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Resumo

Verificacao facial de parentesco, a tarefa de determinar relagoes familiares com base em im-
agens faciais, tem ganhado atengao significativa nos iltimos anos devido as suas aplicagoes
em areas como midias sociais, forense e genealogia. No entanto, verificar parentesco
com precisao continua sendo um problema desafiador, especialmente ao se considerar as
variacoes de idade entre os membros da familia. Esta dissertacao explora o potencial de
usar técnicas de Transformagao de Idade Facial, especificamente através de Generative
Adversarial Networks (GANs), para melhorar a precisdao dos modelos de verificagao de
parentesco. Este trabalho envolve o desenvolvimento de um modelo de transformacao
de idade baseado em GAN que pode simular o processo de envelhecimento em imagens
faciais. Ao aumentar as bases de dados de parentes com essas imagens transformadas pela
idade, buscamos aprimorar a robustez e a confiabilidade dos sistemas de verificacao de
parentesco. Os resultados experimentais indicam que a incorporacao de imagens faciais
transformadas pela idade no processo de verificacao de parentesco leva a uma repre-
sentacao mais precisa das relacoes familiares, especialmente em casos onde as diferencas
de idade sao acentuadas. Este trabalho contribui para o campo emergente da verificacao
de parentesco ao elaborar uma abordagem inovadora que aproveita o poder das GANs
para progressao de idade, oferecendo uma direcao promissora para pesquisas futuras e

aplicagoes praticas.

Keywords: Transformacao de Idade Facial, Reconhecimento Facial de
Parentesco, Redes generativas adversariais, Redes neurais convolucionais,

Visao Computacional .
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Abstract

Kinship verification, the task of determining family relationships based on facial im-
ages, has gained significant attention in recent years due to its applications in areas such as
social networks, forensics, and genealogy. However, accurately verifying kinship remains
a challenging problem, particularly when accounting for variations in age between family
members. This thesis explores the potential of using Face Age Transformation techniques,
specifically through Generative Adversarial Networks (GANs), to improve the accuracy
of kinship verification models. This work involves developing a GAN-based age trans-
formation model that can simulate the aging process in facial images. By augmenting
kinship datasets with these age-transformed images, we aim to enhance the robustness
and reliability of kinship verification systems. Experimental results indicate that incorpo-
rating age-transformed facial images into the kinship verification process leads to a more
accurate representation of familial relationships, particularly in cases where age differ-
ences are pronounced. This work contributes to the growing field of kinship verification
by elaborating a novel approach that leverages the power of GANs for age progression,

offering a promising direction for future research and practical applications.

Keywords: Face age transformation, Kinship Recognition, Generative

Adversarial Network, Convolutional Neural Network, Computer Vision .

vil



List of Figures

[2.1  General pipeline of Siamese Networks in Kinship Verification| . . . . . . . . 8

[2.2  Development of representative kinship datasets. Source: |Wang et al.| (2023)]| 9

[2.3  Classification of facial age transformation methods. Source |(Guo et al.| (2024)| 19

2.4  Timeline of some Face Age Transformation methods. Source |(Guo et al. |

RO2AN| . . . 20

(3.1 Example of a complete CNN architecture, LeNet-5. Source |Gu et al. (2015)| 23

(3.2 Residual block Illustration). . . . . ... ... ..o 24
[4.1  Age distribution of B3FD dataset| . . . . . . .. ... ... ... ... 28
[4.2  General Architecture of the age transtformer generator|. . . . . . . . . . .. 29
[4.3  Kinship Model Training pipelinel. . . . . . . ... ... ... ... ... .. 32
[>.1 Age transformation results of 256x256 FIW images| . . . . . . . . .. . .. 35
[5.2  Comparison with IPCGAN [Wang et al|(2018)] on FIW.[ . . . . .. . . .. 36

viil



List of Symbols

ap  Original Image Age
a1 Target Image Age
|B|  Batch size

o Activation Function
L Loss function.

W Image width.

7  Temperature.

1X



List of Abbreviations

AT  Artificial Intelligence

DINA  Deoxyribonucleic acid

CNN  Convolutional Neural Network
GAN  Generative Adversarial Network
FKV  Facial Kinship Verification

FS Father-Son

FD Father-Daughter

MS  Mother-Son

MD  Mother-Daughter

BB Brother-Brother

SS  Sister-Sister

GFGS Grandfather-Grandson
GFGD  Grandfather-Granddaughter
GMGS Grandmother-Grandson
GMGD Grandmother-Granddaughter
RFIW  Recognizing Families in the Wild
FIW  Families in the Wild

IoT Internet of Things

LBP Local Binary Patterns

MSE Mean Squared Error



1__Introduction|
LT Motivationl. . . . . . . . . . . .
(1.2 Objectives| . . . . . . . . . . . e
(1.2.1 General Objectives| . . . . . . . . . . .. ... ... ... ......
[1.2.2  Specific Objectives| . . . . . . . . . .. ... ... .. ...
(1.3 Work Organization| . . . . . . . .. . ... ...
7 TG Reviewl
[2.1 Kinship Verification Overview| . . . . . . . . . ... .. ... ... .....
2.1.1 Problem Definitionl . . . . . . . .. .. ... 0o
[2.1.2  Main Challenges . . . . .. ... ... ... ... ... ......
1.3 Datasets . . . . . . . ..
[2.1.4 Existing Methods| . . . . . . .. .. ... ... ... ...
[2.2  Facial Age Transtormation Overview| . . . . . . .. ... ... ... ....
.21 Problem Definition| . . . . . . . .. ...
[2.2.2 Main Challenges| . . . . . . . ... ... ... L.
223 Datasets . . . .. ...
224 Evaluation Metrics . . . . .. . ..o
[2.2.5 Existing Methods| . . . . . ... .. ... ... ... 000
BT al T ationl
[3.1 Neural Networks and Deep Learning| . . . . ... ... ... ... ... ..
I;i.l.l g:gzll!!zllll‘lg!ll Ilszlllill Ilgzl !&S!l l;{il .....................
I;i.l'2 I;g::ii!l!l;il g:gzllllg:(:li(!ll:il --------------------------
L‘i.z [;g:llg:lzll i !g: ‘Lgi!g:l:iilliill Ilgzl !!g!ll;{il -----------------------
4 Methodology|
[4.1 Data Preprocessing| . . . . . . . . . ... ...
[4.2  Face age transformation model[. . . . . .. ... ..o
4.2.1 Architecturel . . . . . . . . .
422 Toss Functionl . . . . . . . . . ...

X1

10
12
13
13
14
16
18

21
21
22
24
25



431 Architecturd . . . . . . ... 31

[4.3.2  Integration with the Age Transtormation Modelf . . . . . . . . . .. 32

4.4 Tramming . . . . . . .. 33

B Results and Discussions| 35
(Bibliography| 40

x1i



Chapter 1
Introduction

The face of an individual carries important and unique characteristics of human identi-
fication, as shown by the recent success of facial recognition systems. Genetically, these
traits are determined based on the DNA of the parent, which carries perceptive similari-
ties, such that humans can tell kinship relationships based on facial similarity [Kaminski
et al.[(2009)]. Given the importance of these facial cues, various methods have been exten-
sively investigated to verify kinship based on facial images in the fields of computer vision
and biometrics [Wu et al| (2022))]. These methods are used to determine the presence
of a kinship relationship between two facial images, with applications ranging from the
location of missing family members and the analysis of social networks for use in fields
such as genealogy.

In the early stages of kinship verification research, feature extractors such as Histogram
of Oriented Gradients |[Dalal and Triggs| (2005))], and Local Binary Patterns [Huang et al.
(2011)] were commonly used to extract genetic features (e.g., skin color, eye color) from
facial images. However, these approaches often suffered from poor accuracy due to chal-
lenges such as varying face angles, lighting conditions, low image resolution, and the
presence of facial accessories.

In recent years, Convolutional Neural Networks (CNNs) have demonstrated strong
performance in computer vision tasks and have been successfully applied to a variety of
face-related tasks, including face recognition. Since then, the main focus of kinship ver-
ification models has been deep learning-based techniques, and several high performance
kinship verification methods have been proposed [Robinson et al.| (2018), |Jain et al.| (2020)),
Zhang et al.| (2021al)]. However, kinship verification remains a formidable challenge due to
critical issues such as the scarcity of labeled data and the bias present in kinship images,
such as age and gender differences, which complicate model training. To address these
challenges, this thesis proposes the use of a face age transformation model to generate
facial images representing various age groups. By augmenting existing kinship datasets
with these age-transformed images, a cross-age kinship verification model can be con-

structed, allowing for the enhancement of insufficient labeled data and enabling more
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robust learning of genetic characteristics across different age groups.

The proposed approach involves the construction of a Generative Adversarial Network
(GAN)-based age transformation model [Creswell et al.| (2018))], which consists of an age
encoder and an age classifier. The age encoder is designed to encode target age information
into a latent vector, which allows the decoder to generate a facial image of the specified age.
Although most GAN-based aging models rely on a conditional discriminator, applying
such a condition can negatively impact the discriminator’s ability to differentiate between
real and fake images, its primary function. To produce more realistic output images,
this work employs an age encoder instead of a conditional discriminator. Additionally, to
ensure that the synthesized images maintain the identity of the original input image, which
is an essential aspect of kinship verification, an identity preservation module is integrated
into the face age transformation model. The generated face images, representing a range
of ages, are then paired with a kinship dataset and used to train the kinship verification
model. Extensive experiments demonstrate that the proposed face age transformation
model can generate high-quality facial images across different age groups and that the

kinship verification model constructed using these images achieves better performance.

1.1 Motivation

The ability to verify kinship based on facial images has far-reaching implications across
various domains, including social media, forensics, genealogy, and law enforcement. In
scenarios such as reuniting lost family members or validating family claims, accurate
kinship verification can be crucial. However, this task is inherently challenging due to
the complexities associated with human faces, particularly the variations that occur due
to aging. Traditional kinship verification methods often struggle to account for these
age-related changes, leading to diminished accuracy and reliability.

Aging alters facial features in ways that can obscure the genetic similarities shared
by family members. As a result, models that fail to account for these transformations
may produce inconsistent or inaccurate results. This issue is further compounded by
the scarcity of labeled datasets that span a wide range of ages, making it difficult to
train models that can generalize effectively across different age groups. Moreover, the
inherent variability in age differences within kinship relationships complicates this task;
for instance, siblings typically have smaller age gaps than parents and children, yet it is
not uncommon for siblings to have significant age differences. This variability makes it
difficult to use age differences as a factor in kinship verification, underscoring the need
for more sophisticated approaches that can accommodate these complexities.

In recent years, advances in deep learning, particularly Generative Adversarial Net-
works (GANs), have opened new avenues for addressing these challenges. GANs have

shown remarkable capabilities to generate realistic images, including age progression and
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facial regression. This presents a unique opportunity to enhance kinship verification
models by incorporating age-transformed facial images, thereby bridging the gap between
age-disparate kinship pairs.

The motivation for this research stems from the desire to improve the accuracy and
robustness of kinship verification systems by leveraging GAN-based age transformation
techniques. By generating facial images that represent various stages of aging, we can
create more comprehensive datasets and develop models that are better equipped to
handle the intricacies of age-related changes. This approach not only addresses a critical
gap in current kinship verification methods but also contributes to the broader field of
biometrics by introducing novel techniques for facial analysis across age groups.

The ultimate goal of this research is to provide a more reliable and effective tool for
kinship verification, with potential applications in real-world scenarios where understand-
ing familial relationships is essential. By developing a path towards age-invariant models,
this work aims to pave the way for future research and practical implementations that

can benefit society in meaningful ways.

1.2 Objectives

1.2.1 General Objectives

The primary objective of this research is to enhance the accuracy and robustness of kinship
verification models by integrating face age transformation techniques, while studying the
effects of using synthetic data to compensate for aging effects. Specifically, the research

aims to achieve the following:

1.2.2 Specific Objectives

1. Design and implement a Generative Adversarial Network (GAN) capable of gener-
ating realistic facial images across different age groups while preserving the identity
of the individuals. This model will simulate the aging process to produce age-

progressed and age-regressed facial images.

2. Utilize the GAN-based age transformation model to augment existing kinship
datasets by generating additional facial images that span a wide range of ages.
This augmentation aims to address the scarcity of labeled data, particularly for
age-diverse kinship pairs, thereby enhancing the diversity and richness of the train-

ing data.

3. Develop a kinship verification model that can effectively utilize the augmented

datasets, leveraging the diversity introduced by the age-transformed images. This
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model will be fine-tuned to recognize kinship relations across different age groups,
ensuring that it can generalize well to various scenarios involving age differences,

using state-of-the-art techniques.

4. Conduct extensive experiments using benchmark kinship verification datasets to
evaluate the effectiveness of the proposed age transformation and verification mod-
els. The goal is to demonstrate that the inclusion of age-transformed images leads

to improvements in kinship verification accuracy compared to traditional methods.

1.3 Work Organization

This thesis is organized into six chapters, each addressing a critical aspect of the research
on improving kinship verification using face age transformation techniques. The structure
is designed to guide the reader through the background, methodology, experiments, and
findings in a logical and coherent manner.

In Chapter [1} the research topic is introduced, highlighting the motivation behind
the study, the problem statement, and the specific objectives of the research. It also
provides a brief overview of the challenges in kinship verification and sets the stage for
the subsequent chapters.

Chapter [2 presents a literature review, an in-depth analysis of existing research in the
fields of kinship verification, facial aging, and generative models. This chapter covers the
evolution of kinship verification techniques, the role of facial features in genetic similarity,
and the application of generative adversary networks (GANs) in age transformation. It
provides the necessary background and highlights the gaps that this work aims to address.

Next, Chapter [3| develops the theoretical bases of the research, including the principles
of deep learning, facial aging, the architecture of GANs, and the challenges associated with
kinship verification across different age groups. It establishes the conceptual foundation
for the proposed methodology.

The methodology is detailed in Chapter [4] where the design and implementation of the
GAN-based age transformation model and the kinship verification model are presented. It
includes data pre-processing steps, the GAN architecture, the age transformation process,
and the integration of transformed images into the kinship verification system.

The results are shown in Chapter [5, where they are presented and analyzed. The chap-
ter provides both quantitative and qualitative evaluations of the models, comparing the
performance of the proposed method with existing approaches. The discussion includes
an analysis of the improvements achieved through the use of age-transformed images and
the limitations of the approach.

Finally, the conclusion summarizes the key findings of the research and highlights the

contributions made to the field of kinship verification and biometrics. The work also



Work Organization 5

discusses the broader implications of the work and suggests directions for future research,

including potential improvements to the methodology and applications in related areas.



Chapter 2
Literature Review

This chapter reviews key developments in kinship verification and face age transformation,
with a focus on how these techniques have evolved and how they intersect to address the
problem of age differences in familial relationships. By examining the existing literature,
this review highlights the current state-of-the-art, identifies challenges that persist in the
field, and sets the foundation for the proposed research, which seeks to integrate face age

transformation into kinship verification systems to improve accuracy and reliability.

2.1 Kinship Verification Overview

Kinship verification, or more specifically, facial kinship verification (FKV), is a task that
aims to determine if two individuals have a kin relationship or not, based on their faces,
using either images or videos. The most common categories of kinship relationships
are: Father-Son (FS), Father-Daughter (FD), Mother-Son (MS), and Mother-Daughter
(MD). As the familial relationship becomes more distant, the prediction of kinship be-
comes increasingly challenging. However, certain databases and methods have been devel-
oped to include more distant relations, such as Grandfather-Granddaughter (GFGD) and
Grandmother-Grandson (GMGS) pairs, but they cannot reach the same level of accuracy,
mostly due to lack of training data. In the last two decades, Kinship Verification has been
attracting increasing attention and in 2014 had its first competition [Lu et al. (2014a)],
which aimed to evaluate different kinship verification algorithms with three possible ex-
perimental protocols: unsupervised, image restricted, and image unrestricted. Another
competition worth mentioning is Recognizing Families in the Wild (RFIW) [Robinson
et al| (2020)] which has several editions and became the most important competition
in the field, using Families in the Wild (FIW) [Robinson et al. (2016)] database as its
benchmark.

There are a few reasons that can explain the increase in kinship verification interest Wu
et al.| (2022). The first is due to its various potential applications: In the anthropology and

genetics domain, FKV can help to study the hereditary characteristics of close relatives

6
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in social relationships [A.| (2020))]. In the field of public social security, it can be applied
to the search for missing children, border control, customs, and criminal investigations
[Kohli et al. (2019), Lu et al. (2012b)]. In the social media domain, FKV can be used
for the organization of family photo albums and to improve the performance of face
recognition systems and social media analysis [Lu et al. (2014a))]. In addition, FKV also
has potential applications in smart homes, the Internet of Things (IoT) |Jang et al.| (2017))]
and personalized software. The second reason is that FKV serves as a fundamental study
among visual kinship problems, such as family recognition and family retrieval [Robinson
et al.| (2018)]. Lastly, the low sensory perception of human eyes to quantify the similarity
of two images from different people [Bordallo Lopez et al.| (2018)]. Features such as the
distance between the eyes and the shape, color, and size of facial parts are not easily
judged at a glance, resulting in low recognition accuracy.

One of the directions that the field of Kinship Recognition is following is also adding
temporal information, using video-based datasets, which showed promising results [Kohli
et al.| (2019)], but currently there are only a few good video datasets and, in some cases,

they can make the problem harder.

2.1.1 Problem Definition

Given a pair of facial images, the objective of kinship verification is to judge whether
two people are biologically related (with a typical kin relationship). It is assumed that
these two facial images do not belong to the same individual, since most of the work
in the area ignores the self-kinship relationship. Specifically, current kinship verification
research only focuses on close family relationships, which can be categorized into three
levels of generation, e.g. siblings, parent-child, and grandfather-grandchild.

Therefore, kinship verification can be formulated as a binary classification problem (kin
vs. non-kin). FKV deep learning models usually work with a Siamese Neural Network
architecture [Bromley et al.| (1994))], which can extract useful features from both images
using the same process to properly compare them. Formally, as shown in Fig. [2.1]
given a pair of faces (X,Y), appropriate feature representations (¢(X), ¢(Y')) are extracted
from both images, and then a classifier is used to determine if the two faces have a kin
relationship or not, which is normally a form of similarity measurement, such as cosine
similarity.

In addition to kinship verification, there is also the classification task to find the exact
kin relation of two individuals. In the RFIW challenge |Robinson et al. (2020)], three
main tasks are defined: classification, tri-subject verification and search & retrieval. In
tri-subject verification, the input consists of three images, one image of a child, and two
images of potential parents of that child, and the goal is to verify whether there is a

parental kin relation between the parents and the child, which can be applied directly to
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find missing children. Finally, search and retrieval attempts to find family members from
a large gallery based on a given query image. The system compares the query image with
others in the database to identify those that share a familial relationship, like parents,
siblings, etc. By ranking images based on similarity to the query, the task helps connect
and identify related individuals, which makes it useful in applications such as family

identification, missing person searches, and organizing family photos on social media.

l Kin

_ $(X). 6(1)
ﬁmﬁs Similarity

]‘ non-Kin

Figure 2.1: General pipeline of Siamese Networks in Kinship Verification

2.1.2 Main Challenges

As defined in the section above, Facial Kinship Verification is a binary classification
problem which is harder than face recognition, since kinship pairs do not have the same
identity, but only share hidden genetic features, subjected to biological, age and gen-
der variations. In fact, kinship judgment and facial similarity are highly correlated, but
not strictly synonymous, which showcases the problem difficulty [DeBruine et al. (2009)].
These challenges are called intrinsic, as they arise from the inherent nature of the task it-
self. Furthermore, extrinsic challenges involve changes in illumination, camera viewpoint,
and face occlusion, for example.

Being a harder problem than face recognition, it is expected that datasets would be
larger, but unfortunately that is not the case; they tend to be much smaller in size. In
recent years, the number of video-datasets is rising, containing facial expression, head
motion and mouth movement, which may increase the accuracy and robustness of kinship
verification algorithms, diminishing both the problems of intrinsic and extrinsic difficul-
ties, providing more genetic information in the expressions and more variation on the
image conditions.

Small interclass variations are another troublesome problem in FKV, some positive
examples may have small facial similarities, whereas negative examples may have high fa-

cial similarities. Therefore, small positive and negative variations decrease the separation
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between classes and pose significant challenges in learning the real decision boundary. In
addition, there is a serious imbalance issue [Li et al. (2021)], evidently the number of
negative pairs is significantly more than the number of positive pairs. For this reason, to
actually represent the data distribution of families worldwide, a lot of data is required,
which is hard to gather because of security and privacy issues, delaying the development

of the kinship recognition field.

2.1.3 Datasets

Based on the number of kinship types, existing datasets can be divided into three cat-
egories: 4-types, 7-types, and 11-types (nonkin is not considered). The development of
public kinship datasets is shown in Fig. [2.2 The first thing to note is the trend of
video datasets that started in 2018, with some datasets that carry not only visual face
information but also audio, for example. This multisensorial approach might be the key
to the next performance breakthrough in the field, but its development is still in early
stages. The number of images in most datasets is usually less than 1000, reinforcing the

difficulties in data collection mentioned above.

Video-based Video-based
Largest Image dataset with datasets with age,
Dataset audio audio, language
2010 20m 2013 204 2015 2016 2018 2019 2020 2020
CornellKin UB KinFace UvA-Nemo- KinFaceW-l1  TSKinFace FIW KFVYW TALKIN FIW-MM  Nemo Kinship
Smile KinFaceW-II KIVI

Image dataset

Video dataset
Figure 2.2: Development of representative kinship datasets. Source: [Wang et al.| (2023)]

CornellKin [Fang et al. (2010))] is the first kinship dataset that was widely used, where
images were collected using a controlled online search, limiting the pose to frontal and
neutral facial expressions only. It has 150 pairs of celebrities with family information
and four categories: Father-Son (F-S, 40%), Father-Daughter (FD, 22%), Mother-Son
(MS, 13%), Mother-Daughter (MD, 26%). In the year following CornellKin, there is UB
KinFace [Xia et al.| (2011)] (2011), containing three images for each positive set with 270
images collected in total and divided into 90 groups. It is the first database with children,
young parents, and old parents collected together. The main issue with this dataset
is the high imbalance it carries, with around 80% of the data belonging to father-son
relationships.

KinFaceW-I [Lu et al. (2012a)] and KinFaceW-II |Lu et al| (2014b)] are two very

important kinship datasets. The main difference between the two is that KinFaceW-
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I images are collected from different pictures, i.e., the family members are in different
scenarios, illumination, etc. KinFaceW-II consists of pairs obtained from the same photo,
usually a big photograph with several family members, with their faces cropped. These
photos are unconstrained in terms of pose, lighting, background, expression, age, ethnicity,
and partial occlusion and were obtained through an online search. In total, there are 1533
pairs of images in the two datasets combined.

Families in the Wild (FIW) |[Robinson et al. (2016)), Robinson et al. (2018))] is the
largest available image dataset and a reference benchmark in the field. More than 13,000
family photos of 1000 families are labeled and collected from the Internet, making it the
largest dataset for a large margin, and also has 11 kinship types. There are 10 images
for each family on average. State-of-the-Art methods commonly have this dataset as
the main benchmark, besides KinFaceW. It is also very popular for Family Recognition
tasks. In 2020, the same authors made FIW with MultiMedia (FIW-MM) [Robinson et al.
(2021))], extending FIW with an automated labeling pipeline adding video, audio and text
captions.

UvA-NEMO Smile is the first video dataset and it contains 1240 videos of 400 sub-
jects with a resolution of 1920x1080 at 50 fps rate. The dynamics of spontaneous and
posed smiles of each subject are recorded. All videos are constrained from an angle and
background perspective. It contains seven types of kinship relationships, and it is an im-
portant database for studying the impact of facial expressions, such as smile, on kinship
feature inheritance. Since then, several other video databases have been collected, such
as TALKIN [Wu et al. (2019)], a database collected from YouTube with visual and audio
information from celebrities and family TV shows.

In summary, image-based kinship datasets have been well developed for image-based
kinship verification. In contrast, there is still a demand for video-based kinship datasets.
In addition, most of the datasets are collected in unconstrained settings, which causes
many external interference factors and makes it difficult to study kinship verification

systematically.

2.1.4 Existing Methods

Kinship verification has evolved significantly over the years, and various methods have
been proposed to address the inherent challenges. These methods range from tradi-
tional feature extraction techniques to more advanced deep learning approaches. Existing
methods can be defined in three main categories: Handcrafted feature descriptors, metric
learning based and deep learning methods. This section presents an overview of the key
existing methods used for kinship verification.

Early approaches to kinship verification relied heavily on handcrafted features to ex-

tract important facial traits. Methods such as Histogram of Oriented Gradients (HOG)
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[Dalal and Triggs| (2005)], Scale-Invariant Feature Transform (SIFT) [Lowe, (2004))], and
Local Binary Patterns (LBP) [Ahonen| (2004)]were commonly used to represent facial char-
acteristics. These methods aimed to capture low-level features, such as texture, edges,
and contours, which could be indicative of genetic similarities between individuals. The
first kinship method using this technique was proposed by [Fang et al.| (2010), using 22
hand-crafted facial features such as color, face geometry, and texture. Zhou et al.| (2012)
proposed a Gabor [Adini et al.|(1997)] wavelet-based gradient orientation pyramid for kin-
ship verification. To represent such complex representations as kinship features, low-level
feature descriptors are not enough, better accuracy was achieved by combining differ-
ent feature detectors |Alirezazadeh et al. (2015))], but the results are still behind current
State-of-the-Art methods.

With the limitations of handcrafted features, metric learning methods became popular
for kinship verification. These methods aim to learn a similarity function between pairs
of images. Cosine similarity is commonly used in these methods to quantify the degree
to which two facial images are similar in a learned feature space. The goal of metric
learning is basically to decrease the intraclass distance and increase the interclass distance
of the facial features. This is achieved by learning a distance metric to measure the
similarity between facial images. In addition to cosine similarity, the Mahalanobis distance
is often used because it improves upon the traditional Euclidean distance by taking into
account correlations between the data points and the variance within the dataset. The

Mahalanobis distance can be defined as:

du(x,y) = (x—y)"M(x—y) (2.1)

where x and y are feature vectors, in our case, learned facial features of two images, M
is a positive semidefinite matrix which defines the space where distances are computed.
The objective is to learn an optimal metric matrix M that minimizes the distance between
similar pairs and maximizes the distance between dissimilar pairs. Neighborhood repulsed
metric learning (NRML) [Lu et al.| (2014c) uses this concept to ensure that the intraclass
samples are close to each other and repulse the interclass samples as far as possible.

Finally, the advent of deep learning, particularly Convolutional Neural Networks
(CNNs), brought significant advancements in kinship verification. CNNs automatically
learn hierarchical feature representations from raw image data effectively, as shown in
Huang et al.| (2012)), making them well suited for tasks such as kinship verification that
require complex feature extraction. The first deep learning model for kinship verification
was proposed by Zhang et al.| (2015), where the model had three convolutional layers
and a fully connected layer, cropping the images with the help of facial landmarks, which
showed significant improvement compared to earlier methods which defined the path of

kinship research for the next years.
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Recent advances in kinship verification have leveraged alongside Siamese Neural Net-
works the use of contrastive learning, a powerful self-supervised learning framework, to
improve model performance by effectively learning discriminative features from facial im-
ages. In contrastive learning, models are trained to maximize similarity between positive
pairs (e.g., images of family members) and minimize similarity between negative pairs
(e.g., non-kin). This approach is particularly well-suited for kinship verification because
it focuses on learning fine-grained, relationship-specific features without requiring large
amounts of labeled data. The most recent Recognizing Families in the Wild (RFIW)
[Robinson et al.| (2020)] competition was hosted in 2021, where the best performing model
[Zhang et al. (2021b)] utilized a Contrastive Learning approach defined as: Given a set
P = {(zi,vi)};—, where n is the number of positive pairs sampled from different families,

contrastive loss L can be defined as:

n

1

L= m Z [Le(xis yi) + Le(yis i) (2.2)

i=1

where

eS(@iyi)/T

Le(zi,y:) = —log S (2.3)

1 es(@om;)/T 4 es(wiy;)/T

s(z,y) is defined as the cosine similarity between x and y. 7 is used to control the
degree of punishment for hard samples, where high values of 7 represent a high degree
of punishment. With this method, the authors achieved the best result in all three of
RFIW’s tasks, proving the potential of contrastive learning in kinship recognition. Since
then, many work has been done focusing on improve contrastive learning, representing

the current state-of-the-art.

2.2 Facial Age Transformation Overview

Facial age transformation is a process that alters the appearance of a face to simulate
aging or rejuvenation, while preserving the unique identity of the individual. The pri-
mary objective is to generate realistic facial images at different ages, which has numerous
applications in fields such as face recognition, movie effects, and social entertainment.
Another process closely tied to age transformation is cross-age face recognition. As peo-
ple age, their facial features change, making it difficult for recognition systems to match
images of the same person taken at different ages. Age transformation techniques are
often used to help bridge this gap by generating intermediate-aged images [Chen et al.
(2019)]. However, these transformations must be highly accurate, as any deviation in
identity or unrealistic aging can reduce the performance of the face recognition system.

Traditionally, facial age transformation methods were based on physical models and pro-
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totypes, but these approaches faced challenges due to their complexity and limited ability
to preserve individual facial characteristics.

With the rise of deep learning, especially Generative Adversarial Networks (GANs)
|Goodfellow et al. (2014))], facial age transformation has achieved substantial progress.
Modern methods are now able to generate more visually realistic results, accurately depict-
ing the aging process while maintaining identity preservation. These techniques include
GAN-based models, adversarial encoder-decoder methods, and those that incorporate

attention mechanisms to focus on age-related facial regions.

2.2.1 Problem Definition

Facial age transformation can be defined as a problem that takes an image xq as in-
put, which is a facial image of an individual of age oy and a desired age «;. The goal
is to transform zy into the output z; = G(xg, ), where G is the age transformation
model that represents the individual present in xy but looking like someone at age o,
while maintaining age-unrelated characteristics with xg, such as identity, emotion, hair,
background, and photorealism. A theoretical perfect age transformation model is able to
simply convert the age of an individual without zero changes in any other characteristic
and would also mean that zy = G(z, ap), i.e., the image generated with its original age
should output the image itself.

In practical terms, identity preservation is crucial but difficult to maintain, as aging
alters many facial features, such as wrinkles, skin texture, and facial structure. A suc-
cessful age transformation model must retain key identity traits, ensuring that the person
remains recognizable at any age. Failing to do so could lead to transformations that ap-
pear unrealistic or disjoint from the original individual. In addition, the aging process
varies between individuals, making it difficult to generalize. Factors such as genetics,
lifestyle, health, and external conditions, such as environmental exposure, contribute to
different aging rates [Despois et al. (2020)]. Therefore, a one-size-fits-all aging model is
inadequate, as it cannot account for these personal variances. This introduces the need
for models that can adapt to individual aging patterns, but a key issue to achieving such a
model is the scarcity of datasets that contain images of individuals at multiple age points,
especially in controlled settings. Collecting large-scale datasets that span a wide range of
ages for the same individual is difficult, limiting the ability of age transformation models

to learn effective representations across different age stages.

2.2.2 Main Challenges

Facial age transformation has several potential applications such as biometrics and enter-
tainment [Shu et al.| (2016))], but to be used as concrete evidence in the field of forensics,

for example, it still has to overcome some challenges to achieve high credibility. These
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challenges stem from both the complexity of the aging process itself and the technical
limitations of current models. One of the most critical aspect is maintaining the identity
of the individual throughout the aging or rejuvenation process. Although facial features
change with age, the fundamental traits that define a person’s appearance, such as the
shape of their eyes, nose, and overall facial structure, must remain consistent. Achiev-
ing a balance between altering age-related features and preserving identity is particularly
difficult, especially with large age gaps.

The aging process is highly individualized and influenced by various factors, including
genetics, lifestyle, and environmental exposure, leading to different aging rates in individ-
uals [Rexbye et al.| (2006)]. As a result, two people of the same age can look very different
depending on these factors. |Guo et al. (2008]) showed that different degrees of facial mod-
ification by different genders, such as makeup and accessories, can alter the perceptible
difference in aging between men and women in images, where these factors are usually
not controlled. This variability makes it challenging to build a universal model that can
accurately simulate aging across diverse populations. Current models often struggle to
generalize the effects of aging between different ethnicities, sex, and other demographic
groups, leading to less accurate transformations for underrepresented groups.

Collecting data is also difficult [Liu et al.| (2017))], especially if it contains images of the
same individual over a wide range of ages, due to the long-term nature of the task and
privacy concerns. Most available datasets are limited in size and often lack the diversity
needed to train models that can generalize well. With deep learning models, particularly
Generative Adversarial Networks (GANs), a lot of training data is required [LeCun et al.
(2015)] to achieve good results, while these models have made significant progress in
generating visually plausible images, issues like image blurriness, artifacts, and unnatural
skin textures still arise, especially when there are large age differences, likely due to the
insufficient variety of training data. Ensuring that the generated images are both realistic
and free of artifacts, while also maintaining consistency with the original image, is also a

difficult balancing act.

2.2.3 Datasets

Face age transformation is a task that is highly dependent on data quality, as it impacts
training stability and generated image quality. This section summarizes some relevant
and publicly available datasets and compares their characteristics. Table [2.1] shows gen-
eral information about the datasets, such as age range, number of images, subjects, and
average age, which can help selecting a dataset depending on the task.

One of the most popular datasets in terms of age used to be FG-NET [Fu et al.
(2016)], published in 2002 and updated in 2014, which contains 1002 facial images from

82 subjects. The images also have face key-point information and vary greatly in age, from
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children to elders, which is useful in several scenarios, explaining its popularity. However,
the small number of images and low quality of images for current standards make it
somewhat obsolete, since there are better options to learn aging patterns. In 2014, the
largest available cross-age face recognition and retrieval dataset was published, known as
the Cross-Age Celebrity Dataset (CACD) [Chen et al.| (2014)]. It contains 163,446 facial
images in the wild of 2000 celebrities aged between 16 and 62 years. Each image has 16
facial key points and is widely used for research in cross-age person retrieval.

Flickr-Faces-HQ Dataset (FFHQ) [Karras et al| (2019)] was originally created as a
benchmark for generative adversarial networks, consisting of 70,000 high-quality images
at 1024x1024, with good coverage of accessories such as eyeglasses, sunglasses, and hats.
The images were crawled from Flickr. In addition to being one of the few large high-quality
datasets, it also provides face semantic maps that can be used to mask images, segment
face regions, and background information to improve age conversion. MORPH [Ricanek
and Tesafaye (2006)] was published in 2006 containing around 1,700 facial images, with
highly controlled images: frontal pose, neutral expression, moderate lightning and simple
background, which makes it a very good benchmark for facial aging. The dataset was later
extended and renamed to MORPH2, now having 553,349 images from 13,672 subjects,
also providing metadata such as age, gender, and ethnicity, giving it a more balanced
distribution of age groups. Another important characteristic of MORPH2 is the presence
of images of the same individuals at different points in time, which is valuable for studying
age progression, kinship verification, and other tasks.

UTKFace [Zhang et al.|(2017))] is the dataset with the longest age range, ranging from
0 to 116 years. It contains 23,709 face images, covering large variations in pose, facial
expression, lighting, occlusion, resolution, etc. The images in this dataset provide 68
key points and are labeled by age, gender, and race for tasks such as face detection, age
estimation, age progression/regression, and key point localization. Another long-age span
dataset is AgeDB |[Moschoglou et al. (2017)], which contains 16,488 grayscale images,
ranging from 1-101, manually collected, and with manually annotated age and gender.
Multi-Racial Child Dataset (MRCD) |Chandaliya and Nain| (2022)] is a diversity-focused
dataset that provides facial images of children of various racial and ethnic groups, making
it valuable for research on issues such as racial bias in facial recognition systems and
kinship verification between different racial backgrounds.

Lastly, a recent dataset that has not yet received much attention is the biometrically
filtered famous figure dataset (B3FD) [Beseni¢ et al. (2022)]. B3FD is a dataset derived
from IMDB-WIKI and CACD, automatically cleaned of faulty web-scraped samples by
the unsupervised biometric filtering methods proposed in the paper, which ends up re-
moving 53% of IMDB and 20% of CACD, resulting in 375,592 facial image samples with
corresponding age labels. It has 53,759 unique subjects, which amounts to 6.99 samples

per subject on average, the age labels are ranging from 0 to 100. As demonstrated in the
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paper, the B3FD data outperform all other publicly available data sets evaluated for age

estimation, indicating that it is likely also a good dataset for age transformation training.

Datasets | Images | Subjects | Age range | Average age | Year
FG-NET 1002 82 0-69 15.84 2002
CACD 163,446 2000 16-62 38.03 2014
FFHQ 70,000 - - - 2019
MORPH2 | 553,349 13,672 16-77 32.69 2006
UTKFace | 23,709 - 0-116 33 2017
AgeDB 16,488 568 1-101 50.3 2017
MRCD 64,965 - 0-20 - 2022
B3FD 375,592 53,759 0-100 - 2022

Table 2.1: Dataset summary

2.2.4 Evaluation Metrics

Evaluation metrics can be classified as qualitative and quantitative. Qualitative evaluation
relies on subjectivity to judge performance, mainly based on human evaluation. For
example, in tasks such as image generation or facial age transformation, humans assess
the realism, visual quality, and identity preservation of the generated images. This type
of evaluation often involves user studies or expert panels in which subjective opinions of
evaluators are gathered to determine the effectiveness of the model. While qualitative
methods can provide insights into aspects like naturalness or perceptual quality, they are
inherently non-reproducible and can vary between evaluators, leading to inconsistency.
Quantitative evaluation, on the other hand, is based on measurable metrics that can be
automatically computed. These metrics provide objective and reproducible evaluations of
model performance, evaluating the statistical properties of the generated images compared
to real images, which is also essential to ensure consistency and reproducibility in model
evaluation.

Most studies in face age transformation show output samples from their model, giving
the reader the opportunity to make a visual analysis, asserting in an intuitive way the
model capabilities, which is usually biased, since the authors tend to choose their best
results as demonstration samples. A user study can synthesize this human perception in
a more reliable way, where a group of randomly selected people is asked to comment on
the generated images or to compare the results of multiple models, thus measuring the
model based on human judgment. The problem with user studies is that they require
significant time and resources. Coordinating participants, designing effective evaluation
protocols, and analyzing subjective responses can be costly and labor intensive. In addi-
tion, gathering enough participants to ensure statistical significance is difficult, showing

the lack of scalability of user studies.
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Qualitative evaluation for face age transformation is based on three main assessments:
image quality, age estimation, and identity preservation. Image quality metrics can be
calculated with or without a reference image, being classified as Full Reference Image
Quality Assessment (FR-IQA) and No Reference Image Quality Assessment (NR-IQA).
Peak Signal-to-Noise ratio (PSNR) |Hore and Ziou| (2010)] is one of the most common
FR-IQA metrics, measuring image quality based on pixel intensity differences. PSNR can
be defined as:

PSNR = 10log;, ((2;/1—&31)2> (2.4)
MSE = 31 0) — L, (0))? (2.5)

i=1

where n is the number of bits per pixel, and MSE is the mean squared error (MSE)
between the reference image I, and the generated image I;,. The weakness of PSNR and
other metrics such as SSIM [Wang et al.| (2004)] and LPIPS [Zhang et al.| (2018)] is that
they do not take into account human perception of faces, which is processed differently
inside the brain [Kanwisher et al. (2002)], suggesting the need for specific metrics for
face quality. In this direction, methods for Face Image Quality Assessment (FIQA) have
been proposed, such as facequnet [Hernandez-Ortega et al.| (2019)] and SDD-FIQA [Ou
et al.| (2021)], but they are mostly specific to improve face recognition. Recently, |Jo et al.
(2023)) proposed Interpretable Face Quality Assessment (IFQA) a facial metric based on
an adversarial framework where a generator simulates face restoration and a discrimina-
tor assesses image quality, which gives an interpretable per-pixel quality measurement,
aligned with human judgment. The model is trained to focus on facial regions and ignore
background, giving more specificity to the metric and making it a very accurate measure
of face quality, which can be used to evaluate face age transformation models.

The age estimation aims to measure the accuracy of the age of the facial images
generated with respect to the desired age aq. There are two ways to evaluate the ability
of the models to create age-accurate images, depending on the approach used for age
assessment, which could be continuous age or discrete. By choosing to view age as a
discrete value, age transformation can be viewed as a classification problem with respect
to the age groups, which could be either age single values or age ranges, such as 10-20,
21-30, etc. Being a classification problem, it is possible to calculate the ratio of the
predicted ages of the generated images that fall into the correct age group. Usually,
an online face recognition API like Face++ and an age estimation model for prediction
are used, and then the obtained age estimation distribution is calculated to obtain the
aging accuracy. Similarly, a continuous age transformation can be viewed as a regression

problem, where the mean absolute error between the estimated age a; and the true age
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a; can be calculated, named Age MAE and defined as:

N
1 Z X
MAE = N 2 |az~ - CLi| (26)

where a smaller MAE indicates a smaller error range and a higher accuracy of the
algorithm. Finally, age-independent features can be measured by comparing the similarity
between the input image and the generated image. This can be evaluated using a pre-
trained face recognition model, which should be capable of recognizing both images as the
same identity. In addition to this method, identity preservation can also be measured using
the Fréchet Inception Distance (FID) |Heusel et al.| (2017))] and Kernel Inception Distance
[Binkowski et al.| (2018))] scores. Both scores aim to measure how similar the generated
images are to the real images in a dataset, which is helpful in both quality assessment
and identity preservation, where FID calculates the distance between the feature vector of
the real image and the generated image and KID measures the difference between sets of
samples by calculating the square of the maximum mean difference between the Inception

representations.

2.2.5 Existing Methods

Traditional face age transformation methods can be classified into two general categories:
model-based physical methods and prototype methods |Guo et al. (2024)]. The purpose of
the physical model-based model is to simulate the time-varying facial appearance, such as
the facial muscles [Berg and Justo| (2003)] and the skin, through a set of parameters. This
is a very mechanical approach and requires a lot of computational power and training data,
since its objective is very complex and specific. In contrast, prototype-based methods use
the average face as a prototype for each age group and achieve aging or rejuvenation of
the face by applying the differences between the prototypes to the input face images.
However, given the high variance of faces throughout the world, the average face does not
give good results in some cases and causes identity loss in the process.

As for Deep Learning methods, a great variety of methods have been proposed, includ-
ing Variational Autoencoders (VAE) [Kingma (2013)] and Generative Adversarial Net-
works (GAN) [Goodfellow et al. (2014))], including its variants such as Conditional GAN
(CGAN) [Mirza (2014)] and StyleGAN [Karras et al.| (2020))]. To improve the quality of
the images and the stability of the training, attention mechanisms were implemented [Xiao
et al.| (2015)]. In addition, some researchers also explored the fusion of multiple networks
to generate high-quality facial images by integrating different components and benefiting
from each module. Compared to traditional methods, deep learning-based methods per-
form better in terms of visual fidelity, aging accuracy, and identity preservation. Figure

shows a visual representation of this classification.
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Figure 2.3: Classification of facial age transformation methods. Source Guo et al.| (2024))

GAN-based methods are trained using a min-max learning optimization, which mainly
consists of a generator G and a discriminator D, where the generator is minimized and the
discriminator maximized. The role of the generator is to learn the real image distribution
while the goal of the discriminator is to determine whether the current image is a real
image or a generated fake image. In the context of face age transformation, the generator
needs to create images with the age transformed and the generator needs to determine if
the image seems real in the transformed age, without loss in identity, for example. In order
to achieve this behavior, several GAN methods have been proposed. Initially, the early
GAN-based face age transformation methods were unconditional, i.e., did not use age

conditions to guide training, which led to poor aging accuracy and identity persistence.

To improve unconditional methods, [Yang et al. (2018 proposed the pyramid architecture

of GANs (PAGAN) combining face verification with age estimation to capture high-level
age information. In PAGAN a pyramid structure discriminator is designed to ensure that
the generated faces exhibit the desired aging effect.

To better enforce identity preservation on the generated images, conditional GANs
were created (2014)]. Identity-Preserved Conditional GAN (IPCGAN) [Wang
(2018)] designed the identity retention module and the age classification module
to maintain the identity information while ensuring that the generated faces match the
target age. ChildFace [Chandaliya et al. (2020)] added gender and age conditions to the
generator to learn gender-aware age distribution, improving face recognition performance.
Song et al.| (2018) proposed Age-GAN, using an architecture with double CGAN, where

an original conditional GAN performs face age transformation while the dual CGANs

learn to invert the task, thus improving the general quality of the images. Age-GAN-++

[Song et al.| (2021)] improves on Age-GAN by sharing the weights of the original and dual

parts to simplify the model. Furthermore, a representational disentanglement component
was added to enhance the discriminator preservation of age features during generation,

thereby improving model performance, but this also lowers the model effectiveness when
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the difference between two domains is small. To address this problem, BiTrackGAN [Kuo
et al.[(2023)] uses a bottom-up approach to train two cascaded CycleGAN blocks, inducing
an ideal intermediate state, that is, a constraint mechanism, between the two CycleGAN

blocks to achieve more reasonable and accurate facial aging and rejuvenation.
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CAAE PAGAN IPCGAN  AgeGAN ChildFace HRFAE AgeGAN++ Re-Aging GAN ChildGAN BiTrackGAN

GAN-based methods

. Encoder-decoder-based methods
Figure 2.4: Timeline of some Face Age Transformation methods. Source Guo et al.| (2024))

The adversarial encoder-decoder-based methods focus on altering the generator to an
encoder-decoder architecture. In general, the encoder is in charge of performing feature
extraction on the input image, then, the extracted features are used to feed the decoder,
which will generate the image. Conditional Adversarial Autoencoder (CAAE) [Zhang
et al.| (2017)] learns a face representation training the encoder and decoder separately.
The main objective of this type of method is to create a latent space containing identity
information. High resolution face age editing (HRFAE) [Yao et al. (2021)] combines
the encoder-decoder architecture with a feature modulation layer, which inserts an age
encoding into the decoder, allowing the use of an unconditional discriminator focused
only on image quality, thus significantly improving visual results. Another work that
uses the same concept of an age modulation module is Re-Aging GAN [Makhmudkhujaev
et al.| (2021))], which uses the interaction between a given identity and a target age to
learn personalized age features, self-guiding the decoding process and also achieving good
results. Most methods are designed to explore changes in adult age, usually not taking into
account children’s face aging, which is affected by several other factors, such as puberty.
ChildGAN [Chandaliya and Nain/(2022))] is a Fusion mode-based method which combines
the Variational Autoencoder with GAN to improve the continuity and smoothness of the
latent space, trying to obtain the good image quality of GANs and the training stability

of VAEs. Figure [2.4] shows a timeline of some age transformation methods.



Chapter 3
Theoretical Foundation

In this chapter, the fundamental concepts applied in this work are introduced, includ-
ing neural networks, convolutional neural networks, and generative adversarial networks.
Starting with the history of deep learning, the core features of DL models are explained,
and challenges and complications are also addressed during neural network training, to
detect these problems and assess how to resolve them. In the following, computer vision
is the focus, with convolution and its application on neural networks, convolutional lay-
ers, pooling layers, and residual connections, which made this and other computer vision
solutions possible. Finally, the concept of Generative Adversarial Networks is explained

since it is the basis of the age transformation model.

3.1 Neural Networks and Deep Learning

Neural networks were first conceived in the mid-20th century, when Frank Rosenblatt
established the concept of a perceptron [Rosenblatt| (1958)], which is an operator that
takes an input, applies its internal value to it, called weight, and then returns an output.
The inspiration comes from human biology, with the perceptron being a representation
of a neuron, where dendrites receive input signals from other neurons, process them, and
output another signal to nearby neurons. More specifically, perceptron is a linear operator

that can be used as a binary classifier, where the output z can be calculated as:

Z = wiTy + Wexy + - + Wy, +b (3.1)

For an input vector z of size n, the vector w represent the perceptron weights. Finally,
b represents the bias term, completing the affine function, where a line in the n-dimensional
space can be used as a boundary for separating two classes. Because of its linear nature,
a perceptron can only classify data that are linearly separable. If the data are not linearly
separable, the perceptron will fail to classify with good performance. To solve this issue,

activation functions were invented, which are mathematical functions that can be applied

21
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to the output of the perceptron to introduce non-linearity, such as Rectified Linear Unit
ReLU(x) = max(0, z) |Agarap| (2018)], a simple function that clips to zero any negative
input. This simple change, combined with the cascade use of several perceptrons, called
neurons, created the field of Neural Networks, which were capable of handling complex,
non-linear problems.

In a neural network, neurons are organized in layers, arrays of neurons that receive
the input from the previous layer and propagate new values to the next layer, generating
a final output once it has reached the final layer. For many years, neural networks were
primarily regarded as theoretical models due to significant computational limitations that
made their practical application challenging. Early neural networks showed promise, but
the lack of sufficient computing power, data, and efficient algorithms meant that their
potential remained largely unexplored. This situation changed dramatically in 2012 when
a neural network model, AlexNet [Krizhevsky et al|(2012)], achieved groundbreaking per-
formance in the ImageNet competition, demonstrating the true power of neural networks
and sparking widespread adoption in various fields. This marked the rise of deep learning
[Wang et al.| (2017))], which is simply a name for neural networks with many layers, which
enables it to learn complex patterns in the data, with deep understanding. Since then,
advancements in hardware, especially GPUs, the availability of large datasets, and new
training techniques have allowed the successful implementation of deep neural networks.

These models learn by an optimization process of a loss function, which measures the
difference between the model’s predictions and the true labels or desired outputs. Opti-
mization is typically performed using stochastic gradient descent (SGD) [Bottou| (2012))]
or its variants, where the model iteratively updates the weights by computing the gradient
of the loss function with respect to the parameters, since the gradients indicate the di-
rection in which the weights should be adjusted to reduce the loss. Through this process,
the model gradually converges toward a set of parameters that minimizes the error and
generalizes well to unseen data. This is possible thanks to the backpropagation algorithm
that applies the chain rule of calculus, propagating the error backward from the output
layer to the earlier layers, allowing the model to update all the weights across the network

in a very efficient way.

3.1.1 Convolution Neural Networks

Convolutional Neural Networks [Gu et al.| (2015)], or CNNs, are a specialized type of
neural network that is mainly used to process grid-like data, such as images. Initially
introduced in the 1980s and later gaining widespread popularity in the 2010s, CNNs
have become the dominant architecture for image processing and computer vision tasks.
This success is largely due to their ability to efficiently and automatically extract spatial

hierarchies of features from images. They are particularly well suited for image-related
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tasks because they are designed to capture spatial patterns, such as edges, textures, and
shapes, across the dimensions of an image. Unlike traditional fully connected neural
networks, where every neuron is connected to every other neuron, CNNs make use of
convolutions, a mathematical operation that preserves the spatial relationships between
pixels by applying filters or kernels across the input image.

There are several key reasons why CNNs are used for image processing tasks. First,
CNNs are adept at detecting local features, such as edges and textures, by using small
filters or kernels that slide across the input image. This ability allows them to recognize
objects regardless of where they appear in the image, making them spatially invariant.
In addition, they are robust to translation, meaning that they can detect features such as
objects or shapes no matter where they appear in the image. Another advantage of CNNs
is their efficient use of parameters through a concept known as parameter sharing. Instead
of requiring each pixel to have its own weight, CNNs apply the same filter across the entire
image, greatly reducing the number of parameters compared to fully connected networks.
Convolutional Neural Networks also excel at learning hierarchical features. In the early
layers of a CNN, the network learns simple patterns such as edges and textures, while
deeper layers detect more complex patterns such as shapes and objects. This hierarchical
learning is essential for recognizing high-level patterns in images, which is critical for tasks
like object detection, face recognition, and scene analysis.

Pooling layers are also often used to help reduce the dimensionality of the data by
summarizing regions of the image. This process is executed by dividing the images into
small grids, similar to convolution, where only one value of that grid is going to be passed
along to the network. The most common types of pooling are max pooling and average
pooling. In max pooling, only the maximum value within the grid is retained. This
operation captures the most prominent feature in that region, enabling the network to
focus on the most significant signals. In average pooling, instead of selecting the maximum
value, the average of all values within the grid is taken. This approach provides a more
generalized view of the features in each region and can be useful in tasks where each pixel
contributes equally to the overall pattern. This makes the network more computationally
efficient and adds a degree of robustness to small distortions in the image, such as shifts
or rotations.
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Figure 3.1: Example of a complete CNN architecture, LeNet-5. Source Gu et al.| (2015)
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Figure[3.1]represents LeNet-5 [LeCun et al| (1989)], where an end-to-end convolutional
neural network was built for handwritten digit recognition. First, a 32x32 image of a
digit is given as input to the network, and then it passes through a series of alternated
convolutional layers and subsampling layers, which are pooling layers with 2x2 grids,
causing the image representation to halve its size. After the last convolutional layer,
the output is flattened and forwarded to a multilayer perceptron, which receives the

representation created by the network and classifies the image.

3.1.2 Residual Connections

Residual connections are an architectural feature in deep neural networks, which address
the problem of vanishing gradients and degradation in performance as networks grow
deeper [He et al.| (2016)]. In a standard deep network, as the number of layers increases,
the gradients during backpropagation can become exceedingly small, leading to poor
learning in the earlier layers. This phenomenon, known as the vanishing gradient problem,
can cause performance to stagnate or even degrade with increasing depth, hindering the
network’s ability to learn complex patterns. To counteract this, residual connections
introduce a shortcut path that skips one or more layers and connects the output of an
earlier layer directly to a later layer. Specifically, in a residual block, the input is added
directly to the output of a few stacked layers, typically convolutional layers, before being
passed to the next block. This addition operation essentially combines the original input
with the transformed input, preserving the information from the previous layers. Figure
3.2 shows the flow of a residual block.
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Figure 3.2: Residual block Illustration.

Mathematically, if the original transformation in a network layer is represented as F(x),
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where x is the input, then a residual connection reformulates it as F(x) + x. The network
now learns a residual mapping that focuses on modeling the differences or adjustments
needed instead of the entire transformation. The added input bypasses the main network
layers and is summed directly with the output of the transformed data. This simple
addition helps ensure that even if certain layers contribute little or no useful information,
the original input can still propagate through the network unchanged.

Residual connections provide two main benefits. First, they help maintain gradient
flow across layers. Second, they facilitate faster convergence during training by allow-
ing the network to learn smaller incremental changes rather than forcing each layer to
learn a complete transformation. Consequently, residual connections have enabled the
development of extremely deep architectures, with hundreds or even thousands of layers,
that achieve state-of-the-art performance in various tasks like image classification, object

detection, and natural language processing.

3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) |Goodfellow et al. (2014) are a class of deep
learning models designed for generative tasks, where the goal is to generate new data
instances that resemble a given dataset, thus learning the distribution of the data, as
opposed to discriminative models, which map a high-dimensional input to a single label.

GANSs consist of two neural networks: a generator and a discriminator, which engage in
a competitive process. They are adversaries in a min-max game, where the discriminative
model learns to determine whether a sample is from the model distribution or the data
distribution, while the generator tries to produce samples that are as close as possible
to the real data distribution in order to fool the discriminator. This adversarial setup
allows GANs to generate highly realistic data, such as images, by learning the underlying
distribution of the training data. Over time, the generator improves in creating realistic
data that can fool the discriminator, while the discriminator becomes better at identifying
real versus fake data. This dynamic interaction between the two networks drives the
learning process.

As neural networks, both generator and discriminator need input in order to provide
the output. For the discriminator, it is easy to understand that it’s training inputs should
be samples both from the training data x and from the generator’s output. As for the
generator, it receives a random noise vector z, since an input to it does not represent
anything. The generator output is a sample G(z) in the same format as the training data,
resembling its distribution, while the discriminator outputs a scalar value between 0 and 1,
representing the probability of the sample being real, i.e., if the input is a generated image,
D(G(z)) should be close to zero, while D(z) should be close to 1, since it discriminates a

real image.
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The training of GANSs is framed as a two-player game between the generator and the

discriminator that happens simultaneously. This adversarial behavior is represented by

this value function V(G, D):

minwax V(D, G) = Eypyollog ()] + Eevpooloa(l = DG()] (32)

where pqata is the true distribution and p, is the learned generator distribution, which
usually is initialized as a Gaussian distribution. The generator goal is to minimize, be-
cause making the term log(1 — D(G(z))) as low as possible makes the generated data
indistinguishable from the real data. The discriminator tries to maximize log D(x), which
is the probability that a real data point is identified as real, and maximize the result of
log(1 — D(G(2))), achieved by low values of D(G(z)).

In practice, the training process is quite delicate. Both networks should learn and im-
prove together at roughly the same pace; otherwise, one of the networks would suppress
the other. A simple way to think of this is the adversarial nature of the training: if your
opponent is much better than you, training will not be beneficial for either of you. To
fix this problem, the number of steps that each model is optimized must be balanced, in
order to keep their disparity at a limit. Therefore, GAN performance is highly sensitive
to hyperparameter choices, such as learning rates, optimization algorithms, and the archi-
tecture of both the generator and the discriminator. Fine-tuning these hyperparameters
is often necessary to achieve stable and high-quality results.

Generative Adversarial Networks have a wide range of applications across various
fields, the most common being image generation, where the generator is trained to pro-
duce high-quality images, including faces, landscapes, and objects, that can be used as
synthetic training data, art creation, entertainment, etc. This is the application used in
this work, where images are generated to be used as training data for a kinship classi-
fier. More specifically, an image-to-image translation is being performed, since the age
transformation model is translating images into different ages. Other GAN applications
include super-resolution, which is used to increase the resolution of low-quality images

and audio generation.



Chapter 4

Methodology

In this chapter, we introduce the methodology applied in this work, including the data pro-
cessing steps, the design, implementation, and integration of the age transformation model
with the kinship verification system, as well as the training breakdown. The methodology
begins with a detailed explanation of how the datasets were prepared, addressing any pre-
processing techniques necessary to ensure compatibility with the proposed models. This
is followed by a comprehensive description of the age transformation model’s architecture,
highlighting the specific design choices that enable realistic and identity-preserving facial
age modifications.

The integration process outlines how the age-transformed images were incorporated
into the kinship verification system to enhance its accuracy and robustness. Finally, the
training process is broken down into its key components, including the training parameters

and optimization strategies used to achieve the desired performance.

4.1 Data Preprocessing

The age transformation model was trained using the Biometrically Filtered Famous Figure
Dataset (B3FD) [Beseni¢ et al. (2022)] dataset with some filtering. First, B3FD was
filtered only for facial images of ages within the age range, which is between 20 and 70
years old. Then, the age distribution Q was analyzed, as shown in figure [£.1} Since
most of the images are centered around 30 years and there are comparatively few samples
of elderly people, training with all the data could cause an imbalance in performance,
making the model learn more about transformations on the lower end of the age range
spectrum. To prevent this, the dataset was once again filtered, in order to approximate
the distribution () to uniform. By choosing 2000 images per age, except for those that do
not have enough, the final dataset used in the training had 93,325 images. After filtering,
normalization was applied using the mean and standard deviation of ImageNet, which is

common in computer vision pipelines for training.
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Figure 4.1: Age distribution of B3FD dataset

This model is applied on Families in the Wild (FIW) [Robinson et al. (2016))], to gen-

erate an augmented dataset, where each image from the original data is used to generate

five images, with target ages a; 20, 30, 40, 50 and 60, respectively. This dataset is used
as training data for the classification model, where the data is organized in pairs, so that
the pairs in each minimum batch come from different families, as is done to ensure that
the restrictions on contrastive learning are respected and the results reproducible, as is
done in Zhang et al. (2021D).

4.2 Face age transformation model

The proposed approach for age transformation is an adaptation from High Resolution Face

Age Editing [Yao et al.| (2021)], fit not for high-resolution, but for low resolution, since kin-

ship datasets like KinFace and FIW are made of low resolution images. A custom-designed
encoder-decoder architecture is implemented. This model utilizes a combination of latent
identity features and age-specific modulation to achieve photorealistic age modifications

with minimal artifacts.

4.2.1 Architecture

The main components of the architecture for generating the images are the image encoder,
the age encoder, and the decoder. First, the image encoder is constructed using convolu-
tional layers and four residual blocks, where the first convolutional layer has a stride of 1 to
capture fine details, and the next two layers use a stride of 2, progressively downsampling
the image. The residual blocks process the downsampled feature map, helping the model

retain facial identity information by allowing the gradient to flow through multiple layers
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effectively, thus preserving facial details that are not related to age. In summary, the
image encoder processes the input face image to generate a deep feature representation
that captures identity, expression, and other non-age-related characteristics, and outputs
a feature map denoted by C' € R"*¢, where ¢ = 128 is the number of channels, and n is
the product of the two spatial dimensions.

The feature map created by the image encoder does not contain age information
inherently; this is the role of the age encoder, which is a component inspired by style
transfer techniques. It allows for age transformation by directly modifying the encoded
features according to the target age. The target age is encoded as a one-hot vector, and
passed as input to the age encoder that comprises a fully connected layer with a sigmoid
activation, returning an output a modulation vector w in the range [0, 1], representing
how much each channel should change to adapt to the target age. This vector has 128
elements that match the encoder output channel count, to modulate each feature channel
individually. The encoded features C are multiplied by the diagonal matrix diag(w),

effectively scaling each feature channel according to the desired age.
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Figure 4.2: General Architecture of the age transformer generator

Finally, these features are forwarded to the decoder, which reconstructs the modulated
feature map into a face image, as the final step for the generator. The two upsampling
layers progressively increase the spatial resolution of the features. This is followed by
convolutional layers to refine the image details, enabling the output at 256x256. Two
skip connections link the encoder to the decoder, bypassing parts of the network to help
preserve age-irrelevant details like background and finer textures. The skip connections
prevent the model from altering these features unnecessarily, improving image consistency
and reducing artifacts. : The final output, denoted as G(xg, o), represents the input face
at the target age, with the identity, expression, and non-age-related features maintained.
Figure [.2] illustrates the proposed generator.

Opposed to the generator, there is the discriminator, which plays a crucial role in
ensuring the output appears photorealistic by distinguishing real images from edited ones.

Unlike many traditional face-editing methods, this discriminator does not rely on age
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labels; instead, it focuses solely on the realism of the generated images, which helps
prevent the introduction of age-conditioned artifacts. By using a PatchGAN [Isola et al.
(2017)] framework, where the discriminator divides each image into smaller patches and
assesses the photorealism of each patch individually. This patch-based approach enables
the model to capture fine-grained details across localized regions of the face, helping to
ensure that the generated image appears coherent and realistic on a smaller scale and at
the full-image level. This technique is especially effective for maintaining facial texture
and minimizing unrealistic artifacts that may otherwise arise from the generative process.

To optimize the performance of both the generator and discriminator, the model em-
ploys a loss function tailored for this adversarial training setup. This is the key to guiding
the generator toward producing images that not only appear realistic to the discrimi-
nator but also maintain identity consistency and accurately depict the target age. The
following section delves into the specific loss function used in this model, explaining its
components and how it balances realism with identity preservation and age progression

in the generated images.

4.2.2 Loss Function

The training process for the age transformer model incorporates three primary losses:
reconstruction loss, classification loss, and adversarial loss. Each loss plays a distinct role
in guiding the model to produce realistic and accurate age-modified face images. The
final loss is a balanced composition of those three.

Reconstruction loss is crucial for preserving non-age-related features, such as identity,
expression, and background details, when the input and target ages are the same. This
loss encourages the model to generate an output that is identical to the input image when
a1 = ap. By minimizing this loss, the model learns to retain essential details and avoid
unnecessary modifications, ensuring that only age-relevant changes are applied. This can
be achieved by calculating the L1 norm (mean absolute error) between the original image

zo and the reconstructed image G(zo, a):

Erecon - Exorvp(ac) “|G(X0, Oéo) - XOHI] . (41)

By minimizing L econ, the L1 norm penalizes significant differences between input and
output while being robust to minor variations. In terms of classification loss, it ensures
that the output transformed by age matches the specified target age, guiding the model to
produce accurate age transformations. This is done by comparing the generated image’s
age o with the target age oy, helping the model accurately render age-relevant changes,
like wrinkles or skin texture adjustments, that are characteristic of the desired age group.
A pre-trained age classifier, denoted by V', is used to predict the age of the generated

image. The classifier produces a probability distribution over a set of possible ages, and
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the classification loss is calculated as the cross-entropy between the target age, represented

as a one-hot vector 21, and the predicted distribution:

‘cclass = EXONp(:r)Ea1~q(a|a0) [€<Z17 V(G(X07 061)))] (42)

where p(z) represents the training image distribution over X and ¢ denotes the cate-
gorical cross-entropy loss. The target age oy is sampled such that there is a sufficient age
difference from «, which prevents the network from making only minor, indistinguishable
adjustments, the minimum difference of 25 years is applied. The last and most important
loss is the adversarial loss, which guides the generator versus discriminator dynamic. For
this, the LSGAN objective is adopted [Mao et al.| (2017)], where the generator loss is:

Lcan(G) = Exgopa)Eay~g(alao) [(D(G(X[)’ ar)) — 1)2] ) (4.3)

and the discriminator loss is:

Leax(D) = Exyp(e)Easmgalas) [(P(G(x0,01)))*] + Eyp) [(D(y) — 1)°] (4.4)

Finally, the overall loss function combines all three components:

£ = ﬁGAN + )\reconﬁreccm + )\classﬁclass (45)

where A\ ccon and Ay qss are weights that balance the influence of each loss.

4.3 Kinship Verification Model

The kinship verification model in this work is designed to take advantage of the enhanced
dataset created by the age transformation model to improve the accuracy of facial kin-
ship recognition. The integration of age-transformed images aims to address the challenges
posed by significant age gaps among family members, which often hinder traditional kin-
ship verification systems. In this section, the core components of the kinship verification

model are outlined and it’s integration with the transformed images is explained.

4.3.1 Architecture

The kinship verification model is a Siamese Neural Network based on|Zhang et al.| (2021b))
architecture, which is widely used for pairwise similarity tasks. Given a pair of facial
images (x,y), intermediate features (h,, h,) are extracted using a backbone network. The
features are then fed into a multilayer perceptron to obtain a low-dimensional feature

pair (f;, f,). In the training stage, f, and f, are compared using cosine similarity and
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optimized using the contrastive loss function, as defined in Section[2.1.4] Negative samples
are collected by combining positive samples from different families, since the contrastive
loss is going to bring samples in the same family close together in the feature space, while
samples from different families should be apart from each other. An important component
is the hyperparameter 7, defined in Equation 2.3] It controls the degree of punishment
for hard samples, where smaller values correspond to a great punishment.

The validation is split into two, where 90% of validation data is used to evaluate the
model every epoch and the rest is used to find the optimal verification threshold after
training by optimizing the Area Under the Curve (AUC). For prediction, the projection
component is discarded and the similarity is computed directly using h, and h, and
the calculated threshold. The feature extraction network is a pre-trained ResNet101
called ArcFace [Deng et al.| (2019)], which has been successfully used for the extraction of
kinship characteristics in the past [Shadrikov (2020))]. The projection network is a simple
multilayer perceptron with a fully connected layer, with batch normalization and ReLU
activation, followed by another fully connected layer. The training pipeline approach is

illustrated in Figure 4.3|
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Figure 4.3: Kinship Model Training pipeline

4.3.2 Integration with the Age Transformation Model

To integrate the age transformation model with the kinship verification framework, mul-
tiple strategies were employed to effectively leverage the age-transformed images and
enhance the feature representation of individuals across varying age groups. The first ap-
proach was using images from a specific age group, where, for each individual, the images
generated at a specific target age (e.g., 30 years) were incorporated into the dataset. This

method assumes that choosing a consistent age group for all individuals can provide a
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standardized basis for feature comparison and improve kinship verification accuracy. The
second approach utilizes all the images from the 5 age groups, passing them through the
network, and calculating the final feature vectors (fs, f,) by taking the mean of the five
vectors. Finally, the third approach, which yielded the best results is random age sam-
pling for data augmentation. To augment the diversity of the dataset, randomly selected
age-transformed images for each individual were added to the dataset. This approach
aims to introduce variability, making the model more robust to age-related differences,
and reduce over-fitting. These strategies were designed to exploit the strengths of the
age transformation model, ensuring that the kinship verification model benefits from the

additional age-aligned information while maintaining identity preservation.

4.4 'Training

For the training of the age transformation model, the hyperparameters are carefully se-
lected to stabilize the adversarial training. There are two phases of training: the first ten
epochs are trained in 128x128 and |B| = 4, for faster initial learning, then the rest are
trained in 256x256 and |B| = 2 to refine the results. The parameters used are listed in

Table (.1

Parameter Value(s)
Epochs 20

Batch size (|B|) 4,2

Image size 128x128, 256x256
Optimizer Adam

Weight Decay 0.0005

Learning Rate (o) 0.0001

)\TECO?’L 10

)\class 0.1

Table 4.1: Hyperparameters used in the age transformation model

Training files were implemented for training and evaluation of the results. The model
architecture and training loop were implemented in PyTorch. The experiments were
carried out using an Intel®) Xeon(R) Silver 4216 CPU @ 2.10GHz with 512 Gb of RAM,
NVIDIA RTX 3090, and a python 3.10 environment. The same environment was used to

train the kinship verification model and its training parameters are available in Table [4.2]
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Parameter Value(s)
Epochs 80
Steps 100

Batch size (|B|) 25
Temperature (7)  0.08

Optimizer SGD
Learning Rate () 0.0001
Momentum 0.9
Threshold 0.108667

Table 4.2: Hyperparameters used in the kinship model
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Chapter 5
Results and Discussions

This section presents and analyzes the results of the proposed approach for improving
kinship recognition using face age transformation. The results are evaluated to assess the
impact of augmenting kinship datasets with age-transformed facial images, generated by
the GAN-based model, on the performance of kinship verification systems. Both quan-
titative metrics and qualitative visual comparisons are used to provide a comprehensive

evaluation of the model’s effectiveness.

Original

Figure 5.1: Age transformation results of 256x256 FIW images.
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The discussion explores how age-transformed images affect the model’s ability to bridge
age-related gaps in kinship pairs, addressing challenges such as age disparity and limited
dataset diversity. In addition, comparisons are made with baseline models and exist-
ing state-of-the-art methods to highlight the advantages and limitations of the proposed
approach. The insights gained from the results are used to identify key factors that
contribute to performance improvements and potential areas for further refinement.

Some examples of transformed image can be seen in Figure [5.1] The differences be-
tween the images of the same individual at different ages are subtle, which illustrates
the smoothness of the aging process. Compared to the original images, the proposed ap-
proach only changes the age-relevant facial features, while the identity, haircut, emotion,

and background are well preserved.

Ours

Ours

IPCGAN

Figure 5.2: Comparison with IPCGAN [Wang et al.| (2018)] on FIW.

The comparison shown in Figure [5.2] illustrates the performance of the proposed age
transformation model against IPCGAN [Wang et al.| (2018)] on the FIW dataset. The im-

ages show the progression of the age transformation for two individuals in different target

age ranges. The proposed model demonstrates more consistent visual fidelity in the age

transformation compared to IPCGAN, maintaining a natural and consistent appearance
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throughout the aging process. In contrast, IPCGAN introduces noticeable distortions in
some transformed images, such as irregular textures and unnatural warping. The proposed
method is also more restrictive in terms of identity preservation, not altering features such
as skin tone, facial structure, or expressions beyond what is expected for the target age
range. This ensures that the transformed images remain easily recognizable as the same
individual, an essential factor for downstream tasks like kinship verification.

The accuracy results, calculated using DeepFace [Serengil and Ozpinar (2021))], are
presented in Table that compare the performance of different methods in various age
groups. The proposed model achieves significantly higher accuracy in the age group of
21-30 compared to other methods. PAGAN does not report results for this group, while
IPCGAN and AcGAN achieve 46.15% and 25.92%, respectively. This demonstrates the
proposed model’s ability to handle features of younger faces effectively, which often involve
subtler age-related cues. In general, except for older ages, the proposed model achieves
better results. This reflects the method’s capability to capture and reproduce nuanced age-
related transformations while preserving identity. Even with comparable results, aging
accuracy in facial age transformation is still a difficult problem, since most methods can
barely reach 60% accuracy. Thus, there remains significant potential for improvement in
age transformation models, especially for tasks such as kinship recognition, where better

aging accuracy tends to yield better results overall.

Method 21-30 31-40 41-50 50+

PAGAN [Yang et al. (2018)] - 42.84 50.78 59.91
AcGAN |[Zhu et al. (2020)] 25.92 36.49 40.59 47.88
IPCGAN [Wang et al. (2018))] 46.15 55.41 53.86 55.64
Ours 62.9 58.10 57.36 55.64

Table 5.1: Aging accuracy comparison on different age groups.

The results presented in Table [5.2] highlight the face recognition accuracy achieved
when comparing the original images with their corresponding transformed images across
various target age ranges. These results, calculated using DeepFace [Serengil and Ozpinar
(2024)], demonstrate the robustness of the proposed age transformation model in preserv-
ing identity in different age transformations. The accuracy progressively increases as the
target age range moves from younger to older, starting at 86.65% for the 20-year target
and reaching a maximum of 93.10% for the 60-year target.

This trend suggests that the model performs better in preserving identity for transfor-
mations to older age groups, possibly because aging features such as wrinkles and skin tex-
ture are more distinct and easier to synthesize without distorting unique identity-related
traits. The average accuracy indicates that the age transformation model is effective in
maintaining key identity features, regardless of the target age group, which is crucial in

this application.
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Target image («;) Accuracy

20 years
30 years
40 years
50 years
60 years

Average

86.65
88.56
89.57
91.46
93.10
89.87

Table 5.2: Face recognition accuracy across all target images

The results presented in Table demonstrate the performance of various kinship

verification methods across 11 kinship relations. The proposed method (Ours) achieves

the highest average accuracy compared to state-of-the-art approaches, highlighting the

effectiveness of integrating age-transformed images into the kinship verification pipeline.

It surpasses only by a narrow but consistent margin. Although this difference in accuracy

is not significant, this improvement reflects the contribution of age-transformed images in

bridging age gaps and improving feature consistency across different age groups, proving

its potential. With better age transformation models, the accuracy gains could be further

increased, particularly those involving extended generational differences.

Method BB SS SIBS FD MD FS MS GFGD GMGD GFGS GMGS Average
Vuvko|Shadrikov|(2020)] 0.80 080 077 0.75 0.78 0.81 0.74 0.78 0.76 0.69 0.60 0.780
DeepBlueAI|Luo et al.[(2020)] 0.77 0.77 075 0.74 0.75 0.81 0.74 0.72 0.67 0.73 0.68 0.760
Uste-nelslip[Yu et al.|(2020)] 075 0.74 072 0.76 0.75 0.82 0.75 0.79 0.76 0.69 0.67 0.760
SupCL |Zhang et al.[(2021b)] 0.80 0.81 0.79 0.75 0.78 081 0.76 0.78 0.74 0.65 0.63 0.790
Ours 0.81 0.81 078 0.76 0.79 0.82 0.77 0.77 0.70 0.68 0.62 0.792

Table 5.3: Comparison of kinship verification accuracy across various methods.



Conclusion

This research explores the potential of Generative Adversarial Networks (GANs) for ad-
dressing a critical challenge in facial kinship verification: accounting for age-related vari-
ations that obscure familial similarities. Using a GAN-based facial age transformation
model, this work successfully simulates aging and rejuvenation processes while preserv-
ing individual identity. The age-transformed images were then integrated into kinship
verification systems to enhance their robustness and accuracy.

The key contributions of this work include a comprehensive review of both the kin-
ship verification field and the age transformation field, and also the development of a
GAN-based Encoder-Decoder Age Transformation Model which was designed to gener-
ate realistic age-progressed and age-regressed facial images in low resolution, maintaining
identity consistency, addressing a common limitation of earlier approaches. The use of
the age transformation model in augmentation on existing kinship datasets with synthetic
age-transformed images enriches training data diversity, which may overcome the scarcity
of labeled data for age-diverse kinship pairs. The augmented datasets allowed the kinship
verification model to generalize better across age differences, slightly improving accuracy.

The experimental results show how using age-transformed images can affect kinship
verification, demonstrating improvements that can be further enhanced by the devel-
opment of both age transformation and classification methods. These results highlight
the importance of addressing age as a variable in kinship recognition tasks and under-
score the potential of GANs in the advancement of biometric applications. In conclusion,
this research provides a promising direction for improving kinship verification systems
by bridging age-related gaps. The findings open opportunities for further exploration,
including refining the GAN model for more nuanced transformations, applying similar
techniques to other biometric tasks, and leveraging additional data modalities like videos

and audio for more comprehensive kinship recognition systems.
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