00 CAMPUS ARISTÓTELES CALAZANS SIMÕES (CAMPUS A. C. SIMÕES) IC - INSTITUTO DE COMPUTAÇÃO Dissertações e Teses defendidas na UFAL - IC
Use este identificador para citar ou linkar para este item: http://www.repositorio.ufal.br/jspui/handle/riufal/7053
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisor1Vieira, Tiago Figueiredo-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8601011832053651pt_BR
dc.contributor.referee1Vieira, Thales Miranda de Almeida-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8181104476035846pt_BR
dc.contributor.referee2Oliveira, Douglas Cedrim-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8621490090221615pt_BR
dc.creatorCrispim, Felipe Carmo-
dc.creator.Latteshttp://lattes.cnpq.br/8998197204802119pt_BR
dc.date.accessioned2020-07-14T03:20:28Z-
dc.date.available2020-07-11-
dc.date.available2020-07-14T03:20:28Z-
dc.date.issued2020-03-13-
dc.identifier.citationCRISPIM, Felipe Carmo. Reconhecimento facial RGBD para análise de parentesco. 2020. 72 f. Dissertação (Mestrado em Informática) - Instituto de Computação, Programa de Pós-Graduação em Informática, Universidade Federal de Alagoas, Maceió, 2020.pt_BR
dc.identifier.urihttp://www.repositorio.ufal.br/handle/riufal/7053-
dc.description.abstractThis work presents a new approach to kinship recognition based on Deep Learning applied to facial data of color images with depth information, i. e., RGBD. To work around the lack of an adequate 3D database containing kinship information, an online platform was provided where participants can submit videos captured by common smartphones cameras containing their face and those of their relatives. Then, the videos are processed to generate the 3D reconstruction of recorded faces, resulting in a standardized database coined Kin3D. It combines depth information from normalized 3D reconstructions with 2D images comprising RGBD data with unprecedent kinship information. Following previous works, image files are segmented into four categories according to their respective kinship relationship. For the classification, Convolutional Neural Networks (CNN) were used, as well as a Support Vector Machines (SVM) to obtain a baseline. The CNN was tested in a 2D kinship database previously consolidated in the scientific literature, known as KinFaceW-I and II, and in our Kin3D for comparison with related works. Another approach was used by bringing all first-degree relatives together at once and classifying them in a binary way. Results have shown that the addition of depth information improves the performance of the model, increasing the classification accuracy. As of the writing of this work, this is the first database containing depth information for kinship verification as well as the analysis of state-of-the-art techniques for obtaining the benchmark, providing performance as a starting point to further stimulate evaluations from the research community.pt_BR
dc.description.sponsorshipFAPEAL - Fundação de Amparo à Pesquisa do Estado de Alagoaspt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Alagoaspt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Informáticapt_BR
dc.publisher.initialsUFALpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectParentesco - Percepção facialpt_BR
dc.subjectBiometria - Percepção facialpt_BR
dc.subjectMovimento de câmarapt_BR
dc.subjectReconhecimento facialpt_BR
dc.subjectKinship verificationpt_BR
dc.subjectFace Biometricspt_BR
dc.subjectStructure from Motionpt_BR
dc.subject3D Reconstructionpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.titleReconhecimento facial RGBD para análise de parentescopt_BR
dc.title.alternativeVerifying kinship from RGB-D face datapt_BR
dc.typeDissertaçãopt_BR
dc.description.resumoEste trabalho apresenta uma abordagem inédita de reconhecimento de parentesco baseada em Aprendizado Profundo aplicado a dados faciais de imagens coloridas e com informação de profundidade, i. e., RGBD. Para contornar a falta de uma base de dados 3D adequada com informações de parentesco, foi fornecida uma plataforma online onde os participantes podem submeter vídeos capturados com câmeras de smartphones comuns contendo a sua face e as de seus parentes. Em seguida, os vídeos são processados para a reconstrução 3D das faces gravadas, gerando um banco de dados normalizado batizado Kin3D. Nele, combinam-se informações de profundidade de reconstruções 3D normalizadas com imagens 2D, compondo o banco de dados RGBD de parentesco inédito na literatura. Seguindo as abordagens de trabalhos relacionados, imagens são organizadas em quatro categorias de acordo com suas respectivas relações de parentesco. Para a classificação foram utilizadas Redes Neurais Convolucionais (CNN) bem como Máquina de Vetores de Suporte para a obtenção de um baseline. A CNN foi testada em um banco de dados de parentesco 2D previamente consolidado na literatura científica, conhecido como KinFaceW-I e II, e em nosso Kin3D para comparação com trabalhos relacionados. Uma outra abordagem foi usada ao reunir todos os parentes de primeiro grau de uma vez e classificá-los de maneira binária. Resultados indicam que a adição de informação de profundidade aprimora a performance do modelo, aumentando a acurácia de classificação. Até o momento da escrita desse trabalho, este é o primeiro banco de dados contendo informação de profundidade para verificação de parentesco bem como a análise de técnicas do estado da arte para a obtenção do benchmark, fornecendo uma performance como ponto de partida para estimular ainda mais avaliações da comunidade de pesquisa.pt_BR
Aparece nas coleções:Dissertações e Teses defendidas na UFAL - IC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Reconhecimento facial RGBD para análise de parentesco.pdf16.62 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.