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RESUMO

Este trabalho introduz de forma acessivel o conceito de métrica Riemanniana em
dominios do espaco Euclidiano, com énfase em sua aplicacdo ao calculo de areas. Uti-
lizando fundamentos de Algebra Linear e Célculo Multivariavel, busca-se tornar o tema
compreensivel para iniciantes, ainda que, em alguns momentos, a formalidade matema-
tica seja suavizada em prol da intuicdo. O objetivo é apresentar resultados fundamentais
com clareza, destacando a elegancia dos teoremas e técnicas envolvidos.

O texto aborda o cdlculo de areas utilizando a métrica Riemanniana, partindo do
Teorema da Mudanca de Varidveis para Integrais. Sdo exploradas métricas em diferen-
tes contextos, incluindo os espacos Euclidiano e hiperbdlico, com aplicacbes concretas,
como o calculo da area do toro e das esferas S?*(R) e S3(R). O estudo se estende ao
espaco hiperbolico, analisando a medida de dreas em regides especificas, como retan-
gulos e coroas circulares, fornecendo um arcabouco teérico e pratico para investigacoes
mais avancadas em Geometria Riemanniana.

Palavras-chave: Area, Métrica Riemanniana, Espaco Hiperbdlico.
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ABSTRACT

This work provides an accessible introduction to the concept of a Riemannian metric
in domains of Euclidean space, with an emphasis on its application to area calculation.
Using fundamentals of Linear Algebra and Multivariable Calculus, the goal is to make
the topic comprehensible for beginners, even if, at times, mathematical rigor is softened
in favor of intuition. The objective is to present fundamental results clearly, highlighting
the elegance of the theorems and techniques involved.

The text discusses the calculation of areas using the Riemannian metric, starting
from the Change of Variables Theorem for integrals. Metrics in different contexts are
explored, including Euclidean and hyperbolic spaces, with concrete applications such
as the computation of the area of the torus and the spheres S?(R) and S3(R). The study
extends to hyperbolic space, analyzing area measurement in specific regions, such as
rectangles and circular annuli, providing a theoretical and practical framework for more
advanced investigations in Riemannian Geometry.

Keywords: Area, Riemannian Metric, Hiperbolic Space.
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Capitulo 1

Introducao

A Geometria Diferencial é uma drea da Matematica que estuda superficies e suas pro-
priedades intrinsecas, utilizando ferramentas de Algebra Linear e Calculo Diferencial.
Dentro deste contexto, as métricas Riemannianas surgem como uma extensio natural
do conceito de produto interno, permitindo a generalizacdo de no¢des como compri-
mento, area e angulos em variedades mais complexas [3], [4].

O conceito de métrica Riemanniana foi introduzido por Bernhard Riemann (1826
— 1866) em sua famosa palestra Uber die Hypothesen, welche der Geometrie zu Grunde
liegen ("Sobre as Hipdteses que Fundamentam a Geometria"), publicada em 1854 no ar-
tigo [6]]. Esse conceito revolucionou a forma como entendemos a geometria e a nogao
de medida em espacos curvados. Desde entdo, a Geometria Riemanniana tem desem-
penhado um papel fundamental em diversas dreas da Matemadtica e da Fisica, incluindo
relatividade geral e teoria da otimizacao [2, 1} [5].

Este trabalho tem como objetivo apresentar os conceitos introdutdrios das métricas
Riemannianas, com foco na aplicacao no célculo de areas de superficies. Para isso, serdo
abordados conceitos fundamentais de produto interno, norma e espacos tangentes, cul-
minando na formalizacdo da férmula para a drea de uma superficie parametrizada. Em
particular, discutiremos como calcular dreas em diferentes espacos, incluindo o espaco
euclidiano e o espaco hiperbdlico, destacando aplicagdes cldssicas, como o cdlculo da
area da esfera S? e do espaco hiperbdlico H? [3] 4, [5].

O texto é organizado da seguinte forma. No Capitulo |2, introduzimos os conceitos
preliminares necessdrios, incluindo o Teorema da Mudanca de Varidveis para integrais.
No Capitulo 3] formalizamos a no¢do de métricas Riemannianas e deduzimos a férmula
para o célculo de 4reas. Por fim, no Capitulo4} aplicamos essa teoria para calcular dreas
de superficies graficas e dominios no espaco hiperbdlico.



Capitulo 2

Resultados Preliminares

A necessidade de medir distancias, dreas, volumes, angulos e outras grandezas impul-
sionou o desenvolvimento da matemadtica ao longo da histdria [2]]. Na geometria dife-
rencial, esse interesse se manifesta no estudo das métricas, que fornecem a estrutura
fundamental para a analise das formas e propriedades dos espacos mais gerais. Em par-
ticular, a métrica Riemanniana desempenha um papel essencial ao definir uma nogéo
de comprimento, dngulo e drea, funcionando como uma “régua” para medicoes locais
(4, 15]].

Uma das diversas aplicacdes das métricas Riemannianas € a determinacdo da drea de
superficies. Essa abordagem se baseia no teorema da mudancga de varidveis, garantindo
uma formulacdo consistente para o calculo de integrais em variedades diferencidveis
[31.

Neste capitulo, apresentamos conceitos fundamentais que servirdo de base para a
compreensao da teoria das superficies, estabelecendo a relagédo entre a métrica Rieman-
niana e a definicdo de érea [3].

2.1 Teorema da Mudanca de Variaveis para Integrais

A fim de desenvolver uma definicdo rigorosa para a area, nos apoiamos no teorema da
mudanca de varidveis para integrais. Por simplicidade, focamos no caso de dimensao 2.
Seja p : D C R? — (D) C R? um difeomorfismo, com

()O(xv y) - (901(‘%-7 y)7 @2(1‘17 y))
Denotamos por p = (x,y) e, para cada p, definimos o diferencial linear
dp, : R? — R?.
Em particular, temos
_ 8@1 &pg
dgpp(el) - (8_ZE($7 y)a %(ZE, y)

dioy(es) = (%jmy), %(%y)) |

Seja v = (a,b) € R*. Como v = ae; + bey, temos

_ _ (9% 9p1 9p2 9p2
de,(v) = adpy(er) +bdpy(ez) = (a 5 (x,y)+b o (,v), a 5 (x,y)+0b 2 (z,y) | .
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Portanto, a matriz associada a transformacéo linear dy, é dada por:

i(z,y) %(x,y)
_ Ox Oy
el = (%u,y) %—%,y))‘

Essa matriz é conhecida como a matriz Jacobiana de .

Teorema 2.1 (Teorema da Mudanca de Varidveis para Integrais). Seja ¢ : D C R? —
¢(D) C R? um difeomorfismo e seja f : (D) — R uma funcéo integravel. Entdo,

/m)) flw, ) dudy = /D<f ° g0) (z,y) |det(de(w, y))| do dy. 2.1)

Prova. A base para esta prova vocé encontra em [[7]. Nosso objetivo € expressar du dv
em termos de dx e dy.
Considere um pequeno retangulo

D = [z, xo + Az] X [0, yo + Ay]

no plano xy. Denotamos por ¢(D) a imagem de D.
Desejamos estimar a drea AA de p(D).
Lembramos que

90(337 y) = (U(ZL’, y)? U<I7 y))?
onde o vetor tangente a curva ¢(z, yo) em (o, yo) = (ug, vg) €

0y (20, Y0) = 0_yi+ 8_y

Podemos aproximar a drea de (D) pelo paralelogramo gerado pelos vetores Az . (g, yo)

e Ay py (7o, Yo)-
A area desse paralelogramo é dada pelo determinante da matriz Jacobiana. Assim,

obtemos:
|Az 0z (20, Y0) X Ay y(zo,y0)| = | (x0, yo)| AzAy.

A matriz Jacobiana é dada por:

J($0,y0> =

ou v
du |-
Ay

Portanto, a drea AA de ¢(D) é aproximadamente:

AA =~ [J(xo,y0)|AzAy.

Note que o Jacobiano € calculado no ponto (zg, yp)-
Voltando ao problema inicial, desejamos calcular

/ f(u,v) dudv,
»(D)
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usando as varidveis = e y, com (z,y) € D e R = ¢(D).

Dividimos D em sub-retdngulos D;; e denotamos por ¢(D;;) suas imagens. A drea
de ¢(D;;) é aproximadamente |J(z;,y;)|AzAy, onde (z;,y;) representa um ponto do
sub-retangulo D,;.

Finalmente, por definicdo de integral,

/ f(u,v)dudv = lim ZZf(Uian)AA
o(D) n,m— o0

i=1 j=1

= dim 33 (e ) () [ Ay

i=1 j=1

- /D F (o, v (x y)]| de dy.

Exemplo 1. Calculemos a seguinte integral dupla utilizando coordenadas polares:

1 pvV1i—a?
I :/ / (2° + y*) dy dz.
0o Jo

A regido de integracdo ¢ um quarto de circulo de raio » = 1. Fazemos a mudanca de
variaveis para coordenadas polares, ou seja, tomamos a funcao

gp;(o,1)x(o,g)—>AcR2

definida por
90<r7 9) = (@1(7’, 6)7 902<T7 6)) = (I‘, y) € A7

onde
r=rcosf, y=rsinf.

O Jacobiano da transformacao é dado por:

9p1 Op1
del =\ g & |
or o0

Q

e seu determinante é
|det[dp]| = 7.

A fungdo x? + y? se torna:

J:2+y2 =r2

Pelo teorema da mudanca de varidveis, obtemos:

w/2 pl w/2 pl
I:/ / r2-rdrd9:/ / r3 dr de.
0 0 0 0

Resolvendo a integral em r:
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obtemos

| X

Portanto, o resultado final é:

2.2 Produto Interno em Espacos Vetoriais
Definicdo 1. Um produto interno em um espaco vetorial V' é uma funcao
(,): VXV =R,

que associa a cada par de vetores u,v € V um ntmero real (u,v) e satisfaz as seguintes
propriedades, para quaisquer u, v, v,v' € Ve a € R:

1. Bilinearidade:

(u+u',v) = (u,v) + (', v),
(u, v+ ") = (u,v) + (u,v’),
{ou,v) = alu,v),
(u, av) = afu,v);

2. Simetria:

3. Definida positividade:

(u,u) >0 paratodo u # 0.

Exemplo 2. No espaco euclidiano R", o produto interno canonico para os vetores
u:(uh'"aun) € ’U:(Ul,"',l)n)

¢ definido por
(u,v) = ugvy + UgVy + - - - + UV,

Exemplo 3. Seja F = C°([a, b]) 0 espaco vetorial cujos elementos sdo as fun¢des conti-
nuas f, g : [a,b] — R. Nesse caso, um produto interno natural em F é definido por

(f,9) = / f(z)g(z) dx.




2.3. O ESPACO TANGENTE 7

2.2.1 Produto Interno Expresso por Matrizes

Se tomarmos uma base arbitrdria {vq,---,v,} e definirmos (v;,v;) = ¢;;, 0 produto

interno dos vetores
n n
U= E Qv U= E Bjv;
i=1 j=1

¢ dado por
(u,v) = Z Gij @i ;.
irj=1
Logo, a matriz g = (g;;) € M(n x n) é simétrica (isto é, g;; = g;;) e, sendo definida

positiva, temos que para qualquer lista (zy,-- - ,x,) de nimeros reais ndo todos nulos,
n
Z 9ij vix; > 0.
i,7=1
Dessa forma, o produto interno, para v = (uy,...,u,) € v = (vy,...,v,) em V, pode ser
eXxpresso por:
gin - Gin U1
(u,v) = (ul un) oot sl (2.2)
gn1 " YGnn Un,

2.3 O Espaco Tangente

Seja U C R™ um conjunto aberto e seja p € U um ponto fixo.

Definicdo 2. Dizemos que v € R” é um vetor tangente em p € U se existe uma curva
suave
a:(—ee)—UCR"

tal que a(0) = p e o/(0) = v.

Figura 2.1

O conjunto de todos os vetores tangentes em p € chamado de espaco tangente a U
em p, denotado por 7),U. Assim,

T,U = {v € R" | v é vetor tangente a U em p} C R".
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Figura 2.2

Ele pode ser naturalmente identificado com o préprio R" por meio de uma transla-
¢do. Mais precisamente, temos:

Proposicao 2.1. Para qualquer p € U, o espaco tangente 7,,U coincide com R", ou seja,
T,U =R".
Prova. Seja v € R". Consideremos a curva « : (—e,e) — U dada por
a(t) =p+tu.

Como U é um conjunto aberto, existe ¢ > 0 tal que p + tv € U para todo t € (—¢,¢).
Dessa forma, temos «(0) = p e, diferenciando em ¢ = 0,

a'(0) = v.

Portanto, v € um vetor tangente em p, ou seja, v € 1,,U. Como v foi escolhido arbitrari-
amente em R", segue que T,,U = R".




Capitulo 3

Meétricas Riemannianas e o calculo de
areas

Em 1854, o matemadtico alemdo Bernhard Riemann (1826-1866) apresentou sua fa-
mosa palestra intitulada Uber die Hypothesen, welche der Geometrie zu Grunde liegen
("Sobre as hipdteses que fundamentam a geometria") [6]. Nessa palestra, ele introdu-
ziu o conceito de uma métrica riemanniana, que generaliza a no¢do de distancia em
superficies e espacos curvos (veja [2), Capitulo 24]).

Uma métrica riemanniana é uma func¢éo que atribui a cada ponto de uma variedade
diferencidvel um produto interno no espaco tangente, variando suavemente de ponto a
ponto. Essa variedade é um espaco topoldgico que permite o calculo de derivadas de
funcdes reais. Esse conceito possibilita a generalizacdo de medidas como comprimentos,
angulos, dreas e volumes, estendendo a nocao de distancia para espacos mais complexos
do que o plano euclidiano.

Neste trabalho, focaremos no calculo de areas de dominios munidos com métricas
riemannianas, com énfase em abertos do espaco euclidiano e do espaco hiperbdlico.

3.1 Meétricas Riemannianas em abertos do plano

Em Geometria Diferencial, uma métrica Riemanniana é a ferramenta fundamental para
medir comprimentos e dngulos em variedades diferencidveis. No caso de um subcon-
junto aberto U C R”, uma métrica Riemanniana define um produto interno em cada
espaco tangente 7, U, permitindo-nos introduzir conceitos como comprimento de cur-
vas, areas e volumes de subvariedades, e curvatura.

Definicdo 3. Uma métrica Riemanniana em um aberto U C R" é uma familia g =
(gi;) de produtos internos, onde cada g(x) ¢ um produto interno definido positivo no
espaco tangente 7, U, variando suavemente com x € U. Em coordenadas locais, g(x) é
representado por uma matriz simétrica positiva definida:

9(x) = (gij(x)), = €U, G.1)
onde as funcoes g;; : U — R sdo diferencidveis em U.

A escolha de uma métrica Riemanniana em U determina a estrutura geométrica do
espaco e pode variar conforme o contexto. A seguir, apresentamos exemplos classicos
de métricas em diferentes modelos geométricos.

9
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Exemplo 4. A métrica Euclidiana padrao em R" é dada por:

gi(x) = dij,
onde §;; € o simbolo de Kronecker:
1, set=
by=4
0, sei#j.
Em notacéo matricial, temos:
100 - 0
010 - 0
g=1001 0
000 -1

Esta é a métrica Euclidiana canoOnica de R", que preserva angulos e distdncias no
sentido classico.

Exemplo 5. No modelo do semi-espaco superior
U=R} ={(z1,...,2,) € R 2, > 0},

a métrica hiperbdlica é dada por:

Em notacdo matricial, temos:

5 0 0
0 & 0
h: n .
o o -.. L

2
T

Esta é a métrica hiperbdlica no modelo do semi-espaco, a qual confere ao espaco
uma estrutura geométrica diferente da Euclidiana, em que a distancia entre pontos
cresce rapidamente a medida que se aproximam do eixo z,, = 0.

Exemplo 6. No modelo da bola unitdria U = B;, a métrica hiperbdlica é dada por:

4
= ™
Em notacdo matricial, temos:
10 - 0
4 01 - 0
H=——51. . .
(1 — |z]?)? : :

Esta é a métrica hiperbodlica no modelo da bola, frequentemente usada em Teoria das
Funcdes e Geometria Hiperbdlica.
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3.1.1 A métrica do grafico

Seja f : U ¢ R® — R uma funcdo C*°. O gréfico de f é o subconjunto do espaco R"*!
definido por:

Gr(f) ={(x1,..., 20, f(21,..., 7)) | (21,...,2,) €U} C R*",

Podemos parametrizd-lo por meio da aplicacdo X : U C R" — Gr(f), dada por:

X(x1, .. xn) = (X1, .y, [T, .0, 2)).

Ir;c'=(q,f(cr))

.

Figura 3.1

As derivadas parciais desta parametrizacao sao:
XIZ':(eiufﬁi):(Oa"'717"'707fx7;)7 1<i<mn,

onde ¢; é o0 i-ésimo vetor da base candnica de R".
A métrica induzida pelo gréfico é obtida no dominio U considerando os produtos
internos em R"*! entre os vetores tangentes X, resultando em:

9ij = <X$Z7X£UJ> = 5ij + fzzfzj

Em notacdo matricial, a métrica do grafico (também chamada de primeira forma
fundamental) é representada pela matriz:

1+f£1 fanfl’z farlfacn

fxzfm 1+ 3522 fzzfa:n
9= . . . .
fxnfxl fxnfxg e 1+ xQn

Geometricamente, essa métrica mede as distdncias sobre a superficie do grafico,
levando em conta a inclinacdo da funcdo f. Em particular, ela indica como a estrutura
euclidiana do dominio U é distorcida pela presenca da altura f(z). Note que, para f =
0, obtemos a métrica euclidiana usual de R", ou seja, g reduz-se a matriz identidade.
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Lema 1. O fator de elemento de volume associado a métrica induzida é dado por:

det(gw) = \/ ]. + |Vf‘2,

onde |Vf[>=>"" , f2 representa o quadrado do médulo do gradiente de f.

Prova. Para demonstrar a identidade /det(g;;) = /1 + |V f|?, comecamos calculando
o determinante da matriz métrica g.
A matriz g é da forma:
g=1,+v7,

onde [, é a matriz identidade de ordem n e v é o vetor coluna dado por:

Jfar
S

v=|".

Jan

Utilizamos a seguinte propriedade dos determinantes para uma matriz da forma

I+ A, onde A = vv® é uma matriz de posto um. O determinante de tal matriz pode ser
calculado usando a férmula:

det(I,, +vo’) = 1+ tr(vo?).

Como vv! é uma matriz simétrica de posto um, seu tnico autovalor néo nulo é v7v,
e sua matriz tem traco igual a:

tr(vv’) = vTv = Zfi = |Vf|>.
i=1

Portanto,
det(g) = 1+ |V f|>.
Tomando a raiz quadrada de ambos os lados, obtemos:

Vdet(g) = 1+ [V

Isso conclui a prova. |

Estaremos trabalhando com alguns casos particulares da métrica do grafico no Ca-
pitulo

3.2 Area de uma métrica Riemanniana

Nesta secdo, utilizamos as métricas Riemannianas para definir a nocdo de area de su-
perficies no plano, baseando-nos no Teorema da Mudanca de Variaveis para integrais e
em propriedades da Algebra Linear. Para maior simplicidade, consideramos o caso bidi-
mensional, isto é, um dominio D C R? munido de uma métrica Riemanniana g = (g;;)-
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Definicdo 4. Seja D C R? um subconjunto aberto munido de uma métrica Riemanniana
representada por uma matriz simétrica definida positiva ¢ = (g,;). A area de D com
respeito a essa métrica € definida por:

Area (D) :/D\/det[gij] dx dy.

A expressdo acima generaliza a nocdo usual de drea na métrica Euclidiana, onde
gi; = 0;; € y/det[g;;] = 1, recuperando a férmula cléssica da integracdo em coordenadas
cartesianas.

3.2.1 Deducao da féormula para a area

Para um ponto p € D, a métrica em coordenadas locais é representada pela matriz

simétrica: ) )
_ ([ 911\p) G12(p
A= (921(29) 922(29)) '

Dado um par de vetores u = (uy,us) € v = (v1,v2) em R?, o produto interno induzido
por g pode ser escrito como:

(w,0) = Y gij(p)uiv;.

i,j=1

Particularmente, se tomarmos os vetores da base canodnica e; = (1,0) e e; = (0, 1),
obtemos:

(61,€1> = 11, <€1,€2> = g12 = g21, (62,€2> = g22.

Isso significa que, em geral, os vetores da base candnica ndo sdo ortonormais com res-
peito a métrica g. No caso da métrica Euclidiana, temos g¢;; = J;;, garantindo a ortonor-
malidade.

Agora, construiremos o argumento para o cdlculo da drea utilizando a métrica Rie-
manniana. Seja X : D C R? — (R?, ¢g) uma parametrizacdo, definida por:

X(z,y) = (z,y).
O diferencial de X é dado por:
dXp(u,v) = (u,v),

e, portanto,
dX,(1,0) = (1,0), dX,(0,1) = (0,1).

Como mencionado anteriormente, esses vetores ndo sdo necessariamente ortonormais
com respeito a métrica g. Seja entdo {¢y,c2} uma base ortonormal em 7}, D com respeito
a métrica g, de modo que podemos expressar:

dX,(e1) = agq + bea, dX,(e2) = ceq + dea.
Da definicdo da métrica, segue que:

gu=a+b, gu=ac+bd, gn=c+d.
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Em nota¢do matricial:

g 912\ [a*+b* ac+bd
g1 goo)  N\ac+bd c*+d*)°

Sabemos que o determinante de uma matriz da forma A” A é dado por:

det(ATA) = (det A)%
Portanto, aplicando essa propriedade a matriz da métrica g, obtemos:
det[gi;] = (det A)%.

Tomando a raiz quadrada, segue que:

det[dX,] = 1/det[gi;].

Isso justifica a definicdo da area apresentada anteriormente. Em outras palavras, o
fator /det[g;;] fornece o elemento de drea induzido pela métrica, andlogo ao fator de

escala em uma mudanca de coordenadas.

Exemplo 7. O toro no espago Euclidiano R? pode ser parametrizado por:

X (u,v) = ((R+rcosv)cosu, (R+rcosv)sinu, rsinv),

para u,v € [0, 2], onde R é o raio do circulo maior e r é o raio do circulo menor.

Figura 3.2: Representacio do toro em R3.

As derivadas parciais da parametrizacao sao:
Xy = (—(R+rcosv)sinu, (R+rcosv)cosu,0),

X, = (—rsinvcosu, —rsinvsinu, r cosv) .

A métrica Riemanniana g¢;; do toro, ou primeira forma fundamental, ¢ dada pelos

produtos internos dos vetores tangentes:

g1 = (X, X,,) = (R +rcosv)?,
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A matriz da métrica pode ser expressa como:

g = ((R+rcosv)2 0) '

0 r2
O determinante da matriz métrica é:

det[gi;] = (R + 7 cosv)?r?.

A drea da superficie do toro é obtida pela férmula:

2w 2w
Area(T :/ / det|g;;| dv du.
(T) )V i3]

Substituindo o determinante:

2m 2w
Area(T) = / / (R + rcosv)rdv du.
o Jo

Resolvendo a integral:

2 27
Area(T) = / du/ (R + rcosv)rdv
0 0

27 27 2 27
:/ eru/ dv—l—/ r2du/ cosv dv.
0 0 0 0

A segunda integral desaparece, pois:

2

/ cosv dv = 0.
0
Portanto, temos:
2m
Area(T') = / rRdu-2n = (2nR)(2nr) = 47> Rr.
0

Concluimos que a area do toro é:

Area(T) = 47> Rr.




Capitulo 4

Areas de graficos e areas na métrica
hiperbolica

Neste capitulo, exploramos o cdlculo de areas de graficos e dominios no espaco hiperbé-
lico, utilizando conceitos da Geometria Riemanniana. Comecamos aplicando a defini¢do
de area em dominios munidos de uma métrica Riemanniana, abordando casos especi-
ficos da métrica do grafico discutida anteriormente [4, [5]. Em particular, analisamos a
expressao do elemento de drea e sua aplicacdo no cdlculo da area de graficos quando
n = 2 e n = 3, incluindo exemplos concretos, como as esferas S? e S3 [3], []].

Posteriormente, discutimos o cdlculo de dreas no espaco hiperbdlico, levando em
consideracdo a métrica propria desse ambiente [[6]. Para isso, determinamos areas
de regides especificas, como retidngulos e coroas circulares no plano hiperbdlico H?,
ilustrando como a geometria hiperbdlica influencia as medidas de area [2].

Ao longo deste capitulo, buscamos consolidar o entendimento sobre os métodos de
célculo de drea em diferentes contextos geométricos, fornecendo um arcabouco tedérico
e pratico para investigacoes futuras na area.

4.1 Calculo de areas de graficos

Aqui vamos aplicar o conceito de drea para dominios com uma métrica Riemanniana,
para alguns casos particulares da métrica do grafico, vista na Se¢do[3.1.1}

Seja f : U C R™ — R uma funcdo C*°. Como vimos, a métrica induzida pelo grafico
é obtida no dominio U considerando os produtos internos entre os vetores tangentes
X,,, resultando em:

gij:<Xﬂﬁi7X$j>:6ij+fxifzjv 1<4,5<n.
E pelo Lema |1| o fator do elemento de volume associado a métrica induzida é dado

por:
\/det(gij) = V1+[V [

onde |Vf[>=>"", f2 representa o quadrado do médulo do gradiente de f.
Assim, a area do grafico de f sobre D é dada por:

Area(Gr(f)):/D\/det(gij)dxl...dxn:/D\/1—|—|Vf]2dx1...dxn.

16
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4.1.1 A area da esfera S?(R)

Figura 4.1: Representacdo da esfera em R3.

Nosso objetivo é calcular a drea da esfera S?(R). Para isso, consideramos inicialmente
a area da semiesfera superior S? (R), que pode ser descrita como o grafico da fungdo

fla) = V=P

definida sobre o disco
D ={(z,y) | 2* +y* < R*}.

Ao final, basta multiplicar o resultado da 4rea de S% (R) por 2 para obter a drea total da
esfera.
O grafico da funcao f é dado por:

Gr(f) = {(z,y, vV RB? —2? =) | (z,y) € D}.

As derivadas parciais de f sdo:

_ -z _ —Y
fo = Rz_xz_yz’ fy= /Rz_xz_yz'

Note que f, e f, ndo estdo bem definidas na borda do disco, ou seja, quando z*+y* =
R?. Para contornar esse problema, consideramos inicialmente a drea da semiesfera
52 (p) para 0 < p < R e, ao final, tomamos o limite p — R.

Assim, a drea da semiesfera é dada por:

2 2
Area(S2 (p :/ 1+ ° + Y dx dy
(52(0)) B%\/ e S
R

dx dy.

/B2<p> R? — 2% — y?
Fazendo a mudanca para coordenadas polares:

z=rcosf, y=rsinf, 2*+y>=r
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e lembrando que o elemento de drea é dado por:
dx dy = rdrdf,

a integral pode ser reescrita como:

Area(S? S Ry
rea( +(P))—/O/O \/ﬁ T

Resolvendo a integral em 6:

P r
27TR/ —_— dT.
o VRZ—12
Usando a substituicdo k = R? — 72, com dk = —2rdr, temos:
R

2R ——dk.
R2—p2 2\/E

Resolvendo a integral:

RQ

Area(S%(p)) = 27R [\/ﬂ

:27TR<R—\/R27—p2>.

R2—p?

Tomando o limite p — R, obtemos:
Area(S?(R)) = 2 R*.

Finalmente, multiplicamos por 2 para obter a drea total da esfera:

Area(S?*(R)) = 2 - 27 R* = 47 R*.

4.1.2 A érea da esfera S3(R)

Nesta secfo, calculamos a drea da esfera tridimensional S*(R) em R*, seguindo a abor-
dagem utilizada para S?(R). Consideramos o hemisfério superior da esfera como o
grafico de uma funcéo definida em um dominio adequado.

Queremos determinar a drea da esfera tridimensional de raio R, denotada por S*(R).
Para isso, representamos o hemisfério superior como o grafico da funcdo

f($ayaz): \/RQ_IQ_yz_Zaa

definida sobre a bola de raio R:

B3R) = {(z,y,2) € R® | 2® + y* + 2* < R*).

A area do grafico é dada pela integral:

Area(S?(R)) = V14 |Vf(x,y,2)|? dedydz.
B3(R)

Calculamos as derivadas parciais da funcéo f:

—x -y -z

fo= \/R2_x2_y2_22’ fy= \/R2_x2_y2_z2’ fa= \/RQ_xQ_yz_ZQ'
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Note que, f., f, € f. nfo estdo bem definidos quando z* + y* + 2? = R?. Para
resolvermos este problema, vamos calcular a area de S%(p) com 0 < p < R, por fim,
faremos o limite p — R.

Logo, o mddulo do gradiente é:

$2+y2+22

x2_y2_22'

2
Assim, o fator do elemento de area se simplifica para:

VITIVIT = <

\/R2—$2—y2—2’2‘

Portanto, a drea do grafico do hemisfério superior é dada por:

R
/B3(p) VR?— (224 y2 + 22)

Area(S3(p)) = dx dy dz.

Para resolver essa integral, utilizamos coordenadas esféricas:
x=rsinpcosh, y=rsinpsinfd, 2z =rcosey,

onde 22 + y* + 22 = r?, com r € [0,p], 6 € [0,27] € ¢ € [0,7]. O elemento de volume
nessas coordenadas ¢ dado por:

dx dydz = r*sinpdrdp db.

Substituindo na integral, obtemos:

Area( 53 / / / =T % sin ¢ dyo df dr.
/RQ

Fatorando as integrais em 6 e ¢:

swatsiion - e [} ([,

Resolvendo as integrais:

2w T
/ df = 2m, / sinpdp = 2.
0 0

Area(S3(p

Portanto:

‘“R/ m

Para resolver a integral, aplicamos a substitui¢do trigonométrica » = Rsint, com
dr = Rcostdt. Assim:

VR? — 12 = Rcost, r*>= R%sin’t.

Reescrevendo a integral:

ﬁ
7) R2sin?t

P 7"2 arcsin(
—dr = -
0o VR?2—r? 0 Rcost

Rcostdt.




4.2. A AREA NA METRICA HIPERBOLICA 20

Simplificando:
arcsin( %)
R? / sin® t dt.
0

Usamos a identidade sin® ¢ = 1(1 — cos 2¢):
arcsin( %) 1 arcsin( %)
/ sin®tdt = = / (1 — cos2t) dt.
0 2 Jo

Integrando:

L[, sin2t arcsin(f)
2 2

1 . p, sin(2arcsin(%))
) =3 [arcsm(ﬁ) — 5 }
Portanto:
arcsin() .2

Substituindo:

dr = R? -

[arcsm%) _ a2 af;sin(%»]

DN | —

Area(S3(p)) = 4nR - R* -

o2y - )

sin(2 argsin(}%))}

1
2

P
=27R? =) -
7r [arcsm( R)

Quando p — R temos que
arcsin(ﬁ) I
R 2

sin(2 arcsin(%))

5 — 0.

Logo,

Area(S3(R)) = 27R® - g = 7R3,

Finalmente, multiplicamos por 2 para obter a drea total da esfera:

Area(S*(R)) = 27°R>.

4.2 A area na métrica hiperbodlica

Consideremos o semiplano superior U = {(z,y) € R* | y > 0} munido da métrica

hiperbdlica:
1
Gij = Eéij'

)
1 .
rd

Nesse caso, a matriz da métrica é dada por:

X

oK
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Calculamos o determinante:

1
detg = —.
Yt

Tomando a raiz quadrada, obtemos o fator de area:

1
Vdetg=—.

Y

Portanto, a drea de uma regido D com respeito a métrica hiperbdlica é dada por:

dzd
Areay (D) = / ny.
D Y

Essa formula é fundamental na Geometria Hiperbolica, pois destaca como as medi-
das de area diferem drasticamente das euclidianas. A seguir, aplicamos esse conceito

para calcular a drea de regides especificas no plano hiperbdlico H?, como retdngulos e
coroas circulares.

4.2.1 Area de Retangulos no Espaco Hiperbélico

Seja o retdngulo R = [0, a] x [b, c] C H? no modelo do semiplano superior.

y

HZ

A 4

Figura 4.2

=5 (0 1)
w2 \0 1)

1

Onde a métrica é dada por:

O fator do elemento de area é:

Assim, a area do retdngulo R é dada por:

C a 1
Area(R) = / / — dx dy.
b Jo Y
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/ dz = a.
0

Agora, resolvendo a integral em y:

/Cldy_[_l]c_l_l
by Y2 yl, b ¢

Portanto, a area do retangulo na métrica hiperbdlica é:

Area(R) = a (% _ 1) |

Integrando primeiro em z:

C
Note que a Area(R) muda conforme a posicdo do retdngulo em H?, um fato que

difere totalmente do que ocorre no espaco euclidiano.

4.2.2 Area de uma Coroa Circular no Espaco Hiperbélico

Sejam 0 < r; < r,e 0 < #; < 6, < w. Consideramos a coroa circular no modelo do
semiplano superior do espaco hiperbdlico H?, definida em coordenadas polares por:

C:{(x,y)€H2|m:rCOSQ, y=rsind, ry <r <rg, 01§¢9§82}.

Figura 4.3: Representacdo da coroa circular no modelo do semiplano superior.

A métrica hiperbdlica no modelo do semiplano superior H? é dada por:

Assim, a drea de C' é dada pela integral:

Area(C):/ dm;iy'
c Y

Para calcular essa integral, utilizamos a parametrizacdo:
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X(r,0) = (z,y),
onde z = rcosf ey =rsinf, comr € [ry,r;] e 6 € [0, 065].

Os vetores tangentes sao:

X, = (cosf,sind),

Xy = (—rsinf,rcosb).
A matriz diferencial dX é:
cos@ —rsind
(dX) = (sin@ rcos 6 ) ’

O determinante dessa matriz é:

| det(dX)| = r.

Como y = rsinf e temos dxdy = |det(dX)|drdf = rdrdf. Pelo Teorema da Mu-
dancga de Variaveis para integrais, temos:

792 62 r T2 62 1
Area(C') = ————dfdr = df dr.
rea(C) /,ﬁ1 /91 r2sin® 6 " /,ﬁ1 /91 rsin® 6 "

Resolvemos primeiro a integral em 6:

02 1 02
/ df = / csc? 0 df = cot ; — cot Bs.
01

SiIl2 0 01

Agora, resolvemos a integral em 7:

21 r )
/ —dr = [In7]? =Inry —Inr; =In (—) :
- r T1

Multiplicando os resultados, obtemos a drea da coroa circular:
Area(C) = In (T—2) (cot 0 — cot bs).
T

Os resultados obtidos mostram como a métrica hiperbdlica afeta as medidas de area
em H?, resultando em expressdes distintas das do espaco euclidiano.
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