
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ordering homotopy string links over surfaces and 
a presentation for the homotopy generalized 

string links over surfaces 
 
 

Juliana Roberta Theodoro de Lima 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 

	
  
 
 
 
 
 

 

 Ordering homotopy string links over surfaces and a 
presentation for the homotopy generalized string links 

over surfaces 
  

 
 

Juliana Roberta Theodoro de Lima	
  

 
 
 

Advisor: Prof. Dra. Denise de Mattos 
Co-Advisor: Prof. Dr. Dale Rolfsen	
  	
  

     
 

 
 
 
 
 

Doctoral dissertation submitted to the Instituto de 
Ciências Matemáticas e de Computação - ICMC-USP, 
in partial fulfillment of the requirements for the degree 
of the Doctorate Program in Mathematics. FINAL 
VERSION. 
 
 

USP – São Carlos 
December 2014	
  	
  

	
  
 

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP 
 
Data de Depósito:     
 
Assinatura:________________________
______ 



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados fornecidos pelo(a) autor(a)

R732o
Roberta Theodoro de Lima, Juliana
   Ordering homotopy string links over surfaces and
a presentation for the homotopy generalized string
links over surfaces / Juliana Roberta Theodoro de
Lima; orientador Denise de Mattos; co-orientador
Dale Rolfsen. -- São Carlos, 2014.
   79 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Matemática) -- Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, 2014.

   1. homotopy string links. 2. homotopy
generalized string links. 3. presentation of
generalized string links. 4. ordering homotopy
string links over surfazes. I. de Mattos, Denise,
orient. II. Rolfsen, Dale, co-orient. III. Título. 



 
 

 
 
 

	
  
 
 
 
 
 
 
 

 

Ordenando os grupos de homotopia de enlaçamentos de 
intervalos em superfícies e uma apresentação para os 
grupos de homotopia de enlaçamentos de intervalos 

generalizados em superfícies 
 
 

Juliana Roberta Theodoro de Lima	
  

 
 
 

Orientadora: Profa. Dra. Denise de Mattos 
Co-orientador: Prof. Dr. Dale Rolfsen	
  	
  

    
 

 
 
 
 
 

Tese apresentada ao Instituto de Ciências Matemáticas 
e de Computação - ICMC-USP, como parte dos 
requisitos para obtenção do título de Doutor em 
Ciências -  Matemática . EXEMPLAR DE DEFESA. 

 
       
                           USP – São Carlos  
                                                           Dezembro de 2011     
 
 

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP 
 
Data de Depósito:     
 
Assinatura:________________________
______ 



 



“Life is a play that does not allow testing. So, sing, cry,
dance, laugh, live and love intensely, before the curtain
closes and the play ends with no applauses.”

Charles Chaplin



ii



Acknowledgements

First, I would like to thank God. Thank Him to gave me blessings and strength enough

to get all my aims and desires. Thank Him to put so many special people on my way. In

particular, the most special: my father. Thanks dad to be the man who always be by my

side, giving me all the support in life. How I wish to be a half of the person who you are!

This phd’s thesis is totally dedicated to you!

Among the lovely people that God had put in my life, here is some that was so

much important to construct my career: thanks to professor José Eduardo Prado Pires

de Campos, my master’s degree advisor. He had introduced to me Braid Theory and

it became a passion for me in Mathematics. Moreover, thank you to keep up with me

helping in my PhD thesis!

Thanks to professor Dale Rolfsen, my PhD co-advisor. Thank you to welcome me in

Canada. Thank you to introduce me and teach me the study of Ordering Theory. Your

support, contribution, help and guidance were essential to perform this work.

Thanks to professors John Guaschi and Daciberg Lima Gonçalves to helped me to have

this amazing experience that was traveling to Canada and to have the most important

experience in my life that was work with professor Dale. Moreover, thank you to your

advices, your knowledges, your teachings and your friendship.

Now, a huge special thank to my advisor professor Denise de Mattos and also to

professor Edivaldo Lopes dos Santos, my friends and my examples in career and in life.

Thanks your teachings, advices, friendship, companion. I think God has a special affection

about me because He had put you both in my life. I wish you have the double of happiness

that you provided to me since the moment I had met you guys!

Thanks to professor Márcia Cristina Anderson Braz Federson, for the friendship, for

the teachings. Thank you for believe in me professionally and make my dreams in mathe-

matics come true!

God bless you all!



iv

Thanks to FAPESP to the financial support in my PhD thesis. I owe all my professional

experiences for it. Was a honor for me have your support in my research.

To finalize, I am going to cite a phrase by Chico Xavier:

“I would like to thank to all the difficulties that I had until now: because of them, I

could move on in life, evolved myself. Sometimes, the easiness does not allow us to move

on.”



Abstract

In this work, we prove that the set of link-homotopy classes of generalized string links

over a closed, connected and orientable surface M of genus g ≥ 1 form a group, denoted

by B̂n(M) and we find a presentation for it. Moreover, we prove that its normal subgroup

P̂Bn(M), namely, the homotopy string links overM , is bi-orderable. These results extend

results proved by Juan Gonzalez–Meneses in [GM], [GM2] and Ekaterina Yurasovskaya

in [Y], respectively. Also, we obtain an exact sequence for link-homotopy braid groups,

which is an extension of [Go, Theorem 1].
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Introduction

In 1925, Artin introduced the study of braid groups, which is closely related to the

study of knots and links. Artin obtained an important result, namely, the presentation

theorem for braid groups, which gives a presentation for the braid groups over the unit

disk, a result which allows us to recognize this group through its generators and the

relations between its elements. Since this early result, the theory of braids had developed

in many directions with works of Alexander, Goldberg, Markov, Birman, Goldsmith,

Rolfsen, González–Meneses, Paris and others. The basic theory can be found in [B].

Nowadays, two research areas in development are braids groups on surfaces and link-

homotopy braid groups over surfaces. The presentation theorem obtained by González–

Meneses [GM] for the braid groups on surfaces is a generalization of Artin’s presentation

for the braid groups over the disk. In his recent work, González–Meneses found the smal-

lest presentation for braid groups over surfaces. In particular, he produced a presentation

for the braid groups over closed and orientable surfaces of genus g ≥ 1 and over non

orientable surfaces of genus g ≥ 2.

Recently, Rolfsen, Dynnikov, Dehornoy and Wiest, demonstrated topological reasons

for the existence of a left-ordering of the braid groups over the disk, i.e., there is a strict

total ordering of the braids that is invariant under multiplication from the left. They also

showed the pure braid groups over the unit disk are bi-orderable, i.e., there is a left and

right invariant strict total ordering for this group, for details see [R]. Later, González–

Meneses in [GM2], proved that the pure braid groups over orientable surfaces, with genus

g ≥ 1, are bi-orderable too. For n ≥ 3, the pure braid group of the sphere PBn(S2) has

torsion, so it is not bi-orderable.

Along these same lines, we can study generalized string links, which informally are

generalizations of braids. The difference is that for the former, we consider embedded
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strands up to link-homotopy, whereas for the latter, we consider embedded strands up

to isotopy. We say that generalized string links are generalizations of braids since a link

homotopy always involves a finite numbers of isotopies and crossing changes (see [Mil]

and [HL]).

One of the properties of link-homotopy is to allow that each string in a generalized

string link has self intersection, i.e., to allow that it has a finite number of self crossings

(crossing changes). The generalized string links with this last equivalence relation, with

the operation of concatenation, become a group, called the homotopy generalized string

links over surfaces. Ekaterina Yurasovskaya in her PhD thesis [Y] (supervised by Dale

Rolfsen), obtained a presentation in terms of generators and relations of the group of

link-homotopy classes of string links based on a closed orientable surface. Furthermore,

she also proved that the group of homotopy string links over the disk is bi-orderable. Note

that when we say only “string links” we refer the pure case of generalized string links.

In this work, we prove that the set of link-homotopy classes of generalized string links

over a closed, connected and orientable surface M of genus g ≥ 1 form a group, denoted

by B̂n(M) and we find a presentation for it. Moreover, we prove that its normal subgroup

P̂Bn(M), namely, the group of link-homotopy string links over M , is bi-orderable. These

results extend results proved by Juan Gonzalez–Meneses in [GM], [GM2] and Ekaterina

Yurasovskaya in [Y], respectively. Also, we obtain an exact sequence for link-homotopy

braid groups, which is an extension of [Go, Theorem 1].

Specifically, in Chapter 1, will be introduced the braid theory: the construction of

braid groups over surfaces, its presentations and the orderability theory for these groups.

Moreover, will be discussed tools for find presentations and orderability theory of certain

groups which will be very important to prove our aims. This chapter was extracted from

the following references: [GM], [DDRW], [Y] and [GM2].

In Chapter 2 will be presented the theory of homotopy string links over surfaces. More

specifically, will be given its definitions, notations and its constructions as a group and

a presentation for it. Also, will be studied the orderability theory for certain quotients

of free groups, namely, reduced free groups. This chapter was extracted from Ekaterina

Yurasovskaya’s PhD thesis in [Y]. The basics references used in this chapter are [DDRW],

[Mil], [HL], [Mag] and [F].

In Chapters 3 and 4 will be obtained the main results, goals of this thesis. In Chapter

3, will be extended the results of [GM2] and [Y], proving that the homotopy string links

over surfaces, namely P̂Bn(M), is bi-orderable. For this, will be used some techniques
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introduced by [GM3]. Moreover, will be obtained an exact sequence for link-homotopy

braid groups, which is an extension of [Go, Theorem 1]. Finally, in Chapter 4, will

be defined the generalized string links over surfaces, an extension of the definition of

string links over surfaces. Will be shown that the set B̂n(M) of link-homotopy classes of

generalized string links over a closed, connected and orientable surface M of genus g ≥ 1

becomes a group (with P̂Bn(M) ⊂ B̂n(M) as a normal subgroup) and will be given a

presentation for it. This result generalizes results proved by [GM].

All the figures in this thesis were extracted of [Y], [GM] , [GM2] and [GM3].
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Chapter

1

Braid groups

In this chapter, we will give a brief introduction to the surface braid theory and we

introduce presentation and ordering theory for surface braid groups that will be useful as

tools for the results of this thesis. The basic references used in this chapter are: [DDRW],

[GM], [GM2] and [GM3].

1.1 Surface braid groups

This section was extracted from New Presentations of Surface Braid Groups by Juan

González–Meneses in [GM] and Homotopy String Links over Surfaces by Ekaterina Yura-

sovskaya in [Y].

Definition 1.1.1. [GM, p. 431] Let M be a closed (compact without boundary) surface,

not necessarily orientable, and let P = {P1, . . . , Pn} be a set of n distinct points of M . A

geometric braid overM based at P is an n-tuple γ = (γ1, . . . , γn) of paths, γi : [0, 1]→M ,

such that:

(1) γi(0) = Pi, for all i = 1, . . . , n,

(2) γi(1) ∈ P , for all i = 1, . . . , n,

(3) {γ1(t), . . . , γn(t)} are n distinct points of M , for all t ∈ [0, 1].

For all i = 1, . . . , n, we will call γi the i-th string of γ.
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Remark 1.1.2. In the Definition 1.1.1 is equivalent to consider each strand γi from [0, 1]

to M × [0, 1] defined by γi(t) = (γi(t), t) in the cylinder M × [0, 1]. By this way, we see

that there is not intersection in different heights t1, t2 in [0, 1] and thus, the condition (3)

ensures that different strands never intersect.

“ Two geometric braids based at P are said to be equivalent if there exists a homotopy

which deforms one of them into the other, provided that at anytime we always have a

geometric braid based at P . We can naturally define the product of two braids as induced

by the usual product of paths: for every i = 1, . . . , n, we compose the string of the first

braid which ends at Pi, with the i-th string of the second braid. This product is clearly

well defined, and it endows the set of equivalence classes of braids with a group structure.

This group is called the braid group on n strings over M based at P , and it is denoted by

Bn(M,P). It does not depend, up to isomorphism, on the choice of P , but only on the

number of strings, so we may write Bn(M) instead of Bn(M,P).

A braid γ = (γ1, . . . , γn) is said to be pure if γi(1) = Pi, for all i = 1, . . . , n, that is,

if all its strings are loops. The set of equivalence classes of pure braids forms a normal

subgroup of Bn(M,P) called pure braid group on n strings over M based at P , and

denoted PBn(M,P). Again, we may write PBn(M) since it does not depend on the

choice of P . ”

Remark 1.1.3. In [GM], González–Meneses gives the presentations of Bn(M) and PBn(M),

when M is a closed surface not necessarily orientable. For our purposes, we will consider

just the case which M is a closed, orientable surface of genus g ≥ 1. For more details,

see [GM].

Recall that M is a closed and orientable surface of genus g ≥ 1. First, let us obtain a

geometrical representation of a braid over M : we represent M as a polygon L of 4g sides,

identified in the way of Figure 1.1:

Figure 1.1: The polygon L representing M [GM].
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“ We could now take the cylinder L× I, where I is the closed unit interval [0, 1], and

represent a braid γ over M as it is usually done for the open disc, that is, in L× {t} we
draw the n points γ1(t), . . . , γn(t) but in this case, a string could “go through a wall” of

the cylinder and appear from the other side. Hence, if we look at the cylinder from the

usual viewpoint, it would not be clear which are “crossed walls”. ”

Figure 1.2: Two different ways to see a braid on a surface [GM].

“ Now, let us define the generators of Bn(M). We choose the n base points along the

horizontal diameter of L, as shown in the Figure 1.3. Now, given r, 1 ≤ r ≤ 2g, we define

the braid a1,r as follows: its only nontrivial string is the first one, which goes through the

r-th wall. Just for notation, the first string will go upwards if r is odd, and downwards

otherwise.

We also define, for all i = 1, . . . , n − 1, the braid σi as in the same figure. Note that

σ1, . . . , σn−1 are the classical generators of the braid group Bn(D) of the disc. We will see

later that the set {a1,1, . . . , a1,2g, σ1, . . . , σn−1} is a set of generators of Bn(M). ”

Figure 1.3: Elements of Bn(M), where ar = a1,r [GM].

“ We observe that the classical relations in Bn(D):

σiσj = σjσi, |i− j| ≥ 2
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σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2,

still hold in Bn(M). Also, if i ∈ {2, . . . , n−1} and r ∈ {1, . . . , 2g}, then the non-trivial

strings of σi and the one of a1,r may be taken to be disjoint. This implies that these two

braids commute. Hence we have:

a1,rσi = σia1,r , 1 ≤ r ≤ 2g; i ≥ 2. ”

Figure 1.4: The braid a1,rσi [GM].

“ Now, in order to find more relations between the set of generators, we do the following

construction: denote by sr the first string of a1,r, for all r = 1, . . . , 2g, and consider all

the paths s1, . . . , s2g. We can “cut” the polygon L along them, and “glue” the pieces

along the paths a1,1, . . . , a1,2g. We obtain another polygon of 4g sides which are labeled

by s1, . . . , s2g (see in the following figure the case of a surface of genus 2, the general case

is analogous). We will call this new polygon the P1-polygon of M , since all of its vertices

are identified to P1, while L will be called the initial polygon. We obtain in this way a

new representation of the surface M . ”

Figure 1.5: The initial and the P1-polygons of a surface of genus 2 [GM].

“We will use the P1-polygon to show three more relations in Bn(M). For instance,

consider the product of braids a1,1 · · · a1,2ga
−1
1,1 · · · a−1

1,2g. If we look at P1-polygon, we see

that it is equivalent to the braid on Figure 1.6. Also, this one can be seen in the initial

polygon as a braid that does not go through the walls, namely, an element of Bn(D),
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the braid group of the disk. Then, we can easily see that it is equivalent to the braid

σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1. So we have:

a1,1 · · · a1,2ga
−1
1,1 · · · a−1

1,2g = σ1 · · · σn−2σ
2
n−1σn−2 · · · σ1.”

Figure 1.6: The braid a1,1 · · · a1,2ga
−1
1,1 · · · a−1

1,2g [GM].

“ Now, for each r = 1, . . . , 2g − 1, we define the braid:

A2,r = σ1(a1,1 · · · a1,r−1a
−1
1,r+1 · · · a−1

1,2g)σ
−1
1 .

We will use the P1-polygon to see how it looks like. In the left hand side of Figure 1.7,

we can see a braid which is equivalent to A2,r (if r is odd, the other case being analogous).

If we “cut” and “glue” to see this braid in the P1-polygon, we obtain the situation of the

right hand side of Figure 1.7. That is, A2,r can be seen as a braid whose only nontrivial

string is the second one, which goes upwards and crosses once the r-th wall sr. ”

Figure 1.7: The braid A2,r in the initial polygon and in the P1-polygon [GM].

“ Note that, unlike the case of a1,r, A2,r always points upwards in the P1-polygon, no

matter the parity of r. Therefore we have seen that the braid A2,r can be represented by

a geometric braid, whose only non trivial string can be taken disjoint from all the paths
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st, t 6= r. This implies that

a1,tA2,r = A2,ra1,t, 1 ≤ t ≤ 2g, 1 ≤ r ≤ 2g − 1; t 6= r.

Now, we finish our set of relations by considering the commutator of the braids

(a1,1 · · · a1,r) and A2,r, for all r = 1, . . . , 2g − 1. In Figure 1.8 we can see a sketch of

the homotopy which starts with this commutator and deforms it to a braid equivalent to

σ2
1. Therefore, we obtain the relation:

(a1,1 · · · a1,r)A2,r = σ2
1A2,r(a1,1 · · · a1,r), 1 ≤ r ≤ 2g − 1. ”

Figure 1.8: The braid [a1,1 · · · a1,r, A2,r] [GM].

The following theorem follows from all of the previous results statements.

Theorem 1.1.4. [GM, Theorem 2.1] If M is a closed, orientable surface of genus g ≥ 1,

then Bn(M) admits the following presentation:

• Generators: σ1, . . . , σn−1, a1,1, . . . , a1,2g.

• Relations:

(R1) σiσj = σjσi, |i−j| ≥ 2;

(R2) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n−2;

(R3) a1,1 · · · a1,2ga
−1
1,1 · · · a−1

1,2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1,

(R4) a1,rA2,s = A2,sa1,r, 1 ≤ r ≤ 2g; 1 ≤ s ≤ 2g−1; r 6= s;

(R5) (a1,1 · · · a1,r)A2,r = σ2
1A2,r(a1,1 · · · a1,r), 1 ≤ r ≤ 2g−1;

(R6) a1,rσi = σia1,r, 1 ≤ r ≤ 2g; i ≥ 2.
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Now, to give the presentation of PBn(M), let us know the generators and the relations

for this group.

For the generators of PBn(M), consider:

1. Let ai,r be the braid such that the i-th string goes through the r-th wall. This string

will go upwards if r is odd, and downwards otherwise. The other strings are trivial.

2. Let Ti,j = σiσi+1 · · · σj−2σ
2
j−1σj−2 · · ·σi+1σi the braid that starts in Pi, goes around

Pj from the back and turns back to Pi passing in front the points Pj, . . . , Pi+1. The

other strings are trivial.

The braids defined previously are given in Figure 1.9:

Figure 1.9: The braids ai,r and Ti,j [GM].

“ We will denote by si,r the i-th string of ai,r. One can easily show that for any i, the

set of paths {si,1, . . . , si,2g} generates π1(M). Now, for any i ∈ {2, . . . , n} we can define

the Pi-polygon as we defined the P1-polygon: we cut L along si,1, . . . , si,2g and glue along

αi,1, . . . , αi,2g. We define, for 2 ≤ j ≤ n and 1 ≤ r ≤ 2g − 1, the braid:

Aj,r = aj,1 · · · aj,r−1a
−1
j,r+1 · · · a−1

j,2g.

Like in the representation of A2,r in the P1-polygon, Aj,r can be represented in the

Pi-polygon (for 1 ≤ i < j), as the braid on Figure 1.10, whose only nontrivial string

is the j-th one, which goes upwards and crosses once the r-th wall si,r. Note that this

representation does not depend on i, but it is only valid when i < j. ”

Figure 1.10: Aj,r in the Pi-polygon [GM].
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Now, let us enunciate the presentation of PBn(M). For more details about the rela-

tions, see [GM].

Theorem 1.1.5. [GM, Theorem 4.2] PBn(M) admits the following presentation:

Generators: {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

Relations:

(PR1) a−1
n,1a

−1
n,2 · · · a

−1
n,2gan,1an,2 · · · an,2g =

n−1∏
i=1

T−1
i,n−1Ti,n;

(PR2) ai,rAj,s = Aj,sai,r, 1 ≤ i < j ≤ n; 1 ≤ r ≤ 2g; 1 ≤ s ≤ 2g − 1; r 6= s;

(PR3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a

−1
i,1 )A

−1
j,r = Ti,jT

−1
i,j−1, 1 ≤ i < j ≤ n; 1 ≤ r ≤ 2g − 1;

(PR4) Ti,jTk,l = Tk,lTi,j , 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

(PR5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l, 1 ≤ i < k ≤ j < l ≤ n;

(PR6) ai,rTj,k = Tj,kai,r, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n; 1 ≤ r ≤ 2g;

(PR7) ai,r(a
−1
j,2g · · · a

−1
j,1Tj,kaj,2g · · · aj,1) = (a−1

j,2g · · · a
−1
j,1Tj,kaj,2g · · · aj,1)ai,r, 1 ≤ j < i ≤ k ≤ n;

(PR8) Tj,n =

(
j−1∏
i=1

a−1
i,2g · · · a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · · ai,2g

)
aj,1 · · · aj,2ga−1

j,1 · · · a
−1
j,2g.

Where Aj,s = aj,1 · · · aj,s−1a
−1
j,s+1 · · · a−1

j,2g.

Remark 1.1.6. In the next two sections will be shown the tools that we will use to find

the presentation of the group defined in Chapter 4. These are the same tools used in [GM]

to find the presentation for the surface braid groups, namely, Theorems 1.1.4 and 1.1.5.

1.2 Methods for finding presentation of groups

This section was extracted fromNew Presentations of Surface Braid Groups by González–

Meneses in [GM].

“ Consider an exact sequence of groups A, G̃, G:

1 // A
i // G̃

p // G // 1 (1.2.1)

Suppose that the groups A and G admit presentations 〈X;RA〉 and 〈Y ;RG〉 respec-
tively, where X and Y are sets of generators, while RA and RG are sets of relations. The

following well-known procedure outlines a method for putting together a presentation

of G̃:
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Generators of G̃: Let X̃ = {x̃ = i(x); x ∈ X} be the images of the generators X

of A under the homomorphism i. Now, given y ∈ Y , let ỹ denote a chosen pre-image

of y under p, i.e., p(ỹ) = y. Define Ỹ = {ỹ; y ∈ Y } the set of all such pre-images.

Then X̃ ∪ Ỹ constitute a set of generators for G̃.

Relations: There are three types of relations in G̃:

Type 1: Relations of the form R̃A = {r̃A; rA ∈ RA}; where R̃A is the set of

words in X̃ obtained from RA by replacing each x by x̃. Thus each r̃A is an

image under the injective homomorphism i of a relation rA in G̃.

Type 2: Let r̃G be a word obtained from a relation rG in RG by replacing

each y by its chosen pre-image ỹ. We see that p maps r̃G in G̃ to relation rG
in G, therefore r̃G lies in the ker(p). Since the sequence (1.2.1) is exact, we

know that ker(p) equals the image i(A) of A under the homomorphism i. Thus

r̃G = wr, where wr is a word in X̃. We thus have a second set of relations:

R̃G = {r̃G = wr; rG ∈ RG}.

Type 3: Choose any ỹ from the set Ỹ of chosen pre-images of the generator set

Y under p. The image of A under i is a normal subgroup of G̃, therefore each

conjugate of generator x̃ again belongs to i(A). Thus ỹx̃ỹ−1 can be written as

a word wx over the generators X̃ of the kernel. We put

C̃ = {ỹx̃ỹ−1 = wx; x ∈ X, ỹ ∈ Ỹ }.”

Proposition 1.2.1. [J, pp.138–140] With the previous notation, the group G̃ has the

presentation

〈X̃, Ỹ ; R̃A, R̃G, C̃〉.

The following result is an alternative group presentation, which is equivalent to the

group presentation of Proposition 1.2.1.

Lemma 1.2.2. [GM, Lemma 4.1 ] Let F(2g) be the free group freely generated by {x1, . . . , x2g}.

Set Xr = x1 · · · xr−1x
−1
r+1 · · ·x−1

2g . Then {X1, . . . , X2g} is a free system of generators of

F(2g).
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Proof: “ The following are the formula of the change of generators:

xk = (X1X
−1
2 · · ·Xk−2X

−1
k−1)(Xk+1X

−1
k+2 · · ·X2g−1X

−1
2g ), if k is odd.

x−1
k = (X1X

−1
2 · · ·X−1

k−2Xk−1)(X−1
k+1Xk+2 · · ·X−1

2g−1X2g), if k is even. ”

1.3 Ordering braids

This section was extracted from Ordering Braids by D. Rolfsen, P. Dehornoy, I. Dyn-

nikov and B. Wiest in [DDRW].

1.3.1 Ordering a group

Definition 1.3.1. [DDRW, p. 11] A strict ordering of a set Ω is a binary relation < that

satisfies the following conditions:

(antireflexive): x < x never holds, for all x ∈ Ω;

(transitive): x < y and y < z implies x < z, for all x, y, z ∈ Ω.

A strict ordering of Ω is called linear or total if, for all x, x′ ∈ Ω, one of the following

holds

x = x′, x < x′ or x′ < x.

Definition 1.3.2. [DDRW, p. 12]

(i) A left-invariant ordering or left-ordering of a group G is a strict linear ordering <

of G that satisfies:

g < h⇒ fg < fh, for all f, g, h ∈ G.

A group G is left-orderable if there exists at least one left-invariant ordering of G.
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(ii) A right-invariant ordering or right-ordering of a group G is a strict linear ordering

< of G that satisfies:

g < h⇒ gf < hf, for all f, g, h ∈ G.

A group G is right-orderable if there exists at least one right-invariant ordering of G.

(iii) A bi-invariant ordering or bi-ordering of a group G is a strict linear ordering < of

G that satisfies:

g < h⇒ fg < fh and gf < hf, for all f, g, h ∈ G.

A group G is bi-orderable if there exists at least one bi-invariant ordering of G.

Lemma 1.3.3. [DDRW, Lemma 1.3, p. 12] Assume that G is a group and < is a left-

invariant ordering of G. Define g <̃ h to mean g−1 < h−1. Then <̃ is a right-ordering of

G.

Definition 1.3.4. [DDRW, p. 12] A subset P of a group G is called a positive cone

on G if it is closed under multiplication and G \ {1} is the disjoint union of P and

P−1 = {p−1; p ∈ P}. In symbols:

(i) P · P = P

(ii) G \ {1} = P t P−1.

Lemma 1.3.5. [DDRW, Lemma 1.5, p. 12]

(i) Assume that < is a left-ordering of a group G. Then the set P = {x ∈ G; x > 1}

is a positive cone on G, and g < h is equivalent to g−1h ∈ P .

(ii) Assume that P is a positive cone on a group G. Then, the relation gh−1 ∈ P is a

left-ordering of G and P is then the set of all elements of G that are larger than 1.

Remark 1.3.6. Note in the second condition of Lemma 1.3.5 that if P is a positive cone

on a group G, then the order < defined previously is a left-ordering for the group G.
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Lemma 1.3.7. [DDRW, Lemma 3.1, p. 269] Assume we have an exact sequence of groups:

1 // N
⊆ // G

p // H // 1 ,

and, moreover, <N is a left-invariant ordering of N and <H is a left-invariant ordering

of H. For g, g′ ∈ G, declare that g < g′ is true if we have either p(g) <H p(g′) or else

p(g) = p(g′) and 1 <N g−1g′. Then:

(i) The relation < is a left-invariant ordering of G.

(ii) If <N and <H are bi-invariant orderings, then < is a bi-invariant ordering of G,

if and only if, conjugation of N by G is order-preserving, i.e., f <N f
′ implies

gfg−1 <N gf ′g−1, for all f, f ′ ∈ N and g ∈ G.

Proof: See [MR].

1.3.2 Ordering free groups

“ Let F be a free group on the generator set {x1, . . . , xn}. Let us prove that F is

bi-orderable.

We denote by Z〈〈X1, . . . , Xn〉〉 the ring of formal power series in n non-commuting

indeterminates Xi. Such series are infinite sums of monomials, each of which is a word

on the letters Xi, so they have the generic form:

f =
∑

W∈{X1,...,Xn}∗
fWW, for fW ∈ Z.

where {X1, . . . , Xn}∗ denotes the set of all finite length words on the alphabet {X1, . . . , Xn}.
The length of the word W is called the degree of the monomial fWW . As we consider n

non-commutative variables, there exist nd monomials of degree d.

Addition of Z〈〈X1, . . . , Xn〉〉 is defined by summing the coefficients, while multiplica-

tion is given by:

(∑
fWW

)(∑
gWW

)
=
∑
W

( ∑
UV=W

fUgV

)
W.
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We use O(Xk) to denote the ideal of Z〈〈X1, . . . , Xn〉〉 made of the series involving only

monomials of degree ≥ k. ”

Definition 1.3.8. [DDRW, Definition 2.7, p. 267] Assume that F is a free group and

{x1, . . . , xn} is a basis of F. The Magnus expansion of F relative to (x1, . . . , xn) is the

map µ : F→ Z〈〈X1, . . . , Xn〉〉 given by µ(xi) = 1 +Xi and µ(x−1
i ) = 1−Xi +X2

i − · · · .

Example 1.3.9. [DDRW, Example 2.8, p. 267] For w = x−1
1 x2x1, we find:

µ(w) = (1−X1 +X2
1 −X3

1 + · · · )(1 +X2)(1 +X1)

= 1 +X2 −X1X2 +X2X1 +X2
1X2 −X1X2X1 mod O(X4).

Proposition 1.3.10. [DDRW, Proposition 2.9, p. 267] Assume that F is a free group,

and µ is a Magnus expansion of F.

(i) The map µ is an injective map of F into 1 +O(X).

(ii) For each nonnegative k, the Magnus image of the k-th term in the lower central

series of F is included in 1 +O(Xk+1).

“ We can use Magnus expansions to order free groups. First, we order Z〈〈X1, . . . , Xn〉〉
as follows: for each d, the natural ordering X1 < · · · < Xn induces a lexicographical order-

ing on monomials of total degree d. We therefore have a natural increasing enumeration

of these monomials. For instance, for n = d = 2, the increasing enumeration of the degree

2 monomials is the sequence (X2
1 , X1X2, X2X1, X

2
2 ). ”

Definition 1.3.11. [DDRW, Definition 2.11, p. 268]

(i) For d ≥ 0 and f ∈ Z〈〈X1, . . . , Xn〉〉, say f =
∑
fWW , we denote by Cd(f) the

sequence (fW1 , . . . , fWN
), where W1, . . . ,WN is the increasing enumeration of all

degree d monomials. We denote by cd(f) the sum of all coefficients fWi
∈ Cd(f).

(ii) For f, g ∈ Z〈〈X1, . . . , Xn〉〉, we declare that f <SumLex g is true if there exists d

such that the sequences Cd′(f) and Cd′(g) coincide for d′ < d, and

• we have cd(f) < cd(g), or
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• we have cd(f) = cd(g) and the sequence Cd(f) is lexicographically smaller than

the sequence Cd(g), i.e., there is an index k such that the first (k − 1) entries

are the same, and the k-th entry in Cd(f) is smaller than the k-th entry in

Cd(g).

“ The previous comparison procedure is a variant of the so-called DegLex-ordering,

where one first considers the degree, and then, a lexicographical ordering inside entries

of a given degree. The specificity here is that we give priority to the sum of all coeffi-

cients corresponding to a given degree before starting the lexicographic comparison, which

explains our terminology. ”

Example 1.3.12. [DDRW, Example 2.12, p. 268] Let us compare the series f of the

Example 1.3.9 with the polynomial g = 1 + X2. In degree 0, there is only the constant

monomial, and we find C0(f) = C0(g) = (1). In degree 1, the increasing enumeration

of the two monomials is X1, X2, and we find C1(f) = C1(g) = (0, 1). In degree 2, the

increasing enumeration of the four monomials is X2
1 , X1X2, X2X1, X

2
2 , and we have now

C2(f) = (0,−1, 1, 0), and C2(g) = (0, 0, 0, 0). We find c2(f) = c2(g) = 0, so we compare

the sequences C2(f) and C2(g) starting from the left. The second entry of f is smaller

than that of g, so f <SumLex g is true.

Lemma 1.3.13. [DDRW, Lemma 2.13, p. 268] The relation <SumLex is a linear ordering

of

Z〈〈X1, . . . , Xn〉〉

that is invariant under addition, and under multiplication on either side by an element of

the multiplicative subgroup 1 +O(X).

“ Note that the ordering <SumLex on Z〈〈X1, . . . , Xn〉〉 is not invariant under an arbi-

trary multiplication, typically by −1.

Using the Magnus expansion, we define an ordering of every finitely generated free

group with a prescribed basis-naturally called the Magnus ordering. ”

Definition 1.3.14. [DDRW, Definition 2.14, p. 269] Assume that F is a free group and

{x1, . . . , xn} is a basis of F. For w,w′ in F, we declare that w <µ w
′ is true if we have

µ(w) <SumLex µ(w′), where µ is the Magnus expansion relative to {x1, . . . , xn}.
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Proposition 1.3.15. [DDRW, Proposition 2.15, p. 269] For each finite rank free group

F and each basis {x1, . . . , xn} of F, the Magnus ordering of F relative to {x1, . . . , xn} is a

linear ordering that is invariant under multiplication on both sides.

Proof: “ By Proposition 1.3.10(i), the Magnus expansion is injective, so the relation <µ

is a linear ordering on F. Its invariance under multiplication on both sides follows from

Lemma 1.3.13, since, by construction, the image of F under the Magnus expansion is

included in the multiplicative subgroup 1 +O(X). ”

Example 1.3.16. [DDRW, Example 2.16, p. 269] Let us compare x2 and x−1
1 x2x1. The

Magnus expansions are

µ(x2) = 1 +X2 and µ(x−1
1 x2x1) = 1 +X2 −X1X2 +X2X1 mod O(X2).

These series have been compared in Example 1.3.12: the latter is <SumLex smaller than

the former. So we have x−1
1 x2x1 <µ x2.

1.3.3 Ordering semi-direct products

This section was extracted from Homotopy String Links over Surfaces by Ekaterina

Yurasovskaya in [Y].

“ Let H and Q be bi-ordered groups. The direct product H×Q is bi-orderable, under

the lexicographic ordering:

hq < h′q′, if and only if, q < q′; or q = q′ and h < h′.

Remark 1.3.17. To accommodate semi-direct product written as o, the lexicographic

ordering becomes “eastern”, with comparison starting on the right. The terms lexicographic

ordering refers to the “eastern” lexicographic ordering as defined above.

However, a semi-direct product HoQ is not necessarily bi-ordered under lexicographic

ordering, as follows. ”

Example 1.3.18. [Y, Example 8.9] The fundamental group G of the Klein bottle can

be written as a semi-direct product Z o Z of two infinite cyclic groups. Now write the
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presentation of this group in terms of the generators and relations:

G = 〈x, y; yxy−1 = x−1〉.

Consider x 6= 1 and suppose that x is positive. If G is bi-ordered, then yxy−1 is also

positive, which is a contradiction to the fact that x−1 must be negative. If we assume that

x 6= 1 is negative, then x−1 must be positive, and we have the same contradiction.

“ Given elements h ∈ H, and q ∈ Q, we let hq denote h under the action of q.

Recall that the multiplication in a semi-direct product H o Q is given by the formula

(h, q)(h′, q′) = (hh′q, qq′), where hq = qhq−1. The following result provides a necessary

and sufficient condition for lexicographic ordering of a semi-direct product to be a bi-

order. ”

Lemma 1.3.19. [Y, Lemma 8.10] Let H and Q be bi-ordered groups. Then the lexico-

graphic order on H o Q is a bi-ordering, if and only if, the action of Q on H preserves

the order on H. Equivalently, q(PH)q−1 ⊂ PH , for all q ∈ Q.

1.3.4 Ordering surface pure braid groups

This section contains the proof that PBn(M) is bi-orderable, when M is a closed,

connected and orientable surface of genus g ≥ 1, and was extracted from the workOrdering

Pure Braid Groups on Compact, Connected Surfaces by Juan González–Meneses in [GM2].

“ Given a pure braid b = (b1, . . . , bn) ∈ PBn(M), we can consider, for all i = 1, . . . , n,

the loop µi in M constructed as follows: take the i-th string bi (which is a path in

M × [0, 1]); µi is the projection of bi over the first coordinate (i.e., over M). Since

b ∈ PBn(M), µi is a loop in M based at Pi for all i = 1, . . . , n, which represents an

element of π1(M,Pi) ' π1(M). This defines an epimorphism θn : PBn(M) → π1(M)n,

which sends (b1, . . . , bn) to (µ1, . . . , µn). ”

The well definition of this epimorphism was proved by Birman in [B].

“ Define Kn = ker(θn). One has the exact sequence:

1 // Kn
⊆ // PBn(M)

θn // π1(M)n // 1 .

In order to use Lemma 1.3.7 to prove that PBn(M) is bi-orderable, we need to show
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that Kn and π1(M)n are bi-orderable. Then we prove that the conjugation of Kn by the

elements of PBn(M) is order-preserving. ”

Theorem 1.3.20. [KR] The Magnus Order on a free group F is preserved under any

Φ ∈ Aut(F) which induces the identity on the abelianization H1(F) = F
[F,F]

.

“ Let ψ be a permutation of the set {Xi}i∈I and consider its extension Ψ ∈ Aut(F).

One has the following: ”

Theorem 1.3.21. [GM2, Theorem 2.2] If ψ preserves the order on {Xi}i∈I , then Ψ

preserves the Magnus Order on F.

Theorem 1.3.22. [Ba] If M is a closed, orientable surface, then π1(M) is a bi-orderable

group. Thus, π1(M)n is bi-orderable.

The structure of Kn

This section was extracted fromVassiliev Invariants for Braids on Surfaces by González–

Meneses and Luis Paris in [GM3].

Consider the “forgetting” homomorphism: ρ : PBn(M) −→ PBn−1(M) defined by

ρ(β) = ρ(β1, . . . , βn) = (β2, . . . , βn) (for details, see [B]).

“ Since Kn is a subgroup of PBn(M), we can consider the image of Kn by ρ. By

definition, it is equal to Kn−1. If we denote Fn = ker ρ ∩ Kn, we obtain the following

commutative diagram, where all rows and columns are exact:

1 1 1

1 // π1(M,P1) //

OO

π1(M)n //

OO

π1(M)n−1 //

OO

1

1 // π1(M \ Pn−1, P1) //

OO

PBn(M)
ρ //

θn

OO

PBn−1(M) //

θn−1

OO

1

1 // Fn //

OO

Kn
ρ //

OO

Kn−1
//

OO

1

1

OO

1

OO

1

OO

(1.3.1)
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Notice that Fn is a free group, since it is a subgroup of π1(M \ Pn−1, P1), which is a

free group. ”

Gonzalez–Meneses shows that there exists a homomorphism σ : Kn−1 → Kn which is

a section of ρ and that Kn−1 acts trivially on the abelianization of Fn. For this, he first

finds a free set of generators for Fn.
“ Let Ω = {w1, . . . , w2g} be a set of 2g letters. It is well known that a presentation for

π1(M) is

〈Ω; w1w2 · · ·w2gw
−1
1 w−1

2 · · ·w−1
2g = 1〉.

For every element γ ∈ π1(M) we choose a unique word γ̃ over Ω∪Ω−1 which represents

γ. We call this word the normal form of γ. Normal forms are chosen in such a way that

they are prefix-closed (namely, if w1w2 is a normal form, then w1 is also a normal form).

For every word w over Ω ∪ Ω−1, we will denote by w(i) the word over {a±1
i,1 , . . . , a

±1
i,2g}

obtained from w by replacing w±1
j by a±1

i,j , for all j = 1, . . . , 2g. ”

Figure 1.11: The polygon representing M and the braids ai,2k+1 and ai,2k [GM].

Consider, for 1 ≤ i < j ≤ n, the braid ti,j = σiσi+1 · · ·σj−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i+1σ
−1
i drawn

in Figure 1.12.

Figure 1.12: The braid ti,j [Y].

Lemma 1.3.23. [GM3, Lemma 2.5] The following set is a free system of generators for
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the free group Fn:

{γ̃(1)t1,j γ̃
−1
(1) ; 2 ≤ j ≤ n, γ ∈ π1(M)}.

Lemma 1.3.24. [GM3, Lemma 2.6] There is a homomorphism σ : Kn−1 → Kn which is

a section of ρ : Kn → Kn−1.

“ Now, Kn−1 acts on Fn in the following way: given b ∈ Kn−1, the action induced by b

sends f ∈ Fn to σ(b)fσ(b)−1. This action induces an action of Kn−1 on the abelianization
Fn

[Fn,Fn]
of Fn (here [Fn,Fn] denotes the commutator subgroup of Fn). ”

Lemma 1.3.25. [GM3, Lemma 2.7] The action of Kn−1 on the abelianization of Fn is

trivial.

For the next result, we recall that from [GM2]: we are representing M as a polygon

of 4g sides, identified in the way of the Figure 1.1.

“ For all i = 1, . . . , n and all r = 1, . . . , 2g, we are defining the braid ai,r ∈ PBn(M):

the i-th string of ai,r is (si,r(t), t) ∈M × [0, 1], where si,r is a loop in M based at Pi which

goes through the wall αr; it goes upwards if r is odd and downwards if r is even. The

j-th string of ai,r is (Pj, t) (the trivial string) for all j 6= i. Also, Ω = {ω1, . . . , ω2g} is a

set of generators of π1(M), where g is the genus of M , taken such that

π1(M) = 〈Ω;ω1 · · ·ω2gω
−1
1 · · ·ω−1

2g 〉.

For all γ ∈ π1(M), choose the unique word γ̃ over Ω∪Ω−1 representing γ. We denote

by γ̃(i) the pure braid obtained from γ̃ replacing ω±1
r by a±i,r. Now, for all i, j ∈ {1, . . . , n},

i < j, recall the braid

ti,j = σi · · ·σj−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i ∈ PBn(M).

Finally, for all i, j ∈ {1, . . . , n}, i 6= j, and for all γ ∈ π1(M), we define

fi,j,γ = γ̃(i)ti,j γ̃
−1
(i) . ”

The following result follows from Lemmas 1.3.23, 1.3.24 and 1.3.25.

Theorem 1.3.26. [GM2, Theorem 2.4] One has Kn = (Fno (Fn−1 o (. . . (F3 oF2) . . .))),
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where for all i = 1, . . . , n− 1, F(n+1)−i is the free group freely generated by

Fi,n = {fi,j,γ; i < j ≤ n, γ ∈ π1(M)}.

Moreover, for all m = 2, . . . , n− 1, Km = (Fmo (Fm−1 o (. . . (F3 oF2) . . .))) acts trivially

on H1(Fm+1).

Corollary 1.3.27. [GM3, Corollary 2.5] Kn is bi-orderable.

Proof: “ We argue by induction on n. If n = 2, then K2 = F2 is a free group (of infinite

rank), so it is bi-orderable. Suppose that n > 2, and that Kn−1 is bi-orderable. By

Theorem 1.3.26, we have an exact sequence:

1 // Fn // Kn
// Kn−1

// 1 ,

where Kn = Fn o Kn−1. By definition of bi-order, a conjugation by an element of Fn
is an automorphism of Fn which preserves the Magnus Order. We also know, by Theo-

rem 1.3.26, that a conjugation by an element of Kn−1 is an automorphism of Fn which

is trivial on H1(Fn). Since the Magnus Order on any free group F is preserved by any

automorphism in Aut(F) (which induces the identity on the abelianization H1(F) = F
[F,F]

),

thus it also preserves the Magnus Order on Fn. Therefore, a conjugation by an element

of Kn preserves the Magnus order of Fn and thus, by Lemma 1.3.7, Kn is bi-orderable. ”

Gonzalez–Meneses defines an explicit bi-order on Kn, as follows.

“ First, for all i = 1, . . . , n− 1, we order Fi,n as follows:

fi,j,γ < fi,k,δ ⇔ j < k or j = k and γ <π1 δ,

where <π1 is a fixed bi-order of π1(M). Then, we consider the Magnus Order on each

F(n+1)−i corresponding to this order on Fi,n. The bi-order on Kn which comes from Coro-

llary 1.3.27 is the following: for k, k′ ∈ Kn, write k = k1k2 · · · kn−1 and k′ = k′1k
′
2 · · · k′n−1,

where ki, k′i ∈ F(n+1)−i. Then k < k′, if and only if, kj < k′j for the greatest j such that

kj 6= k′j. ”
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PBn(M) is bi-orderable

This section was extracted from Ordering Pure Braid on Compact, Connected Surfaces

by González–Meneses in [GM2].

Theorem 1.3.28. [GM2, Theorem 1.6] IfM is a closed, connected and orientable surface,

then PBn(M) is bi-orderable.

Proof: “ The direct product of bi-orderable groups is bi-orderable, hence by Theorem

1.3.22, π1(M)n is bi-orderable. So, by Lemma 1.3.7, we only need to show that a conju-

gation by an element of PBn(M) is an automorphism of Kn which preserves the order.

A conjugation by an element of Kn preserves the order, by definition of bi-order.

Hence, it suffices to show the above claim for the conjugation of the generators of π1(M)n

by the pre–images under θn. A set of such pre-images is

{ai,r; i = 1, . . . , n, r = 1, . . . , 2g}.

Now, in [GM3, Lemma 3.15] it is shown that the following relations hold in H1(Kn):

ai,rfj,k,γa
−1
i,r ≡


fj,k,γ, i 6= j, k;

fj,k,(ωrγ), i = j;

fj,k,(γω−1
r ), i = k.

We claim that the action of ai,r preserves the Magnus Order on each Fm, m = 2, . . . , n−1,

and hence, it preserves the order on Kn. Clearly, the action of ai,r on Kn is the composition

of an automorphism Ψi,r which permutes the generators of each Fm, with an automor-

phism Φi,r which is trivial onH1(Kn). Therefore, by Theorems 1.3.20 and 1.3.21, it suffices

to prove that the permutation induced by Ψi,r on Fj,n, for j = 1, . . . , n− 1, preserves the

defined order on Fj,n. Let then fj,k,γ, fj,l,δ ∈ Fj,n, where fj,k,γ < fj,l,δ.

Case 1. If k < l, then

Ψi,r(fj,k,γ) = fj,k,γ′ < fj,l,δ′ = Ψi,r(fj,l,δ),

where γ′ and δ′ are determined by the above relations.
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Case 2. If k = l and γ <π1 δ, then there are three possibilities. First, if i 6= j, k, one has

Ψi,r(fj,k,γ) = fj,k,δ < fj,k,δ = Ψi,r(fj,k,δ).

If i = j, one has

Ψi,r(fj,k,γ) = fj,k,(ωrγ) < fj,k,(ωrδ) = Ψi,r(fj,k,δ),

since ωrγ <π1 ωrδ (<π1 is a left-order). Finally, if i = k,

Ψi,r(fj,k,γ) = fj,k,(γω−1
r ) < fj,k,δω−1

r
= Ψi,r(fj,k,δ),

since γω−1
r <π1 δω

−1
r (<π1 is a right-order).

Therefore, PBn(M) is a bi-orderable group. ”



Chapter

2

Homotopy string links over surfaces

This chapter was extracted from Ekaterina Yurasovskaya’s PhD thesis [Y]. To follow

the existing literature it will used the notation set before in [Mil], [L] and [HL].

2.1 A presentation for the string links over surfaces

2.1.1 Definitions and notations

Definition 2.1.1. [Y, Chapter 3, p. 12] Let M be a closed (compact without boundary),

connected and orientable surface of genus g ≥ 1. Choose n points P = {P1, . . . , Pn} to lie

in the interior of M . Let I1, . . . , In be n copies of the unit interval I = [0, 1]. Let
∐n

i=1 Ii

denote the disjoint union of these intervals.

A string link σ on n strands over a surface M is a smooth or piecewise linear proper

imbedding:
n∐
i=1

Ii →M × I,

such that σ|(Ii(0)) = (Pi, 0) and σ|(Ii(1)) = (Pi, 1).

“ When the surfaceM is understood, σ shall be called simply a string link. Informally,

we can say that a string link is a pure braid with the monotonicity requirement relaxed,

whose endpoints are still fixed and whose strands may knot upon themselves and on other

strands. We orient the strands downwards from M × 0 to M × 1. Every pure braid is in
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fact a string link in itself. Figure 2.1 shows an example of a string link on 2 strands in the

cylinder D× I, where D stands for the unit disk. An ambient isotopy (or simply isotopy)

between string links σ and σ′ is an orientation-preserving diffeomorphism of M × I which

maps σ onto σ′ while keeping the boundary M ×{0, 1} point-wise fixed and is isotopic to

the identity, relative to M × {0, 1}. ”

Figure 2.1: A string link σ.

Definition 2.1.2. [HL] We say that two string links σ and σ′ are link-homotopic if there

is a homotopy of the strings in M × I, fixing M × {0, 1}; and deforming σ to σ′, such

that the images of different strings remain disjoint during the deformation.

“ During the course of deformation, each individual strand is allowed to pass through

itself but not through other strands. As an example, we see that the string link of Figure

2.1 is not ambient isotopic with a braid, but is link-homotopic to the braid σ−2
1 . The

following alternative definition of link-homotopy is more convenient for our purposes (see

[Mil], [L], and [HL]): link-homotopy is an equivalence relation on string links, that is

generated by a sequence of ambient isotopies ofM×I fixingM×{0, 1} and local crossing

changes of arcs from the same strand of a string link. See Figure 2.2. ”

Figure 2.2: Crossing Change.
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2.1.2 Homotopy string links form a group

The next result is due to Roger Fenn and Dale Rolfsen and shows that any string link

is link-homotopic to a pure braid.

Theorem 2.1.3. Every n-strand string link over a surface M is link-homotopic to a pure

braid.

Proof: See [Y, Theorem 3.7].

Because Theorem 2.1.3, we can use the term link-homotopy pure braids instead string

links.

Define Hn(M) the set of all pure braids in PBn(M) which are link-homotopic to the

trivial braid. This set is called the set of the link-homotopically trivial braids. In symbols:

Hn(M) = {β ∈ PBn(M); β ∼ 1},

where ∼ denotes the link-homotopy equivalence relation.

Lemma 2.1.4. [Y, Lemma 3.8] Link-homotopically trivial surface braids Hn(M) is a

normal subgroup of PBn(M).

Proof: “ The product of two link-homotopically trivial braids produces a link-homotopically

trivial braid. If a braid β is link-homotopically trivial, then β−1 is also link-homotopically

trivial. To see this, move β−1 by isotopy to be in the mirror-reflection position with res-

pect to β and use the reflection of the link-homotopy. Note that intermediate stages of

link-homotopy may be string links, rather than braids. If β is link-homotopically trivial,

then clearly, for any x ∈ PBn(M), xβx−1 is link-homotopically trivial, hence Hn(M) is

normal in PBn(M). ”

Let us denote by P̂Bn(M) the set of link-homotopy classes of string links over the

surface M , which it will called simply homotopy string links over surfaces.

Proposition 2.1.5. [Y, Proposition 3.9] Under concatenation P̂Bn(M) is a group iso-

morphic to the quotient of the pure braid group PBn(M) by the subgroup of link-homotopically

trivial braids Hn(M):

P̂Bn(M) =
PBn(M)

Hn(M)
.
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Proof: “ By Theorem 2.1.3, each string link is link-homotopic to a pure braid. Lemma

2.1.4 lets us express P̂Bn(M) as a quotient of the pure braid group PBn(M):

P̂Bn(M) ' PBn(M)

Hn(M)
.

A quotient of a group by its normal subgroup is a group. Thus P̂Bn(M) inherits from

PBn(M):

operation - concatenation (product) of homotopy string links.

inverse - mirror reflection, up to link-homotopy equivalence. ”

Recall the notation

tg = gtg−1,

for the conjugate of t by g, for elements t and g in a given group G.

Let us recall the generators of PBn(M) that are the same generators of P̂Bn(M) given

in Figures 1.11 and 1.12.

It was proved in [Y] that the presentation of P̂Bn(M) has the same generators set

as PBn(M) and the same relations with one more special relation, which is called link-

homotopy relation, defined by the commutator

[ti,j, t
h
i,j] = 1,

where ti,j = σiσi+1 · · ·σj−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i+1σ
−1
i and h ∈ F(2g + n− i), i = 1, . . . , n. Also,

we recall that F(2g + n− i) is the notation for the free group π1(S \ Pn−i, Pi) generated

by

{{ai,r} ∪ {ti,j}; i+ 1 ≤ j ≤ n, 1 ≤ r ≤ 2g}},

where S is the surface M with a single point deleted and Pn−i = {Pi+1, . . . , Pn}. The

representations of ai,r and ti,j are given in the Figures 1.9 and 1.12, respectively.

Remark 2.1.6. The following description of π1(S \Pn−i, Pi) was given in [Y, Chapter 4,

pp. 24–25, Figures 4.4–4.6].

“We can view π1(S \ Pn−i, Pi) as a free subgroup of PBn(S), which we shall denote

by F(2g + n − i). The strands based at {P1, . . . , Pi−1, Pi+1, . . . , Pn} are trivial and go

vertically down without winding. The Pi-based strand winds around the straight strands
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based at {Pi+1, . . . , Pn} and through the walls of M × I. Generators of the free subgroup

F(2g + n− i) correspond precisely to those of π1(S \ Pn−i, Pi)."

Let us consider a particular case of the relation [t1,2, t
a1,1
1,2 ] = 1 in the Figure 2.3, which

shows the explicit process of link-homotopy (for details, see [Y, Chapter 4, pp. 30–32]).

Figure 2.3: Link-homotopy process [Y].
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“ The points marked as 1, 2, 3, 4 are located on the front face of the cylinder T2 × I,
where T2 denotes the 2-dimensional torus, and are identified with the points 1′, 2′, 3′, 4′ on

the back face of T2 × I. Note that in the process of link-homotopy the non-trivial strand

of the braid τ = [t1,2, t
a1,1
1,2 ] may crosses itself. ”

Theorem 2.1.7. [Y, Theorem 6.3] LetM be a closed, compact, connected and orientable

surface of genus g ≥ 1. The group of homotopy string links P̂Bn(M) admits the presen-

tation:

Generators: {ai,r; 1 ≤ i ≤ n; 1 ≤ r ≤ 2g} ∪ {tj,k; 1 ≤ j < k ≤ n}.

Relations:

(LH1) [ti,j , t
h
i,j ] = 1, h ∈ F(2g + n− i);

(PR1) a−1
n,1a

−1
n,2 · · · a

−1
n,2gan,1an,2 · · · an,2g =

n−1∏
i=1

T−1
i,n−1Ti,n;

(PR2) ai,rAj,s = Aj,sai,r, 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g; 1 ≤ s ≤ 2g − 1; r 6= s;

(PR3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a

−1
i,1 )A

−1
j,r = Ti,jT

−1
i,j−1, 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g − 1;

(PR4) Ti,jTk,l = Tk,lTi,j , 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

(PR5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l, 1 ≤ i < k ≤ j < l ≤ n;

(PR6) ai,rTj,k = Tj,kai,r, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n, 1 ≤ r ≤ 2g;

(PR7) ai,r(a
−1
j,2g · · · a

−1
j,1Tj,kaj,2g · · · aj,1) = (a−1

j,2g · · · a
−1
j,1Tj,kaj,2g · · · aj,1)ai,r, 1 ≤ j < i ≤ k

≤ n;

(PR8) Tj,n =

(
j−1∏
i=1

a−1
i,2g · · · a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · · ai,2g

)
aj,1 · · · aj,2ga−1

j,1 · · · a
−1
j,2g;

where Aj,s = aj,1 · · · aj,s−1a
−1
j,s+1 · · · a−1

j,2g and Ti,j = ti,j · · · ti,i+1.

Remark 2.1.8. Note that we can simplify the relation

(LH1)[tfi,j, t
g
i,j] = 1, f, g ∈ F(2g + n− i)

in [Y, Theorem 6.3, pp. 53–54] by the relation

(LH1)[ti,j, t
h
i,j] = 1, h ∈ F(2g + n− i)
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of Theorem 2.1.7, i.e., these relations are equivalent. Indeed:

1 = [tfi,j, t
g
i,j]⇔ fti,jf

−1gti,jg
−1ft−1

i,j f
−1gt−1

i,j g
−1 = 1

⇔ ti,jf
−1gti,jg

−1ft−1
i,j f

−1gt−1
i,j g

−1f = 1

⇔ ti,jhti,jh
−1t−1

i,j ht
−1
i,j h

−1f = 1,

⇔ [ti,j, t
h
i,j] = 1.

with h = f−1g ∈ F(2g + n− i).

Let M be the surface on the conditions of Theorem 2.1.7. So, we have the following:

Corollary 2.1.9. [Y] Hn(M) is the smallest normal subgroup of PBn(M) generated by

(LH1). In symbols:

Hn(M) = 〈{[ti,j, thi,j], 1 ≤ i < j ≤ n, h ∈ F(2g + n− i)}〉N ,

where 〈 〉N denotes the normal closure.

Remark 2.1.10. The presentation of the homotopy string links over a surface S obtained

by deleting a single point of the surfaceM is the same presentation given in Theorem 2.1.7

with the exception of the relation (PR1).

2.2 Ordering reduced free groups

This section was extracted from [Y, Chapter 7].

“ In his search for invariants to classify links up to link-homotopy, John Milnor defined

a certain quotient of the free group, which we shall call reduced free group, following [HL].

Milnor defined an expansion µ̂ of the reduced free group into a certain polynomial ring

with integer coefficients, and showed µ̂ to be injective (see [Mil]). This µ̂ is the Magnus

expansion for reduced free groups.

Let F denote a free group on the set of generators {x1, . . . , xk}. ”

Definition 2.2.1. [Y, Definition 7.1, p.55] Take a quotient of F by relations that say each

xi commutes with its conjugates. The resulting group is the classical reduced free group
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RF(k) as defined in [HL] and [Mil].

“ Let J1 denote the subgroup of F generated by commutators of conjugates of xi:

J1 = 〈[x′i, x′′i ]; 1 ≤ i ≤ k〉.

It is possible to show that RF(k) has the presentation F/J1. There is an alternative

presentation of RF(k), first given by Jerome Levine in [L], which shall be very useful in

the construction of invariants. ”

Definition 2.2.2. [Y, Definition 7.2, p. 55] The reduced free group RF(k) is obtained as

a quotient of the free group F by relations which set to 1F every commutator C in {xi}

with repeats.

“ To make precise the meaning of a “commutator with repeats” we first recall the

definitions of commutators and lower central series. We define the commutators in {xi}

recursively, as follows:

1. Commutators of weight 1 are x1, . . . , xk.

2. Commutators of weight n are words [C1, C2], where C1, C2 are distinct commutators

of weight < n, and n = wt C1 + wt C2.

Commutators of weight ≥ n generate a normal subgroup Fn. The series

F = F1 ⊇ F2 ⊇ F3 ⊇ . . .

is called the lower central series of F. It is a well-known fact that a free group F is residually

nilpotent, which means that the intersection of all its lower central series subgroups is the

identity: ∩∞i=1Fi = {1F}. ”

“ Following Levine in [L] we say that xi occurs r times in a commutator C as follows:

1. If C = xj, then r = 1, if i = j and r = 0, otherwise.

2. If C = [C1, C2], then r = r1 + r2, where xi occurs r1 times in C1 and r2 times in C2.
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We say that a commutator C has repeats if some xi occurs at least twice in C. Finally,

let J2 denote the normal subgroup generated by commutators with repeats. Levine shows

that J1 = J2. We see that Definitions 2.2.1 and 2.2.2 of the reduced free group RF(k) are

indeed equivalent. From now on we denote J1 = J2 = J . To prove that J1 = J2 Levine

uses P. Hall’s construction of basic commutators in a free group, which we recall in the

next section. ”

2.2.1 Basic commutators

Definition 2.2.3. [F] Basic commutators in a given set A are defined inductively as

follows:

1. Each basic commutator C has a weight wt C, taking one of the values 1, 2, 3 . . . .

2. The basic commutators of weight 1 are the elements of {xi}. A basic commutator of

weight > 1 is a word of the form C = [C1, C2], where C1, C2 are previously defined

basic commutators and wt C = wt C1 + wt C2.

3. Basic commutators are ordered so as to satisfy the following:

(a) Basic commutators of the same weight are ordered arbitrarily.

(b) If wt C > wt C ′, then C > C ′.

4. (a) If wt C > 1 and C = [C1, C2], then C1 < C2.

(b) If wt C > 2 and C = [C1, [C2, C3]], then C1 ≥ C2.

Note that the set A in Definition 2.2.3 could be a set with finite or infinite rank, for

instance (not necessarily a free group of finite rank).

“ The next theorem due to P. Hall illustrates the main purpose of basic commutators:

to serve as a basis for quotients of free group by its lower central series subgroups. ”

Theorem 2.2.4. [Mag] There exists a set of basic commutators, for any m. Given a set of

basic commutators C1 < C2 < . . ., then every element of F/Fq has a unique representative

as a monomial

Ce1
1 C

e2
2 · · ·Cen

n ,
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where C1, C2, . . . , Cn are all the basic commutators of weight < q.

2.2.2 Magnus expansion and basic commutators with repeats

From now let us use of the well-know expansion of a free group F generated by

{x1, . . . , xk} given in Section 1.3.2.

“ Let Λ = Z〈〈X1, . . . , Xn〉〉 denote a ring of non-commuting power series in the vari-

ables

{X1, . . . , Xk},

with integral coefficients. The Magnus expansion µ is an injective homomorphism of F

into the group of units U of Λ, defined by µ : F→ Λ given by

xi 7→ µ(xi) = 1 +Xi and x−1
i 7→ µ(x−1

i ) = 1−Xi +X2
i −X3

i + · · · .

Every element of U can be written uniquely as ±1 + ρ + h, where ρ is homogeneous

of degree > 0, and every term of h has degree higher than the degree of ρ. We call ρ the

principal part. The following lemma is proved by induction in [L]. ”

Lemma 2.2.5. [L] If C is a commutator of weight n in {xi} then:

(i) The principal part ρ of µ(C) is of degree n, and

(ii) Each variable Xi appears in every term of ρ with a total degree equal to the number

of occurrences of xi in C.

Example 2.2.6. [Y, Example 7.6] A simple computation shows that the Magnus expan-

sion µ takes the commutator [x2, [x1, x2]] of weight 3 to an element of U :

1 + 2x2x1x2 − x2
2x1 − x1x

2
2 +O(4),

where O(4) denotes terms of order 4 and higher. Note that if we assume the ordering

x1 < x2 < · · · < xk, then [x2, [x1, x2]] is a basic commutator.
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Proposition 2.2.7. [L] Let {Ci} be a set of basic commutators in {xi}. Let us suppose

that C1 < C2 < · · · < Cn are those of weight ≤ q. If an element of J has representation

Ce1
1 · · ·Cen

n modulo Fq+1, then whenever ei 6= 0, Ci must be a commutator with repeats.

Proof: See [Y, Proposition 7.7].

Corollary 2.2.8. [L] Let {Ci} be a set of basic commutators in {xi}. Let us suppose

that C1 < C2 < · · · < Cn are those of weight ≤ k. Let f ∈ F have representation

Ce1
1 · · ·Cen

n modulo Fk+1, where k is the rank of the free group F. Then f ∈ J , if and

only, if each Ci is a commutator with repeats.

Proof: See [Y, Corollary 7.8].

2.2.3 Injective expansion of RF(k)

“ We now return to the Magnus expansion µ of a free group F of rank k into the group

of units U of the power series ring Λ in non-commuting variables {X1, . . . , Xk}. Let R

denote the subset of Λ generated by monomials with repeats of a variable. An example

of an element of R is 4X1X2X1 +X3
3X1. R is an additive subgroup of Λ and R is closed

under right and left multiplication by elements of Λ. It follows that R is a two-sided ideal

of Λ. Let 1 + R denote the set of elements of the form “1 + monomials with repeat of a

variable”. ”

Proposition 2.2.9. [Y, Proposition 7.10] If each term of Magnus expansion µ(f) has

repeats then f is an element of J , i.e.,

if µ(f) ∈ 1 +R, then f ∈ J.

Let us consider an expansion of RF(k) given in [Y, Section 7.3, pp. 57–58], as follows.

“ Let Λ̂ denote the quotient ring of Λ by the two-sided idealR, generated by monomials

with repeats. In words we can describe Λ as a polynomial ring in non-commutative

variables {X1, . . . , Xk}, such that any monomial with repeat of variable Xi, for some

1 ≤ i ≤ k, is set to zero.
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Define the reduced Magnus expansion µ̂ : RF(k)→ Λ̂ given by

µ̂(x̂i) = 1 +Xi and µ̂(x̂i
−1) = 1−Xi,

where x̂i, for 1 ≤ i ≤ n, are the generators of RF(k). ”

Theorem 2.2.10. [Y, Theorem 7.11] The reduced Magnus expansion µ̂ : RF(k) → Λ̂ is

injective.

Proof: “ RF(k) is defined as a quotient group of free group F by J . Consider the following

diagram with exact rows:

1 // J // F p //

µ

��

RF(k) //

µ̂
��

1

1 //R // Λ π // Λ̂ // 1

(2.2.1)

Diagram (2.2.1) is commutative. In fact, given a generator xi of F:

µ̂ ◦ p(xi) = µ̂(x̂i) = 1 +Xi

π ◦ µ(xi) = π(1 +Xi) = 1 +Xi

µ̂ ◦ p(x−1
i ) = µ̂(x̂i

−1) = 1−Xi

π ◦ µ(x−1
i ) = π(1−Xi +X2

i − · · · ) = 1−Xi.

The rest of the proof follows from Diagram 2.2.1. Let f̂ ∈ RF(k) and suppose that

µ̂(f̂) = 1Λ̂. Let f ∈ F be a pre-image of f̂ . By commutativity of the diagram and by

definition of Λ̂ = Λ
R we see that µ(f) is an element of 1 + R. Proposition 2.2.9 implies

that f is an element of J ⊂ F, hence f̂ = p(f) = 1RF(k). Therefore, µ̂ is injective. ”

Definition 2.2.11. [Y, Definition 8.11, p. 68] Let us define an ordering on Λ̂, which we

shall call the reduced Magnus ordering. Let f and g be polynomials in Λ̂. We first arrange

the monomials within f and g by degree. Let us now assume an alphabetical order on

the variables X1, . . . , Xk, for example, X1 is the first letter, X2 is the second letter, etc.
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Within each degree we arrange the monomials lexicographically. We now compare f and

g degree by degree, term by term. We find the first term at which f and g differ and look

at its leading coefficients εf and εg. We declare that f > g, if εf > εg.

Example 2.2.12. [Y, Example 8.12] Let f = 1 +X2 and g = 1 +X1 −X2, then:

f = 1 + 0X1 +X2 < 1 +X1 −X2 = g.

Note that reduced Magnus ordering does not define a left-order on Λ̂. By definition,

order must be invariant under left multiplication, however

(−1)(1 +X1) = −1−X1 < 0, while 1 +X1 > 0.

Let H denote the set of elements of Λ̂ of the form (1 + higher order terms). It is easy

to see that H is a multiplicative subgroup of Λ̂. Consider an element g of H of the form

g = 1 + G, where G consists of terms of non-zero degree. Then, the inverse element g−1

is given by

g−1 = 1−G+G2 −G3 + · · ·+ (−1)kGk,

because:

gg−1 = (1 +G)(1−G+G2 −G3 + · · ·+ (−1)kGk)

= 1 + (−1)k+1Gk+1

= 1.

“ Note that every monomial of total degree greater than n is bound to have repeats

of some variable and hence will be set to zero in Λ̂. ”

Proposition 2.2.13. [Y, Proposition 8.13] The reduced Magnus ordering induces a bi-

ordering on the subgroup H, and hence on the classical reduced free group RF(k).

Proposition 2.2.14. [Y, Theorem 8.14] The reduced Magnus ordering is preserved under

any automorphism of RF(k) that induces the identity on the abelianization of RF(k) which
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we denote by

RF(k)ab =
RF(k)

[RF(k),RF(k)]
.



Chapter

3

Ordering homotopy string links over

surfaces

Our aim in this chapter is to prove that the homotopy string links group on a closed

(compact without boundary), connected and orientable surfaceM of genus g ≥ 1, namely,

P̂Bn(M), is bi-orderable. Here, we can use the term link-homotopy pure braid groups on

surfaces instead of homotopy string links over surfaces since each string-link is homotopic

to a pure braid, which was proved by R. A. Fenn and D. Rolfsen (see [Y], Theorem 3.7,

Chapter 3).

Let us observe that since by Proposition 2.1.5, P̂Bn(M) ' PBn(M)
Hn(M)

, when we refer to

a string link in P̂Bn(M) we will denote it by β̂ = [β] = [(β1, . . . , βn)] and when we refer

to a pure braid in PBn(M) we will just denote it by β = (β1, . . . , βn).

3.1 Left-ordering P̂Bn(S) and P̂Bn(M)

Let us observe that in the case of pure braids, [GM2] made a special construction as

we presented in Section (1.3.4). It was constructed a special free group Fn of infinite rank,

whose generators come from the conjugation of generators of PBn(D), where D denotes

the unit disk, by elements in the fundamental group π1(M), allowing to prove that the

action by conjugation of Kn−1 on the abelianization of Fn is trivial in the split exact
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sequence:

1 // Fn // Kn
// Kn−1

// 1.

This strategy avoids the problem of analyzing the conjugation by elements of the form

ai,r ∈ PBn−1(M) on the elements of the group F(2g + n− i).

We will use the same strategy for the case of the string links.

3.1.1 P̂Bn(S) is left-orderable

Let M a closed, connected and orientable surface of g ≥ 1. Consider S a surface

obtained by deleting one single point x0 of the surface M . From [Y, Corollary 4.7]:

P̂Bn(S) ' F̂(2g + n− 1) o (F̂(2g + n− 2) o (· · · (F̂(2g + 1) o F(2g)) · · · )),

where

F̂(2g + n− i) =
F(2g + n− i)

Hn(S) ∩ F(2g + n− i)
, (see [Y, Proposition 4.5]),

with F(2g + n − i) the free group on 2g + n − i generators π1(S \ Pn−i, Pi)) and Pn−i =

{Pi+1, . . . , Pn}, for i = 1, . . . , n−1 and F(2g) is the free group π1(S, Pn) on 2g generators.

Recall the split exact sequence proved in [GG, Theorem 6]

1 // F(2g + n− 1) // PBn(S)
% // PBn−1(S) // 1 ,

and let us consider the section of the homomorphism %, namely, σ : PBn−1(S)→ PBn(S)

given by σ(β2, . . . , βn) = (1, β2, . . . , βn). Geometrically, this section means to add a trivial

strand that goes parallel to x0 × I in a braid with (n − 1) strands. The result will be a

braid with n strands (see [Y, pp.24]).

Moreover, from [Y, Corollary 4.8] there is a short split exact sequence of groups

1 // F̂(2g + n− 1) // P̂Bn(S)
%̂ // P̂Bn−1(S) // 1 , (3.1.1)

where %̂ is the homomorphism defined by %̂([(β1, . . . , βn)]) = [(β2, . . . , βn)] and induced
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by the forgetting homomorphism % : PBn(S) → PBn−1(S), given by %(β1, . . . , βn) =

(β2, . . . , βn). Thus, there is a section σ̂ : P̂Bn−1(S)→ P̂Bn(S) given by σ̂([(β2, . . . , βn)]) =

[(1, β2, . . . , βn)].

Proposition 3.1.1. Let S be a surface obtained by deleting a single point x0 of a closed,

connected and orientable surface of genus g ≥ 1. Thus, P̂Bn(S) is left-orderable, for all

n ≥ 1.

Proof: The proof is given by induction on n. For n = 1, the sequence (3.1.1) gives us

P̂B1(S) ' F(2g),

where F(2g) is the free group π1(S, Pn) on 2g generators. Thus, P̂B1(S) is left-orderable.

Let us suppose that P̂Bn−1(S) is left-orderable. Now, the groups F̂(2g + n − 1) and

P̂Bn−1(S) in the sequence (3.1.1) are left-orderable. By Lemma 1.3.7, P̂Bn(S) is left-

orderable.

3.1.2 The structure of K̂n

For our purposes, we define here an important structure: the group K̂n. This group

is the quotient by link-homotopy on the structure of Kn. We recall such structure to

construct our structure. Later, we give a characterization for it, which will be very useful

to prove that P̂Bn(M) is bi-orderable, extending the result proved by González–Meneses

in [GM2, Theorem 1.6].

Let M be a closed, connected and orientable surface of genus g ≥ 1, as previously.

Given a string link σ̂ = [(σ1, . . . , σn)] over M in P̂Bn(M), we can consider, for all i =

1, . . . , n the loop µi in M constructed as follows: take the i-th string σi (which is a path

in M × [0, 1]) and call as µi its projection over the first coordinate (i.e., over M). Since

σ̂ ∈ P̂Bn(M), µi is a loop in M based at Pi, for all i = 1, . . . , n which represents an

element of π1(M,Pi) ' π1(M). This defines an epimorphism θ̂n : P̂Bn(M) → π1(M)n

which sends σ̂ = [(σ1, . . . , σn)] to µ = (µ1, . . . , µn).

Lemma 3.1.2. θ̂n is a well defined surjective homomorphism.
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Proof:

PBn(M)

pn
��

θn // π1(M)n

P̂Bn(M)
∃θ̂n
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Recall the surjective homomorphism θn : PBn(M) → π1(M)n defined in [B] by the

following: take the i-th string βi of the pure braid β (which is a path inM× [0, 1]) and call

as µi its projection over the first coordinate (i.e., overM). Since β ∈ PBn(M), µi is a loop

in M based at Pi, for all i = 1, . . . , n which represents an element of π1(M,Pi) ' π1(M).

Let pn be the projection homomorphism that maps a pure braid β ∈ PBn(M) to its

link-homotopy class β̂ = [β] ∈ P̂Bn(M).

Now, let σ̂ = [σ] and β̂ = [β] be two string links such that σ̂ = β̂. By definition, β and

σ are link-homotopic, i.e., there is a homotopy of the strings in M × I, fixing M × {0, 1}

and deforming σ to β, such that the images of different strings remain disjoint during the

deformation. In symbols, there is, for all i = 1, . . . , n, continuous maps Hi : I×I →M×I

such that Hi(t, 0) = σi(t), Hi(t, 1) = βi(t), for all t ∈ I and Hi(0, s) = Pi, Hi(1, s) = Pi,

for all s ∈ I. Let p the projection to the first coordinate given by p(m, t) = m, for all

(m, t) ∈M × I.

Suppose that θ̂n(σ̂) = (µ1, . . . , µn) and θ̂n(β̂) = (ε1, . . . , εn). We need to show that

there is an homotopy in the fundamental group such that µi ' εi, for all i = 1, . . . , n.

Indeed, define Hi : I × I → M by the composition Hi = p ◦Hi, for all i = 1, . . . , n. We

have Hi is continuous, since it is a composition of continuous maps, for all i = 1, . . . , n.

Moreover:

Hi(t, 0) = p ◦Hi(t, 0) = µi and

Hi(t, 1) = p ◦Hi(t, 1) = εi, ∀t ∈ I.

Hi(0, s) = p ◦Hi(0, s) = Pi and

Hi(1, s) = p ◦Hi(1, s) = Pi,∀s ∈ I.

Therefore, there is an homotopy in the fundamental group, for each i = 1, . . . , n as

required and then θ̂n is well defined.
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Now, given µ = (µ1, . . . , µn) ∈ π1(M)n, since θn is surjective, there is β = (β1, . . . , βn) ∈

PBn(M) such that θn(β) = µ. Thus,

µ = θn(β) = θ̂n ◦ pn(β) = θ̂n([β]) = θ̂n(β̂).

By this way, we have θ̂n is surjective. Finally, let σ̂, β̂ ∈ P̂Bn(M) with σ and β their

representatives, respectively. Thus,

θ̂n(σ̂β̂) = θ̂n(σ̂β) = θ̂n ◦ pn(σβ) = θn(σβ) = θn(σ)θn(β)

= (θ̂n ◦ pn(σ))(θ̂n ◦ pn(β)) = θ̂n(σ̂)θ̂n(β̂).

Therefore, θ̂n is a well defined surjective homomorphism as required.

Remark 3.1.3. We can represent the homomorphism defined in Lemma 3.1.2 geome-

trically: indeed, since θ̂n is a well defined homomorphism, we have

θn(Hn(M)) ⊆ {1 = (1, . . . , 1)},

where {1 = (1, . . . , 1)} denotes the trivial subgroup of π1(M)n. This is equivalent to

Hn(M) ⊆ ker θn. In fact, since by Corollary 2.1.9

Hn(M) = 〈{[ti,j, thi,j], h ∈ F(2g + n− i), 1 ≤ i < j ≤ n}〉N ,

let us observe that the generators of Hn(M), which have the form α[ti,j, t
h
i,j]α

−1, with

α ∈ PBn(M), are contained in the kernel of θn. As a geometric example, let us consider

[ti,j, t
h
i,j] = ti,jhti,jh

−1t−1
i,j ht

−1
i,j h

−1. We have the part of the word braid that contains ti,j and

its inverses are loops homotopic to the base point in π1(M)n. Its products with the braids

which cross the walls on the surface form a loop homotopic to the base point in π1(M)n

as well. The sketch of the word [ti,j, t
h
i,j] is given by the particular case [t1,2, t

a1,1
1,2 ] in the

following picture (for the case when r is even, the other case is analogous). The left side

of the figure represents [t1,2, t
a1,1
1,2 ] viewed in PB2(T) and the right side viewed in π1(T),

where T denotes the 2-dimensional torus.
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Figure 3.1: [t1,2, t
a1,1
1,2 ] in PB2(T).

Remark 3.1.4. Let us consider the kernel of the homomorphism defined in Lemma 3.1.2,

which we will denote by

K̂n = ker θ̂n = {σ̂ = [(σ1, . . . , σn)] ∈ P̂Bn(M); θ̂n(σ̂) = (1, . . . , 1)},

where 1 denotes the trivial loop in π1(M). One has the exact sequence:

1 // K̂n
⊆ // P̂Bn(M)

θ̂n // π1(M)n // 1 (3.1.2)

which is induced by the sequence obtained by [GM2]

1 // Kn
⊆ // PBn(M)

θn // π1(M)n // 1 , (3.1.3)

defined for the surjective homomorphism θn, where Kn = ker θn (for details, see Section

1.3.4).
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Lemma 3.1.5. K̂n = Kn

Hn(M)
, where Hn(M) is the normal subgroup of PBn(M) of the

link-homotopically trivial braids.

Proof:

(i) First, let us observe that Hn(M) ⊆ Kn = ker(θn). A simple braid diagram gives us

that Hn(M) is a normal subgroup of Kn. Therefore, we have Kn

Hn(M)
well defined.

(ii) Now, we show that ker θ̂n = Kn

Hn(M)
. Indeed, if β̂ = [β] ∈ ker θ̂n, then β̂ ∈ P̂Bn(M)

and θ̂n(β̂) = 1. So, we have 1 = θ̂n(β̂) = θ̂n(pn(β)) = θn(β), i.e., β ∈ ker θn.

Therefore, ker θ̂n ⊆ Kn

Hn(M)
.

Conversely, if β̂ ∈ Kn

Hn(M)
, then θ̂n(β̂) = θ̂n(pn(β)) = θn(β) = 1, i.e., β̂ ∈ ker θ̂n.

Lemma 3.1.6. The following diagram commutes:

1 // Kn
i1 //

q1
��

PBn(M)
θn //

q2
��

π1(M)n //

id
��

1

1 // K̂n
i2 // P̂Bn(M)

θ̂n // π1(M)n // 1

where q1, q2 are the respective projections, i1, i2 are the respective inclusions and id is the

identity.

Proof:

(i) We claim that q2 ◦ i1 = i2 ◦ q1. Indeed, ∀β ∈ Kn,

q2 ◦ i1(β) = q2 ◦ i1(β1, . . . , βn) = q2(β1, . . . , βn) = q2(β) = [β],

and i2 ◦ q1(β) = i2([β]) = [β]. Therefore, q2 ◦ i1 = i2 ◦ q1.

(ii) We claim that id ◦ θn = θ̂n ◦ q2. Indeed, ∀β ∈ PBn(M),

id ◦ θn(β) = id ◦ θn(β1, . . . , βn) = id(µ1, . . . , µn) = (µ1, . . . , µn) = µ,

and θ̂n ◦ q2(β) = θ̂n([β]) = (µ1, . . . , µn) = µ. Therefore, id ◦ θn = θ̂n ◦ q2.
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3.1.3 A special construction: P̂Bn(M) is left-orderable

In this section we make a construction that will be useful to help us to guarantee that

P̂Bn(M) is torsion free.

Let φ2 : PBn(M)→ π1(M,P2) be the homomorphism defined by

φ2((β1, β2, . . . , βn)) = µ2,

where µ2 is the strand based on P2 viewed as a loop in π1(M,P2). The kernel of this

homomorphism is PBn−1(M \ {P2}) (this homomorphism was constructed by Birman

and details can be found in [B]). Moreover, by Gonzalez-Meneses’ construction in the

proof of [GM3, Lemma 2.6], Kn lies in the kernel of φ2 as a subgroup, namely,

Kn ⊆ PBn−1(M \ {P2}).

We will show that K̂n ⊆ P̂Bn−1(M \ {P2}), as follows.

Proposition 3.1.7. Let M be a closed, connected and orientable surface of genus g ≥ 1.

Define φ̂2 : P̂Bn(M) → π1(M,P2) given by φ̂2([(β1, β2, . . . , βn)]) = µ2, where µ2 is the

strand β2 viewed as a loop in π1(M,P2). The following conditions hold:

(i) φ̂2 is the homomorphism induced by φ2.

(ii) ker φ̂2 = P̂Bn−1(M \ {P2}).

(iii) K̂n is a subgroup of P̂Bn−1(M \ {P2}).

Proof:

(i) We need to show that φ2(Hn(M)) ⊆ {1}, where {1} denotes the identity of the

fundamental group π1(M,P2). Let β ∈ Hn(M). Since β is link-homotopically

trivial, we have that all strands are deformed as straight lines in a link-homotopic

process. Thus, µ2 is a trivial loop in π1(M,P2). By this way, φ̂2 is a well defined

homomorphism induced by φ2 and we have the following diagram, where pn is the
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natural projection.

PBn(M)

pn
��

φ2 // π1(M,P2)

P̂Bn(M)
∃φ̂2

88

(ii) Let us show that ker φ̂2 = k̂erφ2. First, is clear that Hn(M) is a normal subgroup

of kerφ2. Now, if β̂ ∈ ker φ̂2, then φ̂2(β̂) = 1. On the other hand, there is a

β ∈ PBn(M) such that pn(β) = β̂. Hence we have φ̂2 ◦ pn(β) = 1, wich implies

φ2(β) = 1, i.e., β ∈ kerφ2. Therefore, β̂ = βHn(M), with β ∈ kerφ2, i.e., β̂ ∈ k̂erφ2.

Conversely, let β̂ ∈ k̂erφ2. Thus, β̂ = βHn(M), with β ∈ kerφ2. So, φ2(β) = 1.

Hence we have: φ̂2(β̂) = φ̂2 ◦ pn(β) = φ2(β) = 1.

(iii) Now, let β̂ ∈ K̂n. Thus, β̂ = βHn(M), for some β ∈ Kn. Since we have that Kn ⊆

PBn−1(M \ {P2}), thus β ∈ PBn−1(M \ {P2}). Therefore, β̂ ∈ P̂Bn−1(M \ {P2}).

By this way, we have K̂n ⊆ P̂Bn−1(M \ {P2}) as a subgroup.

Proposition 3.1.8. Let M be a closed, connected and orientable surface of genus g ≥ 1.

Thus, K̂n is left-orderable, for all n ≥ 1.

Proof: From Proposition 3.1.7, K̂n is contained (as subgroup) in P̂Bn−1(S), where S

denotes the surface obtained by deleting a single point of the surface M . By Proposition

3.1.1, P̂Bn−1(S) is left-orderable, and therefore, so K̂n.

Proposition 3.1.9. Let M be a closed, connected and orientable surface of genus g ≥ 1.

Thus, P̂Bn(M) is left-orderable, for all n ≥ 1.

Proof: In the exact sequence (3.1.2), the groups K̂n and π1(M)n are left-orderable, by

Proposition 3.1.8 and by [Ba], respectively. Therefore, by Lemma 1.3.7, we have P̂Bn(M)

left-orderable, as required.

3.2 Bi-ordering P̂Bn(M)

Provided that we have P̂Bn(M) left-orderable, for all n, we have by ordering theory

that P̂Bn(M) is torsion free, for all n. Since bi-orderability implies torsion free1 (but it is
1For the details about theory of orderability and torsion free groups, see [DDRW] and [MR].
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not a sufficient condition), it induces to think that P̂Bn(M) can be, in fact, bi-orderable,

as we will show next.

In Section (3.2.1), we will introduce the problems that we find to ordering P̂Bn(M),

when we try to use some tools utilized in ordering in pure braid groups.

Finally, in Section (3.2.3), we will prove that P̂Bn(M) is bi-orderable.

3.2.1 An obstruction for bi-orderability on homotopy string links

over surfaces

Here we discuss about one specific problem that appears when we try to equip the

homotopy string links over a surface S with the Magnus ordering, where S is obtained

by deleting a single point x0 of a closed, connected and orientable surface M of genus

g ≥ 1. More specifically, Proposition 3.2.1 shows that the problem arises because of the

generators related with the genus of the surface considered.

Proposition 3.2.1. Let S be a surface obtained by deleting a single point of a closed,

connected and orientable surface M of genus g ≥ 1 and let us consider the isomorphism:

P̂Bn(S) ' F̂(2g + n− 1) o P̂Bn−1(S), (3.2.1)

given in [Y, Chapter 4, Corollary 4.8, p.29]. The action of P̂Bn−1(S) on F̂(2g + n − 1)

in the abelianization of F̂(2g + n− 1), induced by conjugation, is not trivial.

Proof: It follows from [Y, Corollary 4.8] that:

P̂Bn(S) ' F̂(2g + n− 1) o P̂Bn−1(S).

Let us consider the action ψ : P̂Bn−1(S)× F̂(2g + n− 1)→ F̂(2g + n− 1) given by

ψ(β̂, f̂) = σ̂(β̂)f̂ σ̂(β̂)−1,

where σ̂ is the section of the homomorphism %̂ given in the exact sequence (3.1.1). Recall
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the generators set of P̂Bn−1(S):

{ai,r; 2 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {ti,j; 2 ≤ j < k ≤ n}.

Take the words on the generators above and apply the section σ̂ means just add the

trivial strand as a straight line at P1 and then we have a word on P̂Bn(S). Also, recall

the generators of F̂(2g + n− 1):

{a1,r; 1 ≤ r ≤ 2g} ∪ {t1,j; 1 < j ≤ n}.

Now, take the word ai,ra1,sa
−1
i,r , i = 1, ..., n. This word is written as σ̂(β̂)f̂ σ̂(β̂)−1 on

some generators β̂ and f̂ , and we can check, using presentation of P̂Bn(S) (see Remark

(2.1.10)), that this action on the abelianization of F̂(2g + n − 1) is not the identity, for

r 6= s.

Remark 3.2.2. Let us observe that by Proposition 3.2.1 we can not apply Proposition

2.2.14 for the automorphism given by conjugation.

3.2.2 The structure of F̂n

Consider the “forgetting” homomorphism: % : PBn(M) −→ PBn−1(M) given by

%(β) = %(β1, . . . , βn) = (β2, . . . , βn). Let Fn = ker % ∩ Kn be the group defined by

González–Meneses in [GM3] (for details see Section 1.3.4). Also, he obtained the well

defined exact sequence:

1 // Fn
⊆ // Kn

% // Kn−1
// 1 ,

since %(Kn) = Kn−1. Moreover, he proved that this exact sequence splits, i.e., there is

a section, namely σ : Kn−1 → Kn such that % ◦ σ = idKn , where idKn is the identity

homomorphism in Kn.

We recall that from Theorem 1.3.26, we have Kn = (Fno (Fn−1 o (· · · (F3 oF2) · · · ))),
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where for all i = 1, . . . , n− 1, F(n+1)−i is the free group freely generated by

{γ̃(i)ti,j γ̃
−1
(i) ; i < j ≤ n, γ ∈ π1(M)}.

Moreover, for all m = 2, . . . , n − 1, Km = (Fm o (Fm−1 o (· · · (F3 o F2) · · · ))) acts

trivially on H1(Fm+1). We also remember that this trivial action on the abelianization

H1(Fm+1), guarantee that the Magnus order is preserved.

Theorem 3.2.3. One has K̂n = (F̂n o (F̂n−1 o (· · · (F̂3 o F̂2) · · · ))), where for all i =

1, . . . , n− 1, F̂(n+1)−i is the reduced free group generated by

{f̂i,j,γ; i < j ≤ n, γ ∈ π1(M)},

where fi,j,γ = γ̃(i)ti,j γ̃(i)
−1 ∈ F(n+1)−i, for all i = 1, . . . , n− 1. Moreover,

K̂m = (F̂m o (F̂m−1 o (· · · (F̂3 o F̂2) · · · )))

acts trivially on H1(F̂m+1), for all m = 2, . . . , n− 1.

Proof: Let us consider the following commutative diagram, obtained from diagram (1.3.1)

(in which the rows and columns are exacts), by adding the split exact sequence (?).

1 1 1

1 // π1(M,P1) //

OO

π1(M)n //

OO

π1(M)n−1 //

OO

1

1 // π1(M \ Pn−1, P1) //

OO

PBn(M)
% //

θn

OO

PBn−1(M) //

θn−1

OO

1

1 // F(2g + n− 2) //

⋃
PBn−1(S)

% //

⋃
PBn−2(S) //

⋃
1 (?)

1 // Fn //

OO

Kn
% //

OO

Kn−1
//

OO

1

1

OO

1

OO

1

OO

(3.2.2)
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So, we can consider, up to link-homotopy, the following commutative diagram, with exact

rows and columns:

1

π1(M)n

OO

P̂Bn(M)

θn

OO

1 // F̂(2g + n− 2) // P̂Bn−1(S)
%̂ //

⋃
P̂Bn−2(S) // 1 (??)

1 // F̂n //

OO

K̂n
%̂ //

OO

K̂n−1
//

OO

1

1

OO

1

OO

1

OO

(3.2.3)

where the row (??) is the split exact sequence proved in [Y, Corollary 4.8], which sends

by restriction to the following split exact sequence:

1 // F̂n // K̂n
%̂ // K̂n−1

// 1 , (3.2.4)

where F̂n = ker(%̂)∩K̂n is a subgroup of the reduced free group F̂(2g+n−2), and therefore

F̂n is bi-orderable. Then, there is a section σ̂ : K̂n−1 → K̂n of %̂, which is the restriction

of the section σ̂ obtained in [Y, Corollary 4.8]. Thus,

K̂n ' F̂n o K̂n−1. (3.2.5)

Therefore, inductively, we have

K̂n = (F̂n o (F̂n−1 o (· · · (F̂3 o F̂2) · · · ))).

Now, we will prove that the action of K̂n−1 on the abelianization of F̂n is trivial and

then we will have that Magnus order is preserved in K̂n.
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From Lemma 1.3.25, recall that Kn−1 acts on Fn in the following way: given β ∈ Kn−1,

the action induced by β sends f ∈ Fn to σ(β)fσ(β)−1. This action induces an action of

Kn−1, which is trivial on the abelianization H1(Fn) = Fn

[Fn,Fn]
of Fn, where [Fn,Fn] denotes

the commutator subgroup of Fn. In symbols:

ψ : Kn−1 × Fn → Fn,

(β, f) 7−→ σ(β)fσ(β)−1

and its trivial abelianization:

ψab : Kn−1 ×
Fn

[Fn,Fn]
→ Fn

[Fn,Fn]
,

(β, [f ]ab) 7−→ [σ(β)fσ(β)−1]ab

where [ ]ab denotes the quotient on the commutator group.

Now, considering the homomorphism %̂ and its section σ̂, one defines the action:

ψ̂ : K̂n−1 × F̂n → F̂n.

(β̂, f̂) 7−→ σ̂(β̂)f̂ σ̂(β̂)−1

This action induces an action of K̂n−1 on the abelianization H1(F̂n), namely:

ψ̂ab : K̂n−1 ×
F̂n

[F̂n, F̂n]
→ F̂n

[F̂n, F̂n]
,

(β̂, [f̂ ]ab) 7−→ [σ̂(β̂)f̂ σ̂(β̂)−1]âb
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which is trivial, since

ψab is trivial ⇔ [ψ(β, f)]ab = [f ]ab

⇔ ψ(β, f)f−1 ∈ [Fn,Fn]

⇔ ψ(β, f)f−1 = xn1
i1
· · ·xnp

ip
, xik ∈ 〈aba−1b−1; a, b ∈ Fn〉, k = 1, . . . , p

⇔ σ(β)fσ(β)−1f−1 = xn1
i1
· · ·xnp

ip
, xik ∈ 〈aba−1b−1; a, b ∈ Fn〉, k = 1, . . . , p

⇒
︷ ︸︸ ︷
σ(β)fσ(β)−1 f̂−1 =

︷ ︸︸ ︷
σ(β)fσ(β)−1f−1 =

︷ ︸︸ ︷
xn1
i1
· · ·xnp

ip
= x̂i1

n1 · · · x̂ip
np ,

with x̂ik ∈ 〈âb̂ ˆa−1 ˆb−1; â, b̂ ∈ F̂n〉, k = 1, . . . , p

⇔
︷ ︸︸ ︷
σ(β)fσ(β)−1 f̂−1 ∈ [F̂n, F̂n]

⇔ [
︷ ︸︸ ︷
σ(β)fσ(β)−1]âb = [f̂ ]âb

⇔ [σ̂(β̂)f̂ σ̂(β̂)
−1

]âb = [f̂ ]âb

⇔ ψ̂ab is trivial.

Corollary 3.2.4. K̂n is bi-orderable.

Proof: The proof is given by induction on n. For n = 2, K̂2 = F̂2 is a reduced free group

and then, it is bi-orderable. Let us suppose n > 2 and by induction hypothesis that K̂n−1

is bi-orderable. By Theorem 3.2.3, we have:

1 // F̂n // K̂n
// K̂n−1

// 1,

where K̂n = F̂n o K̂n−1. The definition of a bi-order says that conjugation by an element

of F̂n is an automorphism of F̂n which preserves the Magnus order. By Theorem 3.2.3, the

conjugation by an element of K̂n−1 is an automorphism of F̂n, which is trivial on H1(F̂n).

So, we have by Proposition 2.2.14 that it also preserves the Magnus order on F̂n.

Hence, conjugation by an element of K̂n preserves the Magnus order of F̂n and there-

fore, by Lemma 1.3.7, K̂n is bi-orderable.

Now we have that K̂n is the semidirect product of reduced free groups and since we

already know by Section 2.2 that these subgroups are bi-orderable, we can find an explicit
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order to it. First, for all i = 1, . . . , n− 1 we order the generators:

F̂i,n = {f̂i,j,γ; i < j ≤ n, γ ∈ π1(M)},

where fi,j,γ ∈ F(n+1)−i, as follows:

f̂i,j,γ <K̂n
f̂i,k,δ ⇔ j < k or j = k and γ <π1 δ,

where <π1 is the bi-ordering for π1(M). Then, we consider the reduced Magnus order on

each generator of F̂(n+1)−i. By this way, let us define the bi-ordering for K̂n: for k̂, k̂′ ∈ K̂n,

we can write k̂ = k̂1 · · · k̂n−1 and k̂′ = k̂′1 · · · k̂′n−1, where k̂i, k̂′i ∈ F̂(n+1)−i. Then:

k̂ <K̂n
k̂′ ⇔ k̂j <K̂n

k̂′j, for the greatest j such that k̂j 6= k̂′j.

3.2.3 P̂Bn(M) is bi-orderable

Theorem 3.2.5. Let M be a closed, connected and orientable surface of genus g ≥ 1.

Then P̂Bn(M) is bi-orderable.

Proof: Recall the short exact sequence obtained in Remark 3.1.4.

1 // K̂n
⊆ // P̂Bn(M)

θ̂n // π1(M)n // 1 .

We will use this sequence and Lemma 1.3.7(ii) to prove our result. We need to show that

the conjugation of K̂n by P̂Bn(M) is order preserving, i.e.,

f̂ < K̂n
f̂ ′ ⇔ β̂f̂(β̂)−1 < K̂n

β̂f̂ ′(β̂)−1, (3.2.6)

for all β̂ ∈ P̂Bn(M) and for all f̂ , f̂ ′ ∈ K̂n.

1. From Theorem 1.3.22, π1(M)n is bi-orderable.

2. We had proved in Corollary 3.2.4 that K̂n is bi-orderable.
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By this way, we are able to prove the condition (3.2.6). Indeed, since K̂n is bi-orderable,

by definition, conjugation by an element of K̂n preserves the order. Hence, it suffices to

show (3.2.6) for the conjugation by the pre-images under θ̂n of the generators of π1(M)n.

A set of such pre-images is {ai,r; i = 1, . . . , n, 1 ≤ r ≤ 2g}. Since isotopy implies

link-homotopy, we have by the proof of Theorem 1.3.28 that the following relations hold

in H1(K̂n):

ai,rf̂j,k,γa
−1
i,r ≡


f̂j,k,γ, i 6= j, k,

̂fj,k,(ωrγ), i = j,

̂fj,k,(γω−1
r ), i = k.

(3.2.7)

Note that the action of ai,r preserves Magnus order on each F̂m, m = 2, . . . , n − 1

and hence, it preserves the order on K̂n. Indeed, by the relations found, we have that

the action of ai,r on K̂n is the composition of an automorphism Ψ̂i,r which permutes the

generators of each F̂n with an automorphism Φ̂i,r which is trivial on H1(K̂n).

Therefore, by Proposition 2.2.14 and Theorem 1.3.21, it is suffices to prove that the

permutations induced by Ψ̂i,r on F̂j,n, for j = 1, . . . , n− 1, preserves the defined order on

F̂j,n. Let us consider f̂j,k,γ, f̂j,l,δ, where f̂j,k,γ <K̂n
f̂j,l,δ. We analyze the following cases:

Case 1. If k < l, then

ai,rf̂j,k,γa
−1
i,r = Ψ̂i,r(f̂j,k,γ) = f̂j,k,γ′ <K̂n

f̂j,l,δ′ = Ψ̂i,r(f̂j,l,δ) = ai,rf̂j,l,δa
−1
i,r ,

where γ′ and δ′ are determined by the relations in (3.2.7).

Case 2. If k = l and γ <π1 δ, then we have more 3 cases to analyze:

First, if i 6= j, k, we have

ai,rf̂j,k,γa
−1
i,r = Ψ̂i,r(f̂j,k,γ) = f̂j,k,γ <K̂n

f̂j,k,δ = Ψ̂i,r(f̂j,k,δ) = ai,rf̂j,k,δa
−1
i,r .

If i = j, thus

ai,rf̂j,k,γa
−1
i,r = Ψ̂i,r(f̂j,k,γ) = ̂fj,k,(ωrγ) <K̂n

̂fj,k,(ωrδ) = Ψ̂i,r(f̂j,k,δ) = ai,rf̂j,k,δa
−1
i,r ,
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since ωrγ <π1 ωrδ, with <π1 left-order.

If i = k,

ai,rf̂j,k,γa
−1
i,r = Ψ̂i,r(fj,k,γ) = ̂fj,k,(γω−1

r ) <K̂n
̂fj,k,(δω−1

r ) = Ψ̂i,r(f̂j,k,δ) = ai,rf̂j,k,δa
−1
i,r ,

since γω−1
r <π1 δω

−1
r , with <π1 right-order. Therefore we finish our proof with the result

required.

Corollary 3.2.6. Let S be a surface obtained by deleting a single point of a closed,

connected and orientable surface M of genus g ≥ 1. Then, P̂Bn(S) is bi-orderable, for

all n.

Proof: The proof follows from of the fact that P̂Bn−1(S) ⊂ P̂Bn(M) as a subgroup (see

sequence (3.2.3)).

3.3 An exact sequence for link-homotopy braid groups

In this section we obtain an extension of a result proved by Charles H. Goldberg in

[Go, Theorem 1]. To prove this result, we will use as tool the surjective homomorphism

θ̂n defined in Section 3.1.2.

3.3.1 Definitions and main theorem

Let us consider a closed, connected and orientable surface M , of genus g ≥ 1, i.e.,

M is not the sphere. Let P = {P1, P2, . . . , Pn} be a set of n distinct fixed points chosen

arbitrarily in the interior of M . Now, let us define the following map:

f̂n : P̂Bn(D)→ P̂Bn(M)

given by f̂n(β̂) = β̂, for each β̂ in P̂Bn(D), where D denotes the unit disk. Also, we have

θ̂n : P̂Bn(M) → π1(M)n given by θ̂n(α̂) = θ̂n([(α1, . . . , αn)]) = (µ1, . . . , µn), where each

µi is the strand αi of α̂ viewed as a loop in the fundamental group of M , i = 1, . . . , n,
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for all α̂ = [(α1, . . . , αn)] in P̂Bn(M). By Lemma 3.1.2, θ̂n is a well defined surjective

homomorphism.

Theorem 3.3.1. If M is a closed, connected and orientable surface, of genus g ≥ 1, then

in the following sequence of groups (not necessarily abelian):

1 // P̂Bn(D)
f̂n // P̂Bn(M)

θ̂n // π1(M)n // 1 ,

the kernel of each homomorphism is equal to the normal closure of the image of the

previous homomorphism in the sequence, i.e., ker(θ̂n) = 〈Im(f̂n)〉N .

3.3.2 The well definition of f̂n and proof of Theorem 3.3.1

The proof will be given by the following results:

Lemma 3.3.2. The map f̂n is a well defined injective homomorphism.

Proof: Recall the inclusion homomorphism fn : PBn(D)→ PBn(M), defined by Birman

in [B]. Now, let β be an element link-homotopically trivial in PBn(D). Clearly, fn(β) = β

is a link-homotopically trivial element of PBn(M), i.e., fn(Hn(D)) ⊆ Hn(M). Thus, f̂n

is the well defined homomorphism induced by the injection fn. We need to prove that f̂n

is injective. Indeed, let β̂ ∈ P̂Bn(D) such that f̂n(β̂) = 1, where 1 denotes the identity

in P̂Bn(M). So, we have β̂ ∈ P̂Bn(D) and β̂ ∈ Hn(M). By Goldsmith in [G], we have

β̂ ∈ Hn(D). Therefore, ker(f̂n) = Hn(D), i.e., f̂n is injective.

Let us consider the following diagram:

1 // PBn(D)

p1
��

fn // PBn(M)

p2
��

θn // π1(M)n

id
��

// 1

1 // P̂Bn(D)
f̂n // P̂Bn(M)

θ̂n // π1(M)n // 1

(3.3.1)

where p1, p2 are the respective projections and id is the identity in π1(M).
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We claim that this diagram is commutative. Indeed, ∀β ∈ PBn(D),

f̂n ◦ p1(β) = f̂n([β]) = [β] and p2 ◦ fn(β) = p2(β) = [β],

that is, f̂n ◦ p1 = p2 ◦ fn. Moreover, ∀α ∈ PBn(M),

θ̂n ◦ p2(α) = θ̂n([α]) = (µ1, . . . , µn) and id ◦ θn(α) = id(µ1, . . . , µn) = (µ1, . . . , µn),

i.e., θ̂n ◦ p2 = id ◦ θn.

Lemma 3.3.3. Im(f̂n) ⊆ ker(θ̂n).

Proof: Let α̂ ∈ Im(f̂n). So, there is an element β̂ ∈ P̂Bn(D) such that α̂ = f̂n(β̂). Thus,

θ̂n ◦ f̂n(β̂) = θ̂n(α̂). Since β̂ is in P̂Bn(D) and p1 is surjective, there is β in PBn(D)

such that p1(β) = β̂. So, θ̂n ◦ f̂n ◦ p1(β) = θ̂n(α̂), which implies, θ̂n ◦ p2 ◦ fn(β) = θ̂n(α̂),

i.e., θn ◦ fn(β) = θ̂n(α̂). By [Go], we have Im(fn) ⊆ ker(θn), i.e., θ̂n(α̂) = 1 and then,

α̂ ∈ ker(θ̂n).

Lemma 3.3.4. ker(θ̂n) ⊆ 〈Im(f̂n)〉N .

Proof: Let γ̂ be an element in ker(θ̂n). Thus, γ̂ ∈ P̂Bn(M) and θ̂n(γ̂) = 1. By Theorem

2.1.3, each string link is link homotopic to a pure braid. Let γ ∈ PBn(M) be such pure

braid. So, θn(γ) = 1, where 1 denotes the identity in π1(M)n. By [Go, Theorem 1],

we have γ =
∏

k αkβkα
−1
k , with αk ∈ PBn(M), βk ∈ Im(fn), i.e., βk = fn(γk), for some

γk ∈ PBn(D) with p1(γk) = γ̂k, and then, f̂n ◦ p1(γk) = f̂n(γ̂k). Since the diagram (3.3.1)

commutes,

f̂n(γ̂k) = f̂n ◦ p1(γk) = p2 ◦ fn(γk) = p2(βk) = β̂k,

i.e., β̂k ∈ Im(f̂n). Therefore,

γ̂ = p2(γ) = p2

(∏
k

αkβkα
−1
k

)
=
∏
k

p2(αk)p2(βk)p2(αk)
−1 =

∏
k

α̂kβ̂kα̂k
−1,

with α̂k ∈ P̂Bn(M), β̂k ∈ Im(f̂n).
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Proof of Theorem 3.3.1: Follows from Lemmas 3.3.2, 3.3.3 and 3.3.4.
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Chapter

4

Homotopy generalized string links over

surfaces

In this chapter we introduce the generalization of the homotopy string links over

surfaces that we call generalized homotopy string links over surfaces. We show that the

set of all generalized string links over surfaces form a well defined group and we find a

presentation for this group.

4.1 Generalized string links over surfaces

LetM be a closed, connected and orientable surface of genus g ≥ 1. Choose n different

points P = {P1, . . . , Pn} to lie in the interior of M . Let I1, . . . , In be n copies of the unit

interval I = [0, 1] and
∐n

i=1 Ii denote the disjoint union of these intervals.

Definition 4.1.1. A generalized string link σ on n strands over a surface M is a smooth

or piecewise linear proper imbedding:

σ :
n∐
i=1

Ii →M × I,

that satisfies the two following conditions:

(i) σ|(Ii(0)) = (Pi, 0),
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(ii) σ|(Ii(1)) ∈ {(P1, 1), . . . , (Pn, 1)},

where Ii(t) = t ∈ Ii, for all t and for all i = 1, . . . , n.

Here, we orient the strands downwards from M × {0} to M × {1}. Also, an ambient

isotopy between generalized string links σ and σ′ is an orientation-preserving diffeomor-

phism of M × I which maps σ onto σ′ while keeping the boundary M ×{0, 1} point-wise

fixed and is isotopic to the identity, relative to M × {0, 1}.

Figure 4.1: Generalized string link σ.

Now, we can talk about the concept of link-homotopy found in [HL], [L] and [Mil]

for generalized string links, since we have the non trivial permutation, generalized string

links differ of string links. Indeed, we give two different definitions for it that we use

throughout this work.

Definition 4.1.2. We say that two generalized string links σ and σ′ are link-homotopic

if there is a homotopy of the strings in M × I, fixing M × {0, 1} and deforming σ to σ′,

such that the images of different strings remain disjoint during the deformation.

During the course of deformation, each individual strand is allowed to pass through

itself but not through other strands.

Definition 4.1.3. Link-homotopy is an equivalence relation on generalized string links

that is generated by a sequence of ambient isotopies of M × I fixing M ×{0, 1}, and local

crossing changes of arcs from the same strand of a generalized string link.
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Figure 4.2: Crossing change in the same strand.

4.2 Homotopy generalized string links form a group

Lemma 4.2.1. Let σ and σ′ be generalized string links over a surface M . Denote by ∼

the link-homotopy equivalence relation. If σ ∼ σ′ then στ ∼ σ′τ and τσ ∼ τσ′, for all

generalized string link τ .

Proof: In both cases, consider the concatenation of the mentioned generalized string

links in its levels in the diagram of braids respectively. By this way, we can deform σ to

σ′ under homotopy while τ is fixed, for all generalized string link τ .

Theorem 4.2.2. Every generalized string link on n-strands over a surface M is link-

homotopic to a braid.

Proof: Let us denote by ∼ the link-homotopy equivalence relation. We want to prove

that if σ is a generalized string link then σ ∼ α, for some α ∈ Bn(M). Consider σ a

generalized n-string link and β some braid on n-strands such that the concatenation σβ

is a string link, namely σ′. So, we have σβ = σ′. Since σ′ is a string link, we have it is

link-homotopic to a pure braid on n-strands, namely γ. Thus, we have σ′ ∼ γ. By the

transitivity of the equivalence relation, we have that σβ ∼ γ. Let β−1 be the inverse of

the braid β. By Lemma 4.2.1, we have σββ−1 ∼ γβ−1, i.e., σ ∼ γβ−1, where γβ−1 is a

braid on n-strands. Put γβ−1 = α. Therefore, every generalized string link on n-strands

is link-homotopic to a braid on n strands.

Remark 4.2.3. From now we will call a generalized string link on n-strands just by

generalized string link, since the chosen n points are fixed. For the next result, recall that

a string link σ is link-homotopically trivial if σ is link-homotopic to the trivial braid. Also,

let Hn(M) denote the set of link-homotopically trivial surface n-strand braids. We already
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know that Hn(M) is a normal subgroup of PBn(M) and that the group of link-homotopy

classes of string links over a surface M , namely P̂Bn(M), is isomorphic to PBn(M)
Hn(M)

.

Proposition 4.2.4. The set of link-homotopically trivial surface braids on n-strands

Hn(M) is a normal subgroup of Bn(M).

Proof: We will show that βHn(M)β−1 = Hn(M), for all β in Bn(M). Indeed, given

β ∈ Bn(M), σ ∈ Hn(M), if we consider the braid diagram for the concatenation βσβ−1

and remember that σ ∼ 1, let β and β−1 fixed and deform σ under homotopy in the trivial

braid 1:

Thus, βσβ−1 ∼ 1 and 1 ∈ Hn(M). Therefore, βHn(M)β−1 ⊆ Hn(M).

Conversely, let σ be a link-homotopically trivial braid. We show that σ can be written

as an element in βHn(M)β−1, for β in Bn(M). Indeed:

σ ∼ 1σ1 ∼ β(β−1σβ)β−1, β ∈ Bn(M).

But we have already proved that the element inside of parentheses is a link-homotopically

braid. So, put γ = β−1σβ. Then, σ = βγβ−1, and we have Hn(M) ⊆ βHn(M)β−1, for all

β ∈ Bn(M). Therefore, Hn(M) is a normal subgroup of Bn(M) as required.

Remark 4.2.5. (i) We denote the set of link-homotopy classes of generalized string

links over a surface M by B̂n(M), which we shall call simply homotopy generalized

string links.

(ii) B̂n(M) equipped with concatenation, is a group. Moreover, P̂Bn(M) is a normal

subgroup of B̂n(M).

(iii) We say that a braid is deformed to be a string-link through a finite link-homotopic

moves, i.e., through a finite number of isotopies and crossing changes.
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Theorem 4.2.6. Under concatenation, B̂n(M) is a group isomorphic to the quotient of

the braid group Bn(M) by the subgroup of link-homotopically trivial braids Hn(M):

B̂n(M) ' Bn(M)

Hn(M)
.

Proof: Let us consider the following map:

ϕ : Bn(M)→ B̂n(M),

defined by ϕ(β) = β̂, which takes the isotopy class of each braid to its homotopy class.

Let us denote by ≈ the isotopy equivalence relation and by ∼ the homotopy equivalence

relation. Remember that Bn(M) is already a quotient group and β denotes the represen-

tative of the equivalence class of all braids that is isotopic to β, so we must show first

that ϕ is a well defined homomorphism. Indeed: Let β, γ be two representative braids of

an equivalence class. So, we have β ≈ γ. Let ϕ(β) = β̂ and ϕ(γ) = γ̂, where β̂ and γ̂

are string links provided from β and γ under a finite link-homotopic moves respectively.

Thus, ϕ(β) = β̂ ∼ β and ϕ(γ) = γ̂ ∼ γ. So, we have:

ϕ(γ) = γ̂ ∼ γ ≈ β ∼ β̂ = ϕ(β),

and since isotopy implies homotopy, we have ϕ(β) = ϕ(γ). Now, note that by Theorem

4.2.2, ϕ is surjective. So, by the Homomorphism Theorem, we have:

Bn(M)

ker(ϕ)
' B̂n(M).

We claim that ker(ϕ) = Hn(M). Indeed: ker(ϕ) = {β ∈ Bn(M); ϕ(β) = 1}. If β ∈

ker(ϕ), then we have that β ∼ β̂ ∼ 1, where β̂ is a generalized string link provided from

β under a finite link-homotopic moves. So, we have that ker(ϕ) ⊆ Hn(M). Conversely,

if β ∈ Hn(M), then β is link-homotopic to 1. Choose a generalized string link β̂ that is

link-homotopic to β under a finite link-homotopic moves. Clearly, β ∈ ker(ϕ). Therefore,
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we have:

B̂n(M) ' Bn(M)

Hn(M)
,

as required. Thus, B̂n(M) inherits from Bn(M):

operation: concatenation of generalized string links;

inverse: mirror reflexion up to link-homotopy.

Now, given a generalized string link σ, let us denote by π(σ) the permutation associated

to σ. Let Σn be the symmetric group on n elements. Consider the following map:

ψ : B̂n(M)→ Σn

defined by ψ(σ) = π(σ), for all σ ∈ B̂n(M). We claim that ψ is a well defined homo-

morphism. Indeed, if σ and σ′ are two generalized string links in the same equivalence

class, then both generalized string links have the same permutation. Thus, ψ(σ) = ψ(σ′)

and the map is well defined as claimed. Clearly, ψ is a homomorphism. Note that the

homomorphism ψ is surjective. Thus, by the homomorphism theorem, we have B̂n(M)
ker(ψ)

isomorphic to Σn. By the definition, ker(ψ) = P̂Bn(M). So we have the following result:

Proposition 4.2.7. P̂Bn(M) is a normal subgroup of B̂n(M). Moreover, under the

homomorphism ψ defined previously, we have the well defined short exact sequence:

1 // P̂Bn(M) i // B̂n(M)
ψ // Σn

// 1 ,

where i is the inclusion homomorphism.

4.3 Homotopy generalized string links over an orientable

surface

Since we had defined the homotopy generalized string links over an orientable surface

M of genus g ≥ 1, it is interesting to ask about its presentation. In order to find a
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presentation for this group, we study it from a geometric point of view and collect some

important results that will be necessary for our aim.

4.3.1 Geometric view of orientable surface braids

The following geometric view that we show here is the same of [GM] since we give

here a presentation for B̂n(M) that generalizes the presentation for the orientable case of

Bn(M) in the mentioned paper.

For the remainder of this section let M be a closed, orientable surface of genus g ≥ 1,

i.e., forM different than the sphere S2. Let us representM by its fundamental polygon L,

with 4g sides, with pairs labeled α1, . . . , α2g. Choose n distinct points P = {P1, . . . , Pn}

as base points across a diameter of L.

Figure 4.3: Fundamental polygon L over M [GM].

Now let I = [0, 1] be the unit interval. We represent M × I by the cylinder L× I with

opposite sides identified, following the original identifications of L. Let us assume that

M × {0} is the upper level of the cylinder and M × {1} is the lower level of the cylinder.

A surface braid β appears in the cylinder with strands downwards. Note that a string of

a braid may “go through the wall” of the cylinder L× I and re-appear from the identified

opposite “wall” as shown in the left side of the figure below. We have another way to

represent a braid in the cylinder: look on L× I from the top, as shown in the right side

of the figure below.
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Figure 4.4: Two forms to see a surface braid [GM].

Our aim now is to state our presentation of orientable surface link-homotopy braid

groups, defining the generators and showing that the proposed relations are satisfied. So

let us start defining elements of B̂n(M). After choosing the base points P = {P1, . . . , Pn}

along a horizontal diameter of L, define:

• For 1 ≤ i ≤ n, 1 ≤ r ≤ 2g, we denote by ai,r the braids in B̂n(M) that “go through

the wall” of the cylinder L × I. Note in the figure that ai,r goes upwards in L if r

is odd and goes downwards if r is even.

• For i + 1 ≤ j ≤ n, we denote by ti,j the braid in B̂n(M) that is a loop starting at

Pi, going around Pi+1, . . . , Pj and turning back to Pi passing in front of Pj only.

The following figure shows us such braids:

Figure 4.5: Elements of B̂n(M), for i = 1 [GM].

4.4 A presentation for B̂n(M)

The goal of this section is to prove the following result:
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Theorem 4.4.1. Let M be a closed, orientable surface of genus g ≥ 1. The Group of

Link-Homotopy Classes of Generalized String Links Over M , namely B̂n(M), admits the

following presentation:

Generators: {a1,1, . . . , a1,2g} ∪ {σ1, . . . , σn−1};

Relations:

(LH) [t1,j, t
h
1,j] = 1, h ∈ F(2g+n−1);

(R1) σiσj = σjσi, |i− j| ≥ 2;

(R2) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n−2;

(R3) a1,1 · · · a1,2ga
−1
1,1 · · · a−1

1,2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1,

(R4) a1,rA2,s = A2,sa1,r, 1 ≤ r, s ≤ 2g; r 6= s;

(R5) (a1,1 · · · a1,r)A2,r = σ2
1A2,r(a1,1 · · · a1,r), 1 ≤ r ≤ 2g;

(R6) a1,rσi = σia1,r, 1 ≤ r ≤ 2g; i ≥ 2.

Where:
t1,j = σ1 · · · σj−2σ

2
j−1σ

−1
j−2 · · ·σ−1

1 , for j = 2, . . . , n,

A2,s = σ−1
1 (a1,1 · · · a1,s−1a

−1
1,s+1 · · · a−1

1,2g)σ
−1
1 , for s = 1, . . . , 2g.

Remark 4.4.2. To prove Theorem 4.4.1 we will consider the methods and constructions

used by González–Meneses in [GM] (to compute the presentation of surface braids Bn(M)

over a closed surface M) discussed in Proposition 1.2.1 and Lemma 1.2.2. Such construc-

tions are very well known and common methods used in several proofs in this theory for

finding presentations of groups.

Here, we use the notations and arguments of [GM] to establish connections with the

presentations of the braid groups Bn(M) and the generalized string links groups B̂n(M).

4.4.1 The idea of the proof

Now, recalling the short exact sequence from Proposition 4.2.7:

1 // P̂Bn(M) i // B̂n(M)
ψ // Σn

// 1 ,
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and considering the following presentations:

Presentation of P̂Bn(M) (see Theorem 2.1.7):

Generators: {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {tj,k; 1 ≤ j < k ≤ n}.

Relations: (LH1) [ti,j , t
h
i,j ] = 1, for all h ∈ F(2g + n− i);

(PR1) a−1
n,1a

−1
n,2 · · · a

−1
n,2gan,1an,2...an,2g =

n−1∏
i=1

T−1
i,n−1Ti,n,

(PR2) ai,rAj,s = Aj,sai,r, 1 ≤ i < j ≤ n; 1 ≤ r, s ≤ 2g; r 6= s;

(PR3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a

−1
i,1 )A

−1
j,r = Ti,jT

−1
i,j−1, 1 ≤ i < j ≤ n; 1 ≤ r ≤ 2g;

(PR4) Ti,jTk,l = Tk,lTi,j , 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

(PR5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l, 1 ≤ i < k ≤ j < l ≤ n;

(PR6) ai,rTj,k = Tj,kai,r, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n; 1 ≤ r ≤ 2g;

(PR7) ai,r(a
−1
j,2g · · · a

−1
j,1Tj,kaj,2g · · · aj,1) = (a−1

j,2g · · · a
−1
j,1Tj,kaj,2g · · · aj,1)ai,r, 1 ≤ j < i ≤

k ≤ n;

(PR8) Tj,n =

(
j−1∏
i=1

a−1
i,2g · · · a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · · ai,2g

)
aj,1 · · · aj,2ga−1

j,1 · · · a
−1
j,2g.

Where:

F(2g + n − i) is generated by {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {ti,j; i < j ≤ n};

Aj,s = aj,1 · · · aj,s−1a
−1
j,s+1 · · · a−1

j,2g, for 1 ≤ s ≤ 2g;

Ti,j = ti,j · · · ti,i+1, for 1 ≤ i < j ≤ n.

Presentation of Σn:

Generators: δ1, . . . , δn−1.

Relations:

• δiδj = δjδi, |i− j| ≥ 2;

• δiδi+1δi = δi+1δiδi+1, 1 ≤ i ≤ n− 2;

• δ2
i = 1, 1 ≤ i ≤ n− 1;

where δi is the permutation (i, i+ 1), for all i.
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We are now able to find a presentation for B̂n(M).

The idea for the proof is to define an abstract group, namely Bn, with the presentation

of the Theorem 4.4.1. After, we define a homomorphism ϕ : Bn → B̂n(M) in a natural

way and we will show that ϕ is an isomorphism. First, we will show that ϕ is well defined

showing that all relations of Bn holds in B̂n(M). After that, we will use Proposition 1.2.1

to the exact sequence:

1 // P̂Bn(M) i // B̂n(M)
ψ // Σn

// 1 (4.4.1)

to show that ϕ is an isomorphism.

4.4.2 The proof of Theorem 4.4.1

Let us call Bn the abstract group that admits the presentation of the Theorem 4.4.1.

To show the validity of the presentation we will need to add some generators and relations,

keeping equivalent to the other that we have:

new generators:

• ai,r, 2 ≤ i ≤ n;

• tj,k, 1 ≤ j < k ≤ n.

new relations:

(R7) aj+1,r = σjaj,rσj, 1 ≤ j ≤ n− 1; 1 ≤ r ≤ 2g; r even;

(R8) aj+1,r = σ−1
j aj,rσ

−1
j , 1 ≤ j ≤ n− 1; 1 ≤ r ≤ 2g; r odd;

(R9) tj,k = σjσj+1 · · ·σk−2σ
2
k−1σ

−1
k−2 · · ·σ

−1
j+1σ

−1
j , 1 ≤ j < k ≤ n.

It is easy to see that (R7), (R8) and (R9) hold in B̂n(M), using a braid diagram and

even observing that they are product of the generators set of Theorem 4.4.1. Moreover,

adding these new relations, they still define the same group.
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Note that both presentations define the same group, since the “new” generators and

relations can be written in terms of the old generators by the relations (R7), (R8) and

(R9). Now let us define the mapping in a natural way:

ϕ :Bn → B̂n(M)

σi 7−→ σi, 1 ≤ i ≤ n− 1

a1,r 7−→ a1,r, 1 ≤ r ≤ 2g

Note that we will keep the notation σi and a1,r for the braids that will be the images

of the generators σi and a1,r of Bn under the homomorphism ϕ. Such braids are defined

as follows: σi are the elementary n-braids and a1,r are the braids that “go through the

wall”, starting and arriving in P1, with the remaining strands being trivial.

We claim that ϕ is well defined. Indeed, by [GM] the relations (R1)–(R9) hold in

Bn(M). Since isotopy equivalence relation implies link-homotopy equivalence relation

(see Definition 4.1.3), we have they still hold in B̂n(M). By this way, (R1)–(R9) hold in

B̂n(M). Let us give the braid diagram that shows (R6) a1,rσi = σia1,r, for 1 ≤ r ≤ 2g, is

valid:

For the other cases, see [GM, Section 2].

Now, consider the relation (under ϕ) [t1,j, t
h
1,j] = 1, for h ∈ F(2g+n−1). Let us recall

that the generators of F(2g + n − 1) are {a1,r, 1 ≤ r ≤ 2g} ∪ {t1,j, 2 ≤ j ≤ n}. Such

relation holds in B̂n(M), since it is a particular case from the relation (LH1) in P̂Bn(M)

that is contained in B̂n(M). So, we have that ϕ is well defined.

To show that ϕ is surjective, consider the short exact sequence (4.4.1).
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Applying Proposition 1.2.1 to find the generators of B̂n(M) we have two types: first,

the generators of P̂Bn(M) that become generators of B̂n(M) under the inclusion:

{ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {tj,k; 1 ≤ j < k ≤ n}.

Second, the other type of generators are the elements σi that are pre-image of each

generator δi ∈ Σn, for i = 1, . . . , n−1, under the surjective homomorphism ψ in the exact

sequence: {σi, 1 ≤ i ≤ n− 1}.

So, we have {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g}∪{tj,k; 1 ≤ j < k ≤ n}∪{σi, 1 ≤ i ≤ n−1}

as generators of B̂n(M). But note that, by the relation (R9) we have tj,k written as a

product of σi’s and by the relaions (R7)–(R8), ai,r can be written as a product of a1,r. So

we reduce the set of generators that we found to:

{a1,r; 1 ≤ r ≤ 2g} ∪ {σi, 1 ≤ i ≤ n− 1}.

Therefore, we have ϕ surjective, as required.

To show that ϕ is injective, we need to show that all relations in B̂n(M) still hold in

Bn. Indeed, we observe that relations (R1)–(R9) in B̂n(M) come from the same relations

in Bn(M), since isotopy implies link-homotopy. The process made by González–Meneses

in [GM] to find all relations of Types 1, 2 and 3 is given in this thesis in Section 1.2.

So, the process is the same for B̂n(M). The remainder relation that does not appear in

cases made by González–Meneses, i.e., the link-homotopy relation (LH) [t1,j, t
h
1,j] = 1, for

h ∈ F(2g + n− 1), is a relation of Type 1 that comes from (LH1) in the presentation of

P̂Bn(M), when i = 1. The Figure 2.3 gives a particular case of this relation. Thus, ϕ is

injective.

By this way, we have that Bn and B̂n(M) have the same generators and relations and,

therefore, ϕ is an isomorphism and B̂n(M) has the presentation of the Theorem 4.4.1, as

required.
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