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Resumo

O cenário climático-mundial atual demanda o uso dos recursos naturais de forma equilibrada,

especialmente a água. A predição da evapotranspiração de referência (ETo) pode auxiliar no

gerenciamento dos recursos hídricos, sendo um parâmetro determinante na avaliação inicial

da água para aplicações como programação de irrigação e estudos hidrológicos. A literatura

mostra que modelos de Machine Learning (ML) têm sido amplamente aplicados na predição

de ETo e têm mostrado resultados promissores, mesmo com o uso de parâmetros reduzidos.

Trabalhos anteriores também apresentaram sistemas de irrigação automatizados que se co-

nectam a serviços Web para prever os parâmetros necessários para fazer a programação de ir-

rigação. No entanto, um sistema baseado em nuvem depende de uma infraestrutura de cone-

xão à internet; tal infraestrutura nem sempre está disponível em áreas rurais. Além disso, um

dispositivo que depende de uma conexão à internet geralmente consumirá mais energia. Por-

tanto, esta pesquisa tem como objetivo principal desenvolver e avaliar um modelo TinyML

projetado para prever ETo, com o objetivo de estabelecer um modelo de machine learning

energeticamente eficiente adequado para integração em um sistema embarcado. Avaliamos

três modelos considerando temperatura do ar, umidade relativa e velocidade do vento como

entradas. Os modelos foram incorporados em um microcontrolador ESP32 e comparados

com suas versões em nuvem. Os resultados mostram que o modelo que estima ETo consi-

derando apenas a temperatura do ar e a umidade é a melhor opção considerando o trade-off

entre custo e precisão. Comparado com sua versão baseada em nuvem, este modelo incor-

porado consome 37,97% menos espaço de memória, usa aproximadamente 99,98% menos

energia e roda 99,97% mais rápido.

Palavras-chave Eficiência energética, Sistemas embarcados, Eletrônica de baixa potência,

TinyML, Aprendizagem de máquina.
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Abstract

The current climate-world scenario demands the use of natural resources in a balanced way,

especially water. The prediction of reference evapotranspiration (ETo) can assist in the ma-

nagement of water resources, being a determining parameter in the early assessment of water

for applications such as irrigation scheduling and hydrological studies. The literature shows

that Machine Learning (ML) models have been widely applied in the prediction of ETo and

have shown promising results, even with the use of reduced parameters. Previous works also

presented automated irrigation systems that connect to Web services to predict the parame-

ters needed to make irrigation scheduling. However, a cloud-based system depends on an

internet connection infrastructure; such infrastructure is not always available in rural areas.

In addition, a device that relies on an internet connection will generally consume more power.

Therefore, this research primarily aims to develop and assess a TinyML model designed to

forecast ETo, with the goal of establishing an energy-efficient machine learning model sui-

table for integration into an embedded system. We evaluated three models considering air

temperature, relative humidity, and wind speed as inputs. The models were embedded in

an ESP32 microcontroller and compared to its cloud versions. The results show that the

model that estimates ETo considering only air temperature and humidity is the best option

considering the trade-off between cost and precision. Compared to its cloud-based version,

this embedded model consumes 37.97% less memory space, uses approximately 99.98% less

energy and runs 99.97% faster.

Keywords: Power efficiency, Embedded systems, Low power eletronics, TinyML, Machine

learning
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Glossary

mm d−1 Millimeters per day, the unit of measure for reference evaporation.
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1 Introduction 1

1 Introduction

This chapter describes the motivations for the development of the study to create an

embedded machine learning model to estimate reference evapotranspiration.

1.1 Motivation

The climate situation in the current world scenario demands the use of natural re-

sources in a balanced way. The water demand in Brazil, for example, has undergone several

transformations throughout its history. The demand in the country has been continuously

growing over the years, with an emphasis on supplying cities, the manufacturing industry,

and irrigated agriculture. Between 2022 and 2040, an increase of approximately 30% in

water withdrawals is estimated, representing an expansion in the use of 1 trillion and 290

billion liters of water on average per year (ANA, 2024). Agriculture, and especially irrigated

agriculture, is the sector with the highest consumptive water use and water withdrawal 1.

Soil water balance is used to estimate the total available soil water and, indirectly,

a crop’s water use. The amount of available soil water varies during the season, adding

eventual rainfall and / or irrigation water inputs, and finally subtracting the output related to

evapotranspiration (ET) (COSTA et al., 2018). ET contains two processes, evaporation from

surfaces of soil and plants, and transpiration from crops to the atmosphere (CHEN et al.,

2020). It is critical to predict ET accurately to design irrigation plans and improve the water

resource use efficiency (FERREIRA et al., 2019).

The evapotranspiration rate from a reference surface, not short of water, is called

the reference crop evapotranspiration or reference evapotranspiration and is denoted as ETo

(ALLEN et al., 1998). To calculate ETo, the Food and Agriculture Organization of the United

Nations (FAO) recommends the use of the Penman-Monteith method (FAO56). FAO56 also

requires a large number of meteorological variables, such as the maximum and minimum air

temperature, relative humidity, wind speed, and solar radiation. These variables are often

difficult to obtain, as the necessary sensors are very expensive, making the calculation of

ETo difficult (DIAS et al., 2021). Improving the precision of the estimation of ETo plays a

vital role in computing ET and therefore, increasing the irrigation efficiency and agricultural

1https://www.fao.org/aquastat/en/data-analysis/irrig-water-use
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water reuse (CHEN et al., 2020).

The lack of available meteorological data and infrastructure opened an opportunity

for new fields of research. The literature shows that machine learning (ML) models have been

widely applied to predict ETo and water demand (DIAS et al., 2021; FERREIRA; CUNHA,

2020; SIDHU et al., 2020). Some studies seek to simplify ETo estimation by using a smaller

number of meteorological variables. In (FERREIRA et al., 2019), the authors evaluated the

effectiveness of alternative formulas compared to ML models in estimating daily values of

ETo in Brazil with limited meteorological data. The machine learning models showed better

performance compared to the alternative equations evaluated. This study also points out that

the use of relative humidity in addition to temperature increased the generalization capacity

of the models and provided performance gains for all evaluated models, representing an

option to improve the estimation of ETo at a low additional cost.

The research conducted by (FAROOQUE et al., 2022) examined three deep learning

architectures, Long Short Term Memory (LSTM), 1D Convolutional Neural Networks (1D-

CNN), and Convolutional LSTM (ConvLSTM), for ETo prediction daily. The relative im-

portance method was used to identify the most relevant input variables for these models. For

calibration and validation evaluation in annual daily ETo forecasts, the hybrid ConvLSTM

model recorded errors lower than CNN and LSTM with the lowest RMSE for calibration and

validation.

Moreover, the application of the predicted ETo alongside other meteorological data

using ML techniques for irrigation decision and scheduling can also be observed in the li-

terature (NAGAPPAN et al., 2020; JIA et al., 2023; CHEN et al., 2021; LORITE et al.,

2015).

In addition, it has been shown that the advancement of automated irrigation systems,

which are linked to Web services using the Internet of Things (IoT), can predict the para-

meters essential for making irrigation decisions (NAWANDAR; SATPUTE, 2019). (BU;

WANG, 2019) presents a smart agriculture IoT system where deep reinforcement learning is

integrated into the cloud layer to enable real-time intelligent decision-making, such as calcu-

lating the optimal water required for irrigation to enhance the crop growth environment. The

research carried out by (GOAP et al., 2018) presents an intelligent system based on open

source technology to predict the irrigation requirements of a field using the detection of soil
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parameters together with data from the Internet to represent weather forecast.

These past studies presume adequate network coverage and reliable internet access at

the site where the system operates, ensuring communication between edge devices and either

the Cloud or a local server. The work of (MONTELEONE et al., 2019) investigates the vari-

ables that affect the intention to adopt Precision Agriculture for smart water management in

the context of Agriculture 4.0 by developing a conceptual model and performing a systematic

review of the literature on the theme. They concluded that the regional telecommunications

infrastructure, especially the precariousness of Internet access, is one of the factors with the

greatest impact on the process of adopting information technology (IT) in rural areas. The-

refore, creating a solution that does not depend on communication infrastructure can expand

the application of solutions using IoT and ML in a wider range of locations.

One way to use ML without depending on the network communication is to em-

bed the ML model in the device placed in the field. Furthermore, embedding the ML mo-

del offers several benefits, including reduced energy consumption, reduced latency, efficient

bandwidth utilization, improved data security, improved privacy, and cost savings. This ena-

bles IoT devices to function reliably without continuous dependence on cloud services while

providing accurate ML solutions, making it an attractive option for IoT applications seeking

more cost-effective results. The effort to embed ML models in resource constraint devices is

called TinyML (DUTTA; BHARALI, 2021).

Recent works have used the TinyML concept to enable the use of ML models without

relying on a network connection. (PEREIRA et al., 2024), for example, presents an embed-

ded system that uses a random forest model to classify the potability of water in a ESP32

microcontroller independently of an Internet connection. (HONG et al., 2023) investigates

the prediction of wind speed by applying an artificial neural network (ANN) model to an

ESP32 achieving low-latency data analysis.

Running a machine learning model directly on an embedded device offers the benefit

of eliminating reliance on a communication infrastructure, thereby simplifying implemen-

tation and reducing overall costs. We believe that this work can help to develop irrigation

systems that are more energy efficient and more accessible to regions with limited technolo-

gical resources, such as rural areas in developing nations.
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1.2 Research questions

• RQ1: Is it possible to embed the regression model that estimates reference evapotrans-

piration values without losing performance?

• RQ2: What are the differences in terms of solution quality between the embedded

machine learning models and the cloud model?

• RQ3: What are the main advantages and limitations of adopting the reference model

of the literature?

1.3 General and Specific Objectives

The main objective of this study is to propose an energy-efficient ML model to predict

ETo using minimal meteorological data that can be used in an embedded system. The specific

contributions of this study are the following:

1. Propose an ML model that predicts ETo in an embedded scenario.

2. Perform and evaluation of the proposed model with the one implemented on a machine

with higher computational resources.

3. Evaluate the proposed model energy consumption, memory footprint, and time to run

inferences compared to a model running on a cloud-based scenario.

1.4 Structure of the work

This work is organized as follows. Section 2 introduces key concepts essential to

understanding the research. It begins with a discussion on evapotranspiration, explaining its

significance in environmental and agricultural contexts. The section then covers the basics

of machine learning, detailing its various techniques and their relevance to predicting evapo-

transpiration. Lastly, the fundamentals of TinyML are explored, focusing on its application

in resource-limited environments.

In section 3, previous studies related to the prediction of ETo using machine learning

techniques are reviewed. It also covers the development of automated irrigation systems



1.4 Structure of the work 5

based on IoT, as well as the implementation of machine learning models on embedded sys-

tems. This section highlights the relevance of the current proposal within the landscape of

technological advancements in agriculture.

Section 4 outlines the dataset used for the research and the preprocessing techniques

applied. It details the process of creating and training machine learning models, along with

the evaluation methods used to assess their performance. Additionally, the section describes

how the models were embedded into hardware and the process of evaluating their real-world

performance.

In section 5, the model’s performance is compared and analyzed, with a particular

focus on the embedded model’s efficiency and effectiveness. This section provides a com-

prehensive discussion on the findings, examining both the successes and limitations of the

proposed solutions. Finally, section 6 summarizes the key findings of the research, reflects

on its contributions to the field, and proposes potential directions for future work.
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2 Fundamentals

This section covers the basics of evapotranspiration and its importance, alongside an

introduction to machine learning techniques and embedded approaches such as TinyML.

2.1 Evapotranspiration

Evaporation is the process by which liquid water is converted to water vapor (vapo-

rization) and removed from the evaporating surface (vapor removal). Water evaporates from

a variety of surfaces, such as lakes, rivers, pavements, soils, and moist vegetation. Transpi-

ration consists of the vaporization of liquid water contained in plant tissues and the removal

of the vapor to the atmosphere. Transpiration, like direct evaporation, depends on energy

input, vapor pressure gradient, and wind. Therefore, the terms radiation, air temperature, re-

lative humidity, and wind speed must be considered when evaluating transpiration (ALLEN

et al., 1998). Evaporation and transpiration occur simultaneously and there is no easy way

to distinguish between the two processes. In addition to the availability of water in the top-

soil, evaporation from cultivated soil is mainly determined by the fraction of solar radiation

reaching the soil surface.

Evapotranspiration (ET) is typically modeled using meteorological data and algo-

rithms that describe the surface energy and aerodynamic characteristics of vegetation. ET

is typically measured using systems that require the use of relatively complex physical prin-

ciples and techniques. In many agricultural systems, plant density, height, vigor, and water

availability are generally uniform, and the application of estimation algorithms and measure-

ment of ET can be relatively straightforward, although it still presents substantial challenges

(ALLEN et al., 2011).
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Figura 1: The figure shows the process of evaporation and transpiration occurring simulta-
neously in the system presented. Source: Author.

2.1.1 Reference Evapotranspiration

The evapotranspiration rate from a reference surface, not short of water, is called the

reference crop evapotranspiration or reference evapotranspiration and is denoted as ETo. The

reference surface is a hypothetical grass reference crop with specific characteristics, as we

can observe in Figure 2. ETo is a climatic parameter and can be computed from weather data,

expresses the evaporating power of the atmosphere at a specific location and time of the year

and does not consider the crop characteristics and soil factors (ALLEN et al., 1998). ETo

can be determined using lysimeters, structures designed to accurately measure precipitation,

evaporation, and drainage events, and are typically used in the development and validation of

other methods. Given the cost and complexity of lysimeters, their use is typically restricted

to research (JIA et al., 2023).
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Figura 2: Reference Evapotranspiration (ETo). Source: Author.

Estimating ETo through mathematical models is the most common and usual pro-

cess; however, they present accuracy problems, mainly due to the lack of adjustment of their

respective coefficients, reading errors, sensor accuracy and because they are developed for

specific climatic and agronomic conditions (MORAIS et al., 2015). Therefore, the Food and

Agriculture Organization of the United Nations (FAO) and the International Commission

on Irrigation and Drainage (ICID) in their bulletin 56, standardized the Penman-Monteith

method, making it the standard model for estimating ETo, from meteorological data for its

application (ALLEN et al., 1998). The FAO Penman-Monteith method is recommended as

the only ETo method for determining reference evapotranspiration.

ETo =
0.408∆(Rn −G)+ γ

900
Tavg+273u2(es − ea)

∆+ γ(1+0.34u2)
, (1)

ETo is the reference evapotranspiration (mmd−1); ∆ is the slope of the water vapor

pressure curve (kPa °C−1); Rn is the net solar radiation (MJm−2d−1); G is the soil heat flux

(MJm−2d−1), equal to 0 for daily estimates; γ is the psychrometric constant (kPa °C−1);

Tavg daily average air temperature (°C); u2 wind speed measured at 2 m height (ms−1); ea

the partial pressure of water vapor; es water vapor saturation pressure; (es − ea) is the water

vapor pressure deficit (kPa).

The scarcity of available water resources and climate change are the main factors

affecting agricultural irrigation. To improve the productivity by water use, it is necessary to

predict crop water needs in advance (JIA et al., 2023). Where water resources are limited

and seriously threatened by overexploitation, it is extremely important to estimate crop water
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demand more accurately (MORAIS et al., 2015).

In this way, good management and planning of available water resources can be achi-

eved. One of the main water balance parameters used to determine the crop’s water needs is

ET.

2.2 Machine Learning

Machine Learning (ML) is one of the features of Artificial Intelligence (AI) and can

be broadly defined as computational methods that use experience to improve performance,

make accurate predictions, identify patterns, and make decisions. It can also be understood

as a set of computational techniques that use experience to improve performance or make

accurate predictions. In this context, experience refers to the information available to the

machine, usually in the form of previously collected data.

Machine learning supports a very broad set of practical applications, which include

text or document classification, natural language processing (NLP), speech processing appli-

cations, computer vision applications, among others (MOHRI et al., 2018). We can classify

ML models into three main categories: Supervised Learning, Unsupervised Learning, and

Reinforcement Learning.
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Figura 3: Machine Learning Applications. Souce: Authors.

2.2.1 Supervised Learning

Supervised Learning establishes a process that relates an output to an input based on

labeled data, and continuously adjusts the predictive model until the model’s predicted results

achieve an expected accuracy. Examples of problems that fall under this category of learning

are Classification and Regression. Examples of common supervised learning algorithms

include Support Vector Machine (SVM), Artificial Neural Network (ANN), Decision Trees,

Bayesian Classification, Least Squares Regression, Logistic Regression, etc.

An ANN is an information processing system that simulates the human brain’s ability

to find patterns and learn through trial and error, typically consisting of a series of processing

elements called neurons, which are interconnected by synaptic weights. The most common

architecture of an ANN consists of an input layer, where data is fed into the ANN, hidden

layer(s) where the data is processed, and an output layer, where the results are produced

(FERREIRA et al., 2019). An example can be seen in Figure 4.
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Figura 4: General architecture of the artificial neural networks used in the study of (FER-
REIRA et al., 2019). Source: (FERREIRA et al., 2019)

2.2.2 Unsupervised Learning

In the Unsupervised Learning, the input data is unlabeled, and algorithms must in-

fer the intrinsic connections of the data, such as clustering and association rule learning, to

discover new patterns in the data. The most common unsupervised learning task is Cluste-

ring. An algorithm for this type of learning includes K-Means, whose use is quite common

in clustering tasks. The goal of the K-means algorithm is to divide n objects into k groups,

with the result being that each object belongs to the closest group (FERREIRA et al., 2019).

Another example is principal component analysis (PCA), which can be used to reduce the di-

mensionality of data by finding the most important features that explain most of the variation

in the data.

2.2.3 Evaluation metrics for regression models

Evaluation metrics or performance metrics, are crucial components of regression

analysis and machine learning-based prediction models. They serve as tools to quantify

the model’s effectiveness and accuracy. The calculation of these metrics is crucial in the

development of a model and is typically performed at the end of the training process, using

a test dataset that the model has not encountered during training.

The Mean Squared Error (MSE) is a popular regression-related metric related to the
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average squared error between the predicted and actual values. It takes positive or zero values

and is given by

MSE =
∑

N−1
i=0 (yi − ŷi)

2

N
(2)

where yi is the predicted value, ŷi is the observed value, and N is the number of

observations.

One major disadvantage of MSE is that it is not robust to outliers. In case a sample

has an associated error, with values larger than the one of other samples, the square of the

error will be even larger. This, paired with the fact that MSE calculates the average of errors,

makes MSE prone to outliers (PLEVRIS et al., 2022).

The Root Mean Squared Error (RMSE) is a frequently used measure of the differen-

ces between values, predicted by a model, or an estimator and the values observed. It is the

square root of MSE. Unlike MSE, RMSE provides an error measure in the same unit as the

target variable.

RMSE =

√
∑

N−1
i=0 (yi − ŷi)2

N
(3)

By expressing the error as a percentage, the Mean Absolute Percentage Error, one

can have a better understanding of how off the predictions are in relative terms. It is given

by:

MAPE =
100%

N

N−1

∑
i=0

yi − ŷi

yi
(4)

The Coefficient of Determination (R2) measures how closely predicted values match

actual values, indicating the model’s accuracy during training. In nonlinear models, such as

ANN-based predictions, R2 is calculated as the ratio of the variance explained by the model

to the total variance. Unlike in linear models, R2 can take negative values, which indicates

that the model fits the data poorly, rather than being constrained between 0 and 100%.

R2 = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − ȳ)2

(5)

2.3 Embedded Systems: TinyML

The rapid growth in miniaturization of low-power embedded devices and advance-

ment in the optimization of ML algorithms have opened up a new prospect of the Internet
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Figura 5: Composition of TinyML. Source (RAY, 2022)

of Things (IoT), tiny machine learning (TinyML), which calls for implementing the ML

algorithm within the IoT device (DUTTA; BHARALI, 2021).

TinyML focuses on deploying compressed and optimized machine learning models

on tiny, low-power devices such as battery-powered microcontrollers, and embedded sys-

tems (ABADADE et al., 2023). TinyML framework in IoT is aimed to provide low latency,

effective bandwidth utilization, strengthen data safety, enhance privacy, and reduce cost. Its

ability to empower the IoT device to reliably function without consistent access to the cloud

services while delivering accurate ML services makes it a promising option for IoT applica-

tions seeking cost-effective solutions (DUTTA; BHARALI, 2021).

TinyML system must accommodate the following requirements, (i) energy-

harvesting edge devices for running learning models, (ii) enables battery-operated embedded

edge devices, (iii) scalability to trillions of sensors enabled cheap embedded devices, and (iv)

codes that can be stored within a few KB in the on-device RAM (RAY, 2022).

TinyML can be envisaged as the composition of three key elements (i) software, (ii)

hardware, and (iii) algorithms. TinyML can be accommodated in Linux, embedded Linux,

and cloud-based software where initial TinyML applications can be run. The hardware can

comprise IoT devices with or without hardware accelerators. Such devices can be based on

in-memory computing, analog computing, and neuromorphic computing for better learning

experience (RAY, 2022).

(DUTTA; BHARALI, 2021) built a taxonomy of TinyML applications that have been
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Figura 6: Taxonomy of the main TinyML applications. Source: (ABADADE et al., 2023).

used to bring new solutions to various domains, Figure 6, such as healthcare, smart farming,

environment, and anomaly detection.

TinyML can be applied to a variety of use cases, such as image recognition, speech

recognition, sign language processing, phenomics, face detection, hand gesture recognition,

few-shot keyword spotting, precision agriculture, body pose estimation, ecological moni-

toring, traffic management, environmental prediction, respiratory symptom detection, and

autonomous vehicle monitoring, among others.
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3 Related works

This section reviews existing literature and research related to the prediction of evapo-

transpiration using machine learning techniques. It examines the development of automated

irrigation systems utilizing IoT, which aims to optimize water usage. Furthermore, it ex-

plores previous work applying machine learning models to embedded systems. The review

emphasizes the gap in existing research and the relevance of the proposed solution to address

these challenges.

3.1 Prediction of reference evapotranspiration values using Machine

Learning techniques

The work by (FAROOQUE et al., 2022) presents three deep learning models, inclu-

ding Long Short Term Memory (LSTM), 1D Convolutional Neural Networks (1D-CNN),

and Convolutional LSTM (ConvLSTM), were tested to predict ETo on a daily time scale

for a seven-day period. Daily air temperature, maximum, minimum, and mean values, solar

radiation, relative humidity, and wind speed data were collected. The relative importance

method was used to determine the most suitable input variables for the models. The deep

learning models were evaluated with the Walk-Forward Analysis (WFA) cross-validation te-

chnique using statistical measures of Root Mean Square Error (RMSE) and Coefficient of

Determination (R²).

The modified FAO Penman–Monteith equation (FAO-56) equation was used as a re-

ference method for comparison purposes. For calibration and validation assessment on an-

nual daily ETo forecasts, the hybrid ConvLSTM model recorded lower errors than CNN and

LSTM with the lowest daily calibration and validation RMSE of 0.64 and 0.62, 0.81 and

0.81, and 0.81 and 0.70 mm/day for the meteorological stations used. The robustness and

accuracy of these forecast models can help farmers, water resource managers, and irriga-

tion planners with improved and sustainable water management at the basin level, and for

irrigation scheduling at the farm or field level.

The work (FERREIRA et al., 2019) evaluated the performance of alternative equati-

ons compared to ML models to estimate daily ETo values throughout Brazil using daily data

from meteorological stations of the National Institute of Meteorology (INMET), available in
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the Meteorological Database for Education and Research (BDMEP) that measure tempera-

ture and relative humidity or only temperature. Two strategies, not yet used in Brazil, were

used to develop the Artificial Neural Network (ANN) models, of the multilayer feed-forward

type, and Support Vector Machine (SVM): (i) the definition of groups of meteorological stati-

ons with similar climatic characteristics, using the K-Means clustering algorithm, to develop

specific models for each group; and (ii) the addition of previous meteorological data as input

to the models. Six empirical equations commonly reported in the literature were used, as

well as the FAO-56 to estimate data unavailable in the database. This approach was used

to estimate ETo with only measured air temperature (PMT) and temperature and relative

humidity (PMRH) data.

The ANN and SVM models showed superior performance to the alternative equations

studied, even when calibrated. The evaluated strategies, clustering and data from previous

days, provided considerable performance gains. For the temperature-based models, the best

performance was obtained by the ANN developed with the clustering strategy and using

data from two previous days as input. However, due to similar performance and greater

generalization capacity, the ANN developed without clustering and using data from four

previous days is recommended. For the models based on temperature and relative humidity,

the ANN developed with data from four previous days was the best option.

Many types of artificial intelligence models have been applied to predict ETo, howe-

ver, there is still little literature on the application of hybrid models for parameter optimiza-

tion of deep learning models (JIA et al., 2023). The work of (JIA et al., 2023) investigates

the use of Long Short Term Memory (LSTM) to predict daily ETo. Two LSTM models of

different topology were built and optimized using the hyperparameters of the particle swarm

optimization (PSO) algorithm in the LSTM neural network. The accuracy of the two hybrid

models was evaluated using four different data sets at the stations. The result showed that the

optimized model has good accuracy for prediction, where the optimized hybrid models were

also applied to different datasets, it can be found that the optimized hybrid model have better

accuracy. In addition, the hybrid models developed in this study do not rely on external data,

only needing data measured at a local meteorological station.

The (NAGAPPAN et al., 2020) study, conducted at Veeranam Tank, India, determines

the multivariate analysis of correlated variables involved in the estimation and modeling
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of ETo from 1995 to 2016. A reduced-feature data model was constructed with the most

significant variables of the model extracted by Principal Component Analysis (PCA). This

work also explores the effectiveness of a Deep Learning Neural Network (DLNN) with the

reduced feature model in predicting ETo compared to the conventional FAO-56 equation

and Radial Basis Function Network (RBFNN) as a baseline machine learning method. The

dimensionality of the input variables was reduced from six to three most significant variables

in modeling ETo. Among the machine learning methods, DLNN proved to be effective in

predicting ETo with the reduced feature data model.

3.2 Automated irrigation systems based on IoT

The paper (GOAP et al., 2018) presents an intelligent system based on open-source

technology to predict the irrigation requirements of a field using the detection of soil para-

meters such as soil moisture, soil temperature, and environmental conditions along with the

weather forecast data from the Internet.

An algorithm based on a combination of supervised and unsupervised machine lear-

ning techniques has been developed using Support Vector Regression (SVR) and K-Means

clustering method for estimation of difference change in soil moisture due to weather con-

ditions. The proposed algorithm is better compared to the SVR-based approach only. Due

to higher accuracy and minimum mean squared error (MSE) function, the hybrid machine

learning algorithm based on SVR and K-Means has been used in the irrigation planning

module.

On the hardware side, a water pump is connected to a relay switch controlled by a

Wi-Fi enabled node. The node is controlled by a web service through a real-time monitoring

interface trigger. Using this interface, the water pump is remotely managed in manual and

automatic modes. A WiFi module is used to send the data to the server. In the Wireless

Sensor Network (WSN) scenario, the ZigBee network is used between the sensor node to

the Gateway node and then a WiFi module or mobile data communication module sends the

data from the Gateway node to the server.

Smart agriculture systems based on Internet of Things are the most promising to in-

crease food production and reduce the consumption of resources like fresh water. In (BU;

WANG, 2019) study, they presented a smart agriculture IoT system based on deep reinforce-
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ment learning. They design a smart agriculture IoT system that is made of four layers from

bottom to up including the agricultural data collection layer, edge computing layer, data

transmission layer, and cloud computing layer. As a crucial component, deep reinforcement

learning is deployed in the cloud layer for making immediate smart decisions. This work

presents several representative deep reinforcement learning models that have the potential to

be used in building smart agriculture systems, also expected to promote the development of

smart agriculture and contribute to increasing food production.

(NAWANDAR; SATPUTE, 2019) work proposed targets to develop a low cost in-

telligent system for smart irrigation. It uses IoT to make devices used in the system to talk

and connect on their own, with capabilities like: admin mode for user interaction, one-time

setup for irrigation schedule estimation, neural based decision making for intelligent support

and remote data monitoring. A sample crop test-bed was chosen to present the results of the

proposed system, which includes an irrigation schedule, neural net decision-making, and re-

mote data viewing. The neural network provides the required intelligence to the device that

considers current sensor input and masks the irrigation schedule for efficient irrigation. The

system uses MQTT and HTTP to keep the user informed about the current crop situation

even from a distant location. The proposed system proves beneficial with its intelligence,

low cost, and portability, making it suitable for greenhouses, farms, etc.

3.3 Machine learning models on embedded systems

Recent works have used the TinyML concept to enable the use of ML models without

relying on a network connection. (PEREIRA et al., 2024), for example, presents an embed-

ded system that uses a random forest model to classify the potability of water in a ESP32

microcontroller independently of an Internet connection. This study proposes an energy-

efficient TinyML model for classifying water potability, using only parameters available th-

rough electronic sensing. The study evaluated performance using metrics such as Accuracy,

Precision, Recall, F1- Score, memory occupied by the model, execution time, and energy

consumption, comparing models developed with Random Forest and Neural Networks algo-

rithms. It also assessed the best combination of model and adaptation library for the embed-

ded system. The initial Machine Learning model, using Random Forest, demonstrated good

performance, reaching a Precision of 0.70, and compared to its cloud-based counterpart, it
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can operate for years on a standard battery power source.

The study of (HONG et al., 2023) provides the investigation of wind speed forecas-

ting using an Artificial Neural Network (ANN) and Linear Regression Model with an ESP32

chip. A portable wind speed prediction system will aid in mitigating the risks associated

with sudden gusts of wind by forecasting the maximum wind speed that may occur shortly.

This research also demonstrates the application of TinyML in the field of Artificial Intel-

ligence (AI) by applying a Multiple Linear Regression (MLR) and ANN models to small,

low-powered ESP32 microcontrollers to analyze data with low latency. The system predicts

wind speed in Setapak, Kuala Lumpur, based on the measured temperature and humidity

using a DHT22 sensor and displays forecast results and sensor readings on LCD screens.

To measure the accuracy of the MLR and ANN models, the R2, MSE, and RMSE between

predicted and actual results are evaluated. Results indicate that the ANN model outperforms

the MLR model for predicting wind speed.

3.4 Relevance of the proposal

The work of (GOAP et al., 2018; NAWANDAR; SATPUTE, 2019; BU; WANG,

2019) refers to the use of a cloud-based system for the inferences from the intelligence

models, not on the devices themselves, implying the need for an internet connection for the

proposed systems to function. The work of (MONTELEONE et al., 2019) concluded that the

regional telecommunications infrastructure, especially the precariousness of Internet access,

is one of the factors with the greatest impact on the process of adopting IT in rural areas.

Running a machine learning model directly on an embedded device could offer this solutions

the benefit of eliminating reliance on a communication infrastructure, thereby simplifying

implementation and reducing overall costs.

Until now, to our knowledge, no other scientific work has presented a study of predic-

tion of ETo running a machine learning model directly in an embedded scenario. Therefore,

the main objective of this study is to propose an energy-efficient ML model to predict ETo

using minimal meteorological data that can be used in an embedded system. We believe

that this work can help to develop studies related to irrigation systems that are more energy

efficient and more accessible to regions with limited technological resources, such as rural

areas in developing nations.
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4 Materials and methods

This section describes the methodology adopted to carry out this work. This chapter

is divided into six subsections, each representing a stage of the work. The subsection 4.1

outlines the set of tasks undertaken to create and preprocess the dataset used in this study.

Subsection 4.2 refers to the set of tasks performed and tailoring the machine learning model

to predict ETo values. Subsection 4.3 outlines the steps taken to train and test the neural

network models and assess their performance. Subsection 4.4 outlines the procedures fol-

lowed to evaluate the machine learning models. Subsection 4.5 implements the first ANN

models developed on an embedded device, evaluates its performance, and highlights the

TinyML libraries used in the development of embedded models. The subsection 4.6 presents

the steps taken to evaluate the embedded models.

4.1 Dataset and preprocessing

We used data from the Brazilian National Institute of Meteorology (INMET) weather

stations, accessible through the Meteorological Database for Teaching and Research (BD-

MEP). The dataset comprised daily records from 216 stations in all regions of Brazil over a

15-year period from 2001 to 2015, which is equivalent to a total of 873,903 observations.
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Figura 7: Meteorological stations in Brazil monitored by INMET. The map comprehends
conventional stations, automatic stations and rainfall stations. Source: INMET.

During data pre-processing, we used the Python and Pandas library to handle data

composed of maximum and minimum air temperature (°C), mean relative humidity (%),

duration of sunshine (hours) and mean wind speed at 10 m (ms−1). We converted the wind

speed to 2 m height and used the duration of sunshine to calculate solar radiation following

(ALLEN et al., 1998).

Following the (FERREIRA et al., 2019) methodology, we perform preprocessing,

excluding days with missing data or with inconsistent values. Data were deemed inconsistent

if the minimum temperature exceeded the maximum temperature, the duration of sunshine

was negative or exceeded the photoperiod, the relative humidity was negative or above 100%,

or the wind speed at a height of 10 meters had a negative value or exceeded 15 ms−1.

To compute the reference values of ETo, we used the FAO-56 6 Penman-Monteith

equation (ALLEN et al., 1998) described in equation 1. This approach has been widely used

to calculate ETo, due to its simplicity and acceptable accuracy. To help with calculations, we

used a Python package to calculate the daily ETo values 2.

In the training process, we used data from 2001 to 2010 (10 years) from all meteo-

2https://github.com/Evapotranspiration/ETo
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rological stations studied, adding up to 606,639 observations after data preprocessing. After

being randomized, we divided the data into a training set (75%) and a validation set (25%).

We used the data from the training set in the machine learning model, and we used the data

from the validation set for hyperparameter optimization. We evaluated the performance of

the ANN model with data from the test dataset, 267,263 observations from 2011 to 2015 (5

years).

We standardized the data using the StandardScaler from the Sci-kit Learn library,

which removes the mean and scales to unit variance. Standardization of the data is a common

requirement for many machine learning estimators prior to training the machine learning

models, as they might behave badly and cause convergence problems. It makes different

variables more comparable. Equation 6 depicts the normalization calculus. We used the data

of the training set to reflect the real use of the models in which the mean (µ) and the standard

deviation (σ ) were calculated and where xni is the standardized value, xi is the observed

value.

xni =
xi −µ

σ
(6)

4.2 Models creation

We used the Artificial Neural Network (ANN), which is widely used for data regres-

sion and also yielded good results with limited meteorological data according to research by

(FERREIRA; CUNHA, 2020; FAROOQUE et al., 2022). We used the same ANN architec-

ture presented in (FERREIRA et al., 2019), where the ANN used consisted of an input layer,

two hidden layers, and an output layer. The size of the input data varied according to the

number of inputs.

Three ANN models were considered to evaluate the performance of the prediction

according to the number of inputs. The first model (T) is a model that receives two in-

puts: minimum and maximum temperature. The second model (H) receives three inputs:

minimum temperature, maximum temperature, and realtive humidity. The third model (W)

receives four inputs: minimum temperature, maximum temperature, relative humidity, and

wind speed.

In our methodology, we chose to use only the parameters that would come from
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sensors that have easier access, focusing on reducing the costs of the final hardware. These

parameters were specially chosen to simulate the input of sensor values in real cases to simu-

late an environment in which we have limited meteorological data availability from sensors.

Other works used a similar approach and resorted to reducing the number of inputs. For

example, in (SIDHU et al., 2020) the authors performed correlation thresholds for feature

selection, which helps in reducing the number of input parameters from the initial 26 to the

final 11. In (FAROOQUE et al., 2022) the authors used the relative importance method to de-

termine the input variables best suited to the models, where six different variables including

solar radiation, maximum temperature, mean temperature, minimum temperature, relative

humidity, and wind speed were considered as inputs for the forecasting models.

4.3 Models training and test

The library used to train the model was TensorFlow. The parameters used in the

model can be found in Table 3. The loss function used to evaluate the model during the

training process was the equation 2, where we take the observed value, subtract the predicted

value, square that difference for all observations, then sum all of those squared values and

divide by the number of observations. It was minimized to improve the performance and

show how good the model is in terms of predicting the expected outcome.

The Optuna framework 3 was used during the training process to identify the best

hyperparameters for the model. It is an open-source hyperparameter optimization framework

to automate hyperparameter search. It uses the terms study and trial, in which a study is an

optimization based on an objective function and the goal of a study is to find the optimal set

of hyperparameter values through multiple trials. We considered 30 trials and optimized the

batch size, epochs, and learning rate. We perform optimization to minimize the root mean

square error (RMSE) value after evaluating the model using the validation dataset as input.

The hyperparameters found by this optimization process are shown in Table 3.

3https://optuna.org/
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4.4 Model evaluation

Following the training phase, the model was evaluated using the previously separated

test dataset, composed of 5 years of data, from 2011 to 2015. Based on (FERREIRA et

al., 2019), we evaluated the models for each weather station utilizing equations 3, 5, and

the equation 4 was used as a loss function for this regression problem for its very intuitive

interpretation in terms of relative error.

4.5 Embedding the models

After the validation of the ANN model, the TensorFlow Lite library (TENSOR-

FLOW, 2024) was used to translate the model, converting a trained TensorFlow model im-

plemented using Python to run on microcontrollers. The model was converted to a FlatBuffer

(identified by the .tflite file extension), reducing the size of the model and modifying it to use

TensorFlow Lite operations. As many microcontroller platforms do not have native filesys-

tem support, a C source file was generated, containing the TensorFlow Lite model as a char

array, and then the model was included as a C array and compiled into the program.

TensorFlow Lite for Microcontrollers library is an on-device machine learning toolset

that helps developers run models on mobile, embedded, and IoT devices. It is written in C++

11 and requires a 32-bit platform. It has been tested extensively with many processors based

on the Arm Cortex M Series architecture and has been ported to other architectures, including

ESP32. The framework is available as an Arduino library (DAVID et al., 2021).

With the model ready and validated, it was prepared and deployed on an Espressif

ESP32-S3-DevKitC-1 board, which is shown in Fig. 8. This board is suitable for running

various machine learning models, requires a low voltage for power, has a 32-bit MCU with

240 MHz dual core, 4 MB of programmable memory, and 532 kB of RAM and has good

connectivity options integrating Wi-Fi and Bluetooth. The C source file of the model was

compiled on the board with the assistance of the open source software Integrated Develop-

ment Environment (IDE) (Arduino, 2024).
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4.6 Evaluating the embedded models

After deploying the model on the board, it was evaluated considering the same test

dataset used to evaluate the model on the computer. The embedded model was evaluated in

two different ways: (a) with the complete test dataset, streaming the 267,263 observations

via serial, to calculate the model metrics (RMSE, R2 Score, MAPE), and (b) with a random

sample of a thousand observations, converted into floating-type data arrays, one for each

input parameter, and integrated into the code compiled on the board to calculate the occupied

memory space by the model and the energy consumption.

Given the restricted memory capacity of the selected microcontroller, embedding the

entire test dataset for model evaluation was not feasible. To preserve the integrity of the

tests using the identical evaluated dataset, we opted for (a) methodology. This involved

establishing communication between the computer and the microcontroller to transfer data

via the serial port. In both cases, each inference made by the model used one item from each

array, continuing this process until the entire database was processed. This study used only

simulated input parameters, there was no data from real sensors.

The time and energy consumption required for the model to run a thousand inferences

from the test set were measured, as well as the memory space occupied by the model on the

board. The information on the memory space occupied by the model was obtained using

the Arduino IDE tool, which reports these data on its console after compiling the code. The

execution time was measured with the help of the Arduino’s millis() function, which starts a

millisecond timer during the code execution on the board. The timer was started immediately

before making the first inference with the model and was stopped immediately after the last

inference was executed. The outcome of the timer was displayed on the Arduino IDE serial

output.

Following (PEREIRA et al., 2024), the measurement of the energy consumption on

the ESP-32 board was performed using a Power Profiler Kit II, manufactured by Nordic Se-

miconductor (Normic Semicondutor SA, 2024). The board allows accurate power consump-

tion measurements for the entire range typically seen in low-power embedded applications

Figure 9.

The software provides information on the amount of charge and the average current

over a given time window in seconds. Five measurements were taken using the software
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Figura 8: Description of the components of the ESP32 board manufactured by Espressif
(Source: (Espressif Systems (Shanghai) Co., 2024)).

and the kit, making all inferences from the test dataset for each measurement. The first

measurement was discarded because of interference spikes from the process of powering up

the board. From the next 5 measurements, an average of the amount of charge used in each

execution window of the model was calculated. By multiplying the amount of charge by the

applied voltage on the board, which is 3.3 V, we obtain the energy in Joules (PEREIRA et

al., 2024). In Figure 10, it is possible to observe that all tests started with a five-second delay

to avoid unstable consumption when powering the board.

The regression model was also deployed in the cloud using the Google Cloud plat-

form 4. The aim was to compare the model’s performance when it is running in the cloud and

accessed by the ESP-32 via API with the model’s performance when it is running embedded

in the ESP-32. The inferences were executed iteratively, employing the same strategy and

utilizing the identical test database used for the embedded model. During the test, a delay

of 1 second was imposed between each inference to prevent overload of the server. Figure

11 presents a diagram that illustrates the architecture used for both the embedded model and

the cloud model.

4https://cloud.google.com/
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Figura 9: Tools used to measure the power consumption of the ESP-32 board. Source:
Author.

5 Results and discussion

This section presents the results of the research, beginning with a comparison of the

performance of different models in terms of accuracy and efficiency. The focus then shifts

to the performance of the models when embedded in hardware devices, evaluating their

effectiveness in practical applications. A detailed discussion follows, where the results are

analyzed, and insights are provided into the strengths and limitations of the proposed models.

This section also explores potential improvements and implications for future work.

5.1 Model Comparison

Table 1 shows the mean values of RMSE and R2 reported in (FERREIRA et al., 2019)

and calculated in the model evaluation phase for each model considered in this work (Models

T, H and W). The table also shows the MAPE metric considered in the current study. Models

T, H, and W showed a lower mean RMSE compared to (FERREIRA et al., 2019). However,

only Model W presented a higher mean value of R2 score compared to (FERREIRA et al.,

2019).

Table 1 also shows, in the last three columns, the results of the adapted model running



5.1 Model Comparison 28

Figura 10: Print screen of the Nordic Power Profile Software used to measure the power
consumption of the ESP-32 board for the model with only temperature as input. Source:
Author.
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Figura 11: Architectures utilized to assess the performance of the embedded models. On the
left is the architecture of the embedded models, while on the right is the architecture of the
Cloud Model. Source: Author.

on the ESP-32 board, using the full test dataset and streaming the observations through the

serial port (Embedded Models T, H and W). One can see that the embedded model that

considers only the minimum and maximum temperature parameters, the Embedded Model

T, showed a higher RMSE, 19% higher, compared to Model T (not embedded), while it

presented the same mean values for the MAPE and R2 metrics. The embedded model that

added relative humidity values, the Embedded Model H, showed an increase of 0.16 mmd−1

in the mean RMSE value and returned the same values for R2 and MAPE compared to Model

H. The model with four parameters that added wind speed values as input, the Embedded

Model W, showed an increase in RMSE of 0.13 mmd−1 compared to Model W, while the

MAPE of Model W and Embedded Model W are equal.

Figure 12 shows the violin plot of the RMSE values. One can see that the error distri-

bution of the embedded models closely matches that of the model running on the computer

for the three models analyzed.
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Figura 12: Violin plot for the mean values comparing the performance of the models running
on a PC and the embedded models. Source: Author.

5.2 Performance of embedded models

Table 2 shows the memory consumption, time to run the inferences, and energy con-

sumption measured in the performance evaluation of the embedded models. The Embedded

Model T used 13,104 bytes of memory, while the Embedded Model H utilized 264 bytes

more, and the Embedded Model W required an additional 464 bytes. One can see that in

terms of memory space, the addition of new features as input did not significantly increase

the size of the model.

For the time required to execute 1,000 inferences on the test dataset, the Embedded

Model T required 267.5 ms, while the Embedded Model H took an additional 5.3 ms, and

the Embedded Model W needed 10 ms more in comparison to the Embedded Model T. The

embedded models presented a relatively close execution time, with each model not exceeding

280 milliseconds for all thousand inferences.

In terms of energy consumption, the embedded models also presented very similar

values around 0.06 J. To calculate the energy consumption, we considered the charge value

of 1,000 inferences returned by the Power profile software. We ran the tests without any
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battery optimization method.

The model that was deployed in the cloud and used in the comparison was Model

H, since it obtained a better result than Model T and uses data from sensors that are easy

to access (air temperature and relative humidity) than Model W (wind speed). The Cloud

Model had a total execution time of 30 minutes and 6 seconds and occupied 841,165 bytes

of the ESP32 storage. Since we added a one second delay to not overload the server, after

removing the total of one thousand seconds of delays, one can see that the Cloud Model

spent 806 seconds to execute 1,000 inferences.

The Cloud Model had a consumption mean value of 264 J for the thousand inferences,

three orders of magnitude higher than the embedded models. Empirical analysis of charge

values showed that the measured charge per inference using the Cloud Model varies between

80 mC and 87 mC. To simplify the calculus of the energy in Joules, we considered that each

inference of the Cloud consumes 80 mC. Therefore, our calculations are underestimating

the Cloud Model energy consumption and the difference between the Cloud Model and the

embedded models can be higher.

5.3 Discussion

The model reproduced from (FERREIRA et al., 2019) and with optimized hyperpa-

rameters, Model T, showed better performance than the one reported in (FERREIRA et al.,

2019) considering RMSE. The model using three parameters as input, Model H, showed a

slight improvement compared to Model T, with a lower RMSE and higher R2. The model

using four parameters as input, adding the wind speed, Model W, had the best performance,

with the lowest mean RMSE and MAPE, and a higher mean R2.

The embedded model that considers only the minimum and maximum temperature

parameters (Embedded Model T) showed a higher RMSE compared to the one running on a

computer (Model T), while it presented the same values for the MAPE and R2 metrics. The

embedded model that considers relative humidity values (Embedded Model H) also suffered

a worsening when comparing the RMSE values of Model H. The model with four parameters

(Embedded Model W) had the best performance among the embedded scenarios, although it

presented a higher mean RMSE value compared to Model W.

The decrease in RMSE in the embedded models may be related to differences in
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floating-point operations on the board or in the process of converting the adapted model

from Python to C using the (DAVID et al., 2021) library.

Both Model H and Embedded Model H had a more balanced performance among

the other proposed models. Additionally, given that numerous sensors can measure both air

temperature and relative humidity, it is more cost-effective and simpler to employ hardware

that detects these two variables rather than hardware that also measures wind speed. There-

fore, we believe that models that only use air temperature and relative humidity are the best

choice.

Making local inferences using the Embedded model H consumed 37.97% less space

than using the Cloud Model considering the entire program storage and the included embed-

ded test dataset. We can also observe that the embedded model was more energy efficient,

using approximately 99.98% less energy to process all inferences compared to the cloud mo-

del. Moreover, the comparison showed that embedding the model makes inferences 99.97%

faster.

The findings revealed a pattern similar to that observed in (PEREIRA et al., 2024),

which served as a foundation for our work. Evaluating the balance between expense and

limited data, the proposed embedded solution demonstrated acceptable performance, closely

aligning with findings in the literature, particularly our primary reference (FERREIRA; CU-

NHA, 2020), as well as (FAROOQUE et al., 2022), which noted an RMSE of 0.62 mm/day

for one of the weather stations analyzed.
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6 Conclusion

In this paper, we present an energy-efficient TinyML model for prediction ETo with

minimal meteorological data, using simulated parameters as input for trained models and

comparing its performance with a cloud-based scenario. The performance of the obtained

embedded model, using the ANN algorithm with mean minimum and maximum air tempe-

rature values as input, was close to the reference in the literature considering metrics such

as RMSE (0.83 mmd−1), R2 (0.56) and MAPE (17%). We also evaluate two new models

by adding relative humidity and wind speed as input. The new models present an impro-

vement in accuracy when comparing the model with fewer values, and the new model with

more parameters presented 5% less for MAPE. The presented model outperformed the com-

pared cloud-based model in metrics such as memory footprint, 37.97% less memory used,

inference time, 99.97% faster, and energy consumption with 99.98% less energy consumed.

The findings from this study indicate that embedding the prediction of ET0 using

minimal meteorological data as input into a cost-effective device is feasible without substan-

tially compromising performance and accuracy. Running a machine learning model directly

on the embedded device streamlines its hardware implementation. It reduces the overall

solution cost since it eliminates the need for a communication framework with an external

source. Additionally, an optimized solution facilitates better energy consumption by ena-

bling battery-operated systems suitable for deployment in more remote areas. The study

further demonstrated that incrementally increasing the number of inputs had a negligible

impact on energy use and memory footprint while enhancing the model’s accuracy.

This research has certain limitations. Initially, we developed a model using a com-

prehensive dataset that spans the entirety of Brazil. While this extensive dataset might

enhance the model’s overall generalization capabilities, Brazil is a vast nation with varied

climatic conditions across its regions. Consequently, models that are tailored with data from

specific local areas could potentially provide more accurate estimates when utilized in those

particular geographical regions. Moreover, the current study was limited to simulated data as

input and a simpler implementation, and we focused on the accuracy of the machine learning

model, leaving the optimization of the embedded model for future work.

A prospective opportunity involves carrying out a comparable analysis using other
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machine learning models like Random Forest and Support Vector Machines, while taking

into account various hardware platforms. Additionally, employing strategies like clustering

techniques to categorize weather stations based on shared attributes like geographical posi-

tion and climatological trends, as demonstrated by the authors in (FERREIRA et al., 2019),

could be considered to evaluate model performance improvements. This would enable an

exploration of the differences, as well as the potential strengths and weaknesses, in construc-

ting a TinyML.

We can also employ the specified methodology with real sensor data to evaluate its

influence on model performance in actual irrigation scheduling and create a deep understan-

ding of water cycle control within agricultural systems. This would include examining new

parameters and contrasting performance with existing models already documented in the li-

terature, thereby validating the model and its results to ensure its reliability and practical

applicability in real-world contexts.

These findings mark an important initial move toward diversifying parameter predic-

tion implementations in agricultural systems. Using new models and optimized methods,

particularly those centered on TinyML and machine learning techniques, the research aims

to improve computational and system performance.
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Tabela 1: Mean values of Root Mean Square Error (RMSE), R2 Score and Mean Absolute Percentage Error (MAPE) for the proposed ANN
models and a reference ANN model proposed in (FERREIRA et al., 2019).

Metric (FERREIRA et al., 2019) Model T Model H Model W Embedded Model T Embedded Model H Embedded Model W
RMSE 0.81 0.67 0.61 0.46 0.83 0.77 0.59

R2Score 0.67 0.56 0.62 0.77 0.56 0.62 0.77
MAPE (%) - 17 15 12 17 15 12

Tabela 2: Values of the memory occupied only by the model, memory occupied by the complete embedded program in the ESP32 storage,
the time to run 1,000 inferences and the energy consumption to run 1,000 inference for the embedded models and the “Cloud Model".

Metric Embedded Model T Embedded Model H Embedded Model W Cloud Model H
Memory occupied by the model (Bytes) 13,104 13,368 13,568 -

Memory occupied in the program storage (Bytes) 521,813 522,069 522,277 841,165
Time to run 1,000 inferences (ms) 267.5 272.8 277.6 806,000

Energy consumption to run 1,000 inferences(J) 0.06303 0.0649308 0.0658416 264

Tabela 3: Parameters used for training the ANN model using TensorFlow library and Optuna Optimization Framework.

Parameter Model (T) Model (H) Model (W)
input_layer 2 3 4

hidden_layer 2 2 2
neurons 50 50 50

output_layer 1 1 1
loss MSE MSE MSE

activation_func tanh tanh tanh
epoch 437 361 443

batch_size 32 32 16
learning_rate 3.92e-5 1.41e-5 3.77e-5
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