
Trabalho de Conclusão de Curso

Making Websites More Accessible For Blind People
With Automatic HTML Code Transformations

Ana Lúcia da Silva Ferreira
alsf@ic.ufal.br

Orientador:
Márcio de Medeiros Ribeiro

Maceió, March 2024

http://ic.ufal.br

Ana Lúcia da Silva Ferreira

Making Websites More Accessible For Blind People
With Automatic HTML Code Transformations

Monografia apresentada como requisito parcial para
obtenção do grau de Bacharel em Ciência da Com-
putação do Instituto de Computação da Universidade
Federal de Alagoas.

Orientador:

Márcio de Medeiros Ribeiro

Maceió, March 2024

Catalogação na Fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767

 F383m Ferreira, Ana Lúcia da Silva.
 Making websites more accessible for blind people with automatic

HTML code transformations / Ana Lúcia da Silva Ferreira. – 2024.
 39 f. : il.

 Orientador: Márcio de Medeiros Ribeiro.
 Monografia (Trabalho de conclusão de curso em Ciência da
Computação) – Universidade Federal de Alagoas, Instituto de Computação.
Maceió, 2024.

 Bibliografia: f. 37-39.

 1. WEB (Linguagem de programação) - Acessibilidade. 2. Experiência do
usuário - Cegos. 3. Tecnologia de leitor de tela. 4. Ferramentas de
acessibilidade para cegos. 5. Tecnologias assistivas. I. Título.

 CDU: 004.43-056.262

Monografia apresentada como requisito parcial para obtenção do grau de Bacharel em Ciên-
cia da Computação do Instituto de Computação da Universidade Federal de Alagoas, aprovada
pela comissão examinadora que abaixo assina.

Márcio de Medeiros Ribeiro - Orientador
Universidade Federal de Alagoas

Elvys Alves Soares - Examinador
Centro de Informática

Universidade Federal de Pernambuco

Erick de Andrade Barboza - Examinador
Instituto de Computação

Universidade Federal de Alagoas

Maceió, March 2024

Agradecimentos

Aos que estiveram comigo desde antes do início, mas não puderam testemunhar o fim: meus
pais, cuja gratidão pela presença e apoio transcendem quaisquer palavras.

Expresso minha profunda gratidão também aos professores do Instituto de Computação,
especialmente ao meu orientador, Prof. Dr. Márcio de Medeiros Ribeiro, pelo tempo que
trabalhamos juntos e pelo aprendizado adquirido.

A todos que contribuíram, direta ou indiretamente, para este trabalho, meu sincero agradec-
imento. Sua influência foi fundamental e valorizada. Este trabalho é fruto do apoio e esforço de
muitos.

i

Resumo

A Lei Brasileira de Inclusão (LBI) exige acessibilidade em todos os websites, visando a in-
clusão digital, mas apenas 0,46% dos sites brasileiros atendem plenamente a esses requisitos.
Apesar da eficácia das ferramentas atuais em identificar barreiras de acessibilidade, como a falta
de descrições alternativas para imagens e informações de idioma, essenciais para usuários cegos
que dependem de leitores de tela, elas não oferecem soluções automatizadas para corrigir tais
problemas. Este trabalho propõe uma solução inovadora por meio de um catálogo preliminar
e um plugin para o IDE Visual Studio Code, projetados para aprimorar a acessibilidade dos
websites, detalhando transformações específicas no código HTML e facilitando sua implemen-
tação de maneira prática. A eficácia dessa abordagem foi validada em um estudo empírico que
envolveu avaliações de acessibilidade online e a percepção de oito indivíduos cegos, mostrando
uma redução significativa nos erros críticos de acessibilidade e confirmando o reconhecimento
das melhorias pelos participantes. Este avanço representa um passo importante na direção de
uma web mais inclusiva, oferecendo soluções práticas para superar as lacunas de acessibilidade
e promover um acesso igualitário às informações e serviços digitais para todos os usuários, em
especial para aqueles que dependem de leitores de tela.

Palavras-chave: Acessibilidade na Web, Experiência do Usuário de Indivíduos Cegos, Tec-
nologia de Leitor de Tela, Ferramentas de Acessibilidade para Cegos, Tecnologias Assistivas

ii

Abstract

The Brazilian Inclusion Law (LBI) requires accessibility on all websites, aiming for digital
inclusion, but only 0.46% of Brazilian websites fully meet these requirements. Despite the
effectiveness of current tools in identifying accessibility barriers, such as the lack of alterna-
tive image descriptions and language information, essential for blind users who rely on screen
readers, they do not offer automated solutions to correct such problems. This work proposes
an innovative solution through a preliminary catalog and a plugin for the Visual Studio Code
IDE, designed to improve the accessibility of websites, detailing specific transformations in the
HTML code and facilitating their practical implementation. The effectiveness of this approach
was validated in an empirical study that involved online accessibility assessments and the per-
ception of eight blind individuals, showing a significant reduction in critical accessibility errors
and confirming the participants’ recognition of improvements. This advancement represents an
important step towards a more inclusive web, offering practical solutions to overcome accessi-
bility gaps and promote equal access to information and digital services for all users, especially
those who depend on screen readers.

Key-words: Web Accessibility, User Experience of Blind Individuals, Screen Reader Tech-
nology, Accessibility Tools for the Blind, Assistive Technologies

iii

List of Figures

1.1 Accessibility of Brazilian websites (2020 - 2022). 4
2.1 Prefeitura Municipal de São Paulo with the target attribute and without title

attribute. 6
2.2 Website of a bank that does not contain the alt attribute. 6
2.3 Portal da Transparência da Prefeitura de Maceió without the lang attribute. . . 6
2.4 Input field on the Universidade Federal de Alagoas website without attribute

aria-label. 7
2.5 Button on the Universidade Federal de Alagoas website without attribute aria-

label. 8
4.1 a11y-refactoring tool execution flow . 28
5.1 Latin Square design used in our study . 30
5.2 Number of critical errors with and without improvements on the Prefeitura de

São Paulo website . 31
5.3 Number of critical errors with and without improvements on the Banco Inter

website . 32
5.4 Number of critical errors with and without improvements on the Portal da

Transparência de Maceió website . 33

iv

Contents

List of Figures iii

1 Introduction 1

2 Motivation 5

3 A Preliminary Catalog to Make Websites More Accessible 9
3.1 Alternative text for images . 9
3.2 Definition of the page language . 11
3.3 Do not open new instances without the user request or awareness 12
3.4 Add head and body information to better structure tables 14
3.5 Improving Accessibility in Forms with Aria-Label Attributes 17
3.6 Improving Web Accessibility with Aria Labels in Interactive Elements 19
3.7 Changing Generic Divs for Semantic Structures in HTML 21
3.8 Improving the Accessibility of Iframes with Title Attributes 24

4 Implementing the Catalog 26
4.1 a11y-refactoring plugin . 26
4.2 Architecture of the Accessibility Refactoring Extension 27

5 Evaluation 29
5.1 Settings . 29
5.2 Results . 31
5.3 Threats to Validity . 32

6 Related Work 34

7 Conclusion 36

References 37

v

1
Introduction

Web accessibility has become an increasingly discussed and relevant topic in the development
of websites, since the digital inclusion of visually impaired or blind people is essential to guar-
antee their autonomy and access to information. The importance of transforming HTML code to
improve website accessibility is widely recognized, especially when we consider the principles
and techniques provided by the Web Content Accessibility Guidelines (WCAG) Consortium
(2023a). These guidelines serve as a regulatory framework for creating more accessible dig-
ital content, highlighting the need to provide textual alternatives to images, ensure keyboard
navigability, offer adaptable and understandable content presentations, and avoid elements that
could cause seizures or reactions adverse physical conditions. In the realm of digital inclusiv-
ity, ensuring web accessibility for individuals with visual impairments, including those who are
blind or rely on screen readers, is not merely a matter of compliance but a fundamental aspect
of equitable access to information and services.

According to the W3C (World Wide Web Consortium), a website is accessible when it
ensures that people with different abilities and needs can perceive, understand, navigate, and in-
teract with the web effectively Consortium (2013). This means that the site offers the necessary
resources and tools so that these people can navigate autonomously and comfortably.

The WCAG 2.2 guidelines, developed by the W3C, emphasize the need for web content
to be perceivable, operable, understandable, and robust (POUR principles). These principles
are crucial for ensuring that web content is accessible to all users, including those with disabil-
ities. By adhering to these guidelines, developers can create web content that is perceivable
through alternative texts for non-text content, operable via keyboard navigation, understand-
able with clear labels and instructions, and robust enough to be interpreted by a wide range of
user agents, including assistive technologies. For visually impaired users and those who utilize
screen readers, this translates into specific recommendations, such as providing alternative text
for images (alt attributes), ensuring that all functionalities are accessible via keyboard, using

1

INTRODUCTION 2

semantic HTML tags for structure and navigation, and implementing Web Accessibility Initia-
tive - Accessible Rich Internet Applications (WAI-ARIA) roles and properties to describe the
behavior and purpose of dynamic content.

Moreover, the adoption of ARIA landmarks offers a way to navigate more efficiently
through content, allowing users of assistive technologies to understand and interact with com-
plex web applications. By embedding these practices into the web development process, devel-
opers not only adhere to legal and ethical standards but also enhance the user experience for a
significant segment of the population that has been historically excluded in the digital space.

Legal mandates across the globe, such as the Americans with Disabilities Act (ADA) in the
United States, the Accessibility for Ontarians with Disabilities Act (AOD) in Canada, and the
European Accessibility Act (EAA) in the European Union, highlight the importance of web
accessibility. These laws affirm the rights of individuals with disabilities to have equal access to
information and services provided on the internet, mirroring the principles laid out in the United
Nations Convention on the Rights of Persons with Disabilities (UNC).

In this context, the Brazilian Inclusion Law (LBI) reinforces the mandatory accessibility
on all websites, positively impacting people who depend on assistive technologies, such as
screen readers, to browse the internet. However, despite legislative advances and the availabil-
ity of tools for diagnosing and correcting accessibility barriers, a study indicates that only a
small fraction of Brazilian websites fully comply with accessibility standards. According to
this study, conducted by BigDataCorp and referenced in Movimento Web Para Todos (2022),
over 30 million Brazilian websites, both active and inactive, were analyzed, revealing that only
a mere 0.46% of the 21 million active websites adhere to accessibility guidelines. These were
specifically selected for analysis, excluding any that were offline or had not been updated for ex-
tended periods, with selection criteria considering the relevance of the website’s content and the
applicability of accessibility tests, taking into account the specificities of each type of website.

As shown in Table 1.1, the evolution of certain types of problems, such as checking the
accessibility of form fields and buttons, links that open in a new window without prior warning
and the absence of alternative texts for images shows a variation significant between April 2020
and May 2022. Additionally, checking HTML markup with W3C tools also indicated variabil-
ity in site compliance, which reinforces the importance of adhering to web development best
practices to ensure accessibility. This analysis highlights the ongoing need for improvements in
web accessibility to meet established guidelines.

Types of problems April 2020 May 2021 May 2022
Forms 55,19% 70,84% 53,46%
Links 93,65% 77,28% 87,30%
Images 83,36% 71,98% 84,21%
HTML Markup Check 97,22% 90,66% 95,78%

Table 1.1: Evolution of Accessibility Problems on Brazilian Websites.

INTRODUCTION 3

Site Type (No Flaws) 2020 2021 2022
Blog 1,24% 2,17% 0,26%
Education 3,88% 4,68% 0,21%
E-commerce 1,30% 1,46% 0,06%
Corporate 2,81% 5,40% 0,16%
News portals 3,03% 3,15% 0,20%

Table 1.2: Percentage of Sites Without Failures in Accessibility Tests Per Type of Site.

The data in Tables 1.1 and 1.2 were derived from a comprehensive study by BigDataCorp,
as referenced in Movimento Web Para Todos (2022).

This data highlights the importance of an ongoing commitment to web accessibility, not just
as a matter of legal compliance, but as an essential element in ensuring that all users, regardless
of their visual capabilities, can have equal access to information and services online. The evo-
lution of website accessibility studies and the identification of conformity errors in HTML code
markup are critical steps to move in this direction, highlighting the need for effective tools and
greater awareness of the importance of digital accessibility.

This data highlights not only the variability in website accessibility over time, but also the
persistent challenges related to HTML code markup compliance. Common errors continue to
obstruct the browsing experience of users who rely on assistive technologies. As pointed out
in Table 1.2 and Figure 1.1, the drop in the accessibility index in different types of websites
between 2020 and 2022 presents the percentage of sites without failures in accessibility tests
per site type, highlighting the areas that most require attention to ensure an inclusive user ex-
perience. It is imperative that developers, designers and website owners adopt tools that not
only identify accessibility issues Systems (2021); van der Schee (2018), but that also promote
the transformation of HTML code to eliminate these barriers, thus guaranteeing access more
egalitarian and inclusive online information and services.

To minimize these problems, in this work we introduce a preliminary catalog of transforma-
tions in HTML code to make websites more accessible Ferreira and Ribeiro (2023). The catalog
contains four transformations and rely on pattern matching. Each transformation is composed
of two sides. There is a “problematic” left-hand side and a right-hand side with the “refactored”
version, which adds HTML tags and attributes to improve the code in terms of accessibility. We
implement this catalog in terms of a plugin for the popular Visual Studio Code IDE. Thus, given
a code that matches the left-hand side of one of our transformations, the plugin automatically
converts the code to the proposed right-hand side.

The integration of accessibility features directly into the coding process, as advocated by our
tool, represents a proactive approach to building a more inclusive web. This not only benefits
individuals with visual impairments but also improves the overall quality and usability of web
content for all users.

To evaluate our catalog and tool, we focus on two research questions: RQ1: To what extent

INTRODUCTION 4

Figure 1.1: Accessibility of Brazilian websites (2020 - 2022).

our catalog makes websites more accessible when considering the standards from the W3C?
RQ2: To what extent blind people perceive the improvements provided by our tool? To answer
them, we rely on a two-fold empirical study. The first part answers RQ1 by using three online
accessibility evaluators. We submit three websites (i.e., Prefeitura de São Paulo, Banco Inter,
and Portal da Transparência da Prefeitura de Maceió) to these evaluators before and after
applying our plugin in their HTML code and collect the number of critical errors. The second
part answers RQ2, where we conduct an online survey with eight blind people, based on the
Latin Square Design as described by Box et al. (2005). The results show that our plugin is
capable of reducing the number of critical errors and that the majority is capable of identifying
the improvements.

To sum up, this work provides the following contributions:

• A catalog based on pattern matching to make websites more accessible;

• A tool implemented as a plugin to implement the catalog;

• A two-fold empirical study that demonstrate important and positive initial results, con-
tributing to the blind people community that relies on screen readers.

2
Motivation

According to Brazil (2000), digital accessibility is a legally guaranteed right for individuals with
disabilities. For example, in Brazil, the Brazilian Inclusion Law (LBI) establishes mandatory
accessibility on all websites of public and private entities. This law focuses, for example, on
blind people that depends on screen readers to navigate and interact online. The LBI, established
by Brazil (2015), aims to guarantee equal access for people with disabilities. Nevertheless,
according to a study carried out by BigData Corp in partnership with the “ Movimento Web Para
Todos (2022)”, only 0.46% of the Brazilian websites meet the digital accessibility criteria. To
better illustrate this scenario, we now introduce three examples from three websites containing
problems to blind people that depends on screen readers.

The first one comes from the Prefeitura Municipal de São Paulo.1 According to the Web
Content Accessibility Guidelines (WCAG 2.2) Success Criterion 3.2.5 Consortium (2023b),
when clicking on a link, blind people using screen readers must be informed that this link
might take the user to a new window or tab. This is important because it helps the user to, for
example, close the window or tab and get back to the origin page. To do so, it is possible to use
the target="_blank" attribute along with an icon and an indication in the title attribute.
This way, screen readers can inform what is written in the title attribute, making the user aware
of the new page that will be opened. In our example, we show a website (Figure 2.1) that neither
contains the target="_blank" attribute nor the title attribute.

Another problem for blind people is to be aware of the website contents when considering
images. Screen readers can describe the visual content of the image by using the text written
in the alt attribute. For people using screen readers, who cannot view the images directly,
the alternative text is read aloud, allowing them to understand the context and information
conveyed by the image. This is particularly important in cases where the image contains relevant
information or has a specific role in the content. In some cases, it may be appropriate for the alt

1https://www.capital.sp.gov.br/

5

https://www.capital.sp.gov.br/

MOTIVATION 6

Figure 2.1: Prefeitura Municipal de São Paulo with the target attribute and without title attribute.

attribute to be empty, such as purely decorative images that do not provide relevant information.
Still, his presence should not be ignored. Figure 2.2 illustrates a bank website2 that does not
contain the alt attribute.

Figure 2.2: Website of a bank that does not contain the alt attribute.

Additionally, we examine the use of the lang attribute (from the html tag) to specify the
primary language of the page’s content. This attribute plays an important role for screen readers,
allowing this type of technology to present content appropriately to users. For example, it
ensures that screen readers are able to correctly pronounce the words, in addition to language
separation in cases where there are snippets of text in different languages. Thus, screen readers
can identify and change the voice or language setting in each section, for a more comprehensible
and coherent reading. Figure 2.3 illustrates an example from the Portal da Transparência da

Prefeitura de Maceió.3 In particular, this website does not contain the lang attribute.

Figure 2.3: Portal da Transparência da Prefeitura de Maceió without the lang attribute.

Highlighting another crucial aspect of digital accessibility, we now turn our attention to the

2https://inter.co/
3https://www.transparencia.maceio.al.gov.br/

https://inter.co/
https://www.transparencia.maceio.al.gov.br/

MOTIVATION 7

significant role of input and button tags in the creation of accessible web interfaces. As defined
by the Web Content Accessibility Guidelines (WCAG) 2.2, employing these tags effectively is
essential to ensure that individuals with disabilities, particularly those who depend on assistive
technologies, are able to efficiently interact with forms and other interactive controls on web
pages.

In the case of the input tag, accessibility can be significantly improved through proper use
of attributes like aria-label and placeholder. These attributes provide clear and concise textual
descriptions, aiding users of screen readers to understand the purpose of each input field. For
example, an input field for an email address should have a clear description that can be read by
assistive technologies, thereby ensuring that all users comprehend its function and how to fill it
out correctly. This practice aligns with WCAG 2.2 Success Criterion 1.1.1, which focuses on
providing textual alternatives to non-textual content, and Criterion 3.3.2, requiring clear labels
or instructions. Figure 2.4 illustrates an example of an input field enhanced without aria-label.

Figure 2.4: Input field on the Universidade Federal de Alagoas website without attribute aria-label.

Similarly, the button tag plays a vital role in navigation and interaction within a site. Clearly
identified and described buttons not only facilitate the understanding of their purpose by users
but also enable more intuitive interaction. The inclusion of the aria-label attribute in buttons,
particularly those that use icons or images instead of text, is crucial to describe their func-
tion. This is particularly important for screen reader users, who may not be able to interpret
the meaning of a visual icon. Adhering to WCAG 2.2, especially Success Criterion 4.1.2, en-
sures that each interface component’s name, function, and value are understandable. Figure 2.5
demonstrates a button that is not accessible with an aria-label attribute.

Therefore, careful implementation of input and button tags, with special attention to adding
accessible attributes, is an important step towards creating a more inclusive and accessible dig-
ital environment. By adhering to WCAG 2.2 guidelines, web developers can ensure that their
content is accessible to a broader spectrum of users, including those with different types of
disabilities.

MOTIVATION 8

Figure 2.5: Button on the Universidade Federal de Alagoas website without attribute aria-label.

3
A Preliminary Catalog to Make Websites

More Accessible

In this chapter, we provide a preliminary catalog to make websites more accessible. Our catalog
focuses on blind people that depend on screen readers when navigating on the internet. We
present transformations in terms of a left-hand side and a right-hand side. Here, the left-hand
side contains the problematic HTML code in terms of accessibility. The right-hand side presents
the HTML code “refactored”, i.e., the HTML code that contains HTML tags and attributes that
in general make the website more accessible to blind people that use screen readers.

Our catalog considers aspects such as defining the language of the document, including
alternative text for images, handling new instances and modifying tables to include additional
content, and elements to avoid the automatic opening of new windows or tabs without the
user’s request or awareness. The importance of this catalog lies in providing a clear and simple
structure for including elements in an HTML page.

The catalog contains eight transformations and rely on pattern matching. This means that,
given a code that matches the left-hand side of one of our transformations, we convert the code
to the corresponding right-hand side. Our catalog also relies on meta-variables. For example,
imgAttributes is a meta-variable to represent the set of attributes of the img HTML tag. Another
example: languageAttribute is a meta-variable to represent one specific attribute of the html tag,
i.e., the lang attribute.

3.1 Alternative text for images

The left-hand side of this transformation consists of the img tag and the set of attributes of
this tag, represented by the imgAttributes meta-variable. To apply the transformation to add
the alt attribute (represented by the altAttribute meta-variable), the following precondition must

9

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 10

be met: altAttribute /∈ imgAttributes. The right-hand side contains the img tag with the alt

attribute.

Transformation 3.1: Transformation to add the alt attribute

 −→

Precondition (−→)

altAttribute /∈ imgAttributes

<div id="header">

<div class="row-top">

<div class="row-content">

<div class="logo">

<a href="/portal/home.action"

class="logo"

title="Ir para a p g i n a inicial do e-Aulas">

</div>

</div>

</div>

</div>

Listing 3.1: Portal de Aulas da USP’s code without the alt (left-hand side) attribute

<main id="header">

<div class="row-top">

<div class="row-content">

<div class="logo">

<a href="/portal/home.action"

class="logo"

title="Ir para a p g i n a inicial do e-Aulas">

</div>

</div>

</div>

</main>

Listing 3.2: Portal de Aulas da USP’s code with the alt (right-hand side) attribute

In this context, Listing 3.1 and Listing 3.2 present real cases that exemplify the need and
implementation of one of the transformations proposed in the catalog to make websites more
accessible.

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 11

Listing 3.1 shows the original code from the Portal de Aulas da USP1 without the alt at-
tribute, illustrating the left-hand side of the transformation. Listing 3.2 shows the same code
after adding the alt attribute, representing the right-hand side of the transformation.

3.2 Definition of the page language

Defining the language of the page using the lang attribute of the html tag is an important practice
that guarantees the correct interpretation of the website contents by browsers, search engines,
and also by assistive technologies. In our catalog, at the left-hand side, we have the html tag
along with the set of attributes of this tag (represented by the htmlAttributes meta-variable). To
apply the transformation to add the lang attribute (represented by the languageAttribute meta-
variable), the following precondition must be met: languageAttribute /∈ htmlAttributes. The
right-hand side contains the html tag with the lang attribute.

Transformation 3.2: Transformation to add the lang attribute

<html htmlAttributes> −→ <html htmlAttributes languageAttribute>

Precondition (−→)

languageAttribute /∈ htmlAttributes

In this context, let’s present two real cases exemplifying the application of this transforma-
tion.

<!-- saved from url=(0033) https://eaulas.usp.br/portal/home -->

<html>

<head>

<meta http -equiv="Content -Type" content="text/html; charset=

UTF -8" />

<meta name="color -scheme" content="light dark" />

</head>

<body>

<div class="line -gutter -backdrop"></div>

<form autocomplete="off">

<label class="line -wrap -control">Moldar linhas<input type

="checkbox" aria -label="Moldar linhas" /></label>

</form>

</body>

</html>

Listing 3.3: A website’s code without the lang attribute (left-hand side)

1https://eaulas.usp.br/portal/home

https://eaulas.usp.br/portal/home

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 12

<!-- saved from url=(0033) https://eaulas.usp.br/portal/home -->

<html lang="pt-br">

<head>

<meta http -equiv="Content -Type" content="text/html; charset=

UTF -8" />

<meta name="color -scheme" content="light dark" />

<meta charset="UTF -8" />

</head>

<body>

<main class="line -gutter -backdrop"></main>

<form autocomplete="off">

<label class="line -wrap -control">Moldar linhas<input type

="checkbox" aria -label="Moldar linhas" /></label>

</form>

</body>

</html>

Listing 3.4: The same website’s code with the lang attribute added (right-hand side)

Listing 3.3 shows the original code from the Portal de Aulas da USP without the lang at-
tribute, illustrating the left-hand side of the transformation, while Listing 3.4 displays the code
after adding the lang attribute, representing the right-hand side. These listings serve as practical
examples of how adding the lang attribute can significantly enhance a website’s accessibility
for users who rely on assistive technologies, as well as for search engines.

3.3 Do not open new instances without the user request or
awareness

Understanding the need for clarity in website navigation, especially for users who rely on as-
sistive technologies such as screen readers, WCAG 2.2 establishes guidelines that are essential
when configuring links to open in new windows or tabs. The approach of adding a descriptive
title to links that open in new instances is crucial for accessibility and usability, as it avoids
confusion and improves the user experience.

WCAG 2.2 success criteria, such as those that focus on the understandability of the purpose
of links, both in context and in isolation, are particularly relevant here. They ensure that users,
especially those using screen readers, can understand what to expect from each link. For ex-
ample, when a screen reader user navigates a page, the software reads the available information
about each element. If a link is configured to open in a new window but does not have an ex-
planatory title, the user may not be aware of this functionality. This can lead to a disorienting

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 13

and frustrating browsing experience, especially if the user doesn’t realize that a new window
has opened.

Screen readers work by presenting the content of a page in a linear and sequential manner.
When a link opens a new window without warning, the user may suddenly find themselves in
a new context without a clear understanding of how they got there. This can be particularly
problematic if the user tries to return to the previous page and is unable to find their way back,
resulting in a frustrating and confusing experience.

The WCAG 2.2 Success Criteria addresses these challenges by providing specific guidance
on how links should be structured to improve accessibility. For example, by adding a descriptive
title to a link that opens in a new window, developers can clearly inform users about the link’s
behavior. This is in line with Success Criterion 2.4.4, which focuses on understandability of
the purpose of links in context, and Success Criterion 2.4.9, which extends understandability of
link purpose even when isolated from its context.

These criteria are fundamental because they ensure that users, regardless of their skills or
the technologies they use, have enough information to make informed decisions when browsing.
For example, a clear and descriptive title on a link not only benefits screen reader users, but also
all users by providing a clear understanding of what to expect when interacting with the link.

Additionally, Success Criterion 4.1.2, which addresses the need for user interface compo-
nents to convey information about their name, function, and value, emphasizes the importance
of clearly communicating the nature of links. This includes informing whether the link will
open in a new window, a piece of information that is vital for the user’s conscious and con-
trolled navigation.

In summary, implementing best practices as outlined by WCAG 2.2 not only helps comply
with legal and ethical accessibility standards, but also improves the overall user experience.
By providing clear and predictable information about links and their behavior, developers can
create a more intuitive and accessible browsing environment, promoting a more inclusive web
for everyone.

Transformation 3.3: Transformation to add the title attribute

<a aAttributes> −→ <a aAttributes X>

Precondition (−→)

titleAttribute /∈ aAttributes∧ targetAttribute ∈ aAttributes ⇒ X = titleAttribute

In the context of enhancing web accessibility, Listing 3.5 and Listing 3.6 present real cases
illustrating the application of this transformation.

<a

class="html -attribute -value html -external -link"

target="_blank"

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 14

href="https://g1.globo.com/bom-dia-brasil/noticia/conheca -a-

historia -do-bom-dia-brasil -desde -a-estreia.ghtml"

rel="noreferrer noopener"

>

https://g1.globo.com/bom-dia-brasil/noticia/conheca -a-historia -do-

bom-dia-brasil -desde -a-estreia.ghtml

Listing 3.5: A link without a descriptive title, lacking clarity on the action of opening in a new window

<a

class="html -attribute -value html -external -link"

target="_blank"

href="https://g1.globo.com/bom-dia-brasil/noticia/conheca -a-

historia -do-bom-dia-brasil -desde -a-estreia.ghtml"

rel="noreferrer noopener"

title="Link to external site (opens in a new window)"

>

https://g1.globo.com/bom-dia-brasil/noticia/conheca -a-historia -do-

bom-dia-brasil -desde -a-estreia.ghtml

Listing 3.6: The same link with a descriptive title added, clearly indicating that it opens in a new window

Listing 3.5 and Listing 3.6, sourced from the G1 Globo website2, compellingly underscore
the importance of providing clear, detailed descriptions for links, especially those that open in
new windows or tabs. They highlight a prevalent issue where the absence of information on the
link’s behavior can lead to confusion among users. By adhering to the WCAG 2.2 guidelines
and incorporating modifications such as descriptive titles, developers can significantly enhance
website accessibility. This proactive approach ensures that all users, particularly those depen-
dent on assistive technologies, are well-informed about the outcomes of their interactions. Such
a commitment to clarity and predictability is fundamental in creating a digital environment that
values and facilitates every user’s experience, thereby making the web a more inclusive space
for everyone.

3.4 Add head and body information to better structure tables

When we customize the structure of HTML tables we can have important benefits for accessi-
bility and understanding in the context of screen readers. These practices allow a more semantic
organization of the table. In this context, the inclusion of the thead and tbody tags helps to make

2https://g1.globo.com/

https://g1.globo.com/

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 15

the table more accessible to screen readers, who are able to interpret and transmit information
more clearly for blind people that depend on such equipments. By providing a clear structure
and adequate contextual information, we improve the experience of using assistive technologies,
ensuring a more efficient navigation and understanding of the tabulated contents.

To improve HTML tables and make them more accessible, we propose a transformation that
relies on the thead and tbody tags (represented by the headTag and bodyTag meta-variables).
Moreover, we define a set of th tags (to define the table header) using the thTag meta-variable;
and a set of td tags (to define the table columns), here represented by the tdTag meta-variable.
At the left-hand side, the table must contain at least one th tag in the set thTag. Also, all the sets
of the list [tdTag1, tdTag2, ..., tdTagn] contains at least one td tag. In instances where thTag is
absent, headTag will encapsulate the first block of tr tags, subtly addressing situations that lack
explicit header rows. The right-hand side yields a table containing the thead and tbody to better
structure the table and bring benefits to the blind community.

Transformation 3.4: Transformation to add the thead and tbody tags

<table>

<tr>

thTag

</tr>

<tr>

tdTag1

</tr>

...

<tr>

tdTagn

</tr>

</table>

−→

<table>

headTag

<tr>

thTag

</tr>

headTag

bodyTag

<tr>

tdTag1

</tr>

...

<tr>

tdTagn

</tr>

bodyTag

</table>

Precondition (−→)

thTag contains at least one th tag
All the sets of the list [tdTag1, tdTag2, ..., tdTagn] contains at least one td tag

<div id="afterGraph"></div>

<table id="table_dolar_bitcoin">

<tbody>

<tr>

<td> D L A R </td>

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 16

<td class="negative">-0,72%</td>

<td>R$ 4,96</td>

</tr>

<tr>

<td>BITCOIN</td>

<td class="negative">-1,91%</td>

<td>R$ 24393,00</td>

</tr>

</tbody>

</table>

Listing 3.7: Example table from the InfoMoney website before transformation. This table, although it

contains the tbody tag, does not have the thead tag, limiting accessibility and semantic organization for

screen reader users

<div id="afterGraph"></div>

<table id="table_dolar_bitcoin">

<thead>

<tr>

<td> D L A R </td>

<td class="negative">-0,72%</td>

<td>R$ 4,96</td>

</tr>

</thead>

<tbody>

<tr>

<td>BITCOIN</td>

<td class="negative">-1,91%</td>

<td>R$ 24393,00</td>

</tr>

</tbody>

</table>

Listing 3.8: Example table from the InfoMoney website after transformation, with the inclusion of thead

and tbody tags

The examples in Listing 3.7 and Listing 3.8, taken directly from the InfoMoney website,
illustrate the importance of properly structuring HTML tables for accessibility. Listing 3.7
shows a table before applying the proposed transformation, where the absence of the thead

tag prevents efficient reading by assistive technologies. In contrast, Listing 3.8 highlights the
result after including the thead and tbody tags, demonstrating a notable improvement in the
semantic organization and accessibility of the table. These changes not only make navigation
easier for users who rely on screen readers, but also reinforce the importance of following web

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 17

development best practices as suggested by the WCAG accessibility guidelines.

3.5 Improving Accessibility in Forms with Aria-Label At-
tributes

When addressing the accessibility of input fields and text areas, the distinction between the
use of placeholders and the application of aria-labels or associated visual tags (labels) proves
crucial, especially for users who rely on assistive technologies, such as screen readers. While
placeholders offer a temporary visual cue about the type of information required in a field,
such as "Enter your name," they have significant limitations in terms of accessibility. These
texts disappear as soon as typing begins, which can confuse users who need continuous visual
reminders or who use screen readers, who may not consistently pick up on such temporary cues.

On the other hand, the aria-label attribute plays a key role in providing a permanent and
accessible textual description for input fields, compensating for the absence of visual labels.
This practice not only makes it easier for all users, including those using assistive technologies,
to understand the purpose of each field, but also meets important success criteria of Web Content
Accessibility Guidelines (WCAG) 2.2.

Specifically, the insertion of aria-labels or the association with clear visible labels, even in
the presence of placeholders, is recommended to ensure better accessibility and usability. This
aligns with several WCAG success criteria, including the need to offer textual alternatives to
non-textual content (Criterion 1.1.1), ensure clear labels and instructions for navigating and
understanding forms (Criteria 2.4.6 and 3.3. 2), and ensure that the name, function and value of
each interface component are understandable (Criterion 4.1.2).

Therefore, the adoption of aria-labels, in addition to or instead of placeholders, signifi-
cantly contributes to the creation of more inclusive digital experiences. This approach not only
improves accessibility for users who are visually impaired or who rely on screen readers, but
also enhances usability for all users by ensuring that the functions and purposes of input fields
are understood clearly and consistently, regardless of how they are accessed or perceived.

Transformation 3.5: Transformation to add the aria-label attribute

<input inputAttributes> −→

<input inputAttributes ariaLabelAttribute>

Precondition (−→)

ariaLabelAttributes /∈ inputAttributes ∧ (nameAttribute ∈ inputAttributes ∨
idAttribute ∈ inputAttributes ∨ placeholderAttribute ∈ inputAttributes) ⇒
ariaLabelAttribute = value from nameAttribute, idAttribute, or placeholderAttribute

The specified precondition indicates conditional logic for adding an aria-label attribute to

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 18

<input> tag in an HTML document. It states that, for an <input> element that does not
currently have an aria-label attribute, an aria-label will be added if the element has a name, id,
or placeholder attribute. The value assigned to the aria-label will be derived from the value of
the name, id, or placeholder attribute available on the element. This condition is designed to
ensure that all input elements have an accessible description, improving usability for users who
rely on assistive technologies such as screen readers. This transformation process is visualized
in the listings below, where a <input> element with no aria-label is transformed to include one,
with the appropriate value derived as specified.

To further illuminate the discussion on enhancing form accessibility through the use of aria-

label attributes, let’s consider practical examples derived from the G1 Globo website. These
instances vividly demonstrate the transformation from a less accessible form input to one opti-
mized for accessibility, highlighting the critical distinctions and improvements made.

<input

placeholder="BUSCAR"

type="search"

name="q"

id="busca -campo"

autocomplete="off"

tabindex="1"

/>

Listing 3.9: Example of a form input from the G1 Globo site before applying the aria-label attribute.

This input relies solely on a placeholder for user guidance, which, while visually informative, falls short

in accessibility for users utilizing screen readers

<input

placeholder="BUSCAR"

type="search"

name="q"

id="busca -campo"

autocomplete="off"

tabindex="1"

aria-label="BUSCAR"

/>

Listing 3.10: The same form input from the G1 Globo site after the inclusion of the aria-label attribute.

This modification enhances the input’s accessibility by providing a persistent, screen-reader-friendly

description, ensuring that all users understand its purpose

The contrast between Listings 3.9 and 3.10 underscores the pivotal role of the aria-label

attribute in bridging the accessibility gap present in form inputs. Initially, the reliance on place-
holders (Listing 3.9) presents a significant barrier to accessibility, as these cues vanish once

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 19

interaction begins, potentially disorienting users who depend on assistive technologies. The
subsequent transformation (Listing 3.10), achieved through the strategic application of aria-

labels, exemplifies a commitment to inclusive design. By providing a permanent, audible de-
scription for input fields, the modification directly addresses the limitations highlighted in the
initial setup and aligns with the best practices recommended by WCAG 2.2 for creating uni-
versally accessible digital environments. These examples from the G1 Globo website serve not
only as a testament to the efficacy of adopting aria-labels in web forms but also as a guide
for developers seeking to enhance the usability and accessibility of their websites for all users,
particularly those utilizing screen readers.

3.6 Improving Web Accessibility with Aria Labels in Inter-
active Elements

In the context of digital accessibility, particularly in adherence to the Web Content Accessibil-
ity Guidelines (WCAG) 2.2, the implementation of textual descriptions for interactive elements,
such as buttons and links acting as buttons, is essential. This method ensures a degree of clar-
ity and context often absent in user interface designs, proving critical for users dependent on
assistive technologies like screen readers.

Applying textual descriptions to elements that lack distinct visible text enhances accessi-
bility for individuals with visual impairments. For instance, elements solely utilizing icons
or symbols become significantly more accessible when paired with comprehensible textual la-
bels. Differing from data-label attributes, which serve coding or styling purposes and aren’t
inherently accessible to screen readers, aria-label attributes are crafted to bolster accessibility.
Aria-labels delineate the function and intent of an element, enabling screen readers to interpret
and relay this information to users, thereby bridging a crucial gap in the user interface for those
with visual impairments.

This tactic aligns with WCAG Success Criterion 1.1.1, which is about providing textual
alternatives for non-textual content. For links that double as buttons, concise and descriptive
aria-label clarify their function, making it more intuitive and accessible. This complies with
Success Criterion 2.4.4, underscoring the importance of understanding the purpose of each link
within its context.

Moreover, by meeting Success Criterion 4.1.2, every user interface component is made iden-
tifiable and operable through assistive technologies, ensuring that users of screen readers can
comprehend and interact effectively with the website.

Hence, the incorporation of aria-labels into interactive elements, in contrast to data-labels,
presents a potent measure to enhance accessibility. This facilitates a more efficient and inclusive
navigation and interaction with online content for people of diverse abilities.

The specified precondition describes the logic for adding an aria-label attribute to <button>

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 20

Transformation 3.6: Transformation to add the aria-label attribute

<button buttonAttributes> −→

<button buttonAttributes ariaLabelAttribute>

Precondition (−→)

ariaLabelAttribute /∈ buttonAttributes∧buttonContent is empty∧
(dataLabelAttribute ∈ buttonAttributes ∨ titleAttribute ∈ buttonAttributes ∨
idAttribute ∈ buttonAttributes)
⇒ ariaLabelAttribute= value from dataLabelAttribute, titleAttribute, or transformed idAttribute

tags in the context of digital accessibility, under specific conditions. This transformation is only
applied when the button does not initially have an aria-label, does not contain visible text, and
has at least one of the following attributes: data-label, title, or id. The logic determines that
the value for the aria-label must be derived from one of these three attributes, prioritizing the
data-label, followed by the title, and, if none of the previous ones are available, transforming
the id value into a more readable form for use as aria-label. This approach aims to improve the
accessibility of interactive elements for users of assistive technologies, such as screen readers,
by providing clear text provision for actions represented by icons or non-text visual elements.

To further illustrate the importance of implementing aria labels for enhancing web accessi-
bility, let’s examine examples from the Receita Federal website3. These examples demonstrate
the application of aria labels to interactive elements, such as buttons that lack visible text but
play a crucial role in user navigation and interaction.

<button class="aa-SubmitButton" type="submit" title="Submit">

<svg class="aa-SubmitIcon" viewBox="0 0 24 24" width="20"

height="20" fill="currentColor">

<path d="M16.041 15.856c-0.034 0.026-0.067 0.055-0.099

0.087s-0.060 0.064-0.087 0.099c-1.258"/>

</svg>

</button>

Listing 3.11: An example of a button from the Receita Federal site before the addition of an aria-label

<button class="aa-SubmitButton" type="submit" title="Submit"

aria-label="Submit">

<svg class="aa-SubmitIcon" viewBox="0 0 24 24" width="20"

height="20" fill="currentColor">

<path d="M16.041 15.856c-0.034 0.026-0.067 0.055-0.099

0.087s-0.060 0.064-0.087 0.099c-1.258"/>

</svg>

3https://www.gov.br/receitafederal/pt-br

https://www.gov.br/receitafederal/pt-br

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 21

</button>

Listing 3.12: The same button from the Receita Federal site after implementing an aria-label

attribute. This modification significantly improves the button’s accessibility by providing a clear, textual

description of its function, thus making it accessible to and operable by users of assistive technologies

The contrast between Listings 3.11 and 3.12 highlights the transformative impact of aria
labels on the accessibility of web content. Initially, the button’s function (Listing 3.11) might
be unclear to users utilizing screen readers due to the absence of a descriptive label. The in-
troduction of an aria-label (Listing 3.12), as seen on the Receita Federal website, exemplifies
a best practice in digital accessibility. By providing a permanent, audible cue that clearly de-
scribes the button’s action, this approach addresses a critical accessibility gap, ensuring that all
users, especially those with visual impairments, can navigate and interact with the website more
effectively.

These examples from the Receita Federal website serve not only as a testament to the prac-
tical benefits of aria labels in web development but also as a compelling call to action for
designers and developers to prioritize accessibility. Incorporating aria-labels into interactive
elements significantly enhances the user experience for a broad audience, reinforcing the prin-
ciple that web accessibility is a cornerstone of inclusive design and a necessity for creating
equitable digital spaces.

3.7 Changing Generic Divs for Semantic Structures in HTML

In the context of digital accessibility, particularly under the WCAG 2.2 guidelines, the adoption
of a correct semantic structure in HTML documents is of paramount importance. The practice of
replacing generic elements like <div> with specific semantic elements like <header>, <nav>,
and <main> plays a crucial role in this context. This approach not only improves the structural
clarity of the page, but also makes the content more accessible, especially for users who rely on
assistive technologies such as screen readers.

By employing appropriate semantic elements, the relationship between the page’s visual
structure and its programmatic representation becomes clearer and more direct. This is in line
with WCAG Success Criterion 1.3.1, which emphasizes the importance of information and
relationships being programmatically understandable. For example, by replacing a <div> with
a <header>, it provides clear context about the nature of that section of the page, improving
understanding and navigation.

Additionally, this approach makes it easier to implement skipping mechanisms, aligning
with Success Criterion 2.4.1, which focuses on the ability to skip blocks of content. Elements
like <nav> allow screen reader users to quickly navigate menus without having to scroll through
content linearly.

Using these semantic elements not only meets the accessibility criteria established by

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 22

WCAG, but also enhances the overall user experience. It makes it easier for all users to un-
derstand the structure and layout of the page, contributing to more intuitive and efficient navi-
gation.

To underscore the significance of adopting semantic HTML structures for enhancing digital
accessibility, let’s consider transformative examples from the Receita Federal website. These
instances showcase the transition from using generic <div> elements to incorporating specific
semantic tags like <header>, <nav>, and <main>, highlighting the substantial benefits this
change brings to users, particularly those utilizing assistive technologies.

<div class="links -rapidos">

Acesso rápido

<li class="titulo">Acesso rápido

rg ãos do Governo

Acesso à Informação

Legislação

<a href="https://www.gov.br/governodigital/pt-br/

acessibilidade -digital">Acessibilidade

</div>

Listing 3.13: A section of the Receita Federal website before the semantic enhancement, utilizing

generic <div> elements

<nav class="links-rapidos">

Acesso rápido

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 23

<li class="titulo">Acesso rápido

rg ãos do Governo

Acesso à Informação

Legislação

<a href="https://www.gov.br/governodigital/pt-br/

acessibilidade -digital">Acessibilidade

</nav>

Listing 3.14: The same section of the Receita Federal website after incorporating semantic HTML

elements

The juxtaposition of Listings 3.13 and 3.14 illustrates the transformative effect of imple-
menting semantic HTML on web accessibility. Initially, the reliance on <div> elements (List-
ing 3.13) presents an accessibility challenge, as it fails to convey the structural significance
of different page sections to screen reader users. The evolution towards a semantic structure
(Listing 3.14), as demonstrated on the Receita Federal website, exemplifies best practices in
web development. This change not only facilitates improved navigation and comprehension for
users of assistive technologies but also aligns with WCAG 2.2 guidelines by making the page’s
structure programmatically understandable.

These examples from the Receita Federal website serve as a compelling testament to the
practical and inclusive benefits of semantic HTML. By emphasizing the structural and func-
tional roles of different page sections through specific HTML tags, developers can significantly
enhance the user experience for a diverse audience, ensuring that the web remains an accessi-
ble and navigable space for everyone. This approach not only meets key WCAG criteria but
also fosters a more inclusive digital environment, reinforcing the importance of accessibility in
modern web design.

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 24

3.8 Improving the Accessibility of Iframes with Title At-
tributes

Within the scope of digital accessibility, especially as outlined by WCAG 2.2, the practice of
ensuring that <iframe> elements have title attributes is a crucial step in making web content
more accessible. This approach serves to provide context and descriptions to elements that
might otherwise be ambiguous or inaccessible to users of assistive technologies such as screen
readers.

Including titles in <iframe> significantly improves the user experience for people with vi-
sual impairments. These titles help communicate the content or purpose of the <iframe>, es-
pecially when the content is external or not immediately apparent. This aligns with the need,
as expressed in WCAG, that all information, structures and relationships presented visually
must also be accessible through programmatic means, allowing users of assistive technologies
to understand and navigate content effectively.

Additionally, by making it easier to implement titles, even if they are initially empty, devel-
opers and publishers are encouraged to provide more descriptive and meaningful titles. This not
only meets WCAG’s success criteria of allowing users to skip blocks of content and understand
the function and value of interactive elements, but also improves the overall accessibility of the
site.

This practice of adding titles to <iframe>, although it may start with an empty default value,
highlights the importance of making all page elements accessible and understandable. Thus, it
significantly contributes to a more inclusive and enriching browsing experience for all users,
especially those who depend on assistive technologies.

Transformation 3.7: Transformation to add the title attribute

<iframe iframeAttributes> −→ <iframe iframeAttributes X>

Precondition (−→)

titleAttribute /∈ i f rameAttributes ⇒ X = titleAttribute

To further elucidate the enhancement of iframe accessibility through the addition of title

attribute, let’s examine practical examples from the ClimaTempo website4. These instances
vividly illustrate the before and after of applying title attributes to iframes, showcasing the
tangible benefits of such modifications for users relying on assistive technologies.

<div id="tbl-aug -8d9y1q" class="trc_popover_aug_container">

<div id="tbl-aug -2e8dxn" class="trc_popover_aug_container">

<div id="tbl-aug-h7cua9" class="trc_popover_aug_container

">

4https://www.climatempo.com.br/

https://www.climatempo.com.br/

A PRELIMINARY CATALOG TO MAKE WEBSITES MORE ACCESSIBLE 25

<div class="trc_popover trc_popover_fade trc_bottom">

<div class="trc_popover_arrow"></div>

<iframe frameborder="0" scrolling="no" src="

javascript:void(0)" style="width: 100%">

</iframe>

</div>

</div>

</div>

</div>

Listing 3.15: Example of an <iframe> from the ClimaTempo site with the title attribute absent

<div id="tbl-aug -8d9y1q" class="trc_popover_aug_container">

<div id="tbl-aug -2e8dxn" class="trc_popover_aug_container">

<div id="tbl-aug-h7cua9" class="trc_popover_aug_container

">

<div class="trc_popover trc_popover_fade trc_bottom">

<div class="trc_popover_arrow"></div>

<iframe frameborder="0" scrolling="no" src="

javascript:void(0)" style="width: 100%" title="">

</iframe>

</div>

</div>

</div>

</div>

Listing 3.16: The same <iframe> from the ClimaTempo site after implementing a title attribute

The juxtaposition of Listings 3.15 and 3.16 underscores the vital role that title attributes
play in augmenting the accessibility of iframes. Initially, the absence of a title (Listing 3.15)
leaves a gap in accessibility, making it difficult for users of assistive technologies to grasp
the iframe’s function or content. The subsequent addition of a title attribute (Listing 3.16), as
demonstrated with the ClimaTempo website, exemplifies a significant stride towards inclusivity.
By furnishing a permanent, understandable description of the iframe’s content, this simple yet
impactful enhancement directly addresses the limitations previously encountered and aligns
with WCAG 2.2 guidelines for creating web content that is accessible to all users, particularly
those utilizing screen readers. These examples from ClimaTempo not only highlight the efficacy
of incorporating title attributes into iframes but also serve as a compelling call to action for web
developers to prioritize accessibility in their designs, ensuring that every element on a webpage
contributes to a more navigable and comprehensible digital environment for users of all abilities.

4
Implementing the Catalog

To automate our catalog, we now introduce a plugin for the Visual Studio Code IDE called a11y-

refactoring. The numeronym “a11y” is a shortened way of referring to the word “accessibility”.
It is formed by the letter “a”, followed by the number “11” and the letter “y”. This number is
often used in web development and technology to refer to digital accessibility. It’s a quick and
concise way to convey the idea of making digital products, services, and content accessible to
everyone, regardless of their abilities or disabilities.

4.1 a11y-refactoring plugin

The main objective of our plugin is to help developers to fix accessibility issues in their web
projects by performing automatic analysis and transformations on the HTML source code. It
implements our preliminary catalog presented previously, following three main steps:

1. Code Analysis: The plugin scans the project’s HTML code, identifying patterns that
match the left-hand side of our transformation rules. This analysis is thorough and tailored
to detect a wide range of accessibility issues;

2. Storage and Identification: All identified patterns are used as a reference point for the
plugin, ameliorating any elements that require attention and refactoring from an accessi-
bility point of view;

3. Automatic Transformation: For each identified item, we apply the corresponding trans-
formation, replacing or modifying the code according to the right-hand side of our rules.
This step is essential to ensure that the changes we implement effectively improve the
site’s accessibility.

26

IMPLEMENTING THE CATALOG 27

Developed in JavaScript, our plugin operates by directly manipulating the HTML Docu-
ment Object Model (DOM). This approach allows for real-time analysis and transformation of
the web project’s HTML structure. By working directly with the DOM, the plugin can effi-
ciently apply the necessary modifications to enhance accessibility, ensuring that the updates are
both immediate and accurate. This method is particularly effective for dynamic content and in-
teractive web applications, where accessibility improvements need to be integrated seamlessly
with existing functionalities.

After the analysis, the plugin builds on our preliminary catalog to automate transformations
in the HTML code, making content more accessible for people using screen readers. In the plu-
gin, we are especially considering the experience of users with visual impairments or blindness,
to ensure better interaction with assistive technologies.

Additionally, the plugin requests additional information from developers, such as the lan-
guage for the lang attribute. For the title attribute of the <a> tag, we introduce standard text
informing about the opening of a new window or tab.

Our plugin is open source, and we invite the community to contribute and improve it. De-
tailed information about how to install the plugin, how it works, and the transformations it
performs is available on our website.1

4.2 Architecture of the Accessibility Refactoring Extension

The architecture of the a11y-refactoring extension within the Visual Studio Code (VSCode)
development environment is illustrated in Figure 4.1. This structure is devised to aid accessibil-
ity refactoring on websites, with a particular focus on blind users. The diagram delineates the
interconnected components and the stages of the refactoring process, as described below:

In Context 1, we encounter the VSCode Extension’s user interface, where the extension
is initially loaded and awaits a refactoring command from the user. Upon receipt of such a
command, the extension activates the refactoring process.

Within Context 2, the File Access Controller takes center stage, first checking whether there
is an active editor with an open HTML file. Upon verification, the active document is fetched
and prepped for refactoring, establishing the necessary parameters. Subsequently, the main
processor is invoked to commence the refactoring operations.

In Context 3, the Main Processor, along with the Utility Functions, carries out the refac-
toring process. The Utility Functions, each responsible for a specific accessibility task such as
adding alt attributes to images or lang to HTML tags, are called in sequence. Following the
execution of these functions, the critical section of the process is reached, where the File Writer
saves the modified HTML content back to the file system.

This architectural diagram provides a clear view of the a11y-refactoring extension’s com-

1https://github.com/easy-software-ufal/a11y-refactoring

https://github.com/easy-software-ufal/a11y-refactoring

IMPLEMENTING THE CATALOG 28

Figure 4.1: a11y-refactoring tool execution flow

ponents and their interplay, showcasing a methodological path to inclusive development and
highlighting the extension as an essential tool in any web developer’s toolkit who is mindful of
the importance of digital accessibility.

5
Evaluation

In this section, we evaluate our catalog and our tool to transform HTML code to make websites
more accessible. Here, we intend to answer the following research questions:

• RQ1: To what extent our catalog makes websites more accessible when considering the
standards from the W3C?

• RQ2: To what extent blind people perceive the improvements provided by our tool?

To answer these questions, we perform a two-fold empirical study. The first part relies on
online tools capable of evaluating the quality of HTML code in terms of accessibility. The
second part relies on survey with eight blind people.

5.1 Settings

To answer RQ1, we rely on three online evaluators: AChecker Web Accessibility, Access Mon-
itor Plus, and WAVE Web Accessibility Evaluation Tools.1 We select these evaluators because
they follow the W3C standards and the WCAG guidelines. The steps to perform this evaluation
are simple. First we submit to the evaluators the HTML code without our transformations and
capture the metric number of critical errors, which is provided by these evaluators. Then, we
use our plugin to perform improvements in the code. Finally, we submit the new HTML code
version to check whether the online evaluators indicate improvements, i.e., whether the number
of critical errors has decreased. The websites we used to answer RQ1 are the same presented
in Chapter 2: Prefeitura Municipal de São Paulo, Banco Inter, and Portal da Transparência da

Prefeitura de Maceió. We only considered the main html file of these websites (i.e., index.html).

1https://achecks.org/achecker/, https://accessmonitor.acessibilidade.gov.pt/, and https:
//wave.webaim.org/

29

https://achecks.org/achecker/
https://accessmonitor.acessibilidade.gov.pt/
https://wave.webaim.org/
https://wave.webaim.org/

EVALUATION 30

To answer RQ2, we recruit eight blind people to navigate in two different websites (one
without the improvements of our catalog and another with the improvements). We surveyed the
participants to check whether they perceived differences in both websites, even though we did
not mention that one site contained problems and that the other contained our improvements. To
execute our study, we implemented four simple websites with links, figures, tables, and other
common HTML elements: Pet Shop with our improvements; Pet Shop without our improve-

ments; Bakery with our improvements; and Bakery without our improvements. These simple
websites were specifically created for the second part of the study (RQ2) to control and isolate
the effects of our improvements.

We structure our study using the Latin Square Design, as described by Box et al. (2005).
This way, we have two treatments: with and without our improvements. In this design, we
dispose the blind participants in rows and the websites in columns. The treatments come in-
side each cell. Notice that each treatment appears only once in every row and every column.
Figure 5.1 presents our design. Notice that Person 2 first executes the study on the website
‘Bakery’ with our improvements, and then on the website ‘Pet Shop’ without our improve-
ments. Person 1 executes in the opposite way: first without (in the website ‘Bakery’) and then
with the improvements (in the website ‘Pet Shop’).

Figure 5.1: Latin Square design used in our study

This design is interesting to avoid learning effects. For example, if we let a person navigate
without and with our improvements in the same website (for example, Bakery), this subject
would easily identify improvements by a simple comparison of the same website. This way, we
would favor the second treatment (with our improvements).

The participants answered a Google Forms which asked what were their impressions in
terms of accessibility when navigating in the first website and in the second. To better un-
derstand the participants backgrounds, we asked the screen reader technology they used and
also their experience (Novice, Intermediate, or Advanced) in assistive technologies, such as the
screen readers. To recruit the participants, we used online forms. To do so, we relied on blind
people online communities that use screen readers. We provided a Consent Form and made
clear that answers would be completely anonymous and that they could give up at any time.2

2All artifacts used in our study are available at https://github.com/easy-software-ufal/
a11y-refactoring

https://github.com/easy-software-ufal/a11y-refactoring
https://github.com/easy-software-ufal/a11y-refactoring

EVALUATION 31

5.2 Results

We now present the results and answer our research questions. We have results of eight partici-
pants. All of them reported they are Intermediate or Advanced in using assistive technologies.
Four used the Talkback screen reader, three used the NVDA, and one the VoiceOver. Figure 5.2,
Figure 5.3, and Figure 5.4 help to answer RQ1. Notice that the number of critical errors has
decreased in all three evaluators after submitting the websites with our improvements.

Figure 5.2: Number of critical errors with and without improvements on the Prefeitura de São Paulo
website

Answer to RQ1: All evaluators pointed that the code improved by our plugin contained a
slightly lower number of critical errors when compared to the original code.

Regarding RQ2, seven (out of eight) participants perceived our improvements, mentioning
terms directly related to the HTML tags and attributes that our plugin focuses. When the website
contained the problems, the users were also capable of pointing them. We now present some
quotes.

“There is no problem with the language and with the characters used in Portuguese,

it has well-hierarchical headers and image descriptions.”

“The links lead to the right places on the page, the titles correspond to the correct

sections, the table at the end is well constructed.”

“The language is not properly defined, causing errors in word accents. The images

are not tagged with the alt attribute, making it impossible for a screen reader to tell

which image is being viewed. The table is navigable.”

EVALUATION 32

Figure 5.3: Number of critical errors with and without improvements on the Banco Inter website

Answer to RQ2: Seven (out of eight) participants have perceived the improvements of our
plugin in two simple websites, although we did not mention that one site contained problems
and that the other contained our improvements whatsoever. They even refer to elements from
our catalog, such as the lang attribute, alternative text for images and tables navigable by screen
readers, stating exactly the changes made by the plugin.

5.3 Threats to Validity

As threats to external validity, we cannot generalize our results. First, we used two simple
websites we built specifically for RQ2. Second, we performed our study with only eight par-
ticipants. Nevertheless, even with a small number of participants, they could identify the im-
provements, showing that simple changes in the HTML code can provide a huge benefit for
blind people who use screen readers. As a threat to internal validity, we cannot guarantee that
all participants were indeed blind because our empirical study was online. We minimize this
threat because we relied on online blind people communities.

EVALUATION 33

Figure 5.4: Number of critical errors with and without improvements on the Portal da Transparência de
Maceió website

6
Related Work

Evaluating website accessibility often entails checking compliance with established standards,
such as WCAG 2.2. This assessment can be conducted either on the server side, within a web
development environment, or on the client side, in a browser environment, employing a range
of methodologies from automatic checks to semi-automatic and manual approaches.

Prior works have focused on enhancing navigability for users with low vision using screen
magnification Syed Masum Billah (2018). However, while interaction with interfaces receives
considerable attention in usability studies, these approaches predominantly address visual ac-
cessibility on the web without encompassing the comprehensive operability of a page’s inter-
face. Our work diverges by concentrating on HTML elements to augment navigability, akin
to the issues encountered by screen reader users. Additionally, researchers have delved into
accessibility issues impacting the sequential order of user interface elements during naviga-
tion Alshayban et al. (2020), albeit their focus was restricted to Android devices. Our work
does not focus on mobile devices.

Previous research has underscored the significance of image descriptions and their quality’s
impact on blind people’s comprehension of web content Rodríguez Vázquez (2016); Jeong
et al. (2023); Calvo et al. (2016), highlighting the necessity of precise, informative alternative
text to elevate web accessibility. This aligns with our findings, where the importance of the alt

attribute was emphasized by blind users. Although generating alternative texts for images is
not our primary focus, we aim to enhance web accessibility for blind users by incorporating not
only the alt attribute but also other attributes and semantic structures.

A study illuminated accessibility challenges for screen reader users, probing the difficul-
ties in interpreting web page semantics through assistive technologies Almasoud and Mathkour
(2019). Their findings stressed the need for properly structured HTML and the use of ARIA
attributes for more effective screen reader interactions. However, this study developed an ex-
tension for the Google Chrome browser, introducing browser-level limitations. In contrast, our

34

RELATED WORK 35

tool, a plugin for the VSCode IDE, boasts a broader scope and circumvents the requirement for
API queries through a Google Chrome extension.

Automatic tools, such as AChecker Web Accessibility,1 play a pivotal role in allowing de-
velopers, designers, and webmasters to perform swift and efficient website accessibility assess-
ments. These tools generate reports identifying accessibility issues and suggesting fixes in line
with WCAG 2.2 compliance levels A, AA, or AAA. However, these tools are unable to directly
modify the server’s source code, limiting their potential to enact immediate changes. In con-
trast, our tool distinguishes itself by facilitating direct alterations to the HTML code through
the IDE, thereby streamlining the process of enhancing web accessibility.

Semi-automatic tools offer an interactive assessment of website accessibility. For instance,
Vischeck2 enables developers to simulate color perception for those with color blindness, facili-
tating manual color adjustment. However, it is limited to color adjustments and does not extend
to semantic HTML element correction as our tool does.

The challenge remains with tools that cannot specify whether certain client-side elements
of an HTML page violate WCAG success criteria. Tools focused on aspects like link context3

can identify hyperlink issues but fail to diagnose problems in HTML nodes, such as the absence
of essential attributes. Our tool addresses these deficiencies by correcting issues across HTML
nodes, including alternative texts, website language, semantic tables, and more.

These studies underscore the ongoing need to explore and develop solutions that address
both visual accessibility and the overall operability of interfaces. By integrating specific strate-
gies for screen reader users and enhancing the semantic structure of web pages, we strive for
a truly inclusive web that caters to all users, fostering a more accessible and navigable online
experience.

1https://achecks.org/achecker/
2https://www.vischeck.com/vischeck/
3https://chromewebstore.google.com/detail/link-checker/olcpkmmoifipcklgnphbhdhbpfniijmb?

hl=pt-br

https://achecks.org/achecker/
https://www.vischeck.com/vischeck/
https://chromewebstore.google.com/detail/link-checker/olcpkmmoifipcklgnphbhdhbpfniijmb?hl=pt-br
https://chromewebstore.google.com/detail/link-checker/olcpkmmoifipcklgnphbhdhbpfniijmb?hl=pt-br

7
Conclusion

In this work, we present a comprehensive approach to enhance the accessibility of websites,
going beyond traditional practices. Our strategy involves a preliminary catalog of transforma-
tions for HTML code, aiming to make websites more accessible by focusing on elements like
links, pictures, iframes, and tables. This catalog has been integrated into a plugin for the Visual
Studio Code IDE, which is a part of our innovative method that transcends merely assessing
WCAG compliance for HTML client pages. We aim to scrutinize and rectify the HTML source
code directly.

The foundation of our approach is the development of a11y-refactoring, an automated tool
designed to refine web accessibility in the code. This tool significantly reduces errors on web-
sites by applying pattern matching techniques to the left-hand side and right-hand side of the
source code. However, it is essential to note that not every technique based on success criteria
can be fully implemented with this tool due to limitations in software detection capabilities for
certain aspects of these techniques.

To evaluate the effectiveness of our catalog and tool, we conducted a double empirical study.
Firstly, we assessed the extent to which our improvements enhanced website accessibility using
online evaluators. Secondly, we surveyed blind individuals to determine if they noticed the
improvements. The results were promising: all raters reported a decrease in critical errors post-
implementation of our plugin, and seven out of eight blind participants could identify specific
improvements, such as more structured tables or explicit site language definitions.

Our approach marks a significant advancement in web accessibility, especially in the often-
neglected area of source code optimization. It emphasizes the importance of continued invest-
ment in web accessibility improvements, particularly through automated tools. Looking ahead,
we intend to refine our catalog further, extend its applicability to server-side (e.g., PHP, Django)
and client-side frameworks (e.g., Angular, React), and conduct more empirical studies to solid-
ify its effectiveness.

36

References

Americans with disabilities act. https://www.ada.gov/. Accessed February 10, 2024.

Accessibility for ontarians with disabilities act. https://www.aoda.ca/. Accessed February
10, 2024.

European accessibility act.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0882.
Accessed February 10, 2024.

United nations convention on the rights of persons with disabilities.
https://www.un.org/development/desa/disabilities/

convention-on-the-rights-of-Persons-with-disabilities.html. Accessed
February 10, 2024.

Suliman K. Almasoud and Hassan I. Mathkour. Instant adaptation enrichment technique to
improve web accessibility for blind users. In Proceedings of the 2019 3rd International

Conference on Information System and Data Mining, ICISDM 2019, page 159–164, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366359.
DOI 10.1145/3325917.3325931. URL https://doi.org/10.1145/3325917.3325931.

Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. Accessibility issues in android apps:
State of affairs, sentiments, and ways forward. In Proceedings of the ICSE, page
1323–1334. ACM, 2020. ISBN 9781450371216. DOI 10.1145/3377811.3380392. URL
https://doi.org/10.1145/3377811.3380392.

George E. P. Box, J. Stuart Hunter, and William G. Hunter. More than one blocking
component: Latin squares. In Statistics for Experimenters: Design, Innovation, and

Discovery, chapter 4.4, pages 157–162. Wiley-Interscience, 2005.

Brazil. Law no. 10,098, of december 19, 2000, 2000. URL
http://www.planalto.gov.br/ccivil_03/LEIS/L10098.htm. Establishes general
norms and basic criteria for promoting accessibility for people with disabilities or reduced
mobility, and other provisions. Diário Oficial da República Federativa do Brasil. Accessed
May 16, 2023.

37

https://www.ada.gov/
https://www.aoda.ca/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0882
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-Persons-with-disabilities.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-Persons-with-disabilities.html
http://dx.doi.org/10.1145/3325917.3325931
https://doi.org/10.1145/3325917.3325931
http://dx.doi.org/10.1145/3377811.3380392
https://doi.org/10.1145/3377811.3380392
http://www.planalto.gov.br/ccivil_03/LEIS/L10098.htm

References 38

Brazil. Law no. 13,146, of july 6, 2015, 2015. URL
http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2015/lei/l13146.htm.
Establishes the Brazilian Law for the Inclusion of Persons with Disabilities (Statute of
Persons with Disabilities). Diário Oficial da República Federativa do Brasil. Accessed May
16, 2023.

Rocio Calvo, Faezeh Seyedarabi, and Andreas Savva. Beyond web content accessibility
guidelines: Expert accessibility reviews. In Proceedings of the DSAI, page 77–84. ACM,
2016. ISBN 9781450347488. DOI 10.1145/3019943.3019955. URL
https://doi.org/10.1145/3019943.3019955.

World Wide Web Consortium. Web accessibility booklet - w3c, November 2013. URL
https://www.w3c.br/pub/Materiais/PublicacoesW3C/

cartilha-w3cbr-acessibilidade-web-fasciculo-I.html".

World Wide Web Consortium. Web content accessibility guidelines (wcag) 2.2. Technical
report, October 2023a. URL https://www.w3.org/TR/WCAG22.

World Wide Web Consortium. Web content accessibility guidelines (wcag) 2.2. Technical
report, October 2023b. URL
https://www.w3.org/TR/WCAG22/#dfn-change-of-context.

Ana Ferreira and Márcio Ribeiro. Making websites more accessible for blind people with
automatic html code transformations. Congresso Brasileiro de Software: Teoria e Prática

(CBSoft), pages 70–79, 2023. DOI https://doi.org/10.5753/cbsoftestendido.2023.235743.

Hyeonhak Jeong, Minki Chun, Hyunmin Lee, Seung Young Oh, and Hyunggu Jung. Wataa:
Web alternative text authoring assistant for improving web content accessibility. In
Companion Proceedings of IUI, page 41–45. ACM, 2023. ISBN 9798400701078.
DOI 10.1145/3581754.3584127. URL https://doi.org/10.1145/3581754.3584127.

Movimento Web Para Todos. The number of brazilian websites approved in all accessibility
tests has fallen compared to last year and is even less than 1%, June 2022. URL
https://mwpt.com.br/

numero-de-sites-brasileiros-aprovados-emtodos-os-testes-de-acessibilidade-tem-queda-em-relacao-ao-ano-passado-e-e-ainda-menor-que-1/.
Accessed May 10, 2023.

Silvia Rodríguez Vázquez. Measuring the impact of automated evaluation tools on alternative
text quality: A web translation study. In Proceedings of the W4A. ACM, 2016. ISBN
9781450341387. DOI 10.1145/2899475.2899484. URL
https://doi.org/10.1145/2899475.2899484.

http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2015/lei/l13146.htm
http://dx.doi.org/10.1145/3019943.3019955
https://doi.org/10.1145/3019943.3019955
https://www.w3c.br/pub/Materiais/PublicacoesW3C/cartilha-w3cbr-acessibilidade-web-fasciculo-I.html"
https://www.w3c.br/pub/Materiais/PublicacoesW3C/cartilha-w3cbr-acessibilidade-web-fasciculo-I.html"
https://www.w3.org/TR/WCAG22
https://www.w3.org/TR/WCAG22/#dfn-change-of-context
http://dx.doi.org/https://doi.org/10.5753/cbsoft_estendido.2023.235743
http://dx.doi.org/10.1145/3581754.3584127
https://doi.org/10.1145/3581754.3584127
https://mwpt.com.br/numero-de-sites-brasileiros-aprovados-em todos-os-testes-de-acessibilidade-tem-queda-em-relacao-ao-ano-passado-e-e-ainda-menor-que-1/
https://mwpt.com.br/numero-de-sites-brasileiros-aprovados-em todos-os-testes-de-acessibilidade-tem-queda-em-relacao-ao-ano-passado-e-e-ainda-menor-que-1/
http://dx.doi.org/10.1145/2899475.2899484
https://doi.org/10.1145/2899475.2899484

References 39

Donald E. Porter IV Ramakrishnan Syed Masum Billah, Vikas Ashok. Steeringwheel: A
locality-preserving magnification interface for low vision web browsing. ACM DL, pages
3–9, 2018. DOI https://doi.org/10.1145/3173574.3173594.

Deque Systems. axe accessibility linter, 2021. [Accessed Aug 02, 2023].

Max van der Schee. Web accessibility, 2018. [Accessed Aug 02, 2023].

http://dx.doi.org/https://doi.org/10.1145/3173574.3173594

