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Resumo
A incidência de code smells é frequentemente associada à degradação da qualidade do software.
Vários estudos apresentam a importância de técnicas para detectar e combater a incidência deles
no código-fonte. No entanto, as técnicas existentes para detectar code smells dependem da lin-
guagem de programação. Consequentemente, várias linguagens de programação são amplamente
empregadas pela comunidade de software sem técnicas adequadas de detecção. Nosso estudo
aborda a ampliação da disponibilidade de técnicas de detecção de code smells para diferentes
linguagens de programação por meio do aprendizado de transferência. Selecionamos cinco lin-
guagens de programação entre as dez linguagens mais utilizadas de acordo com StackOverflow:
Java, C++, Python, C#, e JavaScript. Além disso, algumas dessas linguagens possuem
características semelhantes entre si, como Java e C#, o oposto pode-se dizer de Java e Python.
Extraímos os conjuntos de dados para treinamento e teste de modelos de aprendizado profundo
de 150 projetos de código aberto. Os resultados indicam que as técnicas de aprendizagem
por transferência detectam de forma eficaz e eficiente os code smells, independentemente da
linguagem de programação e da quantidade de camadas da arquitetura de aprendizagem profunda
usada na aprendizagem por transferência. Essas descobertas podem ajudar desenvolvedores e
pesquisadores a aplicar as mesmas técnicas de detecção de code smells em diferentes linguagens
de programação.

Palavras-chave: Engenharia de Software, Machine Learning, Deep Learning, Transfer Learning,
Code Smells, Linguagens de Programação.



Abstract
The incidence of code smells is often associated with software quality degradation. Several
studies present the importance of techniques to detect and tackle the incidence of smells in the
source code. However, existing techniques to detect code smells depend on the programming
language. Consequently, several programming languages are largely employed by the software
community without proper techniques of code smell detection. Our study addresses amplifying
the availability of code smell detection techniques to different programming languages through
transfer learning. We select five programming languages among the ten most used languages
according to StackOverflow: Java, C++, Python, C#, and JavaScript. Also, some of these
languages have similar characteristics to each other, such as Java and C# as opposed to Java and
Python. We extract the datasets for training and testing of deep learning models from 150 open
sources projects. Results indicate that transfer learning techniques effectively and efficiently
detect code smells regardless of the programming language and number of layers of the deep
learning architecture used in transfer learning. These findings can help developers and researchers
to apply the same code smell detection techniques in different programming languages.

Keywords: Software Engineering, Machine Learning, Deep Learning, Transfer Learning, Code
Smells, Programming Languages.
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1 Introduction

This chapter presents the motivation and objectives (general and specifics) and the structure
of this work.

1.1 Motivation

Code smells are frequently associated with software quality degradation (LIMA et al., 2020;
UCHÔA et al., 2020). Developers should properly identify and combat smells in the source
code (BIBIANO et al., 2021; BIBIANO et al., 2019), avoiding worst design problems (OIZUMI
et al., 2016) and the increasing of technical debt (ZAZWORKA et al., 2014; IAMMARINO
et al., 2019). Despite the still need for manual validation (MELLO; OLIVEIRA; GARCIA,
2017; HOZANO et al., 2018; HOZANO et al., 2017; MELLO et al., 2019), techniques for
supporting the detection of code smells have considerably evolved in the last decade (PAIVA
et al., 2017; AZEEM et al., 2019). However, these techniques have common limitations that
hamper their reuse in different contexts. One of the limitations addresses the design of detection
algorithms and rules tailored to specific programming languages. In this sense, one may see a
clear prevailing of techniques for detecting code smells in Java software projects (FERNANDES
et al., 2016; PAIVA et al., 2017).

The support for code smell detection in a single programming language is a limitation, even
among the more recent deep learning-based techniques for detecting code smells. Currently, sev-
eral empirically evaluated deep learning models support the detection of code smells (OLIVEIRA
et al., 2020; PECORELLI et al., 2019; AZEEM et al., 2019; SHARMA; SPINELLIS, 2018;
LIU et al., 2019; JEBNOUN et al., 2020). These models can be dynamically calibrated for
specific contexts based on the training datasets employed, which includes applying a standard
programming language. In general, the effectiveness of deep learning techniques for code smells
detection is promising, frequently reaching higher effectiveness than traditional detection ap-
proaches grounded on metrics and/or detection rules (PECORELLI et al., 2019; AZEEM et al.,
2019). The use of deep learning for supporting Software Engineering activities follows a trend
observed in different domains. Deep learning models have been largely employed in developing
software solutions for several purposes. Examples include applications for supporting medical
diagnosis (KOUROU et al., 2015), building autonomous cars (Hussain; Zeadally, 2019), and
detection of fraudulent credit card transactions (Dhankhad; Mohammed; Far, 2018).

The development of conventional deep learning techniques is grounded on training models
over reliable training datasets. The effectiveness of the resulting model is measured through
testing datasets. If the effectiveness of the deep learning model is considered satisfactory, the
model may be employed in real settings. The typical training process commonly requires applying
training datasets as similar as possible to real settings. For instance, if we want to build deep
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learning models to detect different types of code smell in Python web applications, we should
compose large training datasets for each code smell type according to these settings.

However, composing training datasets at a large scale may be a tedious and costly task.
Besides, several popular programming languages lack automated support for detecting even
the most well-known code smells. In such cases, we may consider applying transfer learning
strategies (SHARMA; SPINELLIS, 2018). Transfer learning employs pre-trained deep learning
models tailored to solve a specific task to solve another related task. Consequently, transfer
learning contributes to significantly reducing the consumption of computational resources and
the consumption of human resources on labeling/relabeling (PAN; YANG, 2010).

1.2 Objectives

1.2.1 General Objective

In this Master’s dissertation, we report an empirical study aiming to investigate the feasi-
bility of transfer learning for detecting the incidence of six smell types Complex Method,
Long Method, Shotgun Surgery, Feature Envy, Divergent Change, and God
Class in open source projects from five popular programming languages. In particular, we
investigate the effectiveness and efficiency of transfer learning for detecting code smells in the
projects analyzed in our study. Then, we analyze how many layers a deep learning architecture
must have for the resulting model to effectively and efficiently detect code smells in projects
from different programming languages. We expect that our research may contribute to expanding
the applicability of code smell detection techniques and reducing efforts on identifying code
smells in software projects from different programming languages. For our study, we collect
code snippets from 150 open source projects written in five popular programming languages
(C++, C#, Python, Java, and JavaScript) and build models through two deep learning
architectures (Perceptron and Convolutional Neural Networks - CNN).

1.2.2 Specific Objectives

• Develop a tool to detect code smells through metrics;

• Build datasets for each pair programming language and smell;

• Investigate the use of transfer learning in the context of detecting code smells for different
programming languages;

• Evaluate the potential benefits of transfer learning compared to traditional machine learn-
ing.
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1.3 Work Structure

The work was organized into eight chapters, consisting of the current and the following:

• Chapter 2 presents the main subjects of our study;

• Chapter 3 presents the study design and settings of our study;

• Chapter 4 presents the results of our study, reporting its main findings by research question;

• Chapter 5 discusses the findings of our study and their impact on research and practice;

• Chapter 6 discusses related work on support for code smell detection;

• Chapter 7 discusses the main threats to validity identified in our study;

• Finally, Chapter 8 concludes and indicates future work.
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2 Study Background

This chapter presents the main subjects of this work, presenting the code smells, deep learning
architectures and transfer learning.

2.1 Code Smells

The term code smells refers to a couple of characteristics or patterns in source code that
indicate potential problems, bad choices of design and therefore areas where code quality could
be improved (FOWLER et al., 1999).

Table 1 presents the description of each code smells that we will address.

Table 1 – Code Smells

Name Description

Complex Method Occurs when a method has a high cyclomatic complexity.

Long Method Occurs when a method has a high number of lines.

Shotgun Surgery Occurs when one change leads to batch changes in other
classes.

Feature Envy Occurs when a method accesses more data from another
class than the class to which it belongs.

Divergent Change Occurs when a class is changed in different ways for different
reasons.

God Class Occurs when a class has a concentration of responsibilities
having a high number of data members, methods and low
cohesion.

The motivations behind the choice of these code smells are due to the fact that they are
widely discussed in previous studies and have a significant impact on software quality (CEDRIM
et al., 2017; SHARMA; SPINELLIS, 2018; SHARMA et al., 2021; BIBIANO et al., 2021). For
instance, a method with a high number of lines and containing multiples paths in control-flow
graph, i.e., Long Method and Complex Method, can lead to misunderstand of how method
works and make it hard to maintain. Besides, Feature Envy, God Class and Shotgun
Surgery are associated with the presence software bugs (CAIRO; CARNEIRO; MONTEIRO,
2018). For comparison purposes, we will address the Divergent Change due to its similarity
to Shotgun Surgery.
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Table 2 presents the descriptions of the software metrics according to the Understand tool
1 documentation. These metrics and the way they are computed will be used to detect the
mentioned code smells.

Table 2 – Metrics

Name Understand Description

Cyclomatic Complexity
(CC)

Cyclomatic McCabe Cyclomatic complexity as
per the original NIST paper on the
subject. The cyclomatic complexity
of any structured program with only
one entrance point and one exit point
is equal to the number of decision
points contained in that program
plus one. Understand counts the key-
words for decision points (for, while,
etc) and then adds 1. For a switch

statement, each case is counted as 1.
For languages with Macros, the ex-
panded Macro text is also included
in the calculation.

Number of Lines (LOC) CountLine Number of physical lines.

Number of Methods
(NOM)

CountDeclMethod Number of local (not inherited)
methods.

FanIn CountInput The number of inputs a function
uses plus the number of unique sub-
programs calling the function. In-
puts include parameters and global
variables that are used in the func-
tion, so Functions calledby + Param-
eters read + Global Variables read.
Of the two general approachs to cal-
culating FANIN (informational ver-
sus structural) ours is the informa-
tional approach.

1 https://scitools.com
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FanOut CountOutput The number of outputs that are SET.
This can be parameters or global
variables. So Functions calls + Pa-
rameters set/modify + Global Varib-
ales set/modify. Of the two general
approachs to calculating FANOUT
(informational versus structural)
ours is the informational approach.

Coupling Between Objects
(CBO)

CountClassCoupled The Coupling Between Object
Classes (CBO) measure for a class
is a count of the number of other
classes to which it is coupled. Class
A is coupled to class B if class A
uses a type, data, or member from
class B. This metric is also referred
to as Efferent Coupling (Ce). Any
number of couplings to a given class
counts as 1 towards the metric to-
tal Chidamber & Kemerer suggest
that: 1) Excessive coupling between
object classes is detrimental to mod-
ular design and prevents reuse. 2)
Inter-object class couples should be
kept to a minimum. 3) The higher
the inter-object class coupling, the
more rigorous testing needs to be.

Lack of Cohesion in Meth-
ods (LCOM)

PercentLackOfCohesion 100% minus average cohesion for
class data members. Calculates what
percentage of class methods use a
given class instance variable. To cal-
culate, average percentages for all of
that class’es instance variables and
subtract from 100%. A lower per-
centage means higher cohesion be-
tween class data and methods.
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2.2 Deep Learning

2.2.1 Perceptron

Perceptron is a single-layer neural network composed by one neuron this idea was initially
proposed by McCulloch and Pitts in 1943 (MCCULLOCH; PITTS, 1943). This type of neural
network is able to solve linearly separable problems.

The perceptron can be divided into four parts as shown in Figure 1. The first part is composed
of the input values, the second is weights, the third is weighted sum between these values and
the four is activation function that is calculated based on this sum producing the output. The
learning process consists of determining the weights so that the error is as small as possible.

Figure 1 – Perceptron. Source: (Sumanth Bathula, 2018).

2.2.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a feedforward neural network architecture that has
at least one convolutional layer and performs learning through of optimization algorithms such
as gradient descent and backpropagation (SHRESTHA; MAHMOOD, 2019). This type of neural
network is widely used in the classification of images, audio and object detection (HUSSAIN;
BIRD; FARIA, 2019; MACCAGNO et al., 2021; GALVEZ et al., 2018).

Automatic feature extraction is one of the main advantages of this architecture, the layer
responsible for this activity is called the convolutional layer. Figure 2 shows the process to
compute a feature map as output of the convolutional layer. In order to compute one value of
feature map a sub matrix of the input matrix is selected, then their values are multiplied by the
kernel matrix and the sum of these values is the final result, this process is called convolutional
operation and is repeated moving the sub matrix along of the input. The filter applied to input in
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order to obtain the feature map is composed by multiples kernels and their values are randomly
initialized and updated as the network is trained.

Figure 2 – Convolutional Layer. Source: (SuperAnnotate, 2023).

The first well-known application of this type of architecture was the recognition of hand-
written digits using the LeNet architecture (LECUN et al., 1998). The proposed architecture
(figure 3) is composed by 7 layers, combining the use of convolutional layers, subsampling
layers (pooling layers) and fully connected layers. The model was trained and evaluated using
the MNIST dataset containing images of handwritten digits. The model achieved low error
rates when trained with 60,000 samples and evaluated with 10,000 samples, demonstrating the
effectiveness of the LeNet architecture in achieving high accuracy on this task.

Figure 3 – Architecture of LeNet-5. Source: (LECUN et al., 1998).

Other architectures of this type also became known, such as AlexNet (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012) and GoogLeNet (SZEGEDY et al., 2015). The AlexNet ar-
chitecture using 5 convolutional layers combined with max pooling layers and fully connected
layers became notorius for winning the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) competition in 2012 and for improvements on use of the GPU, boosting the use
of CNNs in computer vision tasks. In 2014, the GoogLeNet architecture became notorious,
winning this year’s ILSVRC competition by introducing the idea of convolution modules called
“Inception modules”.
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2.3 Transfer Learning

Transfer learning technique consists of using a pre-trained model on a given set of data to
solve a task, to build another model that aims to solve another task, taking advantage of the
knowledge obtained in the first and training the second with few examples, as a way of to reduce
the efforts needed to solve the second task (PAN; YANG, 2010; WEISS; KHOSHGOFTAAR;
WANG, 2016; ZHUANG et al., 2019).

Figure 4 shows the difference between the two processes, where in the transfer learning
process, more than one pre-trained model for different tasks can be leveraged to obtain a model
that solves the final task.

Figure 4 – Difference between learning processes, (a) traditional machine learning and (b)
transfer machine learning. Source: (PAN; YANG, 2010).

In traditional machine learning (Figure 4. a) models are trained from scratch for each task
without observing any relationships between the different tasks. In transfer learning (Figure 4.
b), the main idea is to reuse the pre-trained models according to the similarity between the tasks.
One of the motivations for using transfer learning is due to the fact that the dataset of a task can
be more difficult to build and validate than another one, in this case, can be feasible to reuse a
dataset that has already been validated.

The study presented by Sharma et al. (2021) explores the feasibility of applying transfer
learning for code smells detection in Java and C# projects. Besides, this study defined transfer
learning as the process of using a pre-trained model with code snippets containing smelly and
non-smelly samples of a code smell to detect the same smell in other language different from
the one used in training. The results indicate the feasible of use deep learning models based on
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) to detect code
smells in a programming language other than the one he was trained, opening up the possibilities
of exploring different types of code smells and programming languages.
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3 Study Design

The study presented in this Master’s dissertation aims to evaluate the use of transfer learning

to detect six different smell types in five programming languages. As transfer learning, we will
consider the process of using a pre-trained model for a code smell for detect the same smell
in different languages, also we will evaluate in test dataset of same language used for training
aiming to compare the results. This evaluation addresses three particular aspects. The first one
is effectiveness of transfer learning, i.e., to which extent transfer learning effectively detects
code smells in different programming languages. The second aspect is the efficiency of transfer
learning, i.e., the effort (in terms of sample size) to transfer learning be effective in code smells
detection. The third aspect is the complexity, i.e., how many layers the deep learning architecture
must have for transfer learning effectively and efficiently detects code smells. In this sense, we
aim to answer the following research questions with this study:

RQ1: How effective is transfer learning to detect code smells?
To answer this RQ: We investigate the effectiveness (in terms of f-measure) of transfer

learning to detect six smell types in open source projects from five programming languages. As a
result, we expect to identify which programming languages tend to produce deep learning models
that would be reused for effectively identifying code smells in projects from other programming
languages.

RQ2: How efficient is transfer learning to detect code smells?
To answer this RQ: We analyze the effort for transfer learning effectively detecting code

smells. By effort, we mean the number of instances (sample size) that compose the training
dataset used to train a deep learning model. As a result, we expect to identify a specific sample
size in which the transfer learning effectively detects code smells in different programming
languages.

RQ3: How many layers must a deep learning architecture have to effectively detect code
smells?

To answer this RQ: We compare the effectiveness and efficiency of transfer learning using
models resulting from two deep learning architectures: Perceptron and CNN. As a result, we
expect to reveal whether the number of layers (complexity) in the architecture influences the
detection of code smells by comparing a single-layer architecture versus multi-layer architecture.

In the following sections, we describe the study settings.

3.1 Programming Languages

We select five programming languages for our study: Java, C#, C++, JavaScript, and
Python. These programming languages are among the ten most used ones according to the
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2021 StackOverflow survey1. To observe the effect of transfer learning over diverse contexts, we
intentionally selected popular script-based programming languages and compiler-based ones.
Besides, these languages present certain similarities and differences valuable for the study. For
instance, C++ and C# are the only programming languages offering the resource of preprocessor

directives, a resource commonly employed for introducing variability at compilation time. Python
is the only programming language that didn’t offer a mechanism to control flow similar to switch

statements until a more recent version (3.10). This version introduced a feature called Structural

Pattern Matching with support for pattern matching. Consequently, it is expected that most of
the source code implemented in Python at the time of this study does not employ this feature.
Another relevant difference between Python and the other programming languages analyzed
in our study is the peculiar syntactical representation of control structures such as conditional
expressions.

3.2 Smell Types and Detection Rules

We select six smell types: Complex Method, Long Method, Shotgun Surgery,
Feature Envy, Divergent Change, and God Class. As mentioned in 2.1 theses
smells are among the most relevants in terms of software quality.

Table 3 presents the metrics employed to classify code snippets and their correspondent
in Understand tool. The first column shows the metric name. The second column shows the
correspondent name in the Understand tool. The third column shows the abbreviation adopted.

Table 3 – Metrics used in rules and naming used in the SciTools Understand tool.

Name Understand Abbreviation
Cyclomatic Complexity Cyclomatic CC
Number of Lines CountLine LOC
Number of Methods CountDeclMethod NOM
FanIn CountInput FanIn
FanOut CountOutput FanOut
Coupling Between Objects CountClassCoupled CBO
Lack of Cohesion in Methods PercentLackOfCohesion LCOM

Table 4 describes the programming languages and smell types analyzed in our study as well
as the detection rules used to detect each smell type. We consider rules and thresholds defined
in the tool DesigniteJava2 for Complex Method and from previous work (CEDRIM et al.,
2017) for Long Method, Shotgun Surgery, Feature Envy, Divergent Change

and God Class.
Some programming languages were not included for certain types of code smells due to

being script-based and we did not find an appropriate way to detect them to build the datasets.
For instance, JavaScript does not have a class structure like Java, although there is a reserved
1 https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
2 https://github.com/tushartushar/DesigniteJava
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Table 4 – Rules and Thresholds for each Code Smell

Code Smell Programming Languages Rule

Complex Method Java, C#, C++, JavaScript and Python CC >= 8
Long Method Java, C#, C++ and Python (LOC > 50) and (CC > 5)
Shotgun Surgery Java, C# and C++ (CC > 4) and (FanOut > 7)
Feature Envy Java, C# and C++ (CC > 4) and (FanOut > 4) and (LCOM < 30%)
Divergent Change Java, C# and C++ (FanIn > 10) and (LCOM < 50%) and (CC > 4)
God Class Java, C#, C++ and Python [(LOC >150) and (CBO > 6)] or [(NOM > 15) and (CBO > 6)]

word called class and syntactically similar structure, it’s just a convenient way to work with the
prototype system. Therefore, JavaScript and Python were not included for Shotgun Surgery,
Feature Envy and Divergent Change. We can easily include the JavaScript in the list
of Long Method for future works.

3.3 Projects

We manually select 30 open-source projects from GitHub3 for each programming language
investigated in our study, i.e., 150 projects in total. From these projects, we collect the metrics
used by the rules for code smells detection. Table 5 describes the total number of classes and
methods of the projects analyzed. Java is the programming language with the highest number
of classes collected, and C++ presents the highest number of methods.

Table 5 – Number of code snippets

Programming Languages Number of Classes Number of Methods

Java 51,326 324,943
C++ 32,425 414,923
C# 26,719 176,531
Python 24,017 129,623
JavaScript - 61,997

Table 6 describes the number of code smells detected for each programming language.
Besides, code snippets not classified as smelly are used as negative samples.

Table 6 – Number of smelly snippets

Programming Languages CM LM SS FE DC GC

Java 4,380 2,119 13,297 4,605 1,557 8,863
C++ 11,026 4,531 20,977 3,928 611 11,392
C# 2,821 1,201 6,802 1,959 372 5,252
Python 4,325 1,296 - - - 2,534
JavaScript 5,950 - - - - -

3 https://github.com
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3.4 Source Code Metrics

We face difficulties in identifying and applying open-source tools available for gathering the
metrics in the five programming languages investigated. The first challenge was identifying tools
covering all the programming languages investigated in our study. The second challenge was that
the available tools often do not sufficiently cover the desired metrics for our study. For instance,
there are few or no tools for script-based languages like JavaScript and Python. Some of the tools
found may be considered obsolete, considering the evolution of these programming languages.

To overcome these challenges, we built our own tool based on the Tree Sitter4 library. With
this tool, we could parse the source code of the selected projects for analyzing the Abstract

Syntax Tree (AST), gathering the necessary metrics, and obtaining the desired code snippet for
the experiment. Our tool is similar to the Designite tool for capturing but addressing different
programming languages, including Cyclomatic Complexity (MCCABE, 1976), the number
of nested methods in a method for script-based languages, the number of struct and enum

declarations in C++ methods, and the number of lambda expressions. The Scitools Understand
was used to complement the data in our study, collecting metrics such FanIn, FanOut, CBO,
LCOM and others, this tool also permits capturing the piece of code of interest thought a Python
API5.

3.5 Data Preparation

To train the deep learning models based on the syntactical characteristics of the code snippets,
we need to select a single technique to represent the code elements from all programming
languages. To do that, we select the technique tokenization, which transforms each character
into a numerical token. Tokenization has been employed in a previous study on transfer learning
among two programming languages (SHARMA et al., 2021). For composing the tokens, we
employ the tool provided by Spinellis et al. (SPINELLIS, 2019).

Figure 5 shows the application of Tokenization for methods in Python (see Figure 5a) and
Java (see Figure 5b). The left side presents the methods and their respective tokens on the right
side. The tokens generated for these programming languages have some differences due to their
structural differences. For instance, the method declaration in Java has access modifiers and
type declaration, unlike Python. The tokens differ in conditional expressions because there are
some differences in logical operators and identity operators. Also, the Java method uses switch

whereas if-elif-else in Python.
4 https://tree-sitter.github.io
5 https://documentation.scitools.com/html/python/index.html
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(a) Python 3.8.7

(b) Java 17

Figure 5 – Source code tokens representation

3.6 Composing the Datasets and Training the Models

Figure 6 presents the process for composing each dataset used in our study to train and test
the deep learning models. Each row of the dataset contains the representation of the code snippet
transformed into a sequence of numerical tokens. These tokens are the input for the training and
testing of the models.

Figure 6 – Datasets Composition
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First, we download the open-source projects from GitHub. In the second step, we mine
relevant data from the projects storing classes and methods with their respective collected metrics
resulting from the AST analysis. In the third step, we perform the automatic classification of
code snippets by applying the code smell detection rules, identifying the smelly or non-smelly
methods and classes, i.e., any code snippet that does not conform to the defined rule will be
considered non-smelly for the specific rule it refers to. In the fourth step, we randomly select
the automatic classified samples for training and testing the models, ensuring that the code
snippets that will be used for testing are different from those used for training. Finally, we use
the tokenizer tool to transform the textual code snippets into a sequence of numbers, and then we
train the models.

Table 7 presents the datasets resulting from this process. For each programming language,
we have a training dataset (named Training) and a testing dataset (named Testing). Each training
dataset contains 1000 instances, and each testing dataset contains 500 instances of code snippets.
In each dataset, half of the code snippets contain smells, and the other half have no smell.

Table 7 – Training and Testing Datasets

Name Programming Languages Smell / No Smell

Training

Java 500 / 500
C# 500 / 500

C++ 500 / 500
Python 500 / 500

JavaScript 500 / 500

Testing

Java 250 / 250
C# 250 / 250

C++ 250 / 250
Python 250 / 250

JavaScript 250 / 250

3.7 Data Analysis

To answer RQ1, we use the Perceptron architecture to train a deep learning model over
training datasets containing a sample size of 1000 instances of code snippets, as described in
Table 7. We train a deep learning model for each pair of programming languages and smell types
analyzed in our study. Then, we test the trained models to detect code smells in the projects
analyzed in our study. For each test, we evaluate the effectiveness of the models by calculating
the f-measure.

In RQ2, we also use the Perceptron architecture to train a deep learning model for each
pair of programming languages and smell types analyzed in our study. Then, we test the trained
models to detect code smells in the projects analyzed in our study. But now, we perform the
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training and testing of the models over datasets containing different sample sizes. In particular,
we use datasets containing 32, 64, 128, 256, 512, and 1000 instances of code snippets. In each
dataset, half of the code snippets contain smells, and the other half have no smell. This way, we
can analyze the efficiency of the trained models to detect code smells in the projects analyzed
in our study. By efficiency, we mean the effort (sample size) needed for a deep learning model
effectively detects code smells in different programming languages.

To answer RQ3, we use the CNN architecture to train deep learning models to detect code
smells in the projects analyzed in our study. Then, we evaluate the effectiveness and efficiency
of these models following the procedure adopted in the RQ1 and RQ2. Finally, we compare the
effectiveness and efficiency between the Perceptron and CNN architectures.
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4 Results and Discussion

In this chapter, we describe the main results of the study.

RQ1. How effective is transfer learning to detect code smells?

In this research question, we analyze the effectiveness of transfer learning using the Percep-

tron model to detect code smells in the programming languages analyzed in our study. For each
programming language and smell type, we train a model over a training dataset containing code
snippets and smells written in such language. Then, we evaluate the effectiveness of each trained
model in detecting smells over the testing datasets containing code snippets of all programming
languages analyzed in our study. For example, suppose we train a model in the training dataset
containing Python code snippets and the smell type Complex Method. In that case, we evaluate
this model to detect different smell types (Complex Method, God Class, Long Method, Shot-

gun Surgery, Feature Envy, and Divergent Change) in the testing datasets containing Python,
JavaScript, C++, Java, and C# code snippets. Table 8 presents the main results to support this
discussion. The first and second columns describe the smell types and programming languages
used to train the model. The smell types and programming languages arranged horizontally
correspond to the ones contained in the testing datasets used to evaluate the effectiveness of the
model trained.

Table 8 – Effectiveness of Transfer Learning using Perceptron model

Complex Method God Class Long Method Shotgun Surgery Feature Envy Divergent Change

Java C# C++ JavaScript Python Java C# C++ Python Java C# C++ Python Java C# C++ Java C# C++ Java C# C++

Complex Method

Java 98% 96% 96% 93% 91% 83% 84% 60% 84% 98% 97% 96% 95% 87% 84% 73% 78% 80% 56% 89% 85% 81%
C# 98% 98% 96% 93% 92% 82% 83% 64% 84% 97% 97% 96% 94% 88% 87% 77% 81% 85% 59% 92% 88% 83%

C++ 96% 97% 96% 93% 94% 83% 85% 51% 83% 97% 98% 96% 94% 76% 83% 74% 66% 80% 51% 85% 84% 78%
JavaScript 97% 96% 95% 95% 94% 83% 85% 71% 85% 97% 96% 96% 94% 86% 83% 78% 76% 82% 66% 87% 87% 84%

Python 82% 84% 90% 81% 97% 84% 82% 58% 84% 96% 95% 96% 95% 67% 63% 68% 50% 57% 51% 72% 64% 74%

God Class

Java 23% 21% 28% 37% 4% 94% 89% 42% 53% 48% 53% 67% 7% 9% 10% 25% 4% 9% 11% 15% 23% 35%
C# 28% 28% 36% 44% 8% 94% 92% 46% 53% 63% 64% 76% 18% 12% 16% 35% 5% 17% 15% 20% 32% 42%

C++ 9% 7% 36% 12% 3% 51% 40% 81% 24% 16% 12% 57% 5% 10% 4% 31% 1% 12% 19% 10% 6% 14%
Python 28% 33% 38% 41% 22% 93% 88% 48% 96% 60% 70% 75% 53% 16% 18% 35% 5% 18% 18% 26% 29% 48%

Long Method

Java 73% 74% 81% 78% 54% 88% 90% 60% 91% 100% 98% 96% 96% 51% 59% 57% 42% 53% 40% 65% 65% 70%
C# 77% 77% 84% 79% 55% 88% 89% 66% 91% 99% 98% 96% 92% 58% 62% 62% 49% 54% 45% 71% 66% 77%

C++ 74% 74% 87% 79% 40% 88% 89% 71% 93% 98% 98% 97% 73% 49% 58% 62% 43% 52% 46% 65% 65% 77%
Python 75% 76% 84% 74% 74% 88% 89% 62% 89% 98% 97% 96% 96% 60% 65% 61% 48% 57% 47% 71% 68% 75%

Shotgun Surgery

Java 94% 94% 93% 90% 90% 77% 81% 63% 80% 95% 93% 95% 93% 95% 93% 83% 92% 88% 65% 92% 90% 82%
C# 92% 91% 92% 87% 94% 77% 79% 69% 82% 95% 94% 93% 93% 93% 95% 86% 91% 91% 71% 91% 92% 83%

C++ 87% 85% 87% 87% 84% 74% 76% 70% 79% 87% 85% 91% 90% 85% 86% 88% 85% 82% 78% 84% 84% 87%

Feature Envy

Java 94% 94% 93% 89% 84% 72% 78% 56% 79% 94% 94% 93% 82% 92% 93% 83% 91% 92% 68% 90% 93% 84%
C# 95% 94% 94% 92% 94% 74% 80% 63% 79% 95% 94% 93% 92% 94% 93% 83% 91% 96% 67% 93% 93% 87%

C++ 78% 69% 83% 69% 65% 74% 76% 69% 73% 85% 82% 87% 72% 73% 61% 83% 66% 63% 83% 77% 70% 80%

Divergent Change

Java 95% 94% 92% 90% 94% 79% 81% 70% 82% 95% 93% 94% 94% 87% 91% 83% 86% 88% 65% 93% 92% 87%
C# 93% 92% 92% 88% 78% 79% 83% 66% 84% 97% 96% 94% 91% 90% 90% 79% 88% 89% 61% 93% 92% 85%

C++ 91% 91% 91% 89% 87% 78% 80% 71% 78% 95% 93% 93% 93% 87% 85% 79% 82% 82% 68% 89% 88% 87%

Complex Method. When both training and testing datasets contain only the Complex

Method smell, the trained model reaches the minimum effectiveness of 81%, considering all the
programming languages analyzed. The effectiveness is even better when we train the model with
Complex Method and use the trained model to detect Long Method. In such cases, the model
effectiveness is at least 94%, regardless of the programming language. When we use this trained
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model to detect God Class, Shotgun Surgery, Feature Envy, and Divergent Change, the model
reaches effectiveness above 70% in most of the cases analyzed. Such results indicate that
models trained over datasets containing only the smell Complex Method tend to be effective
to detect different smell types regardless of the programming language.

God Class. Different from the Complex Method, the model trained over a dataset con-
taining only the smell God Class reaches effectiveness below 80% in most of the cases analyzed.
Indeed, the trained model reaches effectiveness above 75% only when we evaluate this model in
testing datasets containing God Class or Long Method. However, the effectiveness tends to be low
for Long Method. When we evaluate the trained model in testing datasets containing Complex

Method, Shotgun Surgery, or Divergent Change, the effectiveness reaches only a maximum of
44%. Such results indicate that the model trained with God Class tends to be effective only
for detecting God Classes.

Long Method. In the case of the model trained over a dataset containing only Long

Method, the effectiveness of this model is above 60% when we evaluate it in testing datasets
containing God Class, Long Method, or Divergent Change. On the other hand, when
we evaluate this model in testing datasets containing only Feature Envy, the effectiveness
is at a maximum of 57%. Notice also that the evaluation of this model in the testing dataset
containing Complex Method presents effectiveness above 70% in most of the cases, except
when the testing dataset contains only Python code snippets. In such cases, the effectiveness
varies between 40% and 74%. Such results indicate that the model trained with Long Method
tends to be effective for detecting other smell types, except for Feature Envy.

Shotgun Surgery. Regarding the training of the model in a dataset containing only the
smell Shotgun Surgery, the effectiveness of the trained model is above 80% in most of the
cases analyzed, except when we evaluate the model in testing datasets containing the smells
God Class. Even in this case, the trained model presents effectiveness between 63% and 82%.
Such results indicate that the models trained with Shotgun Surgery tend to be effective for
detecting other code smell types regardless of the programming language.

Feature Envy. In the case of the model trained in a dataset containing only the smell
Feature Envy, the model reaches a minimum effectiveness of 60% in all the cases analyzed.
The model reaches effectiveness above 90% in most cases analyzed, except when we apply it in a
testing dataset containing only God Class. In such a case, the trained model reaches a maximum
effectiveness of 80%. Such results indicate that the model trained with Feature Envy tend to
be effective in detecting other code smell types regardless of the programming language.

Divergent Change. The mode trained in datasets containing only Divergent Change

reaches effectiveness at least 71% in all the cases analyzed, except when we evaluate the model
in a dataset containing only Feature Envy. However, in such a case, the trained model
reaches the minimum effectiveness of 61%. Such results indicate that the model trained with
Divergent Change tends to be effective in detecting other code smell types regardless of the
programming language.
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Summary of RQ1: Transfer learning tends to effectively detect different smell types
analyzed regardless of the programming language and the smell type of the training dataset,
except when we train the model with God Class.

RQ2: How efficient is transfer learning to detect code smells?

So far, we evidenced that transfer learning detects code smells effectively (RQ1). However,
we still do not know the actual effort needed to research this effectiveness. The smaller the
sample size is, the lower the effort to build the training dataset. Thus, to answer RQ2, we analyze
the minimum sample size required by transfer learning to reach models with similar effectiveness
to those found for a sample size=1000 (RQ1). Table 9 presents the effectiveness (in terms of
f-measure) of Perceptron models as we increase the number of instances (sample size) from 32
to 1000 composing the training datasets.

Table 9 – F-measure of Perceptron models trained with increasing number of samples

Samples = 32 Samples = 64 Samples = 128

Java C# C++ JavaScript Python Java C# C++ JavaScript Python Java C# C++ JavaScript Python

Complex Method

Java 93% 93% 93% 90% 91% 95% 95% 93% 91% 94% 95% 95% 94% 91% 94%
C# 91% 89% 92% 87% 84% 92% 91% 92% 88% 84% 94% 94% 93% 89% 87%
C++ 91% 90% 91% 89% 89% 94% 92% 93% 90% 91% 95% 94% 95% 92% 94%
JavaScript 89% 88% 91% 89% 86% 93% 91% 93% 91% 93% 93% 92% 92% 93% 94%
Python 92% 90% 92% 89% 91% 92% 90% 92% 89% 91% 92% 91% 91% 88% 95%

God Class

Java 90% 86% 37% - 85% 93% 88% 38% - 91% 94% 89% 43% - 88%
C# 93% 90% 50% - 94% 91% 90% 58% - 92% 94% 92% 58% - 68%
C++ 78% 83% 78% - 81% 80% 86% 77% - 86% 84% 87% 76% - 88%
Python 94% 89% 43% - 94% 93% 90% 46% - 94% 94% 90% 48% - 94%

Long Method

Java 97% 96% 95% - 87% 98% 98% 96% - 97% 99% 98% 96% - 96%
C# 97% 98% 96% - 95% 98% 98% 97% - 97% 98% 98% 97% - 91%
C++ 96% 96% 96% - 91% 97% 97% 96% - 77% 97% 97% 96% - 87%
Python 98% 98% 96% - 96% 98% 98% 96% - 96% 98% 98% 96% - 97%

Shotgun Surgery
Java 92% 91% 87% - - 92% 91% 87% - - 93% 92% 87% - -
C# 90% 88% 82% - - 92% 92% 84% - - 93% 94% 85% - -
C++ 92% 91% 86% - - 89% 88% 89% - - 88% 87% 87% - -

Feature Envy
Java 88% 87% 72% - - 91% 89% 68% - - 92% 91% 69% - -
C# 87% 87% 70% - - 88% 87% 69% - - 90% 90% 71% - -
C++ 89% 87% 77% - - 86% 85% 78% - - 81% 80% 79% - -

Samples = 256 Samples = 512 Samples = 1000

Java C# C++ JavaScript Python Java C# C++ JavaScript Python Java C# C++ JavaScript Python

Complex Method

Java 96% 95% 95% 92% 94% 97% 96% 96% 92% 90% 98% 96% 96% 93% 91%
C# 97% 97% 95% 91% 91% 96% 97% 96% 92% 86% 98% 98% 96% 93% 92%
C++ 97% 95% 95% 94% 94% 95% 94% 96% 94% 89% 96% 97% 96% 93% 94%
JavaScript 94% 93% 92% 95% 92% 95% 95% 93% 96% 87% 97% 96% 95% 95% 94%
Python 85% 85% 87% 82% 96% 85% 88% 90% 84% 97% 82% 84% 90% 81% 97%

God Class

Java 94% 90% 42% - 91% 94% 88% 42% - 82% 94% 89% 42% - 53%
C# 95% 93% 51% - 67% 93% 92% 44% - 57% 94% 92% 46% - 53%
C++ 87% 85% 80% - 76% 83% 80% 82% - 54% 51% 40% 81% - 24%
Python 93% 89% 43% - 94% 94% 89% 46% - 95% 93% 88% 48% - 96%

Long Method

Java 99% 98% 96% - 95% 99% 98% 96% - 97% 100% 98% 96% - 96%
C# 99% 98% 96% - 94% 99% 98% 96% - 94% 99% 98% 96% - 92%
C++ 99% 98% 98% - 88% 99% 98% 97% - 85% 98% 98% 97% - 73%
Python 98% 97% 97% - 97% 97% 97% 96% - 97% 98% 97% 96% - 96%

Shotgun Surgery
Java 93% 92% 86% - - 95% 94% 86% - - 95% 93% 83% - -
C# 93% 94% 85% - - 93% 93% 86% - - 93% 95% 86% - -
C++ 87% 85% 87% - - 87% 87% 88% - - 85% 86% 88% - -

Feature Envy
Java 92% 89% 69% - - 92% 90% 69% - - 91% 92% 68% - -
C# 91% 92% 71% - - 92% 95% 72% - - 91% 96% 67% - -
C++ 73% 72% 82% - - 54% 51% 84% - - 66% 63% 83% - -
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Complex Method. When we train the model over training datasets containing only
Complex Methods, we observe that the trained models reach high effectiveness (from 81%
to 98%) regardless of the programming language and the sample size. This result suggests that
a trained dataset with 32 instances is sufficient to build models that can effectively detect
Complex Methods with transfer learning.

God Class. For God Class, we observe a high variation in the models’ effectiveness not
influenced by the sample size but by the programming language. Indeed, the lowest effectiveness
scores are obtained by the Python and C++ models (24% to 96%), while all the scores for Java
and C# models are high (80% to 95%) These results indicate that the sample size does not
affect the effectiveness in detecting God Classes with transfer learning.

Long Method. We observe that all the trained models reached effectiveness higher than
95%, except for the C++ model on detecting long methods in Python (73% to 91%). However,
even in this case, we cannot observe an improvement in the sample size over the effectiveness.
This result suggests that a trained dataset with 32 instances is sufficient to build trans-
fer learning models that can effectively detect Long Methods in different programming
languages.

Shotgun Surgery. When we train the model over training datasets containing only
Shotgun Surgery, we observe that the trained models reach high effectiveness (from 82%
to 95%) regardless of the programming language and the sample size. This result suggests that
a trained dataset with 32 instances is sufficient to build transfer learning models that can
effectively detect Shotgun Surgery. in different programming languages

Feature Envy. The model reaches effectiveness above 70% in most cases, except in a
few cases where we train or evaluate models in C++. Although we could not identify a positive
influence of the sample size over the models’ effectiveness, it is important to note that the
model in C++ reaches lower effectiveness with higher sample sizes (256 or higher).

Summary of RQ2: Transfer learning is an efficient way to detect different types of code
smells in different programming languages. Considering our experiment settings, sample
sizes=32 are sufficient to compose the training datasets.

RQ3: How many layers must a deep learning architecture have

to effectively detect code smells?

In this research question, we evaluate how complex, i.e., how many layers the neural network
architecture should be for reaching higher levels of effectiveness in detecting code smells. For
this purpose, we evaluate the effectiveness and efficiency of transfer learning supported by CNN
in detecting code smells. Then, we compare the effectiveness and efficiency of transfer learning
between CNN and Perceptron.
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Effectiveness. As discussed in the RQ1 results, the Perceptron model effectively
detects code smells regardless of the programming language used to train or evaluate the model.
Table 10 describes the effectiveness of the CNN model in detecting code smells in different
programming languages. We observe that the CNN model reaches effectiveness values close to
the Perceptron. In Complex Method, both CNN and Perceptron models reach effectiveness
above 70% in most of the cases analyzed. Regarding the God Class, these models reach
effectiveness below 80% in most of the cases analyzed. For Long Method, the CNN model
presents an effectiveness slightly greater than the Perceptron model. While the CNN model
presents maximum effectiveness above 60% in all the smell types analyzed, the Perceptron
model presents effectiveness above 60% only when evaluated in testing datasets containing God
Class, Long Method, and Divergent Change. On the other hand, the Perceptron model
presents a minimum effectiveness slightly greater than CNN model in these cases. While the CNN
model presents a minimum effectiveness varying between 59% and 67%, the Perceptron model
presents a minimum effectiveness varying between 63% and 85%. Concerning the Feature
Envy, both the CNN and Perceptron models present a minimum effectiveness of 60% in most
cases analyzed. The only exception is when we evaluate the CNN model to detect Feature
Envy in Python. In such a case, the model presents a minimum effectiveness of 37%. Regarding
the Divergent Change, both the CNN and Perceptron models present an effectiveness of at
least 66%. The results indicate that the complexity of the model does not lead to a significant
difference in the models’ effectiveness for detecting different types of code smells with
transfer learning, regardless of the programming language.

Table 10 – Effectiveness of Transfer Learning using CNN model

Complex Method God Class Long Method Shotgun Surgery Feature Envy Divergent Change

Java C# C++ JavaScript Python Java C# C++ Python Java C# C++ Python Java C# C++ Java C# C++ Java C# C++

Complex Method

Java 94% 96% 95% 94% 95% 85% 85% 72% 84% 97% 98% 96% 94% 80% 81% 73% 68% 79% 64% 89% 84% 84%
C# 96% 98% 96% 96% 93% 86% 85% 66% 85% 97% 98% 95% 94% 83% 82% 74% 75% 83% 58% 88% 89% 83%

C++ 92% 98% 97% 92% 94% 81% 85% 43% 84% 94% 97% 95% 93% 72% 85% 69% 61% 82% 53% 82% 89% 79%
JavaScript 97% 97% 93% 97% 94% 85% 84% 74% 82% 97% 97% 95% 95% 86% 87% 82% 76% 84% 69% 91% 91% 85%

Python 83% 85% 91% 83% 97% 86% 85% 69% 84% 98% 96% 96% 95% 69% 66% 70% 53% 60% 57% 75% 71% 77%

God Class

Java 21% 22% 27% 33% 6% 93% 87% 42% 71% 42% 48% 67% 12% 8% 9% 25% 3% 10% 15% 14% 26% 34%
C# 31% 36% 49% 55% 14% 93% 93% 64% 87% 65% 70% 83% 41% 13% 21% 36% 7% 23% 20% 23% 33% 51%

C++ 15% 32% 28% 50% 43% 83% 73% 81% 86% 28% 41% 48% 46% 5% 10% 28% 0% 15% 21% 15% 15% 39%
Python 39% 44% 55% 58% 23% 95% 91% 59% 95% 78% 85% 89% 54% 19% 29% 41% 11% 26% 27% 31% 39% 57%

Long Method

Java 84% 82% 86% 84% 74% 87% 89% 72% 89% 98% 99% 96% 97% 57% 60% 62% 45% 58% 50% 70% 70% 77%
C# 81% 76% 85% 81% 59% 90% 88% 72% 92% 98% 98% 96% 92% 52% 58% 62% 41% 53% 50% 67% 63% 79%

C++ 81% 76% 86% 81% 45% 89% 89% 69% 92% 97% 97% 97% 74% 51% 60% 60% 44% 57% 43% 68% 70% 74%
Python 81% 81% 88% 81% 77% 86% 88% 67% 89% 99% 98% 97% 97% 66% 67% 66% 53% 61% 51% 77% 70% 78%

Shotgun Surgery

Java 90% 94% 95% 90% 95% 81% 81% 59% 82% 95% 94% 94% 92% 96% 94% 85% 93% 92% 67% 94% 94% 82%
C# 82% 91% 90% 82% 94% 66% 68% 64% 70% 93% 93% 91% 91% 93% 94% 84% 91% 92% 69% 91% 93% 80%

C++ 66% 67% 67% 66% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67%

Feature Envy

Java 95% 94% 92% 89% 95% 78% 81% 66% 81% 96% 94% 94% 93% 93% 95% 85% 92% 95% 72% 93% 93% 86%
C# 67% 67% 67% 66% 67% 67% 66% 67% 67% 67% 67% 66% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67%

C++ 78% 77% 82% 73% 37% 73% 78% 69% 77% 88% 88% 87% 60% 68% 63% 81% 68% 70% 85% 74% 80% 84%

Divergent Change

Java 89% 94% 89% 89% 90% 76% 80% 68% 80% 96% 93% 91% 90% 88% 89% 86% 84% 89% 75% 94% 93% 87%
C# 94% 95% 93% 88% 93% 79% 83% 69% 79% 96% 96% 94% 94% 90% 88% 81% 85% 88% 66% 94% 91% 85%

C++ 90% 88% 90% 86% 87% 75% 76% 69% 77% 95% 89% 93% 86% 86% 86% 82% 85% 87% 73% 93% 89% 85%

Efficiency. As discussed in the RQ2, the Perceptron model efficiently detects code
smells regardless of the programming language and sample size. Table 11 presents the efficiency
of the CNN models to detect code smells in different programming languages as we increase the
sample size.

For Complex Methods, we observe that the trained models reach high effectiveness (from
81% to 97%) regardless of the programming language and the sample size. For God Class,
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Table 11 – F-measure of CNN models trained with increasing number of samples

Samples = 32 Samples = 64 Samples = 128

Java C# C++ JavaScript Python Java C# C++ JavaScript Python Java C# C++ JavaScript Python

Complex Method

Java 93% 93% 94% 91% 93% 96% 96% 95% 92% 91% 96% 95% 94% 92% 93%
C# 67% 67% 66% 66% 67% 93% 92% 92% 89% 82% 97% 96% 95% 92% 91%
C++ 91% 89% 91% 89% 91% 91% 89% 90% 87% 90% 94% 93% 92% 88% 91%
JavaScript 85% 87% 90% 89% 86% 92% 89% 92% 91% 93% 95% 93% 93% 93% 95%
Python 67% 67% 67% 67% 67% 92% 91% 92% 88% 92% 93% 92% 92% 90% 95%

God Class

Java 92% 91% 55% - 94% 93% 89% 45% - 87% 94% 90% 45% - 93%
C# 93% 91% 53% - 94% 92% 91% 63% - 90% 93% 92% 59% - 69%
C++ 70% 70% 72% - 67% 83% 86% 73% - 86% 88% 88% 78% - 89%
Python 92% 90% 50% - 94% 93% 90% 50% - 94% 91% 90% 62% - 93%

Long Method

Java 97% 97% 95% - 91% 98% 97% 96% - 97% 99% 98% 96% - 91%
C# 96% 94% 95% - 95% 96% 95% 95% - 95% 98% 98% 96% - 96%
C++ 97% 95% 96% - 73% 96% 95% 96% - 86% 96% 96% 96% - 86%
Python 98% 97% 96% - 97% 98% 98% 96% - 97% 98% 97% 97% - 97%

Shotgun Surgery
Java 88% 87% 89% - - 0% 0% 3% - - 94% 93% 87% - -
C# 67% 67% 66% - - 92% 90% 89% - - 0% 0% 0% - -
C++ 90% 88% 88% - - 85% 84% 88% - - 88% 87% 87% - -

Feature Envy
Java 89% 89% 70% - - 91% 89% 61% - - 67% 67% 67% - -
C# 88% 87% 72% - - 89% 87% 70% - - 91% 92% 73% - -
C++ 84% 81% 80% - - 83% 80% 75% - - 78% 75% 78% - -

Samples = 256 Samples = 512 Samples = 1000

Java C# C++ JavaScript Python Java C# C++ JavaScript Python Java C# C++ JavaScript Python

Complex Method

Java 0% 0% 0% 1% 0% 98% 97% 95% 93% 95% 98% 96% 95% 94% 95%
C# 97% 96% 94% 89% 93% 97% 97% 96% 93% 93% 98% 98% 96% 96% 93%
C++ 98% 96% 96% 92% 94% 95% 96% 96% 94% 95% 97% 98% 97% 92% 94%
JavaScript 96% 95% 94% 95% 83% 96% 95% 94% 96% 90% 97% 97% 93% 97% 94%
Python 80% 83% 88% 81% 97% 87% 92% 91% 88% 97% 84% 85% 91% 83% 97%

God Class

Java 93% 87% 43% - 91% 92% 89% 61% - 94% 93% 87% 42% - 71%
C# 93% 94% 50% - 42% 94% 94% 48% - 25% 93% 93% 64% - 87%
C++ 91% 88% 81% - 78% 80% 76% 81% - 55% 83% 73% 81% - 86%
Python 94% 90% 49% - 95% 93% 91% 53% - 95% 95% 91% 59% - 95%

Long Method

Java 99% 98% 96% - 88% 99% 98% 96% - 97% 98% 99% 96% - 97%
C# 99% 99% 96% - 91% 99% 98% 96% - 94% 98% 98% 96% - 92%
C++ 99% 97% 97% - 97% 98% 98% 97% - 97% 97% 97% 97% - 74%
Python 98% 98% 96% - 97% 98% 97% 96% - 97% 99% 98% 97% - 97%

Shotgun Surgery
Java 94% 92% 86% - - 0% 0% 1% - - 96% 94% 85% - -
C# 94% 94% 84% - - 67% 67% 67% - - 93% 94% 84% - -
C++ 85% 80% 85% - - 0% 0% 0% - - 67% 67% 67% - -

Feature Envy
Java 93% 92% 72% - - 92% 89% 62% - - 92% 95% 72% - -
C# 92% 93% 73% - - 91% 95% 72% - - 67% 67% 67% - -
C++ 70% 64% 79% - - 45% 37% 83% - - 68% 70% 85% - -

we observe a high variation in the models’ effectiveness (42% to 94%) not influenced by the
sample size but by the programming language. For Long Method, all the trained models
reached effectiveness higher than 94%, reaching high effectiveness regardless of the sample size
and the programming language. For Shotgun Surgery, we observed worst results for CNN
than for Perceptron, ranging from 0% to 96% without a clear influence of the programming
language. However, one may see that better results are reached with the sample size=256. For
Feature Envy, the model reaches effectiveness above 70% in most cases, except in a few
cases where we train or evaluate models trained in C++. Although we could not identify a
positive influence of the sample size over the models’ effectiveness, it is important to note
that the model in C++ reaches lower effectiveness with higher sample sizes (256 or higher).
Therefore, similar to Perceptron, the results show that a small sample size of instances (32) is
sufficient for training CNN models for detecting Complex Method, God Class, Long Method,
and Feature Envy. However, different from Perceptron, CNN requires higher sample sizes (256)
to reach better effectiveness in detecting Shotgun Surgery.
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Summary of RQ3: The Perceptron and CNN models effectively detect code smells with
small samples, but the Perceptron presents an efficiency slightly better than CNN.
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5 Discussion

The findings of our study reveal that transfer learning is an effective and efficient approach
for leveraging the software development community to expand their possibilities of detecting
code smells in different programming languages through the reuse of already existing resources.
The study findings also reveal interesting aspects and trends in using transfer learning that may
contribute to the software engineering community optimizing future research efforts, discussed
in the following paragraphs.

Genetic matters. Despite programming languages such as C++, Java, C#, and JavaScript
may be frequently applied for different purposes, they share basic flow and conditional structures.
These characteristics probably facilitate deep learning algorithms to identify the same patterns
after the tokenization process. Future investigations in transfer learning may explore these
similarities, for instance, to investigate the effectiveness of transfer learning in detecting more
complex smell types.

Small sample size. One of the main results of our study is that large training datasets are
not necessary for effectively detecting code smells in different programming languages. Indeed,
the models trained from the Perceptron and CNN architectures present high effectiveness even
if we consider a sample size of 32 instances. We believe that the technique of tokenization
used to represent the code snippets has a significant contribution to obtaining these results. This
technique enables us to extract information from the source code that is not easy to do the same
by representing the code only through metrics.

Keep it as simple (as possible). The experience of our study reveals that it is worthwhile to
start the evaluation of transfer learning on code smell detection from the simplest deep learning
architectures. From the perspective of deep learning, code smell detection is a relatively simple
problem. Our study suggests that Perceptron is an effective architecture for detecting several
smell types. However, we should also keep in mind that detecting more complex types of code
smells may require different settings.
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6 Related Work

Different techniques have been proposed to detect code smells automatically by using a
variety of methods: (i) metrics; (ii) rules/heuristics; (iii) history; (iv) optimization; and most
recently, (v) machine learning. The abstract syntax tree (AST) is commonly used in metric-based
methods for computing relevant metrics of the source code. Once the thresholds of these metrics
are established, they are employed for detecting code smells. However, some code smells can not
be detected only using metrics, such as rebellious hierarchy, missing abstraction, cyclic hierarchy,
and empty catch block. For this purpose, heuristic-based methods are proposed. In such methods,
simple rules or complex heuristics are defined according to the code smell type. History-based
methods analyze the evolution of source code to spot code smells. The optimization-based
methods are supported by optimization algorithms such as genetic algorithms.

Most recently, machine learning-based models emerged as promising method for code smell
detection. For training these models, machine learning algorithms such as Support Vector Ma-
chines, Bayesian Belief Networks, and Logistic Regression have been employed. (PECORELLI
et al., 2019) present comparison between the use of the DECOR heuristic and a machine learning
model based on the Naive Bayes algorithm. Both methods performed poorly. This study mentions
the fact that the dataset has a wide variety of code smells and has real examples (i.e., manually
validated) as a possible cause of low performance, indicating that the success of these methods
can be related to the dataset and the results may be unsuitable for use in practice. On the other
hand, the study by (OLIVEIRA et al., 2020) evaluated the detection of six code smells by
seven machine learning algorithms. The results indicate that overall the models reach their best
accuracy with few samples, indicating the importance of investigating sample size in depth with
transfer learning.

Besides the more recent dissemination of machine learning models, there are several
code smell detection tools available. These tools are predominantly based on metrics and
rules/heuristics. (PAIVA et al., 2017) compare four tools for code smells detection and present
supported programming languages, code smells types coverage, advantages, and disadvantages.
For instance, the InFunsion is a commercial tool supporting the detection of 22 different types of
code smells in Java, C, and C++ programs. JDeodorant is an open-source plugin for Eclipse1,
supporting the detection of four types of code smells in Java programs. Most of these tools
support code smell detection in Java programs. Among them, two support C/C++ programming
languages, while only PMD can detect code smells in other programming languages.

The feasibility of applying transfer learning based on deep learning models for code smells
detection was investigated in previous work (SHARMA et al., 2021). In this work, the authors
focused on four types of code smells (complex method, empty catch block, magic number,
and multifaceted abstraction), evaluating the effectiveness of transfer learning between datasets
1 www.eclipse.org
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composed of source code written in C# and Java. The source code used in the study was obtained
from open-source projects available at GitHub. The authors conducted the study in two steps:
(i) evaluating the use of deep learning models for code smells detection in C# and Java, and (ii)
evaluating transfer learning using pre-trained models between C# and Java. The study involved
two architectures of neural networks, Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN). The study findings indicate the feasibility of deep learning for code
smells detection and transfer learning for detecting code smells in Java through models trained
with C# datasets. However, both models obtained considerably lower results for detecting the
multifaceted abstraction smell.

Beyond the context of code smell detection, there are other works investigating the use of
transfer learning in the field. For instance, transfer learning has been used for code autocompletion
(ZHOU et al., 2021) and automatic repair of software vulnerabilities (CHEN; KOMMRUSCH;
MONPERRUS, 2022).
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7 Threats to validity

Internal validity. We use more than 4,000 code snippets automatically analyzed through
heuristics without following manual validation, which can pose a threat to internal validity. This
is a common challenge in large-scale studies addressing deep learning solutions in code smell
detection. However, one may see that our research goal is evaluating the feasibility of transfer
learning models replicating the detection behavior observed in the training datasets, which
aligns with our internal validity goals. Besides, it is important to note that we used common
types of code smell, which detection is addressed by several detection tools through similar
detection rules. In this way, we made an effort to build a standard and optimized detection by
combining these rules. Moreover, it is questionable whether performing manual validation over
large datasets without a proper analysis of the projects’ characteristics effectively contributes to
composing oracles (HOZANO et al., 2017; HOZANO et al., 2018; JUNIONELLO; MELLO,
2021; MELLO et al., 2022).

Another threat to validity addresses the limitations of the parsing tools employed. We need to
perform our own parsing solution for Python and JavaScript. For this purpose, we made efforts
to identify and reuse reliable and stable tools as background for implementing these solutions.
We also tested our solution over several code elements from both programming languages before
running the study.

External validity. One common threat to the validity, both internal and external, of studies
based on mining software repositories addresses the representativeness of the software projects
and the code snippets analyzed. To mitigate this threat to external validity, we apply rigorous
criteria for composing our datasets. We select relevant releases from popular open-source
projects addressing different technologies and domains for each programming language, aiming
to enhance the generalizability of our findings. Additionally, we reuse the datasets from previous
work (SHARMA et al., 2021) for the programming languages available to ensure comparability
and external validity.
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8 Conclusions

The purpose of our research was to identify a low-cost and effective alternative based on
transfer learning for supporting the detection of code smells in open source projects from different
programming languages. We investigated the effectiveness and efficiency of transfer learning for
detecting code smells. Also, we analyzed how complex should be the deep learning architecture
to effectively and efficiently detect code smells.

For this purpose, we obtained pre-trained models based on Perceptron and Convolutional
Neural Network (CNN) for detecting six smell types existing in projects from the programming
languages Java, C#, C++, Python, and JavaScript. The results indicated that transfer learning
is effective and efficient in detecting code smells in different programming languages. Also,
the results suggest that it is not necessary to use complex deep learning architectures and large
sample sizes to train models for effectively and efficiently detecting code smells.

8.1 Future Work

In future work, we intend to:

• Extend the investigation with other programming languages;

• Investigate other code smells with different levels of complexity;

• Explore different approaches to represent code snippets.
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