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Resumo

A Leishmaniose Visceral, um tipo grave causado pelo complexo de parasitos Leishmania

donovani, é fatal em mais de 95% dos casos não tratados e afeta predominantemente a popula-
ção baixa renda, com acesso limitado a assistência médica. O exame parasitológico é o padrão
ouro para o diagnóstico da LV; consiste na inspeção visual de amastigotas do parasita com cerca
de 2-4 µm de diâmetro, o que pode rapidamente tornar-se uma tarefa exaustiva e exigir um nível
de competência elevado. Visando auxiliar os profissionais de saúde, este estudo propõe uma
abordagem alternativa que une aprendizagem métrica profunda a classificação supervisionada
para a detecção rápida e precisa da leishmaniose visceral humana. A abordagem propõe divi-
dir as imagens em conjunto de fragmentos (patches) para facilitar o discernimento durante a
avaliação de quatro funções de perda de aprendizagem métrica profunda, visando a extração
de características utilizadas por uma Máquina de Vetores de Suporte (SVM) para diagnosticar
a leishmaniose visceral. Esse processo foi avaliado minuciosamente usando métricas relevan-
tes como o Coeficiente de Correlação de Matthew (MCC), sensibilidade e especificidade, que
revelaram que a função Circle supera o desempenho de outras funções com 98,3% de sensi-
bilidade, 99,3% de especificidade e 97,7% de MCC. Em resumo, todas as funções avaliadas
apresentaram um bom desempenho nas avaliações quantitativas, sugerindo que a aplicação da
inteligência artificial no diagnóstico médico oferece benefícios consideráveis, especialmente ao
auxiliar os médicos de forma economicamente eficiente na detecção rápida e precisa de doenças
tropicais negligenciadas.

Palavras-chave: Deteção de Parasitas, Leishmaniose Visceral, Aprendizagem Métrica Pro-
funda, Aprendizagem Profunda, Redes Neurais Convolucionais, Classificação Binária, Diag-
nóstico Automático de Doenças.
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Abstract

Visceral Leishmaniasis, a severe type caused by the Leishmania donovani parasite complex,
is fatal in over 95% of untreated cases and predominantly affects the poor and vulnerable with
limited healthcare access. Parasitological processes are the gold standard for diagnosing VL;
they entail direct microscopic inspection of amastigotes about 2–4 µm in diameter, which can
quickly become a time-consuming, exhausting task and require an expert skill level. Aiming to
assist physicians, this study proposes an alternative approach combining deep metric learning
with supervised classification for the rapid and reliable detection of human visceral leishmani-
asis. The suggested methodology segments images into patches for discernability during the
evaluation of four deep metric learning loss functions to extract features, which are utilized
by a Support Vector Machine (SVM) for the diagnosis of visceral leishmaniasis. This process
was thoroughly assessed using key metrics like the Matthew Correlation Coefficient (MCC),
sensitivity, and specificity, which revealed that Circle loss outperforms other losses with 98.3%
sensitivity, 99.3% specificity, and 97.7% MCC. Overall, all of the functions evaluated perfor-
med well in quantitative assessments, implying that AI’s application to medical diagnostics
offers considerable benefits, particularly in cost-effectively assisting physicians in rapidly and
accurately detecting neglected tropical diseases.

Key-words: Parasite Detection, Visceral Leishmaniasis, Deep Metric Learning, Deep Lear-
ning, Convolutional Neural Networks, Binary Classification, Automatic Disease Diagnosis.
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1
Introduction

1.1 Human Visceral Leishmaniasis

Leishmaniasis is a neglected and contagious vector-borne disease caused by species of the
intracellular protozoan genus Leishmania. It is prevalent in the poorest countries and among the
most vulnerable individuals with little access to health treatment. Visceral Leishmaniasis (VL),
a more severe Leishmaniasis also known as kala-azar, is caused by the Leishmania donovani

complex, a group of parasite species that is the principal cause of this potentially fatal disease.
If not recognized and treated, VL is fatal in more than 95% of patients. The World He-

alth Organization (WHO)1 describes it as causing irregular bouts of fever, weight loss, spleen
and liver enlargement, and anemia. In 2021, 99 nations and territories were known to be en-
demic to Leishmaniasis, with 81 countries endemic to VL. In the Americas, VL is endemic in
12 countries. South American countries, such as Brazil, Argentina, Colombia, Paraguay, and
Venezuela, have among the highest case records.

Honduras and Guatemala, for instance, previously reported sporadic VL cases but indicated
an increasing number of cases in 2022 (WHO TEAM and Services, 2023). In southern Europe,
it is a primary opportunistic infection in patients with acquired immunodeficiency syndrome
(Peters et al., 1990). The majority of cases are found in Brazil, East Africa, and India. As a re-
sult, more than 1 billion people live in Leishmaniasis-endemic areas and are at risk of infection.
It is estimated that 50,000 to 90,000 new cases of VL are diagnosed each year worldwide, with
only 25 to 45 percent being reported to the WHO.

Visceral Leishmaniasis is diagnosed using DNA-based and non-DNA-based methods
(Akhoundi et al., 2017). DNA-based methods, like PCR and qPCR, are complex and expensive,
limited to a few teaching hospitals and research facilities in VL-endemic countries (Antinori
et al., 2007; Kumari et al., 2021). On the other hand, non-DNA-based approaches, such as

1https://www.who.int/health-topics/leishmaniasis
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Figura 1: Example of an image captured from bone marrow smears. The zoomed circular area
indicates the presence of Leishmania amastigotes.

serological methods and parasitological procedures, detect antibodies or antigens but may lack
specificity for asymptomatic infections that require a specific serological diagnosis (Werneck
et al., 2002; Kumari et al., 2021).

According to Erber et al. (2022), parasitological techniques are the gold standard for di-
agnosing VL. It comprises direct microscopic inspection of the parasite’s amastigote form in
aspired/biopsied tissues such as bone marrow, lymph nodes, and spleen (van Griensven and
Diro, 2019). Smears are simple to conduct, and their direct examination is usually the best
diagnostic method in more impoverished areas where PCR is not available (Elmahallawy et al.,
2014). Figure 1 presents an example of Leishmania amastigotes in a bone marrow microscopic
color image.

Reimão et al. (2020) describes Leishmania amastigotes as intracellular round or oval bo-
dies, about 2–4 µm in diameter, with distinctive nuclei and kinetoplasts. As previously stated,
parasitological processes entail direct microscopic inspection of these minuscule amastigotes,
which can quickly become a time-consuming, exhausting task and require an expert skill level
(Srivastava et al., 2011). That is because, faced with the existence of the protozoan, the physi-
cian may be unsure whether it is a Leishmania given that it may resemble other structures in the
image content.

As a result, its sensitivity is quite poor. The more secure procedure is to obtain a biopsy
from the bone marrow and examine the material stained with Giemsa2. Still, the sensitivity of
this procedure is about 60% to 85% (Elmahallawy et al., 2014).

To alleviate repetitive work, machine learning techniques are being used to process medi-
cal images for disease diagnosis, offering advantages over traditional manual methods. These
include faster analysis, reduced variability, automated processing of large data volumes, and
the detection of subtle patterns. Computer Vision and Deep Learning are particularly useful in
detecting diseases, including VL in humans, and achieving high precision in analyzing bone
marrow microscopy images.

2Giemsa’s staining solution is one of the most common microscopic stains, generally used in hematology,
histology, cytology, and bacteriology for in vitro diagnostic.
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1.2 Objectives

This study seeks to evaluate the impact and effectiveness of deep metric learning methods
in accurately diagnosing human visceral leishmaniasis using microscopic images. This evalu-
ation is underpinned by several specific objectives. First, the study conducts an experimental
approach to accentuate areas of relevance within the images and segment these images into
smaller patches, with the expectation that the significant features of the images will become
more discernible.

Second, the study compares various deep metric learning algorithms to pinpoint the most
effective models for extracting features. This comparison aims to determine which models are
best suited for the nuanced task of identifying and interpreting complex patterns associated with
the disease.

Third, the research configures a supervised classification algorithm to categorize images
based on the data extracted from the metric learning models. It’s expected that the trained
classifier will become an expert in translating the characteristics extracted by the deep metric
learning models into actionable diagnostic insights.

Finally, the study assesses key performance metrics, including the Matthew Correlation Co-
efficient, sensitivity, and specificity of the classifier. This evaluation is focused on determining
the classifier’s effectiveness in image classification for VL diagnosis, ensuring that it can relia-
bly distinguish between positive and negative cases of the disease.

The findings should make an important contribution to the field of artificial intelligence
applied in medical analysis, particularly in assisting physicians in detecting neglected tropical
diseases more rapidly and reliably at an inexpensive cost.

1.3 Related Works

Most parasitic protozoans that affect humans are no more than 50 µm in size (Reimão et al.,
2020). As a result of their significantly smaller size, they provide a considerable challenge
to diagnosis via microscopy image evaluation (Srivastava et al., 2011). Plasmodium, Trypa-

nosome, Babesia, Toxoplasma, Leishmania, and Trichomonad are well-known disease-causing
protozoan parasites. In recent years, several ways to parasite examination from microscope
images have been presented. Recent reviews of the published literature can be found in Liu
et al. (2021); Zhang et al. (2022).

In general, microscopy image analysis includes object detection (Yang et al., 2020; Koirala
et al., 2022), segmentation (Salazar et al., 2019; Yang et al., 2022), tracking (Spilger et al.,
2021), and image reconstruction (Qin, 2022) methods. Classification methods include cell type
differentiation and are typically used for object detection (Liu et al., 2021). This section will
focus on object detection and segmentation of individual parasites in microscopy images.



INTRODUCTION 15

1.3.1 Parasite Detection

Yang et al. (2020) and Fuhad et al. (2020) have proposed ways for detecting malaria pa-
rasites in thick blood smears using smartphones. Yang et al. (2020), describes a procedure in
two steps: To select parasite candidates, researchers initially used an intensity-based Iterative
Global Minimum Screening (IGMS), which provides a quick screening of a thick smear image.
Following that, each candidate was classified as a parasite or background using a modified
Convolutional Neural Network (CNN). Fuhad et al. (2020) developed a variety of accurate and
computationally efficient models for parasite detection in single cells. The simplified variant
was also used in mobile phones and a server-backed online application.

Soberanis-Mukul et al. (2013) achieved an automated approach for detecting Trypanosoma

cruzi parasites in digital microscope pictures derived from peripheral blood smears stained with
Wright’s stain. Authors suggest combining image pre-processing algorithms such as binary
mask generation, Gaussian filtering, and domain intersection with a KNN classifier applied
across a segmented part of the original image.

1.3.2 Leishmania Detection

The gold standard for diagnosing VL in humans is images from bone marrow parasitological
examinations, as recommended by the WHO (WHO TEAM, 2023). In the state of the art, a few
works implement an automated parasite examination over images from bone marrow smears.

Farahi et al. (2015) use morphological and CV level set approaches to segment Leishmania

bodies in digital color microscopic images recorded from bone marrow samples. Salazar et al.
(2019) proposes a semiautomatic segmentation approach for obtaining the segmentation of the
evolutionary forms of Visceral Leishmaniasis parasites. Smoothing filters and edge detectors
improve the optical microscopy pictures, and segmentation is performed via a region-growing
algorithm.

Isaza-Jaimes et al. (2021) propose a detection method that uses image processing techni-
ques, like low-pass filters, gradient operators, and gradient modules based on polar maps of the
pixel intensities. Coelho et al. (2020) uses morphological mathematical operators to segment
the parasites.

Górriz et al. (2018) present a non-supervised model-based method for segmentation of leish-

mania parasites in microscopy images from bone marrow smears. For that, they trained a U-net
model Ronneberger et al. (2015) (Deep Learning-based approach) that successfully segments
parasites and classifies them into promastigotes, amastigotes, and adhered parasites.

Along the same lines, Gonçalves et al. (2023) employed a U-Net architecture to automati-
cally pinpoint the pixels of interest in the images, in this context, those containing Leishmania

parasites. This process was guided by binary masks annotated by specialists.
The experiments of Farahi et al. (2015); Salazar et al. (2019); Isaza-Jaimes et al. (2021)

were performed over a public dataset provided by Farahi et al. (2015) whereas Ronneberger
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et al. (2015); Górriz et al. (2018); Gonçalves et al. (2023) conducted their experiments in non-
public datasets.

1.4 Work Structure

The overall structure of this study takes the form of five chapters. Chapter 2 begins by
laying out the theoretical dimensions of the research, highlighting the use of image processing
and computer vision in the study of medical images.

Chapter 3 is concerned with the methodology used for this study.
The emphasis in Chapter 4 changes to data collecting and processing, culminating in a

comprehensive discussion of the research findings.
Chapter 5, which terminates the study, summarizes the general accomplishments of this

review, relating them to the broad and specific objectives established at the outset. It also
provides insights into prospective study directions.



2
Theoretical Background

2.1 Deep Learning

Deep Learning is the subfield of Artificial Intelligence that attempts to simulate the behavior
of the human brain by focusing on extracting features in data, especially unstructured data such
as images and text. Those models are capable of making accurate data-driven decisions and are
particularly suited to contexts where the data is complex and there are large datasets available
(Kelleher, 2019). Significantly, in the healthcare sector, Deep Learning has shown immense
potential, especially in processing medical images (X-rays, CT, and MRI scans) to diagnose
health conditions (Bakator and Radosav, 2018).

The representation of the data presented to Artificial Intelligence systems has a significant
impact on their performance (Dodge and Karam, 2016). A feature is any component of infor-
mation that is included in the representation of data instances, therefore, many AI tasks can be
handled by first determining the best set of features to extract for that task, and then feeding
those characteristics into a simple Machine Learning algorithm. Specific keywords or sender
reputation, for example, can be critical in Spam Email Identification (Yaseen et al., 2021).

However, it is difficult to discern which features should be taken from high-level data. Image
Identification is a good illustration of this, as determining essential features for discriminating
between thousands of item categories can be quite challenging (Pak and Kim, 2017). In that
context, Deep Learning enables the computer to build complex concepts out of simpler concepts
by breaking the desired complicated mapping into a series of nested simple mappings, each
described by a different layer of the model (Goodfellow et al., 2016).

The input is displayed in the visible layer, so-called because it contains the variables that
one can see. The image is then extracted into a series of hidden layers, which capture pro-
gressively abstract information. These layers are referred to as "hidden"because values are not
provided in the data; instead, the model must infer which ideas are relevant for understanding

17
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Figura 2: Illustration of a Deep Learning model. The images here depict the type of feature
represented by each hidden unit. The first layer can readily identify edges given the pixels by
comparing the brightness of neighboring pixels. Given the description of the edges, the second
hidden layer may easily search for corners and extended contours, which are recognized as
collections of edges, and so on for the subsequent layers. The description of the image in terms
of its object parts can be utilized to identify the items present at the end of the last layer. Source:
Goodfellow et al. (2016).

the observed data’s relationships. Figure 2 illustrates a typical Deep Learning model applied to
Object Detection.

2.1.1 Image Processing and Computer Vision

At the core of Image Processing is the manipulation of digital images through various al-
gorithms to enhance image quality or to extract useful information (Ritter et al., 2011). This
process frequently includes operations such as filtering, image enhancement, noise reduction,
and image restoration. Computer Vision, on the other hand, goes beyond simple image proces-
sing to enable machines to comprehend and make judgments based on visual data.

The goal is to enable machines to recognize patterns, identify objects, and comprehend situ-
ations in images and videos to recreate the complexity of human vision. With the introduction of
Deep Learning, both fields have advanced substantially. Modern algorithms, particularly those
based on neural networks, have transformed the way images are processed and interpreted.

Convolutional Neural Networks (CNNs), which have emerged as a cornerstone architec-
ture, are one of the most commonly used architectures in Computer Vision. CNNs, inspired
by the organization of the human visual cortex, are designed to learn spatial hierarchies of fe-
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atures from input images automatically and adaptively. A typical CNN architecture consists of
several layers, including convolutional layers that apply filters to the input for feature extrac-
tion, pooling layers that reduce data dimensionality, and fully connected layers that perform
classification based on the extracted features.

The core building block of a CNN, the convolutional layer, employs various filters to capture
different aspects of an image, such as edges or textures. Each filter generates a feature map that
highlights these aspects. Following pooling layers reduce the spatial size of these feature maps,
reducing computational load and achieving translational invariance. Lastly, these feature maps
are interpreted by the fully connected layers to make predictions or classifications (Goodfellow
et al., 2016).

CNNs have become pivotal in Computer Vision tasks such as Image Classification (Sund-
gaard et al., 2021), Object Tracking (Hu et al., 2015) , and Face Recognition (Schroff et al.,
2015).

2.1.2 Medical Images Analysis

Another significant aspect of Image Processing and Computer Vision algorithms is their
broad application in Medical Image Analysis. The combination of advanced computational
techniques and Medical Imaging has resulted in more precise and efficient analysis, which has
greatly aided in Disease Detection, Diagnosis, and Treatment Planning.

Image Processing in Medical Imaging encompasses a variety of techniques, all of which aim
to improve the interpretability of the depicted contents (Ritter et al., 2011). Image Enhancement
is used to improve visual quality, Segmentation is used to isolate specific regions or structures
(Liu et al., 2022), such as an organ, and Feature Extraction is used to identify unique attributes
within images. This processing ensures that the data is effectively interpreted by the subsequent
Computer Vision methods .

One of the most significant applications of CNNs in Microscopic Image Analysis is in the fi-
eld of Hematology, where they are used in Cell Type Classification, Stem Cell Motion Tracking,
and Diagnosis of Blood-Related Diseases (Liu et al., 2021).

2.1.3 Deep Metric Learning

Metric Learning is an approach based directly on a distance metric that aims to reduce the
distance between similar objects and simultaneously increase the distance between dissimilar
objects (Kaya and Bilge, 2019). The method is based on a W projection matrix where the data is
moved to the transformation space with distance information. Thus, Deep Learning and Metric
Learning have been combined in recent years to establish the concept of Deep Metric Learning
(DML) as depicted in Figure 3.

DML is to explicitly learn a nonlinear mapping f to map data points into a new feature space
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by leveraging deep neural network architecture, in which f is parameterized by deep neural
network weights and biases (Lu et al., 2017). Hence, the integration of metric loss functions,
sampling methodologies, and network topology is at the heart of Deep Metric Learning. This
holistic approach to network design and operation considers the relationships between samples
as dictated by the metric loss function.

There are many different suggestions for loss functions, such as contrastive loss (Hadsell
et al., 2006), triplet loss (Schroff et al., 2015), quadruple loss (Ni et al., 2017), and n-pair
loss (Sohn, 2016). The definition of an appropriate loss function ensures fast convergence and
optimizes the global minimum search. The aforementioned functions enable the expansion of
data sample sizes in forms like paired samples (n2), triplet samples (n3), and quadruple samples
(n4).

They share the basic premise of optimizing the distances between pairs or groups of exam-
ples inside the learned feature space. They train the neural network to incorporate the data in
a domain where similarities and dissimilarities may be quantified using metrics like Euclidean
distances or cosine similarities (Lu et al., 2017). As a result, crucial patterns and structures arise
in the data representation, allowing the network to find nuances and connections that would be
difficult to distinguish in less precise feature spaces. As a result, these loss functions enable the
network to capture and reflect the data’s complexity and richness, making them valuable tools
for jobs requiring fine discrimination of similarities and differences.

Deep Metric Learning has a wide range of applications, including Person Reidentification
(Yi et al., 2014), Chest Radiograph Analysis (Zhong et al., 2021), and Object Tracking (Hu
et al., 2015). In the context of medical diagnostics, the potential of DML is vast, offering pro-
mising avenues for research and development. This is exemplified by innovative applications
such as Brain Tumor Segmentation (Liu et al., 2022) and Tympanic Infection Detection (Sund-
gaard et al., 2021).

The sections that follow distinguish four examples of DML loss functions that are essential
for this study.

2.1.4 Triplet

Schroff et al. (2015) demonstrated that the triplet loss function is a framework designed
to understand and quantify the relationship between three principal data points: an anchor, a
positive, and a negative. The anchor serves as the reference point, the positive is another data
point that shares similarities with the anchor, and the negative is distinct from the anchor. The
driving goal behind this methodology is to minimize the feature space distance between the
anchor and the positive while maximizing the distance between the anchor and the negative.
This is achieved by ensuring the former is less than the latter by a predefined margin.

Mathematically, the triplet loss is defined as the maximum of the difference in distances
plus a margin and zero, which can be represented as:
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Figura 3: Deep Metric Learning. Source: Kaya and Bilge (2019).
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In this expression, the output denotes the sum over all triplets N in the training set, where
xa

i , xp
i , and xn

i represent the anchor, positive, and negative of a triplet, respectively. The function
f (x) represents the embedding of the image into Euclidean space, α is the margin between po-
sitive and negative classes, and [·]+ indicates the hinge loss function, which is zero for negative
arguments, enforcing the condition that the loss is non-negative.

The triplet loss function needs a strategic training approach in which the model’s parameters
are continually adjusted to reduce the loss. This optimization process inherently teaches the
model to align positive examples closely with the anchor and to alienate the negative examples,
thus refining the model’s predictive accuracy.

2.1.5 Circle Loss

While the Triplet loss has been instrumental in enhancing the model’s predictive accuracy by
optimizing distances within the embedding space, it is not without its limitations. Specifically,
its rigidity in gradient allocation and the potential for ambiguous convergence points suggest the
necessity for a more flexible optimization strategy. The Circle Loss addresses these concerns
by introducing a more adaptable gradient system that differentiates between similarity scores
based on their proximity to the optimum.
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Figura 4: The Triplet Loss minimizes the distance between an anchor and a positive, both of
which have the same identity, and maximizes the distance between the anchor and a negative of
a different identity.

It is designed to maximize within-class similarity and minimize between-class similarity,
addressing the limitations of traditional loss functions like softmax cross-entropy (Sun et al.,
2020). These conventional loss functions embed similarities into pairs and aim to reduce the
difference between them, which leads to inflexible optimization due to equal penalty strength
across all similarity scores. Circle Loss re-weights each similarity score to emphasize less-
optimized similarities, resulting in a more flexible optimization process with a circular decision
boundary.

The Circle Loss function provides a unified formula for two fundamental deep feature le-
arning paradigms: learning with class-level labels and learning with pair-wise labels. Through
dynamic adjustment of gradients during training, the less-optimized similarity scores receive
larger weighting factors, leading to larger gradients and more effective updates.

The decision boundary in Circle Loss is circular in the similarity pair space, which simplifies
to a point on the boundary for convergence, setting a definite target. This is a departure from the
ambiguous convergence status of other loss functions, where any point along a linear decision
boundary is acceptable. Mathematically, Circle Loss is expressed as:

Lcircle = log

(
1+

K

∑
i=1

L

∑
j=1

exp
(
γ(α jns jn −αipsip)

))
where α jn and αip are non-negative weighting factors, s jn and sip are the between-class and

within-class similarity scores, K and L are the size number of positive and negative class sample
set, and γ is a scale factor that controls the strength of penalization.

2.1.6 Multi-Similarity

Another significant loss function proposed within the General Pair Weighting (GPW) was
introduced by Wang et al. (2019).

The Multi-Similarity loss specifically addresses the challenge of sampling informative pairs
for training, which is crucial for the success of pair-based deep metric learning methods. It
does so by considering three types of similarities: self-similarity, positive relative similarity,
and negative relative similarity. These similarities measure the relevance of the pairs and are
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Figura 5: Comparison between the popular optimization manner of reducing (sn − sp) and the
proposed optimization manner of reducing (αnsn −αpsp). (a) Emphasizes on increasing sp.
(b) Emphasizes reducing sn Moreover, it favors a specified point T on the circular decision
boundary for convergence, setting up a definite convergence target.

used to weigh them during the learning process.
Self-similarity is the intrinsic similarity within a pair, positive relative similarity is the si-

milarity of a pair compared to other positive pairs, and negative relative similarity is compared
to other negative pairs. The MS loss aims to maximize the self-similarity for positive pairs and
minimize it for negative pairs while also considering the relative similarities to ensure that the
pairs are optimally weighted.

Mathematically, the MS loss function is defined using an iterative process of mining and
weighting. Informative pairs are first sampled using a mining strategy based on positive relative
similarity, and then these pairs are weighted more precisely by considering both self-similarity
and negative relative similarity. The MS loss is formulated as follows:

LMS =
1
m

m

∑
i=1

log

(
1+ ∑

k∈Pi

e−α(Sik−λ)

)α

+ log

(
1+ ∑

k∈Ni

eβ(Sik−λ)

)β


Here, α and β are hyper-parameters controlling the strength of the weight for positive and
negative pairs, respectively, and λ is a margin parameter. Sik represents the cosine similarity
between the embedding of the anchor sample i and a sample k, and Pi and Ni are the sets of
positive and negative pairs related to the anchor i.

2.1.7 NPairs

Finally, Sohn (2016) proposed the N-pair loss function that extends the classic triplet loss by
comparing a positive example against multiple negative examples simultaneously. The multi-
class N-pair loss function, denoted as N-pair-mc loss, is designed to optimize the identification
of a positive example from multiple negative examples. It addresses the key limitation of triplet
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Figura 6: Objective of the Multi-similarity loss, which aims to collect informative pairs, and
weigh these pairs through their own and relative similarities.

loss which only considers one negative example at a time, failing to account for the distribution
of the remaining negative classes. By incorporating N-1 negative examples, this loss function
ensures that the embedding for a given instance is distinct from multiple negative classes, pro-
moting a more stable and balanced metric learning process.

Mathematically, the N-pair-mc loss is formulated as:

LN-pair-mc((xi,x+i )
N
i=1; f ) =

1
N

N

∑
i=1

log

(
1+∑

j ̸=i
exp( f (xi) f (x+j )− f (xi) f (x+i ))

)

where xi represents the anchor input feature vector for the i-th example in a batch, x+i denotes
the positive example that is similar to the anchor input xi and belongs to the same class, x+j refers
to negative examples that are dissimilar to the anchor input xi and belong to different classes.
These are the features against which the anchor is compared within the loss function. Lastly, N

indicates the number of distinct classes represented in a batch.

Figura 7: Triplet loss (left) pulls a positive example while pushing one negative example at a
time. On the other hand, (N+1)-tuplet loss (right) pushes N-1 negative examples all at once,
based on their similarity to the input example.
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2.2 Classification Tasks

In the domain of machine learning, tasks are typically defined by the requirements of how
the system should process a given example. One of the fundamental tasks in machine learning
is classification. In this task, a computer program is tasked with determining which of k distinct
categories an input belongs to.

To accomplish this, the learning algorithm typically develops a function f, which, when
applied, assigns an input represented by vector x to a category indicated by the numeric code
y. Variants of this task include those where f outputs a probability distribution over classes
(Goodfellow et al., 2016).

In the context of supervised learning, algorithms are exposed to a dataset containing featu-
res, with each sample matched with a label or target. A significant example in the medical area
is the classification of patients for diabetes risk based on several physiological data. In this case,
a supervised learning algorithm can examine the dataset to distinguish between patients at high
and low risk for diabetes based on their medical data (Butt et al., 2021).

To assess the capabilities of a machine learning algorithm, a quantitative performance me-
asure must be developed. This skill is critical for understanding how well the algorithm will
perform with real-world, previously unknown data. As a result, performance evaluation is car-
ried out using a separate dataset from that used to train the machine learning system. In this
review procedure, various measures such as precision, accuracy, and sensitivity are used.

Certain measures may have more weight in measuring performance in each given scenario.
In medical diagnostics, for example, sensitivity (true positive rate) becomes an essential para-
meter, particularly for dangerous illnesses such as cancer or heart disease. The algorithm’s high
sensitivity ensures that it accurately detects the majority of individuals who have the disease,
which is critical to avoid missing a diagnosis in potentially life-threatening situations.

2.2.1 Support Vector Machines

In that context, Support Vector Machine (SVM) is a supervised learning model that is com-
monly used in classification and regression tasks. Its major characteristic is the capacity to
discover the hyperplane or group of hyperplanes in a high or infinite dimensions space that
optimally separates the distinct classes of data.

With the application of kernel functions, data can be converted into a higher-dimensional
space with linear separation. Then, SVM shifts the hyperplane to maximize the distance
between support vectors, data points nearest to the hyperplane, and the hyperplane, impro-
ving class separation. This makes SVM suited for data sets with numerous variables since it
is adaptable to diverse types of data, including ones with non-linear relationships. Figure 8
demonstrates the result of this process.
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Figura 8: Illustration of a Support Vector Machine.



3
Methods

This chapter outlines a procedure that outputs a binary classification for the presence of
amastigotes in images. Accurate diagnosis is paramount, as a high rate of false negatives (FN)
can lead to insufficient or delayed treatment, consequently worsening the illness and impai-
ring the patient’s prognosis. Figure 9 illustrates the methodology of the feature extraction and
classification process.

Figura 9: Flowchart depicting the process from image acquisition to parasitological diagnosis
using CNN with metric loss and SVM classification for VL detection.

27
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3.1 Preprocessing

Pre-processing refers to the initial steps of image treatment before they are analyzed by the
model, and it was performed on biological sample full images in the presence of amastigotes.

Contrast is essential in micrography for identifying and quantifying individual structures.
These tasks can be imprecise or perhaps impossible to complete without appropriate contrast.
As a result, contrast enhancement is a digital image processing tool that modifies the intensity
values of pixels. This can be accomplished by raising the intensity difference between the
image’s lightest and darkest pixels, resulting in a more visually clear image.

The method used in this research, linear interpolation, enables the original image to be
blended with a modified version of itself in which pixel intensity values are altered to improve
contrast. The linear interpolation formula is used to do the following:

out_img = original_img× (1−α)+altered_img×α

Where α is the contrast factor dictating the degree of enhancement. The increased contrast
image thus shows more distinct cellular features and a greater dynamic range of intensities,
making image analysis easier. Therefore, α was assigned a value of 1.5.

3.2 Dynamic Image Clipping

As stated in Section 1.1, the Leishmania parasite represents a small dot on the image, with
a proportion of 3% to 5% of the image size. Thus, using images with real dimensions in the
metric learning model implies the problem of losing information about the amastigotes’ pixels
due to the reduction of the dimensionality of the images to be entered into the network. Thus,
a dynamic stride image clipping was performed on the images to avoid this problem. The
graphical overview of the clipping algorithm is described in Figure 10.

Building upon the methodology reported by Gonçalves et al. (2023), which segments images
and binary masks into smaller clippings by dynamically adjusting the step based on the presence
of target features, this study adopts a similar strategy. In this approach, 96x96 pixel clippings
are generated by traversing binary masks that contain annotations indicating the locations of
amastigotes in RGB images. When a marked area is encountered in the mask, the step of the
window is decreased to an eighth of its original size. Subsequently, the area of the Leishmania

within this region is analyzed. If this area exceeds a predetermined threshold, the resulting
clipping is categorized as belonging to the positive class. Conversely, if the area falls below this
threshold, it is classified as negative.

Every parameter related to the clipping process, including the size of the clippings, the
interval between them, and the smallest area required for labelling as Leishmania positive, has
been established in advance. Furthermore, a series of evaluations was conducted to identify the
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most suitable parameters for the dataset used in this research. The outcomes of these evaluations
are concisely presented in Table 1.

Hyper-parameter Value
Dimensions of the clippings 96x96
Step between clippings with the presence of amastigotes 12 pixels
Step between clippings with absence of amastigotes 96 pixels
Minimum area of Leishmania inside the clipping (α) 20%

Tabela 1: Hyper-parameters tested and used for cropping the images.

Figura 10: A schematic of the method used for slicing images, with the dotted line area illus-
trating the repeated cycles of the clipping algorithm.

Although effective, the clipping algorithm does not resolve the challenge of the limited pre-
sence of leishmania parasites in the images by itself, resulting in a skewed production of fewer
positive class clippings compared to the negative class. To address this imbalance, the subse-
quent section will delve into data augmentation techniques to artificially enhance the dataset.
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3.3 Data Augmentation and Class Balancing

As outlined in existing literature, data augmentation is a technique in machine learning used
to generate additional training samples by applying geometric transformations to existing data.
It aims to enhance model robustness and performance, especially when dealing with small or
non-representative datasets.

To avoid undesirable image distortions, a strategy to follow is to identify which techniques
best fit the situation and which hyper-parameter ranges are allowed. Thus, for each image be-
longing to the positive class, synthetic synthetic data were produced based on a set of specified
transformations, such as rotating each image by up to 120 degrees, applying both horizontal and
vertical flips, and zooming up to 10%.

However, augmented data is, essentially, not new information but merely reiterations or va-
riations of minority class data. Relying too heavily on such augmented data can cause the model
to learn features that are specific to the synthetic samples rather than generalizing from the ac-
tual distribution of data. Therefore, given the potential pitfall of overfitting through excessive
synthetic data to match the proportion of positive-negative classes, an additional step in this
process is to downsample the majority class (the negative class).

Downsampling involves randomly removing k samples from the majority class. In the con-
text of this study, k was set to be a number that k = N −2P, with N and P being the size of the
negative and positive classes, respectively. Hence, the final proportion of the dataset will be 1:2.

3.4 Feature Extraction

Having discussed the image-related processing of the dataset, this section delves into the
methodology employed for extracting feature representations using CNN and DML. The effi-
cacy of a CNN in such tasks is significantly influenced by the choice of the loss function during
training, which guides the network toward learning discriminative features that are crucial for
the task at hand.

After analyzing the theoretical background of this work, Triplet, Circle, MultiSimilarity,
and NPairs were chosen since they appeared frequently among the choices of authors of related
works. Except for Circle loss, which is an independent choice, incorporated after reviewing the
mathematical basis. Each of them was trained with the same CNN architecture and compared
against each other. Every method is intended to maximize the feature space distinctly, boosting
intraclass compactness and interclass separability.
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3.5 Binary Classification

In terms of classifying the net embeddings, SVM is used in conjunction with Principal
Component Analysis (PCA). The use of PCA is needed primarily due to its proficiency in
reducing the dimensionality of the feature space.

In the context of classification for high-dimensional image data, such as those extracted
from the CNN net, the feature set can be overwhelmingly large. This high dimensionality not
only poses computational challenges but can also lead to the phenomenon known as the "curse
of dimensionality,"which potentially degrades the classifier’s performance.

PCA addresses these issues by transforming the original, possibly correlated features into
a set of linearly uncorrelated variables known as principal components. These components are
ordered so that the first few retain most of the variation present in the original dataset. By
selecting a subset of these components, PCA effectively reduces the data’s dimensions while
preserving the most critical variance characteristics.

Consequently, the PCA was adjusted for this study to retain 90% of the variance in the data,
selecting a number of components that retain this large percentage of the total variation.

The main component in this block is the classifier, which categorizes images based on
whether they contain Leishmania parasites, leveraging the extracted and reduced features.
However, due to the inherent sensitivity of the estimator to data scaling, normalizing the fe-
atures is crucial to enhancing both the performance and convergence of the model. Therefore,
feature standardization was implemented by removing the mean and scaling to unit variance,
ensuring that each feature contributes equally to the classification.



4
Experimental Results and Discussions

This chapter covers an in-depth study and integration of two separate microscopy image
datasets from bone marrow aspirates. The acquisition, preprocessing, and annotation of these
datasets merged, which are used to validate experimental results, are thoroughly addressed.
The approaches for data splitting, and architectural complexity of the implemented CNN are
detailed in the following sections.

In addition, an investigation into metric learning losses and their respective parameters, as
well as an exhaustive search for suitable SVM values, is conducted. The chapter concludes
with a discussion regarding the presentation of the result, which includes several performance
indicators like precision, recall, accuracy, F1-score, and the Matthew Correlation Coefficient
(MCC), as well as ROC/AUC curve analysis and embedding space graphic visualization.

4.1 Data Acquisition

To conduct the experiments, a dataset was constructed from images sourced from two dis-
tinct collections. The first dataset was gathered by Farahi et al. (2014) and consists of 45 pairs
of color microscope images of bone marrow aspirates, captured using a digital camera (Sony
DSC H9) attached to an optical microscope (Olympus-CH40RF200) 1. Figure 11 exemplifies a
pair of images from this database.

The second database, created by Marinho (2020), comprises 68 pairs of images captured
using a mobile phone (iPhone 8) attached to an optical microscope with a 1000x magnification.
Each pair, as depicted by Figure 12, consists of a color image and a corresponding binary mask
(black and white), with the same dimensions as the original image, where the white regions
indicate the location of parasites in the RGB image.

1Available at https://sites.google.com/site/hosseinrabbanikhorasgani/available-datasets/
dataset-of-leishmania-parasite-in-microscopic-images
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Figura 11: Example of data from Fahari Dataset (Dataset 1)

Figura 12: Example of data from Marinho Dataset (Dataset 2)

4.1.1 Binary Masks Generation and ROI Segmentation

As observed in Figure 12a, the external area of the microscope is visible in the images.
Given that the employed method is based on patch analysis, maintaining the peripheral area
would generate numerous inconsiderable patches, slowing down the algorithm and degrading
the overall classification performance. To address this, Lisboa (2023) considered utilizing the
Hough Circles algorithm to identify the microscope’s encompassing circle, creating a binary
image to isolate this region, and finally extracting the minimal bounding square for precise ROI
segmentation.

In Dataset 1, additional preprocessing was performed to deal with the images with parasite
markings. From these, binary masks were generated corresponding to the RGB images, similar
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to Figure 12b. These images were manually labeled using the computer program Photoshop2.

Figura 13: Example of Dataset 2 final images.

Figura 14: Before (left) and after (right) of manual data labelling.

4.2 Data Preprocessing

The Pillow library, a fork and successor of the Python Imaging Library (PIL), was utilized
for automatic image enhancement to improve the visual quality of the images. Specifically,
the method PIL.Contrast.Enhance was utilized, where the contrast of the images is adjusted
using a hyper-parameter known as "factor".

According to the Pillow documentation3, this hyper-parameter is a floating point value con-
trolling the enhancement: a factor value of 1.0 returns a copy of the original image, whereas
higher values increase the contrast of the image.

The selection of the hyper-parameter value at 1.5 was determined through an iterative pro-
cess based on visual observation of the resultant images. A series of experiments were conduc-
ted, varying the contrast enhancement factor, and the resulting images were visually inspected

2Available at https://www.adobe.com/products/photoshop.html
3Available at https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html

https://www.adobe.com/products/ photoshop.html
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html
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to assess the clarity and distinction of relevant features. The factor of 1.5 was chosen as it con-
sistently produced images with improved clarity and contrast without exaggerating the features
or introducing excessive noise, thus maintaining the integrity of the original image data.

4.3 Data Splitting

Having enhanced the RGB images (Section 3.1) and obtained their respective binary masks,
the subsequent step involved merging both datasets. This was followed by executing the image
clipping algorithm (Figure 10). Afterward, data augmentation for the positive class and down-
sampling for the negative class were conducted. These procedures resulted in a total of 65,202
images (96x96x3-shaped), ready for splitting, as delineated in Table 2.

Original size Patches
(positive-
negative)

Synthetic Data Randomly
removed from
negative class

Dataset 1 45 997 - 24859 - -
Dataset 2 68 3319 - 38714 - -
Dataset 1+2 - 4316 - 63573 - -
Dataset 1+2
(augmented and
balanced)

- 21734 - 43468 17418 20105

Tabela 2: Quantity of data through data wrangling stages.

Training deep learning networks requires using different sets of data, including training,
validation, and testing for maximal efficacy. The training set is used to educate the model,
enabling it to learn from labeled examples and fine-tune its parameters. The validation set serves
to monitor and tune the model’s performance during training, providing feedback to optimize
hyper-parameters and avoid overfitting. Finally, the test set is crucial for assessing the trained
model’s performance, offering an unbiased evaluation of its generalization to new, unseen data,
and confirming its suitability for deployment in real-world applications. This tripartite division
of data ensures a comprehensive evaluation of the model’s predictive abilities and effectiveness.

For this, this experiment used 70% of the data for training, 15% for validation, and 15% for
testing. Table 3 illustrates the division of patches in the database.

Total Positive Negative
Training (70%) 45641 15142 30499

Validation (15%) 9780 3304 6476
Test (15%) 9781 3288 6493

Total 65202 21734 43468

Tabela 3: Quantity of patches for training, validation and, testing.
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4.4 Basal Model Architecture and Hyper-parameters

The subsequent sections provide a detailed overview of the architecture and hyper-
parameters that underpin the deep learning model, the next phase of the pipeline. This includes
an in-depth exploration of the CNN used for feature extraction, along with the configurations
of its layers.

It will also delve into the parameter values of the four loss functions analyzed in the deep
metric learning process, elucidating how these parameters were optimized to enhance model
performance. Additionally, the last section will cover how the parameters of the SVM classifier
were chosen, detailing the exhaustive search process undertaken to identify the optimal settings
for accurate and reliable classification.

4.4.1 Convolutional Neural Network

• Three 2D convolutional layers with increasing channel depths (32, 64, 128 respectively),
each with a kernel size of 3 and stride of 1.

• Each convolutional layer is followed by a batch normalization layer corresponding to its
channel depth, stabilizing the learning process by normalizing the output of each layer.

• After each convolutional and batch normalization layer, a Rectified Linear Unit (ReLU)
activation function is applied, introducing non-linear properties to the model.

• Two max-pooling layers are used after the second and third convolutional layers, each
with a window of 2x2, reducing the spatial dimensions of the feature maps.

• Two dropout layers (dropout1 with 0.25 rate, dropout2 with 0.5 rate) are included for
regularization, reducing the chance of overfitting by randomly zeroing out neurons during
training.

• Two linear layers (fc1 and fc2) for feature compression and transformation. fc1 reduces
the dimensionality to 512, and fc2 maps these to the specified embedding size.

Additionally, the training phase was conducted with a batch size of 32 images and 100
epochs monitored by an early stopping mechanism; as a result, the precise value for the patience
parameter was altered based on the observed performance of the loss function during training.
It ranged from 13 to 20 epochs. A learning rate of 0.001 was initially set and then dynamically
adjusted using a learning rate scheduler that reduced the rate by a factor of 0.1 if the validation
loss reached a plateau. The output embedding size was established at 128.
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4.4.2 Metric Learning Losses Parameters

The Python Metric Learning4 package provides access to various DML loss functions
that are readily accessible and seamlessly integrable with the core deep learning architecture
and, therefore, broadly used in this research. Below, one may find discussions regarding the
parameter value choices.

Triplet Loss

The margin hyper-parameter is set at a value of 0.3, providing a quantifiable boundary that
ensures positive examples are closer to the anchor than the negative examples by at least this
margin. The choice of the Cosine Similarity as the distance metric deviates from the con-
ventional Euclidean distance, favoring the angular difference between the feature vectors, thus
emphasizing the orientation rather than the magnitude of the vectors in the learning embed-
dings. In other words, by focusing on the angle, the model can recognize parasites based on
their shape and structure.

Circle Loss

The relaxation factor that controls the radius of the decision boundary, m function parameter,
was set to 0.4 since the Sun et al. (2020) uses 0.25 for face recognition and 0.4 for fine-grained
image retrieval. Along the same lines, the authors use 256 as the value for the gamma parameter
for face recognition and 80 for fine-grained image retrieval.

MultiSimilarity Loss

For the testing phase of the project, the hyper-parameters alpha and beta were set to 2 and
50. This configuration was intended to appropriately balance the contribution of each pair type
to the loss, enhancing the model’s focus on informative pairs. Moreover, the margin parameter
lambda was established at a value of 1. This value determines the threshold at which pairs
are considered either positively or negatively similar, thereby influencing the difficulty of the
optimization problem.

NPairs Loss

No changes were performed. The results shown by this loss were obtained the with pac-
kage’s default configuration.

4Documentation available at https://kevinmusgrave.github.io/pytorch-metric-learning/

https://kevinmusgrave.github.io/pytorch-metric-learning/
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4.4.3 SVM Exhaustive Search

The SVM classifier was tuned using Grid Search with cross-validation. The hyper-
parameters explored in the grid search include C (regularization parameter) with values [0.1, 1,
10], and gamma (kernel coefficient) with values [1, 0.1, 0.01, 0.001]. The search is conducted
using the recall macro as the scoring metric and is executed in parallel to improve computatio-
nal efficiency. This procedure seeks to determine the best SVM settings for each CNN trained
with various loss functions, ultimately classifying their respective transformed embeddings effi-
ciently with the highest recall possible. The best-performing SVM model and its corresponding
score can be visualized in Table 4.

4.4.4 Machine Setup

The computational experiments presented in this study were run on a machine whose speci-
fications are detailed below.

• AMD Ryzen 7 5800H processor with 8 cores and a frequency of 3.2GHz.

• 16GB of RAM.

• NVIDIA GeForce RTX 3060 graphics, with 6GB GB of dedicated memory, as well as
CUDA v11.3.1 and cuDNN v8.2.1 acceleration libraries.

• Operating system Windows 11.

• Pytorch deep learning framework v2.1.0.

• Code available at https://github.com/yrribeiro/clf-leishmania5

4.5 Results

4.5.1 SVM Grid Search Best Parameters

C Gamma Recall Macro
Triplet 10 1 0.9915
Circle 10 1 0.9994

MultiSimilarity 10 1 0.9750
NPairs 10 1 0.9441

Tabela 4: SVM hyper-parameter values exhaustive search results for each loss function.

5Going open source after this work presentation.

https://github.com/yrribeiro/clf-leishmania
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4.5.2 Classification Metrics and MCC

The values in the tables 5 and 6 were obtained using a stratified cross-validation method
on the test dataset. Five folds were used in this approach to ensure an adequate representation
of the distribution of classes in the data, which was made possible by the implementation of
Scikit-Learn’s ’StratifiedKFold’.

All trained models were loaded and tested against the same data set. Predictions were made
using the appropriate classifier on scaled embeddings, and metrics such as precision, recall,
f1-score, and accuracy were calculated for each class. The averages and standard deviations of
these metrics were then computed from the sum of all the folds’ outputs, yielding the data dis-
played within the tables, and offering a detailed and representative examination of the model’s
overall performance.

Precision Recall F1-Score Accuracy
Mean STD Mean STD Mean STD Mean STD

Triplet 0.9635 0.0042 0.8283 0.0115 0.8908 0.0076 0.9318 0.0044
Circle 0.9872 0.0024 0.9830 0.0046 0.9850 0.0020 0.9900 0.0013
Multisimilarity 0.8862 0.0167 0.9613 0.0057 0.9221 0.0084 0.9454 0.0064
NPairs 0.8941 0.0083 0.9504 0.0119 0.9213 0.0087 0.9455 0.0059

Tabela 5: Classification metrics report comparison - Positive class

Precision Recall F1-Score Accuracy
Mean STD Mean STD Mean STD Mean STD

Triplet 0.9190 0.0050 0.9841 0.0018 0.9504 0.0031 0.9318 0.0044
Circle 0.9914 0.0023 0.9935 0.0012 0.9925 0.0010 0.9900 0.0013
Multisimilarity 0.9796 0.0029 0.9373 0.0104 0.9580 0.0051 0.9454 0.0064
NPairs 0.9741 0.0061 0.9430 0.0046 0.9583 0.0045 0.9455 0.0059

Tabela 6: Classification metrics report comparison - Negative class

The Matthews Correlation Coefficient (MCC) is a binary classification performance indica-
tor that provides a fair assessment even when the classes are unequal in number (Chicco and
Jurman, 2020). The MCC yields a result between -1 and 1, with 1 representing a perfect pre-
diction, 0 expressing no better than a random guess, and -1 representing complete disagreement
between forecast and reality.

MCC produces a high score only if the prediction performed well in all four confusion
matrix categories, proportionally to the number of positive and negative items in the dataset.
The MCC formula is as follows:

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
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MCC
Triplet 0.8467
Circle 0.9775

MultiSimilarity 0.8818
NPairs 0.8806

Tabela 7: Matthew Correlation Coefficient for all tested losses.

According to these data, one can infer that the overall performance of the CNNs modified
versions was excellent, with the Circle Loss model demonstrating superior performance across
all classification metrics. However, these findings also raise intriguing questions regarding the
limitations of each loss function during the learning process.

While the Triplet loss function demonstrated a balanced proficiency in distinguishing ne-
gative examples, as evidenced by its high recall in the negative class, it also demonstrated a
tendency toward higher false negatives in the positive class, as evidenced by the lower recall
shown in Table 5. This also influences its MCC score of 0.8467 (Table 7), which, despite being
the lowest of the examined functions, still suggests acceptable predictive quality. Being as good
as a human specialist (Section 1.1).

On the other hand, MultiSimilarity stands as an improvement of Triplet and falls behind
the Circle model. Despite possessing the lowest specificity, which suggests some challenges
in correctly identifying all negative instances, its sensibility outperforms Triplet by 13%. A
fair trade, since the nature of VL treatment is more tolerable to errors than missing a critical
diagnosis. This is theoretically consistent with the MultiSimilarity function’s objective of si-
multaneously pulling together similar examples and pushing apart dissimilar ones within the
same batch, which may account for its relatively strong discriminative power.

In sequence, the loss function NPairs presented an outcome with a small difference from
MultiSimilarity yet significant in the context of the research. Recalling what was previously
detailed in Section 2.1.6, MultiSimilarity uses an iterative mining and weighting technique to
identify informative pairs based on positive relative similarity and assigns higher weights to
these pairs, considering self-similarity and negative relative similarity.

In this research context, the negative instances received higher weight (parameter beta),
emphasizing class separation. NPairs, however, compare a positive instance against multiple
negative instances simultaneously, encouraging the model to differentiate a given instance from
several negative classes at the same time. As a result, the two took the approach of prioritizing
the distinction between negative instances within the feature space, obtaining technically similar
results in all quantitative analyses.
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4.5.3 ROC/AUC Curve

When analyzing the Receiver Operating Characteristic (ROC) curve, we consider that a
curve closer to the upper left corner indicates superior performance (a high percentage of true
positives and a low rate of false positives). The Area Under the Curve (AUC) measures the
model’s ability to distinguish between positive and negative classes. An AUC of 1.0 suggests a
flawless model that properly classifies all positives and negatives. An AUC of 0.5, on the other
hand, shows that the performance is no better than chance.

Figura 15: ROC/AUC curve comparison for all models tested.

Analysis of the ROC curves confirms that the Circle Model is superior in terms of classifica-
tion performance, with AUC values approaching perfection, as evidenced by the mathematical
rounding to 1.0. This indicates an almost ideal distinction between positive and negative classes.
All the models evaluated exhibited AUCs greater than 95%, reflecting a robust discrimination
capacity that substantially exceeds randomness, denoted by the AUC baseline (blue dashed
line).

The Triplet and NPairs models, although effective, showed lower sensitivity, implying an
increased propensity for false positives when compared to the Circle Model. On the other
hand, the MultiSimilarity Model, despite its high AUC, showed the lowest specificity among the
models tested, suggesting a higher probability of incorrectly classifying negatives as positives.
These conclusions, anchored in the quantitative AUC metrics, reinforce the overall competence
of the models in the binary classification task.
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4.5.4 Embedding Space Visualization

The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm is a dimensionality
reduction approach that is particularly well-suited to visualizing high-dimensional data sets.
Thus it is adopted here to demonstrate how models map data characteristics onto an embedded
space and how this affects the ability to separate classes6. By visualizing the data in this way, it
is possible to intuitively base the model’s performance.

Figura 16: t-SNE Embedding visualization [Triplet].

Figura 17: t-SNE Embedding visualization [Circle].

In Figure 16, Triplet demonstrated a reasonable distinction of classes, resulting in dense
clusters but with overlapping areas where the model may be more likely to commit errors.
It is also possible to notice an inconsistency between the validation data and the other sets.
This could be caused either by overfitting issues or by the model having difficulty defining the
discriminative characteristics in the validation set due to data variance.

6Class 0 indicates the presence of VL amastigote, class 1 the absence.
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Figura 18: t-SNE Embedding visualization [MultiSimilarity].

Figura 19: t-SNE Embedding visualization [NPairs].

As measures against overfitting were adopted and other models performed consistently well,
it leads one to believe that this result was due to the nature of the function itself not being able
to generalize the data accurately.

Circle Loss’s flexibility, which allows it to focus on challenging pairs and draw an optimal
margin between classes, may have contributed to its exceptional results. This performance
outcome can also be seen in Figure 17, where the training and test categories clusters appear to
be well separated and consistent through all data sets.

When compared to the tightly spaced embeddings of the Circle Loss model, the MultiSimi-
larity embeddings, shown in Figure 18, demonstrate a less compact but still visible separation
of classes. Given that we are analyzing images of bone marrow aspirates, which can contain
thousands of different biological components (not just Leishmania), the pattern of high vari-
ance in negative class data is justified. This is simply because this loss function is designed to
take into account multiple similarities and divergences within the same batch of data, making
it particularly sensitive to intraclass variance and more useful than other functions in scenarios
where this variety is relevant.
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4.5.5 Visual Analysis of the Classification

This section provides valuable visual information to understand in which cases and why the
model fails at classifying amastigotes. Each model classified the same four batches, compri-
sing 32 patches per batch. The findings are displayed in the image titles, paired with the true
categories. In addition, the number and types of errors made for these image sets are reported.
Figures 20 and 21 serve as examples where all models correctly identified positive and negative
patches, respectively.

Figura 20: Example of true positive images.

Figura 21: Example of true negative images.

Triplet

Figura 22: Example of misclassified images [Triplet].

Misclassified 13 out of 128 images, which corresponds to approximately 10% of the images.
This included 5 false positives and 8 false negatives.
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Circle

During this specific analysis, the CNN model trained with Circle Loss did not commit any
errors in its classifications.

MultiSimilarity

Figura 23: Example of misclassified images [MultiSimilarity].

Misclassified 6 out of 128 images, approximately 5% of the images. This included 4 false
positives and 2 false negatives.

NPairs

Figura 24: Example of misclassified images [NPairs].

Misclassified 11 out of 128 images, approximately 9% of the images. This included 8 false
positives and 3 false negatives.

Analyzing the false positives reported in Figures 22, 23 and 24 and considering that all
target images used for training introduce, roughly, an oval shape with a full circle in the middle,
it has become clear that most of the FP cases occur due to other biological structures resembling
Leishmania. Some structures also share a color intensity similarity, making the distinction even
harder. Likewise, parasites pictured overlapped by other cell structures may hinder the model
from correctly classifying the positive instances, as such conditions were scarce in the training
set.

Important to notice that, a few amount of amastigotes were cropped by image borders but
still classified as Leishmania positive by the clipping algorithm. This phenomenon is affected
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by α, the parasite area threshold in the clipping algorithm. This visual analysis was instrumental
in establishing a threshold value that results in the minimum number of parasites affected by
this condition.

4.6 Performance Comparison

Method Detection/Classification Segmentation Number of Images
Metric Result Metric Result

Isaza-Jaimes et al. Sensitivity 0.787 *45
Coelho et al. ACC 0.95 -
Górriz et al. Recall 0.823 45

Precision 0.757
F1-score 0.777
Dice 0.777

Gonçalves et al. ACC 0.991 78
Sensitivity 0.722
Specificity 0.996
AUC 0.859
Dice 0.804

Salazar et al. Dice 0.85 *45

Proposed method Sensitivity 0.983 (0.0046) - - *113
Specificity 0.993 (0.0012)
ACC 0.990 (0.0013)
MCC 0.977
AUC 0.999

Tabela 8: The proposed method’s performance in comparison to the state of the art. In the last
column, works that used the same dataset (Fahari Dataset) are noted with an asterisk.

In terms of hardware efficiency and computational resource utilization, the top-performing
model, Circle, showcased a convergence time of 58 minutes, with each epoch processed in an
average of 93 seconds. This performance was achieved through optimized CPU usage, recorded
at 3.65%. Additionally, the model utilized 6.74 GB of RAM, amounting to 56% of the total
available RAM.

Notably, as measured by the GPUtil library, the GPU utilization on average was 57% of its
total processing capacity, and 44% of the GPU’s memory was employed. During grid search
operations, the model took 46 seconds to complete 60 fits, demonstrating effective parameter
optimization. When assessing the entire test set, the classification process was completed in 8.6
seconds, reflecting the model’s responsiveness in practical applications.

For the other three models (Triplet, MultiSimilarity, and NPairs), the average convergence
time was 49 minutes (±10.2 min), with each epoch taking 105.31 seconds (± 5.75s). The average
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CPU and GPU utilizations were 1.33% (± 2.72) and 52% (± 4%) respectively, with an average
RAM usage of 10.56 GB (± 0.23GB).

The grid search process for these models was completed in an average time of 1.10 minutes,
with a variation of ± 2.25 minutes. When classifying the entire test batch, the models took
an average of 54 seconds, with a standard deviation of ± 0.75 seconds. It’s important to note
that the size of each model is approximately 121 MB, which represents a balance between the
complexity of the models and their storage efficiency.



5
Conclusion

The comparison of various deep metric learning methods has shown the significant potential
of the evaluated models for applications in cytological data imaging. It revealed Circle Loss as
the standout performer, excelling across all classification metrics, especially sensitivity (98.3%)
and specificity (99.3%), aligning well with the study’s context.

The primary objective was to experimentally accentuate relevant areas in images and seg-
ment them into smaller patches for improved feature discernibility, a technique that was accom-
plished and most likely led to the models’ improved performance. This performance was also
influenced by the appropriate configuration of the SVM algorithm, which converted the deep
metric learning models’ learned characteristics into actionable diagnostic insights.

However, this evaluation also identified certain limits and topics for additional research. For
instance, the Triplet loss function, while effective in certain aspects, demonstrated a tendency
toward higher false negatives, indicating that additional preprocessing for image background
differentiation and model fine-tuning could be useful to further reduce the false negative rate.

In summary, the research was successful in meeting its goals by building and assessing
multiple deep metric learning algorithms, with Circle Loss emerging as especially valuable.
The findings not only provide useful insights into the application of these models for medical
diagnosis, but they also identify areas for future research to further develop these approaches.

5.1 Future Work

Based on the positive findings of this work, numerous future research directions have been
identified to improve the use and effectiveness of the generated models in the field of parasito-
logical diagnostics. These are some examples:

• Analyze image processing approaches for blurring or removing background structures in
images to decrease false positives by minimizing the impact of components similar to the
target parasites.

48
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• Fine-tuning models with a more diverse range of Leishmania images to reduce the rate of
false negatives.

• Explore the feasibility of incorporating the most effective models into existing VL diag-
nostic systems, offering a significant advancement in the field.

• Extend the experiment to other similar diseases, like malaria or Chagas disease, to evalu-
ate the models’ applicability and effectiveness in diagnosing a broader range of parasitic
infections.
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