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Abstract
The propagation of a partially coherent optical field in a periodic photonic lattice with
one-dimensional periodicity was investigated using the framework of Floquet-Bloch modes.
The deterministic counterpart was explored by using a Gaussian source to establish a
solid baseline for how the system responds to parameters: the influence of transverse
momentum and lattice amplitude on beam propagation and participation coefficients was
discussed. The stochastic aspect of the system was considered, where we described the
interplay between lattice properties and field fluctuations by considering the optical beam
as a superposition of Floquet-Bloch modes with coefficients being stationary random
processes. The second-order theory of coherence was employed to demonstrate that the
propagation of partially coherent optical fields depends on the excitation of bands and on
the correlations between them. The role of spatial coherence in the system was explored
through the cross-correlation participation coefficients, indicating how the power of the
beam is distributed in terms of the band structure. In the end, we used the results to
describe the dynamics of the beam center.

Keywords: Classical Optics, Interference and Diffraction of Light, Optical Coherence.



Resumo
A propagação de um campo óptico parcialmente coerente em uma rede fotônica periódica
com periodicidade unidimensional foi investigada utilizando o formalismo dos modos de
Floquet-Bloch. A contraparte determinística foi explorada utilizando uma fonte gaussiana
para estabelecer uma linha de base sólida sobre como o sistema responde aos seus parâ-
metros: a influência do momento transversal e da amplitude da rede na propagação do
feixe e nos coeficientes de participação foi extensamente discutida. O aspecto estocástico
do sistema foi considerado, onde descrevemos a interação entre as propriedades da rede e
as flutuações do campo, considerando o feixe óptico como uma superposição de modos
de Floquet-Bloch com coeficientes sendo processos aleatórios estacionários. A teoria de
coerência de segunda ordem foi empregada para demonstrar que a propagação de campos
ópticos parcialmente coerentes depende da excitação de bandas e das correlações entre
elas. O papel da coerência espacial no sistema foi explorado por meio dos coeficientes de
participação de correlação cruzada, indicando como o poder do feixe é distribuído em
termos da estrutura de banda. No final, utilizamos os resultados para descrever a dinâmica
do centro do feixe.

Keywords: Óptica Clássica, Interferência e Difração da Luz, Coerência Óptica.
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iqxe−x2/2σ2 with beam width
σ = 7π and transverse momentum (top) q = 0.0, (middle) q = −0.5
and (bottom) q = −1.0; (b) Band diagram showing the propagation
constant βn(k) versus Bloch wave vector k for the first five bands. . . . 51



Figure 12 – (a) Absolute squared Floquet-Bloch participation coefficients |cn(k)|2

versus wave number k for the potential V (x) = A cos2 x, A = 4.0 with
an incident Gaussian beam U0(x) = Ũ0e
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1 Introduction

Systems with periodic properties are frequently studied in physics, as this charac-
teristic often leads to interesting phenomena. The propagation of waves in such media
permeates the interest of areas like electronics[1, 2, 3, 4], acoustics [5, 6], and optics [7, 8,
9, 10, 11, 12]. One strategy to analyze this problem is given by Bloch’s theorem, which, in
a periodic structure, allows the unfolding of the propagating wave into normal modes with
their respective dispersion relations, dictating how the system’s vibrations behave. The
similarities between quantum mechanics and optics allow band theories and the study of
band gaps to gain their deserved place in photonics [13, 14], which holds part of our subject
of study. Additionally, every optical field found in nature possesses a stochastic nature,
which can be understood through the formalism of Statistical Optics [15, 16], enabling
us to study partially coherent light through the propagation of functions associated with
signal correlations present in the source.

The main goal of this master’s thesis is to present how the Floquet-Bloch theory
can be a good strategy for studying the propagation of partially coherent light considering
a medium with periodic properties and studying its particularities. In the next paragraphs,
the reader will be presented with the structure of this thesis.

In chapter 2, the reader will be briefly introduced to photonic systems, their
applications, and the conventional theoretical framework used to study these systems.
Analogies with quantum mechanics will be made, specifically with solid-state physics,
which will be the terminology for the discussion of the main results.

In chapter 3, the reader will be presented with basic concepts of statistical optics.
Basic concepts of scalar wave optics will be necessary, but basic concepts of the theory
will be presented in the chapter or in the appendix if it was not mentioned in the previous
chapter. The main goal is to settle an intuitive relationship between coherence and
correlation, also connecting these concepts to interference phenomena. The important
quantities of the theory will be presented, which will be the main characters of the chapter
on our results.

In chapter 4, the concepts presented in the previous chapter will be utilized to
construct a model describing light in periodic media while considering its spatial coherence
effects. The fundamental concepts of our theory will be explored and the connection with
concepts and methods from solid-state physics will prove useful. A specific case involving
deterministic light will be done for comparative purposes, but the core of the chapter lies
in the subsequent investigation of the stochastic case by using the presented framework.

To conclude, chapter 5 provides a summary of the work done, a brief commentary
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about the difficulties encountered, and discusses potential future developments.
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2 Photonic Crystals

This chapter provides an overview of photonic systems, their applications, and the
conventional theoretical framework used to study these systems. Concepts from quantum
mechanics and solid-state physics will be mentioned and briefly discussed to draw analogies
with quantum mechanics and establish a common language for discussing future topics.
Maxwell’s equations will be introduced to discuss these materials, delving into the realm
of optical systems that this thesis focuses on. Ultimately, the chapter will derive the
paraxial wave equation in a medium, which forms the core of this chapter and serves as
the foundation of its theoretical framework.

2.1 Photonic Crystals
Humanity’s advancement has been intricately tied to our comprehension of the

world and its laws. From manipulating iron in the Stone Age to discovering copper, steel,
and other materials, our journey has been marked by technological progress. The modern
and contemporary ages have seen innovations in ceramics, metallurgy, and plastics. In
the last century, breakthroughs in conductivity and transistors have revolutionized the
world. Furthermore, the development of new alloys and ceramics has empowered scientists
globally to explore high-temperature superconductors, which could lay the groundwork
for future technologies [8]. The capacity to manipulate and engineer artificial materials
has unveiled frontiers in controlling the optical properties of materials. This advancement
holds tremendous potential for technological applications, including the ability to regulate
which frequencies of light waves can pass through, the direction of light propagation, and
the confinement of light within specific zones of the material. Notably, optical materials
such as optical fibers have played a pivotal role in advancing telecommunications [17].

Within the vast array of optical materials, there exists a category where the
structure is comparable to the wavelength of the light propagating within it. Some of these
materials are known as photonic crystals, distinguished by a periodic refractive index in
the macroscopic medium [8, 9].

The most critical information is generally conveyed by the dielectric function
ϵ(r), which, by definition of photonic crystals, is periodic. Figure 1 displays a schematic
representation of a photonic crystal formed by different slabs on the left and a graph of
a continuous dielectric function on the right. Each color represents a different dielectric
constant in the medium, illustrating the discrete case on the left. It is useful to consider a
treatment where the periodicity is also continuous (right).
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Figure 1 – Examples of simple photonic crystals: On the left, colors represent different
dielectric constants; on the right, a continuous dielectric function is displayed.
They’re (a) 1D and (b) 2D structures. This illustration is inspired by figure 1
from [8].

The primary objective is to study the profile of electromagnetic waves. As is known,
electromagnetic waves are generally periodic, and when they interact with a medium with
periodicity on the same order as their wavelength, unique phenomena emerge, such as the
formation of a photonic band structure and band gaps. All of this enables unprecedented
control over light within the medium [7].

Initially, photonic crystals were introduced in the literature as a means to control
spontaneous emissions of atoms [18, 19]. It was quickly realized that light propagating
in periodic dielectric media behaves analogously to an electron in a solid-state periodic
potential [20, 21, 22, 23, 24, 25], giving room to parallels between the theoretical approach
between quantum mechanics and photonic crystals [7, 8, 9, 13].

The various phenomena enabled by the complex structure found in photonic crystals
have led to a wide range of technological applications and research avenues, such as photonic
integrated circuits [26], micro and nanophotonic crystal waveguide circuit boards [27],
optical communications [28], wavelength monitors [29], among many others [30, 31, 32, 33].
In the market, silicon nano-photonic integrated circuits are already being commercialized
by Luxtera [34], while NKT Photonics offers specialty photonic crystal optical fibers
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[35], Lumileds provides photonic crystal light-emitting diodes [36], and OmniGuide offers
photonic bandgap fibers for precision surgery and cancer therapy [37, 38]. In addition
to artificial materials, photonic crystals can also be found in nature, such as in peacock
feathers [39], chameleon colors [40], butterfly scales [41, 42] and other natural sources [43].

In these systems, as mentioned, light exhibits behavior analogous to an electron
submitted to periodic atomic potentials, a concept extensively explored in solid-state
physics [1, 2, 4]. This resemblance arises because the equations describing light bear
similarity to the Schrödinger equation [13]: the study of Bloch modes for optical waves
reveals the emergence of bands and forbidden frequencies (band gaps) in photonic lattices
[7, 8, 9, 10]. Particularly, in a scalar and paraxial approximation, examining the equation
in one dimension, the Floquet-Bloch theorem becomes relevant and one must be aware of
the one-dimensional band theory and more profound analysis of the solutions [4, 44, 45,
46, 47, 48].

Research in photonic structures has become an ever-growing subject in physics since
their realization and discovery [19, 20]. Several studies explore the electromagnetic wave
propagation in periodic structures utilizing Bloch Waves through plane wave expansion
techniques [21, 22], as usual. Theoretical and experimental exploration in this has flourished,
exploring well-known electronic effects in photonic systems, such as Rabi oscillations [49,
50, 51, 52], Zener tunneling [49, 52, 53, 54, 55], zitterbewegung effect [14], Bloch oscillations
[54] and the effects of the Bragg resonance in these phenomena [55, 56]. It is important to
note that studying Bragg resonance in these lattices or waveguide arrays provides insights
into the impact of the incident angle of an initial beam on the optical diffraction and
dispersion of optical beams during their propagation [57], which is useful if one aims to
study propagation properties of optical beams.

The next sections will provide a brief overview of the theoretical framework used in
the study of these systems, drawing connections with solid-state physics and focusing on
the theoretical framework that enables one to address the main problem of this thesis. First
and foremost, it is important to set the "rules of the game,"i.e., the main considerations to
develop a good mathematical description for photonic crystals. As always, one must start
with Maxwell’s equations.

2.2 General Mathematical Description
All problems in the classical electromagnetism can be solved by taking into account

the Maxwell’s equations. The main characters of the electromagnetic phenomena are the
electric field vector E = E(r, t) and the magnetic field vector B = B(r, t). If one needs to
consider the interaction with a material medium, one must take into account its properties,
given by constitutive relationships between the electric field and the polarization density
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field P = P(r, t), that carries the electric response of the media, and between the magnetic
field and the magnetization density field M = M(r, t), that holds the information of the
magnetic response of the media. One can find a deep discussion about the connection
between the microscopic nature and the macroscopic significance of these fields [58]. From
them, one can define two auxiliary fields, which are the electric displacement vector
D = D(r, t) and the magnetic strength vector H = H(r, t); though their dependence on E
and B can be really complicated, it can be written as a power series expansion for each
component considering all the material’s linear and non-linear responses [59, 60].

In the presence of a free charge distribution ρ = ρ(r, t) and free current density
J = J(r, t), Maxwell’s equation in the matter is given by the following coupled partial
differential equations:

∇ · D(r, t) = ρ(r, t) ∇ × E(r, t) = −∂B(r,t)
∂t

∇ · B(r, t) = 0 ∇ × H(r, t) = ∂D(r,t)
∂t

+ J(r, t)
. (2.1)

These equations are common in any elementary course of electrodynamics, and
solving them provides the electromagnetic field at any point in space r at any time t. In
general, when dealing with photonic crystals, certain assumptions can be made to simplify
the problem of solving this set of differential equations without losing relevant physics [8,
7]. The dependence of some quantities on the electromagnetic wave frequency ω will be
omitted, although it will be present in certain discussions.

Assuming that the electromagnetic field strength is sufficiently small, the material’s
nonlinear response to the light is negligible, thus only linear responses remain. Furthermore,
considering a macroscopic, linear, and isotropic material, the relationship between the
fields E(r, t) is given by

D = ϵ0ϵ(r)E, (2.2)

with ϵ(r) being the permittivity or dielectric function depending on the spatial position r
and not on the time t. Thus, the material is non-homogeneous and the material’s electric
properties do not change over time. Another assumption regarding the permittivity is that
the material is transparent, i.e., ϵ(r) is a real and positive function. The real condition
ϵ(r) ∈ R here means that there are no losses in the material and the positive one ϵ(r) > 0
is to avoid metallic materials, although there are some works on photonic crystals with
metals and dielectrics combined [61, 62].

The class of materials that is on the scope of this work does not have a pronunciation
magnetic response, thus the relationship between B(r, t) and H(r, t) is mediated only by
the vacuum permeability, for simplicity:

B = µ0H. (2.3)

In the optical regime of the electromagnetic spectrum, the refractive index serves
as the universal language. Thus, it will be useful to emphasize the relationship between
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the dielectric function ϵ(r) and the refractive index. Considering what was previously
discussed about the material, one can express the refractive index as

n(r) =
√

ϵ(r), (2.4)

therefore the permittivity is proportional to the refractive index squared ϵ ∝ n2.

Considering all previous assumptions and that there is no charge or current sources
within the material, that is translated to mathematical language as ρ = 0 and J = 0,
Maxwell’s equation can be manipulated from equation 2.1 to:

∇ · [ϵ(r)E(r, t)] = 0 ∇ × E(r, t) = −µ0
∂H(r,t)

∂t

∇ · H(r, t) = 0 ∇ × H(r, t) = ϵ0ϵ(r)∂E(r,t)
∂t

. (2.5)

This set of equations remains challenging to solve despite the assumptions made,
and the time dependence remains problematic. The main concern in exploring light
propagation in photonic crystals lies in the spatial content of these equations [7, 8, 9];
thus, to simplify the problem even further, one can utilize the linearity of the differential
operators: every physical solution for the electromagnetic field can be thought as the real
part of a linear combination of harmonic modes that carry the time dependence with a
factor e−iωt, a monochromatic wave:

E(r, t) = E(r)e−iωt

H(r, t) = H(r)e−iωt
, (2.6)

that can be inserted into equation 2.5 and the solutions of the resulting equations will be
restricted to a given frequency ω:

∇ · [ϵ(r)E(r)] = 0 ∇ × E(r) = iωµ0H(r)
∇ · H(r) = 0 ∇ × H(r) = −iωϵ0ϵ(r)E(r)

, (2.7)

these are a set of coupled differential equations with dependence solely on the spatial
coordinates. The two divergence equations ensure the transversality of the electromagnetic
field within the material, while the curl equations relate the fields H and E [8]. To decouple
these equations, one must apply the curl operator ∇× to the curl equation for the electric
field E, and then divide the curl equation for the field H and apply the curl operator. The
result is as follows:

∇ × [∇ × E(r)] = k2ϵ(r)E(r)
∇ ×

[
1

ϵ(r)∇ × H(r)
]

= k2H(r)
, (2.8)

where the equation for E is a generalized eigenvalue problem, while the one for H is
standard eigenvalue problem. Due to the complexity of solving for E, one may prefer to
solve the simpler problem for the field H and then recover the electric field E through the
equation

E(r) = i

ωϵ0ϵ(r)∇ × H(r); (2.9)
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or, conversely, solve for E and recover the field H through the expression:

H(r) = − i

ωµ0
∇ × E(r). (2.10)

The fact that the general problem can be viewed as an eigenvalue problem is valuable be-
cause one can retrieve well-known results from functional analysis and quantum mechanics
to handle these equations and interpret the solutions [63, 64, 65, 66]. Define the linear
differential operator Ξ̂ as follows:

Ξ̂ H(r) := ∇ ×
[

1
ϵ(r)∇ × H(r)

]
; (2.11)

certainly, it is straightforward to show that this operator is linear and Hermitian. Conse-
quently, the eigenvalues are real, different eigenvalues have orthogonal eigenvectors, and
there are symmetries that can be utilized to solve the problem [9, 63, 65].

Given a photonic crystal with dielectric function ϵ(r) with well-established boundary
conditions for the electromagnetic field, the problem can be described by

Ξ̂ H(r) = k2H(r) (2.12)

and one can find a set of spatial modes (solutions) that can compose every other solution
due to the linearity of the operator Ξ̂. With this general formulation, the connection with
solid-state physics can be established to discuss the main topic of this thesis. In the next
sections, this subject will be discussed in more detail.

Despite the similarity with the quantum mechanical formalism, it is important to
emphasize fundamental differences in the treatment of photonic crystals. First, the goal is
to find the electromagnetic field, which is a vectorial quantity, in contrast with the scalar
wave function in quantum mechanics. Additionally, the problems in photonic crystals are
macroscopic and scalable, as the equations do not have a constant establishing the scale,
unlike in quantum mechanics where Planck’s constant ℏ sets the scale. Furthermore, even
if ϵ(r) is separable, the curl operator couples the spatial coordinates, making analytical
solutions with interesting phenomena for photonic crystals rare [9, 8].

2.3 Solid-State Physics and Bloch Waves
Symmetries are foundational to almost everything physicists do. When working

theoretically with dielectric structures found in photonic systems, both continuous and
discrete symmetries are always present. They influence profoundly the spatial profile of
the system’s modes (solutions) and the associated spectrum, resembling the results found
in the treatment of electronic systems with periodic potentials in quantum mechanics and
solid-state physics. Therefore, utilizing these symmetries and adopting terminology from
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solid-state physics is highly advantageous for understanding and describing a variety of
optical phenomena in these crystals.

Certainly, before dealing with the main results of this work, it is essential to
establish a degree of familiarity with the terminology that will be employed. Therefore,
this section aims to introduce and briefly discuss the key terms upon which subsequent
discussions will be based. This will be wield by talking about specific cases. One can read
their way through more profound discussions and proofs through the cited literature.

First of all, we will discuss the case of a system with a uniform dielectric function.
The permittivity is given by

ϵ(r) = ϵ, (2.13)

represented by the uniform slab in the figure 2 (a). Thus, finding the harmonic modes
(solution) is straightforward and they are given by the set of equations

H(r, t) = H0eik·re−iωt E(r, t) = E0eik·re−iωt

E0 = 1
ωϵ0

H0 × k k · H0 = 0
, (2.14)

in which H0, E0 and the wave vector k are an orthogonal set. Besides, let’s discuss the
solutions. The dispersion relationship for this system is straightforward:

ω2 = ϵk2 (2.15)

stabilishing k2 as a conserved quantity of the system associated with the continuous
symmetry of the dielectric function. Specifically, there is a invariance under a translantion
operation r → r + r0, where r0 is any spatial vector. Consequently, this results only in a
phase change in the spatial mode upon translation [9, 1]. In another word, a continuous
symmetry in a direction implies a plane wave profile to the spatial mode in the specified
direction.

Another way to represent the dispersion relationship in equation 2.15 is by conside-
ring a band diagram. This diagram is defined by a plot that indicates the frequencies
of all modes allowed by the dispersion relation ω(k) depending on some curve in the
wave vector k space. For example, consider some direction β, then the wave vector can
be written as k = k∥ + k⊥, k∥ is in the β-direction and k⊥ is perpendicular to it, as
represented in the figure 2 (b). Considering that k2

∥ = β2, the dispersion relationship can
be expressed as β2 + k2

⊥ = ϵω2. Subsequently, one can construct the band diagram of the
system in this particular direction, as shown in figure 2 (c). The possible frequencies, ω, for
each spatial mode, distinguished by the propagation constant β, are plotted as a function
of the propagation number, β. The line ω = βϵ−1/2 delineates the plane between the region
where delocalized modes (plane wave solutions) are possible and where they are not. The
region of the band diagram where β < ωϵ1/2 represents solutions of the plane wave type,
possessing a finite value throughout space. Conversely, the region β > ωϵ1/2 comprises
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Figure 2 – (a) Schematic representation of a uniform slab with dielectric function constant
in its bulk; (b) orthogonal set formed by the vectors found in the solution: the
electromagnetic field, H0 and E0, and the wave vector k; and (c) band diagram
for a uniform dielectric if one plots the frequency ω(k) in function of a specific
direction, depending in the module of its component.

solutions that are real exponentials, either growing indefinitely (unphysical solutions) or
decaying to zero (evanescent waves). Some of these solutions cannot be observed in nature
due to their exponential growth, breaking some conservation of energy principles.

When dealing with photonic crystals, one must consider their discrete translati-
onal symmetry. This symmetry is associated with the dielectric function, which is not
invariant under the translation of any vector r0, but remains invariant under translations
R0 along certain directions in multiples of fixed lengths, as depicted in figure 3 (a).

If R0 represents the vector needed to reach an equivalent point within the crystal,
the fixed length |R0| = a is termed the lattice constant. Moreover, it’s evident that this
symmetry implies ϵ(r) = ϵ(r + NR0), where N can be any integer. One fact that is very
relevant in Spectral Analysis is that if one operator commutes with another, they share
the set of eigenvectors. That said, if there is translational symmetries, Ξ̂ commutes with
the translation operator T̂ (R), that operates in any spatial function as follows:

T̂ (R)f(r) = f(r + R), (2.16)

and, due to the invariance, one can show that T̂ (R)Ξ̂ = Ξ̂T̂ (R) holds. Therefore, T̂ and Ξ̂
share eigenfunctions, and thus the spatial modes are eigenfunctions with plane waves as
eigenvalues in the direction of the translational symmetry. This is discussed in more detail
in any solid-state textbook [1, 2, 4] or photonic crystals textbook as well [7, 8, 9].

Consider a two-dimensional photonic crystal like the one presented in the figure
3 (a). The unit cell is a yz slab of dielectric material with width a in the x direction,
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Figure 3 – (a) Representation of a photonic crystal formed by dielectric slabs (in blue)
alternated with empty space filled. The unit cell of the structure is within
the transparent box and the real lattice vector is R0; (b) band structure
for a periodic dielectric structure along one line of the k space; and (c) a
representation of a square lattice and its respective Brillouin zone with its the
irreducible part highlighted in blue, the triangle with vertices Γ, X and M .

as illustrated. The lattice is formed by repeating this unit cell in the x direction with a
translation of R0 between each one. The lattice vectors for this discrete symmetry are
R0 = Nax̂, thus

T̂ (R)eikxx = eikx(x+Na) (2.17)
= eiNkxaeikxx, (2.18)

from which it is possible to conclude that every mode with wave number kx + 2πm/a

has the same eigenvalue, forming a degenerated set of functions. The terms being added
to kx are all multiple of 2π/a, then it is useful to define the reciprocal lattice vector
Q = 2π/ax that can be thought as the lattice vector for a lattice formed by wave vectors in
the k space. The linear combination of these eigenfunctions are in fact also eigenfunctions
of Ξ̂ and then the spatial modes, solutions of our problem, and a natural basis to describe
any system, can be written as a linear combination:

Hkx,kz(r) = eikzz
∞∑

m=−∞
ckx,m(y)ei(kx+2πm/a)x (2.19)

= ei(kxx+kzz)u(x, y, kx), (2.20)
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here, Hkx,kz(r) represents the spatial mode of the system at position r with a wave
vector in the xz plane given by k = kxQx + kzQz. It is straightforward to show that
u(x, y, kx) = u(x + Na, y, kx) holds, indicating the periodicity in the x direction.

As mentioned, there is a degeneracy in the wave number, hence the frequencies are
also degenerated in the same way. If one considers only the non-redundant values of kx,
this wave number becomes bounded to the interval (−π/a, π/a]. This specific region of
the k space is called the first Brillouin zone.

Each mode has a specific wave vector k and is associated with an eigenfrequency
ωn(k). The set of modes with all wave vectors in the first Brillouin zone is called a band.
The set of all bands is called band structure of the material, this one is exemplified in
the figure 3 (b). There are regions where there is no allowed spatial mode in the crystal,
regardless of the value of k. These regions are called photonic band gaps and waves
with the forbidden frequencies become evanescent in the medium [7, 8, 9]. The size of
the gap is influenced by the difference of values of the refractive index in the medium in
relation to the substrate.

This kind of solution, which takes this form due to periodicity in a certain direction,
is referred to as a Bloch mode in textbooks on photonics and solid-state physics. Its
one-dimensional counterpart is known as a Floquet mode or Floquet-Bloch mode. This
result is well-known as Bloch’s theorem. The physical interpretation of these Bloch modes
uk is that as eigenfunctions of the spatial part of the Maxwell equations, they don’t scatter
through propagation because k is a conserved quantity in the system.

The three-dimensional generalization of the example is as follows: considering a
nonuniform in the three dimensions periodic dielectric function, hence the lattice that
represents it is spanned by a linear combination of three primitive lattice vectors R1, R2

and R3. Every position of an element of the lattice is given by

R = N1R1 + N2R2 + N3R3 (2.21)

considering Nj integer, j = 1, 2, 3. It is a consequence that there is also a set of primitive
reciprocal wave vectors that span the reciprocal lattice Q1, Q2 and Q3 and, in analogy
with the spatial space, the space of wave vectors also is spanned by them. The primitive
reciprocal and the direct lattice vectors obey the following relationship Ri · Qj = 2πδij;
here, i, j = 1, 2, 3. The Bloch modes are distinguished by their own Bloch wave vector.
Each one can reside only in the first Brillouin zone and it’s written as

k = k1Q1 + k2Q2 + k3Q3, (2.22)

thus the eigenfunction of Ξ̂ with eigenfrequency ω(k) is, by the Bloch’s theorem, given by

Hk(r) = eik·ruk(r), (2.23)
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here, uk(r) is a periodic function with the same periodicity as the lattice, uk(r) = uk(r+R).
The band structure of the photonic crystal provides important information about the
optical properties of the material. For 2D and 3D materials, the first Brillouin zone can
take very convoluted shapes depending on the topography of the real lattice [1, 2, 3], and
it is common to plot the band diagram for lines at the boundaries of the first Brillouin
zone in the reciprocal lattice. Figure 3 (c), displaying a schematic representation of a
square real lattice and the reciprocal lattice. The irreducible Brillouin zone forms a
triangle with Γ, X, and M as vertices. Like the unit cell, the remaining reciprocal lattice
is formed by copies of it.

Before the conclusion of this section, one can ask in which direction the Bloch
wave propagates. It is known that k give this information in homogeneous and isotropic
medium, but that is not the case for periodic medium: the velocity in which the energy
propagates depends on k and on the band by the following expression

vn(k) := ∇kωn, (2.24)

here, ∇k means that the derivative is with respect to the components of the Bloch wave
vector k. Thus, the spatial mode un(r, k) has the group velocity vn(k). One can retrieve
a more in-depth discussion from the influence of group velocity on the propagation of
these modes and waves from several sources [58, 67].

Now that the fundamental concepts and definitions to deal with photonic crystals
have been contemplated, the objective of the last section of this chapter is to present an
approximation that will set the stage for the scenario in which the results will be derived,
given the complexity of solving Maxwell’s equations.

2.4 Paraxial Wave Equation Approximation
A light beam can be thought of as a directional projection of light. It is interesting

for many applications that these beams maintain their localization, i.e., remaining spatially
confined through propagation, ignoring totally or partially the diffraction of the medium
that causes spreading during the propagation. A beam of this kind can be labeled paraxial
if the lines normal to the wavefront make small angles with the propagation axis [7, 59]. In
the study of optical beams, one regularly resorts to a scalar study of the light, considering
all the aspects of the wave propagation, but ignoring the vectorial one [7, 68]. This usually
takes into account the solutions of the Helmholtz equation, which can overlap with another
field of Optics that is also concerned with the propagation of light, the Fourier Optics [7,
59, 69].

Solving the problem using the set of differential equations exhibited in the equation
2.8 can be an exhausting task, and not always is it a path worth taking. There is interesting
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physics to investigate making a smart use of approximations, considering the studied
system, and discarding particularities that could make the problem difficult to solve. Here,
the common choice to solve this problem is to consider the divergent equation for the
electric field E present in the equation 2.7 and the generalized eigenvalue problem for the
same field in the equation 2.8. From the first, one can find the relationship:

0 = ∇ · [ϵ(r)E(r)] (2.25)
= ϵ(r)∇ · E(r) + ∇ϵ(r) · E(r) (2.26)

∴ ∇ · E(r) = −E(r) · ∇ (log ϵ(r)) (2.27)

and, from the generalized eigenvalue problem, making use of the identity ∇ × ∇ × E(r) =
∇(∇ · E(r)) − ∇2E(r) and the equation 2.27,

k2ϵ(r)E(r) = ∇ × ∇ × E(r) (2.28)
= ∇(∇ · E(r)) − ∇2E(r) (2.29)
= −∇ [E(r) · ∇ (log ϵ(r))] − ∇2E(r) (2.30)

∴ ∇2E + k2ϵE = −∇ [E · ∇ (log ϵ)] , (2.31)

and it is worth keeping in mind that the spatial dependence will be omitted every time
that it can enhance the clarity of the equations. The right side is responsible for the
coupling between the different spatial components of the electric field. In problems of
beam propagation, one is considerably more interested in the propagation of such beam
in one particular direction considering a very small deviation from this. Henceforth, this
particular direction will be the z-direction and the wave will be thought as a carrier plane
wave eiξz with large spatial frequency ξ in the propagation direction modulated by a
complex envelope A = A(r) that must be a slowly varying in the z direction [7, 68]:

E(r) = A(r)eiξz, (2.32)

and it will be very useful to decompose the gradient operator ∇ in the transversal gradient
operator plus a perpendicular term to apply the assumptions taken in the future steps:

∇ = ∇⊥ + z
∂

∂z
. (2.33)

then, applying this operator in the equation 2.27 assuming that the electric field behaves
as in the equation 2.32, one obtain

∇2
⊥A + ∂2

z A + (k2ϵ − ξ2)A + 2iξ∂zA = −∇ [A · ∇ (log ϵ)] − iξA · ∇ (log ϵ) , (2.34)

in which there are terms that can be neglected considering the assumptions made. As
the vector function A(r) must vary slowly in z, its derivatives are small compared to the
transverse ones, so one can neglect the second derivative in the propagation direction ∂2

z A.
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The first derivative cannot be ignored due to the spatial frequency ξ multiplying it. Then,
the expression becomes

∇2
⊥A + (k2ϵ − ξ2)A + 2iξ∂zA = −∇ [A · ∇ (log ϵ)] − iξA · ∇ (log ϵ) . (2.35)

If the dielectric permittivity ϵ(r) has a smooth derivative, one can neglect the term
∇ log ϵ [68], then the components of A are decoupled and thus the propagating wave will
not carry any information about the polarization. If the medium changes the polarization
of the propagating wave, it cannot be described in large distances by this approximation,
because errors will accumulate. Thus,

∇2
⊥A + (k2ϵ − ξ2)A + 2iξ∂zA = 0 (2.36)

and, as the polarization will not change through propagation, one can take the component
of A

A(r) = U(r)û (2.37)

and reduce the problem to a scalar one. Additionally, if one takes ξ = k considering the
one equivalent to the one found in the homogeneous solution, the equation becomes

∇2
⊥U(r) + ∆n2(r)U(r) + 2ki∂zU(r) = 0 (2.38)

that is the usual paraxial wave equation approximation. As we know from wave physics
and quantum mechanics, the term ∇2

⊥ describes the diffraction effects, and the one with
∆n2(r) = n2(r) − 1 = ϵ − 1 describes scattering and refraction. Of course, here the
similarity with the non-relativistic quantum mechanics is very clear: the difference between
the refractive index of the material and the vacuum gives us the potential and 2k is the
energy of the system. As mentioned before, k is indeed a conserved quantity and here this
holds. There are fundamental differences: there are only two spatial components in the one
that would be the laplacian operator and the role of the time is given to the propagation
direction’s coordinate.

The techniques utilized to solve problems of quantum mechanics can be applied in
equation 2.38 to solve for optical systems and one can discuss in optics condensed matter
analogs [13]. For instance, the formalism presented in the previous section can be utilized
to derive Bloch modes for the paraxial wave equation and then one can discuss the results
for a particular initial optical beam utilizing the terminology of solid-state physics.
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3 Statistical Optics

The chosen approach in this thesis to solve optical problems aims to embrace a
more realistic scenario by acknowledging that all light sources are inherently stochastic.
This stochastic nature arises from the general uncertainty and fluctuations present in the
light source, the medium through which it propagates, and the measurement device. To
properly account for these occurrences, it is essential to describe light within a statistical
framework [7, 15, 59, 70, 71], which gives rise to the optical concept of coherence. In
particular, when considering applications such as imaging [72], tomography [73, 74], beam
propagation [75], information storage [76], and many others [77], it becomes evident that
a statistical framework is crucial. Therefore, taking spatial coherence into account when
dealing with light propagating in periodic structures is imperative for achieving our goals.

In this chapter, the reader will be presented with basic concepts of statistical optics.
First of all, a digression about scalar wave optics will be made and basic concepts of the
theory will be presented, such as the definition of spatial coherence and time coherence.
Every step is made using analytical signals (see Appendix A). Major quantities of the
theory will be presented like the spectral density function and the cross spectral density
function, all in the context of the second-order stochastic theory of light.

3.1 Stochastic Nature of Light
Statistical optics is the branch of optics that considers the stochastic properties of

light. Absolutely all electromagnetic wave found in nature has fluctuations, even though
one can not observe them directly. This intrinsic stochastic behavior can only be observed
when one pays attention to the light in two or more space-time points (r, ct) due to how
fast they occur [15, 70]. One can ask where these fluctuations come from and it will be an
excellent inquiring because almost all encounters with Optics take place in a deterministic
framework in basic physics courses. The answer lies in the source and in the medium in
which the light propagates: even when several light waves within a light beam come from
the same source, they can be pretty different in the very instant they leave the source [16].
For example, light irradiated by a hot object is random and is formed by an Avogrado
number of atoms emitting light independently, causing differences in frequencies and phases.
If one considers the medium, one must consider all the scattering, diffuse transmission,
turbulence, and other phenomena that create irregularities in the wavefront. You can not
escape from these field fluctuations in the real world. As in the last chapter, the discussion
presented here will take into account the optical region of the electromagnetic spectrum.

The common description of light is one where everything related to it is deterministic
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Figure 4 – Schematic representation of the fact that natural light is composed by a sum
of a large number of light waves, represented by the signals Uj, j = 1, 2, ...,
fluctuating as the time goes by.
The image was taken by the author and cherished friends during the solar
eclipse of 2023 in Maceió, Alagoas.

or coherent. If one is interested in natural light, one considers completely incoherent or
completely random description. These extreme limits are the easiest way to deal with some
physical systems analytically, of course. The general case lies in the partial coherence
regime, which constitutes the "in-between"[7, 59]. But how one can describe light? One
usually recurs into averages and statistics. Natural light, for example, is composed of a
large number of individual light waves with different phases, frequencies, and polarizations.
A scalar representation of this random characteristic of this kind of light is depicted in the
figure 4, where the light of a solar eclipse is decomposed in a sum of several wave functions
Uj(t). One must stabilize a cohesive way to treat these optical fields taking into account
the stochasticity of the light.

First, each optical field U(t) can be thought of as a random process. As a random
process, a specific form of it is called a sample or realization. For simplicity, the discussion
will consider only its dependence on time, but the spatial dependence is not hard to
include. A beam of light is formed by a large number of realizations of this optical field,
thus every physical quantity will be an average of them. The set of all countable possible
samples of this field is known as the ensemble of U(t): {U1(t), U2(t), U3(t), ..., Uj(t), ...}.
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Figure 5 – Examples of the intensity of a realization of an optical field |Uj(t)|2 and its
mean intensity ⟨|U(t)|2⟩ for a (a) stationary process and a (b) non stationary
process. Inspired by the figure 12.1-1 from [7].

An ensemble average of this optical field is defined by the following expression

⟨U(t)⟩ = lim
N→∞

N∑
j=1

Uj(t), (3.1)

and the generalization for physical quantities that can be written as functions of the
optical field like the field intensity can be written straightforwardly.

Besides, it will be shown in the next sections that several quantities important
to the field of statistical optics depend on correlation functions, that explain various
phenomena and are the usual way to verify experimentally how the theory and results
predicted by statistical optics hold in reality [7, 16, 59]. The correlation function Γ(t1, t2)
of the optical field U(t) in two different instants is written as

Γ(t1, t2) = ⟨U∗(t1)U(t2)⟩, (3.2)

also known as the autocorrelation function. It is clear that one can compute correlations
of higher orders with respect to other variables. Examplifying, ⟨U(t)⟩ is a first order mean
value and ⟨U∗(t1)U(t2)⟩ is a second order correlation.

An infinite variety of random processes can be considered, but only a few have
physical significance: the stationary ones [16]. But what does one mean by stationary?
An optical field has realizations Uj(t) that can fluctuate continually in time, but if these
fluctuations have a character that does not change with time, i.e., the probability densities
associated with the random process remain the same, they’re referred to as a statistically
stationary process and the mean values does not change with time (see figure 5 (a)).
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This condition is strong and thus this classification is also called stationary in the strictly
sense stationary process. If the mean value ⟨U(t)⟩ is independent of t and the correlation
Γ(t1, t2) depends on t2 − t1, the process is called stationary in the wide sense. If none of
these conditions are met, the process is called nonstationary (see figure 5 (b)). A more
profound discussion and elucidation can be found in some statistical optics textbooks [15,
16]. Considering a stationary optical field, one can define a time average of a realization:

Uj(t) = lim
T →∞

1
T

∫ t+T/2

t−T/2
Uj(t′) dt′. (3.3)

In practice, one single realization of the ensemble Uj(t) carries the statistical
information about the whole stationary process [15]. Usually, one can safely assume the
ergodic hypothesis: the time average of one realization Uj(t) is equivalent to the ensemble
average ⟨U(t)⟩.

With these brief introductions to some important concepts and intuitive knowledge
about statistical optics, one is prepared to understand how correlations reign upon optical
fields and how concepts like coherence arise from them [15, 59]. For this, the next section
will discuss coherence through the lenses of interference effects.

3.2 Coherence, Correlation and the Interference Pattern
The previous mentions of the term coherence did not carry out the physical meaning

of this concept. Here, coherence is a quantity that translates the ability of one to observe
(or not) interference of waves. Usually, this concept is associated with the visibility or
contrast measured from interference patterns [78].

Coherence is intrinsically related to correlations and it is usually divided into two
categories: spatial coherence and temporal coherence. These two classes of coherence are
faces of the same coin, showing the impact of the stochasticity of the light. To discuss
this classification and understand the connection between coherence and correlation,
the traditional way is two systems that present interference of light: the Michelson
interferometer and the Young’s double slit experiment.

With the Michelson interferometer (see figure 6) the goal is to elucidate the temporal
coherence of light. Hence, consider a light beam from a sufficiently small source σ that
does not fluctuate in a macroscopic time scale. The assumption of a small source is picked
to ignore some spatial coherence effects, as one will see in the next example. Also, assume
a quasi-monochromatic so its bandwidth δν is very small if compared with the mean
frequency ν0. Follow the image in the figure 6 to understand the experiment: the beam
propagates until it is divided into two different beams by the beam divider D: one branch
makes a path of distance d1 and the other branch a distance of d2; thus, when they reflect
in the mirrors M1 and M2 and join together again in the beam divider D, one deal with a
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Figure 6 – Representation of the Michelson interferometer experiment: σ is the light source;
U is the incident optical field; Mj is a mirror, j = 1, 2; D is the beam divider;
and A is the plane of observation. Inspired by the figure 12.2-2 from [7] and
figure 4.1 from [15].

beam composed of two different beams with path difference ∆l = 2|d2 − d1| = c∆t. As
expected, if ∆l is small enough, interference fringes appear in the plane of observation A

[15].

The rise of the interference pattern is conditioned to the time delay ∆t by one
beam submitted in relation to another. This phenomenon can be understood as follows: the
interference pattern in A arises from the superposition of the spatial profile of light, each
one with a frequency from the spectrum. Of course, spatial profiles with different frequencies
have different spatial periodicities. Consequently, if one takes from a coherent standpoint
where the interference pattern appears and begins to increase ∆t, the interference pattern
will become less and less well defined in A: the contributions of each frequency of the
spectrum will get out of step in relation to the others, forming an incoherent beam of light.
One representation of this is given by the intensity spatial profile on the right side of the
figure 6.

In fact, it is an experimental fact that the fringes will appear only if ∆t∆ν ≲ 1.
Hence, one can find an order for the time delay ∆t ∼ 1/∆ν and take this as the coherence
time of the light. This is a manifestation of temporal coherence, arising from the finite
bandwidth of the source [59].

One may ask the following question: how coherence is related to correlations in this
case? To answer this, consider an optical field U(t) in a point of the plane of observation
A. As this point is fixed, omitting the spatial dependence of the field will cause no harm.
This field is a stochastic process composed of other two stochastic processes U = U1 + U2,
Uj(t) refers to the optical field coming from the beam of the jth branch, j = 1, 2. As
discussed, there is a time delay between these fields, so a realization of the optical field in
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the observation plane is given by:

U(t) = U1(t) + U2(t + ∆t), (3.4)

so one can easily compute the measured quantity in the plane of observation. Of course,
this corresponds to a mean intensity of the field realizations I(t) = ⟨|U(t)|2⟩:

I(t) =
〈
|U(t)|2

〉
(3.5)

= ⟨U∗(t)U(t)⟩ (3.6)
= ⟨[(U∗

1 (t) + U∗
2 (t)] · [U1(t) + U2(t)]⟩ (3.7)

=
〈
|U1(t)|2

〉
+

〈
|U2(t)|2

〉
+ 2Re {⟨U∗

1 (t)U2(t)⟩} , (3.8)

hence, the intensity measured is equal to the intensity of each beam as if the other did not
exist plus a term that depends on the correlation between the fields. One can utilize the
concepts mentioned in the last section to rewrite this expression:

I(t) = Γ1(t, t) + Γ2(∆t, ∆t) + 2Re [Γ12(t, t + ∆t)] (3.9)

and if the optical field is a stationary process in the wide sense, assuming that the mean
intensity of each beam is the same for simplicity Γ1(t, t) = Γ2(∆t, ∆t) = Γ(0) = I0, one
obtains

I(t) = Γ(0)
[
1 + 2ReΓ(∆t)

Γ(0)

]
, (3.10)

that reinforces the discussion: interference fringes will appear if the correlation of the field
allows it [79]. One important quantity can be defined from this expression, the complex
coherence degree:

γ(∆t) := Γ(∆t)
Γ(0) , (3.11)

giving a quantitative metric to how correlated these fields are, therefore also giving
information about how coherent this light is. The absolute value of this function is
bounded: 0 ≤ |γ(∆t)| ≤ 1. The limit γ → 0 means that the fields are not correlated at
all, thus the light is incoherent; the limit γ → 1 means that the fields are completely
correlated, so the light is coherent. The intermediary region implies that the fields are
partially correlated, so the light is partially coherent. This allows one to take a glimpse
into how correlation is coherence [15, 79].

On the other side, there is the spatial coherence and Young’s double-slit interference
experiment. Consider again a quasi-monochromatic light from a thermal source σ with a
considerable spatial extent ∆s. The light propagates through a distance R until it includes
in two pinholes Sj , j = 1, 2, separated from each other in a distance d. The pinholes act like
secondary sources and the light resulting from the superposition of the light coming from
each one is measured in the plane of observation A. As d decreases, the interference pattern
becomes more and more visible in A. Experimentally results show that the interference
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Figure 7 – Representation of the Young’s double slit experiment: σ is the thermal light
source; ∆s is the spatial extent of the source;R is the distance between the
source and the double slit plane; Sj are the slits and also the point sources for
the secondary wave, j = 1, 2; d is the distance between the slits; A is the plane
of observation; Pj is any point in the plane A, j = 1, 2; Uj is the optical field
reaching P1 from the jth slit, j = 1, 2; U ′

j is the optical field reaching P2 from
the jth slit, j = 1, 2. Inspired by the figures 4.2 and 4.3 from [15].

pattern will appear only if δθδs ≲ λ0 = c/ν0. The area in the plane of the slit in which the
pinholes can be positioned and one can observe the interference pattern is called coherence
area and is given by ∆A ∼ (Rδθ)2 [15].

One may ask: how does an interference pattern arise if one of the assumptions of
the system is that there is a thermal light? The reasoning for this doubt is that light from
different points of the source is independent of others, thus no fixed phase relationship
between the different points of the beam can be stabilized. How can correlations arise and
enable the interference pattern?

Consider S1 and S2 like the secondary light sources they are: thus, it is straight-
forward to assume that these sources are also quasi-monochromatic and there are no
correlations between the light fields emitted by them. Though it may be true, the dis-
turbances in two different points of A and fluctuations suffered by these emitted fields
are very similar when they propagate. In the point P1, one will measure the intensity of
the superposition U1 + U2 while in the point P2, U ′

1 + U ′
2 will contribute to the intensity

pattern measured in A. Considering that the distance of the path propagated by each
optical field is small in comparison to the coherence length, the individual fields will not
have a correlation, but the sum of them will. Furthermore, these correlations are generated
through propagation and superposition [15, 59, 79]. The spatial coherence here arises
from the finite spatial extent of the light source [59].
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Aiming to see the correlations in the field arise from a mathematical description
of the system, some quantities must be defined. First, take a point P in the plane of
observation A. The distance between the jth pinhole and this point is rj = SjP , then the
time interval taken by the optical field to reach P from Sj is ∆tj = rj/c, thus the optical
field U(t) in P is:

U(t) = K1U1(t − t1) + K2U2(t − t2), (3.12)

in which Kj, j = 1, 2, is an imaginary number that arises when one solves the Fresnel’s
diffraction integral [7, 78, 79]. Hence, the intensity measured in P is given by

I(t) =
〈
|U(t)|2

〉
(3.13)

= ⟨U∗(t)U(t)⟩ (3.14)
= ⟨[K∗

1U∗
1 (t − t1) + K∗

1U∗
2 (t − t2)] · [K1U1(t − t1) + K2U2(t − t2)]⟩ (3.15)

= |K1|2
〈
|U1(t − t1)|2

〉
+ |K2|2

〈
|U1(t − t2)|2

〉
(3.16)

+ 2|K1||K2|Re {⟨U∗
1 (t − t1)U2(t − t2)⟩} , (3.17)

from which one can write using the optical fields correlations,

I(t) = I1 + I2 + 2
√

I1I2Re [γ12(t2 − t1)] , (3.18)

in which one considered the following substitutions: Ij = |Kj|2 ⟨|Uj(t − tj)|2⟩, j = 1, 2, and
one utilized the definition of the complex degree of coherence:

γ12(∆t) := Γ12(t2 − t1)√
Γ1(0)Γ2(0)

, (3.19)

where the index in the cross-correlation function Γ12 indicates that it considers the
correlations coming from two different points and, of course, the wide sense stationary
condition was considered. Again, the interference pattern is contained in the term where
the coherence has a role and the coherence between two points of the optical field became
relevant. In the next section, the general theoretical framework to deal with these systems
will be established and one can make the connection with our current rudimental approach.

3.3 Second Order Theory of Scalar Random Light
In the previous section, one was concerned with stationary fields. Furthermore,

an assumption utilized was that these fields are ergodic, then the ensemble averages and
the time averages are and stay the same. The optical field was commonly treated as an
analytical signal (see appendix A). This section will stabilize the second-order scalar theory
of random light, it is the framework utilized in the remaining chapters of this thesis.

The fundamental quantity of the previous examples and of the theory of optical
coherence is the mutual correlation function Γ(r1, r2, τ) [15], that carries the correlation
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between two analytical signals in two different positions with the time difference τ between
them:

Γ(r1, r2, τ) := ⟨U∗(r1, t)U(r2, t + τ)⟩ (3.20)

that is not a bounded function; it is useful to normalize this function by defining another
quantity, the complex degree of coherence of the light in two points r1 and r2:

γ(r1, r2, τ) := Γ(r1, r2, τ)
[Γ(r1, r1, 0)Γ(r2, r2, 0)]1/2 , (3.21)

that by the properties of stationary random processes [15, 16, 71], satisfies the inequality:

0 ≤ |γ(r1, r2, τ)| ≤ 1 (3.22)

and the limits, as discussed, determine in which regime the system is: coherent, partially
coherent, or incoherent. All these quantities depend on the time, but it is useful for many
applications and also for measurements to treat these correlations in the space-frequency
domain. As these quantities depend on two random processes at two different points, it is
said that this theory is of second order.

Consider an analytic signal U(r, t) representing an ergodic and stationary (at least
in the wide sense) optical field fluctuating at (r, t). This function can be thought of as a
Fourier integral:

U(r, t) =
∫ ∞

0
Ũ(r, ν)e−2πiνt dν, (3.23)

with Ũ(r, ν) being its Fourier transform with dependence on the frequency ν instead
of time t: this can be useful if one is interested in investigating the spectrum of the
system. Additionally, optical waves vary very rapidly, so it is really more experimentally
approachable to think about the frequency in the measurements. Thus, considering the
ensemble of the analytical signal in the frequency domain, one can define the cross-
spectral density function of these fluctuations:

W (r1, r2, ν) :=
〈
Ũ∗(r1, ν)Ũ(r2, ν)

〉
, (3.24)

that is interpreted as a measure of the correlation between two points in the optical field
fluctuations with dependence on a frequency of the spectrum. If one considers the Wiener-
Khintchine theorem [15, 16, 70], the mutual coherence function and the cross-spectral
density function form a pair of Fourier transform, thus satisfying the definition of analytical
signals:

Γ(r1, r2, τ) =
∫ ∞

0
W (r1, r2, ν)e−2πiντ dν, (3.25)

W (r1, r2, ν) =
∫ ∞

−∞
Γ(r1, r2, ν)e2πiντ dτ. (3.26)

The cross-spectral density gives us all the information about the correlation to
every pair of points of the space. One experimentally important quantity is retrieved if
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Figure 8 – Free representation of the spectral density as a function of wavelength at three
positions in a color image. Adapted from figure 10.1-4 of [7]. In the image,
the official album cover for the 2021 album ’If I could Make It Go Quiet’ by
Norwegian musician Girl in Red is utilized to illustrate how the spectral density
translates to the perceived color.

one considers r1 = r2 = r, this density function depends on only one position of the space
and the resulting function is the spectral density of light:

S(r, ν) = W (r, rν) (3.27)
=

〈
|Ũ(r, ν)|2

〉
, (3.28)

that represents the power per unit area of light in the position r for the frequency ν of the
spectrum [7]. Figure 8 shows an illustration in which one can observe how the average
power per unit area from S(ν) in a specific position translates to a perceived color.

There are properties that can be mentioned about the cross-spectral density function
and the spectral density. First, the spectral density is strictly positive S(r, ν) and also
composes a Fourier pair with the the autocorrelation function, this being is a direct
consequence of the equations 3.25 and 3.26:

Γ(r, r, τ) =
∫ ∞

0
S(r, ν)e−2πiντ dν, (3.29)

S(r, ν) =
∫ ∞

−∞
Γ(r, r, ν)e2πiντ dτ. (3.30)

Furthermore, one can normalize the cross-spectral density as in the mutual correla-
tion and define the spectral degree of coherence at frequency ν:

µ(r1, r2, ν) := W (r1, r2, ν)
[S(r1, ν)]1/2 [S(r2, ν)]1/2 , (3.31)

and, as before [15, 71, 16], satisfies the inequality:

0 ≤ |µ(r1, r2, ν)| ≤ 1, (3.32)
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but, differing from the other quantities, µ and γ do not make a Fourier pair.

With these concepts established, one can utilize the theory of coherence to study
physical systems considering the statistical nature of light. Further discussion about the
historic development of the field can be found in optics textbooks [7, 59, 78], and more
mathematical descriptions and proofs of all results exposed here can be found in statistical
optics textbooks [15, 16, 70, 71, 79].
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4 Spatial Coherence of Light in Periodic Lat-
tices

In this chapter, we will employ the concepts presented in the previous chapter to
construct a model describing light in periodic media while considering its spatial coherence
effects. Initially, we will explore the fundamental concepts of our theory: we will introduce
the system under study and establish a subtle connection with well-known concepts and
methods from solid-state physics. We will also study a specific case involving deterministic
light for comparative purposes. Subsequently, we will investigate the stochastic case by
using our framework to explore the physics of the system.

4.1 General Discussion
Let us consider a 2D material system with a refractive index that is periodic in

the transverse direction x and constant in the propagation direction z. Our issue involves
propagation, and therefore, we will assume that everything occurs within the bulk of the
material, as if it fills the entire xz-plane. As discussed in chapter 2, the information about
the change in the refractive index concerning a base value n0 is provided by the lattice
potential V (x), which governs the matter-light interaction in the system. As previously
described, the lattice potential V satisfies:

V (x) = V (x + a), (4.1)

here, a represents the lattice constant. Since the periodicity is one-dimensional, our lattice-
related quantities will also be 1D. Our primary objective in achieving the chapter’s goal is
to analyze the propagation of a light beam, represented by an analytical signal, through
this periodic lattice. This beam’s profile at z = 0 is denoted as U(x, z = 0) = U0(x). To
begin, we need to establish an approach for propagation of the signal U(x, z) within the
lattice. To do so, we will utilize the framework derived from the wave equation in the
paraxial approximation:

i∂zU(x, z) + ∂2
xU(x, z) + V (x)U(x, z) = 0, (4.2)

that closely resembles Schrödinger’s equation, enabling us to employ similar solution
methods used in optical systems. In figure 9, a schematic representation for the system is
displayed, exhibiting one particular case for the real and imaginary part of U0 in z = 0, a
gaussian beam times a plane wave, and a 1D harmonic periodic lattice, a cosine squared
profile.
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Figure 9 – (a) Schematic representation of the optical system, featuring the analytical
signal profile U0(x) = U0 exp[−x2/σ2]eiqx. Additionally, there’s a purple paral-
lelepiped oriented perpendicular to the transverse direction x, symbolizing a
waveguide. Each waveguide has a specific refractive index for each x value,
giving rise to the lattice potential V (x). (b) When considering the continu-
ous limit, the lattice potential describing the photonic crystal is depicted as
V (x) = A cos2(x).

During the study of photonic systems, our initial focus is on identifying the spatial
modes of the system and its band structure. These modes exhibit a unique property
within the periodic media of the system: they resist diffraction or spreading out during
propagation. Given that the lattice potential remains independent of the propagation
direction, z, we can separate the x-dependence from the z-dependence. Consider a solution
Un(x, z) to equation 4.2:

Un(x, z) = un(x, k)eiβn(k)z, (4.3)

Here, k denotes the wavenumber, and βn(k) represents the propagation number associated
with the nth eigenfunction un(x, k). Through this substitution, our paraxial wave equation
transforms into an eigenvalue problem. This transformation prompts a discussion of
the parallels between non-relativistic quantum mechanics and optical systems under the
paraxial approximation. This comparison allows us to do a deep dive into the physics
underlying light propagation using insights from quantum mechanics.

D2
xun(x, k) + V (x)un(x, k) = βn(k)un(x, k). (4.4)

It is essential to note, however, that while we draw from quantum mechanics’
findings, we must consider that light operates under distinct constraints compared to
electrons. Specifically, in quantum theory of solid state physics, a fundamental aspect of
the study of periodic systems involves computing the energy levels and wave functions of
electrons using the Bloch theory. Henceforth, we will draw upon this theoretical framework
and its results to enhance our understanding of the physics governing our optical system.
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From Bloch’s theorem, we know that V (x) being a periodic function, the solution
of the eigenvalue equation is the product between a periodic function vn(x, k) — with the
same periodicity of the potential [1, 4] — and a plane wave eikx with k being its respective
Bloch wavenumber:

un(x, k) = vn(x, k)eikx, (4.5)

which can lead us to the following equation:

D2
xvn(x, k) + 2ikDxvn(x, k) + [V (x) − k2]vn(x, k) = βn(k)vn(x, k). (4.6)

In the study of photonic lattices, the central task typically revolves around the
band structure and finding the allowable frequencies ω(k) within the material. Frequencies
lying outside the allowed zones of the band structure tend to be evanescent waves in the
medium. It is important to underscore that our attention is directed not towards temporal
frequencies associated with the wave’s temporal aspect, but rather towards the propagation
number connected to the spatial characteristics of light. Consequently, the band structure
in the following discussion focuses specifically to this spatial aspect of light.

Several methods exist for solving equations 4.2, 4.4, and 4.6 [9, 80, 81, 82]. Our
selected method involves employing the plane wave expansion technique. This choice is
driven by the Fourier series expansion of both vn(x, k) and V (x) due to their periodicity.
Considering a as the lattice constant,

vn(x, k) = 1√
2π

∞∑
m=−∞

bm
n (k)e 2iπm

a
x = 1√

2π

∑
m

bm
n (k)eiKmx, (4.7)

noting that Km = 2πm/a is the reciprocal lattice number. Let us take a moment for a
digression: bm

n (k) serves as a Fourier expansion coefficient reliant on the Bloch wavenumber,
k, and the reciprocal lattice number Km. Hence, an alternate representation for this
coefficient, observed in certain literature, is as bn(k + Km). This format is frequently
utilized across a variety of literary sources. For the lattice potential, we do the same
procedure:

V (x) =
∞∑

m=−∞
Vme

2iπm
a

x =
∑
m

VmeiKmx. (4.8)

Upon substituting equations 4.7 and 4.8 into 4.6, we arrive at the subsequent linear
system governing the coefficients bm

n (k) for each Bloch wavenumber, k:

−(Km + k)2bm
n (k) +

∑
p

Vpbm−p
n (k) = βn(k)bm

n (k), (4.9)

with one equation for each value of m, the problem is an eigenvalue problem. To guarantee
a good visualization to the reader, we can express it in a matrix form. The matrix Λ̂ =
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Λ̂(k) for the Fourier coefficients is structured as follows:

Λ̂(k) =



. . .
...

...
... . .

.

. . . V0 − (k − K−1)2 V−1 V−2 . . .

. . . V1 V0 − k2 V−1 . . .

. . . V2 V1 V0 − (k + K1)2 . . .

. .
. ...

...
...

. . .


M×M

. (4.10)

This square matrix has dimensions M × M , where M signifies the number of terms
considered in the plane wave expansion for the Floquet-Bloch modes. It is worth noting
that as we truncate the series, we assume that M will always be an odd number. If b is
the column vector formed by the coefficients of the Fourier expansion, we have

b(k) =



...

b−1
n (k)
b0

n(k)
b1

n(k)
...


(4.11)

and our problem is essentially to find the eigenvectors and eigenvalues of the operator
ˆΛ(k). We can rewrite the problem as

Λ̂(k)b(k) = βn(k)b(k) (4.12)

and the outcome of this process yields the N Fourier coefficients for the desired Floquet-
Bloch solutions, along with their respective propagation numbers. Accomplishing this task
is straightforward with matrix diagonalization algorithms. Specifically, we employed the
LinearAlgebra package in Julia for this purpose. Then, by using equations 4.7 and 4.5, we
construct the basis necessary for solving any initial value problem. First, let us discuss
some properties of the band structure.

Analogous to their role in a homogeneous medium, the Floquet-Bloch modes assume
a position akin to plane waves, wherein each beam can be envisioned as a composite
assembly of several plane waves. These modes distinctly bear the lattice structure’s
fingerprint. Like the temporal counterpart, they remain inert until stimulated by an
incident wave, and its propagation is entirely dictated by the band structure.

We can analyze the band structure by using the symmetry of our potential (see
equation 4.1). Initially, let us explore the band diagram: the potential exhibits translational
discrete symmetry, thus one know that the band structure presents a discrete number
of bands. Figure 10 showcases the first five bands for the potential represented by the
expansion 4.8 for the potential V (x) = A cos2, given by:

V (x) = A

4 e−2ix + A

2 + A

4 e2ix, (4.13)
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Figure 10 – Band structure of a V (x) = A cos2 x, A = 4. (a) Band diagram showing
the propagation constant βn(k) versus Bloch wave vector k for the first five
bands. In the right, the intensity of the Floquet-Bloch function |un(x, k)|2 is
displayed for x in an unit cell [−a/2, a/2] and for k in the first Brillouin zone
[−π/a, π/a] for the bands (b) n = 1 and n = 2 in the xk-plane, and (c) fixed
values of (n, k), specifically (1, 0.0), (2, 1.0), and (3, 0.0).

In this case, only the terms with m = 0, ±1 are non-zero. The band structure for A = 4
displays two band gaps between the first three bands and a semi-infinite one above the
first band. Alongside the band structure, the intensity distributions of the first and second
Floquet-Bloch solutions are displayed in the xk plane and the transverse x direction,
considering fixed values for k. Here, x represents the unit cell while k is confined within
the first Brillouin zone. This presentation effectively showcases the periodic nature of these
modes in both the k and x directions, as expected.

Any analytical signal propagating in this periodic media can be written as the
following general solution for the equation 4.2:

U(x, z) =
∞∑

n=1

∫ π/a

−π/a
cn(k)un(x, k)eiβn(k)zdk, (4.14)

i.e., a superposition of Floquet-Bloch modes considering the entire band structure. These
solutions satisfy an orthogonal condition concerning k and x. This condition can be
proved in both the continuous and discrete cases, the last offering significant utility in
addressing computational challenges associated with these modes. For details of derivation
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see appendix B. The orthogonality relationship is given by∫ ∞

−∞
u∗

n(x, k)um(x, q)dx = δnmδ(k − q). (4.15)

Combining the equation 4.15 with the general solution displayed in equation 4.14
in z = 0 ,

U(x, 0) = U0(x) =
∞∑

n=1

∫ π/a

−π/a
cn(k)un(x, k) dk, (4.16)

the participation coefficients cn(k) that carries the contribution of each Floquet-Bloch
function for each mode k within the first Brillouin zone in the initial beam. Multiplying
both sides by u∗

m(x, q) and integrating in the entire x direction,

cn(k) =
∫ ∞

−∞
u∗

n(x, k)U0(x) dx. (4.17)

Thus, we have all the information necessary to describe the propagation of any given
beam in our system. Moreover, we can make use of a conserved quantity (in real systems)
through the Parserval’s identity [45], with each term quantifying the total contribution to
the beam from each band:

P =
∞∑

n=1

∫
B.Z.

|cn(k)|2 dk =
∞∑

n=1
pn (4.18)

that is also valuable in determining in which n to truncate the band sum depending on
the model’s parameters for the computational treatment of the system. In the following
section, the theory developed thus far is used to stabilish a baseline for comparison with
the stochastic discussion that will be presented in subsequent sections.

4.2 Deterministic Case: Gaussian Source
Let us apply the theory to the deterministic case involving a Gaussian source.

Among various common source types like Hermite-Gaussian, Laguerre-Gaussian and even
Bessel beams that could be implemented (if one take into account this theory for (2+1)D),
the Gaussian beams holds a prominent position in beam optics; also, choosing this as our
fully coherent source allows for a straightforward comparison with the Gaussian-Schell
source to be presented in the stochastic description of the problem. We will describe the
initial optical field U0(x) as:

U0(x) = Ũ0e
−x2/2σ2

e−iqx, (4.19)

representing a gaussian intensity distribution around x = 0 and width of
√

2σ with complex
exponential carrying a transverse momentum q. Here, Ũ0 denotes the field amplitude.

The band structure governs the propagation of a beam within the periodic lattice.
One advantage of using the Floquet-Bloch framework is to get some physical insight about
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the system through its particularities. Hence, it is relevant to know which modes are
excited as the beam travels through the lattice. This computation can be done using
equation 4.17:

cn(k) =
∫ ∞

−∞
u∗

n(x, k)U0(x) dx

=
∫ ∞

−∞

∞∑
m=−∞

[bm
n (k)]∗√

2π
e−i(2m+k)x · Ũ0e

iqxe−x2/2σ2
dx

= Ũ0√
2π

∞∑
m=−∞

[bm
n (k)]∗e−(2m+k−q)2σ2/2

∫ ∞

−∞
dx e−x2/2σ2

= σU0

∞∑
m=−∞

[bm
n (k)]∗e−(2m+k−q)2σ2/2,

(4.20)

where the integral in the second line was solved by completing the square to obtain
[x + i(2m + k − q)σ2]2, taking the substitution x = x′ + i(2m + k − q)σ2 and writing the
result for a simple Gaussian integral. Note that, for a gaussian beam, the participation
coefficient can be viewed as a weighted arithmetic mean value for Gaussian functions of
k centered in k = q − 2m with the weight being the functions [bm

n (k)]∗, varying across
the first Brillouin zone. For the parameters values of interest (n, A, k), bm

n (k) are nonzero
for few values for m; then it is useful to truncate the series in a specific value M , so the
computations can be more efficient.

We will investigate the behavior of the participation coefficient using equation
4.20 with Gaussian sources characterized by variable parameters, mainly the transverse
momentum, being related to the angle of excitation and controls diffraction properties of the
incident beam [57]. Hence, let us examine the terms derived from Parseval’s identity across
different lattice potential amplitudes A and the transverse momentums q. Afterwards, we
will discuss details concerning the deterministic propagation of the Gaussian beam in the
periodic lattice.

In figure 11, we display the shallow-lattice regime, where the lattice potential
amplitude satisfies the condition A ≪ 1. The figure exhibits the first two non-zero partici-
pation coefficients (normalized by σŨ0) for Gaussian waves with transverse momentum
values q = 0.0, −0.5 and −1.0. In this scenario, the lattice’s influence on the beam is
weak, resulting in a band diagram that resembles one in the absence of a lattice potential
(see figure 11 (b)) with β = −k2 periodically folded inside the first Brillouin zone. For
q = 0 in figure 11 (a) top, corresponding to the normal incidence, the "energy"contribution
comes majority from the first band, then one band is sufficient for describing the beam
propagation, the same occurs for q = −0.5 in (a) middle, where the largest contribution
comes from the first band for modes around the Bloch wavenumber k = −0.5. At the
edge of the Brillouin zone, q = −1, we expect that the first two bands exhibit similar
contributions to the overall beam evolution, as displayed in figure 11 (a) bottom.

In figure 12, the influence of the potential is prominent, resulting in the appearance
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Figure 11 – (a) Absolute squared Floquet-Bloch participation coefficients |cn(k)|2 versus
wave number k for the potential V (x) = A cos2 x, A = 0.01 with an incident
Gaussian beam U0(x) = Ũ0e

iqxe−x2/2σ2 with beam width σ = 7π and transverse
momentum (top) q = 0.0, (middle) q = −0.5 and (bottom) q = −1.0; (b)
Band diagram showing the propagation constant βn(k) versus Bloch wave
vector k for the first five bands.

of band gaps between the first and second band, and between the second and third, as
depicted in the band diagram in figure 12 (b). Of course, above the first band, there
is a semi-infinite bandgap. The figure 12 displays the first three non-zero participation
coefficients (normalized by σŨ0) for Gaussian waves with transverse momentum values
q = 0.0, q = −0.5 and q = −1.0. For the normal incidence, q = 0, shown in (a) top
panel, the "energy"contribution arises predominantly from the first band, akin to the
shallow-lattice case. Interestingly, the "energy"contribution from the third band surpasses
that of the second band. Conversely, for q = −0.5 (middle panel (a)), the contribution
from the second band exceeds that of the third band, although the first band remains the
most significant. Lastly, for q = −1.0 (bottom panel (a)), we observe a similar contribution
from the first two bands.

In figure 13, the potential’s impact is notably stronger, leading to an additional
band gap between the third and fourth bands, as depicted in Figure 13(b). In contrast
to the previous case, we witness non-zero contributions from the fourth band for normal
incidence (q = 0), showed in the top panel (a). Additionally, there is almost an equivalent
contribution between the second and third bands in the q = −0.5 case, showcased in the
middle panel (a). In the case of q = −1.0, both the second and third band contributions
are non-zero, altering the previously observed similarity in the contributions of the first
two bands.
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Figure 12 – (a) Absolute squared Floquet-Bloch participation coefficients |cn(k)|2 versus
wave number k for the potential V (x) = A cos2 x, A = 4.0 with an incident
Gaussian beam U0(x) = Ũ0e

iqxe−x2/2σ2 with beam width σ = 7π and transverse
momentum (top) q = 0.0 (the inset illustrates the contribution of the second
and third bands), (middle) q = −0.5 and (bottom) q = −1.0; (b) Band
diagram showing the propagation constant βn(k) versus Bloch wave vector k
for the first five bands.

For this system, we can make some statements: the significant contribution for the
modes of each band is centered around the incident wave transverse momentum q, but the
energy distribution does not follow a Gaussian profile, not necessaraly symmetric around
the Bloch wave number, that strongly affects the propagation dynamics. Furthermore, as
the lattice potential becomes more intense, more bands become relevant to the system and
more band gaps arises. These statements can be veryfied by investigating the contribution
of each band, the Parserval’s identity and the band structure for several sets of parameters.

The Parseval’s identity shown in equation 4.18 is a conserved quantity and can be
viewed as the sum of contributions of each band for the beam pn in the first Brillouin zone.
Each term gives us information on how much each band contributes to the beam depending
on the parameters of the lattice and the incident beam. This will be particularly useful
for the stochastic case, but here it helps to understand the behavior of the contribution
coefficients.

In figure 14, the normalized Parserval identity (P = ∑
pn = 1) terms pn are depicted

versus (a) the lattice potential amplitude and (b) the transverse momentum. In (a), the
range of the lattice potential amplitude varies from the shallow lattice regime (A ≪ 1) to
a very strong potential A = 10; the top panel corresponds to normal incidence (q = 0) and
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Figure 13 – (a) Absolute squared Floquet-Bloch participation coefficients |cn(k)|2 versus
wave number k for the potential V (x) = A cos2 x, A = 10.0 with an incident
Gaussian beam U0(x) = Ũ0e

iqxe−x2/2σ2 with beam width σ = 7π and transverse
momentum (top) q = 0.0 (the inset illustrates the contribution of the third
and fourth bands), (middle) q = −0.5 and (bottom) q = −1.0; (b) Band
diagram showing the propagation constant βn(k) versus Bloch wave vector k
for the first five bands.

we can see that the major contribution is due to the first and third bands only, similar to
the case in the Bragg condition q = −1, where only two bands contribute to the beam
so far as A = 5. In this case, a two-wave model can give reliable results considering the
Bragg resonant modes [50, 83]. Moreover, as the lattice potential amplitude increases,
the contribution for the reminiscent bands increases, decreasing the contribution of the
first two, as expected because P is a conserved quantity. For q = −0.5 (see figure 14 (a)
middle panel), we see the contribution of the second and third bands becoming equal. As
expected, the contribution for the first one decays as the others increase. In the right of
the figure, in (b), we see the dependence of the transverse momentum for a fixed A = 4:
we see that the pn are even in q.

Let us now analyze the influence of the lattice on the beam’s evolution. The
input beam’s transverse momentum q controls significantly its diffraction [57]. Specifically,
the beam direction is strongly influenced by the group velocity’s direction ∇kβn(k): the
direction aligns perpendicular to the transmission band. The precise relationship with
propagation will be explored further in the last section of this chapter.

One can ask how the potential amplitude A affects the propagation and the intensity
pattern of the propagating beam. This analysis is straightforwardly conducted by plotting
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Figure 14 – (a) Parserval identity terms pn versus lattice potential amplitude A for and
transverse momentum (top) q = 0.0, (middle) q = −0.5 and (bottom) q = −1.0
and (b) versus the transverse momentum q for a specific lattice potential
amplitude A = 4.0. For both, the input beam is the optical field U0(x) =
Ũ0e

iqxe−x2/2σ2 with beam width σ = 7π.

the beam intensity |U(x, z)|2, displayed in figure 15 for several initial conditions along
with the beam center xc(z) defined by

xc(z) =
∫

x|U(x, z)|2 dx∫
|U(x, z)|2 dx

, (4.21)

which delineates the beam’s center overall movement. It is important to note that these
visualizations were computed by employing equations 4.14 and 4.20, and the accuracy of the
results was verified using Split-Step Methods. We consider three regimes to illustrate the
lattice’s role in beam propagation. First, for a shallow lattice potential amplitude A = 0.01,
where the variation in the photonic crystal’s refractive index is minimal, and a transverse
momentum q = −0.5 (figure 15 (a)), the beam propagates without considerable spreading,
tilted to the negative x direction due to the lattice excitation by the transverse momentum.
As we discussed and showed, the Parserval identity term p1 is the more prominent, so the
significant contribution comes from the first band that has its participation coefficient
cn(k) centered around the wave number k = −0.5. The group velocity ∇kβ1(k) around
this Bloch wave number is tilted to the negative x, aligning with the tilt seen in the beam
propagation. This inclination is highlighted through the beam center xc(z) (dashed black
line).
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Considering the potential amplitude A = 4 and transverse momentum q = 0, one
observes significant contributions primarily from the first three bands: the first being
the most pronounced, the second non-negligible, and the third nearly absent, evident
in the Parserval’s term pn. Their participation coefficient cn(k) is centered around the
Bloch wave number k = 0, From the band diagram’s analysis of ∇kβn(k), we anticipate
that the beam will propagate along the z direction. In figure 15 (b), we observe that
while the beam remains relatively free from diffraction effects, its interaction with the
lattice induces oscillations along the x direction. Additionally, the intensity distribution
exhibits oscillations along the z direction. Remarkably, the beam center xc (dashed red
line) remains a straight line x = 0.

Increasing the potential amplitude to A = 10, more excited bands contribute
to the beam dynamics. By choosing q = −1.0, we ensure that the Bragg condition is
satisfied, where the first two bands exhibit almost identical contributions to the overall
beam evolution, as reflected in Parserval’s coefficient pn. Notably, the contributions from
the third and fourth bands are not negligible. By inspecting the participation coefficients
cn(k), we observe an asymmetry around k = 0. Some modes around k = −1 are more
excited than those at k = 1 for certain bands, and vice versa. Consequently, analyzing
the beam direction via ∇kβn(k) requires more nuanced attention. Furthermore, through
the beam propagation exhibited in figure 15 (b), we also observe that the beam remains
diffractionless, but with even more oscillations. The beam exhibits oscillatory behavior
around x = 0, evident in the beam center xc, resembling the Zitterbewegung effect (more
details will be discussed in the last section of this chapter).

In the next section, we reach the main results of our model through the consideration
of the random fluctuations in the optical fields. This discussion of a gaussian source will
serve as a limiting case and a baseline for our future discussions about the beam dynamics
in periodic potentials considering the stochastic nature of optical beams in nature.

4.3 Stochastic Theory
The objective of this section is to incorporate the inherent random fluctuations of

optical fields, irrespective of their physical origin — spontaneous emission, temperature
fluctuations, mechanical vibrations, or others. To achieve this, we employ statistical
concepts, particularly the formalism of second-order classical statistical optics. Here, we
consider correlations between two spatial points through the cross-spectral density function,
defined as:

W (x1, x2, z) = ⟨U∗(x1, z)U(x2, z)⟩ω , (4.22)

that represents the correlation between two spatial points of the optical field, (x1, z)
and (x2, z), averaged over an ensemble of monochromatic (fixed ω) realizations of the
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optical field U . Considering a periodic medium, each field realization is essentially a linear
combination of the Floquet-Bloch modes previously discussed. By using equation 4.14 in
the definition of the cross-spectral density function, we obtain:

W (x1, x2, z) = ⟨U∗(x1, z)U(x2, z)⟩ω

= ⟨
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2 c∗

n(k1)cm(k2)

× u∗
n(x1, k1)um(x2, k2)ei[βn(k2)−βn(k1)]z⟩ω

=
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2 ⟨c∗

n(k1)cm(k2)⟩ω

× u∗
n(x1, k1)um(x2, k2)ei∆βnmz

=
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2 Cnm(k1, k2)

× u∗
n(x1, k1)um(x2, k2)ei∆βnmz.

(4.23)

As the propagation of each random optical field U(x, z) relies on the participation coefficient
of each band cn(k), the propagation of the cross-spectral density function depends on the
correlations existent between the bands. These correlations are described by the cross-
correlation coefficients Cnm(k1, k2) = ⟨c∗

n(k1)cm(k2)⟩ω. This quantity characterizes the
spatial coherence of the beam, as the Floquet-Bloch functions and the exponentials with
each propagation number are deterministic by nature. The propagation of the correlations
can be approached similarly to the deterministic case, but one must analyze the cross-
correlation coefficients, which can be determined from any initial cross-spectral density
function W0(x1, x2) = W (x1, x2, 0) as follows:

Cnm(k1, k2) = ⟨c∗
n(k1)cm(k2)⟩ω

=
∫∫

dx1dx2 un(x1, k1)u∗
m(x2, k2)W0(x1, x2),

(4.24)

representing a correlation measure between the nth and mth bands for the Floquet-Bloch
wave numbers k1 and k2. By using the definition from equation 4.22, the average beam
intensity at a position (x, z) can be obtained by assuming x1 = x2 = x, which results in
the spectral density S(x, z):

S(x, z) =
〈
|U(x, z)|2

〉
ω

=
∫∫

B.Z.
dk1dk2 Cnm(k1, k2)un(x, k1)u∗

m(x, k2)ei∆βnmz,
(4.25)

a quantity measurable in laboratory experiments.

It is evident that the spatial correlation introduced by the cross-correlation coeffici-
ents can notably influence the beam intensity. However, a pertinent question arises: to what
extent does the beam behavior deviate from the deterministic case? The quantity that
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measures the impact of these correlations is the spectral degree of coherence µnm(k1, k2):

µnm(k1, k2) = ⟨c∗
n(k1)cm(k2)⟩ω√

⟨|cn(k1)|2⟩ω ⟨|cm(k2)|2⟩ω

, (4.26)

which represents the overall correlation between two bands for a point within the k1k2

plane within the first Brillouin Zone. By definition, it is a bounded quantity, and its
squared magnitude adheres to the following condition:

0 ⩽ |µnm(k1, k2)| ⩽ 1 (4.27)

and it is equal to unity when the optical field is fully coherent, as observed in the
deterministic case discussed earlier, and it vanishes when the field is incoherent. Between
these extremes lies the domain of partial spatial coherence, which is the main point of this
work. To compute quantities from the deterministic case in this stochastic context, we
consider averaged values through ensemble averaging. Considering the contribution to the
beam from each band, we introduce the Parserval’s term in Stochastic Theory:

Pn =
∫

B.Z.

〈
|cn(k)|2

〉
ω

dk, (4.28)

that aids in deciding in which band to truncate equation 4.23 within computational
programs and to understand the role of spatial coherence in exciting the lattice bands.

4.4 Stochastic Case: Gaussian-Schell Source
In the domain of partially coherent beams, one notory correlation distribution

model is the Gaussian-Schell model [84, 85, 86, 87, 88]. This model provides insight into
the distinction between coherent and incoherent sources. One key characteristic of such a
beam is that, between two points, say x1 and x2, the spectral degree of coherence solely
relies on their separation distance, denoted as |x2 − x1|. In the context of a stationary
process, following the notation used in the section on deterministic Gaussian sources, we
can describe field fluctuations through the cross-spectral density function at the input
(z = 0) as:

W0(x1, x2) = S0e
−(x2

1+x2
2)/2σ2

e−(x1−x2)2/2δ2
e−iq(x1−x2), (4.29)

showing the optical beam correlation between points x1 and x2 in a Gaussian intensity
distribution centered around x = 0, having a width of

√
2σ. Note that S0 = |Ũ0|2 = Ũ∗

0 Ũ0

represents the field intensity amplitude. The coherence parameter δ plays a crucial role
here: as δ tends to infinity, the source approaches a fully spatially coherent beam, while a
decrease of δ approaches a spatially incoherent beam. Our next steps aim to establish the
foundational discussions regarding cross-spectral density, average beam intensity, and the
influence of spatial correlation within the system. Initially, we will investigate the behavior
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of cross-correlation coefficients and, subsequently, analyze Parserval’s identity terms Pn

and discuss our main results.

By using equation 4.24, the Floquet-Bloch cross-correlation coefficients can be
determined from the correlations of the optical field at the incident plane z = 0. The
resulting integral is a multidimensional Gaussian integral that can be easily solved [89,
90]. The calculation is intricate and it does not add any physical insight. It is given by

Cnm(k1, k2) = 2πS0δσ2
√

δ2 + 2σ2

∞∑
r,s=−∞

bn
r (k1)[bm

s (k2)]∗

× exp
[
−

δ2σ2(k1 + 2π
a

r − q)2

2(δ2 + 2σ2)

]

× exp
[
−

δ2σ2(k2 + 2π
a

s − q)2

2(δ2 + 2σ2)

]

× exp
[
−

σ4[k1 − k2 + 2π
a

(r − s)]2

2(δ2 + 2σ2)

]
.

(4.30)

This is a general expression for the participation coefficient of a Gaussian-Schell source
and can lead to the deterministic one found previously. To confirm this, one can verify
its consistency by taking the limit as δ approaches infinity. In this limit, imposing the
conditions k1 = k2 = k and n = m, one can recovers the expression for ⟨|cn(k)|2⟩, where
cn(k) is given by equation 4.20. Even without these constraints, while still considering
the same limit, an expression for Cnm(k1, k2) is derived as a product of two factors, one
depending on (n, k1) and the other on (m, k2), corresponding to a regime of complete
spatial coherence, as expected.

First, let us understand the role of the coherence parameter δ and stabilize the
terms that will be used to discuss our results. The Gaussian-Schell source expressed in
equation 4.29 has an exponential term containing the distance between two points in the
lattice |x1 − x2| with the same z. In figure 16 (a), we present the initial absolute value
of the cross-spectral density |W0(x1, x2)| for a Gaussian-Schell source with a transverse
momentum q = 0 and a beam width of σ = 7π. For high coherence values (δ ≫ σ),
the cross-spectral density spreads out in the x1x2 plane with circular symmetry and
we can expect a regime similar to the deterministic Gaussian source. As the coherence
parameter decreases, for intermediary values (δ ∼ σ, the distribution becomes skewed. In
a low coherence regime (δ ≪ σ), the third factor in the expression of W0 localizes the
distribution to the line x1 = x2, with the other regions of the plane being negligible.

When a Gaussian-Schell source propagates in a periodic lattice, one can ask for
the role of the coherence in the Floquet-Bloch modes excitations. Consider the constraint
k1 = k2 = k. It is worth mentioning that if one plots the cross-correlation participation
in the k1k2 plane, the coherence parameter δ exhibits a similar effect on its profile to
the one observed in the Gaussian-Schell cross-spectral density W0: in high coherence,
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Figure 16 – (a) Absolute value of the cross-spectral density for a Gaussian-Schell source
under various coherence parameter δ values. The Gaussian-Schell source has a
transverse momentum of q = 0, a beam width of σ = 7π, and it is incident on
a lattice with an amplitude of A = 4. Additionally, the following are displayed:
(b) the equivalent deterministic behavior for participation coefficients; (c) the
absolute values of cross-correlation coefficients |Cnm(k)| for different coherence
parameters: δ = 0.1σ (black line), δ = σ (purple line), and δ = 50σ (green
line). The panels show results for n = m = 1 (top), n = m = 2 (middle), and
(n, m) = (1, 2) (bottom).

the profile is gaussian-like while in low coherence, the profile gets skewed. Figure 16 (b)
displays the expected participation coefficients profile for the first two bands with a lattice
amplitude A = 4 and a deterministic Gaussian beam source. This deterministic profile
will serve as a reference for comparison with the results of cross-correlation coefficients
presented in figure 16 (c). The coefficients are normalized by the constant previous to
the summations in equation 4.30. As the coherence parameter δ increases, the results
approach the deterministic case. The figure shows the averaged values of the participation
coefficients cn(k) for n = 1, 2 (top and middle panel, respectively) and the cross-correlation
coefficient C12(k, k) (bottom panel).

In a low coherence regime, a large number of Floquet-Bloch modes are excited,
with non-zero values of the coefficients covering almost the entire Brillouin zone. This
suggests that the stochastic nature of the beam induces the excitation of more modes
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Figure 17 – Spectral degree of coherence µ12(k1, k2) versus the coherence parameter δ for
input beam width σ = 7π and lattice amplitude A = 4.0 at various incident
angles, correspondent to q = −1.0 (solid black line), q = −0.5 (dashed line),
and q = 0.0 (dot-dashed line). Several spectral degrees of coherence between
points of the Brillouin zone are displayed: (a) k1 = k2 = −0.3; (b) k1 = −0.2
and k2 = −0.3; and (c) k1 = k2 = −0.2.

in the lattice. As we increase the coherence parameter, such as for δ = σ, there is a
slight recovery in the profile found in the deterministic case: the excitation becomes more
localized around k = 0. As we approach high coherence, the spatial coherence effect causes
the excitation spectrum to decay, resembling the deterministic case. Moreover, as the
correlation becomes more accentuated, ⟨c∗

1(k1)c2(k2)⟩ = c∗
1c2. We observe the same pattern

when changing the transverse momentum q and the lattice constant A. Thus, we conclude
that the broadening of the Floquet-Bloch modes excitation can be controlled by the degree
of coherence. This result differs drastically from the deterministic one: if one remembers
the previous discussion, the only way to excite more modes in this case is by changing the
profile of the incident beam or its incidence angle. The spatial coherence adds another
degree of freedom to control the Floquet-Bloch modes.

As mentioned earlier, a quantity that can be used to visualize the correlations
arising from the spatial coherence of the beam is the spectral degree of coherence, denoted
as µnm(k1, k2) (see equation 4.26). This parameter measures the normalized degree of
coherence between two modes from two different bands. By fixing the Floquet-Bloch
wavenumbers and focusing only on the first and second bands (i.e., n = 1 and n = 2), we
can examine µ12(k1, k2) as a function of the coherence parameter δ, as shown in Figure 17
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for some values in the Brillouin zone. Let us define a pair of points as "direct"if k1 = k2 = k

and "indirect"if k1 ̸= k2. The figure presents the results for a Gaussian-Schell source with
a width of σ = 7π and lattice amplitude A = 4 at various incident angles. The general
behavior, as expected, is that µ → 1 as δ → ∞, and µ → 0 as δ → 0. This sheds light
on the relationship between the coherence parameter δ and the actual spectral degree of
coherence.

Figures 17 (a) and (b) show the coherence degree for a direct point (−0.3, −0.3)
and (−0.2, −0.2), respectively: for q = −1 (solid black line), in the Bragg condition, the
contribution and distribution in the Brillouin Zone from both bands are very similar, thus it
is expected that their coherence degree increases to unity as the cross-correlation coefficients
resemble more and more their deterministic contra parts; the curves for q = −0.5 (dashed
red line) and q = 0.0 (dot-dashed line), as the distribution and contribution are not
very similar, we see that they approach unity in a larger value of δ in comparsion to
the q = −1.0. In the indirect point (−0.3, −0.2), the rate at which the coherence degree
approaches unity in even larger values for δ than the direct ones.

Now, let us discuss the effects of spatial coherence on beam propagation. Similar
to the deterministic case, the beam direction is strongly influenced by the group’s velocity
direction ∇kβn(k) and has some influence from the cross-correlation coefficients as well.
As before, our goal is to study the beam evolution also considering the beam center Xc(z),
defined in terms of the spectral density S(x, z) in the stochastic case:

Xc(z) =
∫

xS(x, z); dx∫
S(x, z); dx

. (4.31)

First, let us consider a scenario with low coherence, where the coherence parameter
δ is considerably smaller than the beam width σ. In the previous sections, we observed
that A = 4 is a lattice parameter sufficiently strong to exhibit considerable effects from the
lattice on the beam evolution. By taking this value for A, beam width to σ = 7π, incident
angle with transverse momentum q = −1.0, and the coherence parameter to δ = σ/100.
Figure 18 illustrates this case.

As expected from coherence theory, the influence of a very low coherence parameter
on the propagation causes the beam to spread more significantly through the lattice:
the lack of spatial coherence makes the beam behavior similar to one propagating in a
medium without periodic lattice. The stochastic nature of our source causes the beam
propagation to ignore the lattice even in a relatively high lattice amplitude, resulting in a
wider spreading compared to a beam propagating in the shallow lattice regime (see figure
15 (a)) for the same low value of the propagation distance z. Also, note that the beam
center is tilted to the negative x-axis, as observed in the deterministic cases (see figure 15
(a) and (c)), and presents oscillations. One can ask how this occurs even in low coherence
and even in the Bragg condition, where we can expect the tilt to be very small and what
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Figure 18 – (a) Beam spectral density S(x, z). (b) Mean beam center oscillation Xc(z)
versus propagation distance z. For input wave number q = −1.0, width σ = 7π,
lattice amplitude A = 4.0 and coherence parameter δ = σ/100.

can be inferred from these oscillations.

For comparison purposes, it is interesting to consider an intermediate coherence
case, where the coherence parameter δ is of the same order of magnitude as the beam width
σ. As discussed in the section about cross-correlation participation coefficients Cnm(k1, k2)
and the role of spatial coherence, let us assume δ = σ with the other parameters the
same as in the low-coherence case discussed above. This case is displayed in figure 19. We
observe that the coherence is close enough to the deterministic case to reduce the tilt and
restore oscillations to the beam center, along with a more well-defined intensity pattern.
The spreading of the beam also becomes negligible, occurring because the cross-correlation
participation coefficients become closer to the deterministic ones, exciting many fewer
modes in the Brillouin zone compared to a low-coherence scenario.

The general form of the beam center is given by a expression of the form Xc(z) =
Xc(0) + V z + P (z), where p(z) is a periodic function of z that depends on the correlation
between different bands, and v is the linear inclination which depends mainly on the mean
participation coefficients values ⟨|cn(k)|2⟩ for all the bands and the group velocity. As δ

approaches smaller values, the oscillations from the beam vanish and only the rectilinear
movement is left. Absolutely, how much the beam is spatially localized, tilt, and beam
oscillations are all influenced by the coherence degree as the beam propagates over the
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Figure 19 – (a) Beam spectral density S(x, z). (b) Mean beam center oscillation Xc(z)
versus propagation distance z. For input wave number q = −1.0, width σ = 7π,
lattice amplitude A = 4.0 and coherence parameter δ = σ.

distance z. This interplay can have implications and applications in experimental setups,
making it an interesting aspect to investigate and control for specific purposes.

4.5 Spatial Coherence and the Trembling Motion
In the previous sections, we observed that the motion of the beam center undergoes

a trembling motion as it propagates in the periodic lattice. Let us investigate the physics
behind this motion. The calculations are extensive and several steps will be omitted (see
[4] for more details), we only will talk about the outline. First, consider the deterministic
case. Overlooking the normalization constant present on equation 4.21,

xc(z) =
∫ ∞

−∞
x|U(x, z)|2 dx, (4.32)

and, if we insert in this equation the expression for the beam in equation 4.14, we obtain

xc(z) =
∞∑

n,m=1
dk dk′ c∗

n(k)cm(k′)e−i∆βnm(k,k′)z
∫ ∞

−∞
x u∗

n(x, k)um(x, k′) dx (4.33)
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where ∆βnm(k, k′) = βn(k) − βm(k′). The term integral in the transversal direction x on
the right side can be expanded as∫ ∞

−∞
x u∗

n(x, k)um(x, k′) dx = i
∫ ∞

−∞
e−i(k−k′)x v∗

n(x, k) ∂

∂k′ vm(x, k′) dx (4.34)

− i
∂

∂k′

∫ ∞

−∞
u∗

n(x, k)um(x, k′) dx (4.35)

= δ(k − k′)Xnm(k, k′) − iδnm
d

dk′ δ(k − k′), (4.36)

where Xnm is a integral in the unit cell of the lattice:

Xnm(k, k′) = 2πi

a

∫ a/2

−a/2
v∗

n(x, k) ∂

∂k′ vm(x, k′) dx (4.37)

and, if we do the substitution in the original integral, one can obtain the following
expression for the beam center:

xc(z) = xc(0) + vz + p(z) (4.38)

where xc(0) is the initial position, v is the angular coefficient of its linear motion in the
propagation direction z, and p(z) is a periodic multifrequency function. This expression is
condensed for clarity. The initial position is xc(0) given by

xc(0) = i
∞∑

n=1

∫
B.Z.

c∗
n(k) d

dk
cn(k) dk +

∞∑
n=1

∫
B.Z.

Xnn(k)|cn(k)|2 dk, (4.39)

where each term depends only on the participation of individual bands. The angular
coefficient v is

v = −
∞∑

n=1

∫
B.Z.

|cn(k)|2 d

dk
βn(k) dk, (4.40)

that is given by the sum of contributions of each band. The direction of the beam is
partially controlled by this term. The group velocity plays an important role here. Due to
its odd parity, the absolute participation coefficient squared |cn(k)|2 has to be asymmetric
in the first Brillouin zone for each integral to be non-zero, which explains the tilt of the
beam for some initial beams. Finally, the oscillations came from the third term term p(z),

p(z) =
∞∑

n=1

∑
m̸=n

∫
B.Z.

Xnm(k)c∗
n(k)cm(k)e−i∆βnm(k)z dk, (4.41)

that clearly has in each term k-dependent periods ωnm = 2π/∆βnm(k). The medium
contributes to the oscillations through the interference between bands: the counts only
terms where n ̸= m and we have also a factor with a phase mismatch coming from the
difference between propagation numbers of two bands βnm(k). This is the origin of the
trembling motion of the system [91]. One can do the same for the stochastic case, obtaining
an expression very similar to the equation 4.38:

Xc(z) = Xc(0) + V z + P (z), (4.42)
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where the initial position Xc(0) is

Xc(0) = i
∞∑

n=1

∫
B.Z.

d

dk
Cnn(k, k) dk +

∞∑
n=1

∫
B.Z.

Xnn(k)|Cnn(k, k)|2 dk, (4.43)

the angular coefficient V is

V = −
∞∑

n=1

∫
B.Z.

Cnn(k, k) d

dk
βn(k) dk, (4.44)

and the oscillation term P (z) is

P (z) =
∞∑

n=1

∑
m ̸=n

∫
B.Z.

Xnm(k)Cnm(k, k)e−i∆βnm(k)z dk. (4.45)

The terms from the stochastic case are very similar to the deterministic ones due
to the fact that they are ensemble averages of each realization that can be thought of as
deterministic. If the coherence parameter grows indefinitely, one can observe that v → V

and p → P whenever cn(k) and cm(k) become statistically independent random processes,
meaning, ⟨c∗

m(k1)cn(k2)⟩ = ⟨c∗
m(k1)⟩⟨cn(k2)⟩. The main difference between the deterministic

and random cases is that the oscillations A(z) may disappear gradually down to zero, even
when the coefficients cn(k) are non-zero, as long as the bands become weakly correlated,
to the point of no correlation at all, when Cnm(k, k) = 0.

This trembling motion is well-known in several areas of physics and it is called the
zitterbewegung effect. This effect originates from the results obtained for free electrons
using the Dirac equation. These results predict the presence of fast, small oscillations in
addition to the expected rectilinear classical motion, giving rise to a trembling motion.
Since its initial prediction, researchers have explored analogs of this effect in various
systems, including photonic lattices [14] and semiconductors [91, 92].

In figure 20 (a), we have the propagation numbers βn(k) that characterize the band
structure and in (b) its respective group velocity. Note that as there is the parity symmetry
βn(k) = βn(−k) within the first Brillouin zone, the group velocity profile is formed by odd
functions. Furthermore, its values grow as n increases; however, as discussed before, the
contribution of each band decreases with n for the deterministic case. As the coherence
parameter δ decreases, the contributions become more evenly distributed among the bands.
The integrals in v and V are far from trivial when considering the dependence on the
model parameters.

Furthermore, in figure 20 (c), one can observe how spatial coherence affects the
trembling motion of the system: for δ = σ, oscillations are seen alongside those expected for
the deterministic case. In low coherence (δ = 0.1σ), the beam center becomes more tilted
due to the skewness of the participation profiles (see Figure 16) and the tilt’s dependence
on the autocorrelation participation coefficients and group velocity. Additionally, the
oscillations experience some damping effect. If δ decreases even further (δ = 0.01σ), the
tilt is smaller, and the damping effect is stronger, attenuating the oscillations even further.
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Figure 20 – (a) Propagation constant β(k) versus Bloch wave vector k for the first five
Floquet-Bloch modes un(x, k); (b) group velocity dβ(k)/dk versus Bloch wave
vector k; (c) mean beam center oscillation Xc(z) versus propagation distance
z for three coherence parameters: σ, 0.1σ and 0.01σ. For input wave number
q = −1.0, input beam width σ = 7π and potential amplitude A = 4.0,
extracted from [93].
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5 Conclusion and Perspectives

In our research, we presented a model aiming to analyze the propagation of partially
coherent beams in periodic media. The framework utilized was the one of Floquet-Bloch
waves, that enables a detailed examination of the influence of the material on the light
propagation. The model presented here considered a 2D system with a refractive index
exhibiting 1D periodicity. The refractive index governs the matter-light interaction and
plays a central role in the dynamics alongside the input beam. The potential considered
was harmonic, but the theory allows for the consideration of other 1D periodic potentials.

The results were primarily obtained using the plane-wave expansion method and
applying diagonalization routines in the Julia programming language. In contrast to
free space, when considering a periodic medium, one encounters a band structure that
significantly influences and alters light propagation. To illustrate these results, we applied
the theory to a deterministic case: the Gaussian source. With this source, we computed the
participation coefficients and we found a general solution for the beam profile in any point
(x, z) of the space during propagation. The band structure was discussed with details: we
showed that how the contribution of each band to the beam propagation was influencied
by the lattice through changing the lattice amplitude A and studying the Parserval’s
terms pn, and also how the transverse momentum changes the excitation of Floquet-Bloch
modes in the first Brillouin zone. The propagation for the deterministic case was analyzed,
outlining how the lattice contributes to its dynamics. We explored both the shallow-lattice
regime and lattices with very strong influences to better understand the system and its
dependence on its parameters.

With the particularities of the Floquet-Bloch framework in mind, we then utilized
the second-order theory of coherence to describe light through the cross-spectral density
W (x1, x2, z), where the light was described as a linear combination of several Floquet-Bloch
modes with participation coefficients that fluctuate in the space subject to some correlation
between them. This correlation is conveyed by the initial cross-spectral density. We chose
the Gaussian-Schell beam as the input and extracted the results.

We demonstrated that even weak correlations can drastically change the power
distribution of Floquet-Bloch modes through the cross-correlation coefficients Cnm(k1, k2).
The influence of spatial coherence was shown to spread or narrow down the contribution
of wavenumbers in the first Brillouin zone. The spatial coherence adds another degree of
freedom to control the Floquet-Bloch modes, differing drastically from the deterministic
case. Additionally, the stochastic description introduces interbands correlations into play,
as we showed that the cross-spectral density significantly depends on cross terms.



Chapter 5. Conclusion and Perspectives 69

In conclusion, we demonstrated that spatial coherence influences the intensity
profile of the propagating beam. If the coherence is low enough, the beam passes through
the material as if it is not there: the interactions between the light and the lattice can
hardly be noticed. The beam center was one of the objects of study, and we also showed
that it propagates as the sum of a linear plus oscillatory term, resembling the trembling
motion found in electronic systems known as the zitterbewegung effect.

One may be interested in utilizing this framework to explore stochastic systems
in a variety of scenarios or combinations thereof: the zitterbewegung effect can be further
discussed; an extension to (2+1)D enables the investigation of other interesting beams such
as Hermite-Gaussian, Laguerre-Gaussian, and even Bessel beams. Theoretical developments
were carried out by us in both z-dependent potentials and PT -symmetric lattices. The
latter even resulted in a publication not discussed in this thesis but is indeed related [94].



70

References

[1] N.W. Ashcroft e N.D. Mermin. Solid State Physics. Cengage Learning, 2011. isbn:
9788131500521.

[2] Steven H. Simon. The Oxford Solid State Basics. OUP Oxford, 2013. isbn: 9780199680764.

[3] Charles Kittel. Introduction to Solid State Physics. Eighth Edition. Wiley, 2004.
isbn: 9780471415268.

[4] Joseph Callaway. Quantum Theory of the Solid State. Second Edition. Boston, USA:
Academic Press, 1991. isbn: 978-0-12-155203-9.

[5] Ming-Hui Lu, Liang Feng e Yan-Feng Chen. “Phononic crystals and acoustic me-
tamaterials”. Em: Materials Today 12.12 (2009), pp. 34–42. issn: 1369-7021. doi:
10.1016/S1369-7021(09)70315-3.

[6] Mahmoud I. Hussein, Michael J. Leamy e Massimo Ruzzene. “Dynamics of Phononic
Materials and Structures: Historical Origins, Recent Progress, and Future Outlook”.
Em: Applied Mechanics Reviews 66.4 (mai. de 2014), p. 040802. issn: 0003-6900.
doi: 10.1115/1.4026911.

[7] Bahaa E. A. Saleh e Malvin Carl Teich. Fundamentals of Photonics. Second Edition.
Berlin, Heidelberg: Springer, 2006. isbn: 9780471358329.

[8] John D. Joannopoulos et al. Photonic Crystals: Molding the Flow of Light. Second
Edition. New York, USA: Princeton University Press, 2008. isbn: 9780691124568.

[9] Maksim Skorobogatiy e Jianke Yang. Fundamentals of Photonic Crystal Guiding.
First Edition. New York, USA: Cambridge University Press, 2008. isbn: 978-0-521-
51328-9.

[10] Kazuaki Sakoda. Optical Properties of Photonic Crystals. Second Edition. John
Wiley & Sons, Inc., 2004. isbn: 9783540206828.

[11] M. Neviere e E. Popov. Light Propagation in Periodic Media: Differential Theory
and Design. First Edition. CRC Press, 1999. doi: 10.1201/9781482275919.

[12] A. Yariv e P. Yeh. Optical Waves in Crystals: Propagation and Control of Laser
Radiation. Wiley classics library. Wiley-Interscience, 2003. isbn: 9780471320814.

[13] S. Longhi. “Quantum-optical analogies using photonic structures”. Em: Laser &
Photonics Reviews 3.3 (2009), pp. 243–261. doi: 10.1002/lpor.200810055.

[14] S. Longhi. “Photonic analog of Zitterbewegung in binary waveguide arrays”. Em:
Opt. Lett. 35.2 (jan. de 2010), pp. 235–237. doi: 10.1364/OL.35.000235.

https://doi.org/10.1016/S1369-7021(09)70315-3
https://doi.org/10.1115/1.4026911
https://doi.org/10.1201/9781482275919
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1364/OL.35.000235


References 71

[15] Emil Wolf e Leonard Mandel. Optical Coherence and Quantum Optics. First Edition.
Cambridge University Press, 1995. isbn: 9780521417112.

[16] Joseph W Goodman. “Statistical optics”. Em: New York, Wiley-Interscience, 1985,
567 p. 1 (1985).

[17] John M. Senior e M. Yousif Jamro. Optical Fiber Communications Principles and
Practice. Third Edition. Essex, England: Pearson Education Limited, 2009. isbn:
978-0-13-032681-2.

[18] V. P. Bykov. “Spontaneous Emission in a Periodic Structure”. Em: Soviet Journal
of Experimental and Theoretical Physics 35 (1972), pp. 269–273.

[19] Eli Yablonovitch. “Inhibited Spontaneous Emission in Solid-State Physics and
Electronics”. Em: Phys. Rev. Lett. 58 (20 mai. de 1987), pp. 2059–2062. doi: 10.
1103/PhysRevLett.58.2059.

[20] Sajeev John. “Strong localization of photons in certain disordered dielectric su-
perlattices”. Em: Phys. Rev. Lett. 58 (23 mai. de 1987), pp. 2486–2489. doi:
10.1103/PhysRevLett.58.2486.

[21] K. M. Leung e Y. F. Liu. “Full vector wave calculation of photonic band structures
in face-centered-cubic dielectric media”. Em: Phys. Rev. Lett. 65 (21 nov. de 1990),
pp. 2646–2649. doi: 10.1103/PhysRevLett.65.2646.

[22] Ze Zhang e Sashi Satpathy. “Electromagnetic wave propagation in periodic structures:
Bloch wave solution of Maxwell’s equations”. Em: Phys. Rev. Lett. 65 (21 nov. de
1990), pp. 2650–2653. doi: 10.1103/PhysRevLett.65.2650.

[23] K. M. Ho, C. T. Chan e C. M. Soukoulis. “Existence of a photonic gap in periodic
dielectric structures”. Em: Phys. Rev. Lett. 65 (25 dez. de 1990), pp. 3152–3155. doi:
10.1103/PhysRevLett.65.3152.

[24] S. Y. Lin et al. “A three-dimensional photonic crystal operating at infrared wave-
lengths”. Em: Nature 394 (jul. de 1998), pp. 251–253. doi: 10.1038/28343.

[25] E. Yablonovitch et al. “Donor and acceptor modes in photonic band structure”. Em:
Phys. Rev. Lett. 67 (24 dez. de 1991), pp. 3380–3383. doi: 10.1103/PhysRevLett.
67.3380.

[26] Henri Benisty et al. “Recent advances toward optical devices in semiconductor-based
photonic crystals”. Em: Proceedings of the IEEE 94.5 (2006), pp. 997–1023. doi:
10.1109/JPROC.2006.873441.

[27] El-Hang Lee et al. “Fabrication and integration of VLSI micro/nano-photonic circuit
board”. Em: Microelectronic Engineering 83.4 (2006). Micro- and Nano-Engineering
MNE 2005, pp. 1767–1772. issn: 0167-9317. doi: 10.1016/j.mee.2005.12.010.

https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.65.2646
https://doi.org/10.1103/PhysRevLett.65.2650
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1038/28343
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1109/JPROC.2006.873441
https://doi.org/10.1016/j.mee.2005.12.010


References 72

[28] M. François et al. “Photonic band gap material for integrated photonic application:
technological challenges”. Em: Microelectronic Engineering 61-62 (2002). Micro-
and Nano-Engineering 2001, pp. 537–544. issn: 0167-9317. doi: 10.1016/S0167-
9317(02)00526-9.

[29] E. Viasnoff-Schwoob et al. “Compact wavelength monitoring by lateral outcoupling
in wedged photonic crystal multimode waveguides”. Em: Applied Physics Letters
86.10 (mar. de 2005), p. 101107. issn: 0003-6951. doi: 10.1063/1.1879105.

[30] Y. Xia et al. “Monodispersed Colloidal Spheres: Old Materials with New Applicati-
ons”. Em: Advanced Materials 12.10 (2000), pp. 693–713. doi: 10.1002/SICI1521-
4095.

[31] C. López. “Materials Aspects of Photonic Crystals”. Em: Advanced Materials 15.20
(2003), pp. 1679–1704. doi: 10.1002/adma.200300386.

[32] Dennis W. Prather et al. “Photonic Crystal Structures and Applications: Perspective,
Overview, and Development”. Em: IEEE Journal of Selected Topics in Quantum
Electronics 12.6 (2006), pp. 1416–1437. doi: 10.1109/JSTQE.2006.884063.

[33] Michael Escuti e Gregory Crawford. “Holographic photonic crystals”. Em: Optical
Engineering - OPT ENG 43 (set. de 2004), pp. 1973–1987. doi: 10.1117/1.1773773.

[34] Inc Luxtera. Luxtera: Fiber to the chip. 2024. url: https://www.luxcapital.com/
companies/luxtera.

[35] NKT Photonics A/S. NKT Photonics. 2024. url: https://www.nktphotonics.
com/products/optical-fibers-and-modules/.

[36] Jaime Gómez Rivas, Toni López e Mohamed S. Abdelkhalik. Lumileds. 2024. url:
https://spie.org/photonics-west/presentation/Integrated-metasurfaces-
for-solid-state-lighting/12890-3#_=_.

[37] David Torres et al. “OmniGuide photonic bandgap fibers for flexible delivery of
CO2 laser energy for laryngeal and airway surgery”. Em: Photonic Therapeutics and
Diagnostics. Vol. 5686. International Society for Optics e Photonics. SPIE, 2005,
pp. 310–321. doi: 10.1117/12.590355.

[38] Inc OmniGuide Holdings. OmniGuide Surgical: Advanced CO2 Laser Systems and
Fibers. 2024. url: https://www.omni-guide.com/technology/co2/.

[39] Jian Zi et al. “Coloration strategies in peacock feathers”. Em: Proceedings of the
National Academy of Sciences 100.22 (2003), pp. 12576–12578. doi: 10.1073/pnas.
2133313100.

[40] Jérémie Teyssier et al. “Photonic crystals cause active colour change in chameleons”.
Em: Nature Communications 6 (1 2015), pp. 2041–1723. doi: 10.1038/ncomms7368.

https://doi.org/10.1016/S0167-9317(02)00526-9
https://doi.org/10.1016/S0167-9317(02)00526-9
https://doi.org/10.1063/1.1879105
https://doi.org/10.1002/SICI1521-4095
https://doi.org/10.1002/SICI1521-4095
https://doi.org/10.1002/adma.200300386
https://doi.org/10.1109/JSTQE.2006.884063
https://doi.org/10.1117/1.1773773
https://www.luxcapital.com/companies/luxtera
https://www.luxcapital.com/companies/luxtera
https://www.nktphotonics.com/products/optical-fibers-and-modules/
https://www.nktphotonics.com/products/optical-fibers-and-modules/
https://spie.org/photonics-west/presentation/Integrated-metasurfaces-for-solid-state-lighting/12890-3#_=_
https://spie.org/photonics-west/presentation/Integrated-metasurfaces-for-solid-state-lighting/12890-3#_=_
https://doi.org/10.1117/12.590355
https://www.omni-guide.com/technology/co2/
https://doi.org/10.1073/pnas.2133313100
https://doi.org/10.1073/pnas.2133313100
https://doi.org/10.1038/ncomms7368


References 73

[41] L.P. Biró et al. “Living photonic crystals: Butterfly scales — Nanostructure and
optical properties”. Em: Materials Science and Engineering: C 27.5 (2007). EMRS
2006 Symposium A: Current Trends in Nanoscience - from Materials to Applications,
pp. 941–946. issn: 0928-4931. doi: 10.1016/j.msec.2006.09.043.

[42] Remo Proietti Zaccaria. “Butterfly wing color: A photonic crystal demonstration”.
Em: Optics and Lasers in Engineering 76 (2016). Special Issue: Optical Methods in
Nanobiotechnology, pp. 70–73. issn: 0143-8166. doi: 10.1016/j.optlaseng.2015.
04.008.

[43] V. L. Welch e J.-P. Vigneron. “Beyond butterflies—the diversity of biological photonic
crystals”. Em: Optical and Quantum Electronics 39 (mar. de 2007), pp. 1572–817X.
doi: 10.1007/s11082-007-9094-4.

[44] W. Kohn. “Analytic Properties of Bloch Waves and Wannier Functions”. Em: Phys.
Rev. 115 (4 ago. de 1959), pp. 809–821. doi: 10.1103/PhysRev.115.809.

[45] P. St. J. Russell. “Optics of Floquet-Bloch waves in dielectric gratings”. Em: Ap-
plied Physics B 39.4 (abr. de 1986), pp. 231–246. issn: 1432-0649. doi: 10.1007/
BF00697490.

[46] A. A. Cottey. “Floquet’s Theorem and Band Theory in One Dimension”. Em:
American Journal of Physics 39.10 (out. de 1971), pp. 1235–1244. issn: 0002-9505.
doi: 10.1119/1.1976612.

[47] Su-Miau Wu e Chun-Ching Shih. “Construction of solvable Hill equations”. Em:
Phys. Rev. A 32 (6 dez. de 1985), pp. 3736–3738. doi: 10.1103/PhysRevA.32.3736.

[48] Farouk Odeh e Joseph B. Keller. “Partial Differential Equations with Periodic
Coefficients and Bloch Waves in Crystals”. Em: Journal of Mathematical Physics
5.11 (mai. de 2005), pp. 1499–1504. issn: 0022-2488. doi: 10.1063/1.1931182.

[49] Valery S. Shchesnovich, Anton S. Desyatnikov e Yuri S. Kivshar. “Interband re-
sonant transitions in two-dimensional hexagonal lattices: Rabi oscillations, Zener
tunnelling, and tunnelling of phase dislocations”. Em: Opt. Express 16.18 (set. de
2008), pp. 14076–14094. doi: 10.1364/OE.16.014076.

[50] Valery S. Shchesnovich e Sabino Chavez-Cerda. “Bragg-resonance-induced Rabi
oscillations in photonic lattices”. Em: Opt. Lett. 32.13 (jul. de 2007), pp. 1920–1922.
doi: 10.1364/OL.32.001920.

[51] Ksenia Shandarova et al. “Experimental Observation of Rabi Oscillations in Photonic
Lattices”. Em: Phys. Rev. Lett. 102 (12 mar. de 2009), p. 123905. doi: 10.1103/
PhysRevLett.102.123905.

[52] K. G. Makris et al. “Optical transitions and Rabi oscillations in waveguide arrays”.
Em: Opt. Express 16.14 (jul. de 2008), pp. 10309–10314. doi: 10.1364/OE.16.
010309.

https://doi.org/10.1016/j.msec.2006.09.043
https://doi.org/10.1016/j.optlaseng.2015.04.008
https://doi.org/10.1016/j.optlaseng.2015.04.008
https://doi.org/10.1007/s11082-007-9094-4
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1007/BF00697490
https://doi.org/10.1007/BF00697490
https://doi.org/10.1119/1.1976612
https://doi.org/10.1103/PhysRevA.32.3736
https://doi.org/10.1063/1.1931182
https://doi.org/10.1364/OE.16.014076
https://doi.org/10.1364/OL.32.001920
https://doi.org/10.1103/PhysRevLett.102.123905
https://doi.org/10.1103/PhysRevLett.102.123905
https://doi.org/10.1364/OE.16.010309
https://doi.org/10.1364/OE.16.010309


References 74

[53] Valery S. Shchesnovich et al. “Zener tunneling in two-dimensional photonic lattices”.
Em: Phys. Rev. E 74 (5 nov. de 2006), p. 056602. doi: 10.1103/PhysRevE.74.
056602.

[54] Henrike Trompeter et al. “Bloch Oscillations and Zener Tunneling in Two-Dimensional
Photonic Lattices”. Em: Phys. Rev. Lett. 96 (5 fev. de 2006), p. 053903. doi:
10.1103/PhysRevLett.96.053903.

[55] Anton S. Desyatnikov et al. “Resonant Zener tunneling in two-dimensional periodic
photonic lattices”. Em: Opt. Lett. 32.4 (fev. de 2007), pp. 325–327. doi: 10.1364/
OL.32.000325.

[56] Andrey A. Sukhorukov et al. “Nonlinear Bloch-Wave Interaction and Bragg Scattering
in Optically Induced Lattices”. Em: Phys. Rev. Lett. 92 (9 mar. de 2004), p. 093901.
doi: 10.1103/PhysRevLett.92.093901.

[57] H. S. Eisenberg et al. “Diffraction Management”. Em: Phys. Rev. Lett. 85 (9 ago. de
2000), pp. 1863–1866. doi: 10.1103/PhysRevLett.85.1863.

[58] John David Jackson. Classical Electrodynamics. Third Edition. Wiley, 1998. isbn:
9780471309321.

[59] Eugene Hetch. Optics. Fifth Edition. Pearson, 2017. isbn: 978-1-292-09693-3.

[60] Robert W. Boyd. Nonlinear Optics. Third Edition. Academic Press, 2008. isbn:
978-0-12-369470-6.

[61] Arthur R. McGurn e Alexei A. Maradudin. “Photonic band structures of two- and
three-dimensional periodic metal or semiconductor arrays”. Em: Phys. Rev. B 48
(23 dez. de 1993), pp. 17576–17579.

[62] E. R. Brown e O. B. McMahon. “Large electromagnetic stop bands in metallodielectric
photonic crystals”. Em: Applied Physics Letters 67.15 (out. de 1995), pp. 2138–2140.
issn: 0003-6951.

[63] Ramamurti Shankar. Principles of Quantum Mechanics. Second Edition. New York,
USA: Springer, 2011. isbn: 978-0306447907.

[64] Albert Messiah. Quantum Mechanics. New York, USA: Dover Publications, 2014.
isbn: 978-0486784557.

[65] J. J. Sakurai e Jim Napolitano. Modern Quantum Mechanics. Third Edition. New
York, USA: Cambridge University Press, 2020. isbn: 978-1108473224.

[66] Mary L. Boas. Mathematical Methods in the Physical Sciences. Third Edition. New
York, USA: Wiley, 2005. isbn: 978-0471198260.

[67] C. Kittel. Berkeley Physics Course: Waves, by F. S. Crawford, Jr. Berkeley Physics
Course. McGraw-Hill, 1965.

https://doi.org/10.1103/PhysRevE.74.056602
https://doi.org/10.1103/PhysRevE.74.056602
https://doi.org/10.1103/PhysRevLett.96.053903
https://doi.org/10.1364/OL.32.000325
https://doi.org/10.1364/OL.32.000325
https://doi.org/10.1103/PhysRevLett.92.093901
https://doi.org/10.1103/PhysRevLett.85.1863


References 75

[68] Moisés Fernandes de Souza et al. “Um breve tratado sobre a aproximação paraxial”.
Em: Revista Brasileira de Ensino de Física 36.3 (jul. de 2014), pp. 1–13. issn:
1806-1117. doi: 10.1590/S1806-11172014000300008.

[69] J.W. Goodman. Introduction to Fourier Optics. McGraw-Hill physical and quantum
electronics series. W. H. Freeman, 2005. isbn: 9780974707723.

[70] Emil Wolf. Introduction to the Theory of Coherence and Polarization of Light. First
Edition. Cambridge University Press, 2007. isbn: 9780521822114.

[71] Beran Mark J. e George B. Parrent Jr. Theory of Partial Coherence. Second Edition.
Prentice-Hall, 1974. isbn: 9780608308616.

[72] Andrey S. Ostrovsky, Miguel Á. Olvera-Santamaría e Paulo C. Romero-Soría. “Effect
of coherence and polarization on resolution of optical imaging system”. Em: Opt.
Lett. 36.9 (mai. de 2011), pp. 1677–1679. doi: 10.1364/OL.36.001677.

[73] Erwan Baleine e Aristide Dogariu. “Variable coherence tomography”. Em: Opt. Lett.
29.11 (mai. de 2004), pp. 1233–1235. doi: 10.1364/OL.29.001233.

[74] P H Tomlins e R K Wang. “Theory, developments and applications of optical
coherence tomography”. Em: Journal of Physics D: Applied Physics 38.15 (jul. de
2005), p. 2519. doi: 10.1088/0022-3727/38/15/002.

[75] Andreas Norrman, Sergey A. Ponomarenko e Ari T. Friberg. “Partially coherent
surface plasmon polaritons”. Em: Europhysics Letters 116.6 (fev. de 2017), p. 64001.
doi: 10.1209/0295-5075/116/64001.

[76] Alfonso Nardi et al. “Encoding information in the mutual coherence of spatially
9arated light beams”. Em: Opt. Lett. 47.18 (set. de 2022), pp. 4588–4591. doi:
10.1364/OL.463813.

[77] Olga Korotkova e Greg Gbur. “Chapter Four - Applications of optical coherence
theory”. Em: A Tribute to Emil Wolf. Ed. por Taco D. Visser. Vol. 65. Progress in
Optics. Elsevier, 2020, pp. 43–104. doi: 10.1016/bs.po.2019.11.004.

[78] Max Born e Emil Wolf. Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light. Seventh Edition. Cambridge University Press,
1999. isbn: 0521642221.

[79] W. Werner Lauterborn e T. Thomas Kurz. Coherent optics: fundamentals and
applications. Second Edition. Advanced texts in physics. Berlin: Springer, 2003. isbn:
3540439331.

[80] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Compu-
ting. Third Edition. Cambridge University Press, 2007. isbn: 0521880688.

[81] Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial e Applied
Mathematics, 2000. doi: 10.1137/1.9780898719598.

https://doi.org/10.1590/S1806-11172014000300008
https://doi.org/10.1364/OL.36.001677
https://doi.org/10.1364/OL.29.001233
https://doi.org/10.1088/0022-3727/38/15/002
https://doi.org/10.1209/0295-5075/116/64001
https://doi.org/10.1364/OL.463813
https://doi.org/10.1016/bs.po.2019.11.004
https://doi.org/10.1137/1.9780898719598


References 76

[82] Thiab R Taha e Mark I Ablowitz. “Analytical and numerical aspects of certain
nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation”. Em:
Journal of Computational Physics 55.2 (1984), pp. 203–230. issn: 0021-9991. doi:
10.1016/0021- 9991(84)90003- 2. url: https://www.sciencedirect.com/
science/article/pii/0021999184900032.

[83] P.A. Brandão e S.B. Cavalcanti. “Bragg-induced oscillations in non-PT complex
photonic lattices”. Em: Physics Letters A 383.22 (2019), pp. 2672–2677. issn: 0375-
9601. doi: 10.1016/j.physleta.2019.06.001.

[84] A. T. Friberg e R. J. Sudol. “Propagation parameters of gaussian Schell-model
beams”. Em: Optics Communications 41.6 (1982), pp. 383–387. doi: 10.1016/0030-
4018(82)90161-4.

[85] “Propagation and imaging experiments with Gaussian Schell-model beams”. Em:
Optics Communications 67.4 (1988), pp. 245–250. issn: 0030-4018. doi: 10.1016/
0030-4018(88)90143-5.

[86] Yangjian Cai et al. “Chapter Three - Generation of Partially Coherent Beams”. Em:
ed. por Taco D. Visser. Vol. 62. Progress in Optics. Elsevier, 2017, pp. 157–223. doi:
10.1016/bs.po.2016.11.001.

[87] F. Gori. “Mode propagation of the field generated by Collett-Wolf Schell-model
sources”. Em: Optics Communications 46.3 (1983), pp. 149–154. issn: 0030-4018.
doi: 10.1016/0030-4018(83)90266-3.

[88] J. Deschamps, D. Courjon e J. Bulabois. “Gaussian Schell-model sources: an example
and some perspectives”. Em: J. Opt. Soc. Am. 73.3 (mar. de 1983), pp. 256–261.
doi: 10.1364/JOSA.73.000256.

[89] Anthony Zee. Quantum Field Theory in a Nutshell. Second Edition. Princeton
University Press, 2010. isbn: 978-0691140346.

[90] Jean Zinn-Justin. Quantum Field Theory and Critical Phenomena. Fourth Edition.
Clarendon Press, 2002. isbn: 978-0198509233.

[91] Wlodek Zawadzki e Tomasz M. Rusin. “Nature of electron Zitterbewegung in crys-
talline solids”. Em: Physics Letters A 374.34 (2010), pp. 3533–3537. issn: 0375-9601.
doi: 10.1016/j.physleta.2010.06.028.

[92] W. Zawadzki e T. M. Rusin. “Nature of electron Zitterbewegung in crystalline solids”.
Em: Physics Letter A 374 (jul. de 2010), pp. 3533–3537.

[93] M. J. Cirino, P. A. Brandão e S. B. Cavalcanti. “Spatial coherence effects of stochastic
optical beams in periodic potentials”. Em: Phys. Rev. A 107.3 (mar. de 2023),
p. 033518.

https://doi.org/10.1016/0021-9991(84)90003-2
https://www.sciencedirect.com/science/article/pii/0021999184900032
https://www.sciencedirect.com/science/article/pii/0021999184900032
https://doi.org/10.1016/j.physleta.2019.06.001
https://doi.org/10.1016/0030-4018(82)90161-4
https://doi.org/10.1016/0030-4018(82)90161-4
https://doi.org/10.1016/0030-4018(88)90143-5
https://doi.org/10.1016/0030-4018(88)90143-5
https://doi.org/10.1016/bs.po.2016.11.001
https://doi.org/10.1016/0030-4018(83)90266-3
https://doi.org/10.1364/JOSA.73.000256
https://doi.org/10.1016/j.physleta.2010.06.028


References 77

[94] P. A. Brandão, M. J. Cirino e S. B. Cavalcanti. “Bragg scattering of stochastic beams
in PT-symmetric photonic lattices”. Em: Opt. Lett. 49.3 (fev. de 2024), pp. 618–621.
doi: 10.1364/OL.512326. url: https://opg.optica.org/ol/abstract.cfm?
URI=ol-49-3-618.

[95] Konstantinos G. Makris et al. “PT -symmetric optical lattices”. Em: Phys. Rev. A
81 (6 mai. de 2010), p. 063807. doi: 10.1103/PhysRevA.81.063807.

[96] G. Bachmann, L. Narici e E. Beckenstein. Fourier and Wavelet Analysis. 1ª ed. New
York, USA: Springer New York, 2002. isbn: 9780387988993.

[97] James S. Walker. Fast Fourier Transforms. 2ª ed. Flórida, USA: CRC Press, 1996.
isbn: 9780849371639.

https://doi.org/10.1364/OL.512326
https://opg.optica.org/ol/abstract.cfm?URI=ol-49-3-618
https://opg.optica.org/ol/abstract.cfm?URI=ol-49-3-618
https://doi.org/10.1103/PhysRevA.81.063807


78

APPENDIX A – Analytical Signals

All the basic quantities in classical optics, like the electric field E, magnetic field B,
charge ρ and current densities J are real functions of position r and time t. In statistical
optics, one is concerned with correlations and it is very useful to represent quantities by
complex functions, taking the real part to work with [15]. It is common to represent the
electromagnetic field by a scalar field, especially in wave optics. This is usually called the
scalar wave u(r, t) ∈ R, satisfying the wave equation:

∇2u(r, t) = 1
c2

∂

∂t
u(r, t), (A.1)

and the properties of such an equation give the possibility of working with a complex field
U(r, t) ∈ C satisfying

u(r, t) = Re [U(r, t)] , (A.2)

and the complex scalar field U(r, t) is called the analytical signal.

A.1 Monochromatic Waves
A light signal can be viewed as a monochromatic one, with one single frequency

component, or a polychromatic one, with a range of frequencies to be considered in the
frequency space. In a fixed spatial position, a monochromatic field with frequency ν0 can
be represented as the real scalar field

u(t) = A cos(2πν0 + ϕ), (A.3)

where A is the field amplitude and ϕ the phase. One can write its analytical signal as:

U(t) = Ae−iϕe−2πiν0t (A.4)

where the factor e−iϕ it is usually called phasor [7, 59]. A similar way to represent the real
signal is to rewrite the cosine as a sum of complex exponentials:

u(t) = A

2 e−iϕe−2πiν0t + A

2 eiϕe2πiν0t, (A.5)

hence, one can obtain the analytical signal from u(t) considering only the negative
frequencies (terms with a positive exponential argument) and doubling the amplitude of
the remaining term.
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A.2 Polychromatic Waves
A real signal u(t) representing a polychromatic wave can be described in the

frequency space as a continuous function ũ(ν), and the Fourier integral that represents
this signal is

u(t) =
∫ ∞

−∞
ũ(ν)e−2πiνt dν, (A.6)

where
ũ(ν) =

∫ ∞

−∞
u(t)e2πiνt dt, (A.7)

and, as u(t) is a real function, the complex spectral amplitudes given by ũ(ν) satisfy
ũ(−ν) = ũ∗(ν) and, thus, the negative frequency components carry no information. Thus,
the analytical signal in this case is better represented as the following:

U(t) = 2
∫ ∞

0
ũ(ν)e−2πiνt dν. (A.8)

One may ask why this is important. In the study of correlations, which are the
main quantities of the study of the stochastic nature of light, cross-correlations Γij are in
the core results of the theory. The Wiener-Khintchine theorem [15, 16, 71] states that the
cross-correlation can be thought of as an analytical signal of another quantity, enabling a
variety of results to the second-order scalar theory of coherence framework.
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APPENDIX B – Orthogonality condition of
Floquet-Bloch modes in finite and discrete

lattices

The objective of this appendix is to establish the orthogonality conditions for
the Floquet-Bloch functions. Here, this result will be achieved through the plane wave
expansion of each function, which is the most useful for this purpose [4]. As demonstrated
in Chapter 4, the plane wave expansion for the nth Floquet-Bloch function is given by:

un(x, k) = 1√
2π

∑
m

bm
n (k)ei(k+Km)x; (B.1)

here, Km represents a reciprocal lattice vector, and the 1/
√

2π factor is included to simplify
the orthogonality condition.

The coefficients bm
n (k) = bn(k + Km), forming elements of a unitary matrix denoted

as B. They serve as eigenvectors of Λ̂(k), hence Bmn = bm
n (k). Consequently, the following

property holds:
B∗B = BB∗ = I, (B.2)

consequently, this property yields relationships among our Fourier coefficients:∑
m

[bm
p (k)]∗bm

q (k) = δpq (B.3)

and ∑
n

[bp
n(k)]∗bq

n(k) = δpq. (B.4)

Hence, we know are able to compute the orthogonality condition for an infinite
lattice, considering x ∈ [−∞, ∞]:∫ ∞

−∞
u∗

n(x, k)um(x, q)dx = 1
2π

∫ ∞

−∞

∑
r

[br
n(k)]∗e−i(k+Kr)x ∑

s

bs
m(q)ei(q+Ks)xdx

= 1
2π

∑
r,s

[br
n(k)]∗bs

m(q)
∫ ∞

−∞
e−i(k+Kr)xei(q+Ks)xdx

= 1
2π

∑
r,s

[br
n(k)]∗bs

m(q)
∫ ∞

−∞
ei(q+Ks−k−Kr)xdx

=
∑
r,s

[br
n(k)]∗bs

m(q)δ(q + Ks − k − Kr)

(B.5)

where we used the distribution theory result, that relates the following distributions
1

2π

∫ ∞

−∞
eikxdx = δ(k). (B.6)
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Let us discuss the relevant terms within the summation. We assume that the wavenumbers
k and q belongs to the first Brillouin zone, denoted as k, q ∈ [−π/a, π/a), thereby k − q

cannot exceed 2π/a = |K±1|. Consequently, the delta function generally equals zero except
when Ks − Kr = 0. Hence,∫ ∞

−∞
u∗

n(x, k)um(x, q)dx =
∑

r

[br
n(k)]∗br

m(q)δ(q − k)

= δnmδ(q − k),
(B.7)

where we utlized equation B.1. While this holds true for an infinite lattice, in our compu-
tational treatment of a finite lattice, the normalization will differ.

Let us discuss the discrete case. If we try to do the integral in a unit cell, x ∈
[−a/2, a/2) for our 1D lattice, we obtain∫

cell
u∗

n(x, k)um(x, q)dx = 1
2π

∑
r,s

[br
n(k)]∗bs

m(q)
∫

cell
ei(Kr−Ks+q−k)x, (B.8)

establishing that un and um won’t be orthogonal for distinct wave numbers. Therefore, we
assume k = q, allowing the integral to be easily solved. Considering Ω = a as the length of
our unit cell, we obtain:∫

cell
u∗

n(x, k)um(x, k)dx = 1
2π

∑
r,s

[br
n(k)]∗bs

m(k)
∫

cell
dxei(Kr−Ks)x

= Ω
2π

,

(B.9)

where the Kronecker’s delta arises from evaluating the integral:∫
cell

ei(Kr−Ks)x =
0, r ̸= s

Ω, r = s
, (B.10)

in the case of a finite lattice, it proves beneficial to modify the factor multiplying the
plane wave expansion for the Bloch modes from 1/

√
2π to 1/

√
NΩ, where N represents

the total number of unit cells.

To rescue the integral over all the lattice [4, 95], we consider a lattice comprising
2N + 1 unit cells. Consequently, the integral over the lattice can be expressed as a sum
within each cell:∫

lattice
u∗

n(x, k)um(x, q)dx =
∫

lattice
v∗

n(x, k)vm(x, q)ei(q−k)xdx

=
∫ −a(N−1)−a/2

−aN
v∗

n(x, k)vm(x, q)ei(q−k)xdx + · · ·

+
∫ −a/2

−3a/2
v∗

n(x, k)vm(x, q)ei(q−k)xdx

+
∫ a/2

−a/2
v∗

n(x, k)vm(x, q)ei(q−k)xdx

+
∫ 3a/2

a/2
v∗

n(x, k)vm(x, q)ei(q−k)xdx

+ · · · +
∫ aN+a/2

a(N−1)+a/2
v∗

n(x, k)vm(x, q)ei(q−k)xdx,

(B.11)
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then, by performing a substitution of the form x = x̃ ± νa in each integral, where ν is an
integer, and considering ∆k = q − k, we arrive at:

∫
lattice

u∗
n(x, k)um(x, q)dx =

∫ a/2

−a/2
v∗

n(x, k)vm(x, k)ei∆kxdx

 N∑
ν=−N

ei(a∆k)ν


= DN(a∆k)

∫ a/2

−a/2
v∗

n(x, k)vm(x, k)ei∆kxdx,

(B.12)

and the sum between brackets is the Dirichlet kernel [96]. As we take the limit N → ∞, it
transforms into a sum of Dirac delta functions [97]:

∫ ∞

∞
u∗

n(x, k)um(x, q)dx = 2π
∞∑

ν=−∞
δ(a∆k − 2πν)

∫ π/a

−π/a
u∗

n(x, k)um(x, q)dx, (B.13)

and, given the restriction of k to the first Brillouin zone, the only term that remains in
the sum is the one where ν = 0. Consequently, we arrive at the previously established
orthogonality condition: ∫ ∞

∞
u∗

n(x, k)um(x, q)dx = δnmδ(k − q). (B.14)
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The interaction between a partially coherent field with a one-dimensional periodic photonic environment is
investigated within the framework of Floquet-Bloch modes. To this end, we describe the interplay between
lattice properties and field fluctuations by considering the optical beam as a linear combination of Floquet-Bloch
modes, whose coefficients are described by a stationary random process. It is demonstrated that the propagation
of partially coherent beams depends not only on the average of the excitation of each band but also on the
correlations existent among the various bands supported by the lattice.
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I. INTRODUCTION

Wave propagation through periodic structures has been
extensively studied in diverse physical environments such as
optical lattices, waveguide arrays, and Bose-Einstein conden-
sates, among others. Stemming from the analogy between
electromagnetic waves in a periodic dielectric structure and
electrons in a periodic atomic potential, work based on
Floquet-Bloch (FB) optical modes has flourished since the
advent of photonic crystals [1–4]. One of the most important
features exhibited by wave propagation in periodic media
is the existence of bands and forbidden frequency gaps for
electromagnetic waves, [5,6]. Their existence in the photonic
density of states is of fundamental importance as dispersion
and diffraction are strongly enhanced, modifying severely the
properties of light propagation. Based on these facts, theoreti-
cal and experimental research on modulated photonic lattices
has been developed intensely in the last decades, revealing
rich phenomena [2,7].

However, in real experiments all light sources fluctuate
in the sense that the fields they generate undergo random
fluctuations, and it is well known that the spatial coherence
properties of a source strongly affect the spectrum of the
propagating wave. By coherence here we mean a measure
of correlations between the components of the fluctuating
field at two or more points in the space at the same time.
Coherence is a fundamental concept about the nature of light
and investigating its influence upon optical systems is nec-
essary if one is to achieve spatial coherence control, as it is
required in many practical applications such as imaging [8],
tomography [9], and beam propagation [10], among many
others [11,12]. Therefore, owing to the fact that fluctuations
are always present in real systems, one must include them
in the investigation of periodic systems to find the extent
that they might modify the spectrum dynamics [13]. To this

*miqueias@fis.ufal.br
†paulo.brandao@fis.ufal.br
‡solange@fis.ufal.br

end, one may rely on the techniques of statistical optics, also
known as optical coherence theory [14,15].

Based on the above discussion, in this paper we introduce
a method to understand the interaction between a partially
coherent field with a one-dimensional periodic photonic en-
vironment within the framework of Floquet-Bloch modes
together with a space-frequency representation of stationary
random processes. For comparison purposes, we apply our
scheme to the propagation of a deterministic Gaussian beam
as well as the propagation of partially coherent Gaussian-
Schell beams [16]. We choose to work with the FB basis
considering that a FB wave traveling through a periodic
medium is the counterpart of a plane wave traveling through
a homogeneous medium. A FB mode itself is composed of a
group of plane waves. In both cases the final beam is defined
as the linear combination of the FB modes, which are the
eigenvalues of the paraxial equation. In the partially coherent
case, each linear combination is just a member of an ensemble
of possible output beam shapes. The output beam profiles are
determined by the interference among multi FB modes. We
shall describe the role played by band correlations and their
consequences. To this end, in the next section we introduce
our theory in the case of a deterministic beam and apply it
to a wide Gaussian beam. In Sec. III we present the gener-
alization of the deterministic theory to include the statistical
properties of the incident beam, and describe the evolution of
the Gaussian-Schell beam. In Sec. IV we conclude.

II. DETERMINISTIC THEORY

Let us begin by considering a monochromatic realization
of an optical field represented by the slowly varying enve-
lope ψ (x, z) propagating along the homogeneous z direction
through a periodic medium positioned along the transverse
direction x. Its dynamical behavior can be well described by
the normalized paraxial wave equation

i
∂ψ (x, z)

∂z
+ ∂2ψ (x, z)

∂x2
+ V (x)ψ (x, z) = 0, (1)
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where ψ (x, z) represents the normalized electric field enve-
lope. The function V (x + a) = V (x) describes the periodic
lattice and is proportional to the refractive index of the ma-
terial. We suppose that it has the following general form:

V (x) =
∞∑

m=−∞
Vme2π imx/a, (2)

where the parameter a is a positive number representing the
lattice period and Vm represents the mth Fourier amplitude,
which is a complex number, in general.

The eigenstates of the paraxial wave equation are defined
as ψn(x, k) = un(x, k)eiβn (k)z, with k as the Bloch wave num-
ber corresponding to the FB mode un(x, k), which satisfies the
following equation:

d2un(x, k)

dx2
+ V (x)un(x, k) = βn(k)un(x, k); (3)

here, we fix the Bloch wave number within the first Brillouin
Zone (BZ), that is k ∈ [−π/a, π/a]; n is the band index; and
βn(k) is the propagation constant of the FB wave. The FB
modes are the eigenstates of the paraxial wave equation (3).
In a periodic medium they play the same role as plane waves
in a homogeneous medium. They are stationary states just like
in the solid state, except that here in the space description
they are diffractionless solutions, meaning that the intensity
is independent of the propagation direction. These modes are
fully determined by the structure of the lattice and remain
dormant unless they become excited by the incident wave
field. In a linear propagation regime, each FB mode acquires
its own phase, independent of the other modes. Since these
modes remain the same in spite of the different relative phases
acquired during propagation, the beam may have a completely
different profile at the output compared to the input profile
according to the dynamics determined by the band structure,
as we shall demonstrate in the following.

We begin by considering that a general solution for Eq. (1)
can be written as a linear superposition of FB modes, in the
sense that each mode supported by the lattice is a FB wave
with its own propagation constant βn:

ψ (x, z) =
∞∑

n=1

∫ π/a

−π/a
cn(k)un(x, k)eiβn (k)zdk, (4)

where cn(k) is the participation coefficient of band n at wave
vector k. It represents the relative power within the correspon-
dent FB mode with Bloch wave number k and band n. The
envelope profile of the optical field is then determined by the
interference among these modes. These coefficients are fully
defined at the input plane z = 0, and can be calculated from

cn(k) =
∫ ∞

−∞
u∗

n(x, k)ψ (x, 0)dx, (5)

after the orthogonality between FB modes∫ ∞
−∞ u∗

n(x, k1)um(x, k2)dx = δnmδ(k1 − k2) was used, and
ψ (x, 0) describes the beam profile at z = 0. Depending on
the variation of the beam amplitude at z = 0, and also on the
values of the Fourier components Vm, the incident beam may
excite FB modes belonging to more than one band.

Figure 1 displays the first three bands for a periodic lattice
represented by the truncated expansion of Eq. (2), that is,

x
|u

1(
x,

0)
|2

x

|u
2(
x,

1)
|2

k

β n
(k

)

n = 1

n = 2

n = 3

FIG. 1. (Top) Propagation constant βn(k) versus Bloch wave
number k for modes n = 1, 2, and 3 and fixed potential amplitude
A = 4. Floquet-Bloch mode amplitudes |u1(x, k = 0)|2 (bottom left)
and |u2(x, k = 1)|2 (bottom right) versus lattice position x. The red
circles in the top panel represent the propagation numbers for each
of the FB modes represented in the bottom panels.

V (x) = A cos2 x, which is the potential used in all subsequent
analysis. More specifically, V0 = A/2 and V±1 = A/4 and
Vm = 0 otherwise. Along with the bands, the figure displays
two FB modes corresponding to Bloch wave number k = 0
(bottom left) and k = 1 (bottom right) for n = 1 and n = 2,
respectively. The zeros of FB modes at the band edges are
characteristic of Hermitian lattices only [17].

Gaussian beam source

Let us now apply the formalism developed above by con-
sidering the propagation of a fully coherent Gaussian beam
described by the incident field amplitude,

ψ (x, 0) = S0e−x2/2σ 2
eiqx, (6)

where σ is the beam width, q the transverse momentum k, and
S0 the field amplitude, at x = 0. To gain physical insight into
the contribution of the Bloch coefficients cn(k), we write the
Bloch mode un(x, k) as

un(x, k) = eikx
∞∑

α=−∞
d (n)

α (k)e2π iαx/a, (7)

where d (n)
α (k) is the αth expansion coefficient of band n and

Bloch wave number k. Next, we substitute (6) and (7) into (5)
to obtain

cn(k) = σS0

√
2π

∞∑
α=−∞

[
d (n)

α (k)
]∗

e−(σ 2/2)(2πα/a+k−q)2

. (8)

Since d (n)
α (k) (for varying α) are the eigenvectors’ coeffi-

cients of the matrix obtained after substituting (7) into (3),
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k

|c
n(

k)
|2

k

|c
n(

k)
|2

k

|c
n(

k)
|2

(a)

(b)

(c)

q = 0.0

q = -0.5

q = -1.0

FIG. 2. Absolute squared Floquet-Bloch coefficients |cn(k)|2
versus wave number k, for fixed A = 4.0 input beam width σ = 7π

and various input wave numbers: (a) q = 0.0 (the inset illustrates the
contribution of the second and third bands), (b) q = −0.5, and (c)
q = −1.0.

Eq. (8) is more suitable from a computational point of view
since one does not need to deal with the integration over the
x axis, as Eq. (5) suggests. Also, for a fixed Bloch wave
vector k and moderate values of A, only a few of d (n)

α (k)
are significantly different from zero, as we show in the ex-
amples discussed below. Figure 2 illustrates the participation
coefficients |cn(k)|2 (normalized by σS0

√
2π ) for the first

three bands n = 1, 2, 3. Figure 2(a) displays the coefficient
profiles for q = 0 (normal incidence) and indicates that most
of the contribution comes from the first band, with a small
fraction of the third band, and as illustrated in the inset an even
smaller contribution of the second band. Part (b) is plotted for
q = −0.5 and shows a similar behavior, with the first band
exhibiting most of the contribution, but now the second band
contribution grows and overcomes the contribution of the third
one.

By simply changing the excitation angle, which determines
the transverse momentum q of a beam, one can dynamically
control its diffraction properties [18]. We turn to Fig. 2(c), the
case q = −1, corresponding to Bragg scattering. We see that
the first two bands exhibit identical contributions to the overall
beam evolution. Since the beam direction is determined essen-
tially by the direction of the group velocity ∇kβn(k), which
is perpendicular to the transmission band, it is expected that
in the Bragg condition the beam evolves mainly along the
z direction, diffractionless as shown in Fig. 1. This claim is
confirmed by Fig. 3(a), which displays the plot of |ψ (x, z)|2,
calculated directly from (4).

z
x c

(z
)

z

x

|
(x

,z
)|

2

(a)

(b)

FIG. 3. (a) Beam intensity |ψ (x, z)|2. (b) Beam center oscillation
xc(z) versus propagation distance z for input wave number q = −1.0,
input beam width σ = 7π , and potential amplitude A = 4.0.

After a close inspection of Fig. 3(a), one finds that the beam
center oscillates during propagation along z. Let us then define
the beam center as

xc(z) =
∫

x|ψ (x, z)|2dx∫ |ψ (x, z)|2dx
. (9)

Figure 3(b) displays the beam center oscillations xc(z). It
should be pointed out that these oscillations are not cen-
tered around xc = 0. There is a slow rectilinear movement
in the negative x direction superposing the oscillations. This
behavior resembles the quivering of the free Dirac electron,
well known by Zitterbewegung (ZB) [19]. In the context of
photonic systems such oscillations have been reported in the
case of waveguide arrays [20–22].

III. STOCHASTIC THEORY

Random fluctuations are inherent in all optical fields ir-
respective of their origin; whether spontaneous emission,
temperature fluctuations, or mechanical vibrations, among
many others, the fluctuations are always present. Therefore,
to deal with measurable quantities in optical systems one
must incorporate statistical concepts to the theory to char-
acterize, not the field evolution in one space-time point, but
the correlations between two (or more) space-time points.
In second-order classical statistical optics, one characterizes
the two-point correlations by using the cross-spectral density
function. Under general conditions, likely to be valid in many
systems of interest, the cross-spectral density of a statistical
stationary source is defined as

W (x1, x2, z) = 〈ψ∗(x1, z)ψ (x2, z)〉ω, (10)

where 〈·〉ω implies an ensemble average of monochromatic
realizations of the incident optical field.
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A random beam can be generated by choosing the
FB functions as an orthonormal basis to obtain a linear
combination that represents the beam profile inside the pe-
riodic medium, as suggested in the last section. However,
now we suppose that the respective FB coefficients cn(k) are
described by stationary random processes of the FB wave
number so that each mode represents one configuration of the
ensemble. The evolution of the overall field ψ (x, z) depends
not only on the average values of cn(k) but also on the cor-
relations existent between the bands that correspond to the
cross-correlations Cmn(k1, k2) = 〈c∗

m(k1)cn(k2)〉ω. In this way,
one may speak of the correlations between cm(k1) and cn(k2)
and study their influence upon the evolution of a partially
coherent beam. Previous works on the propagation of partially
coherent beams in periodic structures have been published in
nonlinear [23] and linear [24,25] systems. The approach taken
by Hoenders and Bertolotti is very similar to ours, differing in
that they assume a weakly periodic media and a nonparaxial
propagation, which results in a somewhat more involved anal-
ysis of the propagation dynamics.

Thus, in the following we shall be concerned with this
problem: given the initial distribution of field correlations
W (x1, x2, 0), how can one obtain the cross-spectral density
at a given z > 0? The answer to this question lies within the
correlation Cmn(k1, k2) between cn(k1) and cm(k2) that can be
directly evaluated from (5):

Cmn(k1, k2) = 〈c∗
m(k1)cn(k2)〉ω

=
∫∫

um(x1, k1)u∗
n(x2, k2)W (x1, x2, 0)dx1dx2.

(11)

The coefficients Cmn(k1, k2) represent a measure of the corre-
lations between bands m and n for FB wave numbers k1 and
k2. Once the coefficients Cmn(k1, k2) are obtained, and with the
knowledge of the statistical properties at the input, the cross-
spectral density W (x1, x2, z) for z > 0 is readily obtained for
any state of light:

W (x1, x2, z) =
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2

× Cmn(k1, k2)u∗
m(x1, k1)un(x2, k2)

× e−i[βm (k1 )−βn(k2 )]z. (12)

The averaged intensity is given by S(x, z) = W (x, x, z) =
〈|ψ (x, z)|2〉, that is,

S(x, z) =
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2

× Cmn(k1, k2)u∗
m(x, k1)un(x, k2)

× e−i[βm (k1 )−βn(k2 )]z. (13)

By inspection of Eq. (13), one can conclude that the
spatial correlation represented by the cross-spectral function
W (x1, x2, z) does induce additional FB modes to the overall
field. One may visualize the correlations through the spectral
degree of coherence, a convenient quantity that measures the
normalized degree of coherence between the modes, defined

here as

μnm(k1, k2) = 〈c∗
n (k1)cm(k2)〉√

〈|cn(k1)|2〉〈|cm(k2)|2〉
, (14)

which satisfies the condition 0 � |μnm(k1, k2)| � 1. When
|μnm(k1, k2)| = 1, the field is fully correlated at wave numbers
(k1, k2) and bands (n, m). In the opposite extreme, the field is
fully uncorrelated, and in between these two extreme cases,
the field is partially coherent. Next, we illustrate this theory,
applying it to the specific case of Gaussian-Schell sources.

Gaussian-Schell sources

Gaussian-Schell models describe an important class of
partially coherent beams that are easily created in the labo-
ratory [26,27]. They are characterized by a spectral degree of
coherence that depends only on the difference between the
location of the two points, x1 and x2. Considering that the
field fluctuations are well described by a stationary process,
one suitable model for the cross-spectral density function for
this class of beams at the input is given by

W (x1, x2, 0) = S2
0e−(x2

1+x2
2 )/2σ 2

e−(x1−x2 )2/2δ2
e−iq(x1−x2 ), (15)

where S0 is the field amplitude, σ is the beam width, δ is
the coherence parameter (δ → ∞ describing a fully spatially
coherent beam), and −q(x1 − x2) is a phase factor related to
the transverse incident wave vector q.

The FB correlation coefficients Cmn(k1, k2) are written in
the same form as in Eq. (8) after substituting (15) and (7) into
(11) to obtain

Cmn(k1, k2) = 2πS2
0δσ

2

√
δ2 + 2σ 2

∞∑
α,β=−∞

d (m)
α (k1)

[
d (n)

β (k2)
]∗

× exp

[
−δ2σ 2

(
k1 + 2π

a α − q
)2

2(δ2 + 2σ 2)

]

× exp

[
−δ2σ 2

(
k2 + 2π

a β − q
)2

2(δ2 + 2σ 2)

]

× exp

{
−σ 4

[
k1 − k2 + 2π

a (α − β )
]2

2(δ2 + 2σ 2)

}
. (16)

Equation (16) is a generalization of the absolute square of
Eq. (8). Note that by taking the limit δ → ∞, with k1 = k2 =
k and m = n, one retrieves Eq. (8). It is easy to see that in
the special case of high coherence, δ → ∞, the coefficients
Cmn(k1, k2) can be written as a product between two indepen-
dent functions of n (m) and k1 (k2), which is indicative of a
full correlation between the modes. Figure 4 illustrates the
mean participation coefficients 〈|cn(k)|2〉 for two FB bands
(n = 1 and 2), for several values of the coherence parameter
δ, and for three incidence wave vectors q = 0, q = −0.5 and
q = −1.0 where all the coefficients are divided by the con-
stant factor multiplying the summation. The arrow in Fig. 4(a)
indicates the growth direction of the coherence parameter, and
this applies to all plots in the figure. It is clear that as the
spatial coherence decreases, the contribution to the overall
beam increases in the sense that many FB modes are now
excited when compared to the fully coherent case. Conversely,
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⟨|c
n(
k)

|2 ⟩
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δ=0.1σ

σ

(a)

(d)(c)

(e)

q = 0.0

q = -0.5
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n = 1 n = 2
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FIG. 4. Mean absolute squared of the first two FB coefficients
〈|cn(k)|2〉 versus wave number k with input beam width σ = 7π ,
amplitude A = 4.0, and coherence parameter δ ∈ [σ/10, σ ] for var-
ious input wave numbers: (a and b) with q = 0.0; (c and d) with
q = −0.5; and (e and f) with q = −1.0. The arrow indicates increas-
ing δ. The nth column corresponds to the nth mode, n = 1, 2.

as the spatial coherence increases, the broadening that once
occupied the whole Brillouin zone becomes smaller and tends
to localize along a limited band around k = 0, as in the fully
coherent case depicted in Fig. 2. Therefore, it is clear that
the lack of spatial coherence does indeed excite additional FB
modes, broadening the spectrum. The extent of the broadening
can be controlled by the coherence degree, a feature that is
quite interesting from the point of view of applications.

The spectral degree of coherence μnm(k1, k2) as a function
of the coherence parameter δ is displayed in Fig. 5 for some
FB wave numbers k1 and k2 in the Brillouin zone, where we
considered the correlations between the first and second bands
n = 1 and n = 2. Figures 5(a) and 5(d) show an example at
the same FB wave number, k. In the solid state, a transition
between bands at the same k value is considered a direct tran-
sition. Otherwise, it is known as indirect. Here, we adapt this
nomenclature referring to direct points k1 = k2 and indirect
ones k1 
= k2. Therefore, Figs. 5(a) and 5(d) are direct points,
while Figs. 5(b) and 5(c) are indirect points. In both cases,
direct or indirect, as the coherence parameter δ increases,
the correlation between bands also increases, reaching the
unit value asymptotically μ12 → 1 as δ → ∞ as expected.
However, for indirect points the rate at which the coherence
degree increases is much slower than the rate for direct points.

The resulting beam spectral density is plotted in Fig. 6(a)
against the propagation distance z for δ = 0.01σ . As expected,
in this low-coherence regime, the influence of the coherence
parameter upon the propagation causes spreading of the beam

12
(k

1,k
2)

q =0.0
q = 0.5
q = 1.0

(a)

(c)

(b)

(d)

FIG. 5. Spectral degree of coherence μ12(k1, k2) versus the
coherence parameter δ for input beam width σ = 7π and amplitude
A = 4.0 at various incident angles, correspondent to q = −1.0 (solid
line), q = −0.5 (dashed line), and q = 0.0 (dot-dashed line). Several
spectral degrees of coherence between points of the Brillouin zone
are displayed: (a) k1 = k2 = −0.3; (b) k1 = −0.2 and k2 = −0.3; (c)
k2 = −0.3 and k1 = −0.2; and (d) k1 = k2 = −0.2.

intensity all over the BZ, resembling the case where there is
no periodic lattice at all, as illustrated.

Now we turn to Fig. 6(b), where the beam center Xc(z) is
depicted according to the definition

Xc(z) =
∫

xS(x, z)dx∫
S(x, z)dx

. (17)

It can be demonstrated that Eq. (17) has the general
form Xc(z) = Xc(0) + vz + p(z), where p(z) is a periodic

z
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FIG. 6. (a) Beam spectral density S(x, z) with coherence pa-
rameter δ = σ/100. (b) Mean beam center oscillation Xc(z) versus
propagation distance z for three coherence parameters: σ , σ/10, and
σ/100. For input wave number q = −1.0, input beam width σ = 7π

and potential amplitude A = 4.0.
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function of z that depends on the correlation between bands
〈c∗

n (k)cm(k)〉 and v denotes the linear ramp which depends
on the average values 〈|cn(k)|2〉 for each band n. They both
also depend on the group velocity dβn(k)/dk. The exact
dependence of Xc(z) on the cross-correlations Cmn(k1, k2) and
the group velocity dβn(k)/dk is so intricate that it will be
investigated in more detail in a future work. Nevertheless,
one finds that for an intermediate regime (δ = 0.1σ ), although
the oscillations executed by the beam center undergo damp-
ing, they do not cease to exist. However, as δ decreases, the
damping effect is more severe and tends to wipe them off to
the extent that only the rectilinear movement is left. This is
expected to occur in view of the previous discussion involving
the direction of the group velocity of a Gaussian wave packet,
which is determined by the band diagram illustrated at the
top of Fig. 1 and by the distribution of the absolute squared
Floquet-Bloch coefficients for each band, like the ones shown
in Fig. 2. Here, the group velocity of the propagating beam
is severely affected when additional FB modes are excited in
various bands due to the low spatial coherence (see Fig. 4) of
the incident beam. As a consequence, the number of modes
belonging to the final superposition increases, changing sub-
stantially the correlations between the various modes. The
consequence is that the averaged group velocity will not main-
tain periodic coherence during propagation.

IV. CONCLUSIONS

We have presented a theory of diffraction of partially
coherent paraxial optical beams propagating through a

periodic medium. Within the framework of Floquet-Bloch
waves, we have considered a linear combination of FB modes
with random coefficients to obtain a general expression for
the cross-spectral density W (x1, x2, z) at propagation distance
z. Considering as input a Gaussian-Schell beam, we have
shown that weak correlations may modify severely the power
distribution of the FB modes by spreading the power among
additional FB wave vectors, in contrast with the fully coherent
beam, whose FB power content is localized within a finite
bandwidth in the neighborhood of the input wave vector. In an
intermediate regime of coherence the modes tend to broaden
up to the point of low coherence, where the power distribution
is extended to all over the BZ and the beam profile can hardly
note the grating.

A knowledge of the changes as light propagates through
the transverse periodic medium in the presence, as well as in
the absence, of field fluctuations is necessary to understand
their influence upon light transport. These properties depend
basically on the band structure. By introducing the statistical
properties of the optical field in the investigation of beam
propagation, one should unravel useful phenomena that will
lead to remarkable techniques that manipulate light using the
notion of coherence.
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The propagation of a Gaussian–Schell beam through a
PT-symmetric optical lattice, whose index of refraction
is represented by a sinusoidal type of function, is theo-
retically investigated. Within the framework of standard
coherence theory, one is able to access and elucidate unex-
pected consequences of the interplay between the spatial
coherence properties of the beam and the non-Hermitian
nature of the photonic lattice. We describe how one may use
a non-Hermitian periodic medium to enhance the spatial
coherence properties of a partially coherent beam. © 2024
Optica Publishing Group

https://doi.org/10.1364/OL.512326

In the last decades, investigations on optical systems described
by non-Hermitian Hamiltonians have revealed a great deal of
exotic optical phenomena with no counterpart in a Hermi-
tian environment, particularly those Hamiltonians which are
simultaneously symmetric under both space inversion (parity
P) and temporal reversal (T), i.e., the PT-symmetric Hamilto-
nians. Effects, such as loss-induced optical transparency [1],
non-reciprocal diffraction patterns [2], power oscillations [3],
and enhanced transmission [1], among many others, were dis-
covered. The depart of the optical system from its Hermitian
character can be described by a parameter which measures the
ratio between the complex part and the real part of the refractive
index. Once this parameter reaches a critical point [4], the PT-
symmetric system undergoes a spontaneous symmetry breaking,
meaning that a real eigenvalue solution of the wave equation
bifurcates into a pair of conjugate complex values, i.e., the sys-
tem undergoes a phase transition to the complex plane. As a
consequence, some eigenmodes of the Hamiltonian will decay,
while others will grow indefinitely, and this is the origin of the
exotic properties they exhibit.

Considering the remarkable techniques available nowadays,
the development of artificial materials specifically designed to
contain spatially distributed balanced gain and loss, in a PT-
symmetric arrangement, has provided the ideal conditions to
investigate PT-symmetric optical materials. Considering the
analogy between the optical paraxial wave equation and the
Schrödinger equation, the index of refraction plays the role of the
PT-symmetric potential. Therefore, the complex index of refrac-
tion abides by the relation n(r) = n∗(−r), and consequently, its
real part is an even function of r in contrast with the imaginary

part which is odd. Nowadays, researchers have realized that the
application of the ideas of PT symmetry and exceptional points
to optical systems has opened an important area of research in
integrated photonics [5].

However, there is one particular important aspect of the optical
fields that has to be taken into account in real physical systems:
the fact that the optical field fluctuates. For a thorough real-
istic theoretical investigation in PT-symmetric optical systems,
one should include the contribution of spatial correlations. To
include randomness here, one can rely on classical optical coher-
ence theory which is based on observable quantities, in the sense
that these quantities can be measured in an experiment using
ordinary optical instruments [6].

Motivated by these remarkable phenomena which have the
potential to inaugurate a new era of photonic devices, we have
investigated the interplay between the Bragg scattering and the
PT symmetry of a partially coherent optical beam that trav-
els through a one-dimensional periodic PT-symmetric structure.
The simpler deterministic Hermitian version of this system sus-
tains optical power oscillations, due to the coupling between
the beam and the periodic structure. These oscillations occur
between a particular pair of transverse modes, i.e., those related
with the Bragg resonance condition [7,8]. Furthermore, it is
well-known that interference effects are severely modified by the
correlation properties of light. Therefore, inspired by all of these
facts and guided by the standard coherence theory, in this Letter,
we set out to study the Bragg diffraction of a Gaussian–Schell
beam [9] propagating through a PT-symmetric sinusoidal opti-
cal lattice. We find that the peculiarities typical of PT-symmetric
systems are modified by the spatial coherence properties of the
beam. These, in turn, are severely modified by the PT-symmetric
medium which induces correlations to incoherent beams, as we
proceed to describe.

Let us begin by considering a statistically stationary scalar
optical field ψ(x, z, t) propagating mainly along the z-direction
through a periodic medium along the transversal direc-
tion x, characterized by its cross-spectral density W12(z,ω) =
W(x1, x2, z,ω), defined as the Fourier transform of the mutual
coherence function Γ(x1, x2, τ) = ⟨ψ∗(x1, t)ψ(x2, t + τ)⟩. The
field varies in the (x, z) plane and ω is the angular frequency.
The cross-spectral density can also be directly written as a
correlation function W(x1, x2, z,ω) = ⟨ψ∗(x1, z,ω)ψ(x2, z,ω)⟩ω ,
where ψ(x, z,ω) is the space–frequency component of the ana-
lytic signal ψ(x, z, t) at frequency ω and the average is taken

0146-9592/24/030618-04 Journal © 2024 Optica Publishing Group
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Fig. 1. (a) Real (blue) and imaginary (orange) parts of V(x)whose
period is 2π and assuming V0 = 0.05. (b) Real and (c) imaginary
parts of the effective potential V(x1, x2). The non-Hermitian lattice
is characterized by β = 0.5.

over an ensemble of monochromatic realizations all having the
same frequency [10]. The dependence upon ω is omitted from
now on. Assuming that each element of the ensemble repre-
senting the optical field satisfies the paraxial wave equation
iψz(x, z) + ψxx(x, z) + V(x)ψ(x, z) = 0, it is easy to demonstrate
that the cross-spectral density evolves according to [11]

i
∂W12(z)
∂z

+

(︄
∂2

∂x2
2
−
∂2

∂x2
1

)︄
W12(z) +V12W12(z) = 0, (1)

where V12 = V(x2) − V∗(x1) is the effective potential represent-
ing the transverse variations of the refractive index profile
V(x) relative to a substrate where the heterogeneous material
is deposited. Please take note that the paraxial wave equation
defined here differs from the one presented in Ref. [11].

We assume that V(x) satisfies the PT-symmetry condition,
i.e., V∗(−x) = V(x) and write V(x) = V0(cos x + iβ sin x), where
V0 and β are the real parameters. Here, β is a measure of the
depart of the system from its Hermitian character. By increas-
ing it, one enhances the imaginary part driving the spectrum of
the Hamiltonian to the complex plane. In summary, while each
memberψ(x, z) of the ensemble evolves under the potential V(x),
the cross-spectral density W12(z) propagates through an effective
potential functionV(x1, x2). Figure 1 displays both potential pro-
files V(x) and V(x1, x2). The periodic potential has a symmetry
breaking point at βc = 1. For values of β<βc, the propagation
constants are real (for each member of the ensemble), and the
field profile remains bounded during propagation. In the case
β>βc, the propagation constants acquire positive and negative
nonzero imaginary values and the propagation is unstable. At
β = βc, the field evolves under a nontrivial dynamics [12].

The simplest nontrivial model of a random optical beam is the
Gaussian–Schell beam, and therefore we choose one for which
the initial correlation profile is given by

W12(0) = e−(x2
1+x2

2)/4σ
2 e−(x1−x2)

2/2δ2 e−iq(x1−x2), (2)

where σ is related to the initial beam width, δ is the coher-
ence parameter, and q is the incident transverse wavevector,
which must be chosen at the edge of the Brillouin zone, for

Fig. 2. Stochastic beam dynamics in a real lattice with β = 0.
(a) Beam center Xc(z) and (b) beam width ∆X(z) for δ = 80 (blue),
20 (orange), and 10 (yellow). The plots in (c) display the spectral
density S(x, z) evolution in the (x, z) plane for the three values of δ.
Parameters used: σ = 40, V0 = 0.1, and q = 1/2.

the Bragg resonance to occur. The beam is fully coherent in
the limit δ → ∞. The initial spectral density is described by a
Gaussian function S(x, 0) = W(x, x, 0) = e−x2/2σ2 . To numerically
solve Eq. (1), we write it as ∂W12(z)/∂z = i(∇2

12 +V)W12(z),
where ∇2

12 = ∂
2/∂x2

2 − ∂
2/∂x2

1. The formal solution to this equa-
tion is given by W12(z) = ei(∇2

12+V)zW12(0) such that W12(z + dz) =
ei(∇2

12+V)dzW12(z). By using the approximated expression for the
exponential, eidz(∇2

12+V) ≈ eiVdz/2eidz∇2
12 eiVdz/2, one can iterate this

last equation, introducing an error O(dz3) at each step. Then, the
operator eidz∇2

12 can be applied to the resulting field by using the
fast Fourier transform [13].

To characterize the optical beam propagation, we use the
normalized moments ∆r of the spectral density S(x, z), defined
as

∆r(z) =
1

P(z)

∫ +∞

−∞

xrS(x, z) dx, (3)

where P(z) =
∫ +∞
−∞

S(x, z) dx is the transverse beam power at prop-
agation distance z. The beam center is given by the first moment
Xc(z) = ∆1(z), and one resorts to the second moment to define the
beam width as the root mean square, ∆X(z) = [∆2(z) − ∆2

1(z)]1/2.
The effective degree of spatial coherence µ is given by

µ2(z) =

∫
|W(x1, x2, z)|2 dx1dx2[︄ ∫

S(x, z) dx

]︄2 . (4)

It should be noted here that Eq. 4) characterizes the spatial
coherence of a light beam by taking into account its intensity
[14].

Now we are ready to investigate the properties of the random
beam on propagation, beginning with a real lattice (β = 0). Let
us turn to Fig. 2, where the evolution in space of the beam center
(a) and the beam width (b) are illustrated for three values of the
coherence parameter. We find that partial coherence promotes
the damping of the oscillation movement, and the more incoher-
ent, more severe the effect up to the point where the coherence
becomes so low that the beam center hardly oscillates, as if



620 Vol. 49, No. 3 / 1 February 2024 / Optics Letters Letter

Fig. 3. Beam evolution of partially coherent light in a PT-
symmetric periodic potential below the symmetry breaking point
β = 0.8. (a) Beam center, (b) beam width, and (c) spectral density
in the plane (x, z). The coherence parameters are δ = 10 (yel-
low), δ = 20 (orange), and δ = 80 (blue). Continuous (dashed) lines
represent q = 0.5 (q = −0.5).

the lattice has been washed out. In Fig. 2(c), the spectral den-
sity is depicted in the x–y plane exhibiting the damping of the
oscillations as the coherence decreases.

These findings can be elucidated by considering the excita-
tion of an ensemble of Floquet–Bloch modes that describes the
dynamics of a partially coherent beam [15]. Recent research has
shown that optical beams characterized by a low spatial coher-
ence exhibit a larger number of excited Floquet–Bloch modes
when compared to fully coherent beams. This phenomenon
results in a complex propagation dynamics wherein both the
central position and the width of the beam undergo nontrivial
changes on propagation. The observations presented in Fig. 2
are confirmed by earlier studies in the field.

We proceed by considering a complex lattice below the sym-
metry breaking point (β<1) and compare the results with the
Hermitian ones shown in Fig. 2. To this end, we turn to Fig. 3,
which is identical to Fig. 2, with the same parameters, except
for the complex lattice. Furthermore, besides the wavevec-
tor q = 1/2, Fig. 3 shows the dynamics for both q = ±1/2 to
illustrate the non-reciprocity aspect of the dynamics. In all cir-
cumstances, the beam center, the beam width, and the spectral
density exhibit complete different behaviors depending on the
initial wavevector, which is a manifestation of the non-Hermitian
nature of the medium. It may be noted that beams with a low
degree of coherence for q = .5 do not exhibit the interference
pattern, which is more visible in the high-degree regime. This
fact is expected in the optical coherence theory [15], indicating
that the decrease in spatial coherence erases the presence of the
lattice, and the beam proceeds in the same direction and with
steady intensity. On the other hand, for q = −.5, the interfer-
ence pattern is still there although with its contrast distorted and
reduced as the width increases. In all cases, the overall effect of a
lack of spatial coherence provokes a damping of the oscillations
of both the beam width.

Fig. 4. Beam evolution of partially coherent light in a periodic
potential at the symmetry breaking point β = 1. (a) Beam center.
Continuous (dashed) lines represent q = 0.5 (q = −0.5). (b) Evo-
lution of the spectral density for various values of the coherence
parameter. (c) and (d) show the spectral density in the plane (x, z) at
q = 0.5 and q = −0.5, respectively. The coherence parameters are
δ = 10 (yellow), δ = 20 (orange), and δ = 80 (blue).

Let us now compare the dynamics of the beam just described
with the nontrivial dynamics exhibited at the symmetry break-
ing point β = 1. To this end, we turn to Fig. 4 where four
panels present the evolution of (a) the beam center for q = .5
(continuous line) and q = −.5 (dashed line), (b) the maximum
spectral density, and (c) and (d) the spectral density in the plane
(x − z) for q = .5 and q = −.5, exhibiting the non-reciprocal and
nontrivial behavior. The oscillations disappear. It is clear that
for q = .5, the beam propagates immune to diffraction, along
a straight line and consequently the beam center follows this
line. While for q = −.5, the beam experiences normal diffrac-
tion so that the beam center does not move. This result is very
similar to the result obtained in the deterministic version of the
Bragg diffraction in a PT-symmetric optical lattice [16], and one
might conjecture at this point that the interaction with the non-
Hermitian medium could possibly induce correlations into the
beam on propagation.

Note that the overall behavior of the random beam at the
critical point is essentially the same as that of a fully coher-
ent beam, except for the maximum spectral density which is
quite depressed in the presence of fluctuations as it is illus-
trated in Fig. 4(b). Consequently, the spectral density clearly
exhibits the saturation of the secular Bragg scattering for wide
beams, mentioned in the literature and considered as a signa-
ture of spectral singularities that arise at the symmetry breaking
point [13,17]. For β<βc, oscillations although damped, are still
present. Increasing the complex content, they disappear accord-
ingly until the critical point is reached where they disappear.
Although there is a strong influence of the fluctuations on
the value of Smax, both the beam center and beam width are
quite robust under the lack of correlations. This robustness
is attributed to the overall qualitative behavior that the ran-
dom system experiments which is essentially the same as the
fully coherent one. By diminishing the beam’s degree of coher-
ence, one drives the system to a deterministic behavior, and
this explains why one may conjecture on the generation of spa-
tial correlations, promoted by the non-Hermitian medium. To
understand this feature, one may resort to the concept of spatial
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Fig. 5. Effective degree of coherence µ(z) as a function of propa-
gated distance z for a PT-symmetric lattice (a) below and (b) above
the symmetry breaking point.

degree of coherence of the input field and inspect its properties
under propagation through a PT-symmetric photonic lattice, as
we show in the following.

Figure 5 gives a remarkable example of the interplay between
spatial correlations and non-Hermitian phenomena. Part (a)
depicts the effective degree of coherence µ(z) on propagation
for various values of β and δ as a function of z, below the
symmetry breaking point (0<β<1 ), while part (b) exhibits the
behavior above the symmetry breaking point (β>1). In (a), the
effective degree of coherence oscillates about its initial value
during propagation. Additionally, we note that the amplitudes of
the resulting oscillations depend on the state of coherence at the
input. So, for very high or very low coherence at the input, the
oscillations are quite feeble.

Past a breaking point, a quite unusual dynamics emerges,
showing that the degree of coherence actually increases on
propagation, more intensely for beams with a lower degree of
coherence and also for values of β in the neighborhood of the

breaking point. By inspecting Fig. 5(b), one finds that a lower
coherence at the input may reach a greater value of the degree
of coherence when β is smaller. Thus, an initial degree with
δ = 10 and β = 1.2 reaches a higher value than an initial degree
with δ = 25 and β = 1.5. Thus, an optimal combination of these
parameters may be used to control the spatial correlations of
partially coherent beams. A similar unusual phenomenon where
correlations are generated by non-Hermiticity has been recently
reported in a waveguide system, with loss only [18].

In summary, we have investigated the interplay between the
PT symmetry and spatial coherence in the Bragg scattering. The
overall effect of decreasing the spatial coherence is to promote a
damping in the oscillations executed by the beam center and the
beam width. Below the symmetry breaking point, the degree of
coherence is more affected in a regime where spatial coherence
is neither too high nor too low. Above the breaking point, the
effective degree of coherence increases more intensely for beams
with low spatial coherence. Thus, one concludes that the com-
plex medium generates spatial correlations to the initial beam.
By introducing fluctuations, one is adding an important asset to
unravel new techniques in the control of the flow of light, via
the manipulation of the beam coherence properties.
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