
Universidade Federal de Alagoas

Instituto de Fisica

Acoustic radiation torque on particles in the Rayleigh limit.

Tiago Peixoto da Silva Lobo

Maceió, Alagoas � Brasil

August - 2012



i

TIAGO PEIXOTO DA SILVA LOBO

Acoustic radiation torque on particles in the Rayleigh limit.

Dissertation submitted to the

Instituto de Física of Universidade

Federal de Alagoas as one

of the requirements for the

degree of Masters in Science

Advisor: Prof. Dr. Glauber Tomaz

Maceió, Alagoas � Brasil

August � 2012



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalogação na fonte 

Universidade Federal de Alagoas 

Biblioteca Central 

Divisão de Tratamento Técnico 
Bibliotecária responsável: Fabiana Camargo dos Santos 

                      

              L799a       Lobo, Tiago Peixoto da Silva. 

Acoustic radiation torque on particles in the Rayleigh limit / Tiago Peixoto da 

Silva Lobo. – 2012.  

47 f. : il. 

 

Orientador: Glauber Tomaz. 

Dissertação (Mestrado em Física) – Universidade Federal de Alagoas. Instituto 

de Física. Maceió, 2012. 

 

Bibliografia: f. 46-47. 

                                     

1. Torque de radiação. 2. Partículas - Rayleigh. 3. Acústica. 4. Bessel – Feixes. 

5. Espalhamento de partículas. I. Título. 

     

CDU: 530.145.6:539.12 





iii

Acknowledgments

Thanks.



iv

Abstract

In the present work, the acoustic radiation torque generated on a Rayleigh particle

is investigated. A formalism for the scattering of Rayleigh particles based on the

partial wave expansion of the pressure �eld is presented, and, from it, we derive a

very elegant and simple formula for the acoustic radiation torque upon a Rayleigh

particle that can be used for harmonic waves with arbitrary wave front. In particular,

we studied the acoustic radiation torque generated by Bessel-beams of arbitrary

order.

Keywords: Radiation torque. Rayleigh particles. Scattering. Acoustic.

Bessel beams.
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Resumo

Neste trabalho, o torque acústico de radiação sofrido por uma partícula de Rayleigh

é estudado. Um formalismo matémático para o espalhamento de partículas de

Rayleigh baseado na expanção de ondas parciais do campo de pressão é apresentado,

o que nos permite derivar uma fórmula simples e elegante para o torque gerado sobre

uma partícula de Rayleigh por ondas harmônicas com frente de onda arbitrária. Em

particular, nós estudamos o torque acústico de radiação gerado por feixes de Bessel

de ordem arbitrária.

Palavras chave: Torque de radiação. Partículas de Rayleigh. Espal-

hamento. Acústica. Feixes de Bessel.
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Chapter 1

Introduction

The interaction between an acoustic source with a suspended object may induce

forces that changes the dynamics of an object. This interaction can either set the

object to spin through a phenomenon called acoustic radiation torque, or make it

move through a phenomenon called acoustic radiation force. These phenomena are

being used to accelerate, trap, levitate or even stretch the particle itself. Despite

these phenomenons were �rst observed in the 19th century the lack of a theoretical

model for the acoustic radiation torque exerted by an arbitrary wave upon an object

of arbitrary size and shape provides the impetus to tackle this problem. Here, the

Cartesian components of the acoustic radiation torque produced by an arbitrary

wave in a nonviscous �uid are derived. In particular, we provide an analytical

formula for the acoustic radiation torque upon particles which size is much smaller

than the wavelength that can be used as a tool for acoustic levitation, acoustic

manipulation and acoustic trapping.
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1.1 Historical perspective

This section gives the reader a good background of the area by making an overview

that goes from the pioneer paper of Lord Rayleigh to the latest publications on

experimental observation concerning transfer of angular momentum and new insights

in the mathematical description of this problem, including two articles that the

author of this thesis participated in.

The �rst known observation of torque, due an interaction between an acoustic

wave and a suspended object, was made by Lord Rayleigh [17] in 1882. In his

paper, Lord Rayleigh used an instrument capable of measuring the intensity of aerial

vibrations and predicted that a suspended object interacting with an acoustic wave

could make an object spin. M. Kotani [11] and King [10] calculated the acoustic

radiation torque upon a Rayleigh disk, while Keller [9] extended their formulation for

in�nitively long thin strips and rigid disks of various shapes all used Lord Rayleigh's

observations. However in 1958, Maidanik [12] derived a formula where the torque

was calculated for any incident beam upon any arbitrarily shaped object.

Here, it is important to introduce the reader to a more detailed description

of the acoustic radiation torque phenomenon. The torque studied in the previous

publications were caused by an uneven pressure �eld on the surface of the object,

therefore causing it to spin. However, this is not the only physical process that causes

torque on an scatterer [22, 23]. The other physical process transfers momentum from

the �uid particles in the vicinity of the scatterer to the scatterer. In 1981 Busse [4]

published a paper showing the mathematical formalism of this new kind of torque,

now known as viscous torque.
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1.2 State of the Art

After a period without advances in this �eld, the scienti�c community turned its

attention back to the acoustic radiation torque again when in 2003, Thomas [20]

published a paper where a comparison between acoustic vortices and optical vor-

tices was made. In his paper, he derived a relation between the angular momen-

tum and the linear pseudo-momentum that enabled Marston [26] to deduce that

the torque exerted by a monochromatic nonparaxial acoustic vortex beam, on an

on-axis con�guration, which is proportional to the power absorbed by the object.

Later, Volke-Sepulveda [21] showed in his paper that acoustic beams with angular

moment transfer part of it to the scatterer, predicting, that vortex-beams, like the

acoustic Bessel-beam, would produce a torque in spherical objects through angular

momentum transference.

Besides these advances, it was not yet possible to calculate the torque due

to an arbitrary acoustic wave upon an arbitrary shaped scatterer analytically. The

work published by Maidanik was at that time the most used way to calculate torque,

but to solve the integrals that he proposed, a numerical scheme was often used.

In 2008, Fan [5] analytically calculated the torque of non-absorptive irregularly

shaped small particles, which actually provides a way to calculate the torque upon

rigid arbitrarily shaped bodies, but did not take into account momentum transfered

through absorption. The main focus of our work is to give an analytical formula that

calculates the torque generated by an arbitrary acoustic wave when scattered by a

compressional particle which size is much smaller than the wavelength. Although not

being the main focus of this thesis, we will also outline a formula obtained by Farid,

Lobo and Silva [18] that calculates the torque of an arbitrary acoustic �eld upon an
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object of any geometrical shape and size through a semi-analytical algorithm, and

the results of [14], in which the same authors derived a closed formula for the axial

radiation torque of a progressive, standing and quasi-standing Bessel beam of any

order upon an object of any geometrical shape and size.

1.3 Contributions

In this work we develop a closed formula for the torque of an arbitrary acoustic beam

upon a compressional particle which size is much smaller than the wavelength, i.e. a

Rayleigh spherical particle. In this thesis the author shows that spherical particles

have zero torque unless they are made of an absorptive material. The presented

formula gives the torque of a spherical Rayleigh particle as a function of the velocity

�eld of the incident wave at the origin of the coordinate system, the wave number

(k), and the acoustical parameters of the �uid medium and of the �uid scatterer.

To illustrate the method the author of this thesis derived the torque formula for

the case in which the incident beam is an o�-axis Bessel beam of any order and,

unexpectedly, only the �rst-order Bessel beam will cause the scatterer to spin in the

on-axial con�guration.

It is important to emphasize the di�erence between our formulation and the

one already published by Fan [5]. Although both researches are focused in torque

calculations in the Rayleigh limit, this thesis considers absorptive particles, thus, it

takes into account angular moment transferences between the incident wave �eld and

the scatterer, while Fan's work only takes into account the torque due to Bernoulli

pressure on the surface of the scatterer. This enables us to predict the torque of
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an absorptive sphere, while Fans paper is focused on non-absorptive asymmetric

objects.



Chapter 2

Acoustic wave propagation

In this chapter the basic equations of linear acoustics are described. We also in-

troduce the equations of the acoustic radiation torque, which is the subject of the

present investigation. In order to derive the basic equations of acoustics we intro-

duce the reader to some useful mathematical tools: material derivative and Reynolds

transport theorem.

2.1 Mathematical tools

In �uid dynamics the position of a �uid element changes with time, following an

external perturbation. Thus, it is important to de�ne an operator that corresponds

the rate in which certain quantities vary within the �uid. Here it's worth saying that

a �uid element is not a microscopic entity, but rather a volume so small (in�nitesi-

mal) and in local thermodynamical equilibrium. Therefore, the �eld variations that

describe the �uid, such as particle velocity u, density ρ and pressure p, can be

neglected inside a �uid element .
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Let x(t) be a trajectory of a �uid element, as shown in �gure 2.1, where t is

time of the measure. We would like to measure the time rate in which a quantity

changes along the trajectory, i.e., we want to be able to take time derivatives along

trajectories. Considering f(x(t), t) a smooth function (functions of class C∞), of

the position x(t) at the time t, we de�ne

fx(t) ≡ f(x(t), t), (2.1)

f ′
x
(t) = ∇f(x(t), t) · dx

dt
+
∂f(x(t), t)

∂t
. (2.2)

where the symbol · means scalar product. De�ning the particle velocity as u =

dx/dt, we have

f ′
x
(t) =

(
∂f

∂t
+ u · ∇f

)
(2.3)

Therefore, we can de�ne a time di�erentiation operator which acts along �uid ele-

ment trajectories, the material derivative

D

Dt
≡ ∂

∂t
+ u · ∇. (2.4)

For functions that depends only on the position x(t) and the time t the operator

material derivative is equal to the total derivative in t of the function.

It's important to notice that while partial derivatives acts in a �xed point of

space, the material derivative acts along the trajectory of an element. For example,

the acceleration a(x, t) of a �uid element x is not given by ∂u/∂t, but

a(x(t), t) =
Du

Dt
=
∂u

∂t
+ (u · ∇)u. (2.5)

Another important mathematical tool is the Reynold's transport theorem.

Let f(x(t), t) be a smooth function, Ωt be a region in the Euclidean space in a given
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Figure 2.1: The trajectory of a �uid element (a brown box) is shown. x(t) denotes

the position of the �uid element at a time t in his given trajectory (denoted by a

blue curve).

time t, and u a �uid element velocity. The Reynold's transport theorem asserts that

d

dt

∫
Ωt

fdV =

∫
Ωt

(
Df

Dt
+ f∇ · u

)
dV, (2.6)

=

∫
Ωt

∂f

∂t
dV +

∫
∂Ωt

fu · ndA, (2.7)

where ∂Ωt is the bounding surface of Ωt and n is the outward normal of ∂Ωt. The

�rst term of the above equation gives the local variation of f while the second term

takes into account the �ux of f across the boundary of Ωt. A detailed deduction of

the Reynolds transport theorem is shown in [3].
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2.2 Mass conservation equation

At a given time t consider a �uid region Ωt, the �uid mass m is given by

m =

∫
Ωt

ρ(x(t), t)dV ; (2.8)

where ρ(x(t), t) is the mass density. In the absence of sinks or sources, the �uid

mass inside Ωt is conserved. Hence, the time derivative of m vanish, witch yields

d

dt
m =

d

dt

∫
Ωt

ρ(x(t), t)dV = 0. (2.9)

Using the Reynold's transport (2.6) theorem in the above equation leads us to∫
Ωt

(
Dρ

Dt
+ ρ∇ · u

)
dV = 0. (2.10)

Assuming that ρ is a smooth we �nd

Dρ

Dt
+ ρ∇·u = 0. (2.11)

This is the continuity equation in the di�erential form. This equation guarantees

that the mass is conserved inside an element of the �uid.

2.3 Euler's equation of motion

In this section we use the Newton's law of motion to deduce the equation for balance

of momentum. The linear momentum of a �uid region Ωt is de�ned as

P ≡
∫

Ωt

ρ(x, t)u(x, t)dV. (2.12)

Thus, the Newton's second law of motion can be stated as

F =
d

dt

∫
Ωt

ρudV =

∫
Ωt

ρ
Du

Dt
dV, (2.13)
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where the second equality follows from the Reynold's transport theorem.

The net force on Ωt is due to external forces (also known as body-forces) and

internal forces (surface stress forces). External forces acts per unit of volume, thus

it can be expressed as the product ρb, where b is a vector quantity associated with

the external �eld. Internal forces have short range, i.e., they rapidly decay with

distance. Furthermore, they are responsible for momentum exchange between par-

ticles. Internal forces can be written as a product between a stress tensor T(x(t), t),

with the normal n at the point x on the boundary ∂Ωt.

Using the Cauchy's stress theorem [2]

F =

∫
Ωt

ρ
Du

Dt
dV =

∫
∂Ωt

T(x, t)·ndA+

∫
Ωt

ρ(x, t)b(x, t)dV ; (2.14)

=

∫
Ωt

(∇T + ρb)dV. (2.15)

In this work we assume an ideal �uid, i.e. the �uid does not support tangen-

tial stress. For ideal �uids T = −pI, where I is the identity tensor of second rank,

and p is the pressure. Therefore, one can obtain the Euler's equation of motion:

ρ
Du

Dt
= −∇p+ ρb. (2.16)

2.4 Equations of linear acoustics

A small-amplitude acoustic perturbation can be usually described in terms of devi-

ations from the ambient state of pressure, density and, particle velocity (p0,ρ0,u0).

The corresponding acoustic disturbances are denoted by the functions (p′,ρ′,u′).

Considering that the perturbations are small, we can neglect higher-order terms, i.e,
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just the linear terms will be considered. Hence, the total acoustic �elds read

p = p0 + p′, (2.17)

ρ = ρ0 + ρ′, (2.18)

u = u0 + u′. (2.19)

We consider a homogeneous quiescent media, i.e. the ambient variables are indepen-

dent of position and time, and the reference particle velocity is zero. Substituting

equations 2.17, 2.18 and 2.19 into the mass and momentum conservation equations,

we obtain

∂

∂t
(ρ0 + ρ′) +∇· [(ρ0 + ρ′)u′] = 0, (2.20)

(ρ0 + ρ′)

(
∂

∂t
+ u′· ∇

)
u′ = −∇(p0 + p′), (2.21)

p0 + p′ = p(ρ0 + ρ′). (2.22)

In the last equation it was assumed that the acoustic process is adiabatic, i.e. con-

stant entropy. Therefore the pressure is a function of density only.

Now we expand the excess pressure p′ in a Taylor series, as follow

p′ =

(
∂p

∂ρ

) ∣∣∣∣
0

ρ′ +
1

2

(
∂2p

∂ρ2

) ∣∣∣∣
0

(ρ′)2 + ... (2.23)

where the subscript 0 denotes that the derivatives are evaluated at constant entropy

and ambient density ρ0. Thus, the linear acoustic equations take the form:

∂ρ′

∂t
+ ρ0∇·u′ = 0; (2.24)

ρ0
∂u′

∂t
= −∇p′; (2.25)

p′ = c2ρ′, c2 =

(
∂p

∂ρ

)
0

, (2.26)

where c is the adiabatic speed of sound.
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Now we are able to derive a linear wave equation from equations 2.24-2.26.

In doing so, we eliminate ρ′ from equation 2.24 and take the time derivative of

the resulting equation. Taking the divergent of equation 2.25 and substituting into

equation 2.24 we obtain

∇2p− 1

c2

∂2p

∂t2
= 0. (2.27)

This is the linear wave equation for acoustic pertubations in terms of the pressure.

From equation 2.25 we notice ∂
∂t

(∇× u) = 0, a result that only holds for

ideal �uids. Then one can write u as a gradient of a scalar potential φ. This way we

can express the pressure and the velocity �eld as a function of the same potential:

u = −∇φ; (2.28)

p = ρ0
∂φ

∂t
. (2.29)

The scalar potential φ also satis�es the linear wave equation

∇2φ− 1

c2

∂2φ

∂t2
= 0. (2.30)

Our interest is how time harmonic waves can induce torque upon suspended

particles in the �uid. Hereafter, the position vector x does not depend on time.

Thus, the pressure is described by p(x, t) = p̂(x)e−iωt. where ω is the angular

frequency and, p̂ is the complex amplitude, which depends only in the position

vector. Substituting p(x, t) into the linear wave equation for the pressure we obtain

the Helmholts wave equation.

(
∇2 + k2

)
p̂(x) = 0, (2.31)

where k = ω/c is the wavenumber.
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2.5 Acoustic energy intensity

The acoustic energy w is de�ned as [16]:

w ≡ 1

2
ρ0u

2 +
1

2

p2

ρ0c2
. (2.32)

The term ρ0u
2/2 is called acoustic kinetic energy density, while the second therm

p2/(2ρ0c
2) is the acoustic potential energy. The Lagrangian density function is

de�ned as

L ≡ 1

2
ρ0u

2 − 1

2

p2

ρ0c2
. (2.33)

Other useful quantity is the acoustic intensity I, de�ned as the product of

the sound pressure and the particle velocity [16]:

I = pu. (2.34)

The �rst term of the right hand side of equation 4.21 is zero is because n is

colinear with x.



Chapter 3

Acoustic scattering theory

The acoustic radiation torque is a second-order acoustic phenomenon that occurs

from the interaction between an arbitrary wave �eld upon a suspended object. Thus,

in order to obtain both the incident and scattered acoustic �elds. This chapter

presents the solution of the Helmholtz equation in spherical coordinates given in

terms of the partial wave expansion for the incident, scattered and transmitted

waves. Thereafter, the solutions are obtained for an arbitrary sized sphere and then

simpli�ed to small compressible particles.

3.1 Solutions of the Helmholtz equation in spherical

coordinates

In spherical coordinates (r, θ, φ) this equation takes the form [1]

1

r2

∂

∂r

(
r2∂p̂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂p̂

∂θ

)
+

1

r2 sin2 θ

∂2p̂

∂φ2
+ k2p = 0 (3.1)
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where φ is the azimuthal angle, r is the radial distance and θ the polar angle.

The solution of this equation can be obtained through the method of separation of

variables. We write the pressure amplitude as

p̂(r, θ, φ) = R(r)Θ(θ)Φ(φ), (3.2)

where R(r), Θ(θ) and Φ(φ) are the radial, polar and azimuthal functions. Substi-

tuting this equation into equation 3.1 result

1

Φ

d2Φ(φ)

dφ2
= −m2; (3.3)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
Θ + l(l + 1)Θ = 0; (3.4)

1

r2

d

dr

(
r2dR

dr

)
+ k2R− l(l + 1)R

r2
= 0, (3.5)

where m and l are integers yet to be determined.

The solution to equation 3.3 is given by

Φ(φ) = Φ1e
imφ + Φ2e

−imφ, (3.6)

where Φ1 and Φ2 are constants.

The radial equation 3.5 is the spherical Bessel equation [1], which has the

solution

R(r) = R1jl(kr) +R2yl(kr), (3.7)

where jl and yl are the spherical Bessel and spherical Neumann functions of lth-

order, respectively, and, R1 and R2 are constants. Alternatively, this solution can

be written as [1]

R(r) = R3h
(1)
l (kr) +R4h

(2)
l (kr) (3.8)



3 Solutions of the Helmholtz equation in spherical coordinates 16

where h
(1)
l and h

(2)
l are the spherical Hankel functions of the �rst and second kind

of lth-order, respectively, and, R3 and R4 are constants.

To solve the equation 3.4 for the polar angle θ we introduce η = cos θ. Thus,

the equation becomes

d

dη

[
(1− η2)

dΘ

dη

]
+

[
l(l + 1)− m2

1− η2

]
Θ = 0. (3.9)

The solutions are the associated Legendre functions of the �rst- and second-kinds.

The second-kind Legendre function diverges when η = ±1 [1], thus they are dis-

carded here. Furthermore, when l is an integer then Pm
l (η) = 0 when m > l. Now,

the solution of 3.9 assumes the form

Θ(θ) = Θ1P
m
l (cos θ), (3.10)

where Pm
l (cos θ) is the associated Legendre function and Θ1 is a constant. The

angular functions Φ and Θ can be combined to form the spherical harmonics as

follows [1]

Y m
l (θ, φ) ≡

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)eimφ. (3.11)

Now the general solution of the Helmholtz equation is:

p̂(kr, θ, φ) = p0

∞∑
l=0

l∑
m=−l

(aml jl(kr) + bml yl(kr))Y
m
l (θ, φ), (3.12)

or, alternatively:

p̂(kr, θ, φ) = p0

∞∑
l=0

l∑
m=−l

(sml h
(1)
l (kr) + cml h

(2)
l (kr))Y m

l (θ, φ), (3.13)

where p̂0 is the pressure magnitude and aml , b
m
l , s

m
l and cml are constants to be de-

termined for a speci�c acoustic problem.
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3.2 Scattering by a compressional �uid sphere

Consider that a �uid sphere with density ρ1 and compressional speed of sound c1

and radius a is suspended at the origin of the coordinate system in a host �uid. In

turn, the host �uid is characterized by its density ρ0 and compressional speed of

sound c0. A harmonic wave with arbitrary wave front hits the suspended sphere.

The incident pressure �eld p̂i has to be �nite at the origin of the coordinate

system. Hence, the coe�cients (bml ) multiplying the spherical Neuman functions are

set to zero because the Neumann function diverges at the origin of the coordinate

system. Thus, the incident pressure �eld can be expressed as

p̂i(kr, θ, φ) = p0

∞∑
l=0

l∑
m=−l

aml jl(kr)Y
m
l (θ, φ), (3.14)

where the aml is called beam-shape coe�cient (BSC) of the incident wave, to be

determined for a speci�c acoustic beam. Considering the orthogonal relation of the

spherical harmonics ∫
4π

Y m1∗
n1

(θ, φ)Y m2∗
n2

(θ, φ)dΩ = δn1n2δm1m2 , (3.15)

where dΩ = sin θdθdφ is the solid angle, the integration is taken over the whole solid

angle (4π), the symbol * denotes complex conjugation and δn1n2 is the Kronicker

delta function. Multiplying equation 3.14 for Y m1∗
l1

and using the orthogonality

relation 3.15 the BSC is obtained

aml =
1

p0jl(kR)

∫
4π

p̂i(kR, θ, φ)Y m∗
l (θ, φ)dΩ (3.16)

where R is the radius of a control sphere where p̂i will be evaluated. This equation

correspond to a spherical harmonics transform (SHT) and allows the reconstruction
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of a full 3D �eld just by knowing its values in the surface of the a control sphere,

i.e, we can reconstruct a 3D �eld using 2D information.

The incoming acoustic energy is conserved, i.e. part of it is scattered by the

�uid sphere, and part is transmitted into it. Thus, the total pressure �eld for this

problem is composed of three components, the incident p̂i, the scattered p̂s and the

transmitted p̂r pressure �elds.

The scattered pressure should satisfy the Sommerfeld radiation condition [7]

lim
r→∞

r

(
∂p̂s
∂r
− ikps

)
= 0. (3.17)

This condition states that the scatterer wave is an outgoing spherical wave at in�nity.

Therefore, no energy should be re�ected from in�nity into the domain. The solution

that satis�es the Sommerfeld radiation condition is

p̂s(kr, θ, φ) = p0

∞∑
l=0

l∑
m=−l

sml h
(1)
l (kr)Y m

l (θ, φ), (3.18)

where sml is known as the scatterer coe�cient.

The transmitted pressure �eld into the spherical should be regular at the

origin of the coordinate system. Thus the transmitted pressure can be expressed as

p̂r(kr, θ, φ) = p0

∞∑
l=0

l∑
m=−l

tml jl(kr)Y
m
l (θ, φ). (3.19)

where tml is the transmitted BSC.

In order to obtain a unique solution throughout the wave propagation domain

both pressure and particle velocity should be continuous across the �uid sphere

surface. Accordingly,

p̂i
∣∣
r=a

+ p̂s
∣∣
r=a

= p̂r
∣∣
r=a

(3.20)

ûi
∣∣
r=a

+ ûs
∣∣
r=a

= ûr
∣∣
r=a

, (3.21)
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where ûi, ûs and ût are the velocity acoustic �elds of the incident, scattered and

transmitted waves respectively. The particle velocity can be written in terms of the

pressure �eld as

û =
1

ikρ0c0

∇p̂. (3.22)

Substituting equations 3.14, 3.18, 3.19 into equations 3.20 and 3.21, using

equation 3.22 and noting that the spherical harmonics are linearly independent, we

can match them to �nd the transmitted and scattered coe�cients to be

sml = aml
γj

′

l(ka)jl(k1a)− jl(ka)j
′

l(k1a)

γh
(1)′

l (k0a)jl(k1a)− h(1)
l (ka)j

′
l(k1a)

; (3.23)

tml = −a
m
l jl(ka) + sml h

(1)
l (ka)

jl(k1a)
; (3.24)

where the symbol ′ denotes di�erentiation with respect to the functions argument,

γ = kρ1/(k1ρ0) is the impedance index and k1 the wavenumber inside the scatterer

sphere.

3.3 Rigid sphere scattering

A rigid sphere is a sphere that re�ects all the incoming energy. This behavior can

be seen as a limiting case of the �uid sphere with ρ1 → ∞ and c1 → ∞. Applying

this limit in equation 3.23 we obtain the rigid sphere scattering coe�cient as

sml = − j
′

l(ka)

h
(1)′

l (ka)
aml . (3.25)

3.4 Numerical calculation of the BSCs

In this section an algorithm to solve equation 3.16 numerically will be presented.

These algorithm will be used to aid with the validation of the analytical torque
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formula presented in this thesis.

This algorithm will enable the calculation of the aml for an arbitrary shaped

beam only by knowing its value on a virtual spherical surface. In particular, this

algorithm has been used in reference [18].

Substituting equation 3.11 into equation 3.16

aml =

√
(2l + 1)(l −m)!

4πp2
0jl(kR)2(l +m)!

∫ 1

−1

(
Pm
l (cos θ)

×
∫ 2π

0

p̂ (kR, θ, ϕ) e−imϕdϕ

)
d(cos θ). (3.26)

The Gauss-Legendre quadrature is used to solve the polar integration, and a simple

left point rule is used for the azimuthal integration. De�ning θn = arccos tn, with

tn (n = 1, 2...N) being the nth root of the Legendre polynomial, and ϕj = 2πj/M ,

one can �nd

aml =

√
π(2l + 1)(l −m)!

M2p2
0jl(kR)2(l +m)!

N∑
n=1

ωnP
m
l (tn)

×

[
M−1∑
j=0

p̂ (kR, θn, ϕj) e
−2iπmj/N

]
. (3.27)

where ωn is the weight coe�cient in the Gauss-Legendre quadrature method. The

term in brackets in the above equation can be solved by the FFT algorithm, thus

the algorithm to compute equation 3.27 consumes time O(NM lnM).

3.5 Rayleigh scattering

We turn our attention to the scattering problem of acoustic waves by small particles

compared to the incident wavelength (Rayleigh limit). In particular, rigid particles

are shown in this section while the �uid case will be shown latter. According to
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equation 3.23 to obtain the scattering coe�cients one has to calculate the BSC of

the incident waves.

To obtain the scattering coe�cients wave we notice from equation 3.23 that

these coe�cients can be decomposed, thus sml = sla
m
l , thus sl = −j ′l(ka)/h

(1)′

l (ka).

Now considering the asymptotic expansion of the Bessel and Hankel functions

j
′

n(x) =
2nnxn−1n!

(2n+ 1)!
− 2n(n+ 2)xn+1

(2n+ 3)!
+O(xn+3), (3.28)

h
′(1)
n (x) ≈ i(n+ 1)

(2n)!

2nn!
x−n−2. (3.29)

Substituting these equations into the sl de�nition will reveal that the dominant

term is proportional to (ka)2l+1. In the Rayleigh limit ka� 1, we consider only the

monopole (l = 0) and dipole (l = 1) terms

s0 = i
(ka)3

3
− i(ka)5

5
+

(ka)6

9
+O((ka)7); (3.30)

s1 = −i(ka)3

6
+ i

(ka)5

20
+

(ka)6

36
+O((ka)7). (3.31)

In order to calculate the BSC of incident wave we expand pressure �eld in

a Taylor series around the particle position (the origin of the coordinate system

x = 0 = (0, 0, 0)

p̂(x) = p̂(0) +Rx̂ · ∇p̂(0) +
R2

2

3∑
i=1

3∑
j=1

x̂ix̂j
∂p̂(x)

∂xi∂xj

∣∣∣∣
x=0

+O(R3), (3.32)

where x = (x1, x2, x3) is the position vector in Cartesian coordinates and x̂ = x/R

with R =
√
x2

1 + x2
2 + x2

3. Substituting the spherical Bessel function expansion for

small arguments [1]

jn(x) ≈ xn
2nn!

(2n+ 1)!
, (3.33)



3 Rayleigh scattering 22

and equation 3.32 int equation 3.16 one �nds

aml =
(2l + 1)!!

p0(kR)l

[
p̂(0)

∫
4π

Y m∗
l (θ, φ)dΩ + ikRρ0c0û

∣∣
x=0
·
∫

4π

x̂Y m∗
l (θ, φ)dΩ +

R2

2

3∑
i=1

3∑
j=1

∂p̂(x)

∂xi∂xj

∣∣∣∣
x=0

∫
4π

xixjY
m∗
l (θ, φ)dΩ +O(R3)

]
,(3.34)

where R and (2n)!! = 2nn! and (2n+ 1)!! = (2n+ 1)!/(2nn!). Note that we used the

equation 3.22 and assumed that the pressure �eld doesn't varies inside the control

sphere in the limit R → 0. To perform the integrals of equation 3.34 we used

x1 = sin θ cosφ, x2 = sin θ sinφ and x3 = cos θ. Therefore, the monopole (l = 0)

and dipole (l = 1) terms are found to be

a0
0 =

2
√
π

p0

p̂(0), (3.35)

a1
1 =

√
6πρ0c0

p0

(−iûx(0)− ûy(0)), (3.36)

a0
1 =

2
√

3πiρ0c0

p0

ûz(0), (3.37)

a−1
1 =

√
6πρ0c0

p0

(iûx(0)− ûy(0)), (3.38)

where ûx, ûy, ûz are the Cartesian components of the particle velocity of the incident

wave.



Chapter 4

Acoustic radiation torque

In this chapter, we derive a general formula for the Cartesian components of the

acoustic radiation torque produced by a single frequency incident beam of arbitrary

wavefront on an object of any geometrical shape in a nonviscous �uid. Subsequently

the obtained formula will be applied to a small scatterer in the Rayleigh limit. This

consideration will allow the acoustic radiation torque to be calculated as a function

of the incident beam and the properties of the scatterer (density, speed of sound,

radius, and wavenumber). Part of the results outlined here were recently published

in references [18, 14].

4.1 Acoustic radiation torque

In order to calculate the acoustic radiation torque we need to perform some oper-

ations to the the mass conservation equation 2.11. Multiplying it by u and using

Euler's equation 2.16 we obtain

(∂ρu)

∂t
+ ρ(u · ∇)u + u[∇ · (ρu)] = −∇p. (4.1)
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From equation 4.1 it follows that

∂(ρu)

∂t
+ ρ∇uu = −∇p, (4.2)

where uu is a dyad formed by the tensorial product between u with itself, and the

following identity was used [1]

∇uu = u · ∇u + u∇ · u. (4.3)

Here, we will carry our calculations up to second order-terms, simplifying the above

equation to

∂(ρu)

∂t
+ ρ0∇uu = −∇p′, (4.4)

where p′ is the excess of pressure p− p0. De�ning the stress tensor of linear momen-

tum as

T ≡ p′I + ρ0uu, (4.5)

the conservation of linear momentum for an ideal �uid takes the form

∂

∂t
(ρu) +∇ ·T = 0, (4.6)

note that the divergence of the stress tensor T is the contraction of a 2nd-order

tensor which results in a vector. Now we need to �nd the excess of pressure p′ up

to second order in the acoustic �elds. Using u = −∇φ in Euler's equation one can

obtain the following relation

∇
[
∂φ

∂t
+

1

2
|∇φ|2

]
= −∇p

ρ
. (4.7)

From thermodynamics we know that the enthalpy per unit mass w obeys the relation

dw = Tds+ dp/ρ, where T is the temperature and s are the entropy per unit mass.
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Here we assume that the wave propagation in the �uid is an adiabatic process ds = 0.

Therefore ∇w = ∇p/ρ, which leads to

w = −∂φ
∂t
− 1

2
|∇φ|2 + C, (4.8)

where C is a constant. We can expand p in a Taylor series in w as follows:

p′ =

(
∂p

∂w

) ∣∣∣∣
0

w +
1

2

(
∂2p

∂w2

) ∣∣∣∣
0

w2 + ... (4.9)

Using thermodynamic relations (∂w/∂p)
∣∣
s,0

= 1/ρ and (∂2p/∂w2)
∣∣
s,0

= ρ/c2 we

obtain

p′ =
1

2

ρ0

c2
0

(
∂φ

∂t

)2

− 1

2
|∇φ|2, (4.10)

where C = 0 because we have an in�nite medium and no constrain has to be satis�ed.

Replacing u = −∇φ and ∂φ/∂t = p/ρ0 we obtain

p′ =
1

2ρ0c2
0

p2 − 1

2
ρ0u

2. = −L (4.11)

where L is the Lagrangian density. Thus, the stress-tensor T can be written as

T ≡ −LI + ρ0uu. (4.12)

Applying the vector product (x×) in equation 4.13 results

∂

∂t
(x× ρu) +∇ ·T′ = 0, (4.13)

where

T
′
= x×T (4.14)

is the angular stress tensor. Equation 4.13 represents the angular momentum con-

servation in the �uid.
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The acoustic radiation torque is de�ned in terms of the time-average of the

angular stress-tensor on an object. Thus, we de�ne the time-average of an oscillating

single-frequency function f(t) as

〈f(t)〉 ≡ 1

δt

∫ δt

0

f(t)dt, (4.15)

where δt is the oscillation period. It follows that the time-average of the product of

two complex functions f(t) = f̂ e−iωt and g(t) = ĝe−iωt is given by

〈f(t)g(t)〉 =
1

2
Re
[
f̂ ∗ĝ
]
, (4.16)

where the symbol ∗ stands for complex conjugation. By taking the time average of

equation 4.13 one obtains

∇ · 〈T′〉 = 0. (4.17)

Note that the time-average of the time-derivative operator vanishes.

Consider now an object with volume R′ and surface denoted ∂R′ suspended

in a �uid. The time-averaged torque, or the radiation torque, exerted by a wave

upon the object is de�ned by

〈N〉 ≡
∫
∂R′
〈T′〉 · dA, (4.18)

where dA = ndA is the vector surface element, with n being the outward unit

normal vector. Assume that this same object is surrounded by a control sphere of

radius R and surface ∂R as shown in �gure 4.1, in the absence of any sources or sinks

within the control sphere, we can use the Gauss divergence theorem in equation 4.17

to obtain ∫
∂R

〈T′〉 · dA +

∫
∂R′
〈T′〉 · dA = 0, (4.19)
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where ∂R is the surface of the control sphere. Hence, the radiation torque on the

object is given by

〈N〉 = −
∫
∂R

〈T′〉 · dA. (4.20)

Therefore, the radiation torque on the object can be calculated over any surface

that encloses the object. In particular, we assume that the control surface is in

the far-�eld region (many wavelenghts away from the object). Note that instead of

solving the integral at the surface of an arbitrary shaped object, we can evaluate it

at a spherical surface in the far-�eld.

Using equation 4.12 and 4.14 into equation 4.20 we have

〈N〉 =

∫
∂R

〈L(x× n)〉dA−
∫
∂R

ρ0〈(x× u)u〉 · dA, (4.21)

= −
∫
∂R

ρ0〈(x× u)u〉 · dA. (4.22)

The average value of the �ux of momentum, ρ0〈uu〉, can be written in terms

of the incident and the scattered �eld [24]:

ρ0〈uu〉 = ρ0〈uiui〉+ ρ0〈usus〉+ ρ0〈uius〉+ ρ0〈usui〉. (4.23)

Noting that the incident �eld will not cause any torque to the sphere by itself we

can discard the �rst term of the right hand side of the equation 4.23. Substituting

equation 4.23 and u = −∇φ in equation 4.21 one �nds

N = −ρ0r
2

2
Im

[∫
4π

(
∂φ∗i
∂r
L̂φs − φ∗i L̂

∂φs
∂r

+
∂φ∗s
∂r
L̂φs

)
dΩ

]
; (4.24)

where [8] L̂ = −i(r×∇) is the angular momentum operator. Now we are going to

specify the scatterer as a �uid sphere. Using equations 3.14 and 3.18 one can �nd

N = −ρ0kφ
2
0r

2

2
Im

[ ∑
l,m,l1,m1

sm1
l1

(
am∗l j

′

l(kr)h
(1)
l1

(kr)− am∗l jl(kr)h
(1)′

l1
(kr)

+ sm∗l h
(1)′

l (kr)h
(1)
l1

(kr)

)∫
4π

Y m∗
l L̂Y m1

l1
dΩ

]
. (4.25)
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In the far-�eld region (kr →∞) the spherical functions can be written as [8]

jn(x) ≈ 1

kr
sin
(
kr − nπ

2

)
; (4.26)

h(1)
n (x) ≈ i−n

eikr

ikr
. (4.27)

Now we just have to solve L̂Y m1
l1

. Introducing the ladder operators L̂+ = L̂x + iL̂y

and L̂− = L̂x + iL̂y, one can �nd:

L± = bml Y
m±1
l ; (4.28)

Lz = mY m
l , (4.29)

where bml =
√

(l ∓m)(l ±m+ 1). Replacing these equations in 4.25 we can �nd

N = πa3E0τ , (4.30)

where E0 = ρ0k
2φ2

0/2 is the characteristic energy density. The dimensionless radia-

tion torque τ is

τx = − 1

2π(ka)3
Re
∑
l,m

(aml + sml )(bml s
m+1∗
l + b−ml sm−1∗

l ), (4.31)

τy = − 1

2π(ka)3
Im
∑
l,m

(aml + sml )(bml s
m+1∗
l − b−ml sm−1∗

l ), (4.32)

τz = − 1

π(ka)3
Re
∑
l,m

m(aml + sml )sm∗l . (4.33)

The torque upon any target object by a single frequency wave with arbitrary wave-

front can be calculated by these formulas. One can simplify the formula of τx and

τy by de�ning a new variable τ⊥:

τ⊥ = − 1

2π(ka)3

∑
l,m

[
(aml + sml )bml s

m+1∗
l + (am∗l + sm∗l )b−ml sm−1

l

]
, (4.34)

then we have a new de�nition for the x and y components of the torque: τx = Re [τ⊥]

and τy = Im [τ⊥].
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Now, we are able to calculate a simpli�ed formula for the Rayleigh limit. We

already shown that only the monopole l = 0 and the dipole l = 1 terms will be

relevant for the case of a �uid sphere scattering. Thus, for a very small spherical

scatterer the torque can be rewritten as

τ⊥ = −
√

2
(
Re
[
s∗1
]

+ |s1|2
)

π(ka)3

(
a−1

1 a0∗
1 + a0

1a
1∗
1

)
, (4.35)

τz = −
Re
[
s∗1
]

+ |s1|2

π(ka)3

(
|a1

1|2 − |a−1
1 |2

)
. (4.36)

We already have the beam shape coe�cients for the incident wave, thus, replacing

equations 3.37 and 3.38 into the above equations we �nd:

τ⊥ = −
24ρ2

0c
2
0

(
Re
[
s∗1
]

+ |s1|2
)

p2
0(ka)3

(iIm [ûxû
∗
z]− Im [ûyû

∗
z]) (4.37)

τz = −
24ρ2

0c
2
0

(
Re
[
s∗1
]

+ |s1|2
)

p2
0(ka)3

Im
[
ûyû

∗
x

]
. (4.38)

The term Re
[
s∗1
]

+ |s1|2 deserves more attention. For a non absorptive scatterer

the object-shape coe�cient can be written as [6] sl = (ei2δl − 1)/2, where δl is the

phase shift of the l-th partial wave. Replacing this de�nition into equations 4.37

and 4.38 we �nd that τz = τx = τy = 0. A physical explanation for this is that as

we are considering a time dependence of e−iωt, there's no symmetry break in the

axis of propagation, thus, there's no preferential direction for the torque. If we add

absorption to the sphere, the �eld inside it will now have its symmetry broken, thus

creating a preferential direction for the sphere to spin.

We have not yet introduced the reader to the concept of an absorptive

medium. In this work we use the model described by Szabo [19], where the ab-

sorption varies linearly with the frequency. He shows that the wavenumber an
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absorptive sphere can be written as:

k1 = kc0

(
1

c1

+ i
α0

2π

)
(4.39)

where α0 is the absorption coe�cient.

Referring to equation 3.23 the dipole term for the �uid sphere is given by

[25]

s1 = −i
[

4(π2ρ0ρ1c
2
1 + π2ρ2

1c
2
1 − π2ρ2

0c
2
1 − π2ρ0ρ1c

2
0) + α2

0ρ0ρ1c
2
0c

2
1

20π2c2
1(ρ0 + 2ρ1)2

]
(ka)5

− α0ρ0ρ1c
2
0

5π(ρ0 + 2ρ1)2c1

(ka)5 − (ρ0 − ρ1)2

9(ρ0 + 2ρ1)2
(ka)6 − i (ρ0 − ρ1)

3(2ρ1 + ρ0)
(ka)3. (4.40)

In the term |s1|2 the dominant term in the Rayleigh limit is of order (ka)6 , therefore

the radiation torque for absorptive �uid sphere is given by:

τ⊥ =
24α0ρ

3
0ρ1c

4
0

5πp2
0c1(ρ0 + 2ρ1)2

(ka)2 (iIm [uxu
∗
z]− Im [uyu

∗
z]) , (4.41)

τz =
24α0ρ

3
0ρ1c

4
0

5πp2
0c1(ρ0 + 2ρ1)2

(ka)2Im
[
uyu

∗
x

]
, (4.42)

From this formula one can see that it is invariant under axis rotations. If we make

x→ y, y → z, z → x we can see that we have the exact same formula for the torque,

as we should expect.
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Figure 4.1: Description of the radiation torque problem produced by a single fre-

quency wave on an arbitrarily shaped object. The object has volume R′, surface

∂R′ and it is surrounded by a control sphere with radius R and surface ∂R.



Chapter 5

Results

In this chapter, we apply the developed acoustic radiation torque theory to acoustic

Bessel beams. Moreover, we provide the validation of the acoustic radiation torque

formulas in the Rayleigh limit. Part of the results outlined here were recently pub-

lished in references [18, 14]

5.1 Acoustic Bessel beams

The case in point is the acoustic radiation torque produced by a Rayleigh particle

by a Bessel beam. A class of waves known as Bessel beams has been used for

microparticle manipulation. A hallmark feature of Bessel beams is that they are

limited-di�raction beams. Such a feature makes them highly desirable in various

applications for particle manipulation, because they possess a long depth of �eld,

which may range over many wavelengths. Furthermore, an exquisite property of

Bessel vortex beams is that they carry angular momentum along the propagation

direction. The angular momentum of acoustic vortex beams can be transferred to a
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suspended object in the wavepath according to the object scattering and absorbing

properties.

The pressure amplitude of the Bessel beam of order m propagating along the

z-axis centered at (x0, y0) is given by [13]

p = p0e
ikzzJm(kr

√
(x− x0)2 + (y − y0)2)eimφ (5.1)

where kz = k cos β, kr = k sin β, Jm is the m-th order cylindrical Bessel function

and β is the half-cone angle formed by the wavevector k = (kr, kz) to the beam axis

of propagation. In �gure 5.1 a �rst order bessel beam with β = 70◦ is shown in the

xy-plane.
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Figure 5.1: The real part of the �rst-order Bessel beam with β = 70◦ in the xy-plane.

The beam-shape coe�cient for the Bessel beam in the on-axis con�guration
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(x0 = 0, y0 = 0) is given by [15]

aml =

√
4π(2l + 1)

(l −m)!

(l +m)!
il−mH(l −m)Pm

l (cos β), (5.2)

where H is the Heaviside step-function for which H(x) = 1, for x > 0 and H(x) = 0,

otherwise.

5.2 Validation

It will be analyzed here the behavior of equation 4.42 with ka varying from 0.001

to 5. Our goal here is to show the accuracy of this equation in the Rayleigh limit.

To do that we compare the result obtained with this equation to that from equation

4.33. For this purpose a polyurethane sphere (ρ1 = 1130 kg/m3, c1 = 1468 m/s and

α0 = 1.49 Np· MHz/m ) immersed in water (ρ0 = 1000 kg/m3 and c0 = 1500 m/s).

The incident �eld is considered a �rst-order Bessel beam traveling along the z-axis.

The incident beam frequency is set to 1 MHz.

Equation 4.33 has an in�nite summation that has to be truncated for compu-

tational purposes, in this example we set L = 10 and the error in the reconstructed

wave was smaller than 0.1%. We used equation 5.2 for the BSC instead of calculat-

ing them numerically. In �gure 5.2 we present the dimensionless radiation torque

produced by the �rst-order Bessel beam with β = 15◦ on a polyurethane particle

located at the beam axis of propagation. We have a very good agreement with

both expressions (general formulation and the torque in the Rayleigh limit). When

ka = 1 the expressions yield equivalent results, but as ka increases the results starts

to be apart. While the torque calculated by the Rayleigh approximation increases

monotonically the torque calculated by equation 4.38 appears to saturate at some
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point. At ka = 1 we have an error of 0.59%, and at ka = 0.5 we have an error

of 0.09%. As we can see, the error keeps growing as ka increases. At ka = 2 the

error is already 7% and at ka = 3 it is 15%. This happens because as ka increases

the contribution from the terms that were left out of the torque formula, as the

quadrupole term (l = 2), begin to have more in�uence on the the torque.

0 1 2 3 4 5
0

1

2

3
x 10

−4

ka

τ z

 

 

General formulation
Rayleigh limit

Figure 5.2: Comparison between the radiation torque in the Rayleigh limit and the

general formula, given in equation 4.33, for the torque. As one should expect the

formulas are equivalent for small ka, and they grow apart when ka increases.
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5.3 On-axial radiation torque

Now we obtain the axial radiation torque τz in an on-axis con�guration on a sphere.

Substituting equation 5.2 on equation 4.33 one �nds the axial dimensionless torque

to be [14]

τz = − 4m

(ka)3

∞∑
n=m

{
Pm
n (cos β)2(2n+ 1)

(n−m)!

(n+m)!
(Re
[
sl
]

+Re
[
sl
]2

+ Im
[
sl
]2}

. (5.3)

This formula allows the calculation of the torque produced by a m-th order Bessel

beam on an spherical absorptive target with any size.

If we consider that the object in the Rayleigh limit equation 5.3 can be

further simpli�ed. In this equation we notice that only the �rst-order Bessel beam

will produce torque. The radiation torque is proportional to the order of Bessel

beam, thus the zero-order Bessel beam does not produces axial torque. On the

other hand the dominant term of equation 5.3 is proportional to sm, where m is the

order of the beam. Thus, in the Rayleigh limit only the �rst order Bessel beam will

produce torque.

To �nd the torque of a �rst-order Bessel beam upon a Rayleigh particle,

using equation 4.42, we only need to calculate the velocity �eld of the �rst-order

Bessel beam at the origin of the coordinate system. With the linearized relation,

û = ∇p̂/(ikρ0c0), we can see that we only need to calculate the gradient of equation

5.1, thus we �nd

ûx(0) = −i sin β

2c0ρ0

; (5.4)

ûy(0) =
sin β

2c0ρ0

; (5.5)

ûz(0) = 0. (5.6)
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Using these equations on equation 4.42 we �nd:

τz =
6α0ρ0ρ1c

2
0

5π(ρ0 + 2ρ1)2c1

(ka)2 sin2 β. (5.7)

This equation 5.7 shows that the torque induced by a on axis �rst-order Bessel beam

on a Rayleigh particle has a quadratic dependence on the size factor of the sphere

ka . It reaches it's maximum when β = 90◦. Note also that axial torque caused by

a Bessel beam in the Rayleigh limit is always positive.

Figure 5.3 shows the dimensionless radiation torque in the z-direction caused

by a �rst-order Bessel beam upon a polyurethane sphere as a function of the az-

imuthal angle β and the sphere size factor ka. As we expected, the torque increases

as ka increases, and we get the maximum value for a �xed ka when β = π/2.

5.4 O�-axial radiation torque

As the previous analysis was focused only in on-axis con�gurations, now we will

derive the Rayleigh torque for o�-axis Bessel beams of arbitrary order. According

to equation 5.1 the particle velocity �eld for the m-th order Bessel beam is given by

ûx(0) = m
ieimθ0 sin θ0Jm (krr0)

r0

,

−e
imθ0kr cos θ0 [Jm−1 (krr0)− Jm+1 (krr0)]

2
, (5.8)

ûy(0) = −mieimθ0 cos θ0Jm (krr0)

r0

−e
imθ0kr sin θ0 [Jm−1 (krr0)− Jm+1 (krr0)]

2
, (5.9)

ûz(0) = ieimθ0krJm (krr0) , (5.10)

where θ0 = arctan (y0/x0) and r0 =
√
x2

0 + y2
0.
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Figure 5.3: The axial radiation torque τz generated by the �rst order Bessel beam

on the polyurethane sphere as a function of the scatterer size factor ka and the half

cone-angle β.

For the sake of simplicity we will not present the radiation torque in terms

of the particle velocity given by equations 5.8, 5.9 and 5.10. The resultant formula

is too big and do not add new insights to the analysis of the problem. The obtained

radiation torque formula was coded in MATLAB (Mathworks Inc.).

In the o�-axis con�guration the zero-order Bessel beam traveling along the z

direction will break the symmetry in the xy-directions, giving rise to the transversal

components of the acoustic radiation torque (τx, τy). However, this beam does not

have angular momentum, hence the axial torque remains zero. Figure 5.4 shows

the transversal torque caused by a zero-order Bessel beam, with β = 70◦, upon a
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polyurethane sphere, with ka = 0.1, immersed in water. Here we varied the relative

position between the center of the sphere and the center of the beam within the

range −6.4 ≤ kx0, kyo ≤ 6.4.
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Figure 5.4: The transversal torque generated by the zero-order Bessel beam, with

β = 70◦, on the polyurethane sphere, with ka = 0.1, immersed in water as a function

of the relative position between the scatterer and the center of the beam.

In �gure 5.5, the transversal torque caused by a �rst-order Bessel beam (β =

70◦), on a polyurethane sphere (ka = 0.1) is shown. Here we varied the relative

position between the center of the sphere and the center of the beam within the
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range −6.4/k ≤ x0, yo ≤ 6.4/k. The associated vector �eld is plotted on top of

the z component of the torque normalized to one, with the normalization factor

being 3.009 × 10−5 Nm. We can see that the z component of the torque changes

sign a few times. The main contribution for the axial component of the torque τz

is given by transfer of angular momentum from the beam, thus if the beam rotates

in the clockwise direction the scatterer will rotate in the same direction in the on-

axis con�guration. When the beam is in the o�-axis con�guration we may see the

axial component of the torque changing its sign in a region that corresponds to the

beam axis being almost tangent to the sphere surface. Moreover, the beam angular

momentum might be transferred to the sphere similarly to the transferring process

of two rotating gears in contact. The angular momenta of the two gears in contact

have opposite directions.

Figures 5.6 and 5.7 are the transversal torque caused by a second- and third-

order Bessel beam(β = 70◦), respectively, on a polyurethane sphere, with ka = 0.1.

The associated vector �eld is plotted on top of the z component of the torque

normalized to one, with the normalization factor being 9.8850 × 10−6 Nm for the

second-order Bessel beam and 6.6064 × 10−6 Nm for the third-order Bessel beam.

The relative position between the center of the sphere and the center of the beam

was varied within the range −6.4/k ≤ kx0, kyo ≤ 6.4/k. Note that we still have

the gear e�ect happening in these two cases. The axial torque τz in the region

corresponding to the beam axis being almost tangent to the sphere surface have

negative sign, as expected.
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Figure 5.5: The transversal torque plotted upon the z component generated by a

�rst-order Bessel beam (β = 70◦) on a polyurethane sphere (ka = 0.1) immersed on

water as a function of the relative position between the scatterer and the center of

the beam. The vector �eld is plotted on the top of the axial radiation torque.
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Figure 5.6: The transversal torque generated by a second-order Bessel beam (β =

70◦) on a polyurethane sphere (ka = 0.1) as a function of the relative position

between the scatterer and the center of the beam plotted upon the respective z

components of the torque normalized to one.
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Figure 5.7: The transversal torque generated by a third-order Bessel beam (β = 70◦)

on a polyurethane sphere (ka = 0.1) as a function of the relative position between

the scatterer and the center of the beam plotted upon the respective z components

of the torque normalized to one.
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Conclusion

The acoustic torque produced on a spherical Rayleigh particle by an arbitrary acous-

tic wave was derived in terms of the parameters of the scatterer (the density ρ, the

sound velocity in the scatterer �uid c and the radius of the scatterer a), parameters

of the host �uid (its density ρ and the velocity of sound propagation c), and, the

velocity �eld of the incident wave.

Speci�cally, this thesis derived a formula for the case in which the incident

beam is a Bessel beam of any order, particularly analyzing the zero- and �rst-order

Bessel beams in an on- and o�-axis con�gurations. It shows that in the on-axis

con�guration only the �rst-order Bessel beam will cause the object to spin, but as

the scatterer is taken out of the center of the beam, any order Bessem beam will

cause a torque in the object. In addition, the o�-axis con�guration reverses the sign

of the torque depending on the relative position between the object and the center

of the beam.

If we calculate the acoustic radiation force acting on a Rayleigh particle we

will obtain the full dynamics of the particle. A calculation very similar to the
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one presented here for the acoustic radiation torque can be carried out to �nd the

acoustic radiation force on the particle, and it can be seen as a natural extension of

this work.
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