Use este identificador para citar ou linkar para este item:
http://www.repositorio.ufal.br/jspui/handle/123456789/15686
Tipo: | Dissertação |
Título: | Defining optical amplifiers gains using reinforcement learning |
Autor(es): | Pinheiro Filho, José Carlos |
Primeiro Orientador: | Barboza, Erick de Andrade |
metadata.dc.contributor.referee1: | Martins Filho, Joaquim Ferreira |
metadata.dc.contributor.referee2: | Santos Neto, Baldoino Fonseca dos |
Resumo: | The dynamic nature of future optical networks requires that amplifiers autonomously ad just their gain in response to changing network conditions, such as the addition or removal of channels, to maintain signal power and General Signal-to-Noise Ratio (GSNR) across a cascade of amplifiers. This challenge is known as the Adaptive Control of Optical Amplifier Operating Point (ACOP). Solutions for the ACOP problem have been proposed using tech niques such as cognitive learning, supervised learning, and evolutionary algorithms. Among these, the evolutionary approach has achieved the best results in terms of transmission qual ity. However, it has a relatively high response time, which is a significant drawback for operational deployment. On the other hand, reinforcement learning techniques are impor tant in the field of artificial intelligence to solve problems in real-time with trained models. This work proposes the first modeling of the ACOP problem using reinforcement learning,, specifically employing the Proximal Policy Optimization (PPO) algorithm integrated with the GNPy simulator. The objective is to improve signal quality by maximizing the GSNR through interaction with the gains of the amplifiers in the link. In four scenarios with varying numbers of channels, this approach achieved results close to the evolutionary approach, but with a speed-up of 300 times. |
Abstract: | . |
Palavras-chave: | Amplificadores ópticos Inteligência artificial Comunicação óptica Optical amplifiers Artificial intelligence optical communication |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal de Alagoas |
Sigla da Instituição: | UFAL |
metadata.dc.publisher.program: | Programa de Pós-Graduação em Informática |
Citação: | PINHEIRO FILHO, José Carlos. Defining optical amplifiers gains using reinforcement learning. 2025. 39 f. Dissertação (Mestrado em Informática.) – Programa de Pós-Graduação em Informática, Instituto de Computação, Universidade Federal de Alagoas, Maceió, 2024. |
Tipo de Acesso: | Acesso Aberto |
URI: | http://www.repositorio.ufal.br/jspui/handle/123456789/15686 |
Data do documento: | 28-jul-2024 |
Aparece nas coleções: | Dissertações e Teses defendidas na UFAL - IC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Defining optical amplifiers gains using reinforcement learning.pdf | 2.9 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.