamente a seleção
de algoritmos e estratégias, visando melhorar a eficiência do processo de aprendizagem.

Esse mecanismo permite ao Meta-aprendiz identificar padrões recorrentes em experiências
anteriores, possibilitando uma adaptação rápida e eficaz a novos desafios, sem a necessidade de
extensa experimentação manual. Assim, o uso de Meta-aprendizes resulta em uma economia
significativa de tempo e recursos computacionais, tornando-os ferramentas valiosas para con-
textos onde há uma grande diversidade de algoritmos e conjuntos de dados a serem explorados.

2.7 Métricas de avaliação

Em Aprendizagem de Máquina, as métricas de avaliação (Japkowicz, 2013) são fundamentais
para medir a performance dos modelos. Elas são essenciais para determinar a eficácia de um
modelo em realizar previsões precisas. Essas métricas variam conforme o tipo de problema
e são geralmente classificadas em dois grandes grupos: métricas para classificação e métricas
para regressão. As métricas para classificação (Wang et al., 2020) avaliam o desempenho do
algoritmo na identificação correta das classes em um conjunto de dados. E as métricas para
regressão (Tatachar, 2021) avaliam o quão próximas as previsões do modelo estão dos valores
reais. Neste trabalho, apenas as métricas de classificação serão abordadas devido à sua aplica-
bilidade no processo do experimento.

2.7.1 Metricas de Classificação

Existem diversas métricas (Japkowicz, 2013) que podem ser utilizadas para avaliar classifiçação
do modelo, cada uma com suas próprias características e aplicabilidades. Abaixo estão algumas
das métricas mais comuns:

Acurácia (Accuracy)

A acurácia é a proporção de previsões corretas em relação ao total de previsões realizadas. É
calculada como:

Acurácia =
T P+T N

T P+T N +FP+FN
(2.18)

onde:
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• T P (True Positive) são os verdadeiros positivos.

• T N (True Negative) são os verdadeiros negativos.

• FP (False Positive) são os falsos positivos.

• FN (False Negative) são os falsos negativos.

Precisão (Precision)

A precisão mede a proporção de verdadeiros positivos entre as previsões positivas realizadas
pelo modelo. É calculada como:

Precisão =
T P

T P+FP
(2.19)

Revocação (Recall) ou Sensibilidade (Sensitivity)

A revocação, ou sensibilidade, mede a proporção de verdadeiros positivos que foram correta-
mente identificados pelo modelo em relação ao total de positivos reais. É calculada como:

Recall =
T P

T P+FN
(2.20)

F1-Score

O F1-Score é a média harmônica entre precisão e revocação. Ele oferece um equilíbrio entre
essas duas métricas, especialmente útil quando há um desequilíbrio entre as classes. É calculado
como:

F1 = 2× Precisão×Recall
Precisão+Recall

(2.21)

AUC-ROC (Area Under the Receiver Operating Characteristic Curve)

A AUC-ROC é uma métrica que avalia a capacidade do modelo em distinguir entre as classes.
A curva ROC é um gráfico que mostra a taxa de verdadeiros positivos (sensibilidade) contra a
taxa de falsos positivos em diferentes limiares de classificação. A área sob essa curva (AUC)
indica a capacidade do modelo de separar as classes. Um modelo perfeito tem AUC igual a 1,
enquanto um modelo aleatório tem AUC igual a 0.5.
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Figura 2.7: ROC AUC. Figura evidentlyai

Matriz de Confusão

A matriz de confusão é uma tabela que resume o desempenho do modelo, mostrando a quanti-
dade de previsões corretas e incorretas por classe. Ela é especialmente útil para identificar erros
específicos e ajustar o modelo adequadamente.

Predito Positivo Predito Negativo
Verdadeiro Positivo (TP) 50 10

Verdadeiro Negativo (TN) 5 35

Tabela 2.3: Matriz de Confusão

Cada célula da matriz representa a contagem de ocorrências para cada combinação de classe
verdadeira e classe prevista.



3
Metodologia

O presente trabalho de conclusão de curso tem como objetivo explorar a aplicação de técni-
cas de seleção de algoritmos para aprimorar o processo de recomendação de algoritmos de
aprendizagem de máquina, com ênfase na automação da escolha de algoritmos de redução de
dimensionalidade. Neste contexto, será desenvolvido um sistema de recomendação de algorit-
mos de redução de dimensionalidade utilizando meta-aprendizagem. Ao final, um algoritmo de
aprendizagem de máquina será aplicado para induzir um modelo meta-aprendiz capaz de predi-
zer o ranking de algoritmos. Esse meta-aprendiz terá como função prever quais algoritmos de
redução são mais adequados para diferentes conjuntos de dados, automatizando essa seleção. A
eficácia da abordagem será avaliada por meio da criação de dois rankings de desempenho: um
sem a aplicação das metafeatures e outro com elas, comparando os resultados para verificar se
o meta-aprendiz faz previsões corretas.

3.1 Base de dados

Os dados utilizados neste trabalho foram obtidos a partir da plataforma OpenML, acessada
via sua API. O OpenML é uma plataforma que disponibiliza diversos conjuntos de dados para
a pesquisa em ciência de dados e aprendizagem de máquina. Por meio da API, foi possível
selecionar e verificar os conjuntos de dados mais adequados para os objetivos do estudo.

O conjunto de dados obtido da OpenML consiste em 5.760 datasets, conforme ilustrado na
figura abaixo.
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Figura 3.1: Distribuição do Número de Variáveis (NumberOfFeatures) nos Datasets. Figura
produzida pelo autor

Após essa análise, foram selecionados 66 conjuntos. Para chegar a esse resultado, realiza-
mos uma filtragem para incluir os conjuntos de dados que contêm entre 1.000 e 30.0000 variá-
veis (features) e que não possuem valores faltantes. Optamos por conjuntos de dados com um
elevado número de variáveis, uma vez que este estudo tem como foco a análise de problemas
relacionados a Big data, onde a alta dimensionalidade é um fator relevante. Ademais, evita-
mos o uso do formato Sparse_ARFF, devido à predominância de valores nulos. Além disso,
observamos a distribuição do número de variáveis nos conjuntos de dados.
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ID Nome ID Nome ID Nome
1039 hiva_agnostic 1127 AP_Breast_Omentum 1149 AP_Ovary_Kidney
1084 BurkittLymphoma 1128 OVA_Breast 1150 AP_Breast_Lung
1104 leukemia 1129 AP_Uterus_Kidney 1151 AP_Endometrium_Omentum
1107 tumors_C 1130 OVA_Lung 1152 AP_Prostate_Ovary
1122 AP_Breast_Prostate 1131 AP_Prostate_Uterus 1153 AP_Colon_Ovary
1123 AP_Endometrium_Breast 1132 AP_Omentum_Lung 1154 AP_Endometrium_Lung
1124 AP_Omentum_Uterus 1133 AP_Endometrium_Colon 1155 AP_Prostate_Lung
1125 AP_Omentum_Prostate 1134 OVA_Kidney 1156 AP_Omentum_Ovary
1126 AP_Colon_Lung 1135 AP_Colon_Prostate 1157 AP_Endometrium_Kidney
1136 AP_Lung_Uterus 1138 OVA_Uterus 1158 AP_Breast_Kidney
1137 AP_Colon_Kidney 1139 OVA_Omentum 1159 AP_Endometrium_Ovary
1140 AP_Ovary_Lung 1141 AP_Endometrium_Prostate 1160 AP_Colon_Uterus
1142 OVA_Endometrium 1143 AP_Colon_Omentum 1161 OVA_Colon
1144 AP_Prostate_Kidney 1145 AP_Breast_Colon 1162 AP_Ovary_Uterus
1146 OVA_Prostate 1147 AP_Omentum_Kidney 1163 AP_Lung_Kidney
1148 AP_Breast_Uterus 1154 AP_Endometrium_Lung 1164 AP_Endometrium_Uterus
1165 AP_Breast_Ovary 1166 OVA_Ovary 1233 eating
1457 amazon-commerce-reviews 1458 arcene 1514 micro-mass
1515 micro-mass 4134 Bioresponse 40926 CIFAR_10_small

41084 UMIST_Faces_Cropped 41103 STL-10 41157 arcene
41159 guillermo 41161 riccardo 41163 dilbert
41165 robert 42140 SVHN_small 42766 kits-subset
42809 kits

Tabela 3.1: Tabela de IDs e Nomes dos datasets
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did NumberOfNumericFeatures NumberOfInstances NumberOfClasses
1039 1617 4229 2
1084 22283 220 3
1104 7129 72 2
1107 7129 60 2
1122 10935 413 2
1123 10935 405 2
1124 10935 201 2
1125 10935 146 2
1126 10935 412 2
1127 10935 421 2
1128 10935 1545 2
1129 10935 384 2
1130 10935 1545 2
1131 10935 193 2
1132 10935 203 2
1133 10935 347 2
1134 10935 1545 2
1135 10935 355 2
1136 10935 250 2
1137 10935 546 2
1138 10935 1545 2
1139 10935 1545 2
1140 10936 324 2
1141 10935 130 2
1142 10935 1545 2
1143 10935 363 2
1144 10935 329 2
1145 10935 630 2
1146 10936 1545 2
1147 10935 337 2
1148 10936 468 2
1149 10935 458 2
1150 10935 470 2
1151 10935 138 2
1152 10935 267 2
1153 10935 484 2
1154 10935 187 2
1155 10935 195 2
1156 10935 275 2
1157 10935 321 2
1158 10935 604 2
1159 10935 259 2
1160 10935 410 2
1161 10935 1545 2
1162 10935 322 2
1163 10935 386 2
1164 10935 185 2
1165 10935 542 2
1166 10935 1545 2
1233 6373 945 7
1457 10000 1500 50
1458 10000 200 2
1514 1300 360 10
1515 1300 571 20
4134 1776 3751 2

40926 3072 20000 10
41084 10304 575 20
41103 27648 13000 10
41157 10000 100 2
41159 4296 20000 2
41161 4296 20000 2
41163 2000 10000 5
41165 7200 10000 10
42140 3072 9927 10
42766 27648 100 2
42809 27648 1000 2

Tabela 3.2: Tabela de IDs, número de atributos numéricos, instâncias e classes dos datasets
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3.2 Pré-Processamento

Neste trabalho, a abordagem de pré-processamento dos dados foi mantida de forma reduzida,
uma vez que o foco principal não foi o ajuste minucioso dos dados, mas sim a análise de
modelos de aprendizagem de máquina em conjuntos de dados de grande escala. A justificativa
para essa escolha reside na natureza dos conjuntos de dados utilizados, que possuem mais de
1000 variáveis. O tratamento exaustivo de tais dados, considerando a grande quantidade de
variáveis e a diversidade dos conjuntos, seria extremamente custoso em termos computacionais,
além de envolver um alto risco de perda de informações importantes.

Embora fosse possível que um pré-processamento mais cuidadoso pudesse resultar em um
desempenho aprimorado dos modelos (García et al., 2016) a opção por uma abordagem mais
simplificada visou priorizar a viabilidade computacional. O custo de tempo e os recursos neces-
sários para realizar ajustes detalhados seriam excessivos, especialmente considerando o volume
de dados. Além disso, como o objetivo deste estudo é lidar com grandes volumes de dados,
característicos de cenários de Big Data, procurou-se minimizar intervenções que pudessem mo-
dificar excessivamente a natureza dos dados originais. Isso ajuda a preservar as características
originais dos conjuntos de dados, o que é desejável quando se busca obter resultados que refli-
tam de maneira fiel a complexidade dos dados, sem introduzir alterações que possam afetar sua
representatividade.

No entanto, foi necessária a normalização (Ali et al., 2014) de alguns conjuntos de dados,
uma vez que certos modelos de aprendizagem de máquina requerem dados em escalas seme-
lhantes para o seu bom desempenho. Isso é particularmente importante em modelos baseados
em distâncias, como KNN, que podem ser sensíveis a valores desproporcionais em diferentes
escalas. Para tal, foi aplicada a normalização utilizando o StandardScaler (Raju et al., 2020),
que realiza a transformação dos dados para que tenham média zero e desvio padrão unitário.

Essa normalização é crucial, especialmente em datasets com variáveis cujos valores estão
em diferentes ordens de magnitude, pois ajuda a evitar que características com maior escala
dominem o processo de aprendizagem, promovendo uma convergência mais eficiente e uma
performance mais robusta dos modelos de Aprendizagem de Máquina.

3.3 Meta-Features

O presente trabalho tem como objetivo explorar o uso de meta-features (Pinto et al., 2016)
no contexto de Meta-Aprendizagem, buscando desenvolver um sistema de recomendação de
algoritmos de aprendizagem de máquina que possa auxiliar na seleção e parametrização de
modelos mais adequados a diferentes tipos de conjuntos de dados. A Meta-Aprendizagem é o
estudo que visa usar o conhecimento prévio (meta-conhecimento) para otimizar processos de
aprendizagem, e as meta-features desempenham um papel central ao capturar características dos
dados que são relevantes para entender seu comportamento em relação a diferentes algoritmos.



METODOLOGIA 29

As meta-features, ou metacaracterísticas, são características descritivas extraídas dos dados
e usadas para compreender melhor as propriedades de um conjunto de dados e seu relaciona-
mento com algoritmos de aprendizagem. Essas características são essenciais para identificar
padrões e peculiaridades dos dados, facilitando a criação de modelos que podem prever qual
algoritmo terá o melhor desempenho para determinado problema.

Nesse trabalho foi utlizados três categorias principais de meta-features:

Categoria Descrição Detalhes
General Informações básicas

sobre o dataset
Inclui o número de instâncias, atributos e clas-
ses. Ajuda a definir um perfil geral do conjunto
de dados.

Statistical Medidas estatísticas Contém métricas como média, variância e assi-
metria, que descrevem as propriedades numé-
ricas da distribuição dos dados e auxiliam na
compreensão da complexidade do dataset.

Info-Theory Medidas de teoria da in-
formação

Agrupa métricas úteis para atributos discretos
(categóricos), como a entropia, avaliando o re-
lacionamento dos atributos com as classes.

Tabela 3.3: Características do Dataset por Categoria

Essas três categorias fornecem uma descrição robusta do conjunto de dados, o que contribui
para um entendimento mais aprofundado de suas peculiaridades e desafios.

O trabalho também utiliza meta-dados, que consistem na combinação das meta-features com
informações sobre o desempenho de diferentes algoritmos. Esses meta-dados ajudam a cons-
truir um sistema de recomendação (Rivolli et al., 1808) que não apenas avalia as características
dos dados, mas também indica quais algoritmos são mais adequados para diferentes tipos de
problemas.
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Grupo Nome Descrição
General attr_to_inst Calcular a razão entre o número de atributos e o número de instâncias.
General cat_to_num Calcular a razão entre o número de feições categóricas e numéricas.
General freq_class Calcular a frequência relativa de cada classe distinta.
General inst_to_attr Calcular a razão entre o número de instâncias e atributos.
General nr_attr Calcular o número total de atributos.
General nr_bin Calcular o número de atributos binários.
General nr_cat Calcular o número de atributos categóricos.
General nr_class Calcular o número de classes distintas.
General nr_inst Calcular o número de instâncias no conjunto de dados.
General nr_num Calcular o número de recursos numéricos.

Statistical can_cor Calcular correlações canônicas dos dados.
Statistical cor Calcular o valor absoluto da correlação de pares de colunas de conjuntos de dados distin-

tos.
Statistical cov Calcular o valor absoluto da covariância de pares de atributos de conjuntos de dados

distintos.
Statistical eigenvalues Calcular os autovalores da matriz de covariância do conjunto de dados.
Statistical g_mean Calcular a média geométrica de cada atributo.
Statistical gravity Calcular a distância entre o centro de massa das classes minoritária e majoritária.
Statistical h_mean Calcular a média harmônica de cada atributo.
Statistical iq_range Calcular o intervalo interquartílico (IQR) de cada atributo.
Statistical kurtosis Calcular a curtose de cada atributo.
Statistical lh_trace Calcular o rastreamento de Lawley-Hotelling.
Statistical mad Calcular o Desvio Absoluto Mediano (MAD) ajustado por um fator.
Statistical max Calcular o valor máximo de cada atributo.
Statistical mean Calcular o valor médio de cada atributo.
Statistical median Calcular o valor mediano de cada atributo.
Statistical min Calcular o valor mínimo de cada atributo.
Statistical nr_cor_attr Calcular o número de pares de atributos altamente correlacionados distintos.
Statistical nr_disc Calcular o número de correlação canônica entre cada atributo e classe.
Statistical nr_norm Calcular o número de atributos normalmente distribuídos com base em um método.
Statistical nr_outliers Calcular o número de atributos com pelo menos um valor discrepante.
Statistical p_trace Calcular o traço de Pillai.
Statistical range Calcular o intervalo (máx - min) de cada atributo.
Statistical roy_root Calcular a maior raiz de Roy.
Statistical sd Calcular o desvio padrão de cada atributo.
Statistical sd_ratio Calcular um teste estatístico para homogeneidade de covariâncias.
Statistical skewness Calcular a assimetria para cada atributo.
Statistical sparsity Calcular a métrica de esparsidade (possivelmente normalizada) para cada atributo.
Statistical t_mean Calcular a média truncada de cada atributo.
Statistical var Calcular a variância de cada atributo.
Statistical w_lambda Calcular o valor Lambda de Wilks’.

Info-theory attr_conc Calcular o coeficiente de concentração de cada par de atributos distintos.
Info-theory attr_ent Calcular a entropia de Shannon para cada atributo alvo.
Info-theory class_conc Calcular o coeficiente de concentração entre cada atributo e classe.
Info-theory class_ent Calcular a entropia de Shannon do atributo alvo.
Info-theory eq_num_attr Calcular o número de atributos equivalentes para uma tarefa preditiva.
Info-theory joint_ent Calcular a entropia conjunta entre cada atributo e a classe.
Info-theory mut_inf Calcular as informações mútua entre cada atributo e destino.
Info-theory ns_ratio Calcular o ruído dos atributos.

Tabela 3.4: Meta-feature utilizadas
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3.4 Métodos de Redução de dimensionalidade

No presente trabalho, exploramos diversas técnicas de redução de dimensionalidade (Sorzano
et al., 2014), com o objetivo de desenvolver um Meta-Aprendiz capaz de selecionar automati-
camente o algoritmo mais adequado para diferentes conjuntos de dados. A escolha criteriosa
de técnicas de redução de dimensionalidade é fundamental para otimizar a performance dos
algoritmos de aprendizagem de máquina, reduzir o tempo de processamento e facilitar a visu-
alização de dados de alta dimensão. Em contextos de Big Data, a redução dimensional não só
aprimora a eficiência computacional, como também possibilita o tratamento de dados de grande
escala.

Para maximizar a diversidade de opções de redução dimensional, selecionamos 10 algorit-
mos que cobrem diferentes abordagens e características. A Tabela 3.5 apresenta esses algorit-
mos e uma breve justificativa para a escolha de cada um, considerando a diversidade de conjun-
tos de dados e a adequação de cada técnica a diferentes tipos de estrutura e complexidade dos
dados.

Algoritmo Descrição
Principal Component Analy-
sis (PCA)

Reduz a dimensionalidade ao identificar as direções princi-
pais (componentes principais) da variabilidade nos dados.
É eficaz para dados lineares.

Kernel PCA (kPCA) Expande o PCA convencional para dados não lineares ao
aplicar um kernel. Ideal para dados com estruturas comple-
xas.

Latent Dirichlet Allocation
(LDA)

Reduz a dimensionalidade em dados textuais, útil para iden-
tificar tópicos latentes. É amplamente utilizado em NLP.

T-Distributed Stochastic
Neighbor Embedding (t-
SNE)

Especialmente eficaz para visualização de dados de alta di-
mensão ao preservar relações de similaridade.

Locally Linear Embedding
(LLE)

Preserva a estrutura local dos dados, indicado para dados
com múltiplas subestruturas complexas.

Truncated Singular Value De-
composition (SVD)

Decompõe a matriz de dados para reduzir a dimensionali-
dade, sendo muito eficiente para dados textuais (como em
LSA).

Incremental PCA Variante do PCA para grandes volumes de dados que não
cabem na memória, ideal para aplicações de Big Data.

Random Trees Embedding Usa árvores de decisão para criar embeddings, adequado
para transformar dados complexos para modelos lineares.

SelectKBest Seleciona as melhores features com base em testes estatís-
ticos, útil para problemas em que apenas algumas variáveis
são significativas.

Spectral Embedding Explora as propriedades espectrais dos dados, sendo ade-
quado para dados que se distribuem em um grafo.

Tabela 3.5: Algoritmos de Redução de Dimensionalidade Selecionados
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3.5 Métricas

Neste trabalho, abordamos duas métricas importantes para avaliação de modelos de classifica-
ção: o F-score (ou F1-score) e o coeficiente de correlação de Spearman. Ambas são essenciais
para avaliar o desempenho dos modelos em diferentes contextos no presente trabalho.

O F-score, também conhecido como F1-score (Yacouby and Axman, 2020), é uma medida
de precisão que leva em consideração tanto a precisão quanto a revocação (ou recall) de um
modelo de classificação. O mesmo foi usado para medir o desequilíbrio nas classes, pois ofe-
recia uma visão mais equilibrada do desempenho do modelo. Uma explicação mais detalhada
encontra-se no Capítulo 2.

O coeficiente de correlação de Spearman (Restrepo and González, 2007) é uma medida
não-paramétrica que avalia a relação monotônica entre duas variáveis, sem pressupor uma dis-
tribuição específica dos dados. Ele é particularmente útil quando as variáveis não seguem uma
distribuição normal ou quando a relação entre elas é monotônica, mas não necessariamente
linear.

O coeficiente de Spearman é calculado a partir das classificações das variáveis, e sua fórmula
é dada por:

ρ = 1− 6∑d2
i

n(n2 −1)
(3.1)

Onde:

• di é a diferença entre os postos de cada observação.

• n é o número de observações.

O valor de ρ varia entre -1 e 1, onde:

• 1 indica uma correlação positiva perfeita,

• -1 indica uma correlação negativa perfeita,

• 0 indica nenhuma correlação monotônica.

No contexto deste trabalho, o coeficiente de Spearman foi utilizado para calcular a correla-
ção entre os rankings de dois conjuntos de dados, visando medir o grau de associação entre as
classificações de diferentes variáveis.
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3.6 Algoritmos bases usados

3.6.1 KNN sem redução de dimensionalidade

Neste trabalho, utilizamos o algoritmo de aprendizage de máquina KNN (K-Nearest Neighbors
ou K-Vizinhos Mais Próximos). Optamos por esse método devido à sua simplicidade e por se
adequar bem a problemas de classificação, como o que estamos abordando. O KNN classifica
novos pontos com base na proximidade em relação a pontos já conhecidos no conjunto de dados.
Ao definir um valor de K = 3, por exemplo, o algoritmo analisa os três pontos mais próximos
do ponto que se deseja classificar. A proximidade entre os pontos é medida, em geral, pela
distância Euclidiana, conforme apresentada a seguir:

d(A,B) =
√

(a1 −b1)2 +(a2 −b2)2 + · · ·+(an −bn)2 (3.2)

A = (a1,a2, . . . ,an) e B = (b1,b2, . . . ,bn) representam o ponto de teste e um ponto do con-
junto de treinamento, respectivamente, sendo n o número de características (features) de cada
ponto.

O objetivo inicial foi realizar a classificação de 66 datasets sem utilizar algoritmos de re-
dução de dimensionalidade, para que fosse possível comparar os resultados com e sem essa
técnica posteriormente. Para classificar cada dataset, utilizamos valores de k variando entre 1
e 31, de modo a observar o impacto dessa variação nos resultados obtidos. Após a seleção de
k, dividimos o conjunto de dados em 70% para treino e 30% para teste, utilizando a função
‘train_test_split()‘, que permite avaliar de forma confiável o desempenho do modelo em dados
não vistos. Por fim, utilizamos a métrica F1-score para medir o desempenho dos algoritmos,
considerando a média "micro", que leva em conta o balanceamento entre as classes.

3.6.2 KNN com redução de dimensionalidade

Após realizar a classificação sem a aplicação de técnicas de redução de dimensionalidade, foi
essencial incorporar essa etapa para avaliar o impacto no desempenho do algoritmo. Para essa
tarefa, mantivemos a mesma estrutura do KNN, com valores de k variando entre 1 e 31, con-
forme discutido na subseção anterior. No entanto, antes de proceder à classificação, aplicamos
diferentes algoritmos de redução de dimensionalidade.

A redução de dimensionalidade é uma técnica que visa transformar um conjunto de dados de
alta dimensionalidade em uma representação mais compacta, preservando o máximo possível
da variância original dos dados.

Para a escolha do número ideal de componentes a serem mantidos em cada algoritmo de re-
dução, adotamos diversas abordagens, como Kaiser’s stopping rule (que retém apenas os com-
ponentes com autovalores maiores que 1), A priori criterion (que define previamente o número
de componentes com base no conhecimento sobre o problema), entre outras técnicas discutidas
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na literatura, como sugerido por Brown (2009) (Brown, 2009).
Matematicamente, a escolha do número de componentes em métodos como Análise de

Componentes Principais (PCA) é definida pela decomposição da matriz de covariância dos
dados. Dados os autovalores λ1,λ2, . . . ,λn, associados aos componentes principais, o número
m de componentes selecionados maximiza a seguinte relação:

∑
m
i=1 λi

∑
n
i=1 λi

(3.3)

onde m é o número de componentes que retém uma quantidade significativa da variância
dos dados.

Assim, após a redução dimensionalidade, os dados foram divididos novamente em 70%
para treino e 30% para teste, mantendo a consistência metodológica do experimento anterior.
A métrica F1-score foi utilizada para avaliar o desempenho dos modelos reduzidos, utilizando
a média "micro"para contabilizar o balanceamento entre as classes. Dessa forma, foi possível
comparar o desempenho do KNN em cenários com e sem redução de dimensionalidade.

Após a classificação com redução de dimensionalidade, foi criado um dataset contendo
os resultados de classificação para cada algoritmo de redução. Em seguida, foi gerado um
ranking para avaliar o desempenho relativo entre esses algoritmos. O ranking foi calculado
da seguinte forma: para cada um dos 66 datasets, os valores de desempenho dos algoritmos
foram ordenados, e atribuímos uma pontuação de 10 ao melhor desempenho, 9 ao segundo, e
assim sucessivamente, até o pior desempenho, que recebeu pontuação 1. O resultado foi um
DataFrame contendo os rankings dos algoritmos: IncrementalPCA, KPCA, LDA, LLE, PCA,
RTreeE, SelectBest, SpectralEmbedding, TruncatedSVD, e t-SNE.

Index IncrementalPCA KPCA LDA LLE PCA RTreeE SelectBest SpectralEmbedding TruncatedSVD t-SNE
0 4 3 6 2 5 8 1 10 9 8
1 4 2 5 8 4 6 2 9 7 10
2 4 7 2 5 4 7 2 10 10 10
3 10 10 10 1 10 6 3 4 3 6
4 5 5 5 8 5 7 5 7 10 9
5 4 4 6 10 4 7 4 6 8 9
6 4 5 4 10 4 1 6 10 8 7
7 6 6 3 7 6 3 3 8 10 9
8 5 5 2 10 3 8 2 8 6 9
9 5 5 2 8 5 6 2 9 7 10

Tabela 3.6: Ranking dos algoritmos de redução de dimensionalidade para os datasets.

Em seguida, o ranking foi combinado com as meta-features (características dos datasets)
para analisar a relação entre as propriedades dos datasets e o desempenho dos algoritmos de
redução. As meta-features foram usadas para descrever as características que descrevem a es-
trutura dos datasets. Nesse caso, as meta-features serviram como as variáveis explicativas (X),
enquanto o desempenho do algoritmo foi a variável alvo (y).

Para realizar a classificação, utilizamos o algoritmo RandomForestClassifier, um método
baseado em um conjunto de árvores de decisão. O Random Forest constrói várias árvores de
decisão durante o treinamento e, para realizar a classificação, utiliza a média dos votos de todas
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as árvores. Matematicamente, o modelo pode ser representado como uma coleção de árvores
T1,T2, . . . ,TB, onde B é o número de árvores. Cada árvore faz uma previsão, e a classe final ŷ é
determinada pela maioria dos votos:

ŷ = argmax
B

∑
b=1

I(Tb(x) = y) (3.4)

Para validar o modelo, utilizamos a técnica de Leave-One-Out Cross-Validation (LOO).
Nesta abordagem, o modelo é treinado em n− 1 exemplos e testado em 1 exemplo, sendo n

o número total de exemplos. Esse processo é repetido n vezes, garantindo que cada dado seja
utilizado tanto para treino quanto para teste. As variáveis X consistiram nas meta-features, e y

representou o desempenho do algoritmo.

Index IncrementalPCA KPCA LDA LLE PCA RTreeE SelectBest SpectralEmbedding TruncatedSVD t-SNE
0 0.957447 0.958235 0.947991 0.963751 0.956659 0.946414 0.964539 0.921198 0.944050 0.946414
1 0.757576 0.803030 0.651515 0.333333 0.757576 0.636364 0.803030 0.318182 0.590909 0.166667
2 0.818182 0.681818 0.954545 0.727273 0.818182 0.681818 0.954545 0.590909 0.590909 0.590909
3 0.388889 0.388889 0.388889 0.666667 0.388889 0.444444 0.611111 0.500000 0.611111 0.444444
4 1.000000 1.000000 1.000000 0.975806 1.000000 0.991935 1.000000 0.991935 0.709677 0.798387
5 0.950820 0.950820 0.942623 0.483607 0.950820 0.909836 0.950820 0.942623 0.877049 0.819672
6 0.885246 0.868852 0.885246 0.180328 0.885246 0.901639 0.852459 0.180328 0.672131 0.786885
7 0.954545 0.954545 0.977273 0.840909 0.954545 0.977273 0.977273 0.090909 0.022727 0.045455
8 0.854839 0.854839 0.895161 0.508065 0.887097 0.838710 0.895161 0.838710 0.846774 0.524194
9 0.905512 0.905512 0.929134 0.779528 0.905512 0.850394 0.929134 0.755906 0.818898 0.551181

Tabela 3.7: Junção dos datasets com resultados classificação

Por fim, é gerado um ranking com base nas predições realizadas a partir da combinação
das meta-features e do desempenho dos algoritmos. Esse ranking, que reflete a classificação
obtida a partir das meta-features associadas aos algoritmos de redução de dimensionalidade, é
denominado "meta-base"neste trabalho.

Index IncrementalPCA KPCA LDA LLE PCA RTreeE SelectBest SpectralEmbedding TruncatedSVD t-SNE
0 3 2 6 10 5 4 1 7 8 9
1 9 9 5 10 9 7 2 2 9 10
2 10 10 10 1 10 6 2 4 3 6
3 4 7 2 5 4 7 2 10 10 10
4 5 5 2 10 4 7 2 9 8 9

Tabela 3.8: Ranking Meta Base

3.7 Meta-aprendiz

O objetivo deste trabalho é criar um modelo de recomendação de algoritmos capaz de otimizar
tanto o tempo quanto o custo computacional no processamento de dados, além de desenvolver
um modelo que possa gerar suas próprias estratégias de aprendizagem por meio da utilização de
meta-dados. Para isso, construímos um repositório com 66 conjuntos de dados, cada um con-
tendo entre 1.000 e 30.000 variáveis (features). Esses dados foram escolhidos de forma diversa
para garantir uma boa representatividade de diferentes domínios e níveis de complexidade.

Para a avaliação dos dados, selecionamos 10 algoritmos de redução de dimensionalidade,
incluindo técnicas como Principal Component Analysis (PCA), t-Distributed Stochastic Neigh-
bor Embedding (t-SNE), Latent Dirichlet Allocation (LDA) e Random Trees Embedding. A
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Figura 3.2: Arquitetura do Meta-Aprendiz

escolha dos algoritmos não seguiu um critério específico, pois nosso foco foi explorar dife-
rentes abordagens que pudessem capturar a variabilidade dos conjuntos de dados de maneira
ampla.

As Características dos Dados, neste contexto, referem-se a descritores ou atributos extraí-
dos dos conjuntos de dados que servem para resumir suas propriedades, como o número de
variáveis, a dimensionalidade e a complexidade estrutural dos dados. Essas características,
conhecidas como meta-features, são essenciais para o processo de meta-aprendizagem. As
meta-features selecionadas foram divididas em três categorias principais: General, que envolve
medidas estatísticas simples; Statistical, que inclui métricas mais avançadas, como variância
e correlação; e Info-Theory, que avalia a quantidade de informação contida nos dados, como
entropia e redundância.

Distribuições específicas dos dados também foram levadas em consideração para garantir
que a análise capturasse corretamente as nuances dos diferentes tipos de dados. Essas carac-
terísticas foram fundamentais para alimentar o modelo de recomendação de algoritmos, que
utiliza a meta-aprendizagem para encontrar a melhor estratégia de redução de dimensionali-
dade para cada conjunto de dados com base em seu desempenho anterior.

Na figura 3.2, vemos que os dados passam por uma fase de avaliação onde as características
são extraídas e utilizadas para formar os meta-dados. Esses meta-dados, que incluem tanto as
descrições dos dados (como distribuição e complexidade) quanto o desempenho dos algorit-
mos aplicados a esses dados, são então alimentados no modelo de meta-aprendizagem. Dessa
forma, possível criar um modelo capaz de aprender a partir dos meta-dados e, com base nas ca-
racterísticas de novos conjuntos de dados, recomendar os algoritmos mais adequados de forma
automatizada, otimizando, assim, o tempo e o custo computacional.



4
Resultados e Discussões

Nesta seção, apresentamos os resultados obtidos a partir da análise dos conjuntos de dados e
a criação de uma meta base de dados, que serviu como base para o desenvolvimento de um
modelo de recomendação de algoritmos de redução de dimensionalidade.

4.1 Classificação usando KNN

4.1.1 Sem aplicação de algoritmos de redução de dimensionalidade

Ao realizar a classificação das bases de dados utilizando o algoritmo KNN Abu Alfeilat et al.
(2019), com os parâmetros e métricas descritos no capítulo de metodologia, observamos de-
sempenhos variados. Algumas bases de dados, como a AP_Breast_Prostate, atingiram um
desempenho perfeito (1.0), enquanto outras apresentaram resultados bem abaixo, com desem-
penho inferior a 0.20, como por exemplo, eating. A maioria das bases, no entanto, obteve
desempenhos entre 0.7 e 0.95.

É importante ressaltar que, até este ponto, não foram aplicados tratamentos ou pré- proces-
samentos nos 66 conjuntos de dados analisados. Os resultados refletem o desempenho bruto,
sem qualquer alteração nos dados originais. A partir da análise visual da imagem abaixo, po-
demos concluir que, de maneira geral, os resultados foram positivos, com uma média geral de
desempenho de 0.79.

37
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Figura 4.1: Desempenho sem redução de dimensionalidade

Na figura abaixo (Boxplot), observa-se a concentração dos dados e a presença de possíveis
outliers. A mediana, juntamente com os quartis (Q1 e Q3), indica que a maioria dos valores
de Score está concentrada entre 0,7 e 0,9. Os whiskers se estendem para representar a disper-
são dos dados dentro de 1,5 vezes o intervalo interquartil, revelando que há poucos outliers,
evidenciando, portanto, uma baixa incidência de valores atípicos no conjunto de dados.

Figura 4.2: Boxplot desempenho dos datasets

4.1.2 Com Aplicação de algoritmos de redução de dimensionalidade

Para realizar a classificação dos conjuntos de dados, foi aplicada a redução de dimensionali-
dade em cada um deles. Nesta etapa, o método K-Nearest Neighbors (KNN) (Abu Alfeilat
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et al. (2019))) foi utilizado com os parâmetros e métricas previamente descritos no capítulo de
Metodologia. No entanto, foi necessária a normalização dos dados, uma vez que alguns al-
goritmos de redução de dimensionalidade requerem que os dados estejam normalizados para
um desempenho eficaz. Para a normalização, foi utilizado o StandardScaler, que transforma as
características para terem média igual a 0 e desvio padrão igual a 1.

A classificação foi realizada com 10 diferentes algoritmos de redução de dimensionalidade,
e as imagens a seguir de alguns algoritmos ilustram o desempenho de cada abordagem, permi-
tindo uma comparação entre os resultados com e sem a aplicação da redução de dimensionali-
dade.

Figura 4.3: Desempenho dos datasets

Na Figura 4.3, observa-se que, ao aplicar o algoritmo Incremental PCA, os valores de de-
sempenho não apresentam mudanças significativas em comparação com os resultados obtidos
sem a redução de dimensionalidade. A principal diferença está na variação de desempenho en-
tre diferentes conjuntos de dados: alguns mantêm um desempenho mais baixo, enquanto outros
apresentam uma melhora mais notável.
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Figura 4.4: Desemenho dos datasets

Observando a Figura 4.4, percebe-se que o algoritmo T-Distributed Stochastic Neighbor
Embedding (t-SNE) apresenta um desempenho consideravelmente diferente dos gráficos ante-
riores. Os valores estão mais dispersos e não demonstram resultados tão satisfatórios em termos
de desempenho, comparados aos demais algoritmos.

Talvez essa diferença de desempenho entre os dois algoritmos usados na classificação com
redução de dimensionalidade esteja no fato de que um, o t-SNE, é focado em preservar relações
de proximidade local, o que é útil para visualizações detalhadas, mas pode distorcer a estrutura
global dos dados. Já o Incremental PCA preserva a variância global dos dados de forma linear,
sendo mais eficiente e adequado para análise quantitativa e conjuntos de dados grandes.

Foram citados apenas dois dos dez algoritmos utilizados neste trabalho; os demais apre-
sentaram desempenhos próximos aos desses dois mencionados. Assim, observa-se que o uso
de técnicas de redução de dimensionalidade frequentemente proporciona melhorias no desem-
penho. No nosso cenário, essas melhorias foram observadas em alguns conjuntos de dados,
enquanto em outros, não ocorreram Reddy et al. (2020).

A figura abaixo apresenta boxplots que comparam o desempenho de 10 algoritmos de redu-
ção de dimensionalidade. A distribuição dos resultados varia entre os algoritmos, com alguns,
como Incremental PCA e SelectBest, mostrando desempenho mais consistente e concentrado
em valores altos, enquanto outros, como t-SNE, exibem maior dispersão, indicando maior vari-
abilidade nos resultados.
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Figura 4.5: Ranking dos algoritmos de redução de dimensionalidade para os datasets
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4.2 Comparação os resultados do modelo de recomendação
de algoritmo

4.2.1 Meta-features

Nesta seção, apresentaremos os resultados utilizando a metafeature general na metabase, a fim
de criar o meta-aprendizagem e possibilitar a construção do sistema de recomendação de al-
goritmos. A figura abaixo mostra o ranking dos algoritmos de redução de dimensionalidade,
o qual será comparado com o ranking gerado pelo modelo de recomendação, para avaliar seu
desempenho. Observa-se que muitos dos rankings são semelhantes, o que pode ser explicado
pelo fato de que o desempenho dos algoritmos é igual ou muito próximo entre si.

Figura 4.6: Ranking dos algoritmos de redução de dimensionalidade para os datasets

A criação do ranking foi realizada utilizando a metafeature geral, e os algoritmos de redução
de dimensionalidade foram combinados para formar nossa metabase de dados. Para predizer os
valores do ranking, utilizamos o algoritmo Random Forest, com o objetivo de identificar qual
algoritmo de redução de dimensionalidade seria mais indicado para cada contexto. Os resul-
tados apresentados na figura abaixo mostram que o modelo de recomendação de algoritmos,
na maioria das vezes, acerta a indicação do algoritmo correto. No entanto, também observa-
mos que, em várias situações, o modelo comete erros. Esse desempenho abaixo do esperado
pode ser atribuído à necessidade de um ajuste mais fino nos parâmetros do nosso modelo de
recomendação, o que possibilitaria predições mais precisas e eficientes.
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Figura 4.7: Ranking dos algoritmos usando Meta Dados e Metafeature General

Nos resultados obtidos com a comparação dos rankings de algoritmos de redução de dimen-
sionalidade, utilizando a correlação de Spearman, foi possível observar diferentes desempenhos
ao considerar as médias e medianas dos valores. A correlação média dos rankings originais em
relação à média das iterações do processo de Leave-One-Out mostrou coeficientes variando
principalmente entre 0.5 e 0.9, com alguns casos de correlações negativas, como -0.204, suge-
rindo que os rankings médios se aproximam, em sua maioria, dos rankings previstos, mas ainda
apresentam divergências notáveis.

Ao analisar o impacto das medianas, os coeficientes de correlação de Spearman demonstra-
ram uma tendência levemente superior em relação às médias, com alguns valores ultrapassando
0.9 e indicando uma melhor adequação do modelo de recomendação. No entanto, também fo-
ram observadas correlações negativas mais acentuadas, como -0.43, sugerindo que, em certos
contextos, as medianas podem levar a discrepâncias maiores em relação aos rankings originais.
Esses resultados indicam a necessidade de ajustes mais precisos nos parâmetros do modelo para
reduzir as variações nos rankings e aprimorar a precisão das predições.

Figura 4.8: Tabela de Correlação de Spearman-General

A Figura 4.9 apresenta os resultados da comparação entre os rankings de algoritmos de
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redução de dimensionalidade, utilizando a correlação de Spearman aplicada à meta-base com
a metafeature statistical. Nota-se que os resultados são bastante semelhantes aos obtidos com
metafeature General. Já a Figura 4.10 mostra os coeficientes de correlação de Spearman, onde
se observam tanto correlações positivas quanto negativas

Figura 4.9: Ranking dos algoritmos usando Meta Dados e Metafeature Statistical

Figura 4.10: Correlação de Spearman-Statistical

Além disso, os resultados obtidos utilizando a metafeature Info-Theory ( figura 4.11) para a
criação do modelo de recomendação de algoritmos apresentam desempenhos similares aos mo-
delos que utilizaram as metafeatures General e Statistical. Ao comparar os rankings das Figuras
4.6 e 4.11, nota-se que a precisão da recomendação dos algoritmos não é tão elevada. Obser-
vando a correlação de Spearman, os valores obtidos são bastante próximos dos encontrados para
as outras metafeatures, reforçando a consistência dos resultados.
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Figura 4.11: Ranking dos algoritmos usando Meta Dados e Metafeature Info Theory

Figura 4.12: Tabela de Correlação de Spearman-Info Theory
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4.3 Conclusão

Como observado nos resultados, o modelo de recomendação de algoritmos, baseado nos ran-
kings gerados a partir das metafeatures General, Statistical e Info-Theory, demonstrou eficácia
ao identificar o algoritmo mais adequado para um determinado conjunto de dados, em compa-
ração com o ranking dos datasets na Figura 4.6. A análise da correlação de Spearman reve-
lou desempenhos variados ao considerar as médias e medianas dos valores. No entanto, algu-
mas discrepâncias importantes foram observadas, como uma correlação negativa significativa
(-0,204), assim como correlações mais altas, como 0,5 e 0,9, que indicam um bom desempenho
ao utilizar a média. Ainda assim, melhorias no desempenho do modelo de recomendação são
necessárias para reduzir a variação das predições, visando atingir correlações superiores a 0,6
de forma mais consistente.



5
Conclusão

Este trabalho investigou a aplicação de técnicas de meta-aprendizagem para automatizar a se-
leção de algoritmos de redução de dimensionalidade em cenários de Big Data. Através de uma
combinação de metafeatures e modelos de recomendação, foi possível identificar algoritmos
mais adequados para conjuntos de dados específicos, contribuindo significativamente para o
aprimoramento do desempenho em tarefas de aprendizagem de máquina. Os resultados obti-
dos demonstraram a eficácia do método proposto, embora também tenham revelado pontos que
exigem refinamentos adicionais.

O presente trabalho faz uma importante contribuição ao campo de aprendizagem de má-
quina, especialmente no contexto de problemas de alta dimensionalidade, ao propor uma abor-
dagem de recomendação de algoritmos de redução de dimensionalidade baseada em meta-
aprendizagem. Foi criado um modelo que, por meio do uso de metafeatures extraídas dos
dados, automatiza a seleção de algoritmos de redução de dimensionalidade, otimizando tanto o
tempo quanto o custo computacional de experimentos com grandes volumes de dados. Além
disso, explorou-se o uso de metafeatures em três categorias principais General, Statistical e
Info-Theory mostrando que essas características são valiosas para descrever e comparar o de-
sempenho de algoritmos em diferentes contextos. A análise dos rankings gerados a partir dessas
metafeatures destacou a relevância de cada categoria no processo de recomendação.

Os resultados demonstraram que o modelo de recomendação foi eficaz na maioria dos casos,
conforme evidenciado pelas correlações de Spearman entre rankings originais e previstos. Essa
avaliação reforçou a validade do método proposto, indicando que ele pode ser aplicado a dife-
rentes domínios e conjuntos de dados. Ao aplicar algoritmos de redução de dimensionalidade,
foi possível observar melhorias significativas no desempenho de algoritmos de aprendizagem
de máquina em diversos conjuntos de dados, especialmente em termos de preservação da estru-
tura dos dados e da eficiência computacional. Essas contribuições colocam o presente trabalho
como um avanço importante em sistemas automatizados e otimizados para a escolha de algorit-
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mos em cenários com dados de alta dimensionalidade, oferecendo uma ferramenta promissora
para pesquisadores que trabalham com grandes volumes de dados.

Embora o modelo de recomendação de algoritmos proposto tenha se mostrado promissor,
ainda existem oportunidades para expandir e aprimorar este trabalho em futuros estudos. Uma
área de melhoria está na otimização dos parâmetros dos modelos de recomendação. Um ajuste
mais preciso desses parâmetros pode levar a uma maior precisão nas predições, reduzindo a
variação observada entre rankings previstos e reais. Futuros trabalhos podem explorar outras
metafeatures que captem aspectos mais profundos dos dados, como a complexidade estrutural, e
essa ampliação poderia melhorar a qualidade das recomendações em domínios mais específicos.

Em conclusão, o presente trabalho representa um avanço significativo no uso da técnica de
meta-aprendizagem para a recomendação de algoritmos de redução de dimensionalidade. A
abordagem proposta demonstrou ser eficaz na automação e otimização da escolha de algorit-
mos para diferentes conjuntos de dados, com resultados promissores que evidenciam o potencial
dessa metodologia. Embora ainda existam desafios a serem enfrentados, os resultados indicam
que a aplicação de metafeatures e a recomendação automatizada de algoritmos podem se tor-
nar ferramentas valiosas para problema de Big Data, possibilitando análises mais eficientes e
precisas. O trabalho também oferece uma base sólida para futuras pesquisas, incluindo o de-
senvolvimento de sistemas mais robustos e aplicáveis a cenários reais.
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