

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA

FELIPE LEANDRO DA SILVA COSTA

A Conjectura de Lawson

Maceió 2013

FELIPE LEANDRO DA SILVA COSTA

A Conjectura de Lawson

Dissertação de Mestrado, na área de concentração de Geometria Diferencial submetida em 05 de Março de 2013 à banca examinadora, designada pelo Programa de Mestrado em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários à obtenção do grau de mestre em Matemática.

Catalogação na fonte Universidade Federal de Alagoas **Biblioteca Central** Divisão de Tratamento Técnico

Bibliotecária Responsável: Fabiana Camargo dos Santos

C837c	Costa, Felipe Leandro da Silva. A conjectura de Lawson / Felipe Leandro da Silva Costa. – 2013. 47 f.
	Orientador: Márcio Henrique Batista da Silva. Dissertação (Mestrado em Matemática) – Universidade Federal de Alagoas. Instituto de Matemática. Maceió, 2013.
	Bibliografia: f. 46-47. Apêndices: f. 45.
	1. Superfícies mínimas. 2. Lawson – Conjectura. 3. Toro de Clifford. I. Título.
	CDU: 514.76

À minha mãe Marise, minha irmã Francielly, meu irmão Vinícius, e meus queridos bichanos

Resumo

O estudo das superfícies mínimas é um dos mais antigos problemas da Geometria Diferencial. De especial interesse são as superfícies mínimas na esfera S^3 . Em 1970, H. B. Lawson publicou um artigo intitulado *The unknottedness of minimal embeddings* (14), neste trabalho ele conjectura que o toro de Clifford é a única, a menos de movimentos rígidos, superfície mínima mergulhada, compacta e de gênero um em S^3 . O objetivo deste trabalho é apresentar as técnicas utilizadas por S. Brendle para dar uma resposta afirmativa à conjectura de Lawson.

Palavras-chave: Superfícies Mínimas, Conjectura de Lawson, Toro de Clifford.

Abstract

The study of minimal surfaces is one of the oldest subjects in differential geometry. Of particular interest are minimal surfaces in the sphere S^3 . In 1970, Lawson published a paper entitled *The unknottedness of minimal embeddings* (14), this work he conjectures that the Clifford torus is only, less rigid motion, compact embedded minimal surface in S^3 of genus 1. The objective of this work is to present the techniques used by S. Brendle to give a affirmative answer to the conjecture of Lawson.

Keywords: Minimal Surfaces, Lawson's Conjecture, Clifford torus.

Conteúdo

1	INT	RODUÇÃO	p. 8
2	SUI	BVARIEDADES IMERSAS	p. 10
	2.1	Equações de Estrutura do \mathbb{R}^n	p. 10
	2.2	Subvariedades do Espaço Euclidiano	p. 14
	2.3	O Toro de Clifford	p. 24
3	A C	CONJECTURA DE LAWSON	p. 27
	3.1	Chave Técnica	p. 27
	3.2	Demonstração do Teorema Principal	p. 36
A	PÊN	DICE	p. 49
R	eferê	ncias	p. 50

1 INTRODUÇÃO

Em 1970, Lawson (13) provou que dado um inteiro positivo g, existe pelo menos uma superfície mínima compacta mergulhada em S^3 com gênero g. Além disso, ele mostrou que existem no mínimo duas tais superfícies a menos que g seja um número primo. Alguns exemplos de superfícies mínimas compactas mergulhadas em S^3 podem ser encontrados em (11) e (10).

Neste contexto, um resultado bem interessante foi provado por Almgren (1) em 1966 e diz que toda 2-esfera minimamente imersa em S^3 é totalmente geodésica, portanto, congruente ao equador $S^3 \cap \{x_4 = 0\}$. Outro exemplo de superfície mínima compacta em S^3 é o chamado toro de Clifford dado por

$$\left\{ (x_1, x_2, x_3, x_4) \in S^3; x_1^2 + x_2^2 = x_3^2 + x_4^2 = \frac{1}{2} \right\}.$$

No artigo intitulado *The unknottedness of minimal embeddings* (14) Lawson fez a seguinte conjectura:

Conjectura 1 (Lawson, 1970). Suponha que $F : \Sigma \to S^3$ é um toro mínimo mergulhado em S^3 . Então Σ é congruente ao toro de Clifford.

Observemos que, o próprio Lawson (13) construiu uma família infinita de toros mínimos apenas imersos em S^3 . Mais tarde, em 1971, Hsiang juntamente com Lawson deram uma infinidade de exemplos de garrafas de Klein mínimas em S^3 (ver (9)). Esses fatos mostram que a hipótese de Σ ser mergulhada é crucial.

Esta dissertação está dividida em dois capítulos. No primeiro capítulo fazemos uma breve introdução à geometria das subvariedades no espaço euclidiano. Ao final deste capítulo provamos que o toro de Clifford é uma superfícies mínima plana não trivial da esfera S^3 .

O segundo capítulo é dedicado a demonstração da Conjectura de Lawson, nossa principal referência para este capítulo foi o artigo *Embedded minimal tori in* S^3 and the Lawson conjecture de S. Brendle (5).

2 SUBVARIEDADES IMERSAS

Neste capítulo fazemos uma breve introdução ao estudo das subvariedades imersas no espaço euclidiano \mathbb{R}^n sob o ponto de vista das formas diferencias.

2.1 Equações de Estrutura do \mathbb{R}^n

Seja $U \subset \mathbb{R}^n$ um aberto e sejam e_1, \ldots, e_n , *n* campos diferenciáveis de vetores em *U* de tal modo que, para todo $p \in U$, se tenha $\langle e_i, e_j \rangle_p = \delta_{ij}$, com $i, j = 1, \ldots, n$. Um tal conjunto de vetores é chamado de referencial ortonormal móvel em *U*. De agora em diante omitiremos os adjetivos ortonormal e móvel sem maiores comentários.

Dado um referencial $\{e_i\}$, para cada $p \in U$, seja $\{\omega_i\}_p$ a base dual da base $\{e_i\}_p$, ou seja, $\{\omega_i\}$ são formas diferencias lineares definidas pela condição $\omega_i(e_j) = \delta_{ij}$. O conjunto das formas diferenciais $\{\omega_i\}$ é chamado *coreferencial associado ao referencial* $\{e_i\}$.

Outro conjunto de formas associadas ao referencial $\{e_i\}$ pode ser obtido pensando em e_i como uma aplicação diferenciável $e_i : U \subset \mathbb{R}^n \to \mathbb{R}^n$. A diferencial $(de_i)_p : \mathbb{R}^n \to \mathbb{R}^n$, em $p \in U$, é uma aplicação linear. Portanto, para todo $v \in \mathbb{R}^n$, podemos escrever

$$(de_i)_p(v) = \sum_j (\omega_{ij})(v)_p e_j.$$

Desde que e_i é diferenciável é fácil ver que as expressões $(\omega_{ij})_p(v)$ dependem linearmente de v. Portanto $(\omega_{ij})_p$ é uma forma diferenciável linear em \mathbb{R}^n . Com essas notações em mente, podemos escrever

$$de_i = \sum_j \omega_{ij} e_j,$$

como definição das formas ω_{ij} , que são chamadas formas de conexão do \mathbb{R}^n no referencial $\{e_i\}$.

Derivando a expressão $\langle e_i, e_j \rangle = \delta_{ij}$, obtemos

$$0 = \langle de_i, e_j \rangle + \langle e_i, de_j \rangle = \omega_{ij} + \omega_{ji},$$

o que implica

$$\omega_{ij} = -\omega_{ji},$$

isto é, as formas de conexão são anti-simétricas nos índices i, j.

Teorema 2.1 (Equações de estrutura do \mathbb{R}^n). Seja $\{e_i\}$ um referencial ortonormal móvel em um aberto $U \subset \mathbb{R}^n$. Sejam ω_i o coreferencial associado a $\{e_i\}$, $e \omega_{ij}$ as formas de conexão de U no referencial $\{e_i\}$. Então:

$$d\omega_i = \sum_k \omega_k \wedge \omega_{ki},\tag{2.1}$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj}, \quad k = 1, \dots, n.$$
(2.2)

Demonstração. Seja a_i a base canônica de \mathbb{R}^n e seja $x_i : U \to \mathbb{R}$ a função projeção na i-ésima coordenada. Com isso a diferencial dx_i de x_i em U é um o coreferencial associado ao referencial a_i , já que

$$dx_i(a_j) = \delta_{ij}$$

Ao expressar o referencial dado em termos de a_i temos que

$$e_i = \sum_j \beta_{ij} a_j, \tag{2.3}$$

onde os β_{ij} são funções diferenciáveis em U e, para cada $p \in U$, a matriz $(\beta_{ij}(p))$ é ortogonal. Como $\{\omega_i\}$ é o coreferencial associado a $\{e_i\}$, temos

$$\omega_i = \sum_j \beta_{ij} dx_j \tag{2.4}$$

Diferenciando 2.3, obtemos

$$de_i = \sum_k d\beta_{ik} a_k = \sum_k d\beta_{ik} \sum_j \beta_{jk} e_j,$$

onde na última igualdade usamos a ortogonalidade da matriz (β_{kj}) para passar da base a_i para a base e_i . Como $de_i = \sum_i \omega_{ij} e_j$, concluímos que

$$\omega_{ij} = \sum_{k} d\beta_{ik} \beta_{jk}, \qquad (2.5)$$

$$\sum_{j} \omega_{ij} \beta_{js} = \sum_{k,j} d\beta_{ik} \beta_{jk} \beta_{js} = d\beta_{is}, \qquad s = 1, \dots, n.$$
(2.6)

Derivando exteriormente 2.4 e usando 2.6, obtemos

$$d\omega_i = \sum_j d\beta_{ij} \wedge dx_j$$

=
$$\sum_{j,k} \omega_{ik} \beta_{kj} \wedge dx_j$$

=
$$\sum_k \omega_{ik} \wedge \sum_j \beta_{kj} dx_j$$

=
$$\sum_k \omega_{ik} \wedge \omega_k = \sum_k \omega_k \wedge \omega_{ki}$$

e a primeira equação de estrutura está demonstrada. Para obter a segunda equação de estrutura vamos diferenciar 2.5 e usar 2.6 outra vez, assim

$$d\omega_{ij} = \sum_{k} d\beta_{jk} \wedge d\beta_{ik}$$

= $-\sum_{k} d\beta_{ik} \wedge d\beta_{jk}$
= $-\sum_{k} \left(\sum_{r} \omega_{ir}\beta_{rk}\right) \wedge \left(\sum_{s} \omega_{js}\beta_{sk}\right)$
= $-\sum_{r,s} (\omega_{ir} \wedge \omega_{js}) \sum_{k} \beta_{rk}\beta_{sk}$
= $-\sum_{r,s} (\omega_{ir} \wedge \omega_{js}) \delta_{rs}$
= $-\sum_{k} \omega_{ik} \wedge \omega_{jk}$
= $\sum_{k} \omega_{ik} \wedge \omega_{kj}.$

Como queríamos demonstrar.

Dada uma imersão $x: M \to \mathbb{R}^{n+q}$ de uma variedade diferenciável de dimensão n em um espaço euclidiano \mathbb{R}^{n+q} . Pelo teorema da função inversa, para todo $p \in M$, existe uma vizinhança $U \subset M$ de p tal que a restrição x|U de x a U é injetiva. Seja $V \subset \mathbb{R}^{n+q}$ uma vizinhança de x(p) em \mathbb{R}^{n+q} de tal modo que $V \supset x(U)$. Com as notações acima temos a seguinte

Definição 1. Um referencial móvel $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_{n+q}\}$ em $V \subset \mathbb{R}^{n+q}$ com a propriedade que, quando restrito a x(U), os vetores e_1, \ldots, e_n sejam tangentes a x(U) e os vetores e_{n+1}, \ldots, e_{n+q} sejam normais a x(U), é chamado um referencial adaptado a x.

A existência de um referencial adaptado pode ser provada da seguinte maneira. Se V é suficientemente pequeno, existe um difeomorfismo $g: V \to V$ tal que $g \circ x(U)$ é um aberto da variedade x(M). A existência de um referencial $f_1, \ldots, f_n, f_{n+1}, \ldots, f_{n+q}$ adaptado a $g \circ x(U)$ em g(V) é imediata. A imagem inversa $dg^{-1}(f_1), \ldots, dg^{-1}(f_{n+q})$ pode não ser ortogonal. Finalmente, usamos o processo de ortogonalização de Gram-Schmidt em cada ponto de V e observamos que os vetores obtidos varia diferenciavelmente com os vetores dados. Assim, obtemos um referencial ortogonal adaptado a x(U).

Observação 1. As formas ω_i do referencial $\{e_i\}$ e as formas de conexão ω_{ij} que satisfazem as equações de estrutura 2.1 e 2.2 estão definidas em V. No entanto, a aplicação $x : U \subset$ $M \to V \subset \mathbb{R}^{n+q}$ induz formas diferencias $x^*(\omega_i), x^*(\omega_{ij})$ em U. Como x^* comuta com a derivada exterior e com o produto exterior, tais formas em U satisfazem as equações de estrutura 2.1 e 2.2.

O próximo resultado é de fundamental importância para o decorrer desse trabalho.

Lema 2.1 (Cartan). Seja V um espaço vetorial de dimensão n. Sejam $\omega_i, \ldots, \omega_r : V \to \mathbb{R}$, $r \leq n$ formas lineares de V linearmente independentes. Suponhamos que existam formas lineares $\theta_1, \ldots, \theta_r : V \to \mathbb{R}$ satisfazendo a condição: $\sum_{i=i}^r \omega_i \wedge \theta_i = 0$. Então

$$\theta_i = \sum_j a_{ij}\omega_i, \quad i, j = 1, \dots, r, \quad a_{ij} = a_{ji}.$$

Demonstração. Inicialmente vamos completar as formas $\omega_1, \ldots, \omega_r$, em uma base $\omega_1, \ldots, \omega_r, \omega_{r+1}, \ldots, \omega_n$ de V^* , com isso

$$\theta_i = \sum_j a_{ij}\omega_j + \sum_l b_{il}\omega_l \qquad \mathbf{l} = r+1, \dots, n.$$

A condição $\sum_{i} \omega_i \wedge \theta_i = 0$ implica

$$0 = \sum_{i} \omega_{i} \wedge \theta_{i} = \sum_{i} \omega_{i} \wedge \sum_{j} a_{ij} \omega_{j} + \sum_{i} \omega_{i} \wedge \sum_{l} b_{il} \omega_{l}$$
$$= \sum_{i < j} (a_{ij} - a_{ji}) \omega_{i} \wedge \omega_{j} + \sum_{i < l} b_{il} \omega_{i} \wedge \omega_{l}.$$

Como as formas $\omega_r \wedge \omega_s$, r < s, r, s = 1, ..., n, formam uma base do espaço $\Lambda^2 V^*$ das formas bilineares alternadas de $V \times V$, concluímos que $a_{ij} = a_{ji}$ e $b_{ij} = 0$.

Lema 2.2. Seja $U \subset \mathbb{R}^n$. Sejam $\omega_1, \ldots, \omega_n$ formas diferenciais linearmente independentes em U. Suponha que exista em U um conjunto de 1-formas diferenciais $\{\omega_{ij}\}$ satisfazendo as condições:

$$d\omega_j = \sum_k \omega_k \wedge \omega_{kj}, \qquad \omega_{ij} = -\omega_{ji}.$$

Então um tal conjunto é único.

Demonstração. Suponha que exista um outro conjunto $\{\overline{\omega}_{ij}\}$ satisfazendo

$$d\omega_j = \sum_k \omega_k \wedge \overline{\omega}_{kj}, \qquad \overline{\omega}_{ij} = -\overline{\omega}_{ji}.$$

Então $\sum_{k} \omega_k \wedge (\overline{\omega}_{kj} - \omega_{kj}) = 0$, e pelo lema de Cartan,

$$\overline{\omega}_{kj} - \omega_{kj} = \sum_{i} B_{ki}^{j} \omega_{i}, \qquad B_{ki}^{j} = B_{ik}^{j}.$$

Observe que

$$\overline{\omega}_{kj} - \omega_{kj} = \sum_{i} B_{ki}^{j} \omega_{i} = -(\overline{\omega}_{jk} - \omega_{jk}) = -\sum_{i} B_{ji}^{k} \omega_{i}$$

e, como os ω_i são linearmente independentes, $B_{ki}^j = -B_{ji}^k$. Trabalhando com as simetrias encontradas, obtemos

$$B_{ji}^{k} = -B_{ki}^{j} = -B_{ik}^{j} = B_{jk}^{i} = B_{kj}^{i} = -B_{ij}^{k} = -B_{ji}^{k} = 0.$$

Portanto $\overline{\omega}_{kj} = \omega_{kj}$.

1		٦.
		L

2.2 Subvariedades do Espaço Euclidiano

Seja $x: M^n \to \mathbb{R}^{n+q}$ uma imersão de uma variedade de dimensão $n \in \mathbb{R}^{n+q}$. Seja $p \in M$ e U uma vizinhança de $p \in M$ na qual a restrição x|U é injetiva. Seja V uma vizinhança de $x(p) \in \mathbb{R}^{n+q}$ de tal modo que $x(U) \subset V$ e que em V esteja definido um referencial adaptado $e_1, \ldots, e_n, e_{n+1}, \ldots, e_{m+q}$. Usaremos a interpretação clássica e pensaremos em x como uma inclusão de $U \in V \subset \mathbb{R}^{n+q}$, deste modo, usaremos a mesma notação para os elementos de V ou de sua restrição a U. De agora em diante, usaremos essa convenção.

Fixemos também as seguintes notações:

$$1 \le A, B, C, \dots, \le n + q;$$
$$1 \le i, j, k, \dots, \le n;$$
$$n + 1 \le \alpha, \beta, \gamma, \dots, \le n + q.$$

Lembremos que, dado um referencial $\{e_A\}$ em V, o coreferencial $\{\omega_A\}$ em V e as formas de conexão $\{\omega_{AB}\}$ são dados por

$$dx = \sum \omega_A e_A$$
$$de_A = \sum \omega_{AB} e_B.$$

As formas ω_A e ω_{AB} satisfazem as equações de estrutura

$$d\omega_A = \sum \omega_B \wedge \omega_{BA}$$
$$d\omega_{AB} = \sum \omega_{AC} \wedge \omega_{CB}.$$

Estamos interessados em estudar as formas ω_A e ω_{AB} restritas a $U \subset V$. Neste caso, temos a condição adicional $\omega_{\alpha} = 0$, a qual segue do fato que os vetores e_{α} são normais a U. De fato, para todo $q \in U$ e todo $v = \sum v_i e_i \in T_q M$, tem-se

$$\omega_{\alpha}(v) = \omega_{\alpha}\left(\sum v_i e_i\right) = \sum v_i \omega_{\alpha}(e_i) = 0.$$

No que segue todas as formas estão restritas a U. Como $\omega_{\alpha} = 0$, temos

$$0 = d\omega_{\alpha} = \sum \omega_{B} \wedge \omega_{B\alpha}$$
$$= \sum \omega_{i} \wedge \omega_{i\alpha} + \sum \omega_{\beta} \wedge \omega_{\beta\alpha}$$
$$= \sum \omega_{i} \wedge \omega_{i\alpha}.$$

Pelo lema de Cartan

$$\omega_{i\alpha} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, \qquad h_{ij}^{\alpha} = h_{ji}^{\alpha}.$$

Definição 2. A forma quadrática

$$II^{\alpha} = \sum_{i} \omega_{i} \omega_{i\alpha} = \sum_{i,j} h^{\alpha}_{ij} \omega_{i} \omega_{j}$$
(2.7)

é chamada segunda forma fundamental de x na direção de e_{α} .

Denotemos por N_pM o conjunto dos vetores normais a M, isto é, $N_pM = dx_p(T_pM)^{\perp}$. N_pM é chamado espaço normal da imersão $x \ em \ p$. Um campo de vetores normais é uma aplicação diferenciável $\nu : U \to \mathbb{R}^{n+q} \operatorname{com} \nu(p) \in N_pM, \ p \in M$. Dado um campo de vetores normais $\nu : U \subset M \to \mathbb{R}^{n+q}$, em uma vizinhança U suficientemente pequena de p, podemos escolher um referencial adaptado $\{e_A\}$ em U de modo que $e_{n+1} = \nu$. Neste caso particular denotaremos a segunda forma fundamental na direção de e_{n+1} por II^{ν} .

Mostremos que II^{ν} generaliza a situação análoga para superfícies em \mathbb{R}^3 . Para isso, seja $v \in T_pM$, |v| = 1, e consideremos uma curva $\alpha : (-\varepsilon, \varepsilon) \to U$ parametrizada pelo comprimento de arco s, com $\alpha(0) = p \in \alpha'(0) = v$. Então, como $\langle \frac{d\alpha}{ds}, \nu \rangle = 0$,

$$\left\langle \frac{d^2 \alpha}{ds^2}, \nu \right\rangle = -\left\langle \frac{d\alpha}{ds}, \frac{d\nu}{ds} \right\rangle = -\left\langle dx(v), d\nu(v) \right\rangle$$
$$= -\left\langle dx, d\nu \right\rangle(v) = -\left\langle \sum_i \omega_i e_i, \sum_j \omega_{n+1,j} e_j + \sum_\beta \omega_{n+1,\beta} e_\beta \right\rangle(v)$$
$$= -\left(\sum_i \omega_i \omega_{n+1,i}\right)(v) = \left(\sum_i \omega_i \omega_{i,n+1}\right)(v) = II^{\nu}(v).$$
(2.8)

Portanto, $II^{\nu}(v)$ é a componente do vetor normal a α segundo o vetor unitário ν , isso generaliza a noção de segunda forma fundamental de superfícies em \mathbb{R}^3 .

Como sabemos, a toda forma quadrática em um espaço vetorial está associada uma aplicação linear auto-adjunta, assim, para todo ponto $p \in M$ e todo vetor normal unitário $\nu \in N_p M$, existe uma transformação linear auto-adjunta, que denotaremos por A^{ν} : $T_p M \to T_p M$, tal que

$$II^{\nu}(v) = -\langle A^{\nu}(v), v \rangle,$$

para todo $v \in T_p M$. Segue da equação 2.8 que, em um referencial adaptado, a matriz de $A^{\nu} \operatorname{com} \nu = e_{n+1}$ é dada por $(-h_{ij}^{n+1})$.

Definição 3. Dada uma imersão $x: M^2 \to M^3$ de uma superfície M^2 em uma variedade tridimensional M^3 definimos a curvatura gaussiana de M^2 por

$$K = h_{11}h_{22} - h_{12}^2,$$

e a curvatura média por

$$H = \frac{h_{11} + h_{22}}{2}.$$

Agora passaremos a descrever um dos objetos fundamentais no estudo da geometria das subvariedades, a saber, as formas de curvatura e as formas de curvatura normal da imersão x. Para isto, vamos escrever as equações de estrutura de M, tendo o cuidado de destacar as partes tangenciais (indices i, j, ...) e normais (índices $\alpha, \beta, ...$). Deste modo

$$d\omega_i = \sum_j \omega_j \wedge \omega_{ji} \tag{2.9}$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} + \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j}$$
(2.10)

$$d\omega_{i\alpha} = \sum_{j} \omega_{ij} \wedge \omega_{j\alpha} + \sum_{\beta} \omega_{i\beta} \wedge \omega_{\beta\alpha}$$
(2.11)

$$d\omega_{\alpha\beta} = \sum_{j} \omega_{\alpha j} \wedge \omega_{j\beta} + \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta}$$
(2.12)

Observação 2. Com as notações acima podemos expressar as curvaturas gaussiana e média de uma imersão $x : M^2 \to M^3$ em termos da 2-forma $\omega_1 \wedge \omega_2$. De fato, a identidade $\omega_3 = 0$ implica

$$d\omega_3 = \omega_1 \wedge \omega_{13} + \omega_2 \wedge \omega_{23} = 0.$$

Pelo lema de Cartan

$$\omega_{13} = h_{11}\omega + h_{12}\omega_2$$
$$\omega_{23} = h_{21}\omega + h_{22}\omega_2.$$

Por outro lado

$$d\omega_{12} = \omega_{13} \wedge \omega_{32}$$
$$= -(h_{11}h_{22} - h_{12}^2)\omega_1 \wedge \omega_2$$
$$= -K\omega_1 \wedge \omega_2$$

е

$$\omega_{13} \wedge \omega_2 + \omega_1 \wedge \omega_{23} = (h_{11} + h_{22})\omega_1 \wedge \omega_2$$
$$= 2H\omega_1 \wedge \omega_2$$

Da equação 2.10 observamos que a segunda parcela do membro direito funciona como um termo de correção da estrutura euclidiana de M, já que se esta parcela fosse

nula teríamos exatamente a equação 2.2. Isto sugere que o termo $\sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j}$ contém informações sobre a geometria de M. A esse termo daremos uma notação especial, a saber,

$$\Omega_{ij} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j}.$$

Consequentemente

$$\Omega_{ij} = -\Omega_{ji}.$$

Definição 4. As 2-formas Ω_{ij} são chamadas formas de curvatura do referencial $\{e_i\}$.

Nosso próximo passo é dar um significado geométrico à matriz das formas de curvatura, para isso iremos analisar como elas variam com uma mudança da parte tangente do referencial $\{e_i\}$, já que a parte normal $\{e_{\alpha}\}$ não afeta as formas Ω_{ij} .

Indicaremos as matrizes das formas $\omega_{ij} \in \Omega_{ij}$ por $W \in \Omega$, respectivamente, e o vetor coluna das formas ω_i , por ω . Assim, as equações de estrutura 2.9 e 2.10 tornam-se

$$d\omega = \omega \wedge W$$
$$dW = W \wedge W + \Omega.$$

Uma mudança na parte tangente $\{e_i\}$ do referencial será dada por

$$e_i = \sum_j u_{ij} \overline{e}_j,$$

onde $(u_{ij}) = U$ é uma matriz ortogonal, isto é, $UU^* = I$, onde U^* indica a matriz transposta de U.

Lema 2.3. Por uma mudança do referencial $\{e_i\}$ dada por $e_i = \sum_j u_{ij} \overline{e}_j$, a matriz das formas de conexão W muda por

$$W = dUU^* + U\overline{W}U^* \tag{2.13}$$

e a matriz das formas de curvatura Ω muda por

$$\Omega = U\overline{\Omega}U^*,\tag{2.14}$$

onde a barra indica os elementos correspondentes no referencial $\{\overline{e}_i\}$.

Demonstração. De $e_i = \sum_j u_{ij} \overline{e}_j$ vem $\omega_i = \sum_j u_{ij} \overline{\omega}_j$, isto é, $\omega = U \overline{\omega}$, e então $\overline{\omega} = U^* \omega$. Portanto,

$$d\omega = dU \wedge \overline{\omega} + Ud\overline{\omega}$$
$$= dU \wedge (U^*\omega) + U(\overline{W} \wedge \overline{\omega})$$
$$= (dUU^* + U\overline{W}U^*) \wedge \omega.$$

Pelo lema de unicidade 2.2, concluímos que

$$W = dUU^* + U\overline{W}U^*,$$

o que demonstra 2.13. Para demonstrar 2.14, observemos que a identidade $UU^* = I$ implica $dUU^* = -U(dU)^*$. Passemos ao calculo de $W \wedge W$ e dW:

$$W \wedge W = (dUU^* + U\overline{W}U^*) \wedge (dUU^* + U\overline{W}U^*)$$

= $dUU^* \wedge dUU^* + dUU^* \wedge U\overline{W}U^*$
 $+U\overline{W}U^* \wedge dUU^* + U\overline{W}U^* \wedge U\overline{W}U^*$
= $-dUU^*U \wedge (dU)^* + dUU^*U \wedge \overline{W}U^*$
 $-U\overline{W}U^*U \wedge (dU)^* + U\overline{W}U^* \wedge U\overline{W}U^*$
= $-dU \wedge (dU)^* + dU \wedge \overline{W}U^* - U\overline{W} \wedge (dU)^* + U\overline{W} \wedge \overline{W}U^*$

е

$$dW = -dU \wedge (dU)^* + dU \wedge \overline{W}U^* - U\overline{W} \wedge (dU)^* + Ud\overline{W}U^*.$$

Portanto,

$$\Omega = -W \wedge W + dW$$

= $-U\overline{W} \wedge \overline{W}U^* + Ud\overline{W}U^*$
= $U(d\overline{W} - \overline{W} \wedge \overline{W})U^*$
= $U\overline{\Omega}U^*.$

Como queríamos demonstrar.

Em outras palavras, o lema 2.3 afirma que fixado $p \in M$, quando mudamos o referencial tangente $\{e_i\}$, a matriz de formas $((\Omega_{ij})_p)$ muda como a matriz de uma transformação

linear em $T_p M$.

Definição 5. Fixado dois vetores $X, Y \in T_pM$, a matriz numérica $\{(\Omega_{ij})_p\}$ representa um operador linear em T_pM que indicaremos por

$$(R_{XY})_p: T_pM \to T_pM$$

e que não depende do referencial tangente. R_{XY} é chamado operados de curvatura da métrica induzida.

Observação 3. Escrevendo a equação 2.12 na forma

$$d\omega_{\alpha\beta} = \sum_{j} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} + \Omega_{\alpha\beta},$$

onde

$$\Omega_{\alpha\beta} = \sum_{i} \omega_{\alpha i} \wedge \omega_{i\beta} = -\Omega_{\beta\alpha},$$

vemos que ela possui uma certa analogia formal com as equações de estrutura de um espaço euclidiano com termo de correção $\Omega_{\alpha\beta}$. Por um raciocínio inteiramente análogo ao lema 2.3, verificamos que a matriz de formas $(\omega_{\alpha\beta}) = W^{\perp}$ e a matriz de formas $(\Omega_{\alpha\beta}) = \Omega^{\perp}$ se transforma por uma mudança da parte normal $\{e_{\alpha}\}$ do referencial, de modo semelhante as formas $W \in \Omega$ respectivamente. Por esta razão, chamamos $\omega_{\alpha\beta}$ as formas de conexão normal e $\Omega_{\alpha\beta}$ as formas de curvatura normal.

É claro que, fixados $p \in M$ e dois vetores $X, Y \in T_pM$, a matriz $\{(\Omega_{\alpha\beta})_p(X, Y)\}$ determina um operador linear

$$(R_{XY}^{\perp})_p: N_pM \to N_pM.$$

 $R_{X,Y}^{\perp}$ é chamado o operador de curvatura normal da imersão x.

Daremos agora um significado geométrico as formas de conexão ω_{ij} . Para isso consideremos X um campo diferenciável de vetores tangentes em $M, Y \in T_p M \in \alpha : (-\varepsilon, \varepsilon) \to M$ uma curva diferenciável em M com $\alpha(0) = p \in \alpha'(0) = Y$. Definimos

$$(\nabla_Y X)_p = \text{ proj. sobre } T_p M \text{ de } \left(\frac{dX}{dt}\right)_{t=0}$$

onde t é o parâmetro da curva α . Vamos mostrar que $\nabla_Y X$ só depende da métrica induzida em M por x.

Para isso, escolhemos um referencial adaptado $\{e_A\}$ em uma vizinhança $U \subset M$ e escrevemos $X = \sum x_i e_i$, onde x_i são funções diferenciáveis em U. Temos

$$\frac{dX}{dt} = \sum_{i} \frac{dx_{i}}{dt} e_{i} + \sum_{i} x_{i} \frac{de_{i}}{dt}$$
$$= \sum_{j} \frac{dx_{j}}{dt} e_{j} + \sum_{i} x_{i} \sum_{j} \omega_{ij} \left(\frac{\partial}{\partial t}\right) e_{j} + \sum_{i} x_{i} \sum_{\alpha} \omega_{i\alpha} \left(\frac{\partial}{\partial t}\right) e_{\alpha},$$

Logo

$$(\nabla_Y X)_p = \sum_j \left\{ \frac{dx_j}{dt} + \sum_i \omega_{ij} \left(\frac{\partial}{\partial t} \right) x_i \right\} e_i$$
$$= \sum_j \left\{ dx_j(Y) + \sum_i \omega_{ij}(Y) x_i \right\} e_j,$$

isto mostra que $\nabla_Y X$ só depende dos ω_{ij} e portanto da métrica induzida.

Definição 6. $(\nabla_Y X)$ é chamada a derivada covariante do campo X segundo o vetor Y no ponto p.

Notemos que se $X = e_i$, obtemos

$$\langle \nabla_Y e_i, e_j \rangle = \omega_{ij}(Y),$$

isto fornece uma interpretação geométrica das formas de conex
a ω_{ij} em termos da derivada covariante.

Analogamente, podemos definir a derivada covariante normal da seguinte maneira: Dado η um campo diferenciável de vetores normais em $M \in y \in T_p M$, a *derivada covariante* normal $(\nabla_y^{\perp} \eta)_p$ de η em relação a y no ponto p é a projeção sobre o complemento ortogonal $N_p M$ de $T_p M$ da derivada usual $\left(\frac{d\eta}{dt}\right)_{t=0}$. Com um cálculo similar ao que foi feito para $\nabla_Y X$ verificamos que

$$\left(\nabla_y^{\perp}\eta\right)_p = \sum_{\beta} \left\{ dx_{\alpha}(y) + \sum_{\alpha} \omega_{\alpha\beta}(y)\eta_{\alpha} \right\} e_{\beta},$$

onde $\eta = \sum_{\alpha} \eta_{\alpha} e_{\alpha}$. Ou seja, $\nabla_y^{\perp} \eta$ depende apenas das formas $\omega_{\alpha\beta}$. Se $\eta = e_{\alpha}$, temos

$$\langle \nabla_y^{\perp} e_{\alpha}, e_{\beta} \rangle = \omega_{\alpha\beta}(y).$$

Finalmente, relacionaremos as formas de curvatura da métrica induzida e as formas de curvatura normal com as formas quadráticas da imersão. Por definição, temos

$$\Omega_{ij} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j}$$

е

$$\Omega_{\alpha\beta} = \sum_{i} \omega_{\alpha i} \wedge \omega_{i\beta}$$

Aplicando a definição dos coeficientes da segunda forma fundamental ficamos com

$$\Omega_{ij} = -\sum_{\alpha} \left\{ \sum_{l} h_{il}^{\alpha} \omega_{l} \wedge \sum_{k} h_{jk}^{\alpha} \omega_{k} \right\}$$
$$= -\sum_{\alpha} \left\{ \sum_{l,k} h_{il}^{\alpha} h_{jk}^{\alpha} \omega_{l} \wedge \omega_{k} \right\}$$
$$= \sum_{k < l} \left\{ \sum_{\alpha} \left(h_{il}^{\alpha} h_{jk}^{\alpha} - h_{ik}^{\alpha} h_{jl}^{\alpha} \right) \right\} \omega_{k} \wedge \omega_{l}$$
(2.15)

е

$$\Omega_{\alpha\beta} = -\sum_{i} \left\{ \sum_{k} h_{ik}^{\alpha} \omega_{k} \wedge \sum_{l} h_{il}^{\beta} \omega_{l} \right\}
= -\sum_{i} \left\{ \sum_{k,l} h_{ik}^{\alpha} h_{il}^{\beta} \omega_{k} \wedge \omega_{l} \right\}
= \sum_{k < l} \left\{ \sum_{i} \left(h_{il}^{\alpha} h_{jk}^{\beta} - h_{ik}^{\alpha} h_{il}^{\beta} \right) \right\} \omega_{k} \wedge \omega_{l}$$
(2.16)

As equações 2.15 e 2.16 são chamadas as *equações de Gauss* e *equações de Ricci*, respectivamente.

As equações 2.11

$$d\omega_{i\alpha} = \sum_{j} \omega_{ij} \wedge \omega_{j\alpha} + \sum_{\beta} \omega_{i\beta} \wedge \omega_{\beta\alpha}$$

que exprimem as diferenciais de $\omega_{i\alpha}$ em termos das formas da conexão tangente e das formas da conexão normal é chamada *Equações de Codazzi*.

Observação4. Para o caso de uma hipersuperfície de dimensão nas equações de Codazzi assume a forma

$$d\omega_{i,n+1} = \sum_{j} \omega_{ij} \wedge \omega_{j,n+1},$$

pois $\omega_{n+1,n+1} = 0$. Tendo em vista que

$$\omega_{j,n+1} = \sum_{k} h_{jk} \omega_k, \qquad (2.17)$$

podemos escrever

$$d\omega_{i,n+1} = \sum_{k,j} h_{jk} \omega_{ij} \wedge \omega_k.$$
(2.18)

Nosso objetivo é obter uma expressão manejável para a equação de Codazzi. Para isto, vamos fazer uso da identidade auxiliar

$$dh_{ij} = \sum_{k} h_{ij,k}\omega_k - \sum_{k} h_{kj}\omega_{ki} - \sum_{k} h_{ik}\omega_{kj}, \qquad (2.19)$$

onde $h_{ij,k} = \frac{\partial}{\partial x_k} h_{ij}$. Derivando exteriormente $\omega_{i,n+1} = \sum_j h_{ij} \omega_j$ obtemos

$$d\omega_{i,n+1} = \sum_{j} dh_{ij} \wedge \omega_j + \sum_{j} h_{ij} d\omega_j.$$

Substituindo 2.19, obtemos

$$d\omega_{i,n+1} = \sum_{k,j} h_{ij,k}\omega_k \wedge \omega_j - \sum_{k,j} h_{kj}\omega_{ki} \wedge \omega_j$$
$$- \sum_{k,j} h_{ik}\omega_{kj} \wedge \omega_j + \sum_{k,j} h_{ij}\omega_k \wedge \omega_{kj}.$$

Observando que

$$\sum_{k,j} h_{ij}\omega_k \wedge \omega_{kj} = \sum_{k,j} h_{ik}\omega_{jk} \wedge \omega_j$$

vem,

$$d\omega_{i,n+1} = \sum_{k,j} h_{ij,k}\omega_k \wedge \omega_j - \sum_{k,j} h_{kj}\omega_{ki} \wedge \omega_j.$$
(2.20)

Comparando 2.18 e 2.20, concluímos que

$$0 = \sum_{k,j} h_{ij,k} \omega_k \wedge \omega_j = \sum_{k < j} (h_{ij,k} - h_{ik,j}) \omega_k \wedge \omega_j.$$

Portanto

$$h_{ij,k} = h_{ik,j},$$

como gostaríamos.

2.3 O Toro de Clifford

Seja $x: \mathbb{R}^2 \to \mathbb{R}^4$ uma aplicação diferenciável dada por

$$x(u.v) = \frac{1}{\sqrt{2}}(\cos u, \sin u, \cos v, \sin v) \quad (u,v) \in \mathbb{R}^2.$$

$$(2.21)$$

O conjunto $x(\mathbb{R}^2) \subset S^3$ é chamado o *toro de Clifford*. O objetivo desta seção é provar dentre outros fatos que o toro de Clifford é uma superfície mínima da esfera unitária de \mathbb{R}^4 . Dando assim, um exemplo não-trivial de uma superfície mínima mergulhada compacta de S^3 .

De 2.21, podemos escrever

$$dx = \frac{1}{\sqrt{2}}(-\sin u du, \cos u du, -\sin v dv, \cos v dv),$$

com isso

$$dx\left(\frac{\partial}{\partial u}\right) = \frac{1}{\sqrt{2}}(-\sin u, \cos u, 0, 0),$$
$$dx\left(\frac{\partial}{\partial v}\right) = \frac{1}{\sqrt{2}}(0, 0, -\sin v, \cos v),$$

portanto x é uma imersão. Como $x(u+2n\pi, v+2m\pi) = x(u, v)$, para todo n, m inteiros, podemos nos restringir a condição $(u, v) \in (0, 2\pi) \times (0, 2\pi)$, neste conjunto x é um mergulho.

Para estudar a geometria desde toro, escolhamos um referencial ortonormal e adaptado da seguinte maneira

$$e_{1} = (-\sin u, \cos u, 0, 0),$$

$$e_{2} = (0, 0, -\sin v, \cos v),$$

$$e_{3} = \frac{1}{\sqrt{2}}(\cos u, \sin u, \sin v, \cos v),$$

$$e_{4} = \frac{1}{\sqrt{2}}(-\cos u, -\sin u, \sin v, \cos v)$$

Como $dx = \sum \omega_i e_i$, concluímos que

$$\omega_1 = \langle dx, e_1 \rangle = \frac{du}{\sqrt{2}},$$
$$\omega_2 = \langle dx, e_2 \rangle = \frac{dv}{\sqrt{2}},$$
$$\omega_3 = \langle dx, e_3 \rangle = 0,$$
$$\omega_4 = \langle dx, e_4 \rangle = 0.$$

Para encontrar as formas de conexão, calculamos primeiro

$$de_{1} = (-\cos u du, -\sin u du, 0, 0),$$

$$de_{2} = (0, 0, -\cos v dv, -\sin v dv),$$

$$de_{3} = \frac{1}{\sqrt{2}}(-\sin u du, \cos u du, -\sin v dv, \cos v dv),$$

donde

$$\begin{split} \omega_{12} &= \langle de_1, e_2 \rangle = 0, \\ \omega_{13} &= \langle de_1, e_3 \rangle = -\frac{du}{\sqrt{2}}, \\ \omega_{14} &= \langle de_1, e_4 \rangle = \frac{du}{\sqrt{2}}, \\ \omega_{23} &= \langle de_2, e_3 \rangle = -\frac{dv}{\sqrt{2}}, \\ \omega_{24} &= \langle de_2, e_4 \rangle = -\frac{du}{\sqrt{2}}, \\ \omega_{34} &= \langle de_3, e_4 \rangle = 0. \end{split}$$

De $\omega_{12} = 0$, concluímos com o auxílio da observação 2, que a curvatura gaussiana K da métrica induzida é zero.

Passemos ao cálculo das segundas formas quadráticas nas direções e_3 e e_4 , para isto escrevemos

$$\begin{split} \omega_{13} &= h_{11}^3 \omega_1 + h_{12}^3 \omega_2, \\ \omega_{23} &= h_{21}^3 \omega_1 + h_{22}^3 \omega_2, \end{split}$$

isto implica

$$-\frac{du}{\sqrt{2}} = h_{11}^3 \frac{du}{\sqrt{2}} + h_{12}^3 \frac{dv}{\sqrt{2}},$$
$$-\frac{dv}{\sqrt{2}} = h_{21}^3 \frac{du}{\sqrt{2}} + h_{22}^3 \frac{dv}{\sqrt{2}}.$$

Portanto

$$A^3 = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right).$$

Analogamente

$$\frac{du}{\sqrt{2}} = h_{11}^4 \frac{du}{\sqrt{2}} + h_{12}^4 \frac{dv}{\sqrt{2}},$$

$$-\frac{dv}{\sqrt{2}} = h_{21}^4 \frac{du}{\sqrt{2}} + h_{22}^4 \frac{dv}{\sqrt{2}},$$

 $\operatorname{da}\!i$

$$A^4 = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right).$$

Em particular, o toro $x((0, 2\pi) \times (0, 2\pi)) \subset S^3$ visto como uma superfície de S^3 tem curvaturas principais $\lambda_1 = 1$ e $\lambda_2 = -1$, ou seja, o toro de Clifford é uma superfície mínima de S^3 .

3 A CONJECTURA DE LAWSON

Neste capítulo apresentamos a demonstração da conjectura de Lawson.

3.1 Chave Técnica

Seja $F : \Sigma \to S^3$ uma superfície mínima mergulhada em S^3 (vista como a esfera unitária de \mathbb{R}^4). Além disso, seja Φ uma função positiva, definida em Σ . Consideremos a expressão

$$Z(x,y) = \Phi(x)(1 - \langle F(x), F(y) \rangle) + \langle \nu(x), F(y) \rangle.$$

A função acima aparece pela primeira vez no trabalho de B. Andrews (3). A interpretação geométrica da mesma pode ser feita em dimensões arbitrarias e é a seguinte:

Seja $M^n = F(\Sigma)$ uma hipersuperfície em S^{n+1} dada pelo mergulho F, e limitando uma região $\Omega \subset S^{n+1}$. Escolhamos Ω de tal modo que o vetor normal ν de Σ aponta para fora de Ω . Para cada $x \in \Sigma$, encontraremos uma desigualdade que é equivalente a afirmação de que existe uma bola em Ω com curvatura de bordo igual a $\Phi(x)$ de modo que F(x) pertence ao bordo desta bola. Uma bola geodésica em S^{n+1} é simplesmente a interseção de uma bola de \mathbb{R}^{n+2} com S^{n+1} . Em particular, a bola em S^{n+1} contida em Ω e com curvatura média do bordo igual a Φ e que é tangente a $F(\Sigma)$ no ponto F(x) é $B = B_{\Phi^{-1}}(p)$, onde $p = F(x) - \Phi^{-1}\nu(x)$, onde ν é o vetor normal a $F(\Sigma)$ no ponto F(x)de S^{n+1} que aponta para fora de Ω .

Afirmar que uma bola de S^{n+1} está inteiramente contida em Ω é equivalente, a afirmar que, para todo $y \in \Sigma$, vale a seguinte desigualdade

$$|F(y) - p|^2 \ge \Phi^{-2}$$
,

ou seja,

$$|F(y) - (F(x) - \Phi^{-1}\nu(x))|^2 - \Phi^{-2} \ge 0.$$

Desenvolvendo o primeiro membro e multiplicando por $\Phi/2$ ficamos com

$$\frac{\Phi}{2}|F(y) - F(x)|^2 + \langle F(y) - F(x), \nu(x) \rangle \ge 0$$

Desde que $F(x),F(y)\in S^{n+1}$ temos $|F(x)|^2=|F(y)|^2=1$ e $\langle F(x),\nu(x)\rangle=0,$ daí

$$Z(\Phi(x), x, y) := \Phi(x)(1 - \langle F(x), F(y) \rangle) + \langle \nu(x), F(y) \rangle \ge 0.$$

Em suma, provamos o seguinte fato geométrico:

Proposição 3.1. Se $\Phi : \Sigma \to \mathbb{R}$ é uma função suave e positiva sobre Σ , então a função $Z(\Phi(x), x, y)$ é não-negativa para todo $x, y \in \Sigma$ se, e somente se, em todo ponto $x \in \Sigma$ existe uma bola $B \subset \Omega$ com curvatura média do bordo igual $\Phi(x)$ e $F(x) \in \partial \overline{B}$.

Voltando à função Z inicial, consideremos o par de pontos $\overline{x} \neq \overline{y}$ tal que $Z(\overline{x}, \overline{y}) = 0$ e de modo que a diferencial de Z também se anula no ponto $(\overline{x}, \overline{y})$. Seja (x_1, x_2) um sistema de coordenadas geodésicas em uma vizinhança de \overline{x} , e (y_1, y_2) um sistema de coordenadas geodésicas em uma vizinhança de \overline{y} .

No ponto $(\overline{x}, \overline{y})$, temos

$$0 = \frac{\partial Z}{\partial x_i}(\overline{x}, \overline{y}) = \frac{\partial \Phi}{\partial x_i}(\overline{x})(1 - \langle F(\overline{x}), F(\overline{y}) \rangle) - \Phi(\overline{x}) \left\langle \frac{\partial F}{\partial x_i}(\overline{x}), F(\overline{y}) \right\rangle + h_i^k(\overline{x}) \left\langle \frac{\partial F}{\partial x_k}(\overline{x}), F(\overline{y}) \right\rangle$$
(3.1)

е

$$0 = \frac{\partial Z}{\partial y_i}(\overline{x}, \overline{y}) = -\Phi(\overline{x}) \left\langle F(\overline{x}), \frac{\partial F}{\partial y_i}(\overline{y}) \right\rangle + \left\langle \nu(\overline{x}), \frac{\partial F}{\partial y_i}(\overline{y}) \right\rangle, \tag{3.2}$$

onde $h_{ij}(\overline{x})$ denota a coordenada ij da matriz da segunda forma fundamental de F no ponto \overline{x} , a qual denotaremos por $A(\overline{x})$.

As relações acima serão muito usadas nos próximos argumentos.

$$R_i = \frac{\partial F}{\partial x_i}(\overline{x}) - 2\left\langle \frac{\partial F}{\partial x_i}(\overline{x}), \frac{F(\overline{x}) - F(\overline{y})}{|F(\overline{x}) - F(\overline{y})|} \right\rangle \frac{F(\overline{x}) - F(\overline{y})}{|F(\overline{x}) - F(\overline{y})|}$$

Escolhendo de maneira adequada um sistema de coordenadas (y_1, y_2) , podemos supor que $\langle R_1, \frac{\partial F}{\partial y_1}(\overline{y}) \rangle \ge 0$, $\langle R_1, \frac{\partial F}{\partial y_2}(\overline{y}) \rangle = 0$, e $\langle R_2, \frac{\partial F}{\partial y_2}(\overline{y}) \rangle \ge 0$.

Lema 3.1. Os vetores $F(\overline{y}) e \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x})$ são linearmente independentes.

Demonstração. Usando a identidade

$$\langle \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x}), F(\overline{y}) \rangle = \Phi(\overline{x}) - Z(\overline{x}, \overline{y}) = \Phi(\overline{x}),$$

obtemos

$$\begin{split} |\Phi(\overline{x})F(\overline{x}) - \nu(\overline{x})|^2 |F(\overline{y})|^2 &- \langle \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x}), F(\overline{y}) \rangle^2 \\ &= |\Phi(\overline{x})F(\overline{x}) - \nu(\overline{x})|^2 - \Phi(\overline{x})^2 = 1. \end{split}$$

Isto implica que a desigual dade de cauchy-schwarz é estrita, logo $F(\overline{y}) \in \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x})$ são linearmente independentes.

-	_	_	-

Lema 3.2. Temos $R_1 = \frac{\partial F}{\partial y_1}(\overline{y}) \ e \ R_2 = \frac{\partial F}{\partial y_2}(\overline{y}).$

Demonstração. Usando a expressão de R_i encontramos

$$\begin{aligned} \langle R_i, F(\overline{y}) \rangle &= \left\langle \frac{\partial F}{\partial x_i}(\overline{x}), F(\overline{y}) \right\rangle \\ &+ \left. 2 \left\langle \frac{\partial F}{\partial x_i}(\overline{x}), F(\overline{y}) \right\rangle \frac{\langle F(\overline{x}) - F(\overline{y}), F(\overline{y}) \rangle}{|F(\overline{x}) - F(\overline{y})|^2} = 0 \end{aligned}$$

е

$$\langle R_i, \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x}) \rangle = 2 \left\langle \frac{\partial F}{\partial x_i}(\overline{x}), F(\overline{y}) \right\rangle \frac{\langle F(\overline{x}) - F(\overline{y}), \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x}) \rangle}{|F(\overline{x}) - F(\overline{y})|^2}$$

$$= 2 \left\langle \frac{\partial F}{\partial x_i}(x), F(\overline{y}) \right\rangle \frac{Z(\overline{x}, \overline{y})}{|F(\overline{x}) - F(\overline{y})|^2} = 0.$$

Por outro lado, os vetores $\frac{\partial F}{\partial y_1}(\overline{y}) \in \frac{\partial F}{\partial y_2}(\overline{y})$ satisfazem

$$\left\langle \frac{\partial F}{\partial y_i}(\overline{y}), F(\overline{y}) \right\rangle = 0$$

е

$$\left\langle \frac{\partial F}{\partial y_i}(\overline{y}), \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x}) \right\rangle = -\frac{\partial Z}{\partial y_i}(\overline{x}, \overline{y}) = 0.$$

Visto que os vetores $F(\overline{y}) \in \Phi(\overline{x})F(\overline{x}) - \nu(\overline{x})$ são linearmente independentes, podemos escrever

span{
$$R_1, R_2$$
} = span $\left\{ \frac{\partial F}{\partial y_1}(\overline{y}), \frac{\partial F}{\partial y_2}(\overline{y}) \right\}$.

Além disso, $R_1 \in R_2$ são ortonormais. Como $\langle R_1, \frac{\partial F}{\partial y_2}(\overline{y}) \rangle = 0$ concluímos que $R_1 = \pm \frac{\partial F}{\partial y_1}(\overline{y})$ e $R_2 = \pm \frac{\partial F}{\partial y_2}(\overline{y})$. Desde que $\langle R_1, \frac{\partial F}{\partial y_1}(\overline{y}) \rangle \ge 0$ e $\langle R_2, \frac{\partial F}{\partial y_2}(\overline{y}) \rangle \ge 0$, o resultado segue.

L			
L			
L			

Consideraremos agora as segundas derivadas de Z num ponto (x, y) supondo apenas que $x \neq y$.

Proposição 3.2. Se $x \neq y$, temos

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^2 Z}{\partial x_i^2}(x,y) &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^2}{\Phi(x)} + (|A(x)|^2 - 2)\Phi(x) \right) (1 - \langle F(x), F(y) \rangle) \\ &+ 2\Phi(x) - \frac{2\Phi(x)^2 - |A(x)|^2}{2\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle^2 \\ &- |A(x)|^2 Z(x,y) + \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \\ &\cdot \sum_{i=1}^{2} \left[\left(\frac{\partial Z}{\partial x_i}(x,y) \right)^2 - 2\lambda_i \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_i}(x,y) \right]. \end{split}$$

Em particular,

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(\overline{x}, \overline{y}) &= \left(\Delta_{\Sigma} \Phi(\overline{x}) - \frac{|\nabla \Phi(\overline{x})|^{2}}{\Phi(\overline{x})} + (|A(\overline{x})|^{2} - 2) \Phi(\overline{x}) \right) (1 - \langle F(\overline{x}), F(\overline{y}) \rangle) \\ &+ 2\Phi(\overline{x}) - \frac{2\Phi(\overline{x})^{2} - |A(\overline{x})|^{2}}{2\Phi(\overline{x})(1 - \langle F(\overline{x}), F(\overline{y}) \rangle)} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(\overline{x}), F(\overline{y}) \right\rangle^{2}. \end{split}$$

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) &= \sum_{i=1}^{2} \frac{\partial^{2} \Phi}{\partial x_{i}^{2}} (1 - \langle F(x), F(y) \rangle) - \sum_{i=1}^{2} \frac{\partial \Phi}{\partial x_{i}} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \\ &- \sum_{i=1}^{2} \frac{\partial \Phi}{\partial x_{i}} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle - \sum_{i=1}^{2} \Phi(x) \left\langle \frac{\partial^{2} F}{\partial x_{i}^{2}}(x), F(y) \right\rangle \\ &+ \sum_{i=1}^{2} \frac{\partial}{\partial x_{i}} h_{i}^{k}(x) \left\langle \frac{\partial F}{\partial x_{k}}(x), F(y) \right\rangle + \sum_{i=1}^{2} h_{i}^{k}(x) \left\langle \frac{\partial^{2} F}{\partial x_{i} \partial x_{k}}(x), F(y) \right\rangle. \end{split}$$

coordenada no ponto (x, y) e somando de 1 até 2, encontramos

Das equações de Codazzi vem

$$\sum_{i=1}^{2} \frac{\partial}{\partial x_{i}} h_{i}^{k}(x) = 0.$$

Usando a identidade acima e o fato de que

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(x) = -\delta_{ij} F(x) - h_{ij}(x)\nu(x)$$
(3.3)

obtemos

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) &= \sum_{i=1}^{2} \frac{\partial^{2} \Phi}{\partial x_{i}^{2}} (1 - \langle F(x), F(y) \rangle) - 2 \sum_{i=1}^{2} \frac{\partial \Phi}{\partial x_{i}} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \\ &+ 2 \Phi(x) \langle F(x), F(y) \rangle - |A(x)|^{2} \langle \nu(x), F(y) \rangle. \end{split}$$

Como $\langle \nu(x), F(y) \rangle = Z(x, y) - \Phi(x) \left(1 - \langle F(x), F(y) \right)$ vem

$$\sum_{i=1}^{2} \frac{\partial^2 Z}{\partial x_i^2}(x,y) = \left(\Delta_{\Sigma} \Phi(x) + (|A(x)|^2 - 2)\Phi(x)\right) \left(1 - \langle F(x), F(y) \rangle\right) + 2\Phi(x)$$
$$- 2\sum_{i=1}^{2} \frac{\partial \Phi}{\partial x_i} \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle - |A(x)|^2 Z(x,y).$$

Somando e subtraindo $\frac{|\nabla \Phi(x)|^2}{\Phi(x)}$ dentro dos parênteses e completando o quadrado ficamos com

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) \\ &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^{2}}{\Phi(x)} + (|A(x)|^{2} - 2)\Phi(x)\right) \left(1 - \langle F(x), F(y) \rangle\right) + 2\Phi(x) \\ &+ \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left(\frac{\partial \Phi}{\partial x_{i}}(x)(1 - \langle F(x), F(y) \rangle) - \Phi(x) \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \right)^{2} \\ &- \frac{\Phi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} - |A(x)|^{2} Z(x,y) \end{split}$$

Substituindo a expressão da $\frac{\partial Z}{\partial x_i}(x,y)$ acima, vem

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^{2}}{\Phi(x)} + (|A(x)|^{2} - 2)\Phi(x) \right) (1 - \langle F(x), F(y) \rangle) \\ &+ 2\Phi(x) + \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \\ &\quad \cdot \sum_{i=1}^{2} \left(\frac{\partial Z}{\partial x_{i}}(x,y) - \lambda_{i} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \right)^{2} \\ &- \frac{\Phi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} - |A(x)|^{2} Z(x,y). \end{split}$$

Logo

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^2 Z}{\partial x_i^2}(x,y) &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^2}{\Phi(x)} + (|A(x)|^2 - 2)\Phi(x) \right) (1 - \langle F(x), F(y) \rangle) \\ &+ 2\Phi(x) + \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \lambda_i^2 \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle^2 \\ &- \frac{\Phi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle^2 - |A(x)|^2 Z(x,y) \\ &+ \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \\ &\cdot \sum_{i=1}^{2} \left[\left(\frac{\partial Z}{\partial x_i}(x,y) \right)^2 - 2\lambda_i \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_i}(x,y) \right]. \end{split}$$

Visto que a imersão é mínima vale $\lambda_1^2 = \lambda_2^2 = \frac{1}{2} |A(x)|^2$, e logo temos

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^{2}}{\Phi(x)} + (|A(x)|^{2} - 2)\Phi(x) \right) \left(1 - \langle F(x), F(y) \rangle \right) \\ &+ 2\Phi(x) - \frac{2\Phi(x)^{2} - |A(x)|^{2}}{2\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} \\ &- |A(x)|^{2} Z(x,y) + \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \\ &\cdot \sum_{i=1}^{2} \left[\left(\frac{\partial Z}{\partial x_{i}}(x,y) \right)^{2} - 2\lambda_{i} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_{i}}(x,y) \right]. \end{split}$$

Proposição 3.3. Se $x \neq y$, temos

$$\frac{\partial^2 Z}{\partial x_i \partial y_i}(x,y) = \left(\lambda_i - \Phi(x)\right) \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle - \frac{\frac{\partial Z}{\partial x_i}(x,y)}{1 - \left\langle F(x), F(y) \right\rangle} \left\langle F(x), \frac{\partial F}{\partial y_i}(y) \right\rangle.$$

Em particular,

$$\frac{\partial^2 Z}{\partial x_i \partial y_i}(\overline{x}, \overline{y}) = \lambda_i - \Phi(\overline{x}).$$

Demonstração. Derivando Z com relação a x e com relação a y, obtemos

$$\frac{\partial^2 Z}{\partial x_i \partial y_i}(x,y) = -\frac{\partial \Phi}{\partial x_i}(x) \left\langle F(x), \frac{\partial F}{\partial y_i}(y) \right\rangle + (\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), \frac{\partial F}{\partial y_i}(y) \right\rangle.$$

Desde que

$$\frac{\partial Z}{\partial x_i}(x,y) = \frac{\partial \Phi}{\partial x_i}(x)(1 - \langle F(x), F(y) \rangle) + (\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle$$

temos

$$\frac{\partial \Phi}{\partial x_i}(x) = \frac{1}{1 - \langle F(x), F(y) \rangle} \left(\frac{\partial Z}{\partial x_i}(x, y) - (\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle \right).$$

Logo

$$\begin{aligned} \frac{\partial^2 Z}{\partial x_i \partial y_i}(x,y) &= -\frac{1}{1 - \langle F(x), F(y) \rangle} \left(\frac{\partial Z}{\partial x_i}(x,y) - (\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle \right) \\ &\quad \cdot \left\langle F(x), \frac{\partial F}{\partial y_i}(y) \right\rangle \\ &\quad + (\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), \frac{\partial F}{\partial y_i}(y) \right\rangle \\ &= -2(\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), \frac{F(x) - F(y)}{|F(x) - F(y)|} \right\rangle \left\langle \frac{F(x) - F(y)}{|F(x) - F(y)|}, \frac{\partial F}{\partial y_i}(y) \right\rangle \\ &\quad + (\lambda_i - \Phi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), \frac{\partial F}{\partial y_i}(y) \right\rangle - \frac{\frac{\partial Z}{\partial x_i}(x,y)}{1 - \langle F(x), F(y) \rangle} \left\langle F(x), \frac{\partial F}{\partial y_i}(y) \right\rangle. \end{aligned}$$

Portanto

$$\frac{\partial^2 Z}{\partial x_i \partial y_i}(x,y) = \left(\lambda_i - \Phi(x)\right) \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle - \frac{\frac{\partial Z}{\partial x_i}(x,y)}{1 - \left\langle F(x), F(y) \right\rangle} \left\langle F(x), \frac{\partial F}{\partial y_i}(y) \right\rangle.$$

Como queríamos demonstrar.

n			Ľ
			L
			L

Proposição 3.4. Se $x \neq y$, temos

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^{2}}{\Phi(x)} + (|A(x)|^{2} - 2)\Phi(x)\right) \left(1 - \langle F(x), F(y) \rangle\right) \\ &- \frac{2\Phi(x)^{2} - |A(x)|^{2}}{2\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} + 4\Phi(x) - (|A(x)|^{2} + 2)Z(x,y) \\ &+ 2\sum_{i=1}^{2} (\lambda_{i} - \Phi(x)) \left\langle R_{i}, \frac{\partial F}{\partial y_{i}}(y) \right\rangle - \frac{2}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \frac{\partial Z}{\partial x_{i}}(x,y) \left\langle F(x), \frac{\partial F}{\partial y_{i}}(y) \right\rangle \\ &+ \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left[\left(\frac{\partial Z}{\partial x_{i}}(x,y) \right)^{2} - 2\lambda_{i} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_{i}}(x,y) \right]. \end{split}$$

Em particular,

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(\overline{x}, \overline{y}) + 2 \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(\overline{x}, \overline{y}) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(\overline{x}, \overline{y}) \\ &= \left(\Delta_{\Sigma} \Phi(\overline{x}) - \frac{|\nabla \Phi(\overline{x})|^{2}}{\Phi(\overline{x})} + (|A(\overline{x})|^{2} - 2) \Phi(\overline{x}) \right) \left(1 - \langle F(\overline{x}), F(\overline{y}) \rangle \right) \\ &- \frac{2\Phi(\overline{x})^{2} - |A(\overline{x})|^{2}}{2\Phi(\overline{x})(1 - \langle F(\overline{x}), F(\overline{y}) \rangle)} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(\overline{x}), F(\overline{y}) \right\rangle^{2}. \end{split}$$

Demonstração. Pela proposição 3.3, temos

$$\frac{\partial^2 Z}{\partial x_i \partial y_i}(x, y) = \sum_{i=1}^2 (\lambda_i - \Phi(x)) \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle$$
$$- \frac{1}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^2 \frac{\partial Z}{\partial x_i}(x, y) \left\langle F(x), \frac{\partial F}{\partial y_i}(y) \right\rangle$$

Além disso,

$$\frac{\partial^2 Z}{\partial y_i^2}(x,y) = -\Phi(x) \left\langle F(x), \frac{\partial^2 F}{\partial y_i^2}(y) \right\rangle + \left\langle \nu(x), \frac{\partial^2 F}{\partial y_i^2}(y) \right\rangle$$

Segue de 3.3 que

$$\sum_{i=1}^{2} \frac{\partial^2 Z}{\partial y_i^2}(x,y) = 2\Phi(x) \langle F(x), F(y) \rangle - 2 \langle \nu(x), F(y) \rangle = 2\Phi(x) - 2Z(x,y).$$

Combinando essa identidades com a proposição 3.2, encontramos

$$\begin{split} \sum_{i=1}^{2} \frac{\partial^{2}Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2}Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2}Z}{\partial y_{i}^{2}}(x,y) \\ &= \left(\Delta_{\Sigma} \Phi(x) - \frac{|\nabla \Phi(x)|^{2}}{\Phi(x)} + (|A(x)|^{2} - 2)\Phi(x)\right) \left(1 - \langle F(x), F(y) \rangle\right) \\ &- \frac{2\Phi(x)^{2} - |A(x)|^{2}}{2\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} + 4\Phi(x) - (|A(x)|^{2} + 2)Z(x,y) \\ &+ 2\sum_{i=1}^{2} (\lambda_{i} - \Phi(x)) \left\langle R_{i}, \frac{\partial F}{\partial y_{i}}(y) \right\rangle - \frac{2}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \frac{\partial Z}{\partial x_{i}}(x,y) \left\langle F(x), \frac{\partial F}{\partial y_{i}}(y) \right\rangle \\ &+ \frac{1}{\Phi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left[\left(\frac{\partial Z}{\partial x_{i}}(x,y) \right)^{2} - 2\lambda_{i} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_{i}}(x,y) \right]. \end{split}$$

3.2 Demonstração do Teorema Principal

Nesta seção descrevemos a demonstração da conjectura de Lawson. Primeiramente vamos encontrar uma identidade tipo-Simons para a função $\Psi(x) = \frac{1}{\sqrt{2}} |A(x)|$.

Proposição 3.5. Suponha que $F : \Sigma \to S^3$ é um toro mínimo mergulhado em S^3 . Então a função $\Psi(x) = \frac{1}{\sqrt{2}} |A(x)|$ é estritamente positiva. Além disso, Ψ satisfaz a equação diferencial parcial

$$\Delta_{\Sigma}\Psi - \frac{|\nabla\Psi|^2}{\Psi} + (|A|^2 - 2)\Psi = 0.$$

Demonstração. Segue de (13) que um toro mínimo em S^3 não tem pontos umbílicos. Assim, a função |A| é estritamente positiva em todo ponto. Usando a identidade de Simons (15) obtemos

$$\Delta h_{ik} + (|A|^2 - 2)h_{ik} = 0.$$

Multiplicando esta igualdade por h_{ik} e somando em i e k de 1 até 2 temos

$$\sum_{i,k} h_{ik} \Delta h_{ik} + (|A|^2 - 2) \sum_{i,k} h_{ik}^2 = 0.$$

Agora, usando a identidade $\Delta h_{ik}^2=2h_{ik}\Delta h_{ik}+2|\nabla h_{ik}|^2$ e a linearidade do Laplaciano vem

$$\sum_{i,k} \left(\frac{1}{2}\Delta h_{ik}^2 - |\nabla h_{ik}|^2\right) + \left(|A|^2 - 2\right) \sum_{i,k} h_{ik}^2 = 0$$

$$\frac{1}{2}\Delta \sum_{i,k} h_{ik}^2 - \sum_{i,k} |\nabla h_{ik}|^2 + \left(|A|^2 - 2\right) \sum_{i,k} h_{ik}^2 = 0$$

$$\frac{1}{2}\Delta_{\Sigma}(|A|^2) - |\nabla A|^2 + \left(|A|^2 - 2\right)|A|^2 = 0,$$

donde temos

$$\Delta_{\Sigma}(|A|) + |\nabla|A||^2 - |\nabla A|^2 + (|A|^2 - 2)|A|^2 = 0$$

Para finalizar a demonstração mostraremos que $|\nabla A|^2=2|\nabla |A||^2.$ Escrevendo

$$A = (h_{11}, h_{12}, h_{21}, h_{22})$$

 temos

$$|A| = \sqrt{2h_{11}^2 + 2h_{12}^2},$$

pois $h_{11} + h_{22} = 0$ e $h_{12} = h_{21}$. Logo

$$\frac{\partial|A|}{\partial x_1} = \frac{2h_{11}h_{11,1} + 2h_{12}h_{12,1}}{|A|} \tag{3.4}$$

е

$$\frac{\partial|A|}{\partial x_2} = \frac{2h_{11}h_{11,2} + 2h_{12}h_{12,2}}{|A|}.$$
(3.5)

As equações 3.4 e 3.5 implicam

$$\begin{aligned} |\nabla|A||^2 &= \frac{4}{|A|^2} (h_{11}^2 h_{11,1}^2 + h_{12}^2 h_{12,1}^2 + 2h_{11} h_{11,1} h_{12} h_{12,1}) \\ &+ \frac{4}{|A|^2} (h_{11}^2 h_{11,2}^2 + h_{12}^2 h_{12,2}^2 + 2h_{11} h_{11,2} h_{12} h_{12,2}) \\ &= \frac{4}{|A|^2} [h_{11}^2 (h_{11,1}^2 + h_{11,2}^2) + h_{12}^2 (h_{12,1}^2 + h_{12,2}^2)] \\ &+ \frac{4}{|A|^2} [2h_{11} h_{12} (h_{11,1} h_{12,1} + h_{11,2} h_{12,2})]. \end{aligned}$$

Aplicando as equações de Codazzi, vem

$$\begin{aligned} |\nabla|A||^2 &= \frac{4}{|A|^2} (h_{11}^2 + h_{12}^2) (h_{11,1}^2 + h_{11,2}^2) \\ &+ \frac{8}{|A|^2} h_{11} h_{12} h_{12,1} (h_{11,1} + h_{22,1}) \\ &= 2(h_{11,1}^2 + h_{11,2}^2) \\ &= 2|\nabla h_{11}|^2. \end{aligned}$$

Por outro lado,

$$\nabla A = (\nabla h_{11}, \nabla h_{12}, \nabla h_{21}, \nabla h_{22}).$$

Isto nos dá

$$\begin{aligned} |\nabla A|^2 &= |\nabla h_{11}|^2 + |\nabla h_{12}|^2 + |\nabla h_{21}|^2 + |\nabla h_{22}|^2 \\ &= 2|\nabla h_{11}|^2 + 2|\nabla h_{12}|^2. \end{aligned}$$

Aplicando as equações de codazzi e a hipótese de que $h_{11} + h_{22} = 0$ na expressão $|\nabla h_{12}|^2$ acima, encontramos

$$\begin{aligned} |\nabla h_{12}|^2 &= h_{12,1}^2 + h_{12,2}^2 \\ &= h_{11,2}^2 + h_{22,1}^2 \\ &= |\nabla h_{11}|^2. \end{aligned}$$

Portanto

$$|\nabla A|^2 = 4|\nabla h_{11}|^2 = 2|\nabla |A||^2.$$

Substituindo $|\nabla A|^2$ na equação acima e dividindo ambos os membros por $\sqrt{2},$ ficamos com

$$\Delta_{\Sigma} \left(\frac{|A|}{\sqrt{2}} \right) - \frac{1}{\sqrt{2}} \frac{|\nabla|A||^2}{|A|} + (|A|^2 - 2) \frac{|A|}{\sqrt{2}} = 0$$

Como queríamos demonstrar.

Proposição 3.6. Suponha que $F: \Sigma \to S^3$ é um toro mínimo mergulhado em S^3 . Se

$$\sup_{x,y\in\Sigma,x\neq y}\frac{|\langle\nu(x),F(y)\rangle|}{\Psi(x)(1-\langle F(x),F(y)\rangle)} \le 1,$$

então F é congruente ao toro de Clifford.

Demonstração. Por hipótese, temos

$$Z(x,y) = \Psi(x)(1 - \langle F(x), F(y) \rangle) + \langle \nu(x), F(y) \rangle \ge 0$$

para todo $x, y \in \Sigma$. Por simplicidade vamos identificar a superfície Σ com a sua imagem pelo mergulho F, isto é, F(x) = x. Fixado um ponto $x \in \Sigma$ arbitrário, podemos encontrar uma base ortonormal $\{e_1, e_2\}$ de $T_x \Sigma$ tal que $h(e_1, e_1) = \Psi(x)$, $h(e_1, e_2) = 0$, e $h(e_2, e_2) = -\Psi(x)$. Seja $\gamma(t)$ uma geodésica sobre Σ tal que $\gamma(0) = x$ e $\gamma'(0) = e_1$. Como Σ é completa, podemos definir $f : \mathbb{R} \to \mathbb{R}$ por

$$f(t) = Z(x, \gamma(t)) = \Psi(x)(1 - \langle x, \gamma(t) \rangle) + \langle \nu(x), \gamma(t) \rangle \ge 0.$$

As derivadas de f até a ordem 3 são:

$$f'(t) = -\langle \Psi(x)x - \nu(x), \gamma'(t) \rangle,$$

$$f''(t) = \langle \Psi(x)x - \nu(x), \gamma(t) \rangle + h(\gamma'(t), \gamma'(t)) \langle \Psi(x)x - \nu(x), \nu(\gamma(t)) \rangle,$$

е

$$f'''(t) = \langle \Psi(x)x - \nu(x), \gamma'(t) \rangle + h(\gamma'(t), \gamma'(t)) \langle \Psi(x)x - \nu(x), D_{\gamma'(t)}\nu(\gamma(t)) \rangle + (D_{\gamma'(t)}^{\Sigma}h)(\gamma'(t), \gamma'(t)) \langle \Psi(x)x - \nu(x), \nu(\gamma(t)) \rangle.$$

Em particular, temos f(0) = f'(0) = f''(0) = 0. Ou seja, a série de Taylor de f em torno

do zero é dada por

$$f(t) = \frac{f'''(0)}{3!}t^3 + o(t^4).$$

Como f é não negativa, uma simples análise da expressão acima mostra que f''(0) = 0. Deste fato, deduzimos que $(D_{e_1}^{\Sigma}h)(e_1, e_1) = 0$. Trocando o referencial $\{e_1, e_2, \nu\}$ por $\{e_2, e_1, -\nu\}$ e argumentando de maneira análoga encontramos $(D_{e_2}^{\Sigma}h)(e_2, e_2) = 0$.

Para concluir que $\nabla A = 0$ notemos que $h_{11} + h_{22} = 0$, isto implica

$$(D_{e_1}^{\Sigma}h)(e_1, e_1) + (D_{e_1}^{\Sigma}h)(e_2, e_2) = 0$$

е

$$(D_{e_2}^{\Sigma}h)(e_1, e_1) + (D_{e_2}^{\Sigma}h)(e_2, e_2) = 0$$

donde

$$(D_{e_1}^{\Sigma}h)(e_2, e_2) = 0$$

е

$$(D_{e_2}^{\Sigma}h)(e_1, e_1) = 0$$

Para para mostrar que as derivadas de h_{12} também são nulas basta aplicar as equações de Codazzi nas identidades acima. Portando A é paralela. Em particular, a curvatura gaussiana de Σ e constante. Consequentemente, a métrica induzida em Σ por F é plana. Portanto, usando o Corolário 3 de (12), p. 189, concluímos que Σ é o toro de Clifford. Isto demonstra a primeira parte.

Antes de finalizar a demonstração do teorema principal vamos relembra-lo:

Teorema 3.1 (Brendle, 2012). Suponha que $F : \Sigma \to S^3$ é um toro mínimo mergulhado em S^3 . Então F é congruente ao toro de Clifford.

Para completar a demonstração do teorema, seja

$$\kappa = \sup_{x,y \in \Sigma, x \neq y} \frac{|\langle \nu(x), F(y) \rangle|}{\Psi(x)(1 - \langle F(x), F(y) \rangle)}$$

Se $\kappa \leq 1$, acabamos de provar que F é congruente ao toto de Clifford. Portanto, é suficiente considerar considerar o caso $\kappa > 1$. Mudando ν por $-\nu$ se necessário, podemos escrever

$$\kappa = \sup_{x,y \in \Sigma, x \neq y} \left(-\frac{\langle \nu(x), F(y) \rangle}{\Psi(x)(1 - \langle F(x), F(y) \rangle)} \right).$$
(3.6)

Definimos a função $Z: \Sigma \times \Sigma \to \mathbb{R}$ por

$$Z(x,y) = \kappa \Psi(x)(1 - \langle F(x), F(y) \rangle) + \langle \nu(x), F(y) \rangle$$

para todo $x, y \in \Sigma$.

Lema 3.3. Existe uma vizinhança aberta V da diagonal $\mathcal{D}(\Sigma \times \Sigma)$ de $\Sigma \times \Sigma$ tal que

$$Z(x,y) > 0$$

para todo $x, y \in V \setminus \mathcal{D}(\Sigma \times \Sigma)$.

Demonstração. Fixado $x \in \Sigma$. Seja $\gamma : (-\varepsilon, \varepsilon) \to \Sigma$ uma geodésica em Σ tal que $\gamma(0) = x \in \gamma'(0) = v \in T_p \Sigma$. Expandindo a função não negativa $g(s) = Z(x, \gamma(s))$ em série de Taylor em torno do zero até a ordem 2 temos

$$g(s) = g(0) + g'(0)s + \frac{g''(0)}{2!}s^2 + o(s^3).$$

Pela demonstração da proposição 3.6, temos g(0) = g'(0) = 0 e

$$g''(0) = \kappa \Psi(x) - \lambda_v$$

onde $\lambda_v = \langle A^{\nu}(v), v \rangle$. Por outro lado,

$$\Psi(x) = \frac{1}{\sqrt{2}} |A^{\nu}(x)| = \lambda_1$$

Como λ_1 é a maior curvatura principal de Σ no ponto x e $\kappa > 1$ temos

Donde, existe $\delta < \varepsilon$ positivo tal que g(s) > 0 para todo $s \in (-\delta, \delta) \setminus \{0\}$. De um modo geral, existe uma bola $B_{\delta}^{\Sigma}(x)$ tal que

$$Z(x,y) > 0$$

para todo $y \in B^{\Sigma}_{\delta}(x) \setminus \{x\}$. Como δ não depende de x a desigualdade acima é satisfeita para todo $x \in \Sigma$ e para todo $y \in B^{\Sigma}_{\delta} \setminus \{x\}$. Seja

$$\bigcup_{x \in \Sigma} B^{\Sigma}_{\delta} = \Sigma$$

uma cobertura de Σ por abertos. Como Σ é compacta, existem $x_1, \ldots, x_n \in \Sigma$ tal que

$$\Sigma = \bigcup_{k=1}^{n} B_{\delta}^{\Sigma}(x_k).$$

Afirmamos que

$$V = \bigcup_{k=1}^{n} \left(B_{\delta/2}^{\Sigma}(x_k) \times B_{\delta/2}^{\Sigma}(x_k) \right)$$

é a vizinhança da diagonal procurada. De fato, dado $(x_0, y_0) \in V \setminus \mathcal{D}(\Sigma \times \Sigma)$ o par (x_0, y_0) é tal que $x_0 \neq y_0$ e $x_0, y_0 \in B^{\Sigma}_{\delta/2}(x_k)$ para algum $k \in \{1, \ldots, n\}$. Em particular,

$$y_0 \in B^{\Sigma}_{\delta}(x_0),$$

e consequentemente

$$Z(x_0, y_0) > 0.$$

Usando um argumento de compacidade e o lema 3.3 segue-se que o conjunto

 $\Omega = \{ \overline{x} \in \Sigma : \text{ existe un ponto } \overline{y} \in \Sigma \setminus \{ \overline{x} \} \text{ tal que } Z(\overline{x}, \overline{y}) = 0 \}$

é não vazio. Além disso, usando a proposição 3.4 e a identidade obtida na proposição 3.5, concluímos que

$$\sum_{i=1}^{2} \frac{\partial^2 Z}{\partial x_i^2}(\overline{x}, \overline{y}) + 2\sum_{i=1}^{2} \frac{\partial^2 Z}{\partial x_i \partial y_i}(\overline{x}, \overline{y}) + \sum_{i=1}^{2} \frac{\partial^2 Z}{\partial y_i^2}(\overline{x}, \overline{y})$$
$$= -\frac{\kappa^2 - 1}{\kappa} \frac{\Psi(\overline{x})}{1 - \langle F(\overline{x}), F(\overline{y}) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_i}(\overline{x}), F(\overline{y}) \right\rangle^2$$
(3.7)

para todo par de pontos $\overline{x} \neq \overline{y}$ satisfazendo $Z(\overline{x}, \overline{y}) = \frac{\partial Z}{\partial x_i}(\overline{x}, \overline{y}) = \frac{\partial Z}{\partial y_i}(\overline{x}, \overline{y}) = 0.$

Proposição 3.7. Para todo ponto $\overline{x} \in \Omega$ temos $\nabla \Psi(\overline{x}) = 0$.

Demonstração. Seja $\overline{x} \in \Omega$ um ponto arbitrário. Pela definição de Ω , podemos encontrar um ponto $\overline{y} \in \Sigma \setminus {\overline{x}}$ tal que $Z(\overline{x}, \overline{y}) = 0$. Visto que a função Z é não negativa, podemos afirmar que $(\overline{x}, \overline{y}) \in \Sigma \times \Sigma$ é um ponto de mínimo global de Z, segue de 3.7 e de $\kappa > 1$ que

$$0 \leq \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(\overline{x}, \overline{y}) + 2 \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(\overline{x}, \overline{y}) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(\overline{x}, \overline{y})$$
$$= -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(\overline{x})}{1 - \langle F(\overline{x}), F(\overline{y}) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(\overline{x}), F(\overline{y}) \right\rangle^{2} \leq 0.$$

 Como

$$-\frac{\kappa^2 - 1}{\kappa} \frac{\Psi(\overline{x})}{1 - \langle F(\overline{x}), F(\overline{y}) \rangle} \neq 0$$

Concluímos que

$$\left\langle \frac{\partial F}{\partial x_i}(\overline{x}), F(\overline{y}) \right\rangle = 0$$

para i = 1, 2. Usando a identidade 3.1, podemos escrever

$$0 = \frac{\partial Z}{\partial x_i}(\overline{x}, \overline{y}) = \kappa \frac{\partial \Psi}{\partial x_i}(\overline{x})(1 - \langle F(\overline{x}, \overline{y}) \rangle)$$

para i = 1, 2. Portanto, $\nabla \Psi(\overline{x}) = 0$, como queríamos demonstrar.

Proposição 3.8. O conjunto Ω é aberto.

Demonstração. Dados $x, y \in \Sigma$ com $x \neq y$, sejam (x_1, x_2) e (y_1, y_2) coordenadas normais geodésicas ao longo de x e y respectivamente. Como na seção anterior, podemos escolher o sistema de coordenadas (y_1, y_2) de modo que $\langle R_1, \frac{\partial F}{\partial y_1}(y) \rangle \ge 0$, $\langle R_1, \frac{\partial F}{\partial y_2}(y) \rangle = 0$ e $\langle R_2, \frac{\partial F}{\partial y_2}(y) \rangle \ge 0$, onde R_1 e R_2 são dados por

$$R_i = \frac{\partial F}{\partial x_i}(x) - 2\left\langle \frac{\partial F}{\partial x_i}(x), \frac{F(x) - F(y)}{|F(x) - F(y)|} \right\rangle \frac{F(x) - F(y)}{|F(x) - F(y)|}.$$

Adaptando a demonstração do lema 3.2, podemos mostrar que

$$\sum_{i=1}^{2} \left| R_{i} - \frac{\partial F}{\partial y_{i}}(y) \right| \leq \Lambda(x,y) \sum_{i=1}^{2} \left(Z(x,y) + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial y_{i}}(x,y) \right| \right).$$

Onde Λ é uma função contínua em $\{(x, y) \in \Sigma \times \Sigma : x \neq y\}$ e, eventualmente, não limitada numa vizinhança da diagonal.

Afim de podermos aplicar o lema 3.1, devemos ter uma estimativa para a segunda variação da função Z em termos da própria Z e da sua primeira variação. Neste sentido temos o seguinte

Lema 3.4. Se $x \neq y$, então

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &\leq -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} \\ &+ \tilde{\Lambda}(x,y) \left(Z(x,y) + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right| + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial y_{i}}(x,y) \right| \right), \end{split}$$
(3.8)

onde $\widetilde{\Lambda}$ é uma função contínua em $\{(x,y)\in \Sigma\times\Sigma: x\neq y\}$ dada por

$$\begin{split} \widetilde{\Lambda}(x,y) &= 2\Psi(x)(\kappa+1)\Lambda(x,y) + \frac{4}{1 - \langle F(x), F(y) \rangle} + \frac{M}{\Psi(x)},\\ com \; M &= \max_{x \in \Sigma, i=1,2} \bigg| \frac{\partial \Psi}{\partial x_i}(x) \bigg|. \end{split}$$

Demonstração. Pelas proposições 3.4 e 3.5 temos

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &= -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} + 4\kappa \Psi(x) - (|A(x)|^{2} + 2)Z(x,y) \\ &+ 2\sum_{i=1}^{2} (\lambda_{i} - \kappa \Psi(x)) \left\langle R_{i}, \frac{\partial F}{\partial y_{i}}(y) \right\rangle - \frac{2}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \frac{\partial Z}{\partial x_{i}}(x,y) \left\langle F(x), \frac{\partial F}{\partial y_{i}}(y) \right\rangle \\ &+ \frac{1}{\kappa \Psi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left[\left(\frac{\partial Z}{\partial x_{i}}(x,y) \right)^{2} - 2\lambda_{i} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_{i}}(x,y) \right]. \end{split}$$

Desde que $Z(x,y) \ge 0$ e $|F(x)| = \left|\frac{\partial F}{\partial y_i}\right| = 1$ podemos escrever

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &\leq -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} + 4\kappa \Psi(x) \\ &+ 2\sum_{i=1}^{2} (\lambda_{i} - \kappa \Psi(x)) \left\langle R_{i}, \frac{\partial F}{\partial y_{i}}(y) \right\rangle + \frac{2}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right| \\ &+ \frac{1}{\kappa \Psi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \underbrace{\left[\left(\frac{\partial Z}{\partial x_{i}}(x,y) \right)^{2} - 2\lambda_{i} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle \frac{\partial Z}{\partial x_{i}}(x,y) \right]}_{(\star)}. \end{split}$$

Vamos estimar (*):

$$(\star) = \left(\frac{\partial Z}{\partial x_i}(x,y)\right) \left[\left(\frac{\partial Z}{\partial x_i}(x,y)\right) - 2\lambda_i \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle \right].$$

 Como

$$\frac{\partial Z}{\partial x_i}(x,y) = \kappa \frac{\partial \Psi}{\partial x_i}(x)(1 - \langle F(x), F(y) \rangle) + (\lambda_i - \kappa \Psi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle$$

temos

$$(\star) = \left(\frac{\partial Z}{\partial x_i}(x, y) \right) \left[\kappa \frac{\partial \Psi}{\partial x_i}(x) (1 - \langle F(x), F(y) \rangle) - (\lambda_i + \kappa \Psi(x)) \left\langle \frac{\partial F}{\partial x_i}(x), F(y) \right\rangle \right] \\ \leq \left| \frac{\partial Z}{\partial x_i}(x, y) \right| \kappa M (1 - \langle F(x), F(y) \rangle) + \left| \frac{\partial Z}{\partial x_i}(x, y) \right| 2\kappa \Psi(x).$$

Na última linha fizemos $M = \max_{x \in \Sigma, i=1,2} \left| \frac{\partial \Psi}{\partial x_i}(x) \right|$ e observamos que, por definição de Ψ , vale $\lambda_i \leq \kappa \Psi(x)$, com i = 1, 2. Logo

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &\leq -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} + 4\kappa \Psi(x) \\ &+ 2\sum_{i=1}^{2} (\lambda_{i} - \kappa \Psi(x)) \left\langle R_{i}, \frac{\partial F}{\partial y_{i}}(y) \right\rangle + \frac{2}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right| \\ &+ \frac{1}{\kappa \Psi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right| \kappa M(1 - \langle F(x), F(y) \rangle) \\ &+ \frac{1}{\kappa \Psi(x)(1 - \langle F(x), F(y) \rangle)} \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right| 2\kappa \Psi(x). \end{split}$$

Daí

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &\leq -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{partial x_{i}}(x), F(y) \right\rangle^{2} + 4\kappa \Psi(x) \\ &+ 2\sum_{i=1}^{2} (\lambda_{i} - \kappa \Psi(x)) \left\langle R_{i}, \frac{\partial F}{\partial y_{i}}(y) \right\rangle + \left(\frac{4}{1 - \langle F(x), F(y) \rangle} + \frac{M}{\Psi(x)} \right) \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right|. \end{split}$$

Vamos estimar (**):

$$(\star\star) = \sum_{i=1}^{2} \lambda_i 2 \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle - \kappa \Psi(x) \sum_{i=1}^{2} 2 \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle.$$

Desenvolvendo a norma, temos

$$\begin{aligned} \left| R_i - \frac{\partial F}{\partial y_i}(y) \right|^2 &= \left| R_i \right|^2 + \left| \frac{\partial F}{\partial y_i}(y) \right|^2 - 2 \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle \\ &= 2 - 2 \left\langle R_i, \frac{\partial F}{\partial y_i}(y) \right\rangle. \end{aligned}$$

Segue que

$$(\star\star) = \sum_{i=1}^{2} \lambda_{i} \left(2 - \left| R_{i} - \frac{\partial F}{\partial y_{i}}(y) \right|^{2} \right) + \kappa \Psi(x) \sum_{i=1}^{2} \left(\left| R_{i} - \frac{\partial F}{\partial y_{i}}(y) \right|^{2} - 2 \right)$$

$$\leq \Psi(x) \sum_{i=1}^{2} \left| R_{i} - \frac{\partial F}{\partial y_{i}}(y) \right|^{2} + \kappa \Psi(x) \sum_{i=1}^{2} \left| R_{i} - \frac{\partial F}{\partial y_{i}}(y) \right|^{2} - 4\kappa \Psi(x)$$

$$\leq 2\Psi(x)(\kappa+1) \sum_{i=1}^{2} \left| R_{i} - \frac{\partial F}{\partial y_{i}}(y) \right| - 4\kappa \Psi(x)$$

$$\leq 2\Psi(x)(\kappa+1)\Lambda(x,y) \left(Z(x,y) + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial y_{i}}(x,y) \right| \right) - 4\kappa \Psi(x).$$

Portanto

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &\leq -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} \\ &+ 2\Psi(x)(\kappa + 1)\Lambda(x,y) \left(Z(x,y) + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial y_{i}}(x,y) \right| \right) \\ &+ \left(\frac{4}{1 - \langle F(x), F(y) \rangle} + \frac{M}{\Psi(x)} \right) \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right|. \end{split}$$

Consequentemente

$$\begin{split} &\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i}^{2}}(x,y) + 2\sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial x_{i} \partial y_{i}}(x,y) + \sum_{i=1}^{2} \frac{\partial^{2} Z}{\partial y_{i}^{2}}(x,y) \\ &\leq -\frac{\kappa^{2} - 1}{\kappa} \frac{\Psi(x)}{1 - \langle F(x), F(y) \rangle} \sum_{i=1}^{2} \left\langle \frac{\partial F}{\partial x_{i}}(x), F(y) \right\rangle^{2} \\ &+ \left(2\Psi(x)(\kappa + 1)\Lambda(x,y) + \frac{4}{1 - \langle F(x), F(y) \rangle} + \frac{M}{\Psi(x)} \right) \\ &\cdot \left(Z(x,y) + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial x_{i}}(x,y) \right| + \sum_{i=1}^{2} \left| \frac{\partial Z}{\partial y_{i}}(x,y) \right| \right). \end{split}$$

Como queríamos demonstrar.

Usando a desigualdade 3.8 e escolhendo no lema 3.1 (ver Apêndice) a função φ igual a Z e o aberto A igual a $\Sigma \times \Sigma \setminus \mathcal{D}(\Sigma \times \Sigma)$ concluímos que Ω é aberto.

Segue da proposição 3.7 que $\Delta_{\Sigma}\Psi(\overline{x}) = 0$ para cada $\overline{x} \in \Omega$. A proposição 3.5 implica que $\Psi(\overline{x}) = 1$ para cada $\overline{x} \in \Omega$. Usando o Teorema de Extensão Única para EDP's Elípticas (ver (4)) concluímos que $\Psi(x) = 1$ para todo $x \in \Sigma$. Consequentemente, a curvatura Gaussiana de Σ e identicamente nula. Como anteriormente segue de (12) que F é congruente ao toro de Clifford. Isto termina a demonstração da conjectura de Lawson.

APÊNDICE

Neste apêndice enunciamos dois resultados essenciais para demonstração da conjectura de Lawson, esses resultados foram usados na demonstração da proposição 3.8. O primeiro resultado é conhecido como o Princípio do Máximo Estrito de Bony para equações elípticas não degeneradas.

Lema 3.1. Seja A um subconjunto aberto de uma variedade M^n , e sejam $\partial_1, \ldots, \partial_m$ campos suaves sobre A. Suponhamos que $\varphi : A \to \mathbb{R}$ é uma função suave não-negativa tal que

$$\sum_{j=1}^{m} \left(D^{2} \varphi \right) \left(\partial_{j}, \partial_{j} \right) \leq -L \inf_{|\xi| \leq 1} \left(D^{2} \varphi \right) \left(\xi, \xi \right) + L |d\varphi| + L \varphi,$$

onde L é uma constante positiva. Seja $\Omega = \{x \in A : \varphi(x) = 0\} e \gamma : [0,1] \to A$ um caminho suave tal que $\gamma(0) \in \Omega$ e de modo que $\gamma'(s) = f^j(s)\partial_j(\gamma(s))$ para funções suaves $f_1, \ldots, f_m : [0,1] \to \mathbb{R}$ adequadas. Então $\gamma(s) \in \Omega$ para todo $s \in [0,1]$.

Demonstração. Ver (6).

Falta enunciar o Teorema de Extensão Única para EDP's.

Referências

1 Almgren, Jr. F.J. Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. 84, 277-292 (1966).

2 Andrews, B. e Li, H. *Embedded constant mean curvature tori in the three-sphere*, preprint (2012).

3 Andrews, B. Non-collapsing in mean-convex mean curvature flow, preprint (2011).

4 Aronszajn, N. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36, 235-249 (1957).

5 Brandle, S. Embedded minimal tori in S^3 and the Lawson conjecture, to appear in Acta Mathematica, (2012).

6 Brendle, S. *Ricci Flow and the Sphere Theorem*, American Mathematical Society, (2010).

7 Carmo, M. do, *O Método do Referencial Móvel*, Publicações Matemáticas, IMPA, 2^a edição, (2005).

8 Carmo, M. do, *Geometria Riemanniana*, Projeto Euclides, IMPA, Rio de Janeiro, 4^a edição, (2008).

9 Hsiang, W.Y. e Lawson, Jr. H.B. *Minimal submanifolds of low cohomogeneity*, J. Diff. Geom. 5, 1-38 (1971).

10 Kapouleas, N. e Yang, S.D. Minimal surfaces in the three-sphere by doubling the Clifford torus, Amer. J. Math. 132, 257-295 (2010).

11 Karcher, H., Pinkall, U. e Sterling, I. New minimal surfaces in S^3 , J. Diff. Geom. 28, 169-185 (1988).

12 Lawson, Jr. H.B. Local rigidity theorems for minimal hypersurfaces, Ann. of Math. 89, 187-197 (1969).

13 Lawson, Jr. H.B. Complete minimal surfaces in S^3 , Ann. of Math. 92, 335-374 (1970).

14 Lawson, Jr. H.B. *The unknottedness of minimal embeddings*, Invent. Math. 11, 183-187 (1970).

15 Simons, J. *Minimal varities in Riemannian manifolds*, Ann. of Math. 88, 62-105 (1968).