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RESUMO

Este trabalho introduz de forma acessível o conceito de métrica Riemanniana em
domínios do espaço Euclidiano, com ênfase em sua aplicação ao cálculo de áreas. Uti-
lizando fundamentos de Álgebra Linear e Cálculo Multivariável, busca-se tornar o tema
compreensível para iniciantes, ainda que, em alguns momentos, a formalidade matemá-
tica seja suavizada em prol da intuição. O objetivo é apresentar resultados fundamentais
com clareza, destacando a elegância dos teoremas e técnicas envolvidos.

O texto aborda o cálculo de áreas utilizando a métrica Riemanniana, partindo do
Teorema da Mudança de Variáveis para Integrais. São exploradas métricas em diferen-
tes contextos, incluindo os espaços Euclidiano e hiperbólico, com aplicações concretas,
como o cálculo da área do toro e das esferas S2(R) e S3(R). O estudo se estende ao
espaço hiperbólico, analisando a medida de áreas em regiões específicas, como retân-
gulos e coroas circulares, fornecendo um arcabouço teórico e prático para investigações
mais avançadas em Geometria Riemanniana.

Palavras-chave: Área, Métrica Riemanniana, Espaço Hiperbólico.
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ABSTRACT

This work provides an accessible introduction to the concept of a Riemannian metric
in domains of Euclidean space, with an emphasis on its application to area calculation.
Using fundamentals of Linear Algebra and Multivariable Calculus, the goal is to make
the topic comprehensible for beginners, even if, at times, mathematical rigor is softened
in favor of intuition. The objective is to present fundamental results clearly, highlighting
the elegance of the theorems and techniques involved.

The text discusses the calculation of areas using the Riemannian metric, starting
from the Change of Variables Theorem for integrals. Metrics in different contexts are
explored, including Euclidean and hyperbolic spaces, with concrete applications such
as the computation of the area of the torus and the spheres S2(R) and S3(R). The study
extends to hyperbolic space, analyzing area measurement in specific regions, such as
rectangles and circular annuli, providing a theoretical and practical framework for more
advanced investigations in Riemannian Geometry.

Keywords: Area, Riemannian Metric, Hiperbolic Space.
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Capítulo 1

Introdução

A Geometria Diferencial é uma área da Matemática que estuda superfícies e suas pro-
priedades intrínsecas, utilizando ferramentas de Álgebra Linear e Cálculo Diferencial.
Dentro deste contexto, as métricas Riemannianas surgem como uma extensão natural
do conceito de produto interno, permitindo a generalização de noções como compri-
mento, área e ângulos em variedades mais complexas [3, 4].

O conceito de métrica Riemanniana foi introduzido por Bernhard Riemann (1826
– 1866) em sua famosa palestra Über die Hypothesen, welche der Geometrie zu Grunde
liegen ("Sobre as Hipóteses que Fundamentam a Geometria"), publicada em 1854 no ar-
tigo [6]. Esse conceito revolucionou a forma como entendemos a geometria e a noção
de medida em espaços curvados. Desde então, a Geometria Riemanniana tem desem-
penhado um papel fundamental em diversas áreas da Matemática e da Física, incluindo
relatividade geral e teoria da otimização [2, 1, 5].

Este trabalho tem como objetivo apresentar os conceitos introdutórios das métricas
Riemannianas, com foco na aplicação no cálculo de áreas de superfícies. Para isso, serão
abordados conceitos fundamentais de produto interno, norma e espaços tangentes, cul-
minando na formalização da fórmula para a área de uma superfície parametrizada. Em
particular, discutiremos como calcular áreas em diferentes espaços, incluindo o espaço
euclidiano e o espaço hiperbólico, destacando aplicações clássicas, como o cálculo da
área da esfera S2 e do espaço hiperbólico H2 [3, 4, 5].

O texto é organizado da seguinte forma. No Capítulo 2, introduzimos os conceitos
preliminares necessários, incluindo o Teorema da Mudança de Variáveis para integrais.
No Capítulo 3, formalizamos a noção de métricas Riemannianas e deduzimos a fórmula
para o cálculo de áreas. Por fim, no Capítulo 4, aplicamos essa teoria para calcular áreas
de superfícies gráficas e domínios no espaço hiperbólico.
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Capítulo 2

Resultados Preliminares

A necessidade de medir distâncias, áreas, volumes, ângulos e outras grandezas impul-
sionou o desenvolvimento da matemática ao longo da história [2]. Na geometria dife-
rencial, esse interesse se manifesta no estudo das métricas, que fornecem a estrutura
fundamental para a análise das formas e propriedades dos espaços mais gerais. Em par-
ticular, a métrica Riemanniana desempenha um papel essencial ao definir uma noção
de comprimento, ângulo e área, funcionando como uma “régua” para medições locais
[4, 5].

Uma das diversas aplicações das métricas Riemannianas é a determinação da área de
superfícies. Essa abordagem se baseia no teorema da mudança de variáveis, garantindo
uma formulação consistente para o cálculo de integrais em variedades diferenciáveis
[3].

Neste capítulo, apresentamos conceitos fundamentais que servirão de base para a
compreensão da teoria das superfícies, estabelecendo a relação entre a métrica Rieman-
niana e a definição de área [3].

2.1 Teorema da Mudança de Variáveis para Integrais

A fim de desenvolver uma definição rigorosa para a área, nos apoiamos no teorema da
mudança de variáveis para integrais. Por simplicidade, focamos no caso de dimensão 2.

Seja φ : D ⊂ R2 → φ(D) ⊂ R2 um difeomorfismo, com

φ(x, y) =
(
φ1(x, y), φ2(x, y)

)
.

Denotamos por p = (x, y) e, para cada p, definimos o diferencial linear

dφp : R2 → R2.

Em particular, temos

dφp(e1) =

(
∂φ1

∂x
(x, y),

∂φ2

∂x
(x, y)

)
e

dφp(e2) =

(
∂φ1

∂y
(x, y),

∂φ2

∂y
(x, y)

)
.

Seja v = (a, b) ∈ R2. Como v = a e1 + b e2, temos

dφp(v) = a dφp(e1) + b dφp(e2) =

(
a
∂φ1

∂x
(x, y) + b

∂φ1

∂y
(x, y), a

∂φ2

∂x
(x, y) + b

∂φ2

∂y
(x, y)

)
.

3



2.1. TEOREMA DA MUDANÇA DE VARIÁVEIS PARA INTEGRAIS 4

Portanto, a matriz associada à transformação linear dφp é dada por:

[dφp] =

(
∂φ1

∂x
(x, y) ∂φ1

∂y
(x, y)

∂φ2

∂x
(x, y) ∂φ2

∂y
(x, y)

)
.

Essa matriz é conhecida como a matriz Jacobiana de φ.

Teorema 2.1 (Teorema da Mudança de Variáveis para Integrais). Seja φ : D ⊂ R2 →
φ(D) ⊂ R2 um difeomorfismo e seja f : φ(D) → R uma função integrável. Então,∫

φ(D)

f(u, v) du dv =

∫
D

(
f ◦ φ

)
(x, y)

∣∣det(dφ(x, y))∣∣ dx dy. (2.1)

Prova. A base para esta prova você encontra em [7]. Nosso objetivo é expressar du dv
em termos de dx e dy.

Considere um pequeno retângulo

D = [x0, x0 +∆x]× [y0, y0 +∆y]

no plano xy. Denotamos por φ(D) a imagem de D.
Desejamos estimar a área ∆A de φ(D).
Lembramos que

φ(x, y) = (u(x, y), v(x, y)),

onde o vetor tangente à curva φ(x, y0) em φ(x0, y0) = (u0, v0) é

φx(x0, y0) =
∂u

∂x
i+

∂v

∂x
j.

Analogamente, o vetor tangente à curva φ(x0, y) em φ(x0, y0) = (u0, v0) é

φy(x0, y0) =
∂u

∂y
i+

∂v

∂y
j.

Podemos aproximar a área de φ(D) pelo paralelogramo gerado pelos vetores ∆xφx(x0, y0)
e ∆y φy(x0, y0).

A área desse paralelogramo é dada pelo determinante da matriz Jacobiana. Assim,
obtemos:

|∆xφx(x0, y0)×∆y φy(x0, y0)| = |J(x0, y0)|∆x∆y.

A matriz Jacobiana é dada por:

J(x0, y0) =

∣∣∣∣∂u∂x ∂v
∂x

∂u
∂y

∂v
∂y

∣∣∣∣ .
Portanto, a área ∆A de φ(D) é aproximadamente:

∆A ≈ |J(x0, y0)|∆x∆y.

Note que o Jacobiano é calculado no ponto (x0, y0).
Voltando ao problema inicial, desejamos calcular∫

φ(D)

f(u, v) du dv,
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usando as variáveis x e y, com (x, y) ∈ D e R = φ(D).
Dividimos D em sub-retângulos Dij e denotamos por φ(Dij) suas imagens. A área

de φ(Dij) é aproximadamente |J(xi, yj)|∆x∆y, onde (xi, yj) representa um ponto do
sub-retângulo Dij.

Finalmente, por definição de integral,∫
φ(D)

f(u, v) du dv = lim
n,m→∞

m∑
i=1

n∑
j=1

f(ui, vj)∆A

= lim
n,m→∞

m∑
i=1

n∑
j=1

f(φ(xi, yj))|J(xi, yj)|∆x∆y

=

∫
D

f(φ(x, y))|J(x, y)| dx dy.

■

Exemplo 1. Calculemos a seguinte integral dupla utilizando coordenadas polares:

I =

∫ 1

0

∫ √
1−x2

0

(x2 + y2) dy dx.

A região de integração é um quarto de círculo de raio r = 1. Fazemos a mudança de
variáveis para coordenadas polares, ou seja, tomamos a função

φ : (0, 1)× (0,
π

2
) → A ⊂ R2

definida por
φ(r, θ) = (φ1(r, θ), φ2(r, θ)) = (x, y) ∈ A,

onde
x = r cos θ, y = r sin θ.

O Jacobiano da transformação é dado por:

[dφ] =

(
∂φ1

∂r
∂φ1

∂θ
∂φ2

∂r
∂φ2

∂θ

)
,

e seu determinante é
|det[dφ]| = r.

A função x2 + y2 se torna:
x2 + y2 = r2.

Pelo teorema da mudança de variáveis, obtemos:

I =

∫ π/2

0

∫ 1

0

r2 · r dr dθ =

∫ π/2

0

∫ 1

0

r3 dr dθ.

Resolvendo a integral em r: ∫ 1

0

r3 dr =
1

4
r4
∣∣∣1
0
=

1

4
,
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obtemos

I =
1

4

∫ π/2

0

dθ =
1

4
· π
2
=

π

8
.

Portanto, o resultado final é:
I =

π

8
.

2.2 Produto Interno em Espaços Vetoriais

Definição 1. Um produto interno em um espaço vetorial V é uma função

⟨·, ·⟩ : V × V → R,

que associa a cada par de vetores u, v ∈ V um número real ⟨u, v⟩ e satisfaz as seguintes
propriedades, para quaisquer u, u′, v, v′ ∈ V e α ∈ R:

1. Bilinearidade:

⟨u+ u′, v⟩ = ⟨u, v⟩+ ⟨u′, v⟩,
⟨u, v + v′⟩ = ⟨u, v⟩+ ⟨u, v′⟩,

⟨αu, v⟩ = α⟨u, v⟩,
⟨u, αv⟩ = α⟨u, v⟩;

2. Simetria:
⟨u, v⟩ = ⟨v, u⟩;

3. Definida positividade:

⟨u, u⟩ > 0 para todo u ̸= 0.

Exemplo 2. No espaço euclidiano Rn, o produto interno canônico para os vetores

u = (u1, · · · , un) e v = (v1, · · · , vn)

é definido por
⟨u, v⟩ = u1v1 + u2v2 + · · ·+ unvn.

Exemplo 3. Seja E = C0([a, b]) o espaço vetorial cujos elementos são as funções contí-
nuas f, g : [a, b] → R. Nesse caso, um produto interno natural em E é definido por

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx.
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2.2.1 Produto Interno Expresso por Matrizes

Se tomarmos uma base arbitrária {v1, · · · , vn} e definirmos ⟨vi, vj⟩ = gij, o produto
interno dos vetores

u =
n∑

i=1

αivi, v =
n∑

j=1

βjvj

é dado por

⟨u, v⟩ =
n∑

i,j=1

gij αiβj.

Logo, a matriz g = (gij) ∈ M(n × n) é simétrica (isto é, gij = gji) e, sendo definida
positiva, temos que para qualquer lista (x1, · · · , xn) de números reais não todos nulos,

n∑
i,j=1

gij xixj > 0.

Dessa forma, o produto interno, para u = (u1, . . . , un) e v = (v1, . . . , vn) em V , pode ser
expresso por:

⟨u, v⟩ =
(
u1 · · · un

)g11 · · · g1n
... . . . ...

gn1 · · · gnn


v1

...
vn

 . (2.2)

2.3 O Espaço Tangente

Seja U ⊂ Rn um conjunto aberto e seja p ∈ U um ponto fixo.

Definição 2. Dizemos que v ∈ Rn é um vetor tangente em p ∈ U se existe uma curva
suave

α : (−ε, ε) → U ⊂ Rn

tal que α(0) = p e α′(0) = v.

Figura 2.1

O conjunto de todos os vetores tangentes em p é chamado de espaço tangente a U
em p, denotado por TpU . Assim,

TpU = {v ∈ Rn | v é vetor tangente a U em p} ⊂ Rn.
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Figura 2.2

Ele pode ser naturalmente identificado com o próprio Rn por meio de uma transla-
ção. Mais precisamente, temos:

Proposição 2.1. Para qualquer p ∈ U , o espaço tangente TpU coincide com Rn, ou seja,

TpU = Rn.

Prova. Seja v ∈ Rn. Consideremos a curva α : (−ε, ε) → U dada por

α(t) = p+ tv.

Como U é um conjunto aberto, existe ε > 0 tal que p + tv ∈ U para todo t ∈ (−ε, ε).
Dessa forma, temos α(0) = p e, diferenciando em t = 0,

α′(0) = v.

Portanto, v é um vetor tangente em p, ou seja, v ∈ TpU . Como v foi escolhido arbitrari-
amente em Rn, segue que TpU = Rn.



Capítulo 3

Métricas Riemannianas e o cálculo de
áreas

Em 1854, o matemático alemão Bernhard Riemann (1826–1866) apresentou sua fa-
mosa palestra intitulada Über die Hypothesen, welche der Geometrie zu Grunde liegen
("Sobre as hipóteses que fundamentam a geometria") [6]. Nessa palestra, ele introdu-
ziu o conceito de uma métrica riemanniana, que generaliza a noção de distância em
superfícies e espaços curvos (veja [2, Capítulo 24]).

Uma métrica riemanniana é uma função que atribui a cada ponto de uma variedade
diferenciável um produto interno no espaço tangente, variando suavemente de ponto a
ponto. Essa variedade é um espaço topológico que permite o cálculo de derivadas de
funções reais. Esse conceito possibilita a generalização de medidas como comprimentos,
ângulos, áreas e volumes, estendendo a noção de distância para espaços mais complexos
do que o plano euclidiano.

Neste trabalho, focaremos no cálculo de áreas de domínios munidos com métricas
riemannianas, com ênfase em abertos do espaço euclidiano e do espaço hiperbólico.

3.1 Métricas Riemannianas em abertos do plano

Em Geometria Diferencial, uma métrica Riemanniana é a ferramenta fundamental para
medir comprimentos e ângulos em variedades diferenciáveis. No caso de um subcon-
junto aberto U ⊂ Rn, uma métrica Riemanniana define um produto interno em cada
espaço tangente TxU , permitindo-nos introduzir conceitos como comprimento de cur-
vas, áreas e volumes de subvariedades, e curvatura.

Definição 3. Uma métrica Riemanniana em um aberto U ⊂ Rn é uma família g =
(gij) de produtos internos, onde cada g(x) é um produto interno definido positivo no
espaço tangente TxU , variando suavemente com x ∈ U . Em coordenadas locais, g(x) é
representado por uma matriz simétrica positiva definida:

g(x) = (gij(x)), x ∈ U, (3.1)

onde as funções gij : U → R são diferenciáveis em U .

A escolha de uma métrica Riemanniana em U determina a estrutura geométrica do
espaço e pode variar conforme o contexto. A seguir, apresentamos exemplos clássicos
de métricas em diferentes modelos geométricos.

9



3.1. MÉTRICAS RIEMANNIANAS EM ABERTOS DO PLANO 10

Exemplo 4. A métrica Euclidiana padrão em Rn é dada por:

gij(x) = δij,

onde δij é o símbolo de Kronecker:

δij =

{
1, se i = j,

0, se i ̸= j.

Em notação matricial, temos:

g =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 .

Esta é a métrica Euclidiana canônica de Rn, que preserva ângulos e distâncias no
sentido clássico.

Exemplo 5. No modelo do semi-espaço superior

U = Rn
+ = {(x1, . . . , xn) ∈ Rn;xn > 0},

a métrica hiperbólica é dada por:

hij(x) =
1

x2
n

δij.

Em notação matricial, temos:

h =


1
x2
n

0 · · · 0

0 1
x2
n

· · · 0
...

... . . . ...
0 0 · · · 1

x2
n

 .

Esta é a métrica hiperbólica no modelo do semi-espaço, a qual confere ao espaço
uma estrutura geométrica diferente da Euclidiana, em que a distância entre pontos
cresce rapidamente à medida que se aproximam do eixo xn = 0.

Exemplo 6. No modelo da bola unitária U = B1, a métrica hiperbólica é dada por:

Hij(x) =
4

(1− |x|2)2
δij.

Em notação matricial, temos:

H =
4

(1− |x|2)2


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

Esta é a métrica hiperbólica no modelo da bola, frequentemente usada em Teoria das
Funções e Geometria Hiperbólica.
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3.1.1 A métrica do gráfico

Seja f : U ⊂ Rn → R uma função C∞. O gráfico de f é o subconjunto do espaço Rn+1

definido por:

Gr(f) = {(x1, . . . , xn, f(x1, . . . , xn)) | (x1, . . . , xn) ∈ U} ⊂ Rn+1.

Podemos parametrizá-lo por meio da aplicação X : U ⊂ Rn → Gr(f), dada por:

X(x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn)).

z

y

x

Figura 3.1

As derivadas parciais desta parametrização são:

Xxi
= (ei, fxi

) = (0, . . . , 1, . . . , 0, fxi
), 1 ≤ i ≤ n,

onde ei é o i-ésimo vetor da base canônica de Rn.
A métrica induzida pelo gráfico é obtida no domínio U considerando os produtos

internos em Rn+1 entre os vetores tangentes Xxi
, resultando em:

gij = ⟨Xxi
, Xxj

⟩ = δij + fxi
fxj

.

Em notação matricial, a métrica do gráfico (também chamada de primeira forma
fundamental) é representada pela matriz:

g =


1 + f 2

x1
fx1fx2 · · · fx1fxn

fx2fx1 1 + f 2
x2

· · · fx2fxn

...
... . . . ...

fxnfx1 fxnfx2 · · · 1 + f 2
xn

 .

Geometricamente, essa métrica mede as distâncias sobre a superfície do gráfico,
levando em conta a inclinação da função f . Em particular, ela indica como a estrutura
euclidiana do domínio U é distorcida pela presença da altura f(x). Note que, para f ≡
0, obtemos a métrica euclidiana usual de Rn, ou seja, g reduz-se à matriz identidade.
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Lema 1. O fator de elemento de volume associado à métrica induzida é dado por:√
det(gij) =

√
1 + |∇f |2,

onde |∇f |2 =
∑n

i=1 f
2
xi

representa o quadrado do módulo do gradiente de f .

Prova. Para demonstrar a identidade
√

det(gij) =
√

1 + |∇f |2, começamos calculando
o determinante da matriz métrica g.

A matriz g é da forma:
g = In + vvT ,

onde In é a matriz identidade de ordem n e v é o vetor coluna dado por:

v =


fx1

fx2

...
fxn

 .

Utilizamos a seguinte propriedade dos determinantes para uma matriz da forma
I +A, onde A = vvT é uma matriz de posto um. O determinante de tal matriz pode ser
calculado usando a fórmula:

det(In + vvT ) = 1 + tr(vvT ).

Como vvT é uma matriz simétrica de posto um, seu único autovalor não nulo é vTv,
e sua matriz tem traço igual a:

tr(vvT ) = vTv =
n∑

i=1

f 2
xi
= |∇f |2.

Portanto,
det(g) = 1 + |∇f |2.

Tomando a raiz quadrada de ambos os lados, obtemos:√
det(g) =

√
1 + |∇f |2.

Isso conclui a prova. ■

Estaremos trabalhando com alguns casos particulares da métrica do gráfico no Ca-
pítulo 4.

3.2 Área de uma métrica Riemanniana

Nesta seção, utilizamos as métricas Riemannianas para definir a noção de área de su-
perfícies no plano, baseando-nos no Teorema da Mudança de Variáveis para integrais e
em propriedades da Álgebra Linear. Para maior simplicidade, consideramos o caso bidi-
mensional, isto é, um domínio D ⊂ R2 munido de uma métrica Riemanniana g = (gij).
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Definição 4. Seja D ⊂ R2 um subconjunto aberto munido de uma métrica Riemanniana
representada por uma matriz simétrica definida positiva g = (gij). A área de D com
respeito a essa métrica é definida por:

Areag(D) =

∫
D

√
det[gij] dx dy.

A expressão acima generaliza a noção usual de área na métrica Euclidiana, onde
gij = δij e

√
det[gij] = 1, recuperando a fórmula clássica da integração em coordenadas

cartesianas.

3.2.1 Dedução da fórmula para a área

Para um ponto p ∈ D, a métrica em coordenadas locais é representada pela matriz
simétrica:

A =

(
g11(p) g12(p)
g21(p) g22(p)

)
.

Dado um par de vetores u = (u1, u2) e v = (v1, v2) em R2, o produto interno induzido
por g pode ser escrito como:

⟨u, v⟩ =
2∑

i,j=1

gij(p)uivj.

Particularmente, se tomarmos os vetores da base canônica e1 = (1, 0) e e2 = (0, 1),
obtemos:

⟨e1, e1⟩ = g11, ⟨e1, e2⟩ = g12 = g21, ⟨e2, e2⟩ = g22.

Isso significa que, em geral, os vetores da base canônica não são ortonormais com res-
peito à métrica g. No caso da métrica Euclidiana, temos gij = δij, garantindo a ortonor-
malidade.

Agora, construiremos o argumento para o cálculo da área utilizando a métrica Rie-
manniana. Seja X : D ⊂ R2 → (R2, g) uma parametrização, definida por:

X(x, y) = (x, y).

O diferencial de X é dado por:

dXp(u, v) = (u, v),

e, portanto,
dXp(1, 0) = (1, 0), dXp(0, 1) = (0, 1).

Como mencionado anteriormente, esses vetores não são necessariamente ortonormais
com respeito à métrica g. Seja então {ε1, ε2} uma base ortonormal em TpD com respeito
à métrica g, de modo que podemos expressar:

dXp(e1) = aε1 + bε2, dXp(e2) = cε1 + dε2.

Da definição da métrica, segue que:

g11 = a2 + b2, g12 = ac+ bd, g22 = c2 + d2.
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Em notação matricial: (
g11 g12
g21 g22

)
=

(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
.

Sabemos que o determinante de uma matriz da forma ATA é dado por:

det(ATA) = (detA)2.

Portanto, aplicando essa propriedade à matriz da métrica g, obtemos:

det[gij] = (detA)2.

Tomando a raiz quadrada, segue que:

det[dXp] =
√

det[gij].

Isso justifica a definição da área apresentada anteriormente. Em outras palavras, o
fator

√
det[gij] fornece o elemento de área induzido pela métrica, análogo ao fator de

escala em uma mudança de coordenadas.

Exemplo 7. O toro no espaço Euclidiano R3 pode ser parametrizado por:

X(u, v) =
(
(R + r cos v) cosu, (R + r cos v) sinu, r sin v

)
,

para u, v ∈ [0, 2π], onde R é o raio do círculo maior e r é o raio do círculo menor.

Figura 3.2: Representação do toro em R3.

As derivadas parciais da parametrização são:

Xu = (−(R + r cos v) sinu, (R + r cos v) cosu, 0) ,

Xv = (−r sin v cosu,−r sin v sinu, r cos v) .

A métrica Riemanniana gij do toro, ou primeira forma fundamental, é dada pelos
produtos internos dos vetores tangentes:

g11 = ⟨Xu, Xu⟩ = (R + r cos v)2,

g12 = ⟨Xu, Xv⟩ = 0,

g22 = ⟨Xv, Xv⟩ = r2.
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A matriz da métrica pode ser expressa como:

g =

(
(R + r cos v)2 0

0 r2

)
.

O determinante da matriz métrica é:

det[gij] = (R + r cos v)2r2.

A área da superfície do toro é obtida pela fórmula:

Area(T ) =

∫ 2π

0

∫ 2π

0

√
det[gij] dv du.

Substituindo o determinante:

Area(T ) =

∫ 2π

0

∫ 2π

0

(R + r cos v)r dv du.

Resolvendo a integral:

Area(T ) =

∫ 2π

0

du

∫ 2π

0

(R + r cos v)r dv

=

∫ 2π

0

rR du

∫ 2π

0

dv +

∫ 2π

0

r2 du

∫ 2π

0

cos v dv.

A segunda integral desaparece, pois:∫ 2π

0

cos v dv = 0.

Portanto, temos:

Area(T ) =

∫ 2π

0

rR du · 2π = (2πR)(2πr) = 4π2Rr.

Concluímos que a área do toro é:

Area(T ) = 4π2Rr.



Capítulo 4

Áreas de gráficos e áreas na métrica
hiperbólica

Neste capítulo, exploramos o cálculo de áreas de gráficos e domínios no espaço hiperbó-
lico, utilizando conceitos da Geometria Riemanniana. Começamos aplicando a definição
de área em domínios munidos de uma métrica Riemanniana, abordando casos especí-
ficos da métrica do gráfico discutida anteriormente [4, 5]. Em particular, analisamos a
expressão do elemento de área e sua aplicação no cálculo da área de gráficos quando
n = 2 e n = 3, incluindo exemplos concretos, como as esferas S2 e S3 [3, 1].

Posteriormente, discutimos o cálculo de áreas no espaço hiperbólico, levando em
consideração a métrica própria desse ambiente [6]. Para isso, determinamos áreas
de regiões específicas, como retângulos e coroas circulares no plano hiperbólico H2,
ilustrando como a geometria hiperbólica influencia as medidas de área [2].

Ao longo deste capítulo, buscamos consolidar o entendimento sobre os métodos de
cálculo de área em diferentes contextos geométricos, fornecendo um arcabouço teórico
e prático para investigações futuras na área.

4.1 Cálculo de áreas de gráficos

Aqui vamos aplicar o conceito de área para domínios com uma métrica Riemanniana,
para alguns casos particulares da métrica do gráfico, vista na Seção 3.1.1.

Seja f : U ⊂ Rn → R uma função C∞. Como vimos, a métrica induzida pelo gráfico
é obtida no domínio U considerando os produtos internos entre os vetores tangentes
Xxi

, resultando em:

gij = ⟨Xxi
, Xxj

⟩ = δij + fxi
fxj

, 1 ≤ i, j ≤ n.

E pelo Lema 1, o fator do elemento de volume associado à métrica induzida é dado
por: √

det(gij) =
√
1 + |∇f |2,

onde |∇f |2 =
∑n

i=1 f
2
xi

representa o quadrado do módulo do gradiente de f .
Assim, a área do gráfico de f sobre D é dada por:

Area(Gr(f)) =

∫
D

√
det(gij) dx1 . . . dxn =

∫
D

√
1 + |∇f |2 dx1 . . . dxn.

16
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4.1.1 A área da esfera S2(R)

Figura 4.1: Representação da esfera em R3.

Nosso objetivo é calcular a área da esfera S2(R). Para isso, consideramos inicialmente
a área da semiesfera superior S2

+(R), que pode ser descrita como o gráfico da função

f(x, y) =
√
R2 − x2 − y2,

definida sobre o disco
D = {(x, y) | x2 + y2 ≤ R2}.

Ao final, basta multiplicar o resultado da área de S2
+(R) por 2 para obter a área total da

esfera.
O gráfico da função f é dado por:

Gr(f) = {(x, y,
√

R2 − x2 − y2) | (x, y) ∈ D}.

As derivadas parciais de f são:

fx =
−x√

R2 − x2 − y2
, fy =

−y√
R2 − x2 − y2

.

Note que fx e fy não estão bem definidas na borda do disco, ou seja, quando x2+y2 =
R2. Para contornar esse problema, consideramos inicialmente a área da semiesfera
S2
+(ρ) para 0 ≤ ρ < R e, ao final, tomamos o limite ρ → R.

Assim, a área da semiesfera é dada por:

Area(S2
+(ρ)) =

∫
B2(ρ)

√
1 +

x2

R2 − x2 − y2
+

y2

R2 − x2 − y2
dx dy

=

∫
B2(ρ)

R√
R2 − x2 − y2

dx dy.

Fazendo a mudança para coordenadas polares:

x = r cos θ, y = r sin θ, x2 + y2 = r2,
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e lembrando que o elemento de área é dado por:

dx dy = r dr dθ,

a integral pode ser reescrita como:

Area(S2
+(ρ)) =

∫ ρ

0

∫ 2π

0

Rr√
R2 − r2

dθ dr.

Resolvendo a integral em θ:

2πR

∫ ρ

0

r√
R2 − r2

dr.

Usando a substituição k = R2 − r2, com dk = −2rdr, temos:

2πR

∫ R2

R2−ρ2

1

2
√
k
dk.

Resolvendo a integral:

Area(S2
+(ρ)) = 2πR

[√
k
]R2

R2−ρ2
= 2πR

(
R−

√
R2 − ρ2

)
.

Tomando o limite ρ → R, obtemos:

Area(S2
+(R)) = 2πR2.

Finalmente, multiplicamos por 2 para obter a área total da esfera:

Area(S2(R)) = 2 · 2πR2 = 4πR2.

4.1.2 A área da esfera S3(R)

Nesta seção, calculamos a área da esfera tridimensional S3(R) em R4, seguindo a abor-
dagem utilizada para S2(R). Consideramos o hemisfério superior da esfera como o
gráfico de uma função definida em um domínio adequado.

Queremos determinar a área da esfera tridimensional de raio R, denotada por S3(R).
Para isso, representamos o hemisfério superior como o gráfico da função

f(x, y, z) =
√

R2 − x2 − y2 − z2,

definida sobre a bola de raio R:

B3(R) = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ R2}.

A área do gráfico é dada pela integral:

Area(S3
+(R)) =

∫
B3(R)

√
1 + |∇f(x, y, z)|2 dx dy dz.

Calculamos as derivadas parciais da função f :

fx =
−x√

R2 − x2 − y2 − z2
, fy =

−y√
R2 − x2 − y2 − z2

, fz =
−z√

R2 − x2 − y2 − z2
.
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Note que, fx, fy e fz não estão bem definidos quando x2 + y2 + z2 = R2. Para
resolvermos este problema, vamos calcular a área de S3

+(ρ) com 0 ≤ ρ < R, por fim,
faremos o limite ρ → R.

Logo, o módulo do gradiente é:

|∇f |2 = x2 + y2 + z2

R2 − x2 − y2 − z2
.

Assim, o fator do elemento de área se simplifica para:√
1 + |∇f |2 = R√

R2 − x2 − y2 − z2
.

Portanto, a área do gráfico do hemisfério superior é dada por:

Area(S3
+(ρ)) =

∫
B3(ρ)

R√
R2 − (x2 + y2 + z2)

dx dy dz.

Para resolver essa integral, utilizamos coordenadas esféricas:

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ,

onde x2 + y2 + z2 = r2, com r ∈ [0, ρ], θ ∈ [0, 2π] e φ ∈ [0, π]. O elemento de volume
nessas coordenadas é dado por:

dx dy dz = r2 sinφdr dφ dθ.

Substituindo na integral, obtemos:

Area(S3
+(ρ)) =

∫ ρ

0

∫ 2π

0

∫ π

0

R√
R2 − r2

r2 sinφdφdθ dr.

Fatorando as integrais em θ e φ:

Area(S3
+(ρ)) = R

∫ ρ

0

r2√
R2 − r2

dr

(∫ 2π

0

dθ

)(∫ π

0

sinφdφ

)
.

Resolvendo as integrais:∫ 2π

0

dθ = 2π,

∫ π

0

sinφdφ = 2.

Portanto:

Area(S3
+(ρ)) = 4πR

∫ ρ

0

r2√
R2 − r2

dr.

Para resolver a integral, aplicamos a substituição trigonométrica r = R sin t, com
dr = R cos t dt. Assim:

√
R2 − r2 = R cos t, r2 = R2 sin2 t.

Reescrevendo a integral:∫ ρ

0

r2√
R2 − r2

dr =

∫ arcsin( ρ
R
)

0

R2 sin2 t

R cos t
R cos t dt.
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Simplificando:

R2

∫ arcsin( ρ
R
)

0

sin2 t dt.

Usamos a identidade sin2 t = 1
2
(1− cos 2t):∫ arcsin( ρ

R
)

0

sin2 t dt =
1

2

∫ arcsin( ρ
R
)

0

(1− cos 2t) dt.

Integrando:

1

2

[
t− sin 2t

2

]arcsin( ρ
R
)

0

=
1

2

[
arcsin(

ρ

R
)−

sin(2 arcsin( ρ
R
))

2

]
.

Portanto:∫ arcsin( ρ
R
)

0

r2√
R2 − r2

dr = R2 · 1
2

[
arcsin(

ρ

R
)−

sin(2 arcsin( ρ
R
))

2

]
.

Substituindo:

Area(S3
+(ρ)) = 4πR ·R2 · 1

2

[
arcsin(

ρ

R
)−

sin(2 arcsin( ρ
R
))

2

]
= 2πR3

[
arcsin(

ρ

R
)−

sin(2 arcsin( ρ
R
))

2

]
.

Quando ρ → R temos que
arcsin(

ρ

R
) → π

2
e

sin(2 arcsin( ρ
R
))

2
→ 0.

Logo,
Area(S3

+(R)) = 2πR3 · π
2
= π2R3.

Finalmente, multiplicamos por 2 para obter a área total da esfera:

Area(S3(R)) = 2π2R3.

4.2 A área na métrica hiperbólica

Consideremos o semiplano superior U = {(x, y) ∈ R2 | y > 0} munido da métrica
hiperbólica:

gij =
1

y2
δij.

Nesse caso, a matriz da métrica é dada por:

g =

( 1
y2

0

0 1
y2

)
.
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Calculamos o determinante:
det g =

1

y4
.

Tomando a raiz quadrada, obtemos o fator de área:√
det g =

1

y2
.

Portanto, a área de uma região D com respeito à métrica hiperbólica é dada por:

Areag(D) =

∫
D

dx dy

y2
.

Essa fórmula é fundamental na Geometria Hiperbólica, pois destaca como as medi-
das de área diferem drasticamente das euclidianas. A seguir, aplicamos esse conceito
para calcular a área de regiões específicas no plano hiperbólico H2, como retângulos e
coroas circulares.

4.2.1 Área de Retângulos no Espaço Hiperbólico

Seja o retângulo R = [0, a]× [b, c] ⊂ H2 no modelo do semiplano superior.

Figura 4.2

Onde a métrica é dada por:

g =
1

y2

(
1 0
0 1

)
.

O fator do elemento de área é: √
det(gij) =

1

y2
.

Assim, a área do retângulo R é dada por:

Area(R) =

∫ c

b

∫ a

0

1

y2
dx dy.
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Integrando primeiro em x: ∫ a

0

dx = a.

Agora, resolvendo a integral em y:∫ c

b

1

y2
dy =

[
−1

y

]c
b

=
1

b
− 1

c
.

Portanto, a área do retângulo na métrica hiperbólica é:

Area(R) = a

(
1

b
− 1

c

)
.

Note que a Area(R) muda conforme a posição do retângulo em H2, um fato que
difere totalmente do que ocorre no espaço euclidiano.

4.2.2 Área de uma Coroa Circular no Espaço Hiperbólico

Sejam 0 < r1 < r2 e 0 < θ1 < θ2 < π. Consideramos a coroa circular no modelo do
semiplano superior do espaço hiperbólico H2, definida em coordenadas polares por:

C =
{
(x, y) ∈ H2 | x = r cos θ, y = r sin θ, r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2

}
.

Figura 4.3: Representação da coroa circular no modelo do semiplano superior.

A métrica hiperbólica no modelo do semiplano superior H2 é dada por:

g =

( 1
y2

0

0 1
y2

)
.

Assim, a área de C é dada pela integral:

Area(C) =

∫
C

dx dy

y2
.

Para calcular essa integral, utilizamos a parametrização:
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X(r, θ) = (x, y),

onde x = r cos θ e y = r sin θ, com r ∈ [r1, r2] e θ ∈ [θ1, θ2].
Os vetores tangentes são:

Xr = (cos θ, sin θ) ,

Xθ = (−r sin θ, r cos θ) .

A matriz diferencial dX é:

(dX) =

(
cos θ −r sin θ
sin θ r cos θ

)
.

O determinante dessa matriz é:

| det(dX)| = r.

Como y = r sin θ e temos dx dy = | det(dX)| dr dθ = r dr dθ. Pelo Teorema da Mu-
dança de Variáveis para integrais, temos:

Area(C) =

∫ r2

r1

∫ θ2

θ1

r

r2 sin2 θ
dθ dr =

∫ r2

r1

∫ θ2

θ1

1

r sin2 θ
dθ dr.

Resolvemos primeiro a integral em θ:∫ θ2

θ1

1

sin2 θ
dθ =

∫ θ2

θ1

csc2 θ dθ = cot θ1 − cot θ2.

Agora, resolvemos a integral em r:∫ r2

r1

1

r
dr = [ln r]r2r1 = ln r2 − ln r1 = ln

(
r2
r1

)
.

Multiplicando os resultados, obtemos a área da coroa circular:

Area(C) = ln

(
r2
r1

)
(cot θ1 − cot θ2).

Os resultados obtidos mostram como a métrica hiperbólica afeta as medidas de área
em H2, resultando em expressões distintas das do espaço euclidiano.
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