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Resumo

Universidades e industrias produzem uma enorme quantidade de dados, muitas vezes caracteri-
zados por alta dimensionalidade, o que pode afetar negativamente o desempenho de algoritmos
de Aprendizagem de Méquina. A reducdo de dimensionalidade se torna uma solucao fundamen-
tal para simplificar esses dados sem perder informacdes importantes, permitindo uma anélise
mais eficiente. No entanto, a escolha manual do algoritmo de reducdo de dimensionalidade
mais adequado para cada conjunto de dados é um processo complexo e demorado. Com o obje-
tivo de automatizar essa selecdo, este trabalho propde o desenvolvimento de um meta-aprendiz
que possa prever qual algoritmo de reducdo de dimensionalidade serd mais eficiente para um
determinado conjunto de dados. Este trabalho aborda a selecdo automatizada de algoritmos
de reducdo de dimensionalidade em cendrios de Big Data, utilizando meta-aprendizagem para
aprender padrdes entre os conjuntos de dados e os algoritmos que produzem os melhores re-
sultados. A proposta € testar diferentes técnicas de reducdo de dimensionalidade e, por meio
da construcio de rankings comparativos, verificar se 0 modelo de recomendagdo de algoritmos

consegue prever corretamente o algoritmo mais adequado.

Palavras-chave: Meta aprendizagem, Algoritmos, Dados. Reduc¢do, Aprendizagem de ma-
quina



Abstract

Universities and industries generate vast amounts of data, often characterized by high dimensi-
onality, which can negatively impact the performance of Machine Learning algorithms. Dimen-
sionality reduction becomes a crucial solution to simplify these data without losing important
information, allowing for more efficient analysis. However, manually selecting the most sui-
table dimensionality reduction algorithm for each dataset is a complex and time-consuming
process. To automate this selection, this study proposes the development of a meta-learner ca-
pable of predicting which dimensionality reduction algorithm will be most efficient for a given
dataset. This work focuses on the automated selection of dimensionality reduction algorithms
in Big Data scenarios, utilizing meta-learning to identify patterns between datasets and the
algorithms that yield the best results. The approach involves testing different dimensionality
reduction techniques and, through the construction of comparative rankings, verifying whether

the algorithm recommendation model can accurately predict the most suitable algorithm.

Palavras-chave: Meta-learning, Algorithms, Data, Reduction, Machine Learning.
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Introducao

A inteligéncia artificial (IA) (McCarthy, 2007) é um termo amplamente reconhecido no campo
da Ciéncia da Computagio, tendo ganhado notoriedade desde os anos 50. De acordo com Alan
Turing, o funcionamento de uma maquina tao inteligente que poderia se passar por um humano
sem ser detectada como uma mdquina, conhecido como o teste de Turing (Turing, 2009).

Ao longo dos tempos, varios cientistas buscam aprimorar algoritmos que possam realizar
tarefas mais rdpidas/eficientes do que os humanos, para isso, a maquina precisa aprender e
entender padrdes por meio de algum tipo de aprendizagem que, por sua vez, demanda uma
grande quantidade de dados para que os algoritmos entendam e conhecam padrdes, pois tais
algoritmos sao alimentados por esses dados.

Observa-se, com o avanco da internet e de seu acesso facilitado, que os algoritmos de 1A
estdo sendo cada vez mais procurados e utilizados em aplicagdes do dia a dia, como, por exem-
plo, redes sociais, sistemas de banco, sistemas hospitalares e entre outras aplicacdes para di-
versos problemas (Fetzer and Fetzer, 1990). A IA tornou-se uma grande facilitadora para a
humanidade e, com isso, tornou-se um grande campo da ciéncia que engloba subédreas como
aprendizagem de méquina, aprendizagem profundo e visdo computacional, entre outras.

A Aprendizagem de Mdquina (Zhou, 2021) é um campo que se utiliza de técnicas com-
putacionais para realizar tarefas como classificacdo, agrupamento e previsdo a partir de dados
(Mitchell, 1997). Os algoritmos de Aprendizagem de Méaquina sdo usualmente empregados em
solugcdes para problemas reais, seja usando regressao, classificacdo ou outras técnicas, existem
diversos algoritmos de Aprendizagem de Mdquina conhecidos, como: Arvore de Decisio, Flo-
resta Aleatéria, Mdquina de Vetores de Suporte, Redes Neurais, K-Means. Essa variedade se
origina principalmente pela especificidade que cada algoritmo trds para solucionar problemas.
(Muhammad and Yan, 2015).

Com a grande quantidade de dados disponiveis, muitos pesquisadores recorrem a algoritmos
na expectativa de que estes aprendam (Soofi and Awan, 2017a), através do conjunto de suposi-

cOes embutidas, as caracteristicas derivadas dos dados. Nesse sentido, a busca por um modelo
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eficaz que se adeque aos dados e aprenda com eles(Novakovi¢ et al., 2017), aumentando seu
desempenho ao longo do tempo, reveste-se de fundamental importancia tanto para pesquisas
quanto para a industria.

A disponibilidade de dados tem impulsionado significativamente as pesquisas em Aprendi-
zagem de Mdaquina e ciéncia de dados (Van Der Aalst and van der Aalst, 2016). No entanto, o
aumento simultaneo no volume de dados frequentemente desafia a capacidade dos modelos de
aprendizagem de mdquina em extrair informacgdes relevantes de maneira eficaz. Para abordar
essa complexidade, técnicas de Redu¢do de Dimensionalidade (Van Der Maaten et al., 2009a)
emergem como ferramentas cruciais para lidar com esse dilema, tornando os dados mais geren-
cidveis e facilitando a compreensdo de dados de alta dimensdo (Jia et al., 2022).

A capacidade de aprender com experiéncias anteriores por meio de dados e gerar conheci-
mento desempenha um papel crucial na melhoria do processo de sele¢ao de modelos eficientes
para tomada de decisdo. O Meta-Aprendizagem (Vanschoren, 2019) possibilita que sistemas de
Aprendizagem de Médquina adquiram conhecimento sobre o desempenho de diferentes algorit-
mos e técnicas em diversos conjuntos de dados. Esse conhecimento prévio capacita o sistema
a selecionar automaticamente as abordagens mais adequadas para novos conjuntos de dados,
simplificando o processo de andlise e interpretacdo de grandes volumes de informacgdes (Far-
rell, 1983).

Meta-Aprendizagem (Vanschoren, 2019), ou aprender a aprender, € a ciéncia de aprender
sistematicamente observando o desempenho de diferentes abordagens de aprendizagem de ma-
quina em uma ampla gama de tarefas de aprendizagem. A partir dessa experi€éncia, ou meta-
dados, o sistema aprende a lidar com novas tarefas de forma muito mais rdpida do que seria
possivel sem essa base de conhecimento. Isso ndo apenas acelera e melhora dramaticamente o
design de pipelines de aprendizagem de maquina ou arquiteturas neurais, mas também permite
substituir algoritmos projetados manualmente por novas abordagens aprendidas de maneira ba-
seada em dados (Vilalta and Drissi, 2002).

Neste campo fascinante e em constante evolucdo, o Meta-Aprendizagem apresenta uma vi-
sdo inovadora para a construcdo de sistemas de aprendizagem de mdquina mais eficientes e
adaptaveis (Scheinker, 2021). Ele oferece uma metodologia robusta para a selecdo de mode-
los, otimizando o processo de tomada de decisdo e potencializando a capacidade de andlise e
interpretacdo de dados em diversas aplicagdes.

Este estudo apresenta uma investigacdo aprofundada sobre a selecao de algoritmos de redu-
c¢do de dimensionalidade, empregando o Meta-Aprendizagem (Pavel Brazdil, 2009). como uma
abordagem automatizada para aprimorar a pratica da ciéncia de dados. O objetivo é construir
um sistema de Meta-Aprendizagem que ofereca a melhor estratégia para selecionar esses algo-
ritmos (Giraud-Carrier et al., 2004). A proposta involves a combinaco de diversos algoritmos de
reducdo de dimensionalidade, empregando técnicas de classificacdo tanto antes quanto depois
da aplicacdo dos algoritmos de redugdo. Isso possibilita uma avaliacdo comparativa dos resul-

tados antes e depois da reducgdo, visando identificar melhorias no desempenho dos algoritmos.
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1.1 Motivagao

A reducdo de dimensionalidade (Van Der Maaten et al., 2009b) € crucial no contexto de Big
Data, onde lidar com grandes conjuntos de dados complexos pode ser desafiador. Essa técnica
visa simplificar a representacdo dos dados sem perder informagdes essenciais, facilitando a ané-
lise e o processamento computacional. Este estudo aborda a selecdo automatizada de técnicas
de reducao de dimensionalidade, visando resolver desafios que podem acelerar a pesquisa ci-
entifica e industrial. A complexidade dos dados de alta dimensionalidade impde desafios aos
algoritmos de aprendizagem de maquina.

Investigar a aplicacdo do Meta-Aprendizagem para selecionar as técnicas de redugcdo mais
adequadas oferece oportunidades para contribuir com solugdes praticas e eficazes em proble-
mas reais. Este trabalho contribui para o avanco do conhecimento em um campo em rapido
desenvolvimento. A automac¢do da selecdo de técnicas de reducao de dimensionalidade tem
implicagdes préticas em diversos setores, como andlises financeiras e diagndsticos médicos.
Realizar um estudo sobre esse tema permite o aprimoramento de habilidades em dreas como

andlise de dados, aprendizagem de maquina, programacao e interpretacdo de resultados.

1.2 Objetivo Geral

Este trabalho tem como objetivo criar um meta-aprendiz que busca prever qual algoritmo de
reducdo de dimensionalidade € eficiente para determinado conjunto de dados. Para avaliar
sua eficdcia, serdo criados dois rankings: um sem algoritmos de reducdo e outro com eles, a
fim de verificar se 0 meta-aprendiz consegue prever de forma correta. Apesar da importancia
de reduzir a dimensao dos dados, ha poucos estudos sobre a automatizacdo da escolha desses
algoritmos. Portanto, este trabalho propde uma automacao da anélise dos algoritmos de reducdo

de dimensionalidade.

1.3 Objetivo Especifico

Desenvolver um meta-aprendiz que selecione automaticamente os algoritmos de reducdo de
dimensionalidade mais apropriados para diferentes conjuntos de dados. Implementar e testar
uma variedade de algoritmos de reducdo de dimensionalidade e técnicas de classificagdo para
avaliar a eficdcia do meta-aprendiz. A avaliacdo serd feita através da comparacdo de rankings
de desempenho dos algoritmos de reducao de dimensionalidade antes e depois da sua aplicagdo,
medindo o impacto das reducdes.

A automatizacdo do processo de selecdo de algoritmos de reducdo de dimensionalidade
visa simplificar a andlise de dados em cendrios de Big Data. Isso contribuird para o avango

do conhecimento em meta-aprendizagem e reducao de dimensionalidade, fornecendo uma base
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para futuros estudos e aplicagdes.

1.4 Organizacao do documento

Ap6s esse capitulo de instrodugdo desse trabalho de conclusao de curso, o mesmo foi organiza-
doda seguinte forma:

Capitulo 2 explica a fundamentacao tedrica, como o conceito de aprendizagem de maquina,
aprendizagem supervisionada, a partir de técnicas usadas para descoberta do conhecimento.
Sera explicado o funcionamente de alguns algoritmos de reducdo de dimensionalidade. Além
disso, as meta features usandas seram mecionada, por fim, os algoritmos usados para classifica-
cdo e métricas de avaliagdo de algoritmos.

Capitulo 3 descreve a metodologia usada, serdo explicados os motivos das escolhas da bases
de dados, metafeatures e como foi feita a selecdo das componentes dos algoritmos de redugdo
de dimensionalidade. Como também, motivo de reduzir para ter uma melhor desempenho.

Capitulo 4 descreve os resultados e discussoes, os dados coletados durante a pesquisa sao
apresentados de forma organizada, acompanhados de andlises e interpretacdes. Sao discutidas
as descobertas em relagdo aos objetivos da pesquisa, destacando-se as conclusdes principais e
como estas contribuem para a compreensao do tema em questao.

Capitulo 5 sdo retomados os principais pontos abordados na pesquisa e ressaltadas as contri-
bui¢des para o conhecimento na drea de estudo. Além disso, sdo discutidas possiveis limitacdes

do estudo e sugestdes para pesquisas futuras.



Fundamentacao Teorica

Este capitulo tem como objetivo apresentar alguns dos conceitos essenciais para a compre-
ensdo deste trabalho, abordando tépicos fundamentais da Inteligéncia Artificial, Aprendiza-
gem de Maquina e aspectos criticos da analise de dados. Serdo exploradas diferentes aborda-
gens de aprendizagem, desde métodos supervisionados até técnicas avancadas, como a meta-

aprendizagem e a descoberta de conhecimento em grandes volumes de dados.

2.1 Inteligéncia Artificial

A Inteligéncia Artificial (IA) (McCarthy, 2007) € um campo de estudo da Ciéncia da Compu-
tacdo voltado para o desenvolvimento de sistemas € mdquinas capazes de executar tarefas que,
tradicionalmente, requerem inteligéncia humana. Entre essas capacidades, destacam-se a apren-
dizagem, o raciocinio, a tomada de decisdes, o reconhecimento de padrdes, o processamento de
linguagem natural e a resolucdo de problemas complexos. Diferentemente da simulagdo da in-
teligéncia humana, a IA pode empregar métodos computacionais que ndo sdo necessariamente
observaveis em seres humanos, possibilitando que as maquinas realizem atividades de forma

eficaz e, em muitos casos, em larga escala.

2.2 Aprendizagem de Maquina

A Aprendizagem de Méquina (AM) (Zhou, 2021) € a drea de estudo que possibilita a melhoria
do desempenho de sistemas por meio da aprendizagem com a experiéncia, utilizando métodos
computacionais. Dessa forma, os sistemas adquirem habilidades de aprendizagem sem a neces-
sidade de uma programacgdo explicita para cada tarefa, conforme postulado por A. L. Samuel
(Samuel, 2000). Este dominio de investiga¢cdo pertence ao campo da Inteligéncia Artificial (IA),

que, por sua vez, faz parte do espectro mais amplo da Ciéncia da Computacido (Mitchell and
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Mitchell, 1997). Conforme ilustrado na figura acima, a Aprendizagem de Mdquina (AM) repre-
senta uma vertente mais especifica da IA, focada em capacitar maquinas a aprenderem a partir
de dados disponiveis.

Em vez de serem programados explicitamente para realizar tarefas especificas, os sistemas
de AM sao treinados utilizando grandes conjuntos de dados. Nesses conjuntos, padrdes e rela-
coes sdo identificados pelos algoritmos desenvolvidos (Heil et al., 2021).

Dessa forma, o conhecimento €é adquirido por meio de representacdes mateméticas (Ragone
et al., 2022) e € avaliado por modelos criados por esses algoritmos, permitindo que os compu-
tadores aprendam a partir dos dados e facam previsdes ou tomem decisdes sem a necessidade
de programacao explicita para cada tarefa especifica.

A Aprendizagem de Méquina (AM) (Zhou, 2021) visa resolver uma variedade de proble-
mas, que podem ser abordados usando algoritmos de classificacdo, clusterizacio, regressao,
entre outros (Sarker, 2021). Estes problemas representam desafios distintos, cada um com suas
caracteristicas e métodos especificos de resolucao.

Por meio de técnicas e algoritmos especializados, a AM busca ndo apenas identificar pa-
drdes e tendéncias nos dados, mas também fornecer solugdes eficazes para uma ampla gama de
aplicagdes préticas em diversos dominios.

A classificacdo (Sarker, 2021) € uma tarefa na qual o objetivo € atribuir categorias ou rétulos
a instancias de dados com base em caracteristicas observadas. A resolu¢cdo de problemas de
classificagdo na AM requer a aplicacdo de uma variedade de algoritmos disponiveis. A escolha
do algoritmo adequado depende da natureza especifica do problema em questdo, demandando
uma andlise cuidadosa das caracteristicas dos dados e dos requisitos da aplicacgdo.

Os algoritmos de AM sido geralmente categorizados em trés paradigmas principais: Apren-
dizagem Supervisionada, Aprendizagem nao Supervisionada e Aprendizagem por Reforco (Li,
2017). A seguir, cada um desses paradigmas serd detalhado em termos de principios fundamen-

tais, métodos de aplicacdo e exemplos de algoritmos relevantes.
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Aprendizagem

de
Maquina

Figura 2.1: Relacgdo entre Inteligéncia Artificial (IA) e Aprendizagem de Mdquina (AM). Figura
produzida pelo autor.

2.2.1 Aprendizagem supervisionada

Existem diversas estratégias de aprendizagem que podem ser utilizadas para desenvolver algo-
ritmos de Aprendizagem de Maquina (AM). Atualmente, a mais estudada baseia-se no conceito
de indugdo, segundo o qual é possivel obter conclusdes a partir de fatos ou observacdes par-
ticulares (de Souza, 2011). Sendo assim, a indu¢do forma-se a partir de inferéncias légicas,
permitindo obter resultados genéricos sobre um conjunto especifico de exemplos. A aprendiza-
gem supervisionada € uma facilitadora para resolver problemas de classificacdo e regressao.

A aprendizagem indutiva pode ser dividida em aprendizagem supervisionada e ndo supervi-
sionada, que serd abordada na subsecao seguinte. Na aprendizagem supervisionada, € fornecido
ao algoritmo de aprendizagem um conjunto de exemplos de treinamento para os quais o rétulo
da classe associada é conhecido.

A aprendizagem supervisionada (Cunningham et al., 2008) € essencial para extrair padroes
e realizar previsdes a partir de dados rotulados. Cada exemplo no conjunto de dados possui
um rétulo conhecido, permitindo que o algoritmo aprenda a mapear os padrdes nos dados de

entrada para os rétulos correspondentes.
K-Vizinhos Mais Préximos

O K-Vizinhos Mais Préximos (K-Nearest Neighbors - KNN) (Abu Alfeilat et al., 2019)
¢ um algoritmo de aprendizagem supervisionada utilizado principalmente para problemas de
classificacdo e regressdo. Ele pertence a classe de métodos de aprendizagem baseados em
instancias, onde o modelo ndo é explicitamente treinado, mas armazena todos os exemplos de

treinamento. A classificacdo de novas instancias € determinada pela maioria das classes dos
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K exemplos de treinamento mais proximos de cada ponto: um ponto de consulta é atribuido
a classe de dados que tem mais representantes dentro dos vizinhos mais préximos do ponto,

medida através de uma fun¢do de distancia, como a distancia Euclidiana (Danielsson, 1980).

Férmula da distancia euclidiana entre duas instancias P = (py,...,p2,...,pn) €
Q=(q1,---,92,---,1,) é definida como:

V1= 012+ (2= 2P+ ot (pu— ) = @1

pi € qj parai =1, ... , n sdo0 os n atributos que descrevem as instancias p;j e qj, respectiva-

mente.
3-Class classification 3-Class classification
(k=11, weights="uniform') (k=11, weights='distance")

4.5 4.5

4.0 4.0
E 35 E 35
=2 =
k=] £
b g2
= 3.0 = 3.0
™ ™
Q a
U 7]
@ &

2.5 2.5

Classes Classes
201 @ setosa 201 @ setosa
® versicolor ® versicolor
15 wvirginica 15 virginica
T
4 5 6 7 8 4 5 6 7 8
sepal length (cm) sepal length (cm)

Figura 2.2: Classificagdo usando KNN. Figura do site scikit-learn



FUNDAMENTACAO TEORICA 9

Floresta Aleatéria (Random Forest)

O algoritmo Random Forest (Biau and Scornet, 2016), respresentado pelo campo da apren-
dizagem supervisionada, conhecido pela sua capacidade de lidar com uma veriedade de pro-
blemas de classificacdo e regressao. Como também, tem habilidade para mitigar problemas de
overfitting (Ying, 2019), ao mesmo tempo que € capaz de oferecer alta precisao preditiva.

Em sua esséncia, uma Random Forest € composta por um conjunto de arvores de decisdao
individuais. Cada 4rvore € construida de forma independente, utilizando uma amostra aleatoria
dos dados de treinamento e um subconjunto aleatério de caracteristicas. Esse processo de amos-
tragem aleatdria introduz diversidade entre as arvores, garantindo que cada uma contribua com
diferentes perspectivas para o modelo final. Durante a fase de previsdo, as previsoes de todas
as arvores na floresta sdo combinadas, geralmente por meio de uma média (para problemas de
regressao) ou votagdo majoritdria (para problemas de classificacao).

A principal vantagem € sua capacidade de lidar com conjuntos de dados complexos e de

grande escala, capturando eficientemente relacdes ndo lineares e interagdes entre varidveis.

2.2.2 Aprendizagem nao supervisionada

Na aprendizagem ndo supervisionada (Barlow, 1989), ao contrario da aprendizagem supervi-
sionada onde as informacdes possuem rétulos e a saida desejada € conhecida, os dados estdao
desprovidos de rétulos e nao ha uma saida esperada. Nesse contexto, os algoritmos, durante
o processo de treinamento, ndo recebem resultados pré-determinados, sendo responsaveis por
descobrir padroes e relagdes intrinsecas entre os dados de maneira autdbnoma (Chinnamgari,
2019).

O objetivo da aprendizagem ndo supervisionada € identificar regularidades nos dados com o
intuito de agrupé-los ou organiza-los com base nas similaridades que apresentam entre si (Hastie
et al., 2009). Dessa forma, o processo de aprendizagem busca explorar e revelar estruturas
subjacentes nos dados, promovendo a descoberta de grupos ou a organizacdo dos mesmos em
funcdo de suas caracteristicas comuns.

a. Representacdo esquemdtica de um modelo de aprendizagem ndo supervisionada:

Em aprendizagem de maquina ndo supervisionada (Chinnamgari, 2019), os algoritmos sao
aplicados a dados nao rotulados para descobrir padrdes ou agrupamentos intrinsecos nos dados.
O objetivo € identificar estruturas ocultas sem a necessidade de pré-rotulacdo. Um exemplo
comum € o algoritmo de clustering, como o K-Means, onde dados sdo agrupados em clusters

baseados em similaridades intrinsecas.

b. Representacdo esquematica de um modelo de aprendizagem supervisionada:
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Figura 2.3: Aprendizagem de méquina supervisionada e ndo supervisionada. Scientific Figure
on ResearchGate

Na aprendizagem de maquina supervisionada (Cunningham et al., 2008) o algoritmo € trei-
nado usando um conjunto de dados rotulados, onde cada entrada de dados esta associada a uma

saida desejada. O objetivo é aprender uma fun¢do de mapeamento a partir dos dados de entrada
para as saidas.

2.3 Processo de descoberta de conhecimento

Nas subsecdes anteriores, Aprendizagem de Maquina (AM) foi um dos pontos principais. Usar
algoritmos de AM para extrair conhecimento a partir de dados e produzir bons resultados é um
trabalho demorado, principalmente devido aos grandes volumes de dados existentes. Seria in-
vidvel que humanos analisassem esses dados manualmente e extrair informagdes significativas.
Portanto, antes mesmo de aplicar algoritmos de AM, € crucial seguir conceitos bem conso-
lidados na literatura, como os do processo de Descoberta de Conhecimento(KDD) (Frawley

et al.,, 1992). O KDD envolve 5 etapas essenciais para realizar a extracdo de conhecimento,
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demonstrado na figura abaixo (Mariscal et al., 2010).

Data Interpretatlon /
(Selectnon (Preprocessmg) (Transformatmn) Mining Evaluation

.\.%\. = A U\.Z

Preprocessed Patte rns
Data Data

Target Data

Figura 2.4: O processo de descoberta de conhecimento (KDD)

Ao escolher a base de dados(Mariscal et al., 2010), devem ser considerados varios critérios,
como a relevancia das varidveis para a tarefa de mineracao e a disponibilidade dos dados. Em
seguida, realiza-se o pré-processamento desses dados, que consiste em limpeza, remocdo de
valores ausentes, correcdo de erros e outras técnicas para transformar dados brutos em um
formato adequado para andlise. Esse pré-processamento pode ser feito em colunas, linhas ou
em vérias partes dos dados. Tal passo € responsdvel por enriquecer a base de dados e, além
disso, deve garantir a qualidade e a consisténcia dos dados.

A transformacdo dos dados envolve modificar os dados para que se ajustem melhor aos al-
goritmos. Isso inclui identificar atributos que sejam realmente tteis para o modelo, levando em
consideragdo o problema abordado. O formato atual dos dados pode dificultar o processamento
pelo modelo, especialmente se contiver textos. Nesta etapa, os dados sdo adequados de forma
que a maquina possa processa-los sem perda de informacdo. A transformacgdo busca melhorar a
eficiéncia e a eficicia dos métodos de mineracdo de dados que serdo aplicados. Algumas técni-
cas responsaveis pela transformacao dos dados incluem agrega¢do, normalizacdo e constru¢cdo
de novos atributos a partir dos dados originais.

A fase de mineracdo dos dados € a aplicacdo de métodos e algoritmos para extrair padroes
e conhecimentos dos dados. Nessa etapa, os dados ja estdo pré-processados e transformados,
e sdo divididos em conjuntos de treino e teste para o treinamento e validacao do modelo. Esta
¢ a etapa central do processo, onde técnicas como classificacao, regressdo e outros métodos de
minera¢do sdo aplicados para descobrir padrdes e relacdes nos dados.

Por fim, a interpretacdo e a avaliacdo dos dados sdo de fundamental importancia para a
obtencdo de resultados validos. Os resultados obtidos na etapa de mineracdo de dados devem
ser avaliados quanto a qualidade dos padrdes descobertos e a determinacdo de sua utilidade e
relevancia (Frawley et al., 1992). Isso € feito por meio de métricas de avaliacdo, como validagdo
cruzada e acurdcia do modelo. Apds obter os resultados dos testes, com a acurdcia do modelo,
realiza-se a interpretagcdo do conhecimento descoberto. Para isso, € importante ter conhecimento

do problema.
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2.4 Big Data

Big Data (Sagiroglu and Sinanc, 2013) refere-se ao grande volume de dados, sejam eles estrutu-
rados ou ndo, que empresas e individuos geram diariamente. Esses dados ndo abrangem apenas
o volume, mas também a variedade, a velocidade, a veracidade e o valor com que sio gerados e
processados (Taurion, 2013).

As fontes desses dados sao diversas, incluindo transagdes financeiras e midias sociais. A
andlise de Big Data (Tsai et al., 2015) permite a descoberta de padrdes e correlacdes ocultas,
proporcionando insights valiosos que podem melhorar a tomada de decisdes. Isso pode levar a
otimizagao de operagdes, a0 aumento da lucratividade e ao impulso da inovagao.

A importancia do Big Data reside na capacidade de transformar dados brutos em informa-
coes aciondveis (Taurion, 2013). Com o advento de tecnologias avancadas, as organizagdes
podem agora analisar grandes volumes de dados, melhorar a eficiéncia operacional e oferecer
experiéncias personalizadas aos clientes.

Uma das caracteristicas do conceito de Big Data sdo os "Vs"(Younas, 2019) : volume,
que se refere a quantidade massiva de dados gerados diariamente; variedade, que se refere aos
diferentes tipos de dados disponiveis, como imagens e textos; velocidade, que se refere a rapidez
com que os dados sdo gerados e precisam ser processados, facilitando a tomada de decisdo; e
valor, que se refere a utilidade dos dados para gerar insights valiosos.

No entanto, trabalhar com Big Data apresenta desafios significativos (Fasel and Meier,
2014), incluindo o armazenamento, a gestdo e a protecdo desses dados, bem como a neces-

sidade de ferramentas e técnicas avancadas para uma andlise eficiente.

2.5 Reducao de dimensionalidade

Reducdo de dimensionalidade (Sorzano et al., 2014) € uma técnica utilizada em AM e estatistica
para simplificar conjuntos de dados, diminuindo o niimero de varidveis sob considera¢io. E
util para melhorar a performance dos algoritmos, reduzir o tempo de computacdo e ajudar na

visualizagdo dos dados.Algumas das técnicas mais comuns incluem:

Principal Component Analysis-PCA (Analise de Componentes Principais)

E uma técnica estatistica usada para simplificar a complexidade de conjuntos de dados de alta
dimensionalidade, transformando-os em um novo conjunto de varidveis nio correlacionadas,
conhecidas como componentes principais (Kurita, 2019).

De modo mais matemdtico utiliza uma transformacao ortogonal (ortogonalizacdo de veto-
res) para converter um conjunto de observagdes de varidveis possivelmente correlacionadas num
conjunto de valores de varidveis linearmente ndo correlacionadas chamadas de componentes

principais (Abdi and Williams, 2010).. Esse processo pode ser entendido como a constru¢do de
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uma nova base ortogonal no espago vetorial das varidveis originais. Uma das formas de realizar
essa ortogonalizacdo € através do processo de Gram-Schmidt (Bjorck, 1994), que transforma
vetores correlacionados em vetores mutuamente ortogonais, removendo as projecdes lineares

de cada vetor nas dire¢des ja ortogonalizadas.

Principal Component Analysis (PCA)

Transformation
Original data Lower-dimensional
(high-dimensions) embedding

PCA dimensionality
reduction

PC1
I

Variable #1
Principal component #2

Principal component #1

* Maximize variance along PC1
¢ Minimize residuals along PC2

Figura 2.5: Principal Component Analysis (PCA) . Figura Mina Nashed

Matematicamente, a PCA € definida da seguinte maneira:
Dados de entrada: Considere uma matriz de dados X com n observagdes e p varidveis.

Centragem: Subtrai-se a média de cada varidvel para centralizar os dados na origem:

X=X-X (2.2)
onde X é o vetor de médias das varidveis.

Calculo da matriz de covariiancia: A matriz de covariancia é calculada como:

| R
XTx (2.3)

C =
n—1

Autovalores e autovetores: Os autovalores A e autovetores v da matriz de covariancia C

sdo determinados pela equacao caracteristica:
Cv=Av (2.4)

Ordenacao: Os autovetores sao ordenados em funcdo de seus autovalores, do maior para o
menor.

Projecao: Os dados sdo projetados nos componentes principais:

Z=Xvy (2.5)
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onde v, sd0 os autovetores correspondentes aos k maiores autovalores

Independent Component Analysis - ICA (Analise de Componentes Independentes)

A Andlise de Componentes Independentes (ICA) € uma técnica estatistica utilizada para separar
um conjunto de sinais misturados em suas fontes independentes (Stone, 2004). Diferentemente
da Andlise de Componentes Principais (PCA), que se concentra em componentes nao correla-
cionados, a ICA busca identificar componentes que sao estatisticamente independentes entre si,

permitindo a recuperacdo de informacgdes de fontes que podem estar sobrepostas ou misturadas.
Matematicamente, a ICA € definida da seguinte maneira:

Considere um conjunto de sinais misturados X, onde X € R"*”* ¢ uma matriz que contém n

observagdes de m sinais misturados. O modelo de mistura linear pode ser expresso como:

X=A-S (2.6)

onde:

¢ X € a matriz de sinais observados.

* A ¢é a matriz de mistura (ou matriz de coeficientes) que relaciona os sinais independentes

S aos sinais observados X.

* S € R ¢ uma matriz cujas colunas representam os m sinais independentes que deseja-

mos recuperar.

O objetivo da ICA € encontrar uma matriz W tal que, ao aplicar essa matriz aos sinais

observados, obtemos uma estimativa dos sinais independentes:

S~W-X 2.7)

onde S sdo os sinais recuperados.
Os componentes recuperados S sdo considerados independentes se a seguinte condi¢do for
satisfeita: para quaisquer duas varidveis s; € 5; de S, a seguinte relagdo de independéncia €

verdadeira:

P(S,‘,Sj) = P(Sl') -P(Sj) (2.8)

onde P denota a fun¢do de densidade de probabilidade.
Para encontrar a matriz W, vérias abordagens podem ser empregadas, como a maximizagao

da ndo-gaussianidade dos componentes recuperados. A ndo-gaussianidade pode ser medida
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usando o conceito de kurtose ou a entropia. Um método comum € o uso do algoritmo FastICA,

que aplica a seguinte férmula:

S = g(W-X) (2.9)

onde g(-) é uma funcéo de ativacdo ndo linear que ajuda a separar os sinais.

T-Distribuigcdo Stochastic Neighbor Embedding - t-SNE (Incrustacdo Estocastica de Vizi-
nhos Préximos com Distribuicao)

A T-Distribui¢do Stochastic Neighbor Embedding (t-SNE) é uma técnica de redugdo de dimen-
sionalidade ndo linear que visa preservar as relacdes locais entre pontos de dados de alta dimen-
sdo em um espaco de menor dimensao, geralmente 2D ou 3D. O t-SNE € particularmente eficaz
para a visualizacdo de dados de alta dimensdo, pois mantém a estrutura dos dados e facilita a
identificacdo de padrdes, clusters e agrupamentos que poderiam ser ocultos em representacoes
de alta dimensao. (Belkina et al., 2019)

Matematicamente, o t-SNE € definida da seguinte maneira:

O t-SNE transforma a representacdo de dados de alta dimensdo X € R"*" (onde n € o
nimero de amostras e m é o nimero de dimensdes) em uma nova representacio Y € R"*¢,
onde d € a nova dimensdo (tipicamente 2 ou 3). O algoritmo t-SNE opera em duas etapas
principais: a conversao de distancias em probabilidades e a minimizacao de divergéncia.

Etapa 1: Calculo das Probabilidades

Para cada ponto de dados x;, a t-SNE calcula a similaridade de cada par de pontos x; € x; em
alta dimensdo usando uma distribui¢do Gaussiana, onde a probabilidade de x; ser semelhante a

x; é dada por:

_ li—)?
exp ( 207

) _ Lri—xel?
Zepronp (3

onde o; € a largura da distribuicdo Gaussiana para o ponto x;, que pode ser determinada por

Pjli = (2.10)

uma abordagem baseada em vizinhos mais préximos.

A probabilidade simétrica p;; entre os pontos x; € x; € entdo calculada como:

Pjli T Pij
Pij = T on

Etapa 2: Minimizacao da Divergéncia

2.11)

Em seguida, o t-SNE modela a distribuicdo de similaridade nos dados de baixa dimensao y; e
y; usando uma distribui¢ao t de Student com 1 grau de liberdade (equivalente a uma distribui¢ao
Cauchy):
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O objetivo do t-SNE € minimizar a divergéncia de Kullback-Leibler entre as distribuicdes

(2.12)

de probabilidade de alta e baixa dimensao:

KL(P||Q) =) Y pijlog (%) (2.13)
i) ij

onde P e Q representam as distribuicdes de probabilidade nos espacos de alta e baixa di-

mensao, respectivamente.

Latent Dirichlet Allocation - LDA (Atribuicao de Dirichlet Latente)

O Latent Dirichlet Allocation (LDA) € um modelo generativo probabilistico amplamente uti-
lizado para a modelagem de topicos em colecdes de documentos. Ele assume que cada docu-
mento € uma mistura de topicos, onde cada tépico € representado como uma distribui¢cdo sobre
palavras. O LDA ¢é especialmente eficaz para descobrir a estrutura latente em grandes conjuntos
de dados textuais, permitindo a extragao de temas subjacentes que caracterizam os documentos
(Jelodar et al., 2019).

Matematicamente, o LDA € definida da seguinte maneira:
Considere um conjunto de documentos D contendo N palavras. O LDA € definido por trés
componentes principais: topicos, palavras e documentos.

Componentes do Modelo

Topicos: Cada tépico k € representado como uma distribuicdo sobre um vocabulério V:

0y ~ Dirichlet(p) (2.14)

onde 3 é um vetor de pardmetros que controla a distribui¢do de palavras em cada tépico.
Documentos: Cada documento d € representado como uma mistura de topicos. A distribui-

cdo de topicos em um documento d € dada por:

04 ~ Dirichlet(a) (2.15)

onde o € um vetor de parametros que controla a distribuicao de topicos em cada documento.

Palavras: Para cada palavra wg, no documento d, o processo de geragdo € descrito da
seguinte forma:

1. Escolha um tépico z4, de acordo com a distribui¢do de topicos 84. 2. Escolha uma

palavra wy , a partir da distribui¢do de palavras do topico z4 ,:

W, ~ Multinomial (¢, , ) (2.16)
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O objetivo do LDA ¢ inferir as distribuicdes 0, e ¢ a partir dos dados observados (as
palavras nos documentos). Isso € feito usando o método de inferéncia, que pode ser realizado
por técnicas como Variational Inference ou Gibbs Sampling.

A funcdo de verossimilhan¢a do modelo é dada por:

D [N,
P(W; z,0, (I)l(x, B) = H (H P(de ’ZdJl? ¢) ’ p(Zd,n|ed)> ’ P(ed‘a) ’ P(q)k’B) (2.17)
d=1 \n=1
onde:
- w sdo as palavras observadas, - z s@0 os topicos latentes, - 0 € a distribui¢do de tpicos para

cada documento, - ¢ € a distribui¢do de palavras para cada tépico.
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Técnica Tipo Considera Classes Linearidade Principal Aplicaciao

PCA Linear Nao Linear Reducdo de dimensionalidade e visualizag@o
ICA Linear Nao Nao-linear Separacdo de sinais misturados

t-SNE Nao Linear Nao Nao-linear Visualizacdo de dados de alta dimensao
LDA Linear Sim Linear Classificacdo supervisionada

Tabela 2.1: Comparacao das Técnicas de Redu¢ao de Dimensionalidade

O objetivo € reduz o nimero de varidveis (dimensdes) em um conjunto de dados enquanto
retém a maior parte da informacao relevante. Facilita a visualiza¢do de dados em um espaco de
menor dimensao, geralmente em 2D ou 3D. Com isso, melhora a eficiéncia computacional ao
reduzir a carga de processamento e armazenamento. Elimina ou minimiza o ruido nos dados,

focando nas varidveis que mais contribuem para a variabilidade dos dados.

2.6 Meta-aprendizagem

O Meta-aprendizagem (do inglés, Meta-Learning, abreviado por MtL) € um campo de estudo
dentro da aprendizagem de mdquina (AM) que se concentra em como otimizar o desempenho de
algoritmos de aprendizagem (Pavel Brazdil, 2009). O objetivo € reduzir o custo computacional
e economia de tempo, permitindo que modelos desenvolvam suas préprias estratégias de apren-
dizagem com base na anélise passada. Para atingir esse aprimoramento, a Meta-aprendizagem
utiliza o conceito de meta-dados, que consiste em uma colecdo de meta-features e a performance
de algoritmos avaliados.

Além disso, a Meta-aprendizagem, ou "aprender a aprender"(Vanschoren, 2019), é uma
area de crescente interesse na inteligéncia artificial (IA), especialmente com o avanco das redes
neurais profundas. O motivo € que redes neurais profundas sdo geralmente inicializadas com
pesos aleatdrios e possuem vieses indutivos muito fracos, o que gera a necessidade de aprender
ou projetar vieses indutivos para melhorar a aprendizagem. Isso levou a um crescente interesse
em abordagens de Meta-aprendizagem, que focam em como construir um modelo que aprende a
aprender, em vez de apenas aprender, além do aprimoramento de sistemas de Aprendizagem de
Maiquina. Este conceito, que tem raizes nas ciéncias cognitivas e na psicologia (Wang, 2021),
refere-se a capacidade de um sistema de melhorar seu desempenho em novas tarefas com base
em experiéncias anteriores.

Diferentemente das abordagens tradicionais de Aprendizagem de Mdquina, que sdo proje-
tadas para resolver uma tarefa especifica, a Meta-aprendizagem permite que um sistema utilize
seu historico de aprendizagem para se adaptar mais rapidamente a novos desafios, acelerando o
processo de aprendizagem ao longo do tempo (Vanschoren, 2018).

Um dos principios centrais da Meta-aprendizagem € a capacidade de adquirir viéses indu-
tivos ou conhecimentos que facilitam a aprendizagem futura. Isso é alcancado por meio da

construcdo de mecanismos que identificam padrdes em processos de aprendizagem anteriores,
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otimizando as decisoes e a selecao de modelos mais adequados para diferentes tipos de proble-

mas.

2.6.1 Arquitetura do Meta-aprendiz

Algoritmos Meta Dados

Algoritmo 1

Desempenho
do algoritmo

MetaFeatures
Algoritmo n

o Meta-
Caracteristicas Aprendizagem

dos Dados

Repositério
de Conjunto
de Dados

Modelo de
recomendacdo
de algoritmo

Figura 2.6: Arquitetura do meta-aprendiz, adaptada de (Pavel Brazdil, 2009)

A arquitetura de Meta-aprendizagem visa otimizar a selecdo de algoritmos em tarefas de
mineracdo de dados, utilizando informacdes extraidas de metadados. Esses meta-dados sdo
compostos por caracteristicas dos conjuntos de dados (meta-features) e pelo desempenho de
diferentes algoritmos em problemas anteriores. A partir disso, o sistema é capaz de recomendar
algoritmos mais adequados para novos datasets, reduzindo o tempo e 0s recursos gastos em
experimentacdo, sem que haja perda significativa da qualidade dos resultados obtidos.

Esse processo utiliza Aprendizagem de Maquina para mapear as caracteristicas dos dados
ao desempenho relativo dos algoritmos, priorizando a recomendacdo de algoritmos que tendem
a apresentar melhor performance. A arquitetura facilita a tomada de decisdes ao guiar o usua-
rio na escolha de algoritmos, evitando a necessidade de testar multiplas opcdes manualmente.
Isso torna a Meta-aprendizagem uma ferramenta eficaz para aplicagdes em que hd uma grande

variedade de algoritmos disponiveis e recursos computacionais limitados.

2.6.2 Meta-features

Meta-features sdo caracteristicas extraidas de conjuntos de dados ou modelos de aprendiza-
gem que fornecem informacdes valiosas sobre as propriedades e a estrutura dos dados (Rivolli
et al., 2022). Elas sao utilizadas em Meta-aprendizagem (do ingl€s, Meta-learning, abreviado
por MtL) para permitir que modelos aprendam a escolher o algoritmo ou a abordagem mais

adequada para um determinado conjunto de dados.
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As meta-features ajudam a entender melhor as caracteristicas dos dados, facilitando a se-

lecdo de algoritmos, ajustes de hiperparametros e a previsdao de desempenho. Elas podem ser

divididas em vérias categorias, cada uma com suas particularidades:

Categoria

Exemplo

Descricao

Meta-feature
Simples

Numero de instancias

Numero de features
Numero de classes

Contagem total de observagdes no dataset.

Numero total de varidveis explicativas.
Quantidade de classes de saida em problemas
de classificacao.

Meta-feature
Statistical

Média e desvio padrao
dos atributos
Curtose e assimetria

Correlacdo entre atribu-
tos

Estatisticas descritivas para os atributos numé-
ricos do dataset.

Medidas de distribuicao dos dados, indicando
simetria e picos.

Mede a relacdo linear entre os atributos, util
para identificar redundancias.

Meta-feature
Info-Theory

Entropia da classe
Entropia dos atributos

Informacdo mutua en-
tre atributos € a classe

Medida da incerteza ou impureza da varidvel de
classe.

Avalia a incerteza ou dispersao dos atributos in-
dividuais.

Quantifica a dependéncia entre atributos e a
classe de saida.

Tabela 2.2: Exemplos de Meta-features

2.6.3 Meta-data

No contexto do Meta-aprendizagem, a meta-data desempenha um papel crucial na eficicia dos
Meta-aprendizes (Castiello et al., 2005). Ela consiste na combinag@o de duas principais fontes
de informacao: as meta-features, que descrevem as caracteristicas e propriedades dos conjuntos
de dados utilizados, e o ranking de desempenho dos modelos testados. Essa jun¢do fornece uma
visdo abrangente do problema que se busca resolver, permitindo que os meta-aprendizes fagcam
previsdes mais precisas e informadas.

A qualidade da meta-data € vital; ela deve refletir de maneira fiel as nuances do problema
real que se pretende solucionar. Caso contrdrio, o meta-aprendiz pode falhar em generalizar
e apresentar um desempenho insatisfatorio em situagdes praticas. Além disso, o uso de bases
de dados sintéticas para gerar meta-data é desencorajado, pois essas bases frequentemente nao
capturam adequadamente as complexidades dos dados reais, resultando em meta-aprendizes
que ndo sdo adequados para serem aplicados em problemas do mundo real. Assim, garantir a
relevancia e a qualidade da meta-data (Vanschoren, 2018) é fundamental para o sucesso dos

meta-aprendizes.
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2.6.4 Meta-Aprendiz

O Meta-aprendiz é um sistema ou algoritmo dentro do campo da meta-aprendizagem que se
caracteriza pela capacidade de "aprender a aprender". Utilizando o conhecimento adquirido
a partir de tarefas anteriores, o meta-aprendiz otimiza seu desempenho em novas tarefas de
Aprendizagem de Mdaquina. Ao analisar Meta-dados, como Meta-features e o histdrico de de-
sempenho de algoritmos em diferentes problemas, o sistema ajusta automaticamente a selecao
de algoritmos e estratégias, visando melhorar a eficiéncia do processo de aprendizagem.

Esse mecanismo permite ao Meta-aprendiz identificar padrdes recorrentes em experiéncias
anteriores, possibilitando uma adaptacao rdpida e eficaz a novos desafios, sem a necessidade de
extensa experimentacdo manual. Assim, o uso de Meta-aprendizes resulta em uma economia
significativa de tempo e recursos computacionais, tornando-os ferramentas valiosas para con-

textos onde ha uma grande diversidade de algoritmos e conjuntos de dados a serem explorados.

2.7 Meétricas de avaliacao

Em Aprendizagem de Mdaquina, as métricas de avaliagdo (Japkowicz, 2013) sdo fundamentais
para medir a performance dos modelos. Elas s@o essenciais para determinar a eficicia de um
modelo em realizar previsdes precisas. Essas métricas variam conforme o tipo de problema
e sdo geralmente classificadas em dois grandes grupos: métricas para classificacdo e métricas
para regressdo. As métricas para classificacdo (Wang et al., 2020) avaliam o desempenho do
algoritmo na identificacdo correta das classes em um conjunto de dados. E as métricas para
regressao (Tatachar, 2021) avaliam o quio préximas as previsoes do modelo estdo dos valores
reais. Neste trabalho, apenas as métricas de classificacdo serdo abordadas devido a sua aplica-

bilidade no processo do experimento.

2.7.1 Metricas de Classificacao

Existem diversas métricas (Japkowicz, 2013) que podem ser utilizadas para avaliar classificacao
do modelo, cada uma com suas proprias caracteristicas e aplicabilidades. Abaixo estdo algumas

das métricas mais comuns:

Acuracia (Accuracy)

A acurdcia é a proporcdo de previsdes corretas em relacdo ao total de previsdes realizadas. E
calculada como:
TP+TN

Acuracia = (2.18)
TP+TN+FP+FN

onde:
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T P (True Positive) sdo os verdadeiros positivos.

TN (True Negative) sdo os verdadeiros negativos.

F P (False Positive) sdo os falsos positivos.

FN (False Negative) sdo os falsos negativos.

Precisao (Precision)

A precisdo mede a propor¢do de verdadeiros positivos entre as previsdes positivas realizadas
pelo modelo. E calculada como:
TP

Precisio = ——— (2.19)
TP+FP

Revocacao (Recall) ou Sensibilidade (Sensitivity)

A revocagdo, ou sensibilidade, mede a proporcdo de verdadeiros positivos que foram correta-
mente identificados pelo modelo em relacio ao total de positivos reais. E calculada como:
TP

Recall = —— (2.20)
TP+ FN

F1-Score

O F1-Score é a média harmonica entre precisdo e revocacdo. Ele oferece um equilibrio entre
essas duas métricas, especialmente util quando ha um desequilibrio entre as classes. E calculado
como:

Precisdao x Recall

F1=2 2.21
% Precisao + Recall ( )

AUC-ROC (Area Under the Receiver Operating Characteristic Curve)

A AUC-ROC € uma métrica que avalia a capacidade do modelo em distinguir entre as classes.
A curva ROC é um grafico que mostra a taxa de verdadeiros positivos (sensibilidade) contra a
taxa de falsos positivos em diferentes limiares de classificacdo. A drea sob essa curva (AUC)
indica a capacidade do modelo de separar as classes. Um modelo perfeito tem AUC igual a 1,

enquanto um modelo aleatério tem AUC igual a 0.5.
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Figura 2.7: ROC AUC. Figura evidentlyai

Matriz de Confusao

A matriz de confusdo é uma tabela que resume o desempenho do modelo, mostrando a quanti-
dade de previsdes corretas e incorretas por classe. Ela € especialmente util para identificar erros

especificos e ajustar o modelo adequadamente.

Predito Positivo | Predito Negativo
Verdadeiro Positivo (TP) 50 10
Verdadeiro Negativo (TN) 5 35

Tabela 2.3: Matriz de Confusio

Cada célula da matriz representa a contagem de ocorréncias para cada combinacdo de classe

verdadeira e classe prevista.
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O presente trabalho de conclusio de curso tem como objetivo explorar a aplicagdo de técni-
cas de selecdo de algoritmos para aprimorar o processo de recomendacdo de algoritmos de
aprendizagem de maquina, com énfase na automacio da escolha de algoritmos de reducdo de
dimensionalidade. Neste contexto, serd desenvolvido um sistema de recomendacao de algorit-
mos de reducdo de dimensionalidade utilizando meta-aprendizagem. Ao final, um algoritmo de
aprendizagem de mdquina serd aplicado para induzir um modelo meta-aprendiz capaz de predi-
zer o ranking de algoritmos. Esse meta-aprendiz terd como fun¢do prever quais algoritmos de
reduc¢do sao mais adequados para diferentes conjuntos de dados, automatizando essa selecdo. A
eficdcia da abordagem serd avaliada por meio da criacdo de dois rankings de desempenho: um
sem a aplicacdo das metafeatures e outro com elas, comparando os resultados para verificar se

o meta-aprendiz faz previsdes corretas.

3.1 Base de dados

Os dados utilizados neste trabalho foram obtidos a partir da plataforma OpenML, acessada
via sua API. O OpenML € uma plataforma que disponibiliza diversos conjuntos de dados para
a pesquisa em ciéncia de dados e aprendizagem de méaquina. Por meio da API, foi possivel
selecionar e verificar os conjuntos de dados mais adequados para os objetivos do estudo.

O conjunto de dados obtido da OpenML consiste em 5.760 datasets, conforme ilustrado na

figura abaixo.
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Distribuicdo do NUmero de Variaveis (Features) nos Datasets
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Figura 3.1: Distribui¢do do Nimero de Varidveis (NumberOfFeatures) nos Datasets. Figura
produzida pelo autor

ApOs essa andlise, foram selecionados 66 conjuntos. Para chegar a esse resultado, realiza-
mos uma filtragem para incluir os conjuntos de dados que contém entre 1.000 e 30.0000 varid-
veis (features) e que ndo possuem valores faltantes. Optamos por conjuntos de dados com um
elevado nimero de varidveis, uma vez que este estudo tem como foco a andlise de problemas
relacionados a Big data, onde a alta dimensionalidade é um fator relevante. Ademais, evita-
mos o uso do formato Sparse_ARFF, devido a predominancia de valores nulos. Além disso,

observamos a distribui¢cdo do nimero de varidveis nos conjuntos de dados.
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ID Nome ID Nome 1D Nome

1039 hiva_agnostic 1127 AP_Breast_Omentum 1149 AP_Ovary_Kidney
1084 BurkittLymphoma 1128 OVA_Breast 1150 AP_Breast_Lung
1104 leukemia 1129 AP_Uterus_Kidney 1151 AP_Endometrium_Omentum
1107 tumors_C 1130 OVA_Lung 1152 AP_Prostate_Ovary
1122 AP_Breast_Prostate 1131 AP_Prostate_Uterus 1153 AP_Colon_Ovary
1123 AP_Endometrium_Breast 1132 AP_Omentum_Lung 1154 AP_Endometrium_Lung
1124 AP_Omentum_Uterus 1133 AP_Endometrium_Colon 1155 AP_Prostate_Lung
1125 AP_Omentum_Prostate 1134 OVA_Kidney 1156 AP_Omentum_Ovary
1126 AP_Colon_Lung 1135 AP_Colon_Prostate 1157 AP_Endometrium_Kidney
1136 AP_Lung_Uterus 1138 OVA_Uterus 1158 AP_Breast_Kidney
1137 AP_Colon_Kidney 1139 OVA_Omentum 1159 AP_Endometrium_Ovary
1140 AP_Ovary_Lung 1141 AP_Endometrium_Prostate 1160 AP_Colon_Uterus
1142 OVA_Endometrium 1143 AP_Colon_Omentum 1161 OVA_Colon
1144 AP_Prostate_Kidney 1145 AP_Breast_Colon 1162 AP_Ovary_Uterus
1146 OVA_Prostate 1147 AP_Omentum_Kidney 1163 AP_Lung_Kidney
1148 AP_Breast_Uterus 1154 AP_Endometrium_Lung 1164 AP_Endometrium_Uterus
1165 AP_Breast_Ovary 1166 OVA_Ovary 1233 eating
1457 amazon-commerce-reviews 1458 arcene 1514 micro-mass
1515 micro-mass 4134 Bioresponse 40926 CIFAR_10_small

41084 UMIST_Faces_Cropped 41103 STL-10 41157 arcene

41159 guillermo 41161 riccardo 41163 dilbert

41165 robert 42140 SVHN_small 42766 kits-subset

42809 kits

Tabela 3.1: Tabela de IDs e Nomes dos datasets
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did NumberOfNumericFeatures NumberOfInstances NumberOfClasses
1039 1617 4229 2
1084 22283 220 3
1104 7129 72 2
1107 7129 60 2
1122 10935 413 2
1123 10935 405 2
1124 10935 201 2
1125 10935 146 2
1126 10935 412 2
1127 10935 421 2
1128 10935 1545 2
1129 10935 384 2
1130 10935 1545 2
1131 10935 193 2
1132 10935 203 2
1133 10935 347 2
1134 10935 1545 2
1135 10935 355 2
1136 10935 250 2
1137 10935 546 2
1138 10935 1545 2
1139 10935 1545 2
1140 10936 324 2
1141 10935 130 2
1142 10935 1545 2
1143 10935 363 2
1144 10935 329 2
1145 10935 630 2
1146 10936 1545 2
1147 10935 337 2
1148 10936 468 2
1149 10935 458 2
1150 10935 470 2
1151 10935 138 2
1152 10935 267 2
1153 10935 484 2
1154 10935 187 2
1155 10935 195 2
1156 10935 275 2
1157 10935 321 2
1158 10935 604 2
1159 10935 259 2
1160 10935 410 2
1161 10935 1545 2
1162 10935 322 2
1163 10935 386 2
1164 10935 185 2
1165 10935 542 2
1166 10935 1545 2
1233 6373 945 7
1457 10000 1500 50
1458 10000 200 2
1514 1300 360 10
1515 1300 571 20
4134 1776 3751 2
40926 3072 20000 10
41084 10304 575 20
41103 27648 13000 10
41157 10000 100 2
41159 4296 20000 2
41161 4296 20000 2
41163 2000 10000 5
41165 7200 10000 10
42140 3072 9927 10
42766 27648 100 2
42809 27648 1000 2

Tabela 3.2: Tabela de IDs, nimero de atributos numéricos, instancias e classes dos datasets
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3.2 Pré-Processamento

Neste trabalho, a abordagem de pré-processamento dos dados foi mantida de forma reduzida,
uma vez que o foco principal nio foi o ajuste minucioso dos dados, mas sim a andlise de
modelos de aprendizagem de maquina em conjuntos de dados de grande escala. A justificativa
para essa escolha reside na natureza dos conjuntos de dados utilizados, que possuem mais de
1000 variaveis. O tratamento exaustivo de tais dados, considerando a grande quantidade de
variaveis e a diversidade dos conjuntos, seria extremamente custoso em termos computacionais,
além de envolver um alto risco de perda de informacdes importantes.

Embora fosse possivel que um pré-processamento mais cuidadoso pudesse resultar em um
desempenho aprimorado dos modelos (Garcia et al., 2016) a opcdo por uma abordagem mais
simplificada visou priorizar a viabilidade computacional. O custo de tempo e os recursos neces-
sérios para realizar ajustes detalhados seriam excessivos, especialmente considerando o volume
de dados. Além disso, como o objetivo deste estudo € lidar com grandes volumes de dados,
caracteristicos de cendrios de Big Data, procurou-se minimizar intervengdes que pudessem mo-
dificar excessivamente a natureza dos dados originais. Isso ajuda a preservar as caracteristicas
originais dos conjuntos de dados, o que € desejavel quando se busca obter resultados que refli-
tam de maneira fiel a complexidade dos dados, sem introduzir alteragdes que possam afetar sua
representatividade.

No entanto, foi necessdria a normalizacao (Ali et al., 2014) de alguns conjuntos de dados,
uma vez que certos modelos de aprendizagem de méaquina requerem dados em escalas seme-
lhantes para o seu bom desempenho. Isso € particularmente importante em modelos baseados
em distancias, como KNN, que podem ser sensiveis a valores desproporcionais em diferentes
escalas. Para tal, foi aplicada a normaliza¢do utilizando o StandardScaler (Raju et al., 2020),
que realiza a transformacdo dos dados para que tenham média zero e desvio padrio unitdrio.

Essa normalizacdo € crucial, especialmente em datasets com varidveis cujos valores estao
em diferentes ordens de magnitude, pois ajuda a evitar que caracteristicas com maior escala
dominem o processo de aprendizagem, promovendo uma convergéncia mais eficiente e uma

performance mais robusta dos modelos de Aprendizagem de Maquina.

3.3 Meta-Features

O presente trabalho tem como objetivo explorar o uso de meta-features (Pinto et al., 2016)
no contexto de Meta-Aprendizagem, buscando desenvolver um sistema de recomendacao de
algoritmos de aprendizagem de maquina que possa auxiliar na selecio e parametrizacdo de
modelos mais adequados a diferentes tipos de conjuntos de dados. A Meta-Aprendizagem € o
estudo que visa usar o conhecimento prévio (meta-conhecimento) para otimizar processos de
aprendizagem, e as meta-features desempenham um papel central ao capturar caracteristicas dos

dados que sdo relevantes para entender seu comportamento em relacao a diferentes algoritmos.
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As meta-features, ou metacaracteristicas, sio caracteristicas descritivas extraidas dos dados
e usadas para compreender melhor as propriedades de um conjunto de dados e seu relaciona-
mento com algoritmos de aprendizagem. Essas caracteristicas sdo essenciais para identificar
padrdes e peculiaridades dos dados, facilitando a criagcdo de modelos que podem prever qual
algoritmo terd o melhor desempenho para determinado problema.

Nesse trabalho foi utlizados trés categorias principais de meta-features:

Categoria | Descricao Detalhes
General Informagdes  bdsicas | Inclui o nimero de instancias, atributos e clas-
sobre o dataset ses. Ajuda a definir um perfil geral do conjunto

de dados.
Statistical | Medidas estatisticas Contém métricas como média, variancia e assi-

metria, que descrevem as propriedades numé-
ricas da distribuicdo dos dados e auxiliam na
compreensdo da complexidade do dataset.
Info-Theory | Medidas de teoriadain- | Agrupa métricas uteis para atributos discretos
formacao (categoricos), como a entropia, avaliando o re-
lacionamento dos atributos com as classes.

Tabela 3.3: Caracteristicas do Dataset por Categoria

Essas trés categorias fornecem uma descri¢cao robusta do conjunto de dados, o que contribui
para um entendimento mais aprofundado de suas peculiaridades e desafios.

O trabalho também utiliza meta-dados, que consistem na combinacdo das meta-features com
informagdes sobre o desempenho de diferentes algoritmos. Esses meta-dados ajudam a cons-
truir um sistema de recomendacdo (Rivolli et al., 1808) que ndo apenas avalia as caracteristicas
dos dados, mas também indica quais algoritmos sdo mais adequados para diferentes tipos de

problemas.
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Grupo Nome Descricao
General attr_to_inst | Calcular a razdo entre o nimero de atributos e o niimero de instincias.
General cat_to_num | Calcular a razdo entre o niimero de fei¢cSes categdricas e numéricas.
General freq_class Calcular a frequéncia relativa de cada classe distinta.
General inst_to_attr Calcular a razao entre o numero de instincias e atributos.
General nr_attr Calcular o nimero total de atributos.
General nr_bin Calcular o nimero de atributos bindrios.
General nr_cat Calcular o nimero de atributos categdricos.
General nr_class Calcular o nimero de classes distintas.
General nr_inst Calcular o nimero de instincias no conjunto de dados.
General nr_num Calcular o ndmero de recursos numeéricos.
Statistical can_cor Calcular correlagdes candnicas dos dados.
Statistical cor Calcular o valor absoluto da correlacdo de pares de colunas de conjuntos de dados distin-
tos.
Statistical cov Calcular o valor absoluto da covaridncia de pares de atributos de conjuntos de dados
distintos.
Statistical eigenvalues Calcular os autovalores da matriz de covariancia do conjunto de dados.
Statistical g_mean Calcular a média geométrica de cada atributo.
Statistical gravity Calcular a distancia entre o centro de massa das classes minoritdria € majoritdria.
Statistical h_mean Calcular a média harmonica de cada atributo.
Statistical iq_range Calcular o intervalo interquartilico (IQR) de cada atributo.
Statistical kurtosis Calcular a curtose de cada atributo.
Statistical lh_trace Calcular o rastreamento de Lawley-Hotelling.
Statistical mad Calcular o Desvio Absoluto Mediano (MAD) ajustado por um fator.
Statistical max Calcular o valor maximo de cada atributo.
Statistical mean Calcular o valor médio de cada atributo.
Statistical median Calcular o valor mediano de cada atributo.
Statistical min Calcular o valor minimo de cada atributo.
Statistical nr_cor_attr Calcular o nimero de pares de atributos altamente correlacionados distintos.
Statistical nr_disc Calcular o numero de correlagdo candnica entre cada atributo e classe.
Statistical nr_norm Calcular o ndmero de atributos normalmente distribuidos com base em um método.
Statistical nr_outliers Calcular o nimero de atributos com pelo menos um valor discrepante.
Statistical p_trace Calcular o trago de Pillai.
Statistical range Calcular o intervalo (méx - min) de cada atributo.
Statistical roy_root Calcular a maior raiz de Roy.
Statistical sd Calcular o desvio padrdo de cada atributo.
Statistical sd_ratio Calcular um teste estatistico para homogeneidade de covariancias.
Statistical skewness Calcular a assimetria para cada atributo.
Statistical sparsity Calcular a métrica de esparsidade (possivelmente normalizada) para cada atributo.
Statistical t_mean Calcular a média truncada de cada atributo.
Statistical var Calcular a variancia de cada atributo.
Statistical w_lambda Calcular o valor Lambda de Wilks’.
Info-theory attr_conc Calcular o coeficiente de concentragdo de cada par de atributos distintos.
Info-theory attr_ent Calcular a entropia de Shannon para cada atributo alvo.
Info-theory class_conc Calcular o coeficiente de concentrag@o entre cada atributo e classe.
Info-theory class_ent Calcular a entropia de Shannon do atributo alvo.
Info-theory | eq_num_attr | Calcular o nimero de atributos equivalentes para uma tarefa preditiva.
Info-theory joint_ent Calcular a entropia conjunta entre cada atributo e a classe.
Info-theory mut_inf Calcular as informagdes mutua entre cada atributo e destino.
Info-theory ns_ratio Calcular o ruido dos atributos.

Tabela 3.4: Meta-feature utilizadas
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3.4 Meétodos de Reducao de dimensionalidade

No presente trabalho, exploramos diversas técnicas de redu¢do de dimensionalidade (Sorzano
et al., 2014), com o objetivo de desenvolver um Meta-Aprendiz capaz de selecionar automati-
camente o algoritmo mais adequado para diferentes conjuntos de dados. A escolha criteriosa
de técnicas de reducdo de dimensionalidade é fundamental para otimizar a performance dos
algoritmos de aprendizagem de mdquina, reduzir o tempo de processamento e facilitar a visu-
alizac@o de dados de alta dimensao. Em contextos de Big Data, a redu¢cao dimensional ndo s6
aprimora a eficiéncia computacional, como também possibilita o tratamento de dados de grande
escala.

Para maximizar a diversidade de op¢des de reducdo dimensional, selecionamos 10 algorit-
mos que cobrem diferentes abordagens e caracteristicas. A Tabela 3.5 apresenta esses algorit-
mos e uma breve justificativa para a escolha de cada um, considerando a diversidade de conjun-
tos de dados e a adequagdo de cada técnica a diferentes tipos de estrutura e complexidade dos
dados.

Algoritmo Descricao

Principal Component Analy- | Reduz a dimensionalidade ao identificar as dire¢des princi-

sis (PCA) pais (componentes principais) da variabilidade nos dados.
E eficaz para dados lineares.

Kernel PCA (kPCA) Expande o PCA convencional para dados ndo lineares ao
aplicar um kernel. Ideal para dados com estruturas comple-
xas.

Latent Dirichlet Allocation | Reduz a dimensionalidade em dados textuais, ttil para iden-

(LDA) tificar topicos latentes. E amplamente utilizado em NLP.

T-Distributed Stochastic | Especialmente eficaz para visualizacdo de dados de alta di-

Neighbor Embedding (t- | mensdo ao preservar relacdes de similaridade.
SNE)
Locally Linear Embedding | Preserva a estrutura local dos dados, indicado para dados

(LLE) com multiplas subestruturas complexas.

Truncated Singular Value De- | Decompde a matriz de dados para reduzir a dimensionali-

composition (SVD) dade, sendo muito eficiente para dados textuais (como em
LSA).

Incremental PCA Variante do PCA para grandes volumes de dados que nao
cabem na memoria, ideal para aplicagdes de Big Data.

Random Trees Embedding Usa arvores de decisdo para criar embeddings, adequado
para transformar dados complexos para modelos lineares.

SelectKBest Seleciona as melhores features com base em testes estatis-

ticos, util para problemas em que apenas algumas varidveis
sdo significativas.

Spectral Embedding Explora as propriedades espectrais dos dados, sendo ade-
quado para dados que se distribuem em um grafo.

Tabela 3.5: Algoritmos de Redu¢do de Dimensionalidade Selecionados
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3.5 Meétricas

Neste trabalho, abordamos duas métricas importantes para avaliagdo de modelos de classifica-
cdo: o F-score (ou Fl-score) e o coeficiente de correlagdo de Spearman. Ambas sdo essenciais
para avaliar o desempenho dos modelos em diferentes contextos no presente trabalho.

O F-score, também conhecido como F1-score (Yacouby and Axman, 2020), é uma medida
de precisdo que leva em consideracdo tanto a precisdo quanto a revocacdo (ou recall) de um
modelo de classificagdo. O mesmo foi usado para medir o desequilibrio nas classes, pois ofe-
recia uma visdao mais equilibrada do desempenho do modelo. Uma explica¢do mais detalhada
encontra-se no Capitulo 2.

O coeficiente de correlacdo de Spearman (Restrepo and Gonzélez, 2007) € uma medida
ndo-paramétrica que avalia a relacdo monotdnica entre duas varidveis, sem pressupor uma dis-
tribuicao especifica dos dados. Ele € particularmente util quando as varidveis ndo seguem uma
distribui¢do normal ou quando a relacdo entre elas € monotdnica, mas ndo necessariamente
linear.

O coeficiente de Spearman € calculado a partir das classificagdes das varidveis, e sua férmula

¢ dada por:

6y d?

=T 3.1)

p=1-
Onde:

* d; é a diferenca entre os postos de cada observacao.
* n é o nimero de observagdes.

O valor de p varia entre -1 e 1, onde:

* 1 indica uma correlacao positiva perfeita,

* -1 indica uma correlacdo negativa perfeita,

* 0 indica nenhuma correlagdo monotonica.

No contexto deste trabalho, o coeficiente de Spearman foi utilizado para calcular a correla-
cdo entre os rankings de dois conjuntos de dados, visando medir o grau de associacao entre as

classificagdes de diferentes varidveis.
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3.6 Algoritmos bases usados

3.6.1 KNN sem reduciao de dimensionalidade

Neste trabalho, utilizamos o algoritmo de aprendizage de mdquina KNN (K-Nearest Neighbors
ou K-Vizinhos Mais Préximos). Optamos por esse método devido a sua simplicidade e por se
adequar bem a problemas de classificacdo, como o que estamos abordando. O KNN classifica
novos pontos com base na proximidade em relagc@o a pontos ja conhecidos no conjunto de dados.
Ao definir um valor de K = 3, por exemplo, o algoritmo analisa os trés pontos mais proximos
do ponto que se deseja classificar. A proximidade entre os pontos é medida, em geral, pela

distancia Euclidiana, conforme apresentada a seguir:

d(A,B) = \/ (a1~ b1) + (a2~ b2)? + -+ (a — by)? (3.2)

A= (aj,as,...,a,) e B=(by,by,...,b,) representam o ponto de teste e um ponto do con-
junto de treinamento, respectivamente, sendo n o nimero de caracteristicas (features) de cada
ponto.

O objetivo inicial foi realizar a classificacdo de 66 datasets sem utilizar algoritmos de re-
ducdo de dimensionalidade, para que fosse possivel comparar os resultados com e sem essa
técnica posteriormente. Para classificar cada dataset, utilizamos valores de k variando entre 1
e 31, de modo a observar o impacto dessa variagdo nos resultados obtidos. Apds a selecdo de
k, dividimos o conjunto de dados em 70% para treino e 30% para teste, utilizando a fungdo
‘train_test_split()‘, que permite avaliar de forma confidvel o desempenho do modelo em dados
nao vistos. Por fim, utilizamos a métrica F1-score para medir o desempenho dos algoritmos,

considerando a média "micro", que leva em conta o balanceamento entre as classes.

3.6.2 KNN com reduciao de dimensionalidade

ApOs realizar a classificagdo sem a aplicacdo de técnicas de reducio de dimensionalidade, foi
essencial incorporar essa etapa para avaliar o impacto no desempenho do algoritmo. Para essa
tarefa, mantivemos a mesma estrutura do KNN, com valores de k variando entre 1 ¢ 31, con-
forme discutido na subsec¢do anterior. No entanto, antes de proceder a classificacio, aplicamos
diferentes algoritmos de reducao de dimensionalidade.

A reducao de dimensionalidade é uma técnica que visa transformar um conjunto de dados de
alta dimensionalidade em uma representagdo mais compacta, preservando o maximo possivel
da variancia original dos dados.

Para a escolha do niimero ideal de componentes a serem mantidos em cada algoritmo de re-
dugdo, adotamos diversas abordagens, como Kaiser’s stopping rule (que retém apenas os com-
ponentes com autovalores maiores que 1), A priori criterion (que define previamente o nimero

de componentes com base no conhecimento sobre o problema), entre outras técnicas discutidas
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na literatura, como sugerido por Brown (2009) (Brown, 2009).

Matematicamente, a escolha do nimero de componentes em métodos como Andlise de
Componentes Principais (PCA) € definida pela decomposi¢do da matriz de covariancia dos
dados. Dados os autovalores Aj,A;,...,A,, associados aos componentes principais, o nimero

m de componentes selecionados maximiza a seguinte relacao:

m .
izl}\‘l
n 17\41'

=

(3.3)

onde m é o nimero de componentes que retém uma quantidade significativa da variincia
dos dados.

Assim, apds a reducdo dimensionalidade, os dados foram divididos novamente em 70%
para treino e 30% para teste, mantendo a consisténcia metodoldgica do experimento anterior.
A métrica F1-score foi utilizada para avaliar o desempenho dos modelos reduzidos, utilizando
a média "micro"para contabilizar o balanceamento entre as classes. Dessa forma, foi possivel

comparar o desempenho do KNN em cendrios com e sem reducdo de dimensionalidade.

Ap6s a classificacdo com reducdo de dimensionalidade, foi criado um dataset contendo
os resultados de classificacdo para cada algoritmo de reducdo. Em seguida, foi gerado um
ranking para avaliar o desempenho relativo entre esses algoritmos. O ranking foi calculado
da seguinte forma: para cada um dos 66 datasets, os valores de desempenho dos algoritmos
foram ordenados, e atribuimos uma pontuacio de 10 ao melhor desempenho, 9 ao segundo, e
assim sucessivamente, até o pior desempenho, que recebeu pontuagdo 1. O resultado foi um
DataFrame contendo os rankings dos algoritmos: IncrementalPCA, KPCA, LDA, LLE, PCA,
RTreeE, SelectBest, SpectralEmbedding, TruncatedSVD, e t-SNE.
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Tabela 3.6: Ranking dos algoritmos de reducio de dimensionalidade para os datasets.

Em seguida, o ranking foi combinado com as meta-features (caracteristicas dos datasets)
para analisar a relacdo entre as propriedades dos datasets e o desempenho dos algoritmos de
reducdo. As meta-features foram usadas para descrever as caracteristicas que descrevem a es-
trutura dos datasets. Nesse caso, as meta-features serviram como as varidveis explicativas (X),
enquanto o desempenho do algoritmo foi a varidvel alvo (y).

Para realizar a classificacdo, utilizamos o algoritmo RandomForestClassifier, um método
baseado em um conjunto de arvores de decisdo. O Random Forest constroi vérias arvores de

decisdo durante o treinamento e, para realizar a classificacdo, utiliza a média dos votos de todas
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as arvores. Matematicamente, o modelo pode ser representado como uma cole¢do de arvores
T\,T>,...,Tp, onde B € o nimero de 4drvores. Cada drvore faz uma previsao, e a classe final y é

determinada pela maioria dos votos:

B

¥y = argmax Z I(Ty(x) =) (3.4)
b=1

Para validar o modelo, utilizamos a técnica de Leave-One-Out Cross-Validation (LOO).
Nesta abordagem, o modelo é treinado em n — 1 exemplos e testado em 1 exemplo, sendo n
o ndmero total de exemplos. Esse processo é repetido n vezes, garantindo que cada dado seja
utilizado tanto para treino quanto para teste. As varidveis X consistiram nas meta-features, e y

representou o desempenho do algoritmo.

Index Incr IPCA KPCA LDA LLE PCA RTreeE SelectBest SpectralEmbedding TruncatedSVD t-SNE
0 0.957447 0.958235 0.947991 0.963751 0.956659 0.946414 0.964539 0.921198 0.944050 0.946414
1 0.757576 0.803030 0.651515 0.333333 0.757576 0.636364 0.803030 0.318182 0.590909 0.166667
2 0.818182 0.681818 0.954545 0.727273 0.818182 0.681818 0.954545 0.590909 0.590909 0.590909
3 0.388889 0.388889 0.388889 0.666667 0.388889 0.444444 0.611111 0.500000 0.611111 0.444444
4 1.000000 1.000000 1.000000 0.975806 1.000000 0.991935 1.000000 0.991935 0.709677 0.798387
5 0.950820 0.950820 0.942623 0.483607 0.950820 0.909836 0.950820 0.942623 0.877049 0.819672
6 0.885246 0.868852 0.885246 0.180328 0.885246 0.901639 0.852459 0.180328 0.672131 0.786885
7 0.954545 0.954545 0.977273 0.840909 0.954545 0.977273 0.977273 0.090909 0.022727 0.045455
8 0.854839 0.854839 0.895161 0.508065 0.887097 0.838710 0.895161 0.838710 0.846774 0.524194
9 0.905512 0.905512 0.929134 0.779528 0.905512 0.850394 0.929134 0.755906 0.818898 0.551181

Tabela 3.7: Junc¢do dos datasets com resultados classificacao

Por fim, € gerado um ranking com base nas predicdes realizadas a partir da combinacao
das meta-features e do desempenho dos algoritmos. Esse ranking, que reflete a classificacao
obtida a partir das meta-features associadas aos algoritmos de redu¢do de dimensionalidade, é

denominado "meta-base'"neste trabalho.

Index Incr IPCA KPCA LDA LLE PCA RTreeE SelectBest SpectralEmbedding TruncatedSVD t-SNE
0 3 2 6 10 5 4 1 7 8 9
1 9 9 5 10 9 7 2 2 9 10
2 10 10 10 1 10 6 2 4 3 6
3 4 7 2 5 4 7 2 10 10 10
4 5 5 2 10 4 7 2 9 8 9

Tabela 3.8: Ranking Meta Base

3.7 Meta-aprendiz

O objetivo deste trabalho € criar um modelo de recomendacao de algoritmos capaz de otimizar
tanto o tempo quanto o custo computacional no processamento de dados, além de desenvolver
um modelo que possa gerar suas proprias estratégias de aprendizagem por meio da utilizagdo de
meta-dados. Para isso, construimos um repositorio com 66 conjuntos de dados, cada um con-
tendo entre 1.000 e 30.000 variaveis (features). Esses dados foram escolhidos de forma diversa
para garantir uma boa representatividade de diferentes dominios e niveis de complexidade.
Para a avaliacdo dos dados, selecionamos 10 algoritmos de redu¢do de dimensionalidade,
incluindo técnicas como Principal Component Analysis (PCA), t-Distributed Stochastic Neigh-
bor Embedding (t-SNE), Latent Dirichlet Allocation (LDA) e Random Trees Embedding. A
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Avaliacao Meta Dados

- Principal Component Analysis (PCA)

- Kernel PCA (kPCA)

- Latent Dirichlet Allocation (LDA)

- T-Distributed Stochastic Neighbor Embedding (t-SNE)

7 - Locally Linear Embedding (LLE)
/ - Truncated Singular Value Decomposition (SVD)

General Desempenho
> Statistical dos

Info-Theory Algoritmos
- Incremental PCA
- Random Trees Embedding

[—] - SelectKBest

@ ~§ - Spectral Embedding |
AV
Meta-Aprendizagem

\ ) Caracteristicas

dos Dados

Respositério
de Conjunto
de Dados Modelo de recomendag&o de algoritmos

\Y

Figura 3.2: Arquitetura do Meta-Aprendiz

escolha dos algoritmos ndo seguiu um critério especifico, pois nosso foco foi explorar dife-
rentes abordagens que pudessem capturar a variabilidade dos conjuntos de dados de maneira
ampla.

As Caracteristicas dos Dados, neste contexto, referem-se a descritores ou atributos extrai-
dos dos conjuntos de dados que servem para resumir suas propriedades, como o nimero de
varidveis, a dimensionalidade e a complexidade estrutural dos dados. Essas caracteristicas,
conhecidas como meta-features, sdo essenciais para o processo de meta-aprendizagem. As
meta-features selecionadas foram divididas em trés categorias principais: General, que envolve
medidas estatisticas simples; Statistical, que inclui métricas mais avangadas, como variincia
e correlacdo; e Info-Theory, que avalia a quantidade de informagao contida nos dados, como
entropia e redundéncia.

Distribuicdes especificas dos dados também foram levadas em consideracdo para garantir
que a andlise capturasse corretamente as nuances dos diferentes tipos de dados. Essas carac-
teristicas foram fundamentais para alimentar o modelo de recomendacdo de algoritmos, que
utiliza a meta-aprendizagem para encontrar a melhor estratégia de reducdo de dimensionali-
dade para cada conjunto de dados com base em seu desempenho anterior.

Na figura 3.2, vemos que os dados passam por uma fase de avaliacdo onde as caracteristicas
sdo extraidas e utilizadas para formar os meta-dados. Esses meta-dados, que incluem tanto as
descricdes dos dados (como distribuicao e complexidade) quanto o desempenho dos algorit-
mos aplicados a esses dados, sdo entdo alimentados no modelo de meta-aprendizagem. Dessa
forma, possivel criar um modelo capaz de aprender a partir dos meta-dados e, com base nas ca-
racteristicas de novos conjuntos de dados, recomendar os algoritmos mais adequados de forma

automatizada, otimizando, assim, o tempo e o custo computacional.
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Resultados e Discussoes

Nesta secdo, apresentamos os resultados obtidos a partir da andlise dos conjuntos de dados e
a criacdo de uma meta base de dados, que serviu como base para o desenvolvimento de um

modelo de recomendacgdo de algoritmos de reduc@o de dimensionalidade.

4.1 Classificacao usando KNN

4.1.1 Sem aplicaciao de algoritmos de reducio de dimensionalidade

Ao realizar a classificacdo das bases de dados utilizando o algoritmo KNN Abu Alfeilat et al.
(2019), com os parametros e métricas descritos no capitulo de metodologia, observamos de-
sempenhos variados. Algumas bases de dados, como a AP_Breast_Prostate, atingiram um
desempenho perfeito (1.0), enquanto outras apresentaram resultados bem abaixo, com desem-
penho inferior a 0.20, como por exemplo, eating. A maioria das bases, no entanto, obteve
desempenhos entre 0.7 e 0.95.

E importante ressaltar que, até este ponto, ndo foram aplicados tratamentos ou pré- proces-
samentos nos 66 conjuntos de dados analisados. Os resultados refletem o desempenho bruto,
sem qualquer alteracdo nos dados originais. A partir da anélise visual da imagem abaixo, po-
demos concluir que, de maneira geral, os resultados foram positivos, com uma média geral de

desempenho de 0.79.

37
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RESULTADOS E DISCUSSOES
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Figura 4.1: Desempenho sem reducdo de dimensionalidade

Na figura abaixo (Boxplot), observa-se a concentra¢do dos dados e a presenca de possiveis

outliers. A mediana, juntamente com os quartis (Q1 e Q3), indica que a maioria dos valores

de Score estd concentrada entre 0,7 € 0,9. Os whiskers se estendem para representar a disper-

tliers,

2

a poucos ou

dos dados dentro de 1,5 vezes o intervalo interquartil, revelando que h

Sao

evidenciando, portanto, uma baixa incidéncia de valores atipicos no conjunto de dados.
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Figura 4.2: Boxplot desempenho dos datasets

lidade

mensiona

4.1.2 Com Aplicacao de algoritmos de reducao de d

Para realizar a classificacdo dos conjuntos de dados, foi aplicada a reducdo de dimensionali-

Nesta etapa, o0 método K-Nearest Neighbors (KNN) (Abu Alfeilat

dade em cada um deles.
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et al. (2019))) foi utilizado com os parametros e métricas previamente descritos no capitulo de
Metodologia. No entanto, foi necessdria a normalizacdo dos dados, uma vez que alguns al-
goritmos de redu¢do de dimensionalidade requerem que os dados estejam normalizados para
um desempenho eficaz. Para a normalizacao, foi utilizado o StandardScaler, que transforma as
caracteristicas para terem média igual a O e desvio padrdo igual a 1.

A classificagdo foi realizada com 10 diferentes algoritmos de reducio de dimensionalidade,
e as imagens a seguir de alguns algoritmos ilustram o desempenho de cada abordagem, permi-

tindo uma comparacao entre os resultados com e sem a aplicacdo da redu¢do de dimensionali-

dade.

Incremental PCA
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Figura 4.3: Desempenho dos datasets

Na Figura 4.3, observa-se que, ao aplicar o algoritmo Incremental PCA, os valores de de-
sempenho ndo apresentam mudancas significativas em comparacdo com os resultados obtidos
sem a reducdo de dimensionalidade. A principal diferenca estd na variacdo de desempenho en-

tre diferentes conjuntos de dados: alguns mantém um desempenho mais baixo, enquanto outros

apresentam uma melhora mais notavel.
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T-Distributed Stochastic Neighbor Embedding (t-SNE)
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Figura 4.4: Desemenho dos datasets

Observando a Figura 4.4, percebe-se que o algoritmo T-Distributed Stochastic Neighbor
Embedding (t-SNE) apresenta um desempenho consideravelmente diferente dos graficos ante-
riores. Os valores estdo mais dispersos € ndo demonstram resultados tao satisfatorios em termos
de desempenho, comparados aos demais algoritmos.

Talvez essa diferenca de desempenho entre os dois algoritmos usados na classificagdo com
reduc¢do de dimensionalidade esteja no fato de que um, o t-SNE, é focado em preservar relacdes
de proximidade local, o que é util para visualiza¢des detalhadas, mas pode distorcer a estrutura
global dos dados. Ja o Incremental PCA preserva a variancia global dos dados de forma linear,
sendo mais eficiente e adequado para andlise quantitativa e conjuntos de dados grandes.

Foram citados apenas dois dos dez algoritmos utilizados neste trabalho; os demais apre-
sentaram desempenhos proximos aos desses dois mencionados. Assim, observa-se que o uso
de técnicas de reducdo de dimensionalidade frequentemente proporciona melhorias no desem-
penho. No nosso cendrio, essas melhorias foram observadas em alguns conjuntos de dados,

enquanto em outros, ndo ocorreram Reddy et al. (2020).

A figura abaixo apresenta boxplots que comparam o desempenho de 10 algoritmos de redu-
cdo de dimensionalidade. A distribuicao dos resultados varia entre os algoritmos, com alguns,
como Incremental PCA e SelectBest, mostrando desempenho mais consistente e concentrado

em valores altos, enquanto outros, como t-SNE, exibem maior dispersdo, indicando maior vari-

abilidade nos resultados.



RESULTADOS E DISCUSSOES 41

Desempenho dos 10 algoritmos de Reducdo de Dimensionalidade

Boxplot IncrementalPCA Boxplot KPCA
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Figura 4.5: Ranking dos algoritmos de reducdo de dimensionalidade para os datasets
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4.2 Comparacao os resultados do modelo de recomendacao

de algoritmo

4.2.1 Meta-features

Nesta se¢do, apresentaremos os resultados utilizando a metafeature general na metabase, a fim
de criar o meta-aprendizagem e possibilitar a construcao do sistema de recomendacao de al-
goritmos. A figura abaixo mostra o ranking dos algoritmos de reducdo de dimensionalidade,
o qual serd comparado com o ranking gerado pelo modelo de recomendagdo, para avaliar seu
desempenho. Observa-se que muitos dos rankings sao semelhantes, o que pode ser explicado

pelo fato de que o desempenho dos algoritmos € igual ou muito préximo entre si.

index IncrementalPCA KPCA LDA LLE PCA RTreeE TrucatedSVD t_SNE
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Figura 4.6: Ranking dos algoritmos de reducdo de dimensionalidade para os datasets

A criagdo do ranking foi realizada utilizando a metafeature geral, e os algoritmos de reducao
de dimensionalidade foram combinados para formar nossa metabase de dados. Para predizer os
valores do ranking, utilizamos o algoritmo Random Forest, com o objetivo de identificar qual
algoritmo de reducdo de dimensionalidade seria mais indicado para cada contexto. Os resul-
tados apresentados na figura abaixo mostram que o modelo de recomendacao de algoritmos,
na maioria das vezes, acerta a indicacdo do algoritmo correto. No entanto, também observa-
mos que, em varias situacdes, o0 modelo comete erros. Esse desempenho abaixo do esperado
pode ser atribuido a necessidade de um ajuste mais fino nos pardmetros do nosso modelo de

recomendacio, o que possibilitaria predicdes mais precisas e eficientes.
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index ML_IncrementalPCA ML_KPCA ML_LDA ML_LLE ML_PCA ML_RTreeE ML_SelectBest ML_SpectralEmbedding ML_TrucatedSVD ML_t_SNE
0 3 2 6 10 5 4 1 7 8 9
1 9 9 5] 10 9 7 2 2 9 9
2 10 10 10 1 10 6 3 4 3 6
3 4 7 2 5 4 7 2 10 10 10
4 5 5 2 10 4 7 2 9 8 9
5 5 5 2 8 5 7 5 7 10 9
6 4 4 5 7 4 7 1 10 8 9
7 7 5 3 3 7 8 4 9 9 10
8 5 7 2 10 4 1 7 3 10 8
9 5 5 5 8 5 7 5] 7 10 9
10 4 6 3 7 6 3 3 8 9 10
1" 6 6 6 10 6 8 1 7 6 9
12 3 3 8 6 3 7 4 9 6 10
13 6 6 1 10 6 9 2 9 9 6
14 4 5 4 10 4 1 6 10 8 7
15 8 8 8 8 8 8 8 9 8 10
16 4 6 3 7 6 3 3 8 9 10
17 6 8 2 10 8 6 1 9 3 9
18 4 4 3 10 4 3 3 8 7 9
19 4 7 1 8 5] B 2 8 9 10
20 2 4 4 8 5 6 1 8 9 10
21 6 6 6 8 6 6 6 9 8 10
22 6 6 2 10 4 1 3 8 7 10
23 7 5 3 3 7 3 4 1 9 10
24 6 6 6 8 6 6 6 9 8 10

Figura 4.7: Ranking dos algoritmos usando Meta Dados e Metafeature General

Nos resultados obtidos com a comparagao dos rankings de algoritmos de reducao de dimen-
sionalidade, utilizando a correlacdo de Spearman, foi possivel observar diferentes desempenhos
ao considerar as médias e medianas dos valores. A correlacdo média dos rankings originais em
relacdo a média das iteragdes do processo de Leave-One-Out mostrou coeficientes variando
principalmente entre 0.5 e 0.9, com alguns casos de correlagdes negativas, como -0.204, suge-
rindo que os rankings médios se aproximam, em sua maioria, dos rankings previstos, mas ainda
apresentam divergéncias notaveis.

Ao analisar o impacto das medianas, os coeficientes de correlacdo de Spearman demonstra-
ram uma tendéncia levemente superior em relacdo as médias, com alguns valores ultrapassando
0.9 e indicando uma melhor adequacdo do modelo de recomendacdo. No entanto, também fo-
ram observadas correlacdes negativas mais acentuadas, como -0.43, sugerindo que, em certos
contextos, as medianas podem levar a discrepancias maiores em relacio aos rankings originais.
Esses resultados indicam a necessidade de ajustes mais precisos nos parametros do modelo para

reduzir as variagdes nos rankings e aprimorar a precisao das predicoes.

index SRC_Algoritmo SRC_Media SRC_Mediana
0 0.4363636363636364 0.5516829836629835 0.5696969696969697
1 0.042424242424242475 0.8633516227362381 0.9030303030303031
2 -0.6000000000000001 0.7260735162273624 0.7818181818181819
3 -0.6000000000000001 -0.20457737134660237 -0.4303030303030304
4 0.8121212121212121 0.9169374215528062 0.9212121212121213
5 0.8242424242424242 0.9078486641563565 0.9212121212121213
6 0.5393939393939393 0.7429255872332795 0.7333333333333334
7 0.7090909090909091 0.8569137529137529 0.8545454545454545
8 0.2666666666666667 0.8491504393042855 0.8848484848484849
9 0.8 0.9112569481800251 0.9393939393939394
10 0.7757575757575758 0.8449847588309127 0.9090909090909091
" 0.4727272727272728 0.7003220369374215 0.6545454545454545
12 0.7212121212121212 0.8495291375291376 0.9272727272727272
13 0.35757575757575755 0.6838486641563564 0.6545454545454545
14 0.5393939393939393 0.8512332795409718 0.9030303030303031
15 0.24242424242424243 0.7361090191859423 0.7272727272727273
16 06 0.7902628653397883 0.8303030303030303
17 0.036363636363636376 0.5602036937421553 0.503030303030303
18 0.8787878787878788 0.86278357539896 0.9151515151515152
19 0.8121212121212121 0.8974344629729245 0.9454545454545454
20 0.7212121212121212 0.7510675990675991 0.7454545454545455
21 0.47878787878787876 0.39793150439304303 0.33333333333333337
22 -0.0121212121212122 0.41497292451138623 0.37575757575757573
2 -0.024242424242424176 0.5353989600143447 0.49090909090909096
24 0.509090909090909 0.5342628653397885 0.4727272727272728

Figura 4.8: Tabela de Correlagdao de Spearman-General

A Figura 4.9 apresenta os resultados da comparagdo entre os rankings de algoritmos de
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reducdo de dimensionalidade, utilizando a correlacdo de Spearman aplicada a meta-base com
a metafeature statistical. Nota-se que os resultados sdo bastante semelhantes aos obtidos com
metafeature General. J4 a Figura 4.10 mostra os coeficientes de correlacdo de Spearman, onde

se observam tanto correlagcdes positivas quanto negativas

index ML_IncrementalPCA ML_KPCA ML_LDA ML_LLE ML_PCA ML_RTreeE ML_SelectBest ML_SpectralEmbedding ML_TrucatedSVD ML_t_SNE
0 3 2 6 10 5 4 1 7 8 9
1 4 1 6 10 3 5 7 9 8 8
2 10 10 10 1 10 6 3 4 3 6
3 4 7 2 5 4 7 2 10 10 10
4 4 4 6 10 4 8 4 7 8 9
5 5 5 3 10 5 6 2 7 9 9
6 7 6 3 10 4 8 1 6 9 9
7 7 1 2 10 7 7 8 8 7 9
8 5 7 2 10 4 1 1 3 10 9
9 4 4 3 10 4 8 6 7 9 9
10 4 6 3 7 6 3 3 8 9 10
" 8 9 2 10 8 8 5 4 2 9
12 5 8 9 5 8 8 1 5 5 10
13 8 6 3 10 6 6 2 9 10 9
14 4 6 2 10 4 9 1 9 10 8
15 7 8 2 10 4 8 7 7 3 10
16 6 6 6 8 6 6 6 9 8 10
17 7 6 2 10 4 7 2 8 10 9
18 4 3 5 10 4 7 1 10 8 9
19 5 8 2 6 6 8 2 8 9 10
20 2 5 5 6 3 8 1 10 8 9
21 3 3 8 6 3 7 4 9 6 10
22 6 6 2 10 5 1 1 10 9 10
23 8 6 3 10 8 7 3 8 9 9
24 2 5 5 6 3 8 1 10 8 9
Figura 4.9: Ranking dos algoritmos usando Meta Dados e Metafeature Statistical
index SRC_Algoritmo SRC_Media SRC_Mediana
0 0.4363636363636364 0.5516829836829835 0.5696969696969697
1 0.7696969696969697 0.8633516227362381 0.9030303030303031
2 -0.6000000000000001 0.7260735162273624 0.7818181818181819
3 -0.6000000000000001 -0.20457737134660237 -0.4303030303030304
4 0.9151515151515152 0.9169374215528062 0.9212121212121213
5 0.8848484848484849 0.9078486641563565 0.9212121212121213
6 0.35757575757575755 0.7429255872332795 0.7333333333333334
7 0.4727272727272728 0.8569137529137529 0.8545454545454545
8 0.4181818181818182 0.8491504393042855 0.8848484848484849
9 0.7757575757575758 0.9112569481800251 0.9393939393939394
10 0.7757575757575758 0.8449847588309127 0.9090909090909091
1" 0.10909090909090913 0.7003220369374215 0.6545454545454545
12 0.4121212121212121 0.8495291375291376 0.9272727272727272
13 0.5212121212121212 0.683848664 1563564 0.6545454545454545
14 0.806060606060606 0.8512332795409718 0.9030303030303031
15 0.4424242424242424 0.7361090191859423 0.7272727272727273
16 0.6363636363636364 0.7902628653397883 0.8303030303030303
17 0.36969696969696975 0.5602036937421553 0.503030303030303
18 0.8666666666666667 0.86278357539896 0.9151515151515152
19 0.7818181818181819 0.8974344629729245 0.9454545454545454
20 0.8181818181818181 0.7510675990675991 0.7454545454545455
21 0.5515151515151515 0.39793150439304303 0.33333333333333337
22 -0.0060606060606061 0.41497292451138623 0.37575757575757573
23 0.7090909090909091 0.5353989600143447 0.49090909090909096
24 0.4242424242424242 0.5342628653397885 0.4727272727272728

Figura 4.10: Correlacio de Spearman-Statistical

Além disso, os resultados obtidos utilizando a metafeature Info-Theory ( figura 4.11) para a
criacdo do modelo de recomendacgdo de algoritmos apresentam desempenhos similares aos mo-
delos que utilizaram as metafeatures General e Statistical. Ao comparar os rankings das Figuras
4.6 e 4.11, nota-se que a precisdo da recomendacio dos algoritmos ndo € tdo elevada. Obser-
vando a correlagdo de Spearman, os valores obtidos sdo bastante préximos dos encontrados para

as outras metafeatures, reforcando a consisténcia dos resultados.
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index ML_IncrementalPCA ML_KPCA ML_LDA ML_LLE ML_PCA ML_RTreeE ML_SelectBest ML_SpectralEmbedding ML_TrucatedSVD ML_t_SNE
0 2 6 6 10 5 3 6 10 8 9
1 3 6 2 10 4 6 1 9 7 8
2 9 9 5 5 9 6 3 9 9 9
3 9 6 2 10 3 7 2 10 9 9
4 6 7 2 10 8 6 7 3 10 9
5 2 5 2 10 5 6 2 7 9 9
6 4 4 2 10 4 6 1 7 8 9
7 9 9 2 10 9 4 2 9 4 9
8 4 7 2 10 4 7 1 7 10 9
9 3 6 2 10 4 6 1 6 8 10
10 4 6 5 8 6 7 1 9 9 10
1 9 9 6 10 6 8 1 4 6 6
12 3 3 8 6 3 7 1 9 6 10
13 6 6 3 10 6 9 2 9 10 9
14 4 5 2 10 4 6 2 10 9 10
15 7 5 2 10 4 7 1 7 10 9
16 6 5 3 8 6 3 2 10 9 10
17 8 8 8 10 8 6 8 8 7 9
18 7 5 2 10 4 1 2 7 10 9
19 3 9 3 6 3 6 6 9 9 6
20 2 4 4 8 5 6 1 8 9 10
21 5 8 9 5 8 8 1 5 5 10
22 4 5 2 10 4 1 2 7 8 9
23 6 6 3 10 6 3 3 9 10 9
24 1 8 10 7 2 7 9 7 7 10
Figura 4.11: Ranking dos algoritmos usando Meta Dados e Metafeature Info Theory
index SRC_Algoritmo SRC_Media SRC_Mediana
0 0.21818181818181814 0.5516829836829835 0.5696969696969697
1 0.7878787878787878 0.8633516227362381 0.9030303030303031
2 0.5878787878787879 0.7260735162273624 0.7818181818181819
3 -0.7818181818181817 -0.20457737134660237 -0.4303030303030304
4 0.7090909090909091 0.9169374215528062 0.9212121212121213
5 0.8242424242424242 0.9078486641563565 0.9212121212121213
6 0.5878787878787879 0.7429255872332795 0.7333333333333334
7 0.5393939393939393 0.8569137529137529 0.8545454545454545
8 0.8484848484848485 0.8491504393042855 0.8848484848484849
9 0.8727272727272728 0.9112569481800251 0.9393939393939394
10 0.8606060606060606 0.8449847588309127 0.9090909090909091
1" 0.1454545454545455 0.7003220369374215 0.6545454545454545
12 0.7757575757575758 0.8495291375291376 0.9272727272727272
13 0.503030303030303 0.6838486641563564 0.6545454545454545
14 0.8606060606060606 0.8512332795409718 0.9030303030303031
15 0.7575757575757576 0.7361090191859423 0.7272727272727273
16 0.4606060606060606 0.7902628653397883 0.8303030303030303
17 0.9333333333333333 0.5602036937421553 0.503030303030303
18 0.696969696969697 0.86278357539896 0.9151515151515152
19 0.6 0.8974344629729245 0.9454545454545454
20 0.7212121212121212 0.7510675990675991 0.7454545454545455
21 0.1575757575757576 0.39793150439304303 0.33333333333333337
22 0.030303030303030276 0.41497292451138623 0.37575757575757573
23 0.6 0.5353989600143447 0.49090909090909096
24 0.21212121212121215 0.5342628653397885 0.4727272727272728

Figura 4.12: Tabela de Correlacdo de Spearman-Info Theory
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4.3 Conclusao

Como observado nos resultados, o0 modelo de recomendagdo de algoritmos, baseado nos ran-
kings gerados a partir das metafeatures General, Statistical e Info-Theory, demonstrou eficicia
ao identificar o algoritmo mais adequado para um determinado conjunto de dados, em compa-
racdo com o ranking dos datasets na Figura 4.6. A anélise da correlacdo de Spearman reve-
lou desempenhos variados ao considerar as médias e medianas dos valores. No entanto, algu-
mas discrepancias importantes foram observadas, como uma correlagdo negativa significativa
(-0,204), assim como correlagdes mais altas, como 0,5 e 0,9, que indicam um bom desempenho
ao utilizar a média. Ainda assim, melhorias no desempenho do modelo de recomendagdo sao
necessdrias para reduzir a variacdo das predi¢des, visando atingir correlacdes superiores a 0,6

de forma mais consistente.



Conclusao

Este trabalho investigou a aplicac@o de técnicas de meta-aprendizagem para automatizar a se-
lecdo de algoritmos de redu¢@o de dimensionalidade em cendrios de Big Data. Através de uma
combinacdo de metafeatures e modelos de recomendacao, foi possivel identificar algoritmos
mais adequados para conjuntos de dados especificos, contribuindo significativamente para o
aprimoramento do desempenho em tarefas de aprendizagem de maquina. Os resultados obti-
dos demonstraram a eficdcia do método proposto, embora também tenham revelado pontos que
exigem refinamentos adicionais.

O presente trabalho faz uma importante contribuicdo ao campo de aprendizagem de ma-
quina, especialmente no contexto de problemas de alta dimensionalidade, ao propor uma abor-
dagem de recomendagdo de algoritmos de redug¢do de dimensionalidade baseada em meta-
aprendizagem. Foi criado um modelo que, por meio do uso de metafeatures extraidas dos
dados, automatiza a sele¢do de algoritmos de reducdo de dimensionalidade, otimizando tanto o
tempo quanto o custo computacional de experimentos com grandes volumes de dados. Além
disso, explorou-se o uso de metafeatures em trés categorias principais General, Statistical e
Info-Theory mostrando que essas caracteristicas sdo valiosas para descrever e comparar o de-
sempenho de algoritmos em diferentes contextos. A andlise dos rankings gerados a partir dessas
metafeatures destacou a relevancia de cada categoria no processo de recomendacao.

Os resultados demonstraram que o modelo de recomendacao foi eficaz na maioria dos casos,
conforme evidenciado pelas correlacdes de Spearman entre rankings originais e previstos. Essa
avaliagdo reforcou a validade do método proposto, indicando que ele pode ser aplicado a dife-
rentes dominios e conjuntos de dados. Ao aplicar algoritmos de reducdo de dimensionalidade,
foi possivel observar melhorias significativas no desempenho de algoritmos de aprendizagem
de maquina em diversos conjuntos de dados, especialmente em termos de preservagao da estru-
tura dos dados e da eficiéncia computacional. Essas contribuicdes colocam o presente trabalho

como um avango importante em sistemas automatizados e otimizados para a escolha de algorit-
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mos em cendrios com dados de alta dimensionalidade, oferecendo uma ferramenta promissora
para pesquisadores que trabalham com grandes volumes de dados.

Embora o modelo de recomendacdo de algoritmos proposto tenha se mostrado promissor,
ainda existem oportunidades para expandir e aprimorar este trabalho em futuros estudos. Uma
area de melhoria estd na otimizagdo dos parametros dos modelos de recomendagdo. Um ajuste
mais preciso desses parametros pode levar a uma maior precisdao nas predi¢cdes, reduzindo a
variagdo observada entre rankings previstos e reais. Futuros trabalhos podem explorar outras
metafeatures que captem aspectos mais profundos dos dados, como a complexidade estrutural, e
essa ampliacao poderia melhorar a qualidade das recomendagdes em dominios mais especificos.

Em conclusdo, o presente trabalho representa um avanco significativo no uso da técnica de
meta-aprendizagem para a recomendagdo de algoritmos de redu¢do de dimensionalidade. A
abordagem proposta demonstrou ser eficaz na automacgdo e otimizagdo da escolha de algorit-
mos para diferentes conjuntos de dados, com resultados promissores que evidenciam o potencial
dessa metodologia. Embora ainda existam desafios a serem enfrentados, os resultados indicam
que a aplicacdo de metafeatures e a recomendacdo automatizada de algoritmos podem se tor-
nar ferramentas valiosas para problema de Big Data, possibilitando andlises mais eficientes e
precisas. O trabalho também oferece uma base s6lida para futuras pesquisas, incluindo o de-

senvolvimento de sistemas mais robustos e aplicdveis a cendrios reais.
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