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Resumo

A Leishmaniose Visceral, uma forma grave da doença causada pelo parasita Leishmania

donovani, é fatal em mais de 95% dos casos não tratados e afeta principalmente pessoas de baixa
renda com acesso limitado a cuidados de saúde. O diagnóstico padrão envolve a identificação
de amastigotas do parasita, que são pequenas e difíceis de encontrar, tornando o exame uma
tarefa desafiadora que requer habilidade.

Para ajudar os profissionais de saúde, este estudo propõe uma nova abordagem que combina
aprendizagem métrica profunda com classificação supervisionada para a detecção rápida da
leishmaniose visceral. A metodologia divide as imagens em pequenos fragmentos (patches)
para melhorar a avaliação de quatro funções de perda, que ajudam uma Máquina de Vetores de
Suporte (SVM) a diagnosticar a doença.

Os resultados mostraram que a função Circle teve o melhor desempenho, com 98,3% de
sensibilidade e 99,3% de especificidade. Além da leishmaniose, exploramos o desempenho em
outras infecções parasitárias, como Babesia, Toxoplasma, Trypanosoma, Plasmodium e Schis-
tosoma, que também apresentaram resultados impressionantes, com alta precisão e sensibili-
dade. Essa abordagem sugere que a inteligência artificial pode ser uma ferramenta valiosa para
melhorar o diagnóstico de doenças tropicais negligenciadas, tornando-o mais acessível e efici-
ente.

Palavras-chave: Deteção de Parasitas, Leishmaniose Visceral, Aprendizagem Métrica Pro-
funda, Aprendizagem Profunda, Redes Neurais Convolucionais, Classificação Binária, Diag-
nóstico Automático de Doenças, Classificação Multiclasse, Babesia, Toxoplasma, Trypano-
soma, Plasmodium e Shistosoma.
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Abstract

Visceral Leishmaniasis, a severe form of the disease caused by the parasite Leishmania
donovani, is fatal in over 95% of untreated cases and primarily affects low-income individuals
with limited access to healthcare. The standard diagnosis involves identifying the parasite’s
amastigotes, which are small and difficult to find, making the examination a challenging task
that requires skill.

To assist healthcare professionals, this study proposes a new approach that combines deep
metric learning with supervised classification for the rapid detection of visceral leishmaniasis.
The methodology divides images into small fragments (patches) to enhance the evaluation of
four loss functions, which help a Support Vector Machine (SVM) diagnose the disease.

The results showed that the Circle loss function performed best, with 98.3% sensitivity and
99.3% specificity. In addition to leishmaniasis, we explored the performance on other parasitic
infections, such as Babesia, Toxoplasma, Trypanosoma, Plasmodium, and Schistosoma, which
also demonstrated impressive results, with high precision and sensitivity. This approach sug-
gests that artificial intelligence can be a valuable tool for improving the diagnosis of neglected
tropical diseases, making it more accessible and efficient.

Key-words: Parasite Detection, Visceral Leishmaniasis, Deep Metric Learning, Deep Le-
arning, Convolutional Neural Networks, Binary Classification, Automated Disease Diagnosis,
Multiclass Classification, Babesia, Toxoplasma, Trypanosoma, Plasmodium, and Schistosoma.
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1
Introduction

1.1 Human Visceral Leishmaniasis

Leishmaniasis is a widespread and contagious disease caused by microscopic parasites cal-
led Leishmania. These single-celled organisms live inside human cells, making the disease
difficult to treat. Leishmaniasis primarily affects people in low-resource settings and those with
limited access to healthcare.

A particularly dangerous form of Leishmaniasis, known as visceral leishmaniasis (VL) or
kala-azar, is caused by a group of Leishmania parasites called the Leishmania donovani com-
plex. This form can be fatal if left untreated.

Untreated Visceral VL is highly fatal, with over 95% of patients succumbing to the dise-
ase if left untreated. The World Health Organization (WHO) 1 describes the symptoms of VL
as irregular fever, weight loss, enlarged spleen and liver anemia. Leishmaniasis is affecting
99 countries and territories globally. Of these, 81 countries are considered endemic for VL,
meaning the disease is constantly present in the region. In the Americas, VL is found in 12
countries, with South American nations like Brazil, Argentina, Colombia, Paraguay, and Vene-
zuela bearing a significant burden of the disease.

Leishmaniasis is a spreading threat, with cases increasing in Central America. Honduras
and Guatemala, previously reporting few cases, saw a significant rise in 2022 (52). In Southern
Europe, the disease is a major risk for those with compromised immune systems, particularly
individuals with AIDS (38).

Globally, the disease burden is concentrated in Brazil, East Africa, and India. This puts over
a billion people living in endemic areas at risk. Although an estimated 50,000 to 90,000 new
VL cases occur annually, only a fraction (25-45%) of those are reported to the WHO.

1https://www.who.int/health-topics/leishmaniasis
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Diagnosis of Visceral Leishmaniasis (VL) involves both DNA and non-DNA based methods
(6): DNA-based methods like PCR and qPCR offer high accuracy but are complex and ex-
pensive. These are primarily limited to research facilities and specialized hospitals in regions
where VL is widespread (7; 24). Non-DNA-based methods, including serological tests and pa-
rasitological procedures, are more accessible but may lack accuracy, particularly for detecting
asymptomatic cases (51; 24). These tests often look for antibodies or antigens produced by the
body in response to the infection.

Microscopic examination of parasite tissues remains the most reliable method for diagno-
sing visceral leishmaniasis (VL), according to (12). This technique involves directly searching
for the amastigote form, a specific stage of the Leishmania parasite, in samples like bone mar-
row, lymph nodes, or spleen obtained through aspiration or biopsy (49). Preparing smears for
examination is simple and cost-effective, making it the preferred method in areas with limited
resources where PCR technology might not be readily available (11).

Leishmania amastigotes, are microscopic parasites living inside human cells (39). These
tiny, round or oval-shaped organisms, measuring only 2-4 micrometers in diameter, have dis-
tinct internal structures, including a nucleus and a kinetoplast]. Although microscopic exami-
nation is the traditional method for diagnosing VL, it can be challenging due to several factors:
Identifying these minuscule parasites requires expertise and can be a lengthy and tiring pro-
cess, as noted by (47). Difficulties in differentiation: Because they can resemble other elements
within the sample, accurately distinguishing Leishmania amastigotes can be difficult for even
trained professionals . These limitations highlight the need for alternative diagnostic methods
that are faster, more reliable, and less dependent on expert interpretation.

While directly examining tissue microscopically offers a way to diagnose VL, its accuracy
is limited, often missing cases even when the parasite is present. A more reliable approach
involves taking a bone marrow biopsy and staining it with Giemsa 2, a common diagnostic
stain. However, even this method only has a sensitivity of 60-85%, highlighting the ongoing
challenge of accurately diagnosing VL (11).

Machine learning (ML) is transforming the way we diagnose diseases, including VL. ML
automates repetitive tasks, freeing up healthcare professionals’ time for more complex aspects
of patient care. By removing human subjectivity, ML can reduce variability in diagnoses, lea-
ding to more reliable results. It can analyze large datasets of medical images much faster than
human experts, allowing for quicker diagnoses. Also, algorithms can identify subtle patterns
in medical images that might be missed by the human eye, leading to more accurate diagno-
ses. Specifically, computer vision and deep learning techniques have shown great promise in
detecting VL in humans by analyzing bone marrow microscopy images with high precision.

2Giemsa’s staining solution is one of the most common microscopic stains, generally used in hematology,
histology, cytology, and bacteriology for in vitro diagnostic.



INTRODUCTION 14

1.2 Objectives

This study aims to investigate the potential of deep metric learning techniques, combi-
ned with Principal Component Analysis (PCA), in accurately diagnosing visceral leishmaniasis
(VL) using microscopic images. The study focuses on three key objectives:

First, the study will assess the performance of deep learning models in identifying and
classifying images containing VL parasites. Different models will be compared, from Convo-
lutional Neural Networks to deep metric learning models used together with classic classifiers
such as Support Vector Machines and K-Nearest Neighbors.

Second, we will compare the performance of these models with and without incorporating
PCA for dimensionality reduction. Our hypothesis is that the model using both deep metric
learning and PCA will outperform human experts in classifying VL-infected samples in image
datasets.

Third, the study will evaluate the effectiveness of the classifier using established metrics
sensitivity, and specificity. This evaluation will determine the classifier’s ability to distinguish
between positive (VL-infected) and negative (non-infected) cases with high accuracy.

In addition to focusing on VL, we have expanded our research to include the diagnosis and
classification of other parasitic infections. Leveraging the best-performing models and techni-
ques from the VL study, we will apply the most effective pipeline to classify images containing
parasites from other neglected tropical diseases. By doing so, we aim to generalize the diagnos-
tic capabilities of our approach, potentially enabling healthcare professionals to detect a broader
range of parasitic diseases with the same high level of accuracy.

This research has the potential to significantly contribute to the field of medical AI. The
findings could assist healthcare professionals in detecting neglected tropical diseases, leading
to faster, more reliable, and cost-effective diagnoses for a variety of parasitic infections.

1.3 Related Works

Several research works have focused on leveraging machine learning and image processing
techniques for detecting and classifying different types of parasites, (53) proposes a two-step
method for detecting malaria parasites in thick blood smears using smartphones. The method
involves using an intensity-based screening technique followed by classification with a modi-
fied Convolutional Neural Network (CNN). (17) focuses on developing accurate and efficient
models for detecting parasites in single cells using various techniques. The simplified version
of these models can even be utilized on mobile phones and online applications. (45) presented
an automated approach for detecting Trypanosoma cruzi parasites in digital microscope ima-
ges of blood smears. The approach combines image pre-processing steps like mask generation
and filtering with a KNN classifier for identifying parasites in segmented regions. Leishmania
Classification Works: As recommended by WHO, the gold standard for diagnosing Visceral
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Leishmaniasis (VL) in humans involves analyzing images from bone marrow parasitological
examinations. Several studies have explored using machine learning for automated analysis of
these images:

1.3.1 Segmentation

(15) utilized morphological and level set approaches to segment Leishmania bodies in di-
gital microscopic images. (42) proposes a semi-automatic approach for segmenting different
forms of Leishmania parasites using image processing techniques like smoothing filters and
region-growing algorithms. (23) explored employing various image processing techniques like
filters and gradient operators for parasite detection . (9) utilized morphological operators for
segmenting Leishmania parasites.

1.3.2 Deep Learning-based Segmentation and Classification

(21) research trains a U-Net (40) model to segment and classify Leishmania parasites into
different forms like promastigotes, amastigotes, and adhered parasites. (19) employed a U-
Net architecture to automatically identify pixels containing Leishmania parasites. The training
process is guided by expert annotations to achieve better accuracy.

The experiments of (15; 42; 23) were performed over a public dataset provided by (15)
whereas (40; 21; 19) conducted their experiments in non-public datasets.



2
Theoretical Background

2.1 Digital Image Processing and Computer Vision

To understand what is Digital Image Processing (D.I.P) first we need to understand what
is and digital image. An image is characterized as a two-dimensional function, denoted as
f(x, y), where x and y represent spatial coordinates, and the amplitude at any coordinate pair
signifies the image intensity or gray level. When x, y, and intensity are finite and discrete,
the image is termed a digital image (18). Digital image processing involves the manipulation
of digital images using a computer. The images consist of finite elements known as pixels or
picture elements, with each pixel having a specific location and value. Vision, being a primary
human sense, relies heavily on images; however, machines can process images from a wide
electromagnetic spectrum, including sources like ultrasound and electron microscopy.

The use of digital image processing can be traced back to the early 1960s when compu-
ters with sufficient power for meaningful image processing tasks emerged. The pioneering
application of computer techniques to enhance images taken by space probe’s from the moon
and simultaneously, in the late 1960s and early 1970s, digital image processing techniques
began finding applications beyond space exploration. In medical imaging, remote Earth resour-
ces observations, and astronomy, these techniques started making significant contributions. A
landmark development during this period was the invention of computerized axial tomography
(CAT) in the early 1970s, a crucial advancement in medical diagnosis. CAT involves a ring
of detectors encircling an object, rotating around it while an X-ray source collects data. Al-
gorithms then reconstruct a 3D image, allowing for detailed medical imaging. Sir Godfrey N.
Hounsfield and Professor Allan M. Cormack, the inventors of tomography, shared the 1979
Nobel Prize in Medicine.

The application of digital image processing continued to evolve from the 1960s to the pre-
sent, experiencing substantial growth. Beyond medicine and space exploration, these techni-
ques found utility in diverse fields. In medical contexts, computer procedures enhance contrast

16
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Figura 1: Aortic Angiogram. Source: (18).

or code intensity levels into color for improved interpretation of X-rays and other images. Ge-
ographers deploy similar techniques to analyze pollution patterns using aerial and satellite ima-
gery. Image enhancement and restoration procedures are crucial in processing degraded images
of unrecoverable objects or expensive-to-duplicate experimental results. Angiography stands
as another major application in an area called contrast enhancement radiography, primarily em-
ployed for generating images of blood vessels known as angiograms. This intricate procedure
involves the insertion of a catheter, a small, flexible, hollow tube, typically introduced into an
artery or vein in the groin region. The catheter is carefully maneuvered through the blood vessel,
directed towards the specific area under scrutiny. Once the catheter reaches the targeted site, an
X-ray contrast medium is injected through the tube. This infusion of contrast medium serves to
heighten the visibility of blood vessels, facilitating radiologists in identifying any irregularities
or blockages within the circulatory system

Computer vision has evolved into a broad and expansive field, encompassing the recording
of raw data and progressing towards the extraction of image patterns and information interpre-
tation. Rooted in a combination of concepts from digital image processing, pattern recognition,
artificial intelligence, and computer graphics, computer vision engages in diverse tasks related
to obtaining information from input scenes, primarily digital images, and subsequent feature ex-
traction. The methods employed in addressing problems within computer vision are contingent
on the specific application domain and the characteristics of the data being analyzed.

Within the interdisciplinary realm, computer vision is recognized as a fusion of image pro-
cessing and pattern recognition. The culmination of the computer vision process is image un-
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Figura 2: Echocardiogram. Source: (hvc).

derstanding, a development that borrows from the adaptive abilities of human vision in acqui-
ring information. Computer Vision serves as the discipline focused on extracting information
from images, distinct from the objectives of Computer Graphics. Its advancement is intricately
tied to the evolution of computer technology systems, influencing aspects like image quality
improvement and image recognition. While there exists an overlap with Image Processing in
basic techniques, some authors use these terms interchangeably.

The primary goal of Computer Vision is to create models, extract data, and derive informa-
tion from images. In contrast, Image Processing revolves around implementing computational
transformations for images, including actions like sharpening and contrast adjustments.

Over the recent years, there has been a remarkable surge in the number of publications utili-
zing computer vision techniques for the analysis of static medical imagery, escalating from hun-
dreds to thousands. This proliferation of research activity is particularly pronounced in certain
medical specialties, notably radiology, pathology, ophthalmology, and dermatology. The heigh-
tened interest in these areas can be attributed to the visual pattern-recognition nature inherent
in diagnostic tasks within these specialties. Additionally, the increasing accessibility of highly
structured medical images has fueled the momentum in applying computer vision methodolo-
gies to enhance diagnostic capabilities in these fields (13).

Cardiac imaging, particularly echocardiography, has witnessed substantial advancements
through deep learning. The cost-effective and radiation-free nature of echocardiograms makes
them suitable for AI applications. Deep learning models, have demonstrated the ability to
recognize cardiac structures, estimate function, and predict systemic phenotypes..

In dermatology, deep learning has excelled in lesion-specific diagnostics, demonstrating
capabilities comparable to board-certified dermatologists. Convolutional Neural Networks
(CNNs) have been successful in classifying malignant skin lesions and, more recently, have
expanded to differential diagnostics across various skin conditions. AI algorithms hold promise
in supporting large-scale detection of malignancies and tracking lesion growth over time.
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2.2 Classification Models

The classification task involves a computer program determining the categorical affiliation
of a given input among k predefined categories. Typically, the learning algorithm generates a
function f:Rn→ 1, . . . , k, where y=f(x) assigns a numeric code to an input vector x, sig-
nifying its classification. Variations of this task include scenarios where f outputs a probability
distribution over classes.

Illustrating a classic example of classification, object recognition in images entails assigning
a numeric code to identify the object depicted, with the input represented as pixel brightness
values. The complexity of classification is heightened when the computer program cannot gua-
rantee the availability of every measurement in its input vector, presenting a common challenge
in medical diagnosis where certain tests are costly or invasive.

Addressing this challenge involves adapting the learning algorithm to contend with missing
data. Rather than formulating a distinct classification function for each potential set of missing
inputs, we propose a novel probabilistic framework. By learning a probability distribution
over all relevant variables, the classification task is effectively solved by marginalizing out the
missing variables.

This approach streamlines the definition of an extensive set of classification functions, each
dedicated to classifying x with a unique subset of missing inputs. Particularly pertinent in
medical diagnosis, this methodology significantly reduces the computational burden, as the
program only needs to learn a single function encapsulating the joint probability distribution
of all input variables. We discuss the application of this approach in challenging classification
tasks, demonstrating its effectiveness in scenarios where certain inputs may be absent.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (25) have garnered significant attention in recent
years for their remarkable performance in various image analysis tasks, particularly in the Ima-
geNet Large Scale Visual Recognition Challenge (41). This challenge serves as a benchmark
for evaluating state-of-the-art image classification and segmentation algorithms. The success
of CNN-based deep neural networks in this challenge underscores their potential in the field
of medical image classification, where accurate and efficient classification is crucial for diag-
nosis and treatment. CNNs, also referred to as convolutional networks, are a specialized type
of neural network designed for processing data with grid-like topology. The term "convolutio-
nal"in CNNs refers to the mathematical operation of convolution, which is utilized extensively
within the network architecture (20).Convolutional operations enable CNNs to automatically
learn and extract features from input data, making them highly effective in tasks such as image
classification and segmentation.

CNNs, in its most general form, exhibit a structured architecture composed of three distinct
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Figura 3: Convolution Example. Source: (jan).

types of layers: convolutional layers, pooling layers, and fully-connected layers. The combi-
nation of these layers forms the overall CNN architecture. The functional breakdown of the
exemplary CNN can be delineated into four key areas (35):

• Input Layer: As observed in other types of Artificial Neural Networks (ANNs), the input
layer serves to encapsulate the pixel values representing the image.

• Convolutional Layer: The convolutional layer is responsible for determining the output
of neurons, each connected to local regions of the input. This is achieved through the
computation of the scalar product between the weights associated with these neurons and
the region linked to the input volume. The rectified linear unit (ReLU) activation function
is commonly applied elementwise to the output, enhancing non-linearity in the model.

• Pooling Layer: Subsequently, the pooling layer performs downsampling along the spatial
dimension of the input, effectively reducing the number of parameters in the activation.
This process aids in capturing essential features while mitigating computational comple-
xity.

• Fully-Connected Layers: The fully-connected layers undertake tasks analogous to stan-
dard ANNs, striving to generate class scores from the activations. It is recommended
to employ ReLU activation between these layers to enhance overall performance. The
produced class scores are subsequently utilized for classification purposes..

Through this sequential transformation process, CNNs systematically modify the original input
layer using convolutional operations and downsampling techniques. This hierarchical approach
enables the extraction of hierarchical features, leading to the generation of class scores suitable
for classification and regression tasks.

2.2.2 Deep Metric Learning

To comprehend Deep Metric Learning (DML), it is crucial to first grasp the concept of me-
tric learning. Metric learning is an approach centered on defining a distance metric directly, with
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Figura 4: CNN layers. Source: (upg).

the objective of establishing the similarity or dissimilarity between objects. The fundamental
goal of metric learning is twofold: to diminish the distance between objects deemed similar and
concurrently augment the distance between objects considered dissimilar. This approach ena-
bles the creation of a discriminative distance metric, contributing to the enhancement of various
machine learning tasks such as classification and clustering.

In recent times, the exponential growth in data volume has presented considerable benefits
for achieving more precise classification results. Nevertheless, this surge in data also entails
a substantial increase in computational complexity. To effectively manage the computational
demands imposed by large-scale datasets, it becomes imperative to execute operations in a
segmented and concurrent manner. The evolution of technology has catalyzed a significant bre-
akthrough in Deep Learning, largely attributable to the utilization of graphics processing units,
or GPUs. GPUs demonstrate exceptional proficiency in rapidly performing matrix and vec-
tor multiplications, a crucial requirement not only for creating immersive virtual realities but
also for training ANN’s. The adoption of GPU-based implementations in Neural Networks has
made substantial contributions to recent triumphs in competitions focusing on pattern recogni-
tion, image segmentation, and object detection. The parallel processing architecture of GPUs
enables the concurrent execution of numerous calculations, making them well-suited for the
inherently parallelizable nature of neural network computations. Consequently, the integration
of GPUs into deep learning frameworks has played a pivotal role in enhancing the efficiency
and performance of neural network training, thereby contributing significantly to advancements
in various domains such as pattern recognition and computer vision.(43)

The majority of current deep learning methodologies primarily rely on intricate architectu-
ral designs rather than emphasizing the development of a novel representation space through
distance metrics. Nevertheless, distance-based approaches have emerged as a compelling and
increasingly captivating area of focus within the realm of deep learning in recent times. (10)

In this context, Deep Metric Learning emerges as soluytion that leverages deep architectu-
res to derive embedded feature similarity through nonlinear subspace learning. It formulates
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Figura 5: Metric Learning example.

problem-specific solutions by learning from raw data, addressing challenges associated with
tasks such as classification, detection, segmentation, and registration in the domain of medical
images.

The rapid ascent of deep learning has positioned it as a prominent and effective approach for
tackling issues in medical image analysis. Notably, various problems in this domain, including
classification, detection, segmentation, and registration (29), can be addressed using deep metric
learning algorithms grounded in the similarity approach. By employing a deep metric, a more
elevated representation level of data can be attained, facilitating enhanced analysis of medical
images.

Numerous suggestions for loss functions abound in the realm of deep metric learning, each
tailored to specific requirements. Examples include contrastive loss (22), triplet loss (44), qua-
druple loss (34), and n-pair loss (46). The careful selection of an appropriate loss function
is pivotal, ensuring not only rapid convergence but also optimizing the search for the global
minimum during training. This emphasis on the loss function contributes significantly to the
effectiveness and efficiency of deep metric learning algorithms.

The upcoming sections will present and elucidate various types of Deep Metric Learning
loss functions that will be employed in the experimental phase of this study.

Triplet

First demonstrated by (44), Triplet loss became a popular loss function used in deep metric
learning, particularly for tasks like face recognition and image similarity. The fundamental idea
behind triplet loss is to train a neural network to learn a feature space in which the embeddings
of similar examples are closer to each other, while those of dissimilar examples are pushed
apart.

The loss is formulated based on triplets of samples: an anchor (Xa), a positive (Xp), and a
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Figura 6: Triplet loss example Source: (26).

negative (Xn). These triplets are chosen from the training dataset, where the anchor and positive
samples belong to the same class (or share some similarity), while the negative sample is from
a different class or is dissimilar to the anchor.

The objective of triplet loss can be expressed mathematically as follows:
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[∥∥ f (xa
i )− f (xp

i )
∥∥2

2 −∥ f (xa
i )− f (xn

i )∥
2
2 +α

]
+

Where f(x) represents the embedding of input x, in a feature space, N is the number of
triplets in the training set and α is a margin, ensuring that the positive pair (anchor and positive)
is closes by at least this margin than the negative pair (anchor and negative).

Circle

(48) proposed a new novel loss function for deep metric learning particularly in scenarios
where the data distribution is complex and imbalanced. Circle Loss aims to enhance the learning
of deep features by adapting a re-weighting strategy for each similarity score under supervision,
providing flexibility in optimization and a well-defined convergence target.

Circle loss incorporates a re-weighting mechanism for each similarity score, offering flexi-
bility in the optimization process. This adaptability allows the loss function to better adapt to
the characteristics of the data, contributing to improved learning outcomes.

The Circle loss function is designed to be compatible with both class-level labels and pair-
wise labels. This adaptability enables Circle loss to seamlessly integrate into various learning
scenarios. Notably, with slight modifications, Circle loss can degenerate into well-known loss
functions such as triplet loss or softmax cross-entropy loss (48).

The decision boundary in Circle Loss is defined as circular in the similarity pair space,
leading to a simplified and definite convergence target. This contrasts with other loss functions,
where the decision boundary is linear, resulting in a more ambiguous convergence status where
any point along the linear boundary is considered acceptable.
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Figura 7: Circle loss example. In this example, (a) represents a popular optimization manner of
reducing (sn-sp), where sn stands as the within-class similarity score and sn stands as between
class similarity score, and (b) the proposed optimization using circle loss. In (a) both T and T’
have the same margin, however, using Circle Loss, T would be choose to create a definite target
for convergence. Source: (48).

Mathematically, Circle Loss is expressed as follows:

Lcircle = log

(
1+

K

∑
i=1

L

∑
j=1

exp
(
γ(α jns jn −αipsip)

))

• α jn and αip are non-negative weighting factors

• sip are the between-class and within-class similarity scores

• K and L are the size number of positive and negative class sample set

• γ is a scale factor that controls the strength of penalization.

MultiSimilarity

Training deep metric learning models requires selecting informative pairs of data points,
a crucial yet challenging task. The Multi-Similarity (MS) (50) loss tackles this challenge by
harnessing three distinct types of similarities: Self-similarity, Positive relative similarity and
Negative relative similarity. Self-similarity measures how similar the elements within a pair
are to each other, positive relative similarity compares the similarity of a pair to other positive
pairs, highlighting how distinct it is from other similar examples and Negative relative similarity
compares the similarity of a pair to other negative pairs, emphasizing how different it is from
dissimilar examples. By combining these similarities, the MS loss achieves an optimized pair
selection and more precise weighting. Positive pairs are encouraged to have high self-similarity
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Figura 8: The multi-similarity loss is able to jointly measure the self-similarity and relative
similarities of a pair, which allows it collect informative pairs by implementing iterative pair
mining and weighting. Source: (50).

and positive relative similarity, emphasizing uniqueness among similar examples, while nega-
tive pairs are driven towards low self-similarity and negative relative similarity, accentuating the
difference between dissimilar examples. The MS loss doesn’t treat all pairs equally. Instead,
it uses an iterative process through mining and weighting. Pairs are initially selected based on
their positive relative similarity, focusing on unique positive example. These pairs are then re-
fined by considering both their self-similarity and negative relative similarity, assigning higher
weights to more informative pairs. The MS loss is formulated as follows:

LMS =
1
m
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• α and β are hyper-parameters controlling the strength of the weight for positive and ne-
gative pairs, respectively.

• λ is a margin parameter.

• Sik represents the cosine similarity between the embedding of the anchor sample i and a
sample k.

• Pi and Ni are the sets of positive and negative pairs related to the anchor i..

NPairs

The N-pair loss function, introduced by (46), offers an improvement over the classic triplet
loss for metric learning. While the triplet loss compares a positive example to only one nega-
tive example, the N-pair loss simultaneously compares it to multiple negative examples (N-1).
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Figura 9: Triplet loss, (N+1)-tuplet loss, and multi-class N-pair loss with training batch cons-
truction. Assuming each pair belongs to a different class, the N-pair batch construction in (c)
leverages all 2 × N embedding vectors to build N distinct (N+1)-tuplets with fi N i=1 as their
queries; thereafter, we congregate these N distinct tuplets to form the N-pair-mc loss. For a
batch consisting of N distinct queries, triplet loss requires 3N passes to evaluate the necessary
embedding vectors, (N+1)-tuplet loss requires (N+1)N passes and our N-pair-mc loss only re-
quires 2N. Source: (46).

This approach addresses a limitation of the triplet loss by considering the diversity of negative
classes, leading to a more stable and balanced metric learning process.

The multi-class N-pair loss, also known as N-pair-mc loss, specifically targets multi-class
scenarios. It aims to optimize the identification of a positive example among multiple negative
examples from different classes. By incorporating this richer negative context, the N-pair-mc
loss helps the model learn more discriminative representations. T he N-pair-mc loss can be
mathematically expressed as:

LN-pair-mc((xi,x+i )
N
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• xi represents the anchor input feature vector for the i-th example in a batch.

• x+i denotes the positive example that is similar to the anchor input xi and belongs to the
same class.

• x+j refers to negative examples that are dissimilar to the anchor input xi and belong to
different classes. These are the features against which the anchor is compared within the
loss function.

• N indicates the number of distinct classes represented in a batch.
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2.3 Principal Component Analysis

Principal Component Analysis (PCA) (16) is a sophisticated technique employed across
various fields, including data science, machine learning, and image processing. It excels in
dimensionality reduction, transforming high-dimensional datasets into lower-dimensional re-
presentations while preserving the most critical information. PCA operates on the principle that
the data’s informative rank, or the number of essential dimensions, is typically lower than the
number of original features (5). The primary objectives of PCA are to:

1. Extract the most salient information from the data table

2. Compress the dataset by retaining only this crucial information

3. Simplify the dataset description

4. Analyze the structure of both observations and variables

PCA identifies a set of new axes, termed principal components (PCs), which elucidate the ma-
jority of the variance in the data. These PCs represent new directions in the lower-dimensional
space, selected to capture maximum information from the original data. The data points are
subsequently projected onto these new principal components, yielding a lower-dimensional re-
presentation while preserving the most significant information (5). In this study, PCA was
selected due to its capability to unveil underlying structures in complex data and mitigate noise
influence. By representing the original variables with weighted averages through components,
it captures essential patterns while filtering out irrelevant fluctuations. This noise minimization
contributes to a clearer signal, resulting in a more robust representation (8). At its core, PCA
is a mathematical technique that transforms data into a new coordinate system, prioritizing the
capture of the most significant variations. The process involves several steps:

1. Calculation of the covariance or correlation matrix, summarizing relationships between
all variables.

2. Determination of eigenvalues and eigenvectors of the covariance/correlation matrix. Ei-
genvalues represent the variance captured by each principal component, while eigenvec-
tors define the directions in the new coordinate system.

3. Creation of new variables (principal components) based on the eigenvectors.
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Figura 10: First and Second principal component in a 3-covariates setting. Source: (And).

The principal components are expressed as linear combinations of the original variables:

Pi = bi1X1 +bi2X2 + · · ·+bikXk (2.1)

Where Pi is the ith PC, bik is the weight for the variable Xk. It is often advantageous to standar-
dize all variables Xk to zero mean and unit standard deviation. Each PC is a linear combination
of the original variables, with weights determining the contribution of each original variable to
the corresponding principal component. PCA computes these new variables (principal compo-
nents) under specific constraints. The first principal component is required to have the largest
possible variance, thus explaining the largest part of the data’s inertia. Subsequent components
are computed to be orthogonal to the previous ones while maximizing the remaining variance
(5). The components in PCA are obtained from the Singular Value Decomposition (SVD) of
the data table X. If X = P QT , the I ×L matrix of factor scores, denoted F, is obtained as:

F = P (2.2)

The matrix Q provides the coefficients of the linear combinations used to compute the fac-
tor scores. It can also be interpreted as a projection matrix, as multiplying X by Q gives the
projections of the observations on the principal components:

F = P = P QT Q = XQ (2.3)
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Geometrically, the components can be represented as a rotation of the original axes. The factor
scores give the length of the projections of the observations on the components. In this context,
Q is interpreted as a matrix of direction cosines (due to its orthonormality) and is also referred
to as a loading matrix (5). The original data matrix X can be reconstructed as the product of the
factor score matrix and the loading matrix:

X = FQT with FT F = 2 and QT Q = I (2.4)

This decomposition is often referred to as the bilinear decomposition of X (5). By leveraging
these mathematical properties, PCA provides a powerful tool for data analysis, compression,
and visualization across various domains in data science and machine learning.



3
Methods

3.1 Preprocessing

In image analysis, pre-processing refers to the initial steps of preparing the data before it
is fed into a model for analysis. In this study, pre-processing was applied to full-sized images
of biological samples known to contain Leishmania amastigotes, as well as other parasites.
The same pre-processing techniques were generalized to handle additional parasites, ensuring
consistency across the dataset.

In the field of micrography, achieving good contrast is crucial for accurately identifying
and quantifying individual structures within an image. Without sufficient contrast, these tasks
become imprecise or even impossible. To address this challenge, we employed contrast enhan-
cement, a digital image processing technique that manipulates the intensity values of pixels
within an image. This process typically involves increasing the difference in intensity between
the image’s brightest and darkest regions, resulting in a visually clearer and more detailed pic-
ture that facilitates analysis. This method was applied not only to Leishmania samples but also
expanded to improve the clarity of images containing other parasitic organisms, ensuring that
the model’s ability to detect and classify diverse parasites was optimized. The method used
in this research, linear interpolation, enables the original image to be blended with a modi-
fied version of itself in which pixel intensity values are altered to improve contrast. The linear
interpolation formula is used to do the following:

out_img = original_img× (1−α)+altered_img×α

• α is the contrast factor dictating the degree of enhancement. The increased contrast image
thus shows more distinct cellular features and a greater dynamic range of intensities,
making image analysis easier. Therefore, α was assigned a value of 1.5.

30
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3.2 Classifiers

One of the fundamental tasks in machine learning is classification. In this task, the goal is
to automatically categorize data points into pre-defined groups, known as classes, utilizing a
learning algorithm.

Data points are the individual pieces of information used for classification. They can be
numerical values, text, images, or any other format relevant to the task. In our study, the data
points are the images from bone marrow aspirates, initially focusing on samples containing
Leishmania parasites but later expanded to include images of other parasites as well.

The pre-defined groups are the categories the data points can belong to. In our study, the
categories were initially "leishmania"and "not leishmania", but these categories were later ex-
tended to encompass a broader range of parasite types. The learning algorithm is the core of
the classification system. It analyzes a training dataset containing labeled data points to learn
the characteristics that distinguish different categories. The learning algorithm typically learns
a mapping function, denoted as f(x). This function takes an input data point x and assigns it a
code representing its predicted category.

In some cases, the function might output a probability distribution indicating the likelihood
of the data point belonging to each potential category.

A common application of machine learning classification in healthcare is the one we are
conducting in this experiment, predicting if a person is infected with a specific disease. In our
experiment, an algorithm was trained on image data from patients diagnosed with Leishmania
and patients not infected. This setup was later generalized to include data from other parasitic
infections, allowing the model to learn the characteristics associated with multiple diseases.
The trained model can then be used to analyze data from new patients and predict whether they
are infected with Leishmania or another parasite, or if they are not infected at all.

3.2.1 Classic Classifiers

K-Nearest Neighbors

K-Nearest Neighbors (KNN) stands as a fundamental and widely used technique within the
realm of supervised learning, particularly renowned for its classification tasks. This intuitive al-
gorithm operates by analyzing the similarity,often measured through distance metrics, between
an unseen data point and the labeled data points within a training dataset.

During the classification process, KNN identifies the k closest data points to the unseen
point based on the chosen distance metric. Subsequently, it determines the most prevalent class
amongst these k neighbors, assigning that class label to the unseen point. This majority vote
approach underpins the core principle of KNN classification.

The value of k, which signifies the number of neighbors to consider, plays a crucial role in
KNN’s performance. Choosing an appropriate k is essential, as a low k can lead to overfitting,
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while a high k might result in underfitting, as the model fails to capture the underlying patterns
within the data.

Despite its relative simplicity, KNN exhibits remarkable interpretability, allowing for a clear
understanding of the rationale behind its classifications. This transparency, coupled with its
efficiency and versatility in addressing various classification problems, makes KNN a valuable
tool for both novice and experienced data scientists.

To our purpose, KNN will be used to classificate the data points in the new feature space
embedding created by the DMLs.

Support Vector Machines

Support Vector Machines (SVMs) constitute a prominent supervised learning paradigm fre-
quently employed in both classification and regression tasks. Their distinguishing characteris-
tic is their inherent capability to identify the optimal hyperplane, or ensemble of hyperplanes,
within high-dimensional spaces, effectively separating distinct data classes.

This separation is achieved by strategically positioning the hyperplane to maximize the mar-
gin, which represents the distance between the hyperplane and the closest data points from each
class, known as support vectors. To accomplish this, SVMs can leverage kernel functions,
which essentially map the data points into a higher-dimensional space where linear separa-
tion becomes attainable. This process enhances the distinction between categories, particularly
when dealing with complex, non-linear relationships often present within data sets containing
numerous variables.

Consequently, SVMs demonstrate exceptional generalizability, making them well-suited for
diverse data types and applications. Their robust performance in classifying and estimating data
points positions SVMs as valuable tools across various scientific and practical domains.

In our experiments, we willuse SVMs as the classification model for our DML embeddings,
in two scenarios: directly classifying the datapoints given by DML network, and classifying the
datapoints after PCA dimensionality reduction.
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PCA Classifier

Figura 11: Proposed method for leishmania parasite classification.

Our proposed pipeline for classification utilizes, in addition to DML to create a new feature
space embedding and SVM to classify the datapoints, PCA to reduce the new embeddings di-
mension with the purpose to reduce noise and get better results. To achieve the best possible
representation of the data in the reduced space, we need to select an appropriate number of di-
mensions to retain. This typically involves analyzing the variance associated with each principal
component. In this study, we identified the number of principal components that collectively
captured 90% of the total variance in the data. This approach ensures that we retain the most
information-rich dimensions while minimizing redundancy.



4
Experimental Results and Discussions

4.1 Datasets

4.1.1 Leishmania

Two separate image collections were used to create a Leishmania dataset for the experi-
ments. The first dataset, provided by (14), contains 45 pairs of color microscope images of
bone marrow aspirates. These images were captured using a Sony DSC H9 digital camera
attached to an Olympus-CH40RF200 optical microscope 1.

The second dataset, created by (31), consists of 68 pairs of images. These images were
captured using an iPhone 8 attached to a 1000x magnification optical microscope. Each pair
includes a corresponding image, as shown in the figure, with the same dimensions as the original
image. The white regions in these images highlight the locations of parasites within the original
RGB image.

The figure 12 shows that the microscope’s external area is present in the images of dataset 2.
Since our method relies on patch analysis, keeping this periphery would create many irrelevant
patches. This would slow down the algorithm and reduce its overall classification accuracy.
To address this, (28) proposed using the Hough Circles algorithm. This algorithm identifies
the circle encompassing the microscope. Then, a binary image is created to isolate this region.
Finally, the minimum bounding box is extracted for precise segmentation of the Region of
Interest (ROI). 13 shows an example of an dataset 2 image without the microscope’s after using
the algorithm.

Dataset 1 required additional preprocessing to handle images with parasite markings. Binary
masks were generated corresponding to the RGB images, similar to the masks in Dataset 2.

1Available at https://sites.google.com/site/hosseinrabbanikhorasgani/available-datasets/
dataset-of-leishmania-parasite-in-microscopic-images
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Figura 12: Examples from the two Leishmania datasets. In left we have a pair of images from
dataset 1, in top we have the original image, at bottom we have the original image marked
where it contains parasites. In right we have a pair of images from dataset 2, first the original
image, with the microscope being visible, and second we have the mask with the location of the
parasites in the orginal image.

These masks highlight the parasite locations and were created manually using Photoshop2

software. 13 shows an example of generated mask from dataset 1 images.

4.1.2 Plasmodium species

MP-IDB (30) is a publicly available image dataset consisting of 229 images representing
four different species of Malaria parasites: Falciparum (122 images), Malariae (37 images),
Ovale (29 images), and Vivax (41 images). For each species, there are images corresponding
to four distinct life stages: Ring, Trophozoite, Schizont, and Gametocyte. Expert pathologists
have provided the ground-truth for each image, ensuring accurate annotations. The images are
captured in 24-bit RGB color format with a microscope magnification of 100x.

4.1.3 Trypanosoma cruzi

TRYP-DB (32) is a publicly available image dataset introduced by (33). It consists of 33
slides containing thin blood smears from Swiss mice, experimentally infected with the T. cruzi
Y strain during the acute phase. These slides were prepared for image annotation and analysis.
The samples were obtained from animals housed at the Chagas Disease Laboratory at the Fede-
ral University of Ouro Preto, where the T. cruzi strain was maintained through successive blood

2Available at https://www.adobe.com/products/photoshop.html

https://www.adobe.com/products/ photoshop.html
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Binary mask generation for dataset 1 Microscope removal from dataset 2

Figura 13: Examples from the two leishmania datasets after the pre process stage.

passages in mice.

4.1.4 Schistosoma

SH-DB (37) is a publicly available dataset developed by (36). It contains 12,051 micros-
copic images derived from 103 urine samples, along with their corresponding segmentation
masks, which were manually annotated for Schistosoma haematobium eggs. The samples were
collected from school-age children who had reported the presence of blood in their urine. A
standard urine filtration procedure was used to process the clinical samples, where 10 mL of
urine was passed through a 13 mm diameter filter membrane with a pore size of 0.2 µm. After
filtration, the membrane was placed on a microscope slide and covered with a coverslip to en-
sure flatness for image capture. The images were obtained using a digital microscope called the
Schistoscope.

4.1.5 All: Plasmodium, Toxoplasma, Babesia, Leishmania, Trypanosome
and Trichomonad

ALL-DB (27) is a publicly available dataset consisting of 34298 microscopic images of mul-
tiple parasites (Plasmodium, Toxoplasma, Babesia, Leishmania, Trypanosome, Trichomonad)
and host cells (Red blood cells and Leukocytes) under 400X or 1000X magnification. Specifi-
cally, the dataset includes 843 images of Plasmodium and 3758 images of T. gondii at 400X,
and 2933 images of Toxoplasma, 1173 images of Babesia, 2701 images of Leishmania, 2385
images of Trypanosome, and 10134 images of Trichomonad at 1000X. Additionally, it contains
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8995 images of Red blood cells and 461 images of Leukocytes at 1000X, along with 915 images
of Leukocytes captured at 400X.

4.2 Data Augmentation

In this study, for the leishmania dataset, we generated synthetic data for the positive class
by rotating images up to 120 degrees, flipping them horizontally and vertically, and zooming
in slightly (up to 10%). These variations increased the dataset’s diversity. Machine learning
research shows that data augmentation can improve model performance, especially for limited
datasets. This technique creates more training data by applying geometric transformations to
existing samples. However, it’s crucial to choose appropriate transformations and hyperpara-
meters to avoid distortions.

It’s important to remember that augmented data isn’t entirely new information. It’s essen-
tially modified versions of existing data. Overusing it can lead the model to focus on features
specific to these synthetic samples, hindering its ability to generalize to real-world data.

To prevent overfitting, we downsampled the majority class (negative class) after augmenta-
tion. Downsampling randomly removes a specific number k of samples from the majority class.
In our case, k was chosen to achieve a final dataset ratio of positive to negative samples of 1:2,
k = N −2P, where N is the size of the negative class and P is the size of the positive class.

4.3 Data Sampling

For the Leishmania datasets, following the RGB image augmentation described in sec-
tion 4.2, we obtained corresponding binary masks for each image. We then merged these two
datasets, images and masks, before applying further data balancing techniques.

To address the class imbalance, we performed data augmentation for the positive class,
the minority class, and downsampling for the negative class, the majority class. This process
resulted in a final dataset of 65,202 balanced images (each 96x96x3 pixels in size). The details
of the data split for training, validation, and testing are presented in Table 1.

To achieve optimal performance, deep learning models benefit from being trained on well-
structured datasets. This typically involves splitting the data into three subsets: training, valida-
tion, and testing.

The training set is the workhorse of the process. It provides the model with labeled exam-
ples, allowing it to learn and refine its internal parameters. The validation set acts as a guide
during training. By monitoring the model’s performance on this set, we can adjust hyperpara-
meters and prevent overfitting. The testing set offers an unbiased evaluation of the final model’s
generalizability. It consists of unseen data, and the model’s performance on this set reflects its
real-world effectiveness. In this experiment, we adopted a common data split strategy, alloca-
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Original size Patches
(positive-
negative)

Synthetic Data Randomly
removed from
negative class

Dataset 1 45 997 - 24859 - -
Dataset 2 68 3319 - 38714 - -
Dataset 1+2 - 4316 - 63573 - -
Dataset 1+2
(augmented and
balanced)

- 21734 - 43468 17418 20105

Tabela 1: Quantity of data through data wrangling stages.

ting 70% of the data for training, 15% for validation, and 15% for testing. The specific details
of this division are presented in Table 2.

Total Positive Negative
Training (70%) 45641 15142 30499

Validation (15%) 9780 3304 6476
Test (15%) 9781 3288 6493

Total 65202 21734 43468

Tabela 2: Quantity of patches for training, validation and, testing.

As an extended part of our study, we analyzed additional datasets beyond the core inves-
tigation into Leishmania classification. These datasets—MP-IDB, TRYP-DB, SCH-DB, and
ALL-DB were explored without any data augmentation or downsampling techniques applied.
The following tables present the quantity and class distribution of images used from these da-
tasets, detailing both binary classification tasks (positive-negative) and multiclass classification
tasks.

Original size Patches
(positive-
negative)

Synthetic Data Randomly
removed from
negative class

MP-IDB Mala-
ria

37 397 - 19836 - -

MP-IDB Vivax 41 1039 - 20095 - -
MP-IDB Ovale 29 476 - 15482 - -
MP-IDB Falci-
parum

122 7251 - 58970 - -

TRYP-DB 674 1869 - 15747 - -
SCH-DB 12051 7790 - 37765 - -

Tabela 3: Quantity of data for MP-IDB, TRYP-DB, and SCH-DB datasets.
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Class Label Class Name Number of Images Magnification
0 Babesia 1173 1000X
1 Leishmania 2701 1000X
2 Leukocyte 915 400X
3 Plasmodium 843 400X
4 Toxoplasma 2933 1000X
5 Trypanosome 2385 1000X

Tabela 4: Class distribution and magnification levels in the ALL-DB dataset.

4.4 Hyperparameters and models architectures

4.4.1 Metric Losses

In this work, the Python Metric Learning3 was used to run and perform experiments
with different metric learning losses. This packages provides access to various DML loss func-
tions and can be incorporated easily to any deep learning pipelines and architecture. The four
losses we experimented with and its parameters will be explained bellow.

Triplet Loss

This loss employs two key parameters, margin and distance metric. A margin of 0.3 was set,
it ensures positive examples are closer to a reference point than negatives, creating a clear deci-
sion boundary. Additionally, cosine similarity, the chosen distance metric, prioritizes the angle
between data points, emphasizing their shape over size. This approach is crucial as parasite
structures are more reliable identifiers than size for classification.

Circle Loss

Two additional parameters are crucial for this loss decision-making process: Relaxation
factor and gamma. Relaxation Factor (m) controls the radius or flexibility of the decision boun-
dary. The model sets m to 0.4, following the precedent set in prior research (48). In that work,
the authors used 0.25 for face recognition tasks and 0.4 for fine-grained image retrieval. The
chosen value of 0.4 likely reflects a balance between accuracy and robustness, considering the
model’s application. The Gamma Parameter (γ) plays a role in shaping the decision boundary.
The model adopts a value of 256 for gamma, again aligning with the findings in (48). There, the
authors used 256 for face recognition and 80 for fine-grained image retrieval. The higher value
of 256 might be necessary due to the potentially greater variability in parasite shapes compared
to human faces.

3Documentation available at https://kevinmusgrave.github.io/pytorch-metric-learning/

https://kevinmusgrave.github.io/pytorch-metric-learning/
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Multisimilarity Loss

This loss relies on three key hyper-parameters: Alpha (α), Beta (β) and the Margin (λ).
Alpha and Beta controls the influence of different types of training pairs on the model’s le-
arning process. The chosen configuration (α = 2 and β = 50) emphasizes the contribution of
informative pairs, likely containing parasites, by assigning a higher weight (β) to their loss
function compared to less informative pairs (α). This helps the model prioritize learning from
valuable examples. The margin sets a similarity threshold for training pairs. Pairs exceeding
this threshold in similarity, likely positive examples, are considered similar, while those falling
below it , likely negative examples, are deemed dissimilar. The chosen value (λ = 1) establishes
the difficulty of the learning task. A higher value would create a more relaxed threshold, making
it easier for the model to identify similar pairs.

NPairs Loss

No changes were performed. The results shown by this loss were obtained the with pac-
kage’s default configuration.

4.4.2 CNN architectures

VGG19

• Convolutional Layers:

– VGG19 consists of a series of five convolutional blocks. Each block stacks three
convolutional layers with these properties: Kernel size: 3x3, Stride: 1 , Padding:
Same. The number of filters used in the convolutional layers increases as you pro-
gress through the network, starting from 64 and going up to 512.

• Pooling Layers:

– Max pooling layers are inserted after each convolutional block.These layers reduce
the spatial dimensionality of the feature maps by taking the maximum value within
a specific window, in our case 2x2.

• Activation

– Each convolutional layer is followed by a Rectified Linear Unit (ReLU) activation
function.

• Fully Connected Layers

– After the convolutional blocks, there are two fully-connected layers with 4096 neu-
rons each, and the classification layer, with its neurons equals to the number of
classes, in our case, 2.
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DeCaf

The DeCaf (Deep Convolutional Activation Feature) is a feature extraction method that
leverages the activation outputs of a pre-trained CNN model, instead of using the final clas-
sification output of the network, DeCAF leverages activations from earlier layers within the
pre-trained VGG19. These earlier layers capture more general visual features like edges and
textures, making them well-suited for feature extraction tasks. The pre-trained model used for
our experiments was the VGG19 model.

Base CNN for metric learning

• Convolutional Layers: The model uses three consecutive 2D convolutional layers with
increasing complexity:

– Layer 1: 32 channels, kernel size 3x3, stride 1

– Layer 2: 64 channels, kernel size 3x3, stride 1

– Layer 3: 128 channels, kernel size 3x3, stride 1

• Normalization and Activation: Following each convolutional layer, a batch normalization
layer is applied to stabilize the learning process by normalizing the layer’s outputs. A
Rectified Linear Unit (ReLU) activation function is used after each convolutional and
batch normalization step. This introduces non-linearity, allowing the model to learn more
complex patterns. Pooling and Regularization: Two max-pooling layers, each with a 2x2
window, are inserted after the second and third convolutional layers. These layers reduce
the spatial dimensions of the extracted features. Dropout layers with rates of 0.25 and 0.5
(dropout1 and dropout2) are incorporated for regularization. During training, these layers
randomly set a portion of neurons to zero, helping to prevent overfitting.

• Fully Connected Layers: Two fully connected layers (fc1 and fc2) are used to compress
and transform the extracted features: fc1 reduces the dimensionality to 512. fc2 maps the
features to the final embedding size.

• Flattening: Before feeding into the fully connected layers, the convolutional layers’ out-
put is flattened into a one-dimensional vector. This prepares the data for linear transfor-
mation in the final layers.

4.4.3 SVM

To optimize the SVM classifier performance, a Grid Search with cross-validation was em-
ployed. This technique explores a range of hyper-parameter values to find the best configuration.
Here, the grid search focused on two key parameters:



EXPERIMENTAL RESULTS AND DISCUSSIONS 42

• Regularization Parameter (C): This controls the trade-off between model complexity and
training accuracy. Values of 0.1, 1, and 10 were evaluated.

• Kernel Coefficient (γ): This parameter influences the influence of training data points.
Values of 1, 0.1, 0.01, and 0.001 were examined. The search prioritized maximizing recall
macro, a metric that considers the average performance across all classes. Additionally,
the search was executed in parallel to accelerate computations. This process aimed to
identify the optimal SVM configuration for each CNN model trained with different loss
functions. Ultimately, the goal was to achieve efficient classification of the transformed
embeddings with the highest possible recall.

4.4.4 Knn

No changes were performed in the parameters. The results shown by this classifier were
obtained the with scikit-learn 4 package’s default configuration.

4.5 Classification results

We employed stratified cross-validation on the test dataset with five folds to guarantee a
balanced class distribution during model evaluation. All trained models were evaluated on
the same data. We used the models to make predictions on the embeddings and calculated
metrics precision, recall, F1-score, accuracy for each class. The tables present the average and
standard deviation of these metrics across all folds, providing a comprehensive overview of
model performance.

4.5.1 Classification with VGG19 and DeCaf

Precision Recall F1-Score Specificity
VGG19 0.3750 (0.0000) 0.5000 (0.0000) 0.4250 (0.0000) 0.9900 (0.0000)
DeCaf 0.3750 (0.0000) 0.5000 (0.0000) 0.4250 (0.0000) 0.9900 (0.0000)

Tabela 5: VGG19 and DeCaf - classification metrics report comparison (Positive class metrics
with Specificity from Negative class)

At the start of our experiments, we tested how classical CNN models would perform on the
task of Leishmania parasite classification. As can be seen from the metrics in Table 5, classical
models that use multiple convolutional network layers, such as VGG19, and feature extraction
models, such as DeCaf, encounter significant difficulty in correctly classifying the positive class.

4Available at https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html##sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html##sklearn.neighbors.KNeighborsClassifier
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It can be noted that they are effective in correctly classifying the negative class, which can be
explained by the larger quantity and variety of data used in training. The limitations of such
models are also evident from the standard deviation results, which indicate low variability in
their performance.

4.5.2 Classification with DML + knn

Precision Recall F1-Score Specificity
Triplet 0.3566 (0.0321) 0.7633 (0.0115) 0.4866 (0.0321) 0.5266 (0.0750)
Circle 0.8900 (0.0100) 0.7400 (0.0100) 0.8066 (0.0115) 0.9666 (0.0057)
Multisimilarity 0.5333 (0.2746) 0.7800 (0.0264) 0.6100 (0.1652) 0.6866 (0.2294)
NPairs 0.6666 (0.0057) 0.4366 (0.0115) 0.5266 (0.1154) 0.9266 (0.0057)

Tabela 6: KNN - Classification metrics report comparison (Positive class metrics with Specifi-
city from Negative class)

Our first approach to classifying embeddings generated by the networks with metric loss
was to classify them with the classic distance-based classification algorithm, KNN. As can be
seen in Table 6, the results obtained in this way showed a good evolution compared to the
CNN models initially tested. In this scenario, it is possible to identify the Circle Loss and
Multisimilarity with higher and more balanced metrics results, with the Triplet also showing
promising results in its recall and the NPairs with the lowest results. It is interesting to note
the greater variation in these results, which is indicated by the standard deviation, indicating
that the KNN distance decision, although robust on average in the vectors, may present some
performance losses in the metrics.

4.5.3 Classification with DML + SVM

Precision Recall F1-Score Specificity
Triplet 0.9130 (0.0050) 0.9130 (0.0050) 0.9130 (0.0030) 0.9130 (0.0050)
Circle 0.9130 (0.0050) 0.9200 (0.0000) 0.9130 (0.0050) 0.9700 (0.0000)
Multisimilarity 0.8900 (0.0100) 0.9130 (0.0050) 0.9030 (0.0020) 0.9630 (0.0030)
NPairs 0.6160 (0.0050) 0.4760 (0.0132) 0.5260 (0.0800) 0.9000 (0.0030)

Tabela 7: SVM - Classification metrics report comparison (Positive class metrics with Specifi-
city from Negative class)

Aiming to improve the results obtained by the initial KNN-based embedding classification
method, we conducted further experiments using SVM to classify these vectors. The results



EXPERIMENTAL RESULTS AND DISCUSSIONS 44

can be seen in Table 7. They show a significant performance increase in all computed metrics
for positive and negative classes, with all recalls, except for NPairs which had smaller gains,
reaching values greater than 90

We can again highlight Triplet, Circle, and Multisimilarity, which showed promising recall
results, with Circle achieving the highest value of 92%. In this scenario, NPairs also obtained
the lowest results. A decrease in the variability of the results can also be observed, as seen in
the decrease in the standard deviation of the metrics. This indicates that the SVM classification
method can better adapt to the distinction of images from both classes.

After this result, a model was proposed that uses PCA before SVM classification to further
improve the already very good results.

4.5.4 Classification with DML + SVM + PCA

Precision Recall F1-Score Specificity
Triplet 0.9635 (0.0042) 0.8283 (0.0115) 0.8908 (0.0076) 0.9841 (0.0018)
Circle 0.9872 (0.0024) 0.9830 (0.0046) 0.9850 (0.0020) 0.9935 (0.0012)
Multisimilarity 0.8862 (0.0167) 0.9613 (0.0057) 0.9221 (0.0084) 0.9373 (0.0104)
NPairs 0.8941 (0.0083) 0.9504 (0.0119) 0.9213 (0.0087) 0.9430 (0.0046)

Tabela 8: PCA model - Classification metrics report comparison (Positive class metrics with
Specificity from Negative class)

Based on Tables 8, the proposed model using PCA for dimensionality reduction achieves
higher prediction quality than previously seen models. Specifically, the model using the Circle
Loss that outperforms all others in all computed metrics. From the tables, we can infer certain
behaviors about each loss and the effect that dimensionality reduction had on its performance.
In the case of Triplet Loss, there was a gain in the correct prediction of different negative
examples, which can be seen by its high recall. However, there was a drop in the recall of
the positive class compared to the results without dimensionality reduction (7). The low recall
shows that, for Triplet Loss, there was a tendency for more false negatives in the prediction of
the model with PCA compared to the model without PCA.
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Figura 14: Visualizing new data representation (embedding space) created by Circle loss.

The Circle Loss, which already had a good result in the model without PCA, being the
highest recall, became our best model after the application of PCA, indicating a good increase
in correct predictions. This can be seen in both the positive and negative classes.

Figura 15: ROC curve from Circle model on test set.

MultiSimilarity also obtained better results after dimensionality reduction, as can be seen
by its higher recall than the model without PCA, indicating a decrease in false negatives. There
was a small drop in the recall of the negative class, indicating an increase in false negatives for
this class.

Npairs, which in previous experiments had been the loss with the worst results compared to
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others, obtained a significant improvement in its metrics when working with a reduced embed-
ding vector. As 7 and 8 show, the recall obtained an increase of 47% in its mean, indicating
a large decrease in false negatives. It can also be seen, by analyzing the standard deviation,
that the npairs model is the one with the highest standard deviation in both models, indicating a
greater variation in its results.

Figura 16: Circle model training history.

4.5.5 Other parasites

We extended the evaluation of the models to different parasite datasets to test their per-
formance across a wider range of parasites. The table summarizes the classification results,
showing the best-performing deep metric learning loss function for each dataset. All results
were obtained using a combination of deep metric learning with SVM and PCA for dimensio-
nality reduction.

Loss Function Precision Sensibility F1-Score Specificity
MP-IDB (30) Triplet 0.987 (0.002) 0.983 (0.004) 0.985 (0.002) 0.993 (0.001)

TRYP-DB (32) Multisimilarity 0.993 (0.008) 0.943 (0.034) 0.967 (0.017) 0.999 (0.001)

SH-DB (37) Multisimilarity 0.703 (0.019) 0.864 (0.015) 0.775 (0.015) 0.926 (0.006)

Tabela 9: Classification metrics report comparison across datasets (Positive class metrics with
Specificity from Negative class)

As shown in 9, the MP-IDB dataset, using the Triplet loss function, achieved high precision
(0.987) and sensitivity (0.983). For the TRYP-DB dataset, the Multisimilarity loss function
also produced strong results, though the sensitivity was lower at 0.943. In contrast, the SH-DB
dataset, while achieving moderate precision (0.703), had a relatively higher sensitivity (0.864).
These results highlight the models’ adaptability and effectiveness across varying datasets.

To further explore the capabilities of our model, we applied it to the MP-IDB dataset, fo-
cusing on diagnosing the four different species of Plasmodium parasites. The table 10 presents
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the classification metrics for P. malariae, P. vivax, P. ovale, and P. falciparum using our deep
metric learning approach combined with SVM and PCA.

Loss Function Precision Sensibility F1-Score Specificity
P. malarie Circle 0.885 (0.088) 0.881 (0.075) 0.881 (0.072) 0.998 (0.002)

P. vivax Circle 0.890 (0.044) 0.877 (0.038) 0.883 (0.030) 0.994 (0.003)

P. ovale Multisimilarity 0.933 (0.084) 1.000 0.963 (0.046) 0.997 (0.003)

P. falciparum Multisimilarity 0.837 (0.017) 0.918 (0.010) 0.982 (0.001) 0.976 (0.002)

Tabela 10: Model performance in Plasmodium parasite classification for dataset MP-IDB

The results are promising, particularly for P. ovale, which achieved a perfect sensitivity
(1.000) and a high F1-score (0.963). P. malariae and P. vivax also showed consistent perfor-
mance, with precision and sensitivity around 88%, and near-perfect specificity values of 0.998
and 0.994, respectively. For P. falciparum, although precision was slightly lower at 0.837, it
still achieved strong results in terms of sensitivity (0.918) and F1-score (0.982). These results
demonstrate the model’s ability to accurately diagnose different species of Plasmodium, high-
lighting its effectiveness across varied species within the same parasite family.

We decided to explore a multiclass classification problem using the same pipeline to clas-
sify different types of parasites. The results from the ALL-DB dataset, shown in the table
11, indicate that our model performs well across various parasite species, including Babesia,
Leishmania, Plasmodium, Toxoplasma, and Trypanosome.

Loss Function Precision Sensibility F1-Score Specificity
Babesia Circle 0.994 (0.010) 0.979 (0.030) 0.986 (0.010) 0.998 (0.001)

Leishmania Circle 0.987 (0.007) 0.992 (0.010) 0.989 (0.006) 0.996 (0.006)

Plasmodium Circle 0.983 (0.020) 0.967 (0.030) 0.975 (0.020) 1.000

Toxoplasma Circle 1.000 1.000 1.000 0.995 (0.001)

Trypanosome Circle 1.000 0.992 (0.006) 0.996 (0.003) 1.000

Tabela 11: Model performance in parasite classification for dataset ALL-DB

The model achieved high precision and sensitivity for all classes. Notably, Toxoplasma and
Trypanosome both reached perfect scores of 1.000 for precision and sensitivity. Babesia and
Leishmania also showed strong results, with precision values of 0.994 and 0.987, respectively,
and sensitivity values close to 1.000. The Plasmodium species performed well too, with a
sensitivity of 0.967 and precision of 0.983.

These results demonstrate that our model effectively handles multiclass classification and
maintains high performance when distinguishing between different types of parasites.



5
Conclusion

The comparison of various deep metric learning methods and classifiers demonstrated sig-
nificant potential for cytological data imaging applications. In addition to the metric learning
approaches, we also compared the performance with convolutional models such as VGG19 and
DeCAF, but the deep metric learning models, especially Circle Loss, consistently outperformed
them. Circle Loss emerged as the best across all classification metrics, particularly excelling in
sensitivity (98.3%) and specificity (99.3%).

Our experiments also extended to the classification of multiple parasite species, specifically,
in the MP-IDB malaria dataset, our models reached a remarkable 0.98 recall. For Trypanosoma
cruzi trypomastigotes in the TRYP-DB dataset, we achieved a sensitivity of 94%, showing the
model’s strong performance with this parasite. Additionally, the results in classifying different
species of the Plasmodium parasite were impressive, with the model achieving a perfect 1.000
sensitivity in P. ovale, and high performance in other species as well. This highlights the model’s
ability to handle different species from the same parasite effectively.

Our multiclass experiments, which included various parasites like Babesia, Leishmania,
Plasmodium, Toxoplasma, and Trypanosome, further demonstrated the robustness of our ap-
proach, with more than 96% sensitivity achieved for all categories. These results underscore
the model’s capability to generalize across a range of parasite species while maintaining high
accuracy and sensitivity.

In summary, the research successfully compared multiple deep metric learning algorithms
and demonstrated their strong performance in medical diagnosis. Circle Loss proved to be
especially valuable, and the findings indicate promising directions for future research, including
further refinement of models and exploration of additional parasites and imaging conditions.
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