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RESUMO

A otimização topológica é uma técnica empregada na engenharia para determinar a distribuição
ótima de material dentro de um domínio de projeto definido para várias aplicações. Essa técnica
tem sido aplicada ao projeto de materiais celulares visando criar um arranjo microestrutural
eficiente que atenda aos critérios de desempenho necessários e minimize o peso do material.
Este trabalho apresenta uma abordagem inovadora que combina princípios da teoria dos volumes
finitos, métodos de homogeneização e otimização topológica baseada em densidade para projetar
materiais celulares periódicos altamente eficientes com propriedades elásticas macroscópicas
otimizadas. Os métodos de homogeneização aplicado a materiais periódicos, baseados no con-
ceito de célula unitária, determinam as propriedades elásticas efetivas do material celular como
uma etapa intermediária no procedimento de otimização topológica. Para encontrar a topologia
microestrutural ótima, são consideradas combinações lineares específicas das componentes
da matriz constitutiva efetiva a fim de obter propriedades elásticas extremas, como máximos
módulos de cisalhamento e volumétrico ou coeficiente de Poisson negativo, considerando uma
restrição de volume prescrita. A abordagem proposta utiliza uma estratégia baseada em funções
potenciais de rigidez do material para penalizar densidades intermediárias do material e aplicar
o método de continuação para minimizar a instabilidade decorrente de problemas de extremos
locais. Exemplos numéricos envolvendo materiais com microestruturas celulares periódicas
são analisados, e os resultados encontrados demonstram o excelente desempenho da teoria dos
volumes finitos para o projeto ótimo de materiais celulares.

Palavras-chave: Materiais celulares. Homogeneização. Otimização topológica. Teoria de volu-
mes finitos.



ABSTRACT

Topology optimization is a technique employed in engineering to determine the optimal distribu-
tion of material within a defined design domain for various applications. This technique has been
applied to the design of cellular materials to create an efficient microstructural arrangement that
meets the necessary performance criteria and minimizes the weight of the material. This work
presents an innovative approach that combines principles from finite-volume theory, homogeniza-
tion methods, and density-based topology optimization to design highly efficient periodic cellular
materials with optimized macroscopic elastic properties. The homogenization methods applied
to periodic materials based on the unit cell concept determine the effective elastic properties
of cellular material as an intermediate step in the topology optimization procedure. To find the
optimal microstructural topology, specific linear combinations of components of the effective
constitutive matrix are considered to obtain extreme elastic properties, such as maximum shear
and bulk moduli or negative Poisson’s ratio, considering a prescribed volume constraint. The
proposed approach uses a strategy based on potential functions of material stiffness to penalize
intermediate material densities and apply the continuation method to minimize instability arising
from the extreme local problem. Numerical examples involving materials with periodic cellular
microstructures are analyzed, and the results demonstrate the excellent performance of the
finite-volume theory for the optimal design of cellular materials.

Keywords: Cellular materials. Homogenization. Topology optimization. Finite-volume theory.
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1 INTRODUCTION

1.1 Motivation

Over the past few decades, cellular materials have attracted research attention and found
numerous applications across various industry sectors due to their flexibility in tailoring optimi-
zed microstructural layouts. These materials possess advantageous properties that make them
especially valuable in aerospace, automotive, construction, architecture, and other areas where
reducing weight while enhancing stiffness is crucial. Inspired by their significant prevalence in
nature, demonstrated by structures like bamboo and human bone tissue, cellular materials are
becoming increasingly commonplace in structural design. Specifically in biomedical enginee-
ring, structures often made of cellular materials, so-called scaffold materials, have inspired the
development of innovative designs for bone tissue engineering. Chen et al. (2020) assert that
these scaffolds provide a porous structure and ample space for cell accommodation, low Young’s
modulus, and high compressive strength.

However, the primary challenge in material design is creating an efficient structural layout
that meets the required performance criteria while minimizing material weight. Engineers have
employed topology optimization (TO) techniques to address this challenge and develop optimal
microstructures that enhance structural performance by systematically distributing material
within a given design domain. Since the pioneering work on the homogenization method by
Bendsøe and Kikuchi (1988), topology optimization has rapidly grown and successfully applied
to practical applications, including material design, heat transfer, acoustics, fluid dynamics,
aeroelasticity, and other multi-physics systems (Deaton; Grandhi, 2013).

The advancements of topology optimization techniques have been driven by the refine-
ment of classical methods and the emergence of promising new approaches. One widely used
method is the density-based strategy, which includes, among others, the solid isotropic material
with penalization (SIMP) method (Bendsøe, 1989; Zhou; Rozvany, 1991; Rozvany et al., 1992)
and rational approximation of material properties (RAMP) developed by Stolpe and Svanberg
(2001). These methods utilize a non-linear interpolation model to handle material properties
effectively and aim to penalize intermediate density values, providing the “most relaxed” problem
and preventing the occurrence of gray regions seen in the homogenization method introduced by
Bendsøe and Kikuchi (1988).

Nowadays, the integration of advanced computer simulations and topology optimiza-
tion techniques has revolutionized the field of surgical interventions, particularly in designing
patient-specific extensive craniofacial segmental bone replacements. These personalized bone
replacements are crucial in restoring normal function and appearance in massive facial injuries
resulting in bone loss (Sutradhar et al., 2010). Furthermore, the advancements in manufacturing
processes have made it possible to transform engineering ideas into completely functional and
robust structures, regardless of their complicated geometry, including architectures composed of
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porous, graded, or composite materials (Collet et al., 2018; Bose et al., 2018; Wu et al., 2021).
Figure 1 illustrates the simulated optimal bone topology inserted into the skull, highlighting
the practical feasibility of the final configuration. It demonstrates how integrating computer
simulations and topology optimization techniques can effectively contribute to successfully
implementing personalized bone replacements.

Figure 1 – Ilustration of a topologically optimized craniofacial skeletal region

Denture
Bone
Replacement

Font: Sutradhar et al. (2010).

Traditionally, topology optimization problems have predominantly been solved using
the well-established finite element method (FEM). However, despite the advancements, chal-
lenges like numerical instability as checkerboard patterns persist in simulations, demanding
a regularization scheme, especially when employing linear triangular and quadrilateral finite
elements, leading to undesired final topology that does not represent a manufacturable optimal
material distribution. The term “checkerboard” refers to forming regions composed of alternating
solid-and-void elements arranged in a checkerboard-like fashion. Díaz and Sigmund (1995)
assert that checkerboard patterns arise in topology design because these material arrangements
exhibit artificially increased stiffness in continuous layout optimization problems of compliance
minimization when employing lower-order quad or triangular elements.

Figure 2 illustrates microstructures with maximized elastic properties generated running
the topX educational FEM code developed by Xia and Breitkopf (2015). These results, produced
without any regularization filter, inspire developing strategies to achieve checkerboard-free
designs without necessarily employing filtering techniques.

https://www.researchgate.net/publication/278646315_topX
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Figure 2 – Unfiltered topologies presenting checkerboard patterns

(a) Maximized shear modulus (b) Maximized bulk modulus

Font: Through topX educational code.

Numerous alternatives employing finite element analysis have been developed to address
the checkerboard pattern instability in topological design for minimum compliance-based pro-
blems. Sigmund and Petersson (1998) tackled this issue by employing high-order finite elements,
which enhance the accuracy of the solutions and reduce numerical instabilities associated with
lower-order elements. Jang et al. (2003) proposed using non-conforming elements, which do
not follow traditional finite elements’ standard connectivity and shape functions, providing
greater flexibility and stability in the optimization process and effectively reducing numerical
issues as the checkerboard pattern problems. Talischi et al. (2012) introduced isoparametric
polygonal elements, which extend the capabilities of traditional linear triangles and bilinear
quadrilaterals by offering a more versatile and robust element formulation that can adapt better to
complex geometries. More recently, Kumar (2022) developed a topology optimization approach
employing hexagonal elements, providing optimal space-filling and mechanical performance,
making them highly suitable for advanced structural designs. These diverse strategies highlight
the continuous efforts to refine topology optimization techniques and overcome the checkerboard
problem, ensuring more reliable and manufacturable designs in engineering applications.

Araujo (2018) significantly contributed to structural topology optimization problems
by employing the finite-volume theory (FVT). This powerful numerical technique establishes
connections between adjacent subvolume faces as a crucial part of the approach. Consequently,
finite-volume theory procedures yield optimized structural designs that overcome the prevalent
problem of checkerboard regions, enhancing overall effectiveness. This important aspect has
been consistently emphasized in a series of publications by Araujo (2018), Araujo et al., (2020a,
2020b), and Araujo (2022). They explained that the checkerboard region occurs due to the
satisfaction of equilibrium and continuity conditions at the nodes of the elements, specifically for
triangular and quadrilateral finite elements providing singular connectivity, which results in high-
strain energy modes in these connections. On the other hand, the finite-volume theory ensures
the satisfaction of equilibrium equations at the subvolume level, and the compatibility conditions
(kinematic and static) are established through the interfaces between adjacent subvolumes in an
average sense, resulting in one approach more closely with the continuum mechanics.

https://www.researchgate.net/publication/278646315_topX
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However, solutions to topology optimization problems in materials design still need to be
improved, especially in the absence of a regularization scheme. The adoption of regularization
techniques such as smoothing or filtering methods indeed becomes imperative to mitigate the
occurrence of checkerboard patterns and ensure manufacturability within the density-based
topology optimization schemes, as advocated by Andreassen et al. (2014), Xia and Breitkopf
(2015), and other researchers in the field. Advancing in this context, the current study represents
a continuation of the research initially proposed by Araujo (2018). Nonetheless, it deviates
from the previous investigation by concentrating on designing periodic cellular materials with
optimized elastic properties.

The present work involves a comprehensive analysis of two-dimensional problems
modeled employing a periodic square unit cell, which can be interpreted as perforated sheets,
commonly recommended for applications where the passage of water or air is crucial, such
as in ventilation or filtration systems and usually are very light and thin (Hiremath, 2020).
The perforated metal materials incorporate a range of properties, including rigidity, strength,
lightweight, small thickness, a dosed transparency, and decorative attractiveness. All these
features lead to new applications for the construction industry, as mentioned by Mironovs et al.
(2017).

1.2 Objectives

This dissertation aims to introduce an innovative approach that synthesizes principles
from finite-volume theory, homogenization methods, and density-based topology optimiza-
tion to design high-performance periodic cellular materials. The focus lies on optimizing the
material configuration at the microstructural level to achieve certain macroscopic properties,
such as maximized shear and bulk moduli (Sigmund, 2000; Neves et al., 2000), and to attain
a negative Poisson’s ratio for auxetic materials (Sigmund, 1994a; Andreassen et al., 2014),
while satisfying a prescribed volume fraction constraint without necessarily adopting filtering
techniques. Specifically, the work has the following objectives:

• Propose a scientific density-based topology optimization methodology for periodic cellular
materials based on finite-volume theory;

• Integrate two homogenization strategies into the topology optimization methodology and
verify their computational efficiencies. These strategies include one based on strain energy
equivalence and another employing the classical micromechanical mean-field theory;

• Apply the developed methodology to find a two-dimensional optimal microstructural
topology, focusing on extreme elastic properties;

• Contribute to the academic community and engineers’ motivation to develop strategies
that yield optimized microstructures free from checkerboard patterns without necessarily
employing filtering techniques.
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1.3 Contribution and its Highlights

Two aspects justify this significant contribution: the first is that topology optimization
techniques have never been applied to the design of periodic materials employing the finite-
volume theory (the version developed explicitly for heterogeneous materials), as based on the
author’s knowledge. When employed in material design in the topology optimization context, this
interesting theory achieves optimized microstructures free from the checkerboard pattern without
incorporating additional constraints into the problem formulation, such as filtering techniques.
The second aspect is the efficiency of the promising developed computational code TopMatFVT
(Topology optimization of material with finite-volume theory), which enables the design of
periodic materials with optimized properties and significantly enhances the practical utility in
material design contexts.

https://github.com/arnaldojunioral/TopMatFVT


19

2 FINITE-VOLUME THEORY

The scientific community and engineers commonly employ the finite-volume method
to simulate various physical problems. This method ensures the satisfaction of the governing
field equations (transport or equilibrium) within the control volumes of the discretized domain
of interest in an integral sense, resulting in strict conservation. Moukalled et al. (2015) highlight
that this essential feature, coupled with the method’s simplicity and demonstrated stability,
establishes the finite-volume procedure as a preferred choice in computational fluid dynamics
(CFD) simulations. On the other hand, the acceptance of the finite-volume method within the
heterogeneous materials mechanics community has been gradual, possibly due to multiple
developed versions and often needing clarification with traditional fluid mechanics applications
(Cavalcante et al., 2012).

The following sections provide a comprehensive historical perspective on the evolution
of a significant technique used to address boundary-value problems in solid mechanics, advan-
cements in applying it to periodic heterogeneous media unit cell problems, and the approach
adopted in the present work.

2.1 A Brief Overview

The initial version of the finite-volume theory in the field of heterogeneous materials and
structures has its origins in the higher-order theory for functionally graded materials (HOTFGM),
developed in a sequence of papers and summarized by Aboudi et al. (1999). It provided the
fundamental framework for constructing its homogenized counterpart for higher-order theory for
periodic multiphase materials developed by Aboudi et al. (2001). After that, Aboudi et al. (2002)
renamed this homogenized version to high-fidelity generalized method of cells (HFGMC).

The structural and homogenized versions of the higher-order theories were simplified
by refining the analysis domain discretization and implementing a highly efficient local/global
stiffness matrix approach compared to the original formulations (Bansal; Pindera, 2003; Zhong
et al., 2004; Bansal; Pindera, 2005). Following this, Bansal and Pindera (2006) introduced
a specific finite-volume theory for analyzing periodic materials within the homogenization
framework, which they referred to as finite-volume direct averaging micromechanics (FVDAM).
This approach is based on a direct averaging technique to satisfy the field equations within
discretized subvolumes of the unit cell, in contrast with the original construction wherein higher-
order moments of the equilibrium equations were also satisfied (Bansal; Pindera, 2006).

Later on, the reconstructed theories were further extended through a series of con-
tributions that introduced parametric mapping, aiming to simplify the modeling of complex
microstructures by employing arbitrary quadrilateral subvolumes. Cavalcante (2006) and Ca-
valcante et al. (2007a, 2007b) developed the parametric mapping strategy and applied it to the
thermomechanical analysis of composites and functionally graded materials. After that, Gattu
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(2007) and Gattu et al. (2008) employed this strategy to investigate periodic materials with
elastic phases. In sequence, periodic materials with elastoplastic phases and periodic multilayers
with wave architectures were examined by Khatam; Pindera (2009a and 2009b). Furthermore,
Escarpini Filho (2010) employed the parametric mapping strategy to study the behavior of
viscoelastic composite materials.

Cavalcante and Pindera (2012a) introduced a generalized finite-volume micromechanics
theory applied to heterogeneous materials. This generalization systematically incorporates
different orders to the zeroth-order finite-volume theory initially proposed by Bansal and Pindera
(2003). In this approach, each order signifies a higher level of complexity in the displacement
field. At each level, additional kinematic quantities are included and evaluated in an average sense
at the subvolume faces. For instance, the first-order finite-volume theory introduces rotations in
addition to the original version, while the second-order finite-volume theory incorporates both
rotations and curvatures.

The finite-volume theory with parametric mapping has been widely employed to analyze
multiphase heterogeneous materials in the last few years. In this context, Vieira and Marques
(2019) introduced a new three-dimensional micromechanical model for evaluating the effective
thermal conductivity of multiphase composite materials with periodic microstructure. Lages and
Marques (2020) proposed implementation and application of an efficient strategy for computation
of the average eigenstrain vector, which represents a crucial task required by the thermoelastic
homogenization model. Yin et al. (2021) developed a novel homogenization theory for unidi-
rectional composites with periodic domains and random fiber distributions, which treats the
inclusions as meshfree components and uses discrete Fourier transforms to satisfy Navier’s
equations precisely. Zhao et al. (2023) accomplished a detailed parametric study to analyze the
impact of microstructure effects and geometric parameters on the performance of piezoelectric
composites, integrating the particle swarm optimization algorithm with multiphysics FVDAM to
optimize the microstructure geometric parameters effectively and maximize the performance.
In a recent study, Escarpini Filho and Almeida (2023) applied the FVDAM method for the first
time in the numerical analysis of reinforced masonry. Despite its antiquity, it is a material known
for its complex behavior and frequent need for structural reinforcement.

In the context of topology optimization for compliance minimization problems, the
pioneer study employing the finite-volume theory was realized by Araujo (2018), which sub-
sequently resulted in the publications by Araujo et al. (2020a, 2020b). These contributions
demonstrated that applying the finite-volume theory can entirely control the numerical issue
associated with the checkerboard patterns. Furthermore, Araujo (2022) conducts an energy
analysis of continuum elastic structures using the generalized finite-volume theory. This analysis
encompasses various aspects of mechanical energy estimation, focusing on rectangular subvolu-
mes. Notably, the optimized structural topology achieved through this approach is entirely free
from the checkerboard pattern for all orders of the generalized finite-volume theory investigated.
Moreover, specifically for the zeroth-order (standard) finite-volume formulation, the equivalence
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between the structural strain energy and the work done by external forces is ensured once the
differential equilibrium equations are satisfied point-wise inside the subvolume. Furthermore,
in the problems investigated by Araujo et al. (2020b), the final topologies achieved through the
standard formulation exhibit fewer bars, most of which have lower slenderness ratios than those
derived from higher-order approaches. These characteristics aligned with manufacturing process
requirements were crucial in selecting this formulation for the current study, focusing on periodic
cellular materials.

2.2 Standard Formulation for Periodic Materials

2.2.1 Displacement field representation

The behavior of periodic materials is described by analyzing a single-unit cell subjected
to periodic boundary conditions (PBC), and typically, such problems are addressed through
asymptotic homogenization theory (Bensoussan et al., 1978). It is worth noting that periodic
solutions have been successfully developed by employing the Fourier series expansion method
for periodic mechanical fields with various unit cell architectures, as demonstrated by Nemat-
Nasser and Taya (1981), Nemat-Nasser et al. (1982), Díaz et al. (2001), Rodríguez-Ramos et al.
(2001) and more recently by Ramírez-Torres et al. (2019) and Lages and Marques (2020).

To improve the representation of the displacement field in the qth subvolume, the sim-
plest homogenization approach introduced by Bensoussan et al. (1978) employs a two-scale
expansion. This representation incorporates both global (x) and local (y) coordinates, considering
macroscopic and microstructure-induced fluctuating components expressed as:

u
(q)
i (x, y) = ε̄ijxj + u

′

i

(q)
(y), (1)

where u
′
i

(q)
(y) denote fluctuating displacement components induced by the heterogeneous mi-

crostructure and ε̄ij are the specified macroscopic (volume-averaged) strains applied to the entire
material. Note that the subscripts are denoted as i, j = 1, 2 for two-dimensional analysis.

For two-dimensional problems in Cartesian coordinates, a rectangular domain within the
y1−y2 plane of analysis is employed, spanning the region 0 ≤ y1 ≤ L and 0 ≤ y2 ≤ H as shown
in Figure 3. Inside this domain are subvolumes with dimensions lq and hq along the y

(q)
1 and

y
(q)
2 axes, respectively. These subvolumes may contain different elastic materials with uniform

values inside them. In the present zeroth-order or standard finite-volume theory formulation, only
displacements are unknown quantities (Cavalcante; Pindera, 2012a). In this case, the components
of the fluctuating displacements field in the local coordinates system are approximated by the
second-order Legendre polynomial as follows:
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with W(q)
i(mn) being unknown displacement field coefficients.

Figure 3 – The representation of discretized analysis domain and local coordinate system of a
generic subvolume (q)
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2.2.2 Local stiffness matrix calculation

The finite-volume theory employs the volume average of the different fields that define the
material behavior and imposes boundary and continuity conditions between adjacent subvolumes
in an average sense, aiming to satisfy the equilibrium equations. Following Cavalcante et al.
(2012), the surface-averaged fluctuating displacement components at the subvolume faces û

′(q,f)
i

can be evaluated as:

û
′(q,f=1,3)
i =

1

lq

∫ lq
2
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2

u
′
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4
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Employing the components of the displacement field from Eq. (2) in Eq. (3), eight expressions
are obtained for the surface-averaged fluctuating displacements as a function of the displacement
field coefficients. These expressions can be represented in matrix notation as follows:

û
′(q) = A(q)W(q) + a(q)W(q)

00 , (4)

where û
′(q) =

{
û

′(q,1)
1 , û

′(q,1)
2 , û

′(q,2)
1 , û
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2 , û
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1 , û
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2 , û
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2

}T

is the surface-averaged

fluctuating displacement vector, W(q) =
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is the

vector containing the first and second-order unknown coefficients and W(q)
(00) =

{
W

(q)
1(00),W

(q)
2(00)

}T

is the vector containing the zeroth-order unknown coefficients, and the matrices A(q) and a(q) are
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defined as follows:

A(q) =
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and a(q) =
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. (5)

According to Cavalcante et al. (2012), the surface-averaged strains are determined based
on the unknown coefficients of the fluctuating displacement field and the macroscopic strains,
which are then expressed explicitly in terms of the macroscopic strains and the surface-averaged
fluctuating displacement components upon the use of the definitions given in Eq. (3). Moreover,
the surface-averaged traction components at the subvolume faces t̂(q,f)i are similarly expressed in
terms of stresses via Cauchy’s relations as follows:
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The application of the following equilibrium equations in the absence of body forces at the
subvolume level ∫

S

t(q)dS =
4∑

f=1

∫
Lf

t(q,f)dLf =
4∑

f=1

Lf t̂
(q,f) = 0, (7)

where L
(q)
1 = lq, L

(q)
2 = hq, L

(q)
3 = lq and L

(q)
4 = hq, leads to the relationship between the

surface-averaged tractions and surface-averaged fluctuating displacements given in terms of the
local stiffness matrix K(q) for the qth subvolume:

t̂(q) = N(q)C(q)ε+K(q)û
′(q), (8)

where t̂(q) =
{
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(q,4)
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(q,4)
2

}T

is the surface-averaged traction

vector, N(q) and C(q) are the matrices containing components of normal vector at the subvolume
faces and material constitutive matrix, respectively, and ε denotes the macroscopic strain. In the
Cartesian coordinate system, the matrix N(q) remains constant across all subvolumes within the
analysis domain. The local stiffness matrix is given by K(q) = B(q)Ā(q), where the matrix B(q)
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depends of on constitutive matrix components and the subvolume face dimensions as follows:

B(q) =
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where the matrix Ā(q)
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. It is worth ad-

ding that the local stiffness matrix is non-symmetric (pseudo stiffness matrix), which increases
the computational cost of the topology optimization process. On the other hand, evaluating in
terms of energetically conjugated quantities (force and displacement) at the subvolume level,
Eq. (8) becomes,

R(q) = Ĥ
(q)
ε+ K̂

(q)
û

′(q), (10)

where R(q) = L̂
(q)

t̂(q) is the resultant of forces acting at the faces of the subvolume q, Ĥ
(q)

=

L̂
(q)

N(q)C(q) corresponds to the macroscopic load at subvolume level due to the application of
macroscopic strain, K̂

(q)
= L̂

(q)
K(q) is a modified local stiffness matrix (symmetric), and L̂

(q)
is

the matrix containing the subvolume face dimensions expressed as:
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(f) =
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L
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(f) 0

0 L
(q)
(f)

]
. (11)

2.2.3 Global stiffness matrix assembly

The assembling of a global system of equations in the context of the finite-volume theory
employing energetically conjugated quantities results in a global symmetric stiffness matrix,
particularly in the case of meshes with rectangular subvolumes. This accelerates the solution
of the global system of equations through efficiently implemented computational tools. If the
domain is subdivided in Nq = NxNy subvolumes, considering two degrees of freedom (DOF)
per face, ndof = 2Nx(Ny + 1) + 2Ny(Nx + 1) corresponds to the total number of degrees of
freedom for the discretized model, being Nx and Ny the number of subvolumes in horizontal
and vertical directions, respectively. Additionally, as shown in Figure 4, the imposition of PBC
reduces the overall degrees of freedom, resulting in computational savings. The imposition of
PBC for this coarse mesh discretization reduces the total number of degrees of freedom from 48
to 36.
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Figure 4 – Enforcing PBC to an RUC which leads to the elimination of redundant degrees of
freedom
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Based on the kinematic and static compatibility conditions, the expression that evaluates
the global system of equations can be written considering energetically conjugated quantities
(force and displacement) as follows:

Nq∑
q=1

Q(q)T R(q) =

Nq∑
q=1

Q(q)T Ĥ
(q)
ε̄+

Nq∑
q=1

Q(q)T K̂
(q)

Q(q)û
′
= 0, (12)

Q(q)T and Q(q) are the static and kinematic compatibility matrices of the structure, respectively.
Evaluating the resultant of forces, the term on the left-hand side of the Eq. (12) vanishes due
to the anti-periodicity of total surface-averaged tractions. Then, the system of equations can be
rewritten as:

K̂û
′
= F̂, (13)

where K̂ =
Nq∑
q=1

Q(q)T K̂
(q)

Q(q) is the global stiffness matrix, û
′

represents the global surface-

averaged fluctuating displacement vector, and F̂ = −
Nq∑
q=1

Q(q)T Ĥ
(q)
ε is the global load vector

due to the heterogeneity and the macroscopic strain. This global load vector depends on the
differences in the material stiffness matrices of adjacent subvolumes and vanishes if the analyzed
model consists of homogeneous material.

2.2.4 Order of magnitude of the problem

The average contributions, measured in terms of degrees of freedom, for quadrilateral
finite elements (Q4 and Q8) or subvolumes (in the case of FVT) at the mesh center are evaluated
from the analysis shown in Figure 5. Quadrilateral finite elements contribute with 2 (Q4) and 6
(Q8) degrees of freedom for the global system of equations. In comparison, in the finite-volume
theory, the subvolumes located in the middle of the mesh contribute with 4 degrees of freedom for
the global system of equations, being in an intermediary position between the Q4 and Q8 finite
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elements in terms of the size of the global system of equations, which defines the computational
cost of the numerical solution per iteration.

Figure 5 – Average number of degrees of freedom
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3 NUMERICAL HOMOGENIZATION

3.1 Fundamental Concepts

Micromechanical analyses of composite materials involve two fundamental concepts: (i)
the representative volume element (RVE) and (ii) the repeating unit cell (RUC). These concepts
are based on different geometric representations of heterogeneous microstructures and require
distinct boundary conditions. The aim is to analyze the smallest material subvolume whose
response is indistinguishable from that of the material-at-large (Drago; Pindera, 2007; Pindera et
al., 2009; Aboudi et al., 2012).

Figure 6 – Microstructural periodic arrangement with three different squares representative
unit cells
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The RVE is typically defined as a volume large enough to represent the heterogeneous
material statistically. It is a volume where averaging results in sufficiently accurate effective
properties. On the other hand, the RUC involves fewer inhomogeneities, sometimes just one, that
are replicated to generate the periodically repeating material microstructure. Both representative
volume patterns simplify the analysis but require solutions to boundary value problems with
different boundary conditions. The conditions for the representative volume element involve
either homogeneous displacement or homogeneous traction. Conversely, the repeating unit
cell requires periodic boundary conditions. The primary focus of this study lies in materials
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exhibiting periodic microstructures. Figure 6 shows three different squares RUCs representing
the same microstructural periodic arrangement. Although it displays distinct unit cells, the
various representations produce similar results for the macroscopic or effective properties of
the homogenized material. In other words, regardless of the specific geometric choices at the
microstructural level, the behavior of the resulting material at a macroscopic scale remains the
same.

3.2 Linear Elasticity

This work is limited to linear elastic material under the infinitesimal deformation as-
sumption. In the case of a typical RUC, the kinematically admissible strain field εij is related to
a respective displacement field ui through the relation described below:

εij =
1

2

(
∂ui

∂yj
+

∂uj

∂yi

)
. (14)

In the absence of body forces, the statically admissible stress field σij satisfies the equilibrium
equation given by:

∂σij

∂yj
= 0. (15)

In the most general case, the stress and strain fields are then related by Hooke’s law as follows:

σij = Cijklεkl, (16)

where Cijkl corresponds to the four-order elastic material constitutive tensor. This constitutive
tensor consists of 81 components in its most general form (Qu; Cherkaoui, 2006). However, due
to the symmetry of stress and strain, the number of independent components is reduced to 36.
Besides, for hyperelastic materials where a strain energy potential governs the elastic material
response leads to Cijkl = Cklij . Then, the number of independent components of the constitutive
matrix is further reduced to 21, and can be expressed in Voigt notation as a symmetric matrix
represented by:

C =



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

sym. C1212


. (17)

In the particular case of plane stress state with all stress components in the out-of-plane direction
(3-direction) being zero, and to facilitate the computational implementation, the indices can
be compressed as 11 → 1, 22 → 2, and 12 → 3, allowing to write the constitutive matrix for
orthotropic materials as:

C =

 C11 C12 0

C22 0

sym. C33

 , (18)
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and for isotropic materials as:

C =
E

1− ν2

 1 ν 0

1 0

sym. 1−ν
2

 , (19)

where E and ν correspond to the Young’s modulus and Poisson’s ratio, respectively.

3.3 Average-strain Theorem

The development of the theorems in this section depends on the definition of average
strain on the domain V with boundary surface S (Figure 7). The conventional approach involves
evaluating the macroscopic quantities by averaging their microscopic counterparts over the
representative volume element, as outlined by Hill (1963) and evaluated as follows:

ε̄ij =
1

V

∫
V

εijdV =
1

2V

∫
V

(
∂ui

∂xj

+
∂uj

∂xi

)
dV

=
1

2V

∫
V

∂ui

∂xj

dV +
1

2V

∫
V

∂uj

∂xi

dV,

(20)

and by application of the divergence theorem,

ε̄ij =
1

2V

∫
S

uinjdS +
1

2V

∫
S

ujnidS, (21)

where the overbar stands for the volume average.

Figure 7 – RVE and RUC of a periodic composite material
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Consider a representative volume element (RVE) of a periodic composite material shown
in Figure 7, with volume V and boundary surface S with outward normal vector nj , subject to
the homogenous displacement boundary conditions ui(S) = ε0ijxj , for xj ∈ S, where ε0ij is a
uniform symmetry strain tensor. Substituting this boundary condition into Eq. (21),

ε̄ij =
1

2V

∫
S

ε0ikxknjdS +
1

2V

∫
S

ε0jkxknidS. (22)
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Applying the divergence theorem in Eq. (22) and considering the symmetry of the strain tensor,
the average strain tensor of the RVE is given by:

ε̄ij =
1

2V

∫
V

ε0ik
∂xk

∂xj

dV +
1

2V

∫
V

ε0jk
∂xk

∂xi

dV =
1

2

(
ε0ij + ε0ji

)
= ε0ij. (23)

The average strain tensor on the domain V is equal to the applied uniform strain tensor on the
RVE boundary surface S, independently of the material microstructure.

3.3.1 Periodicity conditions and the average-strain

Assume that at each point on the surface boundary Γ of an RUC defined by the domain Ω,
the strain field εij is represented in two scales through the relation εij = ε0ij + ε

′
ij , being ε0ij the

uniform strain and ε
′
ij the periodic or fluctuating strain due to the heterogeneous microstructure.

Making use of the average-strain theorem, the average strain tensor taken over the RUC is given
by:

ε̄
(Ω)
ij = ε0ij +

1

2Ω

∫
Ω

∂u
′
i

∂yj
dΩ +

1

2Ω

∫
Ω

∂u
′
j

∂yi
dΩ. (24)

Applying the divergence theorem in the second and third terms on the right side of Eq. (24), and
making use of the periodicity of fluctuating displacements on the boundary Γ,

ε̄
(Ω)
ij = ε0ij +

1

2Ω

∫
Γ

u
′

injdΓ +
1

2Ω

∫
Γ

u
′

jnidΓ = ε0ij. (25)

The average strain tensor on the RUC is also equal to the uniform strain tensor of the homogene-

ous boundary condition applied on the outer surface of the RVE. Note that the homogenization
problem can be solved considering that the response of the entire RVE under the above homoge-

neous displacement boundary conditions is identical to the response of an arbitrary RUC under
appropriate PBC, representing a considerable simplification of the problem. This conclusion
was also demonstrated by Escarpini Filho and Marques (2014) in the context of the thermal
homogenization problem.

3.4 Effective Properties of Periodic Materials

Nemat-Nasser and Taya (1981) and Nemat-Nasser et al. (1982) introduced a theoretically
rigorous method for predicting the effective properties of periodic composite materials using the
Fourier expansion of the strain field to derive an integral equilibrium equation. However, when
dealing with complex microstructure, the analytical determination of material behavior becomes
impractical, and a numerical method must be employed. In this context, several numerical
approaches have been developed to evaluate effective properties of periodic materials, e.g.,
Guedes and Kikuchi (1990) with the finite element method and Bansal and Pindera (2006) with
the finite-volume theory, among others.

This work shows two equivalent paths for evaluating effective elastic properties of two-
dimensional cellular materials based on asymptotic homogenization theory: a strain energy-based
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approach, through the satisfaction of the Hill-Mandel condition (Qu; Cherkaoui, 2006), which
directly relates the strain energy in the heterogeneous microstructure with the strain energy in
the equivalent or homogenized material, and the other through the principles of micromechanics
mean-field theory.

3.4.1 Strain energy-based approach

In this approach, homogenization can be interpreted as finding a homogeneous material
energetically equivalent to a given material with a heterogeneous microstructure. Considering
the zeroth-order formulation of the finite-volume theory, Araujo et al. (2021) demonstrated the
equivalence between the structural strain energy (U ) and the work done by external forces (W ),
once the differential equilibrium equations are satisfied point-wise inside the subvolumes. Based
on this observation and using the strain energy density definition (Ū = U/Ω),

Ū =
1

Ω

Nq∑
q=1

W (q) =
1

Ω

Nq∑
q=1

1

2
R(q)T û(q) =

1

Ω

Nq∑
q=1

1

2
û(q)T K̂(q)û(q), (26)

where û(q) corresponds to the total surface-averaged displacement field (macroscopic + fluctua-
ting) of the subvolume q. Making use of the micro-macro Hill’s energy equivalence,

1

2
σ̄T ε̄ =

1

2Ω

∫
Ω

σTεdΩ =
1

Ω

Nq∑
q=1

1

2
û(q)T K̂(q)û(q),

ε̄TC∗ε̄ =
1

Ω

Nq∑
q=1

û(q)T K̂(q)û(q).

(27)

Calculating the total surface-averaged displacement vectors involves combining different
cases of macroscopic strains. This method is based on Maxwell-Betti’s reciprocal work theorem,
where for linear elastic analysis, the work done by the macroscopic stress associated with the
macroscopic strain case (i) through the macroscopic strain case (j) is equal to the work done by
the macroscopic stress related to the macroscopic strain case (j) through the macroscopic strain
case (i). This way, for determining the components of the effective constitutive matrix C∗, it is
necessary previously to apply linearly independent cases of unit macroscopic strain to calculate
the corresponding total surface-averaged displacements. In the plane stress state, the independent
macroscopic strains can be ε̄|(1) = {1, 0, 0}T , ε̄|(2) = {0, 1, 0}T and ε̄|(3) = {0, 0, 1}T , that
involve two cases of normal strains, occurring in orthogonal directions, and a pure shear strain,
respectively. Therefore, the effective constitutive matrix components are evaluated as follows:

C∗
ij =

1

Ω

Nq∑
q=1

û(q)T |(i)K̂(q)û(q)|(j), (28)

with i, j = 1, 2, 3 and û(q)|(i) representing the total surface-averaged displacement field for the
qth subvolume, due to the application of macroscopic strain case (i).
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3.4.2 Mean-field theory approach

Mean-field theory or average-field theory operates on the principle that the effective
mechanical properties observed in experiments result from the relationship between the volume-
averaged strain and stress of microscopically heterogeneous specimens. Consequently, macro-
fields are defined as the volume averages of their corresponding micro-fields, and effective
properties are established as the relationships between these averaged micro-fields (Hori; Nemat-
Nasser, 1999).

According to Cavalcante et al. (2012), the crucial problem in the micromechanics of
heterogeneous materials is the determination of localization relations for the subdomains into
which the smallest domain representative of the material’s response is subdivided for analysis
purposes. For a linear elastic analysis, the localization relation is given by:

ε̄(q) = A(q)ε̄, (29)

where A is the elastic strain concentration tensor calculated just once for every qth subdomain
(Hill, 1963). Specifically, each column of A(q) is obtained by applying one nonzero macroscopic
strain case ε̄|(.) at a time, and solving Eq. (29) to generate the corresponding qth subvolume-
averaged strain ε̄(q).

In order to determine the volume-averaged stress (σ̄) within the unit cell domain (Ω)

based on the subvolume stresses (σ(q)), consider the following expression:

σ̄ =
1

Ω

∫
Ω

σdΩ =
1

Ω

Nq∑
q=1

∫
Ωq

σ(q)dΩq =

Nq∑
q=1

c(q)σ̄(q), (30)

where c(q) is the volume fraction of the subvolume q. Employing the homogenized Hooke’s law
for the material-at-large (σ̄ = C∗ε̄) and for the local subvolume (σ̄(q) = C(q)ε̄(q)), the effective
constitutive matrix can be evaluated as:

C∗ =

Nq∑
q=1

c(q)C(q)A(q). (31)

The application of Eqs. (28) and (31) leads to the same effective elastic properties of the material,
differing only in the calculation method. Sensitivity equations are necessary for the density-based
topology optimization procedure, and the complexities of the referred equations above will be
presented in Section 4.2.

To verify the algorithm’s implementation for computing the effective elastic moduli by
the strain energy-based and mean-field theory approaches, a perforated square aluminum sheet
with Young’s modulus of E = 68.95 GPa and a Poisson’s ratio of ν = 0.30 is examined assuming
various porosities levels. The analysis is realized considering the plane stress state and employing
a repeating unit cell, as shown in Figure 7. As theoretically expected, the results illustrated in
Figures 8 demonstrate that the strain energy-based and the mean-field theory approaches yield
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identical numerical values for a porous material’s effective elastic moduli for different porosity
levels.

Figure 8 – Effective elastic moduli estimated by different approaches

(a) Shear modulus

(b) Bulk modulus

Font: Author (2024).
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4 TOPOLOGY OPTIMIZATION

Topology optimization (TO) is an iterative design process that optimizes a material
distribution in a given design domain considering a specified objective function and a set of
constraints (Andreassen et al., 2014). This method originates from the weight minimization
problem of structures proposed by Michell (1904), where a solution method for the classical
Michell truss structures was derived.

Topology optimization algorithms generally determine where the material should be
included to generate a black-and-white or a solid-and-void design. Therefore, the structural
material distribution is obtained by a binary “0-1”, where 0 indicates void and 1 indicates the
presence of material. However, these algorithms lead to an integer programming problem, which
has been revealed to be an unfeasible approach for large-scale topology optimization problems.

In the seminal work proposed by Bendsøe and Kikuchi (1988), a topology optimiza-
tion strategy was introduced to exploit numerical homogenization to compute effective elastic
properties of parametrized porous microstructures and provide the optimal shape design. After
the significant contribution by Bendsøe and Kikuchi (1988), several numerical TO approaches
have been proposed and published by many researchers (Figure 9). Sigmund (1994b) introduced
the first application of topology optimization methods to design periodic materials employing
inverse homogenization. This approach consists of formulating and implementing a numerical
procedure to construct materials with any prescribed constitutive tensor. The subject has been
later successively addressed by the density-based approach, such as SIMP - solid isotropic mate-
rial with penalization (Bendsøe, 1989; Zhou; Rozvany, 1991; Rozvany et al., 1992) and RAMP -
rational approximation of material properties (Stolpe; Svanberg, 2001), and more recently by
other approaches such as ESO - evolutionary structural optimization (Huang; Xie, 2010), BESO
- bidirectional evolutionary structural optimization (Huang et al., 2011) and the level-set-based
topology optimization (Wang et al., 2003).

In the last decade, the dissemination of topology optimization concepts has been wides-
pread due to the development of computational codes for academic purposes. In this context,
Wang et al. (2021) and Wang et al. (2023) have published articles describing a comprehen-
sive overview of educational computational codes, showcasing a variety of approaches and
applications of topology optimization based on the finite element method.

The present dissertation employs the established density-based method due to its sim-
plicity for computational implementation, concomitantly with the finite-volume theory for the
microstructural analysis. The density-based method employs artificial density as a design varia-
ble through a non-linear interpolation model to handle material properties effectively, aiming
to penalize intermediate density values to produce almost solid-and-void designs, providing
physical consistency to the problem.
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Figure 9 – Publications on topology optimization restricted to the search fields: engineering,
materials science, and multidisciplinary
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Font: Scopus, access on January 22, 2024.

4.1 Density-based Approach

The most common form of topology optimization in structural applications is implemen-
ted through relaxed penalization methods, also called density-based approaches. This technique
involves relaxing the original topology optimization problem by introducing a continuous design
variable representing the presence of material, commonly named the relative artificial density,
herein named only density. When employed in microstructural optimization, the objective is to
identify the optimal topology within a representative unit cell that maximizes the effective mate-
rial properties. The microstructural design allows for customizing various material behaviors,
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defined by shear/bulk modulus, Poisson’s ratio, thermal expansion, elasticity tensor, and other
extremal properties (Sigmund; Torquato, 1997a; Sigmund, 2000; Xia; Breitkopf, 2015). This
approach is justified by the considerations in Bendsøe and Kikuchi (1988), which indicates that
the most important parameter to consider is the material density in the analysis domain, even
though its description does not faithfully represent the material’s micromechanical behavior.

In general, density-based methods employ a relation between the density design variable
(ρq) and the local material property, in terms of Young’s modulus (Eq), expressed by:

Eq(ρq) = g(ρq)E0, (32)

where E0 is the Young’s modulus of solid material and g(ρq) corresponds to a non-linear density
distribution function. In SIMP interpolation, the most widely used approach involves treating
the local material as isotropic, with the density distribution function described by the following
power-law:

g(ρq) = (ρq)
p , (33)

where p is the material penalization parameter. Although quite common, this approach results in
stiffness matrix singularity for low-density values, which is undesirable in numerical optimization
and requires a minimum density threshold imposition. To circumvent this problem, Sigmund
(2007) proposes the modified solid isotropic material with penalization, including a minimum
value stiffness of soft (void) material (Emin), and the local material property can be expressed
by:

Eq(ρq) = Emin + (ρq)
p (E0 − Emin). (34)

The modified SIMP interpolation method has many advantages, including the independence
of the minimum stiffness value in terms of the material penalization parameter. Besides, the
modified form is more straightforward for generalized use by various filtering schemes (Sigmund,
2007).

Another method for the density-based approach that is quite similar to the SIMP is the
RAMP interpolation method. This approach’s density distribution corresponds to a rational
function of the local material properties. The expression of the modified rational approximation
of material properties is given by:

Eq(ρq) = Emin +
ρq

1 + p(1− ρq)
(E0 − Emin). (35)

The RAMP approach was introduced as a refinement of the original SIMP interpolation method,
specifically designed to address the non-concavity issues and ensure convergence of solutions
to a binary to “0-1” form (Stolpe; Svanberg, 2001; Sigmund; Maute, 2013). It addresses some
limitations inherent to the SIMP method, mainly related to abrupt changes in material densities
and the numerical instability associated with high penalization factors. The method employs a
rational approximation of the penalization function, resulting in a smoother transition between
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material densities and mitigating numerical issues, improving the convergence behavior and
stability of the optimization process.

In general, density-based methods modify the local stiffness matrix in the following way:

K̂(q)(ρq) = Eq(ρq)K̂
0
, (36)

where K̂
0

is the local stiffness matrix considering a unit Young’s modulus.

4.1.1 Hashin-Shtrikman bounds for two-phase materials

The Hashin-Shtrikman (HS) bounds for two-phase materials express the theoretical limits
of isotropic material properties by constructing composites from two linearly elastic isotropic
materials (Bendsøe; Sigmund, 2003). Developed by Hashin and Shtrikman (1963), these limits
express material parameters as functions of constituents volume fractions. They are determined
based on variational principles where the medium is assumed to be infinite, and no geometric
information of the constituents is considered.

Bendsøe and Sigmund (1999) rewritten the Hashin-Shtrikman bounds as functions of
the material density ρ employed as interpolation schemes in topology optimization (all material
laws involved are treated as isotropic). In SIMP and RAMP methods, the constitutive matrix
corresponds to a composite material constructed from the void and the given material at a density
ρ. Therefore, the effective bulk (κ∗) and shear (µ∗) moduli should satisfy the Hashin-Shtrikman
bounds for two-phase materials. In the case of plane stress state and considering one phase as a
void, the following expressions can be derived:

0 ≤ κ∗ ≤ ρκ0µ0

(1− ρ)κ0 + µ0

and 0 ≤ µ∗ ≤ ρκ0µ0

(1− ρ)(κ0 + 2µ0) + κ0

, (37)

where κ0 and µ0 are the bulk and shear moduli of the solid material, respectively. Assuming
a solid material with Poisson’s ratio of ν = 1/3, and evaluating Eq. (37) in terms of effective
Young’s modulus (E∗),

0 ≤ E∗ ≤ ρE0

3− 2ρ
. (38)

From the Eq. (38), the standard SIMP interpolation (E = ρpE0) should satisfy:

ρpE0 ≤
ρE0

3− 2ρ
for all 0 ≤ ρ ≤ 1. (39)

The relation in Eq. (39) is valid only when p ≥ 3 and presumes that the Poisson’s ratio is
independent of the density, which results in a stronger restriction. Similarly, the RAMP requires
p ≥ 2. Figure 10 illustrates the effect of material penalization parameter p for SIMP and RAMP
methods. Note that the SIMP, with p ≥ 3, and the RAMP, with p ≥ 2, adhere to the HS upper
bound. The RAMP method mathematically expresses the HS upper bound in the particular
instance where p = 2. In SIMP results, wide spacing of penalization curves is intrinsically
related to abrupt changes in material densities. On the other hand, the RAMP method provides
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thinner spacing, which leads to smoother transitions along penalization curves, a required aspect
in the continuation method employing an interpolation scheme. Furthermore, as mentioned by
Bendsøe and Sigmund (2003), if the design of two-material structures is the goal of the topology
optimization, the RAMP model is, in a sense, more physical than SIMP.

Figure 10 – Effect of the material penalization parameter

(a) SIMP

(b) RAMP

Font: Author (2024).

The appearance of intermediate densities is essential for problem relaxation. However,
this pattern in the final topology can be undesirable for the material designer, who must interpret
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the result and propose a feasible final solution. Although desirable, very high values of the
material penalization parameter lead the problem to the “0-1” design pattern, where a solution
is not guaranteed, as mentioned by Rozvany et al. (1995). Therefore, the sensitivity of these
optimization approaches to the choice of material penalization parameter p highlights the need
for careful consideration and understanding of the constraints associated with each approach.

4.1.2 Problem formulation for material design

The following mathematical expression provides the general formulation for optimizing
linearly elastic properties of periodic materials:

find : ρ = {ρ1, ρ2, · · · , ρNq}T ,

max
ρ

: ϕ(ρ) =
3∑

i,j=1

αijC
∗
ij,

s.t. : K̂û
′
|(i) = F̂|(i),

:
1

Ω

Nq∑
q=1

vqρq ≤ ϑ,

: 0 ≤ ρq ≤ 1, q = 1, · · · , Nq,

(40)

where ρ corresponds to the density vector, ϕ is the objective function defined by a linear
combination of the effective constitutive matrix components, αij is the weight factor, enabling
the definition of diverse objective functions by varying its values, vq denotes the volume of
the qth subvolume, ϑ is the volume fraction of solid material, û

′
|(i) and F̂|(i) are the global

surface-averaged fluctuating displacement vector and the global load vector, respectively, due the
application of the strain case (i). The global load vector depends on material properties, which
makes it dependent on design variables (densities). This characteristic renders the topology
optimization procedure in material design intrinsically dependent on the specific design load.

In this approach, the objective functions are established in terms of the effective cons-
titutive matrix components. The cellular material shear modulus maximization corresponds to
maximizing the function ϕ = C∗

33, assuming the weight factor as α33 = 1 and αij = 0 for
the other components. For the 2D cellular material bulk modulus maximization, the objective
function in the optimization problem can be given by ϕ = 1/4 (C∗

11 + C∗
21 + C∗

12 + C∗
22), where

α33 = 0 and αij = 1/4 for the other components, considering a plain strain state, which is
also known in the literature as the plane-strain bulk modulus (Hyer; Waas, 2017). Making use
of the symmetry of the effective constitutive matrix (C∗

21 = C∗
12) and known of rotating the

RUCs shown in Figures 6-7 by 90-degree angle result in cells with the same effective materials
properties, the objective function can be simplified as ϕ = 1/2 (C∗

11 + C∗
12). Thus, considering

the concept of plane-strain bulk modulus, the effective bulk modulus for the 2D cellular material
can be evaluated as κ∗ = 1/2 (C∗

11 + C∗
12).
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In the case of cellular materials with negative Poisson’s ratio, the optimization objective
function adopted follows the strategy developed by Xia and Breitkopf (2015) for finite element
analysis, and is defined as ϕ = −C∗

12 + βiter (C∗
11 + C∗

22), where 0 < β < 1 is a fixed numerical
parameter controlling the structure’s stiffness along the material principal directions, and the
exponent iter is the design iteration number. As the iteration number increases during optimi-
zation, the objective function tends towards ϕ = −C∗

12, which results in cellular materials with
negative Poisson ratios.

4.2 Sensitivity Analysis

The solution of the optimization problem defined in Eq. (40) commonly requires the
calculation of the gradient of the objective function and constraints concerning the design
variable. This calculation is essential for performing a sensitivity analysis of the problem, as it
reveals how sensitive that function is to variations in the design variables. The sensitivity of the
effective constitutive matrix components is evaluated as follows:

∂C∗
ij

∂ρq
=

1

Ω
û(q)T |(i)

∂K̂(q)

∂ρq
û(q)|(j). (41)

Equation (41) relates the total surface-averaged displacement field to the derivatives of the local
stiffness matrix concerning the density for the qth subvolume. Unlike the structural optimization
problem with prescribed boundary load, setting periodic boundary conditions on the repeated unit
cell leads to obtaining the sensitivity of the objective function with a positive sign, which implies
maximizing the complementary strain energy and effective constitutive matrix components along
the optimization process.

Another approach to calculating the gradient of the objective function can be established
from the concepts of the mean-field theory. In this approach, the sensitivity of the effective
constitutive matrix components is established as follows:

∂C∗
ij

∂ρq
= c(q)ε̄T |(i)

∂C
(q)
ij

∂ρq

(
ε̄|(j) + B̄(q)û

′(q)|(j)
)
+ λ̂

(q)T
(
∂K̂(q)

∂ρq
û

′(q)|(j) +
∂Ĥ(q)

∂ρq
ε̄|(j)

)
, (42)

where B̄(q) corresponds to the strain/displacement operator and λ̂
(q)

is the local solution of the
adjoint problem (Bendsøe; Sigmund, 2003; Christensen; Klarbring, 2008). The mathematical
proof of the sensitivities expressions in Eqs. (41-42) are shown in Appendix A.

4.3 Optimality Criteria Method

The optimality criteria (OC) method is one of several approaches to solve topology opti-
mization problems. It corresponds to the heuristic updating scheme gradient-based optimization
approach and represents a robust method frequently employed in structural optimization pro-
blems. As explained in Bendsøe and Sigmund (2003), after obtaining the displacement solution,
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the TO defined by Eq. (40) is addressed by applying a standard optimality criteria method to
update the density variable (ρnewq ) according to the following strategy:

ρnewq =


max(0, ρq −m), if ρq (βq)

η ≤ max(0, ρq −m),

min(1, ρq +m), if ρq (βq)
η ≥ min(1, ρq +m),

ρq (βq)
η , otherwise,

(43)

where m is the positive move limit, η is a numerical damping factor, and βq is the optimality
condition evaluated by:

βq = − ∂ϕ

∂ρq

(
λ
∂V

∂ρq

)−1

, (44)

with λ representing the positive Lagrangian multiplier, which can be determined using a bisection
algorithm to enforce the satisfaction of the constraint on the volume fraction of solid material
(ϑ). The optimality criteria method, in general, is employed to solve compliance minimization
problems. However, adopting periodic boundary conditions based on a displacement formulation
and imposition of macroscopic strains maximizes the optimization procedure’s compliance
function and material stiffness. In this case, derivatives of the effective constitutive matrix
components are always positive, which requires a modification in the original algorithm to
consider only the positive gradients as follows:

βq =
∂ϕ

∂ρq

(
λ
∂V

∂ρq

)−1

. (45)

4.4 Filtering Techniques

In topology optimization, filtering techniques modify the density values (or sensitivities)
to prevent numerical issues affecting the results’ quality. These issues include checkerboarding,
referring to the formation of adjacent solid-void subvolumes arranged in a checkerboard pattern,
and mesh dependency, which is not as troublesome as the previous issue, where different topolo-
gies result from identical design domains with varying sizes of discretization (Deaton; Grandhi,
2013). Sigmund (2007) provides a comprehensive overview of filtering methods corresponding
to the most common techniques, including the sensitivity filter (Sigmund; Petersson, 1998) and
the density filter (Bourdin, 2001; Bruns; Tortorelli, 2001). These methods adjust a subvolume’s
sensitivity or density values, considering the sensitivities or densities of the subvolumes within a
localized neighborhood.

The sensitivity filter modifies the subvolumes sensitivities ∂ϕ/∂ρq as follows:

∂̂ϕ

∂ρq
=

1

max(γ, ρq)
∑
i∈Nq

Hqi

∑
i∈Nq

Hqiρi
∂ϕ

∂ρi
, (46)

where the term γ is a small positive number equals to 10−3 introduced in order to avoid division
by zero. The convolution operator Hqi in Eq. (46) is determined as follows:

Hqi =

{
rfil −∆(q, i), if ∆(q, i) ≤ rfil

0, if ∆(q, i) > rfil,
(47)
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where rfil is the filter radius and the operator ∆(q, i) is defined as the distance between the center
of subvolume q and the center of subvolume i. As shown in the illustration of Figure 11, the
convolution operator Hqi decays linearly with the distance from subvolume q.

Figure 11 – Illustration of filtering technique

(i) (q)

rfil

rfil rfil

Δ(q, i)

Hqi

Δ(q, i)

(q)(i)

Font: Author (2024).

The density filter modifies the original density design variable for each subvolume, which
depends on the densities of neighboring subvolumes. The filtered densities ρ̃q are referred to as
the physical design variables because they are subsequently used directly in the simulation of the
underlying problem (Sigmund, 2007). The filter density expression is given by:

ρ̃q =
1∑

i∈Nq

Hqi

∑
i∈Nq

Hqiρi. (48)

4.5 Continuation Method

A gradient-based algorithm employed to update topology strongly depends on choices of
optimization parameters and starting guesses. Besides, the material interpolation methods that
penalize intermediate variable densities introduce non-convexities into the problems, resulting
in multiple local extremal solutions. It is expected to employ a continuation method to control
the material penalization parameter (p), looking for a final design with a short distance from
the global extremal solution (Rojas-Labanda; Stolpe, 2015). In this work, this method initially
solves the problem with p0 = 1 when employing the SIMP method, and p0 = 0 for the RAMP
method, where the optimal design typically features intermediate density values represented
by gray regions. Subsequently, the material penalization parameter is gradually incremented
in small steps (∆p), and the problem is repeatedly resolved until the desired value is achieved
(pmax).
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In structural topology optimization, researchers typically set the material penalization
parameter to pmax = 3 in the SIMP method, a practice observed in numerous studies such as
those by Bendsøe and Sigmund (2003) and Xia et al. (2016). This value is generally considered
adequate for generating predominantly solid-and-void designs. However, it is worth noting that
while the prevailing recommendation is often pmax = 3, the literature offers a range of alternative
values. For example, Petersson and Sigmund (1998) suggest pmax = 5, while Edwards et al.
(2007) and Sridhara et al. (2022) advocate for pmax = 10, asserting that it provides a suitably
discretized solution. This work assigns the material penalization parameter for each specific case
of the material’s effective property to be maximized based on previous experiments focused on
obtaining a final topology closer to the solid-and-void pattern.
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5 NUMERICAL EXAMPLES

5.1 Initial Remarks

Several numerical examples are analyzed to assess the performance of the finite-volume
theory employed in topology optimization for designing periodic cellular materials with opti-
mized elastic properties. These analyses aim to achieve desired properties, such as effective
maximized shear and bulk moduli (κ∗ and µ∗) or auxetic materials with an effective negative Pois-
son’s ratio (ν∗), without employing filtering techniques in the topology optimization procedure,
except for the comparison case with the theoretical HS upper bound. For simplicity, a square
repeating unit cell with two axes of symmetry along the horizontal and vertical directions is
adopted, with a specific emphasis on designing orthotropic materials, due to the shape of the unit
cell. Normalized reference properties include Young’s modulus E0 = 1, Poisson’s ratio ν = 0.3,
and a minimum Young’s modulus value of Emin = 10−9 to simulate porous (void) regions
and prevent singularity in the global stiffness matrix. In addition, the analyses are performed
considering the plane stress state, aiming to simulate thin sheets of perforated materials.

Figure 12 – Illustrative analysis domain employed in the Cartesian coordinates formulation of
the FVT

R

(a) Initial domain (b) Discretized initial domain

Font: Author (2024).

Unlike structural topology optimization, which starts from an initial design domain
featuring a uniform density distribution, periodic material design procedures require an initial
domain with material heterogeneity to enable the calculation of fluctuating displacements. Here,
the initial domain or initial material design considers a circular shape localized at the center
of the square unit cell, representing the soft material as illustrated in Figure 12(a). The finite-
volume simulations employ a structured mesh similar to a discretized domain in Figure 12(b),
where the circular region is approximated by defining the soft material’s radius or the number
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of subvolumes inside this region. Nonetheless, the initial material design volume fraction is
strategically suitable for the constraint solid material volume fraction in the topology optimization
procedure to avoid numerical instability in the initial algorithm’s iterations. Furthermore, an
optimal solution is supposed to be reached when the maximum variation of the design variables
is lower than a user-defined tolerance (tol). As the literature suggests, the algorithm’s tolerance
and the optimization parameter’s move limit are set to tol = 0.01 and m = 0.2, respectively.

The analyses are performed with a promising computational code in Matlab language,
named TopMatFVT, implemented in the Matlab© R2023a programming language running in a
computer equipped with a 12th generation Intel® Core™ i7-1260P processor (2.10 GHz and 16.0
GB DDR5 RAM) and a 64-bit Windows 11 Pro operating system. The flowchart description of
the TopMatFVT is shown in Appendix B.

5.2 Cellular Materials Shear Modulus Maximization

The present study proposes an investigation focusing on cellular material design with
maximized shear modulus. This study initially compares the results obtained by the developed
TopMatFVT with the finite element outcomes, considering two paths for determining effective
properties. Subsequently, the study examines the influence of several aspects, including the
variation of increments in penalization parameters within the continuation method, the impact
of initial material design, and how increasing volume fraction constraints affect the optimized
topology.

5.2.1 Comparison with finite element analysis

The analyses compare results obtained through the TopMatFVT implemented in the
context of the finite-volume theory (Appendix B) with those produced by the topX educational
code developed by Xia and Breitkopf (2015). The topX code employs Q4 finite element with
unitary element discretization and Matlab’s vectorization resources for assembling the stiffness
matrix and load vector, drawing inspiration from the work of Andreassen et al. (2011). In this
investigation, the SIMP method penalizes intermediate densities with a fixed material penalization
parameter p = 3 since this method is the only one implemented in the topX code. The damping
factor in the OC method (η) regularizes possible oscillations during the optimization process,
specifically in cases where no filtering techniques are applied. As the literature suggests, η = 1/2

provides faster convergence for the overall process. The aforementioned damping factor is
employed in this analysis to avoid modifying the original topX code and to make comparisons
more suitable. A comparative analysis focuses on the quality of optimized microstructural
topologies and the computational codes’ efficiency in processing time.

The headers of the Matlab functions within computational codes for a mesh discretization
of 50× 50 unitary elements/subvolumes are established as: topX(50,50,0.5,3,1e-9,1)
and TopMatFVT(50,50,0.5,3,[],[]), which input parameters correspond, in this order,

https://github.com/arnaldojunioral/TopMatFVT
https://github.com/arnaldojunioral/TopMatFVT
https://github.com/arnaldojunioral/TopMatFVT
https://github.com/arnaldojunioral/TopMatFVT
https://www.researchgate.net/publication/278646315_topX
https://www.researchgate.net/publication/278646315_topX
https://www.researchgate.net/publication/278646315_topX
https://www.researchgate.net/publication/278646315_topX
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to discretization in the horizontal and vertical directions of the domain, volume fraction constraint,
material penalization parameter, filtering radius, and filter type. Despite the analysis conducted
without a filtering scheme, it becomes crucial in the topX code to define the filtering parameters
to avoid numerical inconsistencies due to the application of the convolution operator as shown in
Eqs. (46) and (48). In this scenario, a minimum filtering radius (1e-9) was a strategic choice,
even though it does not delineate a viable filtering region. For a comprehensive and reliable
time processing measurement, both functions are called five times, and then the average of the
measures is calculated.

Table 1 – Optimized topologies with maximized shear modulus employing TopMatFVT and
topX codes

Discretization/
Soft material radius

TopMatFVT
Strain energy-based

TopMatFVT
Mean-field theory topX

50× 50
R = 50/6

µ∗ = 0.1223
28 iter and 1.48 s

µ∗ = 0.1223
28 iter and 1.92 s

µ∗ = 0.1208
29 iter and 1.39 s

100× 100
R = 100/6

µ∗ = 0.1267
29 iter and 3.51 s

µ∗ = 0.1267
29 iter and 8.16 s

µ∗ = 0.1254
37 iter and 3.75 s

200× 200
R = 200/6

µ∗ = 0.1302
36 iter and 18.09 s

µ∗ = 0.1302
36 iter and 42.29 s

µ∗ = 0.1250
75 iter and 29.99 s

Font: Author (2024).

Table 1 shows optimized topologies with maximized shear modulus for a fixed solid
material volume fraction constraint of 50%, considering different soft material radii (R) over
the mesh discretization for defining the initial material heterogeneity, which produce the same
porosity of 8.72% on both cases. Initially, this study compares the final topologies obtained using
two approaches for determining effective material properties: strain energy-based and mean-field

https://www.researchgate.net/publication/278646315_topX
https://github.com/arnaldojunioral/TopMatFVT
https://www.researchgate.net/publication/278646315_topX
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theory, within the context of finite-volume analyses (TopMatFVT). As expected, the optimized
topologies are identical, and the total number of iterations (iter) for solution convergence is the
same, given that the approaches for determining macroscopic properties are equivalent. However,
the processing time during the optimization procedure was slightly higher in all scenarios when
using the mean-field theory strategy. This increase in processing time is due to the requirement to
calculate the adjoint vector at each iterative step, which is necessary to determine the sensitivities
of the effective constitutive matrix components.

The results obtained through the finite element method (topX) show processing times
lower than those achieved by employing the finite-volume theory with the mean-field theory
approach despite requiring more iterations for solution convergence. On the other hand, they
exhibit slightly higher processing times compared to the results from the finite-volume theory
employing the strain energy-based approach. Additionally, the optimized topologies obtained
through the finite element method display a checkerboard pattern (artificial stiffness), which are
expected results since no filters were employed to regularize the problem’s solution. Furthermore,
these optimized topologies exhibit maximized shear modulus values (µ∗) lower than those
obtained via finite-volume theory, approximately 4% for the case of the mesh discretized into
200× 200 elements/subvolumes.

Despite the optimized topologies presenting localized gray regions, all analyzed sce-
narios with the finite-volume theory presented material designs free from the checkerboard,
demonstrating this powerful technique’s excellent performance when used to assist in the design
of cellular materials. However, the continuation method is recommended to mitigate gray regions
and achieve manufacturable microstructural topologies.

The optimized topologies generated are intended as preliminary suggestions for a material
design, which must refine the edges of the optimized topology depending on the desired level
of detail. Given the similarities in the optimized topologies produced with the approaches
employed for determining effective material properties, which represent two variations of the
same material modeling and are physically equivalent, the following examples will focus on the
strain energy-based approach due to its superior computational efficiency.

5.2.2 Influence of the continuation method

Firstly, an initial domain discretized into 100× 100 unitary subvolumes with the conve-
nient imposition of the PBCs defines the numerical model employed in the following analyses.
It is important to emphasize that the objective of this work is not to present a detailed account
of the aspects related to mesh dependency, given that such dependency is strictly associated
with the desired level of solution refinement (more refined meshes induce the appearance of
holes in the optimized topology due to the presence of multiple local extremal). The optimality
criteria (OC) method updates the design variables employing a damping factor η = 1/3 in the
following analyses, strategically selected to regularize displacement oscillations in less dense

https://github.com/arnaldojunioral/TopMatFVT
https://www.researchgate.net/publication/278646315_topX
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regions during the iterative process and to avoid the oscillatory phenomena that can occur in
analyses without filtering scheme with the FVT simulations using the continuation method,
particularly for the SIMP method, as observed by Araujo (2018) for compliance minimization
problems. The same damping factor value is consistently applied in the RAMP analysis, ensuring
a fair and meaningful comparison with the microstructural topologies derived from the SIMP
method.

Table 2 – Optimized topologies with maximized shear modulus employing continuation
method

Increment SIMP RAMP

∆p = 0.1

µ∗ = 0.1299
470 iter

µ∗ = 0.1323
585 iter

∆p = 0.5

µ∗ = 0.1275
243 iter

µ∗ = 0.1316
318 iter

∆p = 1

µ∗ = 0.1269
146 iter

µ∗ = 0.1313
243 iter

Font: Author (2024).

An initial domain characterized by a soft material radius R = 100/6 with a solid volume
fraction constraint ϑ = 50% is employed, and to verify the influence of the continuation method
on the optimized topologies, three increments in the material penalization parameter (∆p) are
considered. The results are then compared with those achieved using a fixed penalization strategy.
Although the material penalization parameter in the SIMP and RAMP starts from different
values, as mentioned in Section 4.5, the same range of possible values is conveniently adopted
for a suitable comparison. Thus, the maximum limits are pmax = 4 for the SIMP and pmax = 3

for the RAMP. The selection of these maximum limits enables solid-and-void designs for the



49

optimized microstructural topologies with maximized shear modulus.

Table 2 shows the optimized microstructural topologies with maximized shear moduli
concerning the increment on the material penalization parameter. The analysis investigates
how the continuation method’s choice of material penalization parameter influences the final
topologies when employing both SIMP and RAMP approaches. Notably, this parameter variation
strongly affects the optimized microstructural topology when employing the SIMP method,
resulting in a difference of approximately 2.31% between the shear moduli for the topologies
obtained with ∆p = 0.1 and ∆p = 1. Conversely, the RAMP method demonstrates stability
across the generated microstructural topologies, even when subjected to varying increments
in the material penalization parameters. As an essential parameter to assist in choosing the
approach, the RAMP method produced final topologies with higher shear stiffness (µ∗) than the
SIMP method in all cases. Besides, the final topologies generated by the RAMP method present
simpler designs, thicker bars, and smaller perimeters (cut path), which are crucial features for
the manufacturing process.

Table 3 – Optimized topologies with maximized shear modulus employing fixed penalization

SIMP (p = 4) RAMP (p = 3)

µ∗ = 0.1207
25 iter

µ∗ = 0.1305
88 iter

Font: Author (2024).

These results suggest that implementing the continuation method does not necessarily
require a small increment to produce good material designs, especially for the RAMP method,
which has a similar optimized topology compared with the fixed penalization strategy and
presents slightly higher shear stiffness. Naturally, the continuation method requires a more
significant number of iterations and, consequently, higher computational costs than the fixed
penalization strategy (Table 3). However, it minimizes the possibility of getting trapped in
a distant local extremal from the global solution. For both methods of material penalization
(SIMP and RAMP) with or without a continuation method, the optimized topologies achieved
are checkerboard-free patterns, demonstrating the potential of the finite-volume theory when
employed for designing cellular materials.
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Figure 13 – Comparison of material density distribution considering the continuation scheme
with the increment ∆p = 1 for the SIMP and RAMP methods

(a) (b)

(c) (d)

Font: Author (2024).

Figure 13 shows the material distribution across various density levels for an increment
of ∆p = 1 in the material penalization parameter, inspired by the optimized topologies in Table 2.
In Figure 13(a), the material distribution is the same for both approaches, as expected since
the respective approaches are equivalent to the initial penalization stages, as can be concluded
based on the Eqs. (34-35). The increase in the parameter (p) reduces the intermediate densities,
resulting in a material distribution close to the solid-and-void pattern. Furthermore, the relaxation
in the intermediate densities produced by the density-based methods, although it has no physical
meaning, is essential to avoid the discrete programming (0-1), which causes numerical ill-
conditioning due to the abrupt change in the values of the design variables that require many
iterations and, therefore, higher computational time. As the increment progresses, the SIMP
method penalizes intermediate densities more quickly, as illustrated in Figure 13(b), which is
justified by the penalty curves showing slight changes in the material’s stiffness for low densities.
This feature can create difficulties in convergence when using strategies based on objective
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function gradients with high material penalization parameters. On the other hand, in the final
stages, the RAMP method sufficiently penalizes intermediate densities, achieving a more defined
solid-and-void pattern, as illustrated in Figures 13(c)-13(d).

Figure 14 illustrates the evolutionary trajectory of the maximized shear modulus regar-
ding the material penalization parameter stage (∆p = 1) in the continuation method, considering
the SIMP and RAMP approaches. The results show the local optima points corresponding to the
solution problems for different material penalization parameters (red dots). Optimized topologies
in the initial penalization stages (p = 1 for the SIMP and p = 0 for the RAMP) are equivalent
because the material distribution is the same for both approaches. Furthermore, the presence of
gray regions in the topologies obtained at the initial penalization stages is evident, making it
necessary to evolve this parameter to levels where the penalization curves do not violate the HS
upper bound, p ≥ 3 for SIMP and p ≥ 2 for RAMP, as discussed in Section 4.1.1. The observed
presence of wide gaps between sets of values with different p is more expressive in SIMP results,
and this can be attributed to the wide spacing of penalization curves as illustrated in Figure 10.
A gradual decrease in the discontinuity between the curves representing the trajectory of shear
stiffness is visible for the SIMP and RAMP methods. However, while the optimum value for the
RAMP method consistently decreases with the increment of the penalization parameter, this does
not occur for the SIMP method, where the optimum value for p = 4 is higher than the optimum
value for p = 3.

In summary, while both SIMP and RAMP are widely used in topology optimization,
RAMP’s ability to provide smoother transitions and more apparent solid-and-void solutions often
gives it a more significant physical appeal in practical applications. It is worth noting that while
the RAMP method necessitates a more significant number of iterations compared to SIMP, it has
demonstrated superior numerical stability throughout the penalization process. Consequently,
the following analyses will exclusively employ the RAMP method, maintaining an incremental
approach (∆p = 1) in the material penalization parameter. This strategic decision is grounded in
the method’s reliability and capacity to deliver high-quality results consistently.
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Figure 14 – Evolutionary trajectory of the maximized shear modulus

p = 1

p = 2 p = 3

p = 4

(a) SIMP

p = 0

p = 1
p = 2

p = 3

(b) RAMP

Font: Author (2024).

5.2.3 Impact of initial material design

Alvarez et al. (2019) assert that the successful resolution of a topology optimization
problem through density-based methods like SIMP and RAMP hinges upon several key variables.
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These variables encompass the material penalization parameter, mesh size, filtering scheme, filter
radius, the optimization solver employed for updating design variables, and the choice of the
initial material design, requiring the designer’s experiences as observed by Xia and Breitkopf
(2015) and Liu et al. (2021), among others.

The analyses examine the initial material design impact on the optimized microstructural
topologies, considering two distinct initial domains while adhering to the same solid volume
fraction constraint of ϑ = 50%. These initial domains are characterized by soft material radii
R = 100/6 and R = 100/4, which produce porosities of 8.72% and 19.76%, respectively. The
results in Table 4 show that the choice of initial material design strongly influences the final
design because multiple local optima points exist in this approach to designing cellular materials.
Nonetheless, when the material designer possesses prior knowledge of the desired optimal
topology shape, opting for an initial guess aligning with the desired objective is advisable.

Table 4 – Impact of initial material design on the optimized topology with maximized shear
modulus

Initial domain Unit cell 3× 3 cells Effective properties

R = 100/6

C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

R = 100/4

C∗ =

0.1980 0.1532 0
0.1980 0

sym. 0.1353


µ∗ = 0.1353

Font: Author (2024).

Additionally, when the same periodic arrangement is defined by different unit cells, as
illustrated in Figure 6, distinct optimized topologies are achieved, thereby confirming the non-
uniqueness of the solution (Table 5). Conversely, combining the different optimized topologies
achieves an identical periodic arrangement, resulting in an equally effective constitutive matrix,
demonstrating the stability of the optimization process. These results are consistent with the
principles of inverse homogenization design, highlighting that various repeating unit cells can
display the same effective elastic properties, underscoring the significant impact of the initial
material design on the optimized topology, as discussed by Sigmund (1994a). However, It is
worth emphasizing the possibility of choosing more straightforward and more manufacturable
alternatives among solutions with varying topological characteristics. Distinct microstructures
featuring well-defined regions are achieved, resulting in optimized designs that exhibit minimal
gray regions. Considering different initial material designs, this nearly uniform distribution of



54

solid-and-void materials contributes to the excellent performance of cellular materials obtained
by the finite-volume theory modeling.

Table 5 – Impact of initial material design on the optimized topology with maximized shear
modulus considering different repeat unit cells with the same periodic arrangement

Initial domain Unit cell 3× 3 cells Effective properties

R = 100/6

C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

R = 100/6

C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

R = 100/6

C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

R = 100/6

C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

R = 100/6 C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

Font: Author (2024).

5.2.4 Influence of volume fraction constraint

The present study aims to evaluate the change in the optimized microstructural topologies
with maximized shear modulus under varying solid material volume fraction constraints (ϑ). The
results shown in Table 4 demonstrated that the material initial design strongly influences the
outcome due to multiple local optima caused by the flexibility of the design domain. Therefore,
the applications in this subsection are restricted to an initial design domain with a soft material
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radius R = 100/6. The choice of this parameter was merely to avoid repeating results, and this
selection does not lose generality.

Table 6 provides a visual representation of the optimized topologies, emphasizing the
evolution of the material distribution within the design domain as the volume constraint is
varied. As expected, increasing the volume of solid material leads to an optimized topology
with enhanced shear stiffness, demonstrating a clear correlation between material usage and
mechanical performance. This tendency indicates the importance of volume fraction in achieving
desired structural properties in topology optimization.

Table 6 – Optimized topologies with maximized shear modulus, considering four levels of
volume fraction constraints (ϑ)

ϑ Unit cell 3× 3 cells Effective properties

30%
C∗ =

0.0844 0.0793 0
0.0844 0

sym. 0.0716


µ∗ = 0.0716

40%
C∗ =

0.1292 0.1150 0
0.1292 0

sym. 0.1006


µ∗ = 0.1006

50%
C∗ =

0.1833 0.1556 0
0.1833 0

sym. 0.1313


µ∗ = 0.1313

60%
C∗ =

0.2559 0.2059 0
0.2559 0

sym. 0.1716


µ∗ = 0.1716

Font: Author (2024).

5.3 Cellular Materials Bulk Modulus Maximization

The examples in this section focus on maximizing the material’s bulk modulus under
hydrostatic loading. Bulk modulus maximization has been extensively studied in scenarios
involving filtering techniques, for instance, Sigmund (2000), Xia and Breitkopf (2015) and Collet
et al. (2018). The bulk modulus property is essential in structural mechanics once it quantifies
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the material’s response to changes in volume. Characterization of materials concerning their
compressive stiffness is fundamental in various engineering applications, such as designing
load-bearing structures in civil engineering, designing implants and prosthetics in biomedical
engineering, and enhancing vehicle safety and performance in automotive engineering, see for
example Fardis (2009), Ratner et al. (2004) and Brach et al. (2022).

This study evaluates optimized microstructural topologies with maximized bulk mo-
dulus variation under different Poisson ratios and solid material volume fraction constraints.
Additionally, the numerically obtained bulk modulus can be conveniently compared with the
theoretical upper bound proposed by Hashin and Shtrikman (1963) to assess the efficiency
of the optimization procedure. The analysis establishes a maximum limit pmax = 10 for the
material penalization parameter, aiming for the solid-void pattern, because the optimality criteria
algorithm has difficulty accommodating solid material for very low volume fraction constraints,
particularly for bulk modulus maximization. Studies by Petersson and Sigmund (1998), Edwards
et al. (2007), and Sridhara et al. (2022) have documented a similar approach and provided suitable
solutions. Furthermore, after evaluating various possibilities, an initial design domain with a
soft material radius R = 100/4 was chosen, as it provided reasonably optimized topologies,
especially without filtering techniques.

5.3.1 Influence of Poisson’s ratio

Classical elasticity theory predicts Poisson’s ratio (ν) to range between −1 and 1/2 due
to the necessity for mechanical properties (Young, shear, and bulk moduli) to have positive
values (Mott; Roland, 2009). However, the range of Poisson’s ratios chosen in this application
encompasses values corresponding to a material with zero Poisson’s ratio (ν = 0) to the limit
of an incompressible material (ν = 1/2). Designing materials and structures to achieve very
low Poisson ratios, such as through metamaterial structures, becomes crucial in scenarios where
minimizing lateral deformation is essential.

The present study aims to evaluate the change in the optimized microstructural topologies
with maximized bulk modulus under varying Poisson’s ratio of the solid material. It is important
to emphasize that the change in shear modulus due to variations in Poisson’s ratio is relatively
small, which implies that the sensitivity of the shear modulus concerning Poisson’s ratio is
not significant enough to cause major changes in the material distribution during topology
optimization. Conversely, the bulk modulus is highly sensitive to Poisson’s ratio variations.
When maximizing the bulk modulus, the optimization process must account for the variations in
Poisson’s more critically because they can substantially impact the resulting bulk modulus and
affect the optimal material distribution to achieve the desired maximization.

Table 7 shows how variations in the solid material’s Poisson ratio (ν) can significantly
influence the final design of the optimal microstructure, considering a fixed solid volume fractions
constraint of ϑ = 50%. As expected, the variation in the Poisson’s ratio significantly influences
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the material bulk modulus. Besides, low values of Poisson’s ratio lead to more complexity-
microstructural topologies. This tendency emphasizes the importance of accurately accounting
for material properties in the optimization process, as these parameters directly impact the
mechanical performance and feasibility of the resulting designs. By carefully selecting and
adjusting the Poisson’s ratio, engineers can tailor the optimization outcomes to match the desired
material behavior better, ensuring more efficient structural solutions.

Table 7 – Optimized topologies with maximized bulk modulus for fixed solid volume fractions
constraint of 50%, considering four values of Poisson’s ratio (ν)

ν Unit cell 3× 3 cells Effective properties

0
C∗ =

0.3069 0.0158 0
0.3069 0

sym. 0.0195


κ∗ = 0.1613

1/6
C∗ =

0.2210 0.1183 0
0.2210 0

sym. 0.0527


κ∗ = 0.1697

1/3
C∗ =

0.2094 0.1428 0
0.2094 0

sym. 0.1080


κ∗ = 0.1761

1/2
C∗ =

0.2190 0.1531 0
0.2190 0

sym. 0.1055


κ∗ = 0.1860

Font: Author (2024).

5.3.2 Influence of volume fraction constraint

The present study aims to evaluate the change in the optimized microstructural topologies
with maximized bulk modulus under varying the solid volume fraction constraint of the solid
material. Table 8 shows the optimized microstructural topologies with maximized bulk modulus
for different solid volume fraction constraint levels. Even though one might expect a proportional
variation in structure thickness with changes in available material, the optimization results show
the emergence of distinct microstructural patterns. The smaller volume fractions can lead the
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optimization process to converge to different local extremals. This phenomenon occurs because
the reduced material availability restricts the design space, potentially causing difficulty for the
algorithm in determining suboptimal configurations. Consequently, the final microstructures
may differ significantly from those obtained with higher material fractions, emphasizing the
sensitivity of the optimization process to volume constraints.

Table 8 – Optimized topologies with maximized bulk modulus, considering four levels of
volume fraction constraints (ϑ)

ϑ Unit cell 3× 3 cells Effective properties

30%
C∗ =

0.0971 0.0734 0
0.0971 0

sym. 0.0084


κ∗ = 0.0853

40%
C∗ =

0.1483 0.1041 0
0.1483 0

sym. 0.0510


κ∗ = 0.1262

50%
C∗ =

0.2074 0.1407 0
0.2074 0

sym. 0.1088


κ∗ = 0.1741

60%
C∗ =

0.3430 0.1331 0
0.3430 0

sym. 0.0746


κ∗ = 0.2380

Font: Author (2024).

5.3.3 Comparison with the Hashin-Shtrikman upper bound

This study aims to evaluate the change in the optimized microstructure under varying
solid volume fraction constraints, precisely at 30% to 75% and compare with the theoretical
Hashin-Shtrikman (HS) upper bound (Hashin; Shtrikman, 1963). The results are produced with
no-filtering scenarios, and those achieved employing sensitivity and density filtering techniques
(Sigmund, 2007; Bruns; Tortorelli, 2001; Bourdin, 2001). Although the Hashin–Shtrikman
bounds define a range of admissible values in which the composite exhibits isotropy, several
researchers, such as Huang et al. (2011), Collet et al. (2018), and Liu et al. (2021), among others,
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have observed that the maximum bulk modulus of orthotropic materials with square symmetry
closely approximates the HS upper bound. According to Torquato et al. (1998), in the scenario
where the elastic properties of one phase are equal to zero (voids), the HS upper bound in the
plane stress state can be expressed by:

κHS =
ϑκ0µ0

(1− ϑ)κ0 + µ0

, (49)

where κ0 and µ0 are the solid material’s bulk and shear moduli, respectively.

Figure 15 – Maximized bulk modulus for different optimized topologies and the HS upper
bound as a function of the volume fraction constraint (ϑ), considering no-filtering

scenario

Font: Author (2024).

Figure 15 illustrates the maximized bulk modulus of various optimized topologies as a
function of the volume fraction constraints, comparing them to the theoretical Hashin-Shtrikman
(HS) upper bound. As observed, topology optimization produces materials’ designs with an
effective bulk modulus that satisfies the HS upper bound. This illustration emphasizes the
efficiency of finite-volume theory in searching for optimized topologies with maximized bulk
moduli without filtering techniques. The method produces well-defined optimized topologies for
a significant range of solid volume fraction constraints. The finite-volume theory also allows for
precise control over material properties and distribution, resulting in designs that combine high
stiffness and material efficiency.
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Figure 16 – Maximized bulk modulus for different optimized topologies and the HS upper
bound as a function of the volume fraction constraint ϑ, considering filtering

applications

(a) Sensitivity filter analysis

(b) Density filter analysis

Font: Author (2024).

Figure 16 illustrates the maximized bulk modulus for different optimized topologies and
the HS upper bound, varying the volume fraction constraint and utilizing sensitivity and density
filtering, respectively, with a filter radius rfil = 1.5. The final topologies resulting from sensitivity
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filtering exhibit greater complexity than those from density filtering, indicating limitations from
a material manufacturing point of view. Additionally, when applying a volume fraction constraint
less than 50%, the algorithm converges to a solution featuring a substantial gray region for both
filtering strategies.

Furthermore, employing the finite-volume theory without filtering techniques for material
design results in higher effective elastic properties of the material (Figure 15). This aspect empha-
sizes that employing the finite-volume theory significantly contributes to topology optimization,
providing robust and efficient solutions without the added complexity of filtering techniques.

Figure 17 – Normalized macroscopic elastic modulus for rotated axes relative to the material
principal axes: shear modulus maximization
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It is essential to highlight that the topology optimization process applied to materials
design with periodic microstructures, considering a repeating square unit cell, leads to an
optimized topology that exhibits a high degree of material anisotropy due to the symmetry of
the unit cell. Figures 17-18 illustrate normalized macroscopic elastic modulus for rotated axes
relative to the material principal axes for shear and bulk moduli maximization, respectively,
considering a solid volume fraction constraint of 50%. The results in Figures 17(a)-18(a) suggest
that the optimization process maximizes the shear modulus in the material principal axes (0 and
90 degrees) and considerably minimizes it at a 45-degree angle. For this reason, the maximized
shear modulus violates the HS upper bound in the case of orthotropic materials. On the other
hand, despite the optimized topology displaying a high degree of anisotropy, the bulk modulus
remained invariant with the rotation of the reference axes relative to the material principal axes,
as illustrated in Figures 17(b)-18(b). This feature enables the maximized bulk modulus to stay
within the HS upper bound without violation.
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Figure 18 – Normalized macroscopic elastic modulus for rotated axes relative to the material
principal axes: bulk modulus maximization
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If a practical application demands material isotropy, material designers can consider
the incorporation of an isotropy constraint within the problem’s formulation for topology op-
timization as suggested by Radman et al. (2013). However, it requires implementing a more
robust algorithm for design variable updates, such as the method of moving asymptotes (MMA)
developed by Svanberg (1987). It is known, through the study conducted by Khatam et al. (2009),
that circular and hexagonal holes arranged in hexagonal arrays produce transversely isotropic
homogenized moduli, with the plane of isotropy coinciding with the sheet’s plane. A challenge
for future research is to evaluate whether modeling a hexagonal periodic cell can generate
transversely isotropic optimized topologies without additional isotropy constraints.

5.4 Cellular Materials with Negative Poisson’s ratio

Researchers have recently focused on engineered materials with non-conventional pro-
perties, showing significant potential for innovation in various industrial sectors (Andreassen et
al., 2014). A fascinating class of these materials, named auxetic materials, stands out for their
unique mechanical properties compared to natural materials. These materials are designed at the
microstructural level to exhibit distinctive and counter-intuitive behavior due to their internal
geometry and spatial distributions (Kelkar et al., 2020). Besides, they exhibit exotic functionali-
ties, such as pattern and shape transformations in response to mechanical forces, unidirectional
guiding of motion and waves, and reprogrammable stiffness or dissipation (Bertoldi et al., 2017).
One practical application of auxetic materials is their potential use in designing crashworthiness
devices for automotive or aerospace engineering, as discussed in Liu (2006).
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The application of topology optimization to design structural materials is an active field
of research. For example, Andreassen et al. (2014) developed a procedure based on topology
optimization to create manufacturable extraordinary elastic materials with a negative Poisson’s
ratio, employing the finite element method and filtering technique. Herein, the finite-volume
theory without filtering techniques or image processing is employed to find the optimized
microstructural topology of auxetic materials with a negative Poisson ratio.

5.4.1 Influence of volume fraction constraint

This study aims to demonstrate the change in the final design of auxetic materials with
varying volume fraction constraints (ϑ), considering an initial design domain with a soft material
radius R = 100/6. The material penalization parameter assigned to the model ranged from p = 0

to pmax = 3, with a unit increment in the continuation method and the OC move limit m = 0.1

strategic choice to stabilize the algorithm, improving convergence performance. Optimized
topologies in Tables 9-10 align with the auxetic behavior by employing slender components
interconnected via compliant joints (compliant mechanisms), resulting in lateral expansion
when subjected to axial stretching. Compliant mechanisms are widely employed in several
microelectromechanical systems (MEMS) applications, for example, airbag acceleration sensors
(Sigmund, 1997b).

The optimization process consistently yields re-entrant characteristics across all design
scenarios, with progressively thinner joints as the solid volume fraction constraint decreases,
enhancing the negative Poisson’s ratio behavior. However, these slender joints pose manufactu-
ring challenges and may contribute to fatigue and structural failure concerns. Additionally, the
choice of the numerical parameter β can influence the definition of the optimized topology, in
which higher values lead to results with an even more pronounced negative Poisson’s ratio but
also result in topologies featuring thinner and more delicate bars. The design process must consi-
der this trade-off between achieving the desired mechanical properties and maintaining structural
integrity. Implementing these parameters needs to be balanced to ensure manufacturability while
achieving the intended mechanical performance.

Finally, the results demonstrate the effectiveness of the finite-volume theory when applied
to material design through topology optimization methods without filtering techniques. This
approach showcases its capabilities in generating meaningful and efficient designs, offering
valuable insights into the optimization process for various material properties and characteristics.
Furthermore, it highlights the robustness and versatility of this methodology, emphasizing its
applicability in a range of engineering and scientific domains. Overall, these findings advance
materials science and design, showcasing the utility of the finite-volume theory as a valuable
alternative tool for innovative and optimized material development.
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Table 9 – Optimized topologies with negative Poisson’s ratio for a fixed β = 0.8, considering
four levels of volume fraction constraints (ϑ)

ϑ Unit cell 3× 3 cells Effective properties

30%
C∗ =

0.0547 −0.0448 0
0.0547 0

sym. 0.0005


ν∗ = −0.8190

40%
C∗ =

0.0754 −0.0575 0
0.0754 0

sym. 0.0028


ν∗ = −0.7626

50%
C∗ =

0.0846 −0.0636 0
0.0846 0

sym. 0.0087


ν∗ = −0.7518

60%
C∗ =

0.0906 −0.0715 0
0.0906 0

sym. 0.0162


ν∗ = −0.7892

Font: Author (2024).

Table 10 – Optimized topologies with negative Poisson’s ratio for a fixed volume fraction
constraints of 50%, considering other two values of β parameter

β Unit cell 3× 3 cells Effective properties

0.7
C∗ =

0.0825 −0.0626 0
0.0825 0

sym. 0.0051


ν∗ = −0.7588

0.9
C∗ =

0.0955 −0.0751 0
0.0955 0

sym. 0.0040


ν∗ = −0.7864

Font: Author (2024).



65

6 CONCLUSIONS

This work introduced an innovative approach that synthesized principles from the stan-
dard or zeroth-order formulation of finite-volume theory, homogenization methods, and density-
based topology optimization to design high-performance periodic cellular materials within an
efficient computational code. The design procedure was formulated as a topology optimization
problem, with the objective function aiming to maximize or minimize a linear combination of
the components of the effective constitutive matrix. This combination was strategically chosen to
yield macroscopic material parameters such as the shear/bulk moduli and the negative Poisson’s
ratio characteristic of auxetic materials.

A numerical homogenization procedure based on strain energy equivalence and the
classical micromechanics mean-field theory approaches was developed and included in the
TopMatFVT, aiming to evaluate the effective elastic properties of cellular materials as an
intermediate stage of the optimization procedure. Substantial reductions in computer processing
time and storage demands were achieved by implementing matrix vectorization techniques in the
Matlab programming language to solve numerical models, based on the works by Andreassen et
al. (2011) and Xia and Breitkopf (2015).

Several numerical examples were investigated to explore optimized microstructural
topology’s behavior concerning numerical model parameters and those directly relevant to
engineering applications. These parameters included the material interpolation methods SIMP
and RAMP, the continuation method of the material penalization parameter, the initial material
design, the Poisson’s ratio, and the selected material volume fraction constraint. The analyzed
applications demonstrated that the finite-volume theory, which does not require additional
restrictions on the problem, such as filtering techniques, combined with the topology optimization
strategy, is a valuable tool for aiding the design of periodic cellular materials.

Despite requiring more iterations than SIMP, the RAMP method has displayed better
numerical stability during the material penalization process and presented results with less
complex topologies, simpler designs, thicker bars, and smaller perimeters (cut path), which are
essential aspects of a material from a manufacturing point of view. Another crucial characteristic
observed is the strong dependence on the chosen initial material design when employing the
gradient-based approach, requiring prior knowledge of the final design desired by material
designers. On the other hand, selecting an initial material design characterized by different
repeat unit cells representing the same initial periodic arrangement leads to distinct optimized
topologies but with the same final periodic arrangement and effective material properties.

The results of optimized topologies with maximized shear or bulk modulus concerning
solid volume fraction constraints reveal distinct microstructural patterns. As expected, the
increase in final solid material results in an optimized topology with higher stiffness. Besides,
the variation in Poisson’s ratio significantly influences the material bulk modulus, where low

https://github.com/arnaldojunioral/TopMatFVT
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values can lead to more complex microstructural topologies. This emphasizes the importance of
accurately accounting for material properties in optimization.

The orthotropic material’s effective bulk modulus values for the range of solid volume
fraction constraints analyzed closely approximate the theoretical Hashin-Shtrikman upper bound
as an essential result, given that no filters were employed to regularize the solution. In the
negative Poisson’s ratio study, the optimization results produced optimized topologies with
re-entrant features in all design scenarios. As the solid volume fraction constraint decreases,
the joints become thinner, enhancing the negative Poisson’s ratio behavior. However, fragile
joints can pose challenges in manufacturing cellular materials. They may lead to fatigue and
structural failure, demanding a delicate balance between the choice of engineering parameter
and the desired sophistication of the optimized topology.

Finally, the optimized topologies derived from the approach developed in this dissertation
suggest an arrangement that will help material designers and should be viewed as something other
than immediately manufacturable solutions. Refining the response or treatment of "jagged" edges
necessitates smoothing strategies for these regions. This smoothing process corresponds to a
necessary step in the design for the final generation of manufacturable topologies, different from
the use of filters employed in the context of finite element analysis to avoid the occurrence of
checkerboard patterns. Therefore, the results presented are expected to inspire researchers to
develop innovative microstructures of cellular materials, especially without filters.

Further Works

As a continuation of the work presented in this dissertation, one may consider the
following subjects:

• The effectiveness of a gradient-based algorithm is highly dependent on the initial material
distribution within the design domain. It is crucial to carefully consider the starting
design to ensure optimal results. A comparative study with alternative strategies, such as
evolutionary methods, is recommended. These methods offer distinct advantages, including
different convergence behaviors and the ability to escape local extremal, providing a
broader perspective on achieving optimal structural designs;

• To employ the TopMatFVT to design efficient materials with prescribed elastic proper-
ties using an inverse homogenization approach. This strategy focuses on optimizing the
material distribution to achieve the desired material properties, guided by the constitutive
matrix of the target material;

• A periodic hexagonal unit cell should be modeled and incorporated into the TopMatFVT.
Conduct the analyses to verify if the optimal periodic microstructures present the behavior
of transversely isotropic materials. This modeling is justified due to the limitations of the

https://github.com/arnaldojunioral/TopMatFVT
https://github.com/arnaldojunioral/TopMatFVT
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optimality criteria (OC) method, which is effective only for a single constraint, and the
method of moving asymptotes (MMA) requires the imposition of additional constraints to
produce optimized topologies with transversely isotropic materials;

• Implementing a model into TopMatFVT that penalizes intermediate densities for bi-
materials (solid-solid) will enable the topology optimization of reinforced composite
materials and expand the range of practical applications that can be simulated;

• An extension from the two dimensions to the three dimensions domain is recommended.
This extension can facilitate a more authentic exploration of materials with more complex
periodic microstructures.

https://github.com/arnaldojunioral/TopMatFVT
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APPENDIX A – SENSITIVITY EQUATIONS

In gradient-based techniques like the optimality criteria method, the knowledge of the
derivatives (sensitivities) of the problem’s objective function is crucial. This section elaborates on
deriving the sensitivities of the effective constitutive matrix components for the two equivalent
approaches utilized in this study.

Sensitivity equation for strain energy-based approach

Assuming the surface-averaged tractions due to the application of individual macroscopic
strain case ε|(.) as:

t̂(q)|(.) = N(q)C(q)ε̄|(.) +K(q)û
′(q)|(.) = K(q)û

(q)
0 |(.) +K(q)û

′(q)|(.) = K(q)û(q)|(.) (B.1)

and the resultant of forces on the faces of the subvolume q,

R(q)|(.) = Ĥ(q)ε̄|(.) + K̂(q)û
′(q)|(.) = K̂(q)û

(q)
0 |(.) + K̂(q)û

′(q)|(.) = K̂(q)û(q)|(.), (B.2)

once the summation of the homogenized and fluctuating displacement fields can be represented
by Eq. (2), and û

(q)
0 |(.) is the surface-averaged homogenized displacement vector. This implies:

K̂û
′ |(.) = F̂|(.) = −K̂û0|(.) and K̂û0|(.) + K̂û

′ |(.) = K̂û|(.) = 0, (B.3)

where û0|(.) is the global surface-averaged homogenized displacement vector and û|(.) is the
global total surface-averaged displacement vector. In terms of energetically conjugated quantities
(force and displacement), the local stiffness matrix becomes symmetric and, therefore, K̂(q) =

K̂(q)T . Thus, the derivatives of the effective constitutive matrix components, Eq. (28), are given
by:

∂C∗
ij

∂ρr
=

1

Ω

Nq∑
q=1

û(q)T |(i)
∂K̂(q)

∂ρr
û(q)|(j) +

2

Ω

Nq∑
q=1

û(q)T |(i)K̂(q)∂û
(q)|(j)
∂ρr

. (B.4)

Employing the relation of transformation in global/local displacements: û(q)|(.) = Q(q)û|(.),

∂C∗
ij

∂ρr
=

1

Ω
û(r)T |(i)

∂K̂(r)

∂ρr
û(r)|(j) +

2

Ω
ûT |(i)

Nq∑
q=1

Q(q)T K̂(q)Q(q)∂û|(j)
∂ρr

. (B.5)

Being K̂ =
Nq∑
q=1

Q(q)T K̂(q)Q(q), which implies:

∂C∗
ij

∂ρr
=

1

Ω
û(r)T |(i)

∂K̂(r)

∂ρr
û(r)|(j) +

2

Ω
ûT |(i)K̂

∂û|(j)
∂ρr

. (B.6)

∂C∗
ij

∂ρr
=

1

Ω
û(r)T |(i)

∂K̂(r)

∂ρr
û(r)|(j) +

2

Ω
RT |(i)

∂û|(j)
∂ρr

. (B.7)

As RT |(i) = 0,
∂C∗

ij

∂ρr
=

1

Ω
û(r)T |(i)

∂K̂(r)

∂ρr
û(r)|(j). (B.8)
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Sensitivity equation for mean-field theory approach

Here, the derivatives of the effective constitutive matrix components are demonstrated by
employing the classical micromechanics mean-field theory.

Applying a macroscopic strain case ε̄|(.) on both sides of Eq. (31) and employing the
Eq. (29) yields:

ε̄T |(i)C∗ε̄|(j) = ε̄T |(i)
Nq∑
q=1

c(q)C(q)A(q)ε̄|(j) = ε̄T |(i)
Nq∑
q=1

c(q)C(q)ε̄(q)|(j). (B.9)

The Hill’s localization relation can be expressed as:

ε̄(q)|(j) = ε̄|(j) + B̄(q)û
′(q)|(j), (B.10)

where B̄(q) is the strain/displacement operator. Then,

ε̄T |(i)C∗ε̄|(j) = ε̄T |(i)
Nq∑
q=1

c(q)C(q)
(
ε̄|(j) + B̄(q)û

′(q)|(j)
)
. (B.11)

Due to the imposition of the unit strain case, the effective constitutive matrix components can be
evaluated as:

C∗
ij = ε̄T |(i)

Nq∑
q=1

c(q)C(q)
(
ε̄|(j) + B̄(q)û

′(q)|(j)
)
. (B.12)

Similar to Christoff et al. (2019), consider the following Augmented Lagrangian functional:

L(ρ) = ε̄T |(i)
Nq∑
q=1

c(q)C(q)
(
ε̄|(j) + B̄(q)û

′(q)|(j)
)
+ λ̂

T
(
K̂û

′|(j) − F̂|(j)
)
, (B.13)

where λ̂ is an arbitrary adjoint vector. The derivative of the Augmented Lagrangian functional in
respect to ρr is given by:

∂L(ρ)

∂ρr
= ε̄T |(i)

Nq∑
q=1

c(q)
∂C(q)

∂ρr

(
ε̄|(j) + B̄(q)û

′(r)|(j)
)
+

Nq∑
q=1

c(q)C(q)B̄(q)∂û
′(q)|(j)
ρr

+ λ̂
T

(
∂K̂

∂ρr
û

′|(j) + K̂
∂û

′(q)|(j)
∂ρr

+

Nq∑
q=1

Q(q)T ∂Ĥ
(q)

∂ρr
ε̄|(j)

)
.

(B.14)

Employing the global/local displacements relation û(q)|(.) = Q(q)û|(.),

∂L(ρ)

∂ρr
= c(r)ε̄T |(i)

∂C(r)

∂ρr

(
ε̄|(j) + B̄(r)û

′(r)|(j)
)

+

(
ε̄T |(i)

Nq∑
q=1

c(q)B̄(q)TC(q)Q(q)

)
∂û

′|(j)
∂ρr

+ λ̂
T

(
∂K̂

∂ρr
û

′|(j) + K̂
∂û

′ |(j)
∂ρr

+ Q(r)T ∂Ĥ
(r)

∂ρr
ε̄|(j)

)
.

(B.15)
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∂L(ρ)

∂ρr
= c(r)ε̄T |(i)

∂C(r)

∂ρr

(
ε̄|(j) + B̄(r)û

′(r)|(j)
)

+ ε̄T |(i)

(
Nq∑
q=1

c(q)B̄(q)TC(q)Q(q) + λ̂
T
K̂

)
∂û

′|(j)
∂ρr

+ λ̂
T

(
∂K̂

∂ρr
û

′ |(j) + Q(r)T ∂Ĥ
(r)

∂ρr
ε̄|(j)

)
.

(B.16)

Consider the following equation, which aims to find an adjoint vector solution λ̂ that imposes the
sum of the terms that multiply the derivatives of the surface-averaged fluctuating displacement
vector to be zero: (

ε̄T |(i)
Nq∑
q=1

c(q)B̄(q)TC(q)Q(q) + λ̂
T
K̂

)
∂û

′|(j)
∂ρr

= 0. (B.17)

λ̂
T
K̂ = −ε̄T |(i)

Nq∑
q=1

c(q)B̄(q)TC(q)Q(q). (B.18)

K̂T λ̂ = K̂λ̂ = −

(
Nq∑
q=1

c(q)Q(q)TC(q)B̄(q)

)
ε̄|(i). (B.19)

∂L(ρ)

∂ρr
= c(r)ε̄T |(i)

∂C(r)

∂ρr

(
ε̄|(j) + B̄(r)û

′(r)|(j)
)

+ λ̂
T

(
∂K̂

∂ρr
û

′ |(j) + Q(r)T ∂Ĥ
(r)

∂ρr
ε̄|(j)

)
.

(B.20)

Being K̂ =
Nq∑
q=1

Q(q)T K̂(q)Q(q),

∂K̂

∂ρr
=

Nq∑
q=1

Q(q)T ∂K̂
(q)

∂ρr
Q(q) = Q(r)T ∂K̂

(r)

∂ρr
Q(r). (B.21)

Thus,

∂L(ρ)

∂ρr
= c(r)ε̄T |(i)

∂C(r)

∂ρr

(
ε̄|(j) + B̄(r)û

′(r)|(j)
)

+ λ̂
T

(
Q(r)T ∂K̂

(r)

∂ρr
Q(r)û

′ |(j) + Q(r)T ∂Ĥ
(r)

∂ρr
ε̄|(j)

)
.

(B.22)

∂L(ρ)

∂ρr
= c(r)ε̄T |(i)

∂C(r)

∂ρr

(
ε̄|(j) + B̄(r)û

′(r)|(j)
)

+ λTQ(r)T

(
∂K̂(r)

∂ρr
û

′(r)|(j) +
∂Ĥ

(r)

∂ρr
ε̄|(j)

)
.

(B.23)
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Employing the global/local relation λ̂
(q)

= Q(q)λ̂,

∂C∗
ij(ρ)

∂ρr
=

∂L(ρ)

∂ρr
= c(r)ε̄T |(i)

∂C(r)

∂ρr

(
ε̄|(j) + B̄(r)û

′(r)|(j)
)

+ λ̂
(r)T

(
∂K̂(r)

∂ρr
û

′(r)|(j) +
∂Ĥ

(r)

∂ρr
ε̄|(j)

)
.

(B.24)
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APPENDIX B – COMPUTATIONAL PROCEDURE

TopMatFVT is a Matlab computational code developed to design microstructures em-
ploying density-based topology optimization and finite-volume method. This code integrates
material interpolation methods such as SIMP and RAMP to relax the design domain, aiming to
achieve an effective optimized microstructural topology. Besides, it incorporates two paths for
determining the effective properties of periodic cellular materials as an intermediate step of the
optimization procedure. The objective functions are defined by combining linear constitutive
matrix components to extremize specific materials’ macroscopic properties. These properties
include the material’s shear/bulk moduli and negative Poisson’s ratio in two-dimensional space,
focusing on scenarios involving perforated sheets.

The proposed code is a collection of Matlab functions that implement the material pro-
perties, initial material design (RUC), finite-volume theory analysis, numerical homogenization,
topology optimization, mesh-independency filters (not necessarily used), and post-processing.
Initial material design is defined as containing a soft material region inside the domain to enable
the calculation of the fluctuating displacement vector due to the material heterogeneity and the
imposition of periodic boundary conditions.

A structured finite-volume mesh with a unitary subvolume containing isotropic elastic
material properties and constant density is defined as input to the topology optimization problem.
The choice of unitary subvolumes to circumvent eventual numerical imprecisions and accelerate
the convergence process. Therefore, the main features of the topX code (Xia; Breitkopf, 2015)
are now explored in this version, such as loop vectorization and memory preallocation, which
are strengths of Matlab explored in this program. Periodic boundary conditions are implemented
considering the equivalence between the degrees of freedom of the opposite edges of the periodic
cell. Additionally, some parts of the code are moved out of the optimization loop, guaranteeing
they are only performed once.

The finite-volume theory analysis is performed under a plane stress state, and the gradient-
based topology optimization problem is solved using the optimality criteria (OC) method. The
stopping criterion is a tolerance of tol = 0.01, representing the maximum allowable change in the
design variables between successive iterations. Two mesh-independent filters are implemented
based on the filtering approaches: sensitivity filter (Sigmund; Petersson, 1998) and density
filter (Bourdin, 2001; Bruns; Tortorelli, 2001) implemented in efficient codes by Andreassen et
al. (2011) and Xia and Breitkopf (2015). Finally, the algorithm prints the obtained optimized
topology and the investigated numerical aspects, such as the number of iterations, processing
time, objective function estimations, and effective constitutive matrix. Figure 19 illustrates the
overview flowchart of the developed TopMatFVT computational code.

https://github.com/arnaldojunioral/TopMatFVT
https://www.researchgate.net/publication/278646315_topX
https://github.com/arnaldojunioral/TopMatFVT
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Figure 19 – Flowchart of the TopMatFVT for the topology optimization of periodic cellular
materials
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https://github.com/arnaldojunioral/TopMatFVT
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