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Abstract

In this thesis we present contributions to the study of weighted manifolds in the intrinsic and
extrinsic setting.

Firstly, we prove generalizations of Myers compactness theorem due to Ambrose and Gal-
loway for the Bakry-Émery Ricci tensor. As application we obtain closure theorems for the
weighted spacetime.

After that, using maximum principles for f -Laplacian, we obtain results type Bernstein and
height estimates for hypersurfaces immersed in a semi-Riemannian manifold of type εI×ρ P f .

Keywords: Weighted manifolds, Bakry-Émery Ricci tensor, f -mean curvature, Bernstein type
theorems, height estimates.



Resumo

Nesta tese, nós apresentamos contribuições para o estudo das variedades ponderadas no sentido
intrínseco e extrínseco.

Primeiramente, nós provamos generalizações do teorema de compacidade de Myers, devido
a Ambrose and Galloway, para o tensor Bakry-Émery Ricci. Como aplicação, nós obtemos
teoremas do fechamento para o espaço-tempo ponderado.

Depois disso, usando pricípios do máximo para o f -Laplaciano, nós obtemos resultados
tipo Bernstein e estimativas de altura para hipersuperfícies imersas em uma variedade semi-
Riemanniana ponderada do tipo εI×ρ P f .

Palavras-chave: Variedades ponderadas, tensor Bakry-Émery Ricci, curvatura f -média, teo-
remas tipo Bernstein, estimativas de altura.



Contents

1 Preliminaries 11
1.1 Curvature and Maximum principle 11
1.2 Weighted mean curvature 13
1.3 Hypersurfaces in weighted semi-Riemannian manifolds 14

2 Compactness of weighted manifolds 15
2.1 Introduction 15
2.2 Weighted Ambrose’s Theorem 16
2.3 Weighted Galloway’s Theorems 18
2.4 Weighted Riemannian Yun-Sprouse’s Theorem 21
2.5 Weighted Lorentzian Yun-Sprouse’s Theorem 23
2.6 Closure Theorem via Galloway’s Theorem 25
2.7 Closure Theorem via Ambrose’s Theorem 30

3 Bernstein type properties of complete hypersurfaces in weighted semi-Riemannian
manifolds 32
3.1 Introduction 32
3.2 Uniqueness results in weighted warped products 32
3.3 Rigidity results in weighted product spaces 37
3.4 Uniqueness results in weighted GRW spacetimes 45
3.5 Weighted static GRW spacetimes 48

4 Height Estimate for weighted semi-Riemannian manifolds 55
4.1 Introduction 55
4.2 The Riemannian setting 55
4.3 The Lorentzian setting 57



Introduction

Many problems lead us to consider Riemannian manifolds endowed with a measure that has a
smooth positive density with respect to the Riemannian one. As consequence, the interest in
the study of the weighted manifolds have been growing up.

In this thesis, we obtain intrinsic and extrinsic results for weighted manifolds, most of them
generalizing well known results in the standard Riemannian and Lorentzian cases. Our results
are part of the papers [22], [66], [23], [24] and [25].

In the first chapter, we fix some notations, give some basic definitions, and state results that
we will use in the other chapters.

In Chapter 2, based in the papers [22], in collaboration with M. Cavalcante and J. Oliveira,
and [66], we prove six generalizations of Myers compactness theorem under different condi-
tions on its generalized Ricci curvature tensor. As applications of the our weighted compact-
ness theorems, we present new closures theorems, that is, theorems which has as conclusion
the finiteness of the spatial part of a spacetime manifold.

In Chapter 3, based in the papers [24] and [25], in collaboration with M. Cavalcante and H.
de Lima, our aim is to investigate Bernstein properties of hypersurfaces immersed in a weighted
semi-Riemannian manifold of the type εI×ρ P, where ε = ±1. In this context, an important
point is to explore the Bakry-Émery-Ricci tensor of such a hypersurface in order to ensure the
existence of Omori-Yau type sequences. The existence of these sequences will constitute an
important tool in the study of the uniqueness of the hypersurfaces.

In Chapter 4, based in the paper [23], in collaboration with M. Cavalcante and H. de Lima,
we prove height estimates concerning compact hypersurfaces with nonzero constant weighted
mean curvature and whose boundary is contained into a slice of weighted product spaces of
nonnegative Bakry-Émery Ricci curvature (cf. Theorems 4.2.1 and 4.3.1). As applications of
our estimates, we obtain nonexistence results related to complete noncompact hypersurfaces
properly immersed in these weighted product spaces (cf. Theorems 4.2.2 and 4.3.2).

10



CHAPTER 1

Preliminaries

Here we establish the notations, some basic definitions and results, concerning weighted man-
ifolds, that will be used along this thesis.

1.1 Curvature and Maximum principle

Given a complete n-dimensional Riemannian manifold (Mn,g) and a smooth function f : Mn→
R, the weighted manifold Mn

f associated to Mn and f is the triple (Mn,g,dµ = e− f dM), where
dM denotes the standard volume element of Mn. Appearing naturally in the study of self-
shrinkers, Ricci solitons, harmonic heat flows and many others, weighted manifolds are proved
to be important nontrivial generalizations of Riemannian manifolds and, nowadays, there are
several geometric investigations concerning them. For a brief overview of results in this scope,
we refer the article [70] of Wey and Willie. We point out that a theory of Ricci curvature for
weighted manifolds goes back to Lichnerowicz [48, 49] and it was later developed by Bakry
and Émery in the work [11].

In this thesis we use three notions of Ricci curvature for weighted manifolds. Firstly, given
a constant k > 0, the k-Bakry-Émery-Ricci tensor is given by

Rick
f = Ric+Hess f −

1
k

d f ⊗d f ,

where Ric stands for the usual Ricci tensor of (M,g) (see [11]).
The second one is the ∞-Bakry-Émery-Ricci tensor or just Bakry-Émery-Ricci tensor. It is

given by
Ric f := Ric∞

f = Ric+Hess f .

We also consider a more general notion to the Ricci curvature as follows. Given a smooth
vector field V on M let V ∗ be its metric-dual vector field and let denote by LV g the Lie deriva-
tive. Given a constant k > 0, the modified Ricci tensor with respect to V and k (see [50]) is
defined as

Rick
V = Ric+LV g− 1

k
V ∗⊗V ∗.

Of course, in the above notations, Ric4k
f = Rick

∇ f
2
.

In order to exemplify these notions of Ricci curvature we recall that a Ricci soliton is just a

11



1.1 CURVATURE AND MAXIMUM PRINCIPLE 12

weighted manifold satisfying the equation bellow

Ric f = λg,

where λ ∈ R. Moreover, a Ricci soliton is called shrinking, steady, or expanding when λ > 0,
λ = 0 or λ < 0, respectively. Ricci solitons are a generalization of Einstein manifolds and
its importance is due to Perelman’s solution of Poincaré conjecture. They correspond to self-
similar solutions to Hamilton’s Ricci flow and often arise as limits of dilations of singularities
developed along the Ricci flow. Moreover one defines a metric quasi-Einstein just by replacing
the Bakry-Émery Ricci tensor by Rick

f , see [60] and [56]. In the next chapter we deal with a
bigger class of manifolds, because we use inequalities instead equalities.

Now, we define the f -divergence of a vector field X ∈ X(Mn) as

div f (X) = e f div(e− f X),

where div is the usual divergence on M. From this, the drift Laplacian it is defined by

∆ f u = div f (∇u) = ∆u−〈∇u,∇ f 〉,

where u is a smooth function on M. We will also refer such operator as the f -Laplacian of M.
From the above definitions we have a Bochner type formula for weighted manifolds. Namely:

1
2

∆ f |∇u|2 = |Hessu|2 + 〈∇u,∇(∆ f u)〉+Ric f (∇u,∇u), (1.1)

where u is a smooth function on M. See [70] for more details.
An important tool along this work is the Omori-Yau maximum principle for the f -Laplacian.

According to [61], we have the following definition

Definition 1.1.1. Let M f be a weighted manifold. We say that the full Omori-Yau maximum
principle for ∆ f holds if for any C2 function u : M −→ R satisfying supM u = u∗ < ∞ there
exists a sequence {xn} ⊂ M along which

(i) lim
n

u(xn) = sup
M

u, (ii) lim
n
|∇u(xn)|= 0 and (iii) limsup

n
∆ f u(xn)≤ 0.

If the condition (ii) don’t hold, then we say just that the weak Omori-Yau maximum principle
for ∆ f holds on M.

From the classical Omori-Yau maximum principle (see [57] and [71]) we conclude that if
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|∇ f | is bounded and Ric is bounded from below, then the full Omori-Yau maximum principle
for ∆ f holds on M.

On the other hand, using volume growth conditions and stochastic process on a weighted
manifold, Rimoldi [61], showed that the validity of the weak Omory-Yau maximum principle
is guaranteed by a lower bound on the Bakry-Émery Ricci tensor. Namely:

Theorem 1.1.1. Let M f be a weighted manifold. If Ric f ≥ λ for some λ ∈ R, then the weak
Omori-Yau maximum principle holds on M.

1.2 Weighted mean curvature

Here, we define a notion of mean curvature in the weighted context. Indeed, let Σn be a hy-
persurface immersed in a weighted Riemannian manifold Mn+1

f and denote by ∇ the gradient
with respect to the metric of Mn+1. According to Gromov [41], the weighted mean curvature,
or simply f -mean curvature, H f of Σn is given by

nH f = nH + 〈N,∇ f 〉, (1.2)

where H denotes the standard mean curvature of Σn with respect to its orientation N. In this
context, it is natural to consider the first variation for the weighted volume

vol f (Ω) =
∫

Ω

e− f dΩ,

where Ω is a bounded domain in Σ. According to Bayle [12] the first variation formula is given
by

d
dt

∣∣∣
t=0

vol f (Ωt) =
∫

Ω

H f 〈N,V 〉e− f dΩ,

where V is the variational vector field.
In the Euclidean space Rn+1, taking f = |x|2

2 , the hypersurfaces with f -mean curvature
H f = 0 are the well known self-shrinkers, that is, a hypersurface immersed in Rn+1 satisfying

H = 〈x,N〉,

where x is the position vector in Rn+1, see for instance [29].
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1.3 Hypersurfaces in weighted semi-Riemannian manifolds

In what follows, let us consider an (n+1)-dimensional product space M̄n+1 of the form I×Pn,
where I ⊂ R is an open interval, Pn is an n-dimensional connected Riemannian manifold and
M̄n+1 is endowed with the standard product metric

〈,〉= επ
∗
I (dt2)+π

∗
P(〈,〉P),

where ε = ±1, πI and πP denote the canonical projections from I×Pn onto each factor, and
〈,〉P is the Riemannian metric on Pn. For simplicity, we will just write M̄n+1 = εI×Pn and
〈,〉 = εdt2 + 〈,〉P. In this setting, for a fixed t0 ∈ I, we say that Pn

t0 = {t0}×Pn is a slice of
M̄n+1.

In Chapter 3 and 4, we will consider a connected hypersurface Σn immersed into M̄n+1.
In the case where M̄n+1 is Lorentzian (that is, when ε = −1) we will assume that Σn is a
spacelike hypersurface, that is, the metric induced on Σn via the immersion is a Riemannian
metric. Since ∂t is a globally defined timelike vector field on−I×Pn, it follows that there exists
an unique unitary timelike normal field N globally defined on Σn and, therefore, the function

angle Θ = 〈N,∂t〉 satisfies |Θ| ≥ 1. On the other hand, when M̄n+1 is Riemannian (that is, when
ε = 1), Σn is assumed to be a two-sided hypersurface in M̄n+1. This condition means that there
is a globally defined unit normal vector field N.

Denoting by ∇, ∇ and ∇̃ the gradients with respect to the metrics of εI×ρ Pn, Σn and P,
respectively, a simple computation shows that the gradient of πI on M̄n+1 is given by

∇πI = ε〈∇πI,∂t〉∂t = ε∂t . (1.3)

So, from (1.3) we conclude that the gradient of the (vertical) height function h = (πI)|Σ of Σn

is given by
∇h = (∇πI)

> = ε∂
>
t = ε∂t−ΘN, (1.4)

where ( )> denotes the tangential component of a vector field in X(M̄n+1) along Σn. Thus, we
get the following relation

|∇h|2 = ε(1−Θ
2). (1.5)

In this setting, the weighted mean curvature H f of Σn is given by

nH f = nH + ε〈∇ f ,N〉. (1.6)



CHAPTER 2

Compactness of weighted manifolds

The results in this chapter are part of the works [22] and [66].

2.1 Introduction

The Myers Theorem has been generalized and its deepness is shown in its many applications.
In the following we recall some important generalizations. In the first one, due to Ambrose [8],
the condition on the lower bound for the Ricci tensor is replaced by a condition on its integral
along geodesics. Namely:

Theorem A (Ambrose). Suppose there exists a point p in a complete Riemannian manifold M

for which every geodesic γ(t) emanating from p satisfies∫
∞

0
Ric(γ ′(s),γ ′(s))ds = ∞.

Then M is compact.

The second important generalization we want to mention here is due to Galloway [38]
where a perturbed version of Myers theorem were considered.

Theorem B (Galloway). Let Mn be a complete Riemannian manifold, and γ a geodesic joining

two points of M. Assume that

Ric(γ ′(s),γ ′(s))≥ a+
dφ

dt

holds along γ , where a is a positive constant and φ is any smooth function satisfying |φ | ≤ c.

Then M is compact and its diameter is bounded from above by

diam(M)≤ π

a

(
c+
√

c2 +a(n−1)
)
.

Finally, we recall an interesting result due to C. Sprouse (see [68]). Namely:

Theorem C (Sprouse). Let (M,g) be a complete Riemannian manifold of dimension n satis-

fying Ric(v,v) ≥ −a(n−1) for all unit vectors v and some a > 0. Then for any R,δ > 0 there

15



2.2 WEIGHTED AMBROSE’S THEOREM 16

exists ε = ε(n,a,R,δ ) such that if

sup
x

1
Vol(B(x,R))

∫
B(x,R)

max{(n−1)−Ric−(x),0}dvol < ε(n,k,R,δ ),

then M is compact with diam(M)≤ π +δ .

These theorems above have applications in Relativity Cosmology (see [38], [37] and [73])
and in the theory of Ricci Solitons (see [35] and [58]).

In this chapter we generalize Theorems A, B and C to the context of weighted manifolds,
actually, we generalize an improved versions of Theorem C due to Yun (see [73]) for complete
Riemannian manifolds and for globally hyperbolic spacetimes. Our results have applications
for closure theorems of spatial hypersurfaces in mathematical relativity.

2.2 Weighted Ambrose’s Theorem

We denote by m f the weighted Laplacian of the distance function from a fixed point p ∈ M.

From the Bochner equality (1.1) it is easy to see that m f satisfies the following Riccati inequal-
ity (see Appendix A of [70]):

Rick
f (∂ r,∂ r)≤−m′f −

1
k+n−1

m2
f , (2.1)

where k ∈ (0,∞) and m′f stands for the derivative of m f with respect to r.

Now we are in position to state and prove our first result.

Theorem 2.2.1 (Theorem 2.1 [22]). Let M f be a complete weighted manifold. Suppose there
exists a point p ∈M f such that every geodesic γ(t) emanating from p satisfies∫

∞

0
Rick

f (γ
′(s),γ ′(s))ds = ∞,

where k ∈ (0,∞). Then M is compact.

Proof. Suppose by contradiction that M is not compact and let us assume that γ(t) is a unit
speed ray issuing from p. Then, the function m f (t) is smooth for all t > 0 along γ(t).

Integrating the inequality (2.1) we obtain∫ t

1
Rick

f (γ
′(s),γ ′(s))ds≤

∫ t

1
(−m′f (s)−

1
k+n−1

m2
f (s))ds.
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So we conclude that

lim
t→∞

(−m f (t)−
1

k+n−1

∫ t

1
m2

f (s)ds) = ∞. (2.2)

In particular,
lim
t→∞
−m f (t) = ∞.

In the following we show that there exists a finite number T > 0 such that lim
t→T−

−m f (t) = ∞

which contradicts the smoothness of m f (t).

From (2.2), given c > k+n−1 there exists t1 > 1 such that

−m f (t)−
1

k+n−1

∫ t

1
m2

f (s)ds≥ c
k+n−1

> 1, (2.3)

for all t ≥ t1, where n = dim(M).

Let denote by α = (k+n−1) and let us consider {t`} the sequence defined inductively by

t`+1 = t`+α

(
α

c

)`−1
, for `≥ 1.

Notice that {t`} is an increasing sequence converging to T = t1 +α
c/α

(c/α)−1 .

Given ` ∈ N we claim that −m f (t) ≥
( c

α

)` for all t ≥ t`. In fact, from inequality (2.3) we
have that it is true for `= 1. Now, assume that claim holds for all t ≥ t` and fix t ≥ t`+1. Then
using inequality (2.3) again:

−m f (t) ≥
c

k+n−1
+

1
k+n−1

∫ t`

1
m2

f (s)ds+
1

k+n−1

∫ t`+1

t`
m2

f (s)ds

≥ 1
k+n−1

∫ t`+1

t`
m2

f (s)ds

≥ 1
(k+n−1)

c2`

(k+n−1)2`
α`

c`−1 =
( c

α

)`+1
.

In particular, lim
t→T−

−m f (t) = ∞ which is the desired contraction.

Using the same techniques we are able to prove Ambrose’s theorem for the ∞-Bakry-Émery
Ricci tensor. In this case a condition on f is required. See also [74]. Namely:
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Theorem 2.2.2 (Theorem 2.2 [22]). Let M f be a complete weighted manifold, where d f
dt ≤ 0

along γ. Suppose there exists a point p ∈M f such that every geodesic γ(t) emanating from p

satisfies ∫
∞

0
Ric f (γ

′(s),γ ′(s))ds = ∞.

Then M is compact.

Applying this theorem to the universal cover of M we obtain the finiteness of the funda-
mental group.

Corollary 2.2.1. Let (M,g) be a Riemannian manifold in the conditions of either Theorem
2.2.1 or Theorem 2.2.2. Then the first fundamental group of M is finite.

2.3 Weighted Galloway’s Theorems

Our first result in this section is Galloway’s Theorem for the modified Ricci tensor.

Theorem 2.3.1 (Theorem 3.1 [22]). Let Mn be a complete Riemannian manifold and let V be
a smooth vector field on M. Suppose that for every pair of points in Mn and any normalized
minimizing geodesic γ joining these points the modified Ricci tensor satisfies

Rick
V (γ
′,γ ′)≥ (n−1)c+

dφ

dt
, (2.4)

where k and c are positive constants and φ is a smooth function such that |φ | ≤ b for some
b≥ 0. So M is compact and

diam(M)≤ π√
(n−1)c

[
b√

(n−1)c
+

√
b2

(n−1)c
+n−1+4k

]
.

Proof. Let p,q be distinct points in M and let γ be a normalized geodesic that minimizes
distance between p and q. Assume that the length of γ is `. Consider a parallel orthonormal
frame {E1 = γ ′,E2, ....,En} along γ. Let h∈C∞([0, l]) such that h(0) = h(`) = 0 and set Vi(t) =

h(t)Ei(t) along γ. Firstly, the index formula implies

I(Vi,Vi) =
∫ `

0
((h′)2−h2 〈R(γ ′,Ei)γ

′,Ei
〉
)dt, i = 2, . . .n.
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So

S :=
n

∑
i=2

I(Vi,Vi) =
∫ `

0

{
(n−1)(h′)2−h2Ric(γ ′,γ ′)

}
dt. (2.5)

From the condition (2.4) we have

S≤
∫ `

0
(n−1)

[
(h′)2−h2c

]
dt +

∫ `

0
h2
[
−dφ

dt
+2

d
dt

〈
γ
′,V
〉
− 1

k

〈
γ
′,V
〉2
]

dt.

On the other hand, integrating by parts we obtain

2
∫ `

0
h2 d

dt

〈
γ
′,V
〉

dt ≤
∫ `

0
4k(h′)2 +

1
k

h2 〈
γ
′,V
〉2 dt.

So,

S≤ (n−1+4k)
∫ `

0
(h′)2dt− (n−1)c

∫ `

0
h2dt−

∫ `

0
h2 dφ

dt
dt. (2.6)

Now we choose h(t) = sin
(

πt
`

)
.

Then from (2.6), we have

S≤ π2

2`
(n−1+4k)− (n−1)c

`

2
−
∫ `

0
h2 dφ

dt
dt.

Integrating by parts once more we get

∫ `

0
h2 dφ

dt
dt =−π

`

∫ `

0
φ sin

(
2πt
`

)
dt ≥−bπ.

Thus we have
S≤ 1

2`
{
−(n−1)c`2 +2bπ`+π

2(n−1+4k)
}
.

Finally, because γ is minimizing we have S≥ 0 and therefore

`≤ π√
(n−1)c

[
b√

(n−1)c
+

√
b2

(n−1)c
+n−1+4k

]
.

It finishes the proof.

Following some ideas of [51] we also obtain an extension of Galloway’s Theorem for
weighted manifolds using the ∞-Bakry-Émery-Ricci tensor.

Theorem 2.3.2 (Theorem 3.2 [22]). Let M f be a weighted complete Riemannian manifold with
| f | ≤ a, where a is a positive constant. Suppose there exist constants c > 0 and b≥ 0 such that
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for every pair of points in M f and normalized minimizing geodesic γ joining these points we
have

Ric f (γ
′,γ ′)≥ (n−1)c+

dφ

dt
, (2.7)

where φ is a smooth function satisfying |φ | ≤ b. Then M is compact and

diam(M)≤ π

c(n−1)

[
b+
√

b2 + c(n−1)λ
]
, (2.8)

where λ = 2
√

2a+(n−1).

Proof. From (2.7) and (2.5) we have

S≤
∫ `

0
(n−1)

{
(h′)2−h2c

}
dt+

∫ `

0
h2Hess f (γ

′,γ ′)dt−
∫ `

0
h2 dφ

dt
dt. (2.9)

We note that

h2Hess f (γ
′,γ ′) = h2 d

dt

〈
∇ f ,γ ′

〉
dt

=
d
dt
(h2 〈

∇ f ,γ ′
〉
)−2hh′

〈
∇ f ,γ ′

〉
=

d
dt
(h2 〈

∇ f ,γ ′
〉
)−2

[
d
dt
( f hh′)− f

d
dt
(hh′)

]
.

Integrating the last identity above we have

∫ `

0
h2Hess f (γ

′,γ ′)dt = 2
∫ `

0
f

d
dt
(hh′)dt,

since h(0) = h(`) = 0.
Thus

∫ `

0
h2Hess f (γ

′,γ ′)dt ≤ 2a
√
`

(∫ `

0

[
d
dt
(hh′)

]2

dt

) 1
2

.

Choosing h(t) = sin(πt
` ) we have

∫ `

0
h2Hess f (γ

′,γ ′)dt ≤ a
√

2π2

`
. (2.10)

On the other hand a direct computation yelds
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∫ `

0
(n−1)(h′2− ch2)dt = (n−1)

[
π2

2`
− c`

2

]
. (2.11)

Therefore, from (2.9), (2.10) and (2.11) we have

S≤− 1
2`

[
−2aπ

2
√

2+ c(n−1)`2−π
2(n−1)

]
+πb (2.12)

Since S≥ 0 we get

`≤ π

c(n−1)

[
b+
√

b2 + c(n−1)λ
]
,

where λ = 2
√

2a+(n−1) and so M is compact and satisfies (2.8).

2.4 Weighted Riemannian Yun-Sprouse’s Theorem

In this section, following the ideas of [73], we provide a weighted version of Theorem C as
follows.

Theorem 2.4.1 (Theorem 1.1 [66]). Let Mn
f be a weighted complete Riemannian manifold.

Then for any δ > 0, and a > 0, there exists an ε = ε(n,a,δ ) satisfying the following:
If there is a point p such that along each geodesic γ emanating from p, the Rick

f curvature
satisfies ∫

∞

0
max

{
(n−1)a−Rick

f (γ
′,γ ′),0

}
dt < ε(n,a,δ ) (2.13)

then M is compact with diam(M)≤ π√
(n−1)a
n+k−1

+δ .

Proof. For any small positive ε < a2 to be determined later, consider the following sets

E1 =
{

t ∈ [0,∞);Rick
f (γ
′(t),γ ′(t))≥ (n−1)(a−

√
ε)
}

and
E2 =

{
t ∈ [0,∞);Rick

f (γ
′(t),γ ′(t))< (n−1)(a−

√
ε)
}
.

From the inequality (2.1) we have on E1

m′f
n+k−1

(
m f

n+k−1)
2 + (n−1)(a−

√
ε)

n+k−1

≤−1. (2.14)

On the other hand, on E2 we have
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m′f
n+k−1

(
m f

n+k−1)
2 + (n−1)(a−

√
ε)

n+k−1

≤
a−
√

ε−Rick
f (γ
′,γ ′)/(n−1)

a−
√

ε
. (2.15)

Now, using the assumption (2.13) on the Bakry-Émery Ricci tensor we get

ε >
∫

∞

0
max

{
(n−1)a−Rick

f (γ
′(t),γ ′(t)),0

}
>

∫
E2

{
(n−1)a−Rick

f (γ
′(t),γ ′(t))

}
dt

>
∫

E2

{
(n−1)a− (n−1)(a−

√
ε)
}

dt

= µ(E2)(n−1)
√

ε.

That is,

µ(E2)<

√
ε

n−1
, (2.16)

where µ is the Lebesgue measure on R.

Using inequalities (2.14)−(2.16) we obtain

∫ r

0

m′f
n+k−1

(
m f

n+k−1)
2 + (n−1)(a−

√
ε)

n+k−1

dt ≤
∫
[0,r]∩E1

m′f
n+k−1

(
m f

n+k−1)
2 + (n−1)(a−

√
ε)

n+k−1

dt

+
∫
[0,r]∩E2

m′f
n+k−1

(
m f

n+k−1)
2 + (n−1)(a−

√
ε)

n+k−1

dt

≤ −µ {[0,r]∩E1}+
ε

(n−1)(a−
√

ε)

≤ −r+µ {[0,r]∩E2}+
ε

(n−1)(a−
√

ε)

≤ −r+
√

ε

n−1
+

ε

(n−1)(a−
√

ε)
.

Define τ(ε) =
√

ε

n−1 +
ε

(n−1)(a−
√

ε)
. The integral of the left hand side can be computed ex-

plicitly and therefore we get

arctan
(

m f (r)
(n+ k−1)a(ε)

)
≤ a(ε)(−r+ τ(ε))+

π

2
,
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where a(ε) =
√

(n−1)(a−
√

ε)
n+k−1 .

So
m f (r)≤−(n+ k−1)a(ε)cot(a(ε)(−r+ τ(ε))),

for any r such that τ(ε)< r < π

a(ε) + τ(ε).

In particular, m f (γ(r)) goes to −∞ as r → ( π

a(ε) + τ(ε))+. It implies that γ can not be
minimal beyond π

a(ε) + τ(ε). Otherwise m f would be a smooth function at r = π

a(ε) + τ(ε).

Taking ε explicitly so that π

a(ε) + τ(ε) = π√
(n−1)a
n+k−1

+δ and using the completeness of M we have

the desired result.

2.5 Weighted Lorentzian Yun-Sprouse’s Theorem

Now let us discuss the Lorentzian version of Theorem 2.4.1. Let M be a time-oriented Lorentzian
manifold. Given p ∈M we set

J+(p) = {q ∈M : there exist a future pointing causal curve from p to q},

called the causal future of p. The causal past J−(p) is defined similarly. We say that M is
globally hyperbolic if the set J(p,q) := J+(p)∩ J−(q) is compact for all p and q joined by a
causal curve (see [13]). Mathematically, global hyperbolicity often plays a role analogous to
geodesic completeness in Riemannian geometry.

Let γ : [a,b]−→M be a future-directed timelike unit-speed geodesic. Given {E1,E2, . . . ,En}
an orthonormal frame field along γ, and for each i ∈ {1, . . . ,n} we let Ji be the unique Jacobi
field along c such that Ji(a) = 0 and J′i(0) = Ei. Denote by A the matrix A = [J1J2 . . .Jn], where
each column is just the vector for Ji in the basis defined by {Ei} . In this situation, we have that
A(t) is invertible if and only if γ(t) is not conjugate to γ(a).

Now we define B f = A′A−1− 1
n−1( f ◦γ)′E wherever A is invertible, where E(t) is the iden-

tity map on (γ ′(t))⊥. The f -expansion function is a smooth function defined by θ f = trB f (see
[21, Definition 2.6]) Note that, if |θ f | → ∞ as t → t0, where t0 ∈ [a,b], then γ(t0) is conjugate
to γ(a).

Recently, Case in [21] obtained the following relation between the Bakry-Emery Ricci Ten-
sor and the f -expansion function θ f :
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Lemma 2.5.1. Under the above notations,

θ
′
f ≤−Rick

f (γ
′,γ ′)−

θ 2
f

k+n−1
. (2.17)

The inequality (2.17) is called (k, f )-Raychaudhuri inequality. This inequality is a general-
ization of the well known Raychaudhuri inequality (see for instance [36]).

The distance between two timelike related points is the supremum of lengths of causal
curves joining the points. It follows that the distance between any two timelike related points in
a globally hyperbolic spacetime is the length of such a maximal timelike geodesic. The timelike

diameter, diam(M), of a Lorentzian manifold is defined to be the supremum of distances d(p,q)

between points of M.

Theorem 2.5.1 (Theorem [66]). Let Mn
f be a weighted globally hyperbolic spacetime. Then

for any δ > 0, a > 0, there exists an ε = ε(n,a,δ ) satisfying the following:
If there is a point p such that along each future directed timelike geodesic γ emanating from

p, with l(γ) = sup{t ≥ 0,d(p,γ(t)) = t} the Rick
f curvature satisfies

∫ l(γ)

0
max

{
(n−1)a−Rick

f (γ
′,γ ′),0

}
dt < ε(n,a,δ ),

then the timelike diameter satisfies diam(M)≤ π√
(n−1)a
n+k−1

+δ .

Proof. Let ε(n,a,δ ) be the explicit constant in the previous theorem. Assume by contradiction
that there are two points p and q with d(p,q) > π√

(n−1)a
n+k−1

+ δ . On the other hand, since M

is globally hyperbolic, there exists a maximal timelike geodesic γ joining p and q such that
`(γ)= d(p,q). Following the steps of the proof of Theorem 2.4.1 using the (k, f )-Raychaudhuri
inequality (2.17) we get

lim
t→t+0

θ f (t) =−∞,

where t0 = π

a(ε) + τ(ε). So, we conclude that γ cannot be maximal beyond π√
(n−1)a
n+k−1

+ δ which

is a contradiction.

An immediate consequence of Theorem 2.5.1 is the Lorentzian version of the original
weighted Myers Theorem obtained by Qian in [59]. Namely:
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Corollary 2.5.1. Let Mn
f be a weighted globally hyperbolic spacetime. Let a be a positive

constant and assume that Rick
f (v,v)≥ (n−1)a, for all unit timelike vector field v ∈ T M. Then,

the timelike diameter satisfies diam(M)≤ π√
(n−1)a
n+k−1

.

2.6 Closure Theorem via Galloway’s Theorem

Let M̄n+1 be an (n+1)-dimensional spacetime manifold, that is, a smooth manifold endowed
with a pseudo-Riemannian metric ds2 of signature one. Assume that M̄n+1 is complete and
time orientable.

An interesting problem in mathematical relativity is to determine whether space-like slices
of spacetime manifolds are compact. In this section we present some theorems in this direction,
although our results are purely geometric. For the sake of simplicity we will omit the dimension
super index and we always use a bar for geometric objects related to M̄.

Let us denote by u a unit time-like vector field on M̄. Let us assume that u is irrotational,
that is the bracket of two vectors orthogonal to u is still orthogonal to u. In this case, from
Frobenius theorem, at any point of M̄ there exists a complete connected n-dimensional hyper-
surface M orthogonal to u. Physically, we may interpret the manifold M as the spatial universe
at some moment in time. Moreover, in each point of Mn there exist a local coordinate neighbor-
hood Un and a local coordinate t with values in the interval (−ε,ε) such that W = (−ε,ε)×U

is an open neighborhood of a point in M and Ut = {t}×U is orthogonal to u.
In W , the spacetime metric is given by

ds2 =−ϕ
2dt2 +

n

∑
α,β=1

gαβ (x, t)dxαdxβ ,

where xα are local coordinates introduced in Un and u = 1
ϕ

∂

∂ t .

Let X̄ be a vector field tangent to M̄. X̄ is called invariant under the flow if

[X̄ ,u] = ∇uX̄−∇X̄ u = 0.

Denote X̄T by the projection of the vector field X̄ on M. So,

X̄T = X + 〈X̄ ,u〉u.

Let X be a vector field tangent to M. Extend X along the flow by making it invariant under
the flow generated by u. In this setting, we define the velocity and acceleration of X by the
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vector fields given respectively by

v(X) = ∇uXT and a(X) = ∇u∇uXT
.

The shape operator of M as a hypersurface of M̄ is defined by b(X) = −∇X u. Let denote
by B the second fundamental form of b and by H its mean curvature function. We point out
that H =−divu, that is, the averaged Hubble expansion parameter at points of M in relativistic
cosmology (see [62] §3.3.1 or [36], page 161.).

The following lemma is an application of Gauss equation for space-like submanifolds.

Lemma 2.6.1. Let γ(s) be a geodesic in a weighted manifold M f with unit tangent X . Then

Ric f (X ,X) = Ric f (X ,X)−〈a(X),X〉+ 〈v(X),X〉H f + 〈v(X),X〉2 + 〈∇uu,X〉2

+
d
ds
〈X ,∇uu〉+

n

∑
j=2
〈v(X),e j〉2 +

(
1
ϕ

∂ϕ

∂ s

)2

,

where {e1 = X ,e2, . . . ,en} is an orthonormal basis of TpM and H f = H + 〈u,∇ f 〉 denotes the
f -mean curvature of M f .

Proof. Let {ē1(t) = X̄(t), ē2(t), . . . , ēn(t)} be a set invariant under the flow generated by u,
where α = 1, . . . ,n. Since [ēα ,u] = 0 we get that

∇eT
α
u = ∇ueT

α −〈∇uu,eT
α〉u.

Therefore, a straightforward calculation shows that

〈v(eα),eα〉=−B(eα ,eα) and B̃(X ,eα) = 〈v(X),eα〉2.

From the above identities and the Gauss equation we get

Ric(X ,X) =
n

∑
j=2

{
K(X ,e j)−B(X ,X)B(e j,e j)+B̃(X ,e j)

}
=

n

∑
j=2

K(X ,e j)−B(X ,X)(H−B(X ,X))+
n

∑
j=2

B̃(X ,e j)

= Ric(X ,X)−K(X ,u)−B(X ,X)(H−B(X ,X))+
n

∑
j=2

B̃(X ,e j)

= Ric(X ,X)−K(X ,u)+〈v(X),X〉H + 〈v(X),X〉2+
n

∑
j=2
〈v(X),e j〉2.
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On the other hand, note that

K(X ,u) = −〈R(XT
,u)u,XT 〉

= 〈∇u∇XT u,X〉−〈∇XT ∇uu,XT 〉+ 〈∇
[XT

,u]u,X
T 〉

= 〈a(X),X〉−〈∇uu,X〉2− d
ds
〈X ,∇uu〉−

(
1
ϕ

∂ϕ

∂ s

)2

.

Note that we may write
∇ f = ∇ f +

〈
∇ f ,u

〉
u,

and, therefore, we have

Hess f (X ,X) = Hess f (X ,X)−u( f )〈v(X),X〉 .

Thus, using the above equations we obtain the desired result.

Now inspired by the ideas of Galloway [38] we can find a diameter estimate M, under some
restrictions.

Theorem 2.6.1 (Theorem 4.5 [22]). Let M̄n+1
f be a weighted space time with | f | ≤ a, where a

is a positive constant. Let u be an irrotational unit time-like vector field on M̄n+1
f and let Mn

be a complete spatial hypersurface orthogonal to u. Suppose that the following conditions hold
on Mn.

(i) At each point p ∈Mn, the flow generated by u is expanding in all directions, i.e,

〈v(X),X〉 ≥ 0,

where X is a vector field tangent to M.

(ii) At each point p ∈Mn, the rate of expansion is decreasing in all directions, i.e,

〈a(X),X〉 ≤ 0,

where X is a vector field tangent to M.

(iii) Ric f of M̄n+1 satisfies

inf(Ric f (ζ ,ζ )−
n−1

2n
H2) = c > 0,
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where ζ ∈ TpM, |ζ |= 1, 〈ζ ,u〉= 0 and H =−div u.

(iv) The flow lines are of bounded geodesic curvature on Mn, i.e,

sup |∇uu|= µ < ∞.

(v) On Mn, we have that

〈
∇ f ,u

〉
= u( f )≥ 0.

Then Mn is compact and

diam(Mn)≤ π

c

(
µ +

√
µ2 + cλ

)
, (2.18)

where λ = 2(
√

2a+1).

Proof. Let us assume that {X = e1,e2 . . . ,en} is an orthonormal basis of M. Consider the no-
tation vα = 〈v(eα),eα〉. From item (i), vα ≥ 0. Note that H = ∑

n
i=1 vi. Then by Schwartz in-

equality

−(〈v(X),X〉2 + 〈v(X),X〉H) ≤ 1
2

( n

∑
i=1

vi

)2

−
n

∑
i=1

v2
i


≤ n−1

2n

(
n

∑
i=1

vi

)2

=
n−1

2n
H2. (2.19)

From (2.19), Lemma 2.6.1 and item (ii) we get

Ric(X ,X)≥ Ric(X ,X)− n−1
2n

H2 +
dφ

ds
, (2.20)

where φ =
〈

X ,∇uu
〉
.

Then

Ric f (X ,X)≥
(

Ric f (X ,X)− n−1
2n

H2
)
+

dφ

ds
+ 〈B(X ,X),u〉u( f ). (2.21)
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Item (i) gives 〈B(X ,X),u〉 ≤ 0. From (2.21), (iii) and (v) we get

Ric f (ζ ,ζ )≥ c+
dφ

dt
.

Therefore by Theorem 2.3.2 we have that M is compact and satisfies (2.18).

Analogously to the previous theorem, we give a closure theorem for the k-Bakry-Émery-
Ricci tensor as follows.

Theorem 2.6.2 (Theorem 4.6 [22]). Let M̄n+1
f be a weighted space time. Let u be an irrotational

unit time-like vector field on M̄n+1
f and Mn be a complete space-like hypersurface orthogonal

to u. Suppose the following conditions hold on Mn.

(i) At each point p ∈Mn, the flow generated by u is expanding in all directions, i.e,

〈v(X),X〉 ≥ 0,

where X is avector field tangent to M.

(ii) At each point p ∈Mn, the rate of expansion is decreasing in all directions, i.e,

〈a(X),X〉 ≤ 0,

where X is a vector field tangent to M.

(iii) Rick
f of M̄n+1 satisfies

inf(Rick
f (ζ ,ζ )−

n−1
2n

H2) = c > 0,

where k ∈ (0,∞), ζ ∈ TpV, |ζ |= 1, 〈ζ ,u〉= 0 and h =−divu.

(iv) The flow lines are of bounded geodesic curvature on Mn, i.e,

sup |∇uu|= µ < ∞.

(v) On Mn, we have that

〈
∇ f ,u

〉
= u( f )≥ 0.
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Then Mn is compact and

diam(Mn)≤ π

c

(
µ +

√
µ2 + cλ

)
,

where λ = 2(
√

2a+1).

2.7 Closure Theorem via Ambrose’s Theorem

Let Mn be a spatial hypersurface in a weighted spacetime Mn+1
f . The unit tangent vectors to the

future directed geodesics orthogonal to Mn define a smooth unit timelike vector field u at least
in a neighborhood of Mn

Let X be a vector tangent to M. Extended X along the normal geodesic by making it invari-
ant under the flow generated by u. Following the ideas of Frankel and Galloway [37] we obtain
the following closure theorem.

Theorem 2.7.1 (Theorem 4.2 [22]). Let Mn be a spatial hypersurface in a weighted spacetime
(M̄n+1, f ). Let u be a unit normal vector field time-like to M. If there is a point q ∈Mn such
that along each geodesic γ of Mn emanating from q, we have d f

dt ≤ 0 and

∫
∞

0

{
Ric f (X ,X)+H f 〈v(X),X〉−〈a(X),X〉

}
dt = ∞, (2.22)

where t is arc length along γ and X is the unit tangent to γ , then Mn is compact.

Proof. From Lemma (2.6.1) and identity (2.22) we get∫
∞

0
Ric f (X ,X)dt = ∞.

From Theorem 2.2.2 we conclude that Mn is compact.

Analogously, we get the following closure theorem.

Theorem 2.7.2 (Theorem 4.3 [22]). Let Mn be a spatial hypersurface in a weighted space time
M̄n

f . Let u be a unit normal vector field time-like to M. If there is a point q∈Mn such that along
each geodesic γ of Mn emanating from q, we have∫

∞

0

{
Rick

f (X ,X)+H f 〈v(X),X〉−〈a(X),X〉
}

dt = ∞, (2.23)

where t is arc length along γ and X is the unit tangent to γ , then Mn is compact.
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Remark 2.7.1. Conditions (2.22) and (2.23) may be interpreted as the mass-energy density on
Mn (see [37]). So, roughly speaking Theorems 2.7.1 and 2.7.2 say that spatial hypersurfaces
with mass-energy density sufficiently large are compact.

Now, using the same steps of the above theorem and Theorem 2.4.1 we get the following
closure theorem.

Theorem 2.7.3 (Theorem 1.3 [66]). Let Mn be a space-like hypersurface in M̄n+1
f and assume

that M is complete in the induced metric. Then for any δ > 0, a > 0, there exists an ε =

ε(n,a,δ ) satisfying the following:
If there is a point p ∈ M such that along each geodesic γ in M emanating from p, the

condition∫
∞

0
max

{
(n−1)a−Rick

f (X ,X)−〈v(X),X〉H f +〈a(X),X〉,0
}

dt < ε(n,a,δ ),

is satisfied, where X = γ ′, then M is compact and diam(M)≤ π√
(n−1)a
n+k−1

+δ .



CHAPTER 3

Bernstein type properties of complete
hypersurfaces in weighted semi-Riemannian

manifolds

The results of this chapter are part of [24] and [25].

3.1 Introduction

The last years have seen a steadily growing interest in the study of the Bernstein-type prop-
erties concerning complete hypersurfaces immersed in a warped product of the type I×ρ Pn,
where Pn is a connected n-dimensional oriented Riemannian manifold, I ⊂ R is an open inter-
val and ρ is a positive smooth function defined on I. In this context, an important question to
pay attention is the uniqueness of complete hypersurfaces in I×ρ Pn, under reasonable restric-
tions on their mean curvatures. Along this branch, we may cite, for instance, the papers [5]
to [10], [17], [20], [28] and [55]. A Lorentzian version of the problems discussed above,
that was pursued by several authors more recently, was to treat the problem of uniqueness for
complete constant mean curvature spacelike hypersurfaces of generalized Robertson-Walker
(GRW) spacetimes, that is, Lorentzian warped products with 1-dimensional negative definite
base and Riemannian fiber of type −I×ρ Pn. In this setting, we may cite, for instance, the
works [1, 4, 6, 7, 15, 16, 18, 32, 63, 64].

The goal of the Chapter 3 is to study the unicity of hypersurfaces Σ immersed in a semi-
Riemannian manifold of type εI×ρ Pn.

3.2 Uniqueness results in weighted warped products

It follows from a splitting theorem due to Fang, Li and Zhang (see [34], Theorem 1.1) that if a
product manifold I×P with bounded weighted function f is such that Ric f ≥ 0, then f must
be constant along R. So, motivated by this result, along this section, we will consider weighted
products Pn×R whose weighted function f does not depend on the parameter t ∈ I, that is
〈∇ f ,∂t〉= 0 and, for sake of simplicity, we will denote them by Pn

f ×R.
In order to prove our Bernstein type theorems in weighted warped products of the type

32
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I×ρ P f , we will need some auxiliary lemmas. The first one is an extension of Proposition 4.1
of [6].

Lemma 3.2.1. Let Σn be a hypersurface immersed in a weighted warped product I×ρPn
f , with

height function h. Then,

(i) ∆ f h = (logρ)′(h)(n−|∇h|2)+nΘH f ;

(ii) ∆ f σ(h) = n(ρ ′(h)+ρ(h)ΘH f );

where σ(t) =
∫ t

t0 ρ(s)dt.

Proof. Let us prove item (i). Taking into account that f is constant along R, from (1.3) we get
that

〈∇ f ,∇h〉=−Θ〈∇ f ,N〉. (3.1)

On the other hand, from Proposition 4.1 of [6] (see also Proposition 3.2 of [20]) we have

∆h = (logρ
′(h)(n−|∇h|2)+nHΘ. (3.2)

Hence, from (1.6), (3.1) and (3.2) we obtain

∆ f h = (logρ)′(h)(n−|∇h|2)+nHΘ−〈∇ f ,∇h〉

= (logρ)′(h)(n+ |∇h|2)+nHΘ+Θ〈∇ f ,N〉

= (logρ)′(h)(n+ |∇h|2)+nΘH f .

Moreover, since Proposition 4.1 of [6] also gives that

∆σ(h) = n(ρ ′(h)+ρ(h)ΘH),

in a similar way we also prove item (ii).

Let us denote by L 1
f (Σ) the space of the integrable functions on Σn, in relation to weighted

volume element dµ = e− f dΣ. Since div f (X) = e f div(e− f X), it is not difficult to see that from
Proposition 2.1 of [19] we get the following extension of a result due to Yau in [72].

Lemma 3.2.2. Let u be a smooth function on a complete weighted Riemannian manifold Σn

with weighted function f , such that ∆ f u does not change sign on Σn. If |∇u| ∈L 1
f (Σ), then

∆ f u vanishes identically on Σn.
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We recall that a slab of a warped product I×ρ Pn is a region of the type

[t1, t2]×Pn = {(t,q) ∈ I×ρ Pn : t1 ≤ t ≤ t2}.

Now, we are in position to state and prove our first result.

Theorem 3.2.1 (Theorem 1 [24]). Let Σn be a complete two-sided hypersurface which lies in
a slab of a weighted warped product I×ρPn

f . Suppose that Θ≤ 0 and that H f satisfies

0 < H f ≤ inf
Σ
(logρ)′(h). (3.3)

If |∇h| ∈L 1
f (Σ), then Σn is a slice {t}×P.

Proof. From Lemma 3.2.1, since we are assuming that −1≤Θ≤ 0, we get

∆ f σ(h) = nρ(h)
(
(logρ)′(h)+ΘH f

)
≥ nρ(h)

(
(logρ)′(h)−H f

)
(3.4)

≥ nρ(h)
(

inf
Σ
(logρ)′(h)−H f

)
.

Thus, taking into account our hypothesis (3.3), from (3.4) we have that ∆ f σ(h)≥ 0.
On the other hand, since Σn lies in a slab of I×ρPn, we have that exists a positive constant

C such that
|∇σ(h)|= ρ(h)|∇h| ≤C|∇h|.

Consequently, our hypothesis |∇h| ∈L 1
f (Σ) implies that |∇σ(h)| ∈L 1

f (Σ).
So, we can apply Lemma 3.2.2 to assure that ∆ f σ(h) = 0 on Σn. Hence, returning to (3.4)

we get
(logρ)′(h) =−ΘH f . (3.5)

Consequently, using once more hypothesis (3.3), from (3.5) we have that

H f ≤ inf
Σ
(logρ)′(h)≤ (logρ)′(h) =−ΘH f . (3.6)

Therefore, from (3.6) we conclude that Θ =−1 and, hence, Σn must be a slice {t}×P.

Remark 3.2.1. Concerning Theorem 3.2.1, we note that if Σn is locally a graph over Pn, then
its angle function Θ is either Θ < 0 or Θ > 0 along Σ. Hence, the assumption that Θ does
not change sign is generally weaker than that of Σn being a local graph. Moreover, as it was
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already observed by Espinar and Rosenberg [33] when they made allusion to immersions into
the Euclidean space, the condition that Θ does not change sign can also be regarded as the
image of the Gauss map of the hypersurface lying in a closed hemisphere of the Euclidean
sphere.

On the other hand, from Proposition 1 of [55] and relation (1.6), if we consider on the slice
{t}×P of I×ρ P f the orientation given by N =−∂t , then its f -mean curvature is given by

H f (t) = H(t) = (logρ)′(t).

Consequently, the differential inequality (3.3) means that, at each point (t,x) of the hypersur-
face Σn, the weighted mean curvature of Σn can be any value less than or equal to the value
of the weighted mean curvature of the slice {t}×Pn, with respect to the orientation given by
−∂t . Hence, we only suppose here a natural comparison inequality between weighted mean
curvature quantities, without to require that the weighted mean curvature of Σn be constant. In
this sense, (3.3) is a mild hypothesis.

According to the classical terminology in linear potential theory, a weighted manifold Σ

with weighted function f is said to be f -parabolic if every bounded solution of ∆ f u≥ 0 must
be identically constant. So, from Theorem 3.2.1 we obtain

Corollary 3.2.1. Let Σn be a complete two-sided hypersurface which lies in a slab of a weighted
warped product I×ρPn

f . Suppose that Θ≤ 0 and that H f satisfies

0 < H f ≤ inf
Σ
(logρ)′(h).

If Σn is f -parabolic, then Σn is a slice {t}×P.

Remark 3.2.2. As it was observed by Impera and Rimoldi in Remark 3.8 of [46], the f -
parabolicity of Σn holds if it has finite f -volume. On the other hand, in the case that Σn is
complete noncompact with Ric f nonnegative, from Theorem 1.1 of [69] a sufficient condition
for Σn to have finite f -volume is that the space of L2

f harmonic one-forms be nontrivial.

From the proof of Theorem 3.2.1 we also get the following

Corollary 3.2.2. Let Σn be a complete two-sided hypersurface which lies in a slab of a weighted
warped product I×ρPn

f . Suppose that Θ≤ 0 and that H f is constant and satisfies

0≤ H f ≤ inf
Σ
(logρ)′(h).
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If either |∇h| ∈L 1
f (Σ) or Σn is f -parabolic, then Σn is either a f -minimal hypersurface or a

slice {t}×P.

Extending ideas of [6], [9], [10] and [55], in our next result we will assume that the ambient
space is a weighted warped product I×ρPn

f which obeys the following convergence condition

KP ≥ sup
I
((ρ ′)2−ρρ

′′), (3.7)

where KP stands for the sectional curvature of the fiber Pn.

Theorem 3.2.2 (Theorem 2 [24]). Let I×ρ Pn
f be a weighted warped product which satisfies

the convergence condition (3.7). Let Σn be a complete two-sided hypersurface which lies in a
slab of I×ρ Pn

f . Suppose that ∇ f and the Weingarten operator A of Σn are bounded. If Θ does
not change sign on Σn and

|∇h| ≤ inf
Σ

{
(logρ)′(h)−|H f |

}
, (3.8)

then Σn is a slice {t}×P.

Proof. From Lemma 3.2.1 we get

∆ f h = (logρ)′(h)(n−|∇h|2)+nH f Θ

≥ (logρ)′(h)(n−|∇h|2)−n|H f | (3.9)

≥ n((logρ)′(h)−|H f |)− (logρ)′(h)|∇h|2.

On the other hand, since from the Cauchy-Schwarz inequality we get nH2 ≤ |A|2, we have
that H is also bounded. Thus, since we are also assuming that Σn lies in a slice of I×ρ Pn

f , we
can apply Proposition 3.1 of [9] to assure that the Ricci curvature of Σn is bounded from below.

Hence, since |∇ f | is bounded on Σn, from maximum principle of Omori-Yau, there exists a
sequence {pk} in Σn such that

lim
k

h(pk) = sup
Σ

h, lim
k
|∇h(pk)|= 0 and limsup

k
∆ f h(pk)≤ 0.

Thus, from inequality (3.9) we get

0≥ lim
k

sup∆ f h(pk)≥ lim
k
((logρ)′(h)−|H f |)(pk)≥ 0.
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Therefore, we have that limk((logρ)′(h)−|H f |)(pk) = 0 and, taking into account our hypoth-
esis (3.8), we conclude that Σn is a slice {t}×P.

3.3 Rigidity results in weighted product spaces

In this section, we will treat the special case when the ambient space is a weighted product
I×Pn

f . We start with the following uniqueness result.

Theorem 3.3.1 (Theorem 3 [24]). Let Σn be a complete two-sided hypersurface which lies in
a slab of the weighted product I×Pn

f . Suppose that Θ and H f do not change sign on Σn. If
|∇h| ∈L 1

f (Σ), then Σn is a slice {t}×P.

Proof. From Lemma 3.2.1 we have that

∆ f h = nH f Θ. (3.10)

Since we are supposing that Θ and H f do not change sign on Σn, we get that ∆ f h also does not
change sign on Σn. Thus, since |∇h| ∈L 1

f (Σ), we can apply Lemma 3.2.2 to get that ∆ f h = 0
on Σn.

Consequently, we obtain

∆ f h2 = 2h∆ f h+2|∇h|2 = 2|∇h|2 ≥ 0. (3.11)

But, since h is bounded and using once more that |∇h| ∈ L 1
f (Σ), Lemma 3.2.2 guarantees

also that ∆ f h2 = 0 on Σn. Therefore, returning to (3.11) we conclude that Σn must be a slice
{t}×P.

From the proof of Theorem 3.3.1 we get

Corollary 3.3.1. Let Σn be a complete two-sided hypersurface which lies in a slab of the
weighted product I×Pn

f . Suppose that Θ and H f do not change sign on Σn. If Σn is f -parabolic,
then Σn is a slice {t}×P.

Consider the weighted product space R×Gn. Recall that Gn corresponds to the Euclidean

space Rn endowed with the Gaussian measure dµ = e−
|x|2

4 dx2. Hieu and Nam extended the
classical Bernstein’s theorem [14] showing that the only graphs with weighted mean curvature
identically zero given by a function u(x2, . . . ,xn+1) = x1 over Gn are the hyperplanes x1 =
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constant (cf. [43], Theorem 4). In this setting, with a straightforward computation we can
verify that

N =
1√

1+ |Du|
(Du−∂t) (3.12)

gives an orientation on Σn(u) such that −1 ≤ Θ < 0, where Du stands for the gradient of the
function u on Gn. Thus, since |N∗|= |∇h|, from (3.12) we deduce that

|∇h|2 = |Du|2

1+ |Du|2
. (3.13)

So, taking into account relation (3.13), from the proof of Theorem 3.3.1 jointly with Theo-
rem 4 of [43] we obtain

Corollary 3.3.2. Let Σn(u) be a complete graph of a function u(x2, . . . ,xn+1) = x1 over the
Gaussian space Gn. Suppose that the weighted mean curvature of Σn(u) does change sign. If
|Du| ∈L 1(G), then Σn(u) is a hyperplane x1 = constant.

To prove our next result, we will need of the following auxiliary lemma.

Lemma 3.3.1. Let Σn be a hypersurface with constant f -mean curvature in a weighted product
manifold Pn

f ×R. Then
∆ f Θ =−(|A|2 + R̃ic f (N∗,N∗))Θ, (3.14)

where A denotes the Weingarten operator of Σ, R̃ic f stands for the Bakry-Émery-Ricci tensor
of the fiber P and N∗ = N−Θ∂t is the orthonormal projection of N onto P.

Proof. It is well known that
∇Θ =−A∂

T
t − (∇N∂t)

T (3.15)

and
∆Θ =−n∂

T
t (H)−Θ(R̃ic(N∗,N∗)+ |A|2), (3.16)

see for instance [20]. Taking into account that 〈∂t ,∇ f 〉= 0 we get that

n∂
T
t (H) = ∂

T
t (nH f −〈∇ f ,N〉)

= −∂
T
t 〈∇ f ,N〉

= −〈Hess f (∂t),N〉+ΘHess f (N,N)+ 〈A∂
T
t ,∇ f 〉. (3.17)
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On the other hand, from (3.15) we get that

〈∇Θ,∇ f 〉 = −〈A∂
T
t +(∇N∂t)

T ,∇ f 〉

= −〈A∂
T
t ,∇ f 〉−〈∇N∂t−〈∇N∂t ,N〉N,∇ f 〉

= −〈A∂
T
t ,∇ f 〉+ 〈∂t ,∇N∇ f 〉 (3.18)

= −〈A∂
T
t ,∇ f 〉+ 〈∂t ,Hess f (N)〉.

From (3.17) and (3.18) we have

n∂
T
t (H) = ΘHess f (N,N)−〈∇Θ,∇ f 〉. (3.19)

Now, taking into account once more that 〈∂t ,∇ f 〉= 0, it is not difficult to verify that

Hess f (N,N) = H̃ess f (N∗,N∗). (3.20)

Putting (3.16) and (3.20) into (3.19) we have the desired result.

Theorem 3.3.2 (Theorem 4 [24]). Let Σn be a complete two-sided hypersurface immersed in
a weighted product I×Pn

f . Suppose that R̃ic f ≥ 0, A is bounded, Θ has strict sign H f does
change sign on Σn. If |∇h| ∈L 1

f (Σ), then Σn is totally geodesic. Moreover, if R̃ic f > 0, then
Σn is a slice {t}×P.

Proof. Since we are supposing that Θ has strict sign, H f does not change sign on Σn and that
|∇h| ∈L 1

f (Σ), from and applying Lemma 3.2.2 we get that Σ is f -minimal, that is, H f = 0 on
Σn.

Note that
|∇Θ| ≤ |A||∇h| ∈L 1

f (Σ). (3.21)

So, since we are also supposing that R̃ic f ≥ 0, from (3.14) and (3.21) we have that ∆ f Θ = 0 on
Σn.

Hence, returning to equation (3.14) we conclude that Σn is totally geodesic. Furthermore,
if R̃ic f is strictly positive, then N∗ = 0 on Σn and, therefore, Σn is a slice {t}×P.

When the fiber of the weighted product space is compact, we have

Theorem 3.3.3 (Theorem 5 [24]). Let Σn be a complete two-sided hypersurface immersed in a
weighted product I×Pn

f , whose fiber Pn is compact with positive sectional curvature, and such
that the weighted function f is convex. Suppose that A is bounded and H f is constant. If Θ is

such that either 0≤ arccosΘ≤ π

4
or

3π

4
≤ arccosΘ≤ π , then Σn is a slice {t}×Pn.
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Proof. Firstly, we claim that the Bakry-Émery Ricci tensor of Σn, Ric f , is bounded from below.
Indeed, since we are assuming that Pn is compact with positive sectional curvature, from Gauss
equation it follows that

Ric(X ,X)≥ (n−1)κ
(
1−|∇h|2

)
|X |2 +nH〈AX ,X〉−〈AX ,AX〉, (3.22)

for all X ∈ X(Σ) and some positive constant κ = κ(X).
On the other hand, taking into account that f is convex and constant along R, we have

Hess f (X ,X) = Hess f (X ,X)+ 〈∇ f ,N〉〈AX ,X〉 (3.23)

= H̃ess f (X∗,X∗)+ 〈∇ f ,N〉〈AX ,X〉

≥ 〈∇ f ,N〉〈AX ,X〉,

for all X ∈ X(Σ).
Thus, from (3.22) and (3.23) we get

Ric f (X ,X)≥ (n−1)κ
(
1−|∇h|2

)
|X |2 +nH f 〈AX ,X〉−〈AX ,AX〉. (3.24)

Consequently, from (3.24) we obtain

Ric f (X ,X)≥ ((n−1)κ
(
1−|∇h|2

)
− (n|H f ||A|+ |A|2))|X |2, (3.25)

for all X ∈ X(Σ).

We also note that our restriction on Θ amounts to |∇h|2≤ 1
2

. Hence, since A is also bounded
and H f is constant, from (3.25) we conclude that Ric f is bounded from below.

On the other hand, using once more that H f is constant, from Lemma 3.2.1 we have

∇∆ f h = nH f ∇Θ. (3.26)

Recall that
∇Θ =−A(∇h). (3.27)

Consequently, from (3.26) and (3.27) we get

∇∆ f h =−nH f A(∇h). (3.28)
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From (1.4) we have that
∇X ∇h = ∇X(∂

>
t ) = AXΘ. (3.29)

Thus, from (3.29) we obtain
|Hessh|2 = |A|2Θ

2. (3.30)

Consequently, from (1.5) and (3.30) we get

|Hessh|2 = |A|2−|∇h|2|A|2. (3.31)

Now, from Bochner’s formula (1.1) we also have that

1
2

∆ f |∇h|2 = |Hessh|2 +Ric f (∇h,∇h)+ 〈∇∆ f h,∇h〉. (3.32)

But, from (3.24) it follows that

Ric f (∇h,∇h) ≥ (n−1)κ(1−|∇h|2)|∇h|2+nH f 〈A∇h,∇h〉−〈A∇h,A∇h〉

≥ (n−1)κ(1−|∇h|2)|∇h|2 +nH f 〈A∇h,∇h〉− |A|2|∇h|2. (3.33)

Hence, considering (3.28)), (3.31) and (3.33) into (3.32) we get

1
2

∆ f |∇h|2 ≥ (n−1)κ(1−|∇h|2)|∇h|2 + |A|2(1−2|∇h|2). (3.34)

Consequently, from (1.5) and (3.34) jointly with our hypothesis on Θ we obtain

1
2

∆ f |∇h|2 ≥ (n−1)κ(1−|∇h|2)|∇h|2. (3.35)

Since Ric f is bounded from below on Σn, from Theorem 1.1.1 we have that there exists a
sequence of points (pk)k≥1 in Σn such that

lim
k
|∇h|2(pk) = sup

Σ

|∇h|2 and lim
k

sup∆ f |∇h|2(pk)≤ 0.

Thus, from (3.35) we have

0≥ lim
k

sup∆ f |∇h|2(pk)≥ (n−1)κ(1− sup
Σ

|∇h|2)sup
Σ

|∇h|2 ≥ 0. (3.36)

Consequently, taking into account once more our hypothesis on Θ, from (3.36) we conclude
that supΣ |∇h|2 = 0. Therefore, h is constant on Σn and, hence, Σn is a slice {t}×Pn.
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Corollary 3.3.3. Let Σn be a f -parabolic complete two-sided hypersurface immersed in a
weighted product I × Pn

f , whose fiber Pn is complete with nonnegative sectional curvature,
and such that the weighted function f is convex. Suppose that A is bounded and H f is constant.
It holds the following:

(a) If either 0≤ arccosΘ <
π

4
or

3π

4
< arccosΘ≤ π , then Σn is totally geodesic.

(b) If KP is positive and either 0 ≤ arccosΘ ≤ π

4
or

3π

4
≤ arccosΘ ≤ π , then Σn is a slice

{t}×Pn.

Proof. In a very similar way of that was made in order to prove inequality (3.34), taking a local
orthonormal frame {E1, . . . ,En} on Σ, we obtain that

1
2

∆ f |∇h|2 ≥ (n−1)min
i

KP((∇h)∗,E∗i )(1−|∇h|2)|∇h|2 + |A|2(1−2|∇h|2). (3.37)

If we assume the hypothesis of item (a), since we are also supposing that KP is nonnegative,
from (3.37) we get that ∆ f |∇h|2 ≥ 0. Hence, since we are also assuming that Σn is f -parabolic,
we have that |∇h| is constant on Σ. Therefore, returning to (3.37) we conclude that |A|= 0 on
Σ, that is, Σ is totally geodesic.

Now, we assume the hypothesis of item (b). Since κ :=mini KP((∇h)∗,E∗i )> 0, from (3.37)
we also get that

1
2

∆ f |∇h|2 ≥ (n−1)κ(1−|∇h|2)|∇h|2 ≥ 0. (3.38)

Hence, using once more that Σn is f -parabolic and noting that |∇h| < 1, from (3.38) we con-
clude that |∇h|= 0 on Σn, that is, Σn must be a slice {t}×Pn.

Proceeding, we obtain an extension of Theorem 3.1 of [31].

Theorem 3.3.4 (Theorem 6 [24]). Let Σn be a complete two-sided hypersurface immersed in
a weighted product I×Pn

f , whose fiber Pn has sectional curvature KP satisfying KP ≥−κ and
such that H̃ess f ≥ −γ , for some positive constants κ and γ . Suppose that A is bounded, Θ is
bounded away from zero and H f is constant. If the height function h of Σn satisfies

|∇h|2 ≤ α

(n−1)κ + γ
|A|2, (3.39)

for some constant 0 < α < 1, then Σn is a slice {t}×P.

Proof. Since we are assuming that Θ is bounded away from zero, we can suppose that Θ > 0
and, consequently, infΘ > 0.
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Moreover, since we are also assuming that the sectional curvature KP of the base Pn is such
that KP ≥ −κ for some κ > 0, from Gauss equation and with a straightforward computation
we get

R̃ic(N∗,N∗)≥−(n−1)κ|N∗|2 =−(n−1)κ|∇h|2. (3.40)

On the other hand, our restriction on H̃ess f jointly with equation 1.5 give

H̃ess f (N∗,N∗)≥−γ|N∗|2 =−γ|∇h|2. (3.41)

Thus, from (3.40) and (3.41) we get

R̃ic f (N∗,N∗)≥−((n−1)κ + γ)|∇h|2. (3.42)

Hence, from (3.42) and (3.14) we obtain

∆ f Θ≤−(|A|2− ((n−1)κ + γ)|∇h|2)Θ. (3.43)

Consequently, from (3.39) and (3.43) we have

∆ f Θ≤−(1−α)|A|2Θ. (3.44)

Now, we claim that Ric f is bounded from below on Σn. Indeed, following similar ideas of
that in the proof of Theorem 3.3.3 we get

Hess f (X ,X) ≥ 〈∇ f ,N〉〈AX ,X〉− γ|X∗|2 (3.45)

= 〈∇ f ,N〉〈AX ,X〉− γ(|X |2−〈X ,∂t〉2)

≥ 〈∇ f ,N〉〈AX ,X〉− γ|X |2.

From (3.22) and (3.45) we obtain

Ric f (X ,X)≥ ((n−1)κ
(
1−|∇h|2

)
− γ)|X |2 +nH f 〈AX ,X〉−〈AX ,AX〉. (3.46)

Thus, since A and |∇h| are bounded and H f is constant, from (3.46) we conclude that Ric f is
bounded from below.

Now, we are in position to apply Theorem 1.1.1 and guarantee the existence of a sequence
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of points pk ∈ Σn satisfying

liminf
k→∞

∆ f Θ(pk)≥ 0 and lim
k→∞

Θ(pk) = inf
p∈Σ

Θ(p).

Consequently, since we are assuming that A is bounded on Σn, from (3.44), up to a subsequence,
we get

0≤ liminf
k→∞

∆ f Θ(pk)≤−(1−α) lim
k→∞
|A|2(pk) inf

p∈Σ
Θ(p)≤ 0. (3.47)

Thus, from (3.47) we obtain that limk→∞ |A|(pk) = 0 and, using (3.39), we get

lim
k→∞
|∇h|(pk) = 0. (3.48)

Therefore, from (1.5) and (3.48) we conclude that infp∈Σ Θ(p) = 1 and, hence, Θ ≡ 1, that is,
Σn is a slice {t}×P.

To close our section, we will apply a Liouville type result due to Huang et al. [45] in order
to prove the following:

Theorem 3.3.5 (Theorem 7 [24]). Let Σn be a complete two-sided hypersurface which lies in
a slab of a weighted product I×Pn

f , whose fiber Pn has sectional curvature KP bounded from
below and such that ∇ f is bounded. Suppose that A and H f are bounded on Σn. If Θ is not
adhere to 1 or −1, then infΣ H f = 0. Moreover, if H f is constant and Ric f is nonnegative, then
Σn is a slice {t}×P.

Proof. Following similar steps of the proof of Theorem 3.3.3, our restriction on the sectional
curvature of the fiber Pn jointly with our hypothesis on A, H f and ∇ f guarantee that the Ricci
curvature of Σn is bounded from below.

Now, suppose for instance that H f ≥ 0 on Σn. Thus, since Σn lies between two slices of
R×Pn, from Lemma 3.2.1 and maximum principle of Omori-Yau, we obtain a sequence of
points pk ∈ Σn such that

0≥ limsup
k→∞

∆ f h(pk) = n limsup
k→∞

(
H f Θ

)
(pk).

Moreover, from equation (1.5) we also have that

0 = lim
k→∞
|∇h|(pk) = 1− lim

k→∞
Θ

2(pk).
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Thus, if we suppose, for instance, that Θ is not adhere to −1, we get

lim
k→∞

Θ(pk) = 1.

Consequently,
0≥ limsup

k→∞

∆ f h(pk) = n limsup
k→∞

H f (pk)≥ 0

and, hence, we conclude that
limsup

k→∞

H f (pk) = 0.

If H f ≤ 0, from Lemma 3.2.1 and (1.5), we can apply once more Omori-Yau’s generalized
maximum principle in order to obtain a sequence qk ∈ Σn such that

0≤ liminf
k→∞

∆ f h(qk) = n liminf
k→∞

(
H f Θ

)
(qk)

and, supposing once more that Θ is not adhere to −1, we get

0≤ liminf
k→∞

∆ f h(pk) = n liminf
k→∞

H f (pk)≤ 0.

Consequently, from the above inequality we have that liminfk→∞ H f (pk) = 0. Hence, in this
case, we also conclude that infΣ H f = 0.

When H f is constant, we have that, in fact, H f vanishes identically on Σn. Thus, since Σn is
contained in a slab of R×Pn

f , there exists a constant β such that h−β is a positive harmonic
function of the f -Laplacian on Σn.

On the other hand, since ∇ f = ∇ f −〈∇ f ,N∗〉N and |N∗|= |∇h|, we obtain

|∇ f |2 ≤ |∇ f |2(1−|∇h|2).

Consequently, since we are assuming that ∇ f is bounded, we have that ∇ f is also bounded on
Σn. Hence, if Ric f is nonnegative, then we can apply Corollary 1.4 of [45] to conclude that h

is constant on Σn, that is, Σn is a slice {t}×Pn.

3.4 Uniqueness results in weighted GRW spacetimes

We observe that it follows from a splitting theorem due to Case (cf. [21], Theorem 1.2) that a
weighted GRW spacetime whose weight function f is bounded and such that Ric f (V,V ) ≥ 0
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for all timelike vector field V , then f must be constant along R. So, motivated by this result,
along this work we will consider weighted GRW spacetimes −I×ρ P whose weight function
f does not depend on the parameter t ∈ I, that is 〈∇ f ,∂t〉 = 0. For simplicity, we will denote
them by −I×ρ P f .

In order to prove our Calabi-Bernstein’s type results in weighted GRW spacetimes of the
type −I×ρ P f , we will need some auxiliary lemmas. The first one is an extension of Lemma
4.1 of [4], and its demonstration follows the same steps of 3.2.1.

Lemma 3.4.1. Let Σn be a spacelike hypersurface immersed in a weighted GRW spacetime
−I×ρ P f , with height function h. Then,

(i) ∆ f h =−(logρ)′(h)(n+ |∇h|2)−nH f Θ;

(ii) ∆ f σ(h) =−n(ρ ′(h)+ρ(h)ΘH f ),

where σ(t) =
∫ t

t0 ρ(s)ds.

In what follows, a slab [t1, t2]×Mn = {(t,q) ∈ −I×ρ Pn : t1 ≤ t ≤ t2} is called a timelike

bounded region of the weighted GRW spacetime −I×ρ Pn
f . Now, we are in position to state

and prove our first result.

Theorem 3.4.1 (Theorem 1 [25]). Let Σn be a complete spacelike hypersurface which lies in
a timelike bounded region of a weighted GRW spacetime −I×ρ Pn

f . Suppose that the f -mean
curvature H f of Σn satisfies the following inequality

H f ≥ sup
Σ

(logρ)′(h)> 0. (3.49)

If |∇h| ∈L 1
f (Σ), then Σn is a slice {t}×P.

Proof. From Lemma 3.4.1, for σ(t) =
∫ t

t0 ρ(s)ds, we get

∆ f σ(h) = −nρ(h)
(
(logρ)′(h)+ΘH f

)
(3.50)

≥ nρ(h)
(
H f − (logρ)′(h)

)
≥ nρ(h)

(
H f − sup

Σ

(logρ)′(h)
)
.

Thus, taking into account our hypothesis (3.49), from (3.50) we have that ∆ f σ(h)≥ 0 on Σn.
On the other hand, since Σn is contained in a slab of−I×ρ Pn

f , we have that exists a positive
constant C such that

|∇σ(h)|= ρ(h)|∇h| ≤C|∇h|.
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Consequently, the hypothesis |∇h| ∈L 1
f (Σ) implies that |∇σ(h)| ∈L 1

f (Σ).
So, we can apply Lemma 3.2.2 to assure that ∆ f σ(h) = 0 on Σn. Thus, returning to (3.50)

we get
(logρ)′(h) =−ΘH f .

Consequently, we have that

H f = sup
Σ

(logρ)′(h)≥ (logρ)′(h) =−ΘH f .

Therefore, Θ =−1 on Σn and, hence, we conclude that Σn is a slice {t}×P.

From the proof of Theorem 3.4.1 we also get the following.

Corollary 3.4.1. Let Σn be a complete spacelike hypersurface immersed in a timelike bounded
region of a weighted GRW spacetime−I×ρ Pn

f . Suppose that Σn has constant f -mean curvature
H f and that it holds the following inequality

H f ≥ sup
Σ

(logρ)′(h)≥ 0.

If |∇h| ∈L 1
f (Σ), then Σn is either a f -maximal hypersurface or a slice {t}×P.

According to the terminology established by Alías and Colares in [4], we say that a GRW
spacetime −I×ρ Pn obeys the strong null convergence condition when the sectional curvature
KP of its Riemannian fiber P satisfies the following inequality

KP ≥ sup
I
( f 2(log f )′′). (3.51)

Theorem 3.4.2 (Theorem 2 [25]). Let −I×ρ Pn be a GRW spacetime obeying (3.51). Let Σn

be a complete spacelike hypersurface which lies in a timelike bounded region of the weighted
GRW spacetime −I×ρ Pn

f . Suppose that |∇ f | is bounded on Σn and that the f -mean curvature
H f of Σn satisfies

(logρ)′(h)≤ H f ≤ α, (3.52)

for some constant α . If
|∇h| ≤ inf

Σ

(
H f − (logρ)′(h)

)
, (3.53)

then Σn is a slice {t}×P.
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Proof. From Lemma 3.4.1 we have

∆ f h =−(logρ)′(h)(n+ |∇h|2)−nH f Θ.

Since N is a future-directed timelike vector field, we get

∆ f h≥ n(H f − (logρ)′(h))− (logρ)′(h)|∇h|2. (3.54)

We claim that the mean curvature of Σn is bounded. Indeed, we have that

n|H| = n|H f |+ |〈∇ f ,N〉|

= n|H f |+ |〈∇ f ,N∗〉|. (3.55)

On the other hand, taking into account that N∗ = N +Θ∂t , we easily verify that |N∗| = |∇h|.
Thus, from (3.55) we get

n|H| ≤ n|H f |+ |∇ f ||∇h|. (3.56)

Consequently, since H f , ∇ f and ∇h are supposed to be bounded, it follows from (3.56) that H

is also bounded on Σn.
Hence, since we are assuming that ∇ f is bounded then we can apply Proposition 3.1 of [18]

jointly with generalized maximum principle of Omori and Yau to guarantee that there exists a
sequence {pk} in Σn such that

lim
k

h(pk) = sup
Σ

h, lim
k
|∇h(pk)|= 0 and limsup

k
∆ f h(pk)≤ 0.

Thus, from inequality (3.54) we get

0≥ lim
k

sup∆ f h(pk)≥ lim
k
(H f − (logρ)′(h))(pk)≥ 0.

Therefore, we have that limk(H f −(logρ)′(h))(pk) = 0 and, taking into account our hypothesis
(3.53), we conclude the proof.

3.5 Weighted static GRW spacetimes

Along this section, we treat the case when the ambient space is a static GRW spacetime, that
is, its warping function is constant, which, without loss of generality, can be supposed equal to
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1. In this context, we will need of the following formula

Lemma 3.5.1. Let Σn be a spacelike hypersurface with constant f -mean curvature H f in a
weighted static GRW spacetime −I×P f . Then,

∆ f Θ = (|A|2 + R̃ic f (N∗,N∗))Θ, (3.57)

where A denotes the Weingarten operator of Σn with respect to the future-pointing Gauss map
N of Σn and R̃ic f stands for the Bakry-Émery Ricci tensor of the fiber P.

The proof of Lemma 3.5.1 follows the sames steps of Lemma 3.3.1 and, therefore, it will
be omitted. Now, we can return to our uniqueness results.

Theorem 3.5.1 (Theorem 3 [25]). Let Σn be a complete spacelike hypersurface in a weighted
static GRW spacetime −I×P f , such that its f -mean curvature H f does not change sign. If
|∇h| ∈L 1

f (Σ), then Σn is f -maximal. In addition, we also have the following:

(i) If A is bounded and R̃ic f ≥ 0, then Σn is totally geodesic. Moreover, if R̃ic f > 0, then Σn

is a slice {t}×P.

(ii) If Σn lies in a timelike bounded region of −I×P f , then Σn is a slice {t}×P.

Proof. From Lemma 3.4.1 we have

∆ f h =−nH f 〈N,∂t〉. (3.58)

Since we are supposing that H f does not change sign on Σn, from equation (3.58) we get that
∆ f h also does not change sign on Σn. Thus, since |∇h| ∈L 1

f (Σ), we can apply Lemma 3.2.2
to conclude that ∆ f h vanishes identically on Σn. Hence, returning to equation (3.58) we obtain
that Σn is f -maximal.

Assuming the hypothesis of item (i), we have

|∇Θ| ≤ |A||∇h| ∈L 1
f (Σ).

So, if R̃ic f ≥ 0, then from Lemmas 3.2.2 and equation (3.57) we get that ∆ f Θ = 0 on Σn.
Hence, from (3.57) we conclude that Σn is totally geodesic. Moreover, if R̃ic f > 0, then (3.57)
also gives that N∗ = 0 on Σn, that is, Σn is a slice {t}×P.

On the other hand, since Σn is f -maximal, we have

∆ f h2 = 2h∆ f h+2|∇h|2 = 2|∇h|2.
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Now, since |∇h| ∈L 1
f (Σ) and assuming that Σn lies in a timelike bounded region of −I×P f ,

then from Lemma 3.2.2 we get that ∆ f h2 = 0 on Σn. Hence, we obtain that |∇h| = 0 on Σn,
which proves item (ii).

When the fiber of the ambient spacetime is compact, we have

Theorem 3.5.2 (Theorem 4 [25]). Let −R×Pn
f be a static weighted GRW spacetime, whose

fiber Pn is compact with positive sectional curvature and such that the weighted function f is
convex. Let Σn be a complete spacelike hypersurface with constant f -mean curvature H f in
−R×Pn

f . If |∇h| is bounded, then Σn is a slice {t}×P.

Proof. Using the fact that Pn is compact with KP > 0, it follows from inequalities (3.3) and
(3.4) of [32] that there exists a positive constant κ such that

Ric(X ,X) ≥ κ
(
(n−1)|X |2 + |∇h|2|X |2 +(n−2)〈X ,∇h〉2

)
+nH〈AX ,X〉+ |AX |2. (3.59)

Since we are supposing that the weighted function f is convex and taking into account that

Hess f (X ,X) = Hess f (X ,X)−〈∇ f ,N〉〈AX ,X〉,

we have
Hess f (X ,X)≥−〈∇ f ,N〉〈AX ,X〉. (3.60)

From (3.59) and (3.60) we get the following lower bound for Ric f

Ric f (X ,X) ≥ κ
(
(n−1)|X |2 + |∇h|2|X |2 +(n−2)〈X ,∇h〉2

)
+nH f 〈AX ,X〉+ |AX |2. (3.61)

Inequality (3.61) provides us

Ric f (∇h,∇h) ≥ (n−1)κ|∇h|2(1+ |∇h|2)

+nH f 〈A(∇h),∇h〉+ |A(∇h)|2. (3.62)

Since H f is constant, we have

∇∆ f h =−nH f A(∇h). (3.63)
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Moreover, from Bochner’s formula (1.1), we have again (3.32). Consequently, from (3.62),
(3.63) and (3.32) we get

1
2

∆ f |∇h|2 ≥ (n−1)κ|∇h|2(1+ |∇h|2). (3.64)

Now, we observe that we can write

nH f 〈AX ,X〉+ |AX |2 =
∣∣∣AX +

nH f

2
X
∣∣∣2− n2H2

f

4
|X |2. (3.65)

Thus, from (3.61) and (3.65) we obtain that

Ric f (X ,X)≥−
n2H2

f

4
|X |2, (3.66)

for all X ∈ X(Σ).
Consequently, from equation (3.66) we conclude that the Bakry-Émery Ricci tensor of Σn

is bounded from below. Hence, from Theorem 1.1.1 we have that there exists a sequence of
points (pk)k≥1 in Σn such that

lim
k
|∇h|2(pk) = sup

Σ

|∇h|2 and lim
k

sup∆ f |∇h|2(pk)≤ 0.

Now, returning to (3.64), we conclude that

0≥ lim
k

sup∆ f |∇h|2(pk)≥ κ sup
Σ

|∇h|2 ≥ 0.

Consequently, we obtain that supΣ |∇h|2 = 0 and, hence, h is constant on Σn. Therefore, Σn is a
slice {t}×Pn.

Proceeding, we obtain the following

Theorem 3.5.3 (Theorem 5 [25]). Let −R×Pn
f be a weighted static GRW spacetime, whose

sectional curvature KP of its fiber Pn is such that KP ≥ −κ for some positive constant κ and
such that the weighted function f is convex. Let Σn be a complete spacelike hypersurface with
constant f -mean curvature H f in −R×Pn

f and with bounded second fundamental form A. If

|∇h|2 ≤ α

κ(n−1)
|A|2, (3.67)

for some constant 0 < α < 1, then Σn is a slice {t}×Pn.
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Proof. From equation (3.67) we get infp∈Σ Θ(p) exists and it is negative.
On the other hand, since the weighted function f is convex, |N∗|= |∇h| and taking a local

orthonormal frame {E1, . . . ,En} on Pn, we have that

R̃ic f (N∗,N∗) ≥ R̃ic(N∗,N∗)

= ∑
i
〈RP(N∗,Ei)N∗,Ei〉P

= ∑
i

KP(N∗,Ei)
(
〈N∗,N∗〉P−〈N∗,Ei〉2P

)
(3.68)

≥ −κ ∑
i

(
〈N∗,N∗〉P−〈N∗,Ei〉2P

)
= −κ(n−1)|∇h|2,

where we also have used our restriction on the sectional curvature KP of Pn.
Thus, from equation (3.57) jointly with (3.67) and (3.68), we get

∆ f Θ ≤
(
|A|2−κ(n−1)|∇h|2

)
Θ

≤ (1−α)|A|2Θ≤ 0.

On the other hand, following the same ideas of Theorem 3.5.2, we can verify that the Bakry-
Émery Ricci tensor of Σnis bounded from below and, hence, from Theorem 1.1.1 there exists a
sequence of points pk ∈ Σn such that

liminf
k

∆ f Θ(pk)≥ 0

and
lim

k
Θ(pk) = inf

p∈Σ
Θ.

Consequently,
lim

k
Θ

2(pk) = sup
p∈Σ

Θ
2.

Thus,
0≤ liminf

k
∆ f Θ(pk)≤ (1−α) liminf

k
|A|2(pk) inf

p∈Σ
Θ≤ 0.

Up to a subsequence, it follows that limk |A|2(pk) = 0. Now, by using hypothesis (3.67), we
obtain that limk |∇h|2(pk) = 0 and therefore supp∈Σ Θ2 = limk Θ2(pk) = 1. But Θ2 ≥ 1, hence,
Θ2 = 1 on Σn and, therefore, Σn is a slice {t}×Pn.

From the proof of Theorem 3.5.3 it is not difficult to see that we also get
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Corollary 3.5.1. Let −R×Pn
f be a weighted static GRW spacetime, such that KP ≥ −κ and

Hess f ≥−γ for some positive constants κ and γ . Let Σn be a complete spacelike hypersurface
with constant f -mean curvature H f in−R×Pn

f and with bounded second fundamental form A.
If

|∇h|2 ≤ α

κ(n−1)+ γ
|A|2,

for some constant 0 < α < 1, then Σn is a slice {t}×Pn.

We close our chapter, with the following result

Theorem 3.5.4 (Theorem 6 [25]). Let −R×Pn
f be a weighted static GRW spacetime, such

that KP ≥ 0 and |∇ f | is bounded. Let Σn be a complete spacelike hypersurface immersed in a
timelike bounded region of −R×Pn

f . If |∇h| and H f are bounded and H f does not change sign
on Σn, then H f is not globally bounded away from zero. In particular, if f is convex and H f is
constant, then Σn is a slice {t}×Pn.

Proof. Taking into account our restriction on the sectional curvature of the fiber Pn jointly with
the hypothesis that |∇ f |, |∇h| and H f are bounded on Σn, as in the proof of Theorem 3.4.2 we
can apply Proposition 3.2 of [32] to guarantee that the Ricci curvature of Σn is bounded from
below.

Now, suppose for instance that H f ≥ 0 on Σn. Thus, since Σn lies between two slices
of −R×Pn, from Lemma 3.4.1 and the generalized maximum principle of Omori [57] and
Yau [71] we obtain a sequence of points pk ∈ Σn such that

0≤ liminf
k

∆ f (−h)(pk) = n liminf
k

(
H f Θ

)
(pk).

On the other hand, note that

0 = lim
k
|∇h|(pk) = lim

k
Θ

2(pk)−1.

Thus, since Θ≤−1,
lim

k
Θ(pk) =−1.

Consequently,
0≤ liminf

k
∆ f (−h)(pk) =−n liminf

k
H f (pk)≤ 0

and, hence, we conclude that
liminf

k
H f (pk) = 0.
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If H f ≤ 0, with the aid of Lemma 3.4.1 and applying once more the generalized maximum
principle of Omori [57] and Yau [71], we get a sequence qk ∈ Σn such that

0≤ liminf
k

∆ f h(qk) =−n liminf
k

(
H f Θ

)
(qk)

and
lim

k
Θ(qk) =−1.

Therefore, we conclude again that H f is not globally bounded away from zero.
When H f is constant, we have that, in fact, H f vanishes identically on Σn. Thus, since Σn is

contained into a timelike bounded region of −R×Pn
f , there exists a constant β such that h−β

is a positive harmonic function of the drifting Laplacian on Σn. Moreover, since f is supposed
convex, from inequality (3.61) to get that Ric f ≥ 0.

On the other hand, since ∇ f = ∇ f + 〈∇ f ,N∗〉N and |N∗|= |∇h|, we obtain

|∇ f |2 ≤ |∇ f |2(1+ |∇h|2).

Consequently, since we are assuming that |∇ f | and |∇h| are bounded, we have that ∇ f is also
bounded on Σn.

Therefore, we are in position to apply Corollary 1.4 of [45] and conclude that h is constant
on Σn, that is, Σn is a slice {t}×Pn.



CHAPTER 4

Height Estimate for weighted semi-Riemannian
manifolds

The results of this chapter are part of [23].

4.1 Introduction

In 1954 Heinz [42] proved that a compact graph of positive constant mean curvature H in the
(n+ 1)-dimensional Euclidean space Rn+1 with boundary on a hyperplane can reach at most
height 1

H from the hyperplane. A hemisphere in Rn+1 of radius 1
H shows that this estimate

is optimal. In particular, Heinz’s result motivated several authors to approach the problem of
obtain a priori estimates for the height function of a compact hypersurface whose boundary is
contained into a slice of a Riemannian product space (see, for instance, [2, 3, 26, 39, 44, 53]).

Concerning the Lorentzian setting, López [52] obtained a sharp estimate for the height of
compact constant mean curvature spacelike surfaces with boundary contained in a spacelike
plane of the 3-dimensional Lorentz-Minkowski space L3. Later on, de Lima [30] established a
height estimate for compact spacelike hypersurfaces with some positive constant higher order
mean curvature and whose boundary is contained in a spacelike hyperplane of the (n+ 1)-
dimensional Lorentz-Minkowski space Ln+1. As in [52], through the computation of the height
of the hyperbolic caps of Ln+1, he showed that his estimate is sharp. Afterwards, he jointly
with Colares [27] generalized the results of [30] to the context of the Lorentzian product spaces
−R×Pn.

In this chapter, we prove height estimates concerning compact hypersurfaces with nonzero
constant weighted mean curvature and whose boundary is contained into a slice of εI×P.

4.2 The Riemannian setting

Now, we present our first height estimate.

Theorem 4.2.1 (Theorem 1 [23]). Let I×Pn
f be a weighted Riemannian product space with

Ric f ≥ 0 and let Σn be a compact hypersurface with boundary contained into the slice {s}×Pn,
for some s ∈ I, and whose angle function Θ does not change sign. If Σn has nonzero constant

55
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f -mean curvature such that nH2
f ≤ |A|2, where A denotes the Weingarten operator of Σn with

respect to its unit normal vector field N, then the height function h of Σn satisfies

|h− s| ≤ 1
|H f |

. (4.1)

Proof. Define on Σn the function
ϕ = H f h+Θ. (4.2)

From (3.14) and (3.10) we get that

∆ f ϕ =−Θ(|A|2−nH2
f + R̃ic f (N∗,N∗)). (4.3)

Consequently, since R̃ic f (N∗,N∗) = Ric f (N,N) ≥ 0, nH2
f ≤ |A|2 and choosing N such that

−1≤Θ≤ 0, from (4.3) we get that ∆ f ϕ ≥ 0. Thus, we conclude from the maximum principle
that ϕ ≤ ϕ|∂Σ and, hence, from (4.2) we have that

H f h−1≤ H f h+Θ≤ H f s. (4.4)

We then consider the two possible cases. In the case that H f > 0, from (3.10) we have
∆ f h≤ 0 and, from the maximum principle, h≥ s on Σn. Thus, from (4.4) we conclude that

h− s≤ 1
H f

. (4.5)

Finally, in the case that H f < 0, from (3.10) we have ∆ f h ≥ 0 and, again from the maximum
principle, h≤ s on Σn. Thus, from (4.4) we must have

s−h≤− 1
H f

. (4.6)

Therefore, estimate (4.1) follows from (4.5) and (4.6).

Remark 4.2.1. We point out that the hypothesis nH2
f ≤ |A|2 is automatically satisfied in the case

that the weighted function f is constant. Furthermore, taking into account Heinz’s estimate [42]
already commented in the introduction, we see that our estimate (4.1) is optimal.

From Theorem 4.2.1 we obtain the following half-space type result

Theorem 4.2.2 (Theorem 2 [23]). Let R×Pn
f be a weighted Riemannian product space with

Ric f ≥ 0 and Pn compact. Let Σn be a complete noncompact two-sided hypersurface properly
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immersed in R×Pn
f , whose angle function Θ does not change sign. If Σn has nonzero constant

f -mean curvature such that nH2
f ≤ |A|2, then Σn cannot lie in a half-space of R×P. In particular,

Σn must have at least one top and one bottom end.

Proof. Suppose by contradiction that, for instance, Σn ⊂ (−∞,τ]×P, for some τ ∈ R. Thus,
for each s < τ we define

Σ
+
s = {(t,x) ∈ Σ

n : t ≥ s} .

Since P is compact and Σn is properly immersed in R×Pn
f , we have that Σ+

s is a compact
hypersurface contained in a slab of width τ − s and with boundary in {s}×P. Thus, we can
apply Theorem 4.2.1 to get that Σ+

s is contained in a slab of width 1
|H f | , so that it must be

τ− s≤ 1
|H f | . Consequently, choosing s sufficiently small we violate this estimate, reaching to a

contradiction.
Analogously, if we suppose that Σn ⊂ [τ,+∞)×P with τ ∈ R, for each s > τ we define Σ−s

by
Σ
−
s = {(t,x) ∈ Σ; t ≤ s} .

Hence, since Σ−s is a compact hypersurface with boundary in {s}×P, we can reason as in the
previous case and obtain another contradiction.

4.3 The Lorentzian setting

We proceeding with our second height estimate.

Theorem 4.3.1 (Theorem 3 [23]). Let −I×Pn
f be a weighted Lorentzian product space with

Ric f ≥ 0 and let Σn be a compact spacelike hypersurface with boundary contained into the slice
{s}×Pn, for some s ∈ I. If Σn has nonzero constant f -mean curvature such that nH2

f ≤ |A|2,
where A denotes the Weingarten operator of Σn with respect to its future-pointing unit normal
vector field N, then the height function h of Σn satisfies

|h− s| ≤ max∂Σ |Θ|−1
|H f |

. (4.7)

Proof. Analogously, we define on Σn the function

ϕ =−H f h−Θ. (4.8)
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From equation 3.57 and Lemma 3.4.1 we get that

∆ f ϕ =−Θ(|A|2−nH2
f + R̃ic f (N∗,N∗)).

Consequently, since R̃ic f (N∗,N∗) = Ric f (N,N) ≥ 0, nH2
f ≤ |A|2 and choosing N future-

pointing (that is, Θ ≤ −1), we get that ∆ f ϕ ≥ 0. Thus, we conclude from the maximum
principle that ϕ ≤ ϕ|∂Σ and, hence, from (4.8) we have that

−H f h+1≤−H f h−Θ≤−H f s+max
∂Σ

|Θ|. (4.9)

We then consider the two possible cases. In the case that H f > 0, note that ∆ f h ≥ 0 and,
from the maximum principle, h≤ s on Σn. Thus, from (4.9) we conclude that

s−h≤ max∂Σ |Θ|−1
H f

. (4.10)

Finally, in the case that H f < 0, we have ∆ f h≤ 0 and, again from the maximum principle, h≥ s

on Σn. Thus, from (4.9) we must have

h− s≤ 1−max∂Σ |Θ|
H f

. (4.11)

Therefore, estimate (4.7) follows from (4.10) and (4.11).

Remark 4.3.1. Taking into account the height estimate of [30] mentioned in the introduction,
we see that our estimate (4.7) is also sharp.

Finally, reasoning as in the proof of Theorem 4.2.2, from Theorem 4.3.1 we get the follow-
ing

Theorem 4.3.2 (Theorem 4 [23]). Let −R×Pn
f be a weighted Lorentzian product space with

Ric f ≥ 0 and Pn compact. Let Σn be a complete noncompact spacelike hypersurface properly
immersed in −R×Pn

f , with bounded angle function Θ. If Σn has nonzero constant f -mean
curvature such that nH2

f ≤ |A|2, then Σn cannot lie in a half-space of −R×P. In particular, Σn

must have at least one top and one bottom end.

Remark 4.3.2. We recall that an integral curve of the unit timelike vector field ∂t is called a
comoving observer and, for a fixed point p ∈ Σn, ∂t(p) is called an instantaneous comoving
observer. In this setting, among the instantaneous observers at p, ∂t(p) and N(p) appear nat-
urally. From the orthogonal decomposition N(p) = N∗(p)−Θ(p)∂t(p), we have that |Θ(p)|
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corresponds to the energy e(p) that ∂t(p) measures for the normal observer N(p). Further-
more, the speed |υ(p)| of the Newtonian velocity υ(p) := e−1(p)N∗(p) that ∂t(p) measures
for N(p) satisfies the equation |υ(p)|2 = tanh(cosh−1 |Θ(p)|). Hence, the boundedness of the
angle function Θ of the spacelike hypersurface Σn means, physically, that the speed of the New-
tonian velocity that the instantaneous comoving observer measures for the normal observer do
not approach the speed of light 1 on Σn (cf. [65], Sections 2.1 and 3.1). In this direction, as
it was already observed by Latorre and Romero [47], the assumption of Θ be bounded on a
complete spacelike hypersurface is a natural hypothesis to supply the noncompactness of it.
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