
Trabalho de Conclusão de Curso

An Empirical Study on the Frequency of
Disciplined and Undisciplined Annotations in

Preprocessor-Based Systems in C and C++

José Carlos Viana Filho
jcvf@ic.ufal.br

Orientadores:
Márcio de Medeiros Ribeiro

Ana Carla Gomes Bibiano

Maceió, September de 2021

José Carlos Viana Filho

An Empirical Study on the Frequency of
Disciplined and Undisciplined Annotations in

Preprocessor-Based Systems in C and C++

Monografia apresentada como requisito parcial para
obtenção do grau de Bacharel em Ciências de Com-
putação do Instituto de Computação da Universidade
Federal de Alagoas.

Orientadores:

Márcio de Medeiros Ribeiro

Ana Carla Gomes Bibiano

Maceió, September de 2021

Catalogação na fonte

Universidade Federal de Alagoas
Biblioteca Central

Divisão de Tratamento Técnico
 Bibliotecária: Lívia Silva dos Santos – CRB-4 – 1670

 V614e Viana Filho, José Carlos.
 An empirical study on the frequency of disciplined and undisciplined annotations
 in preprocessor –based systems in C and C++ / José Carlos Viana Filho. – 2021.
 23 f.:il.

 Orientador: Márcio de Medeiros Ribeiro.
 Coorientadora: Ana Carla Gomes Bibiano.
 Monografia (Trabalho de Conclusão de Curso em Ciência da Computação) –
 Universidade Federal de Alagoas. Instituto de Computação. Maceió, 2021.

 Bibliografia: f. 22-23

 1. C e C++ (linguagens de computador). 2. Software. 3. Refatoração. 4. Anotações
 Condicionais. I. Título.

 CDU: 004.43

Monografia apresentada como requisito parcial para obtenção do grau de Bacharel em En-
genharia de Computação do Instituto de Computação da Universidade Federal de Alagoas,
aprovada pela comissão examinadora que abaixo assina.

Márcio de Medeiros Ribeiro - Orientador
Universidade Federal de Alagoas

Ana Carla Gomes Bibiano - Coorientador
Pontificia Universidade Catolica do Rio de Janeiro

Baldoino Fonseca dos Santos Neto - Examinador
Instituto de Computação

Universidade Federal de Alagoas

Thiago Damasceno Cordeiro - Examinador
Instituto de Computação

Universidade Federal de Alagoas

Maceió, September de 2021

Agradecimentos

Agradeço aos meus pais, meus irmãos, minha esposa (te amo!), meus amigos e conhecidos,
meus professores, meu orientador e minha co-orientadora, por conseguir concluir esse trabalho.
Tudo o que faço carrega um pouco do eu sou, mas eu sou todos os relacionamentos e interações
acumulados ao longo da vida. Obrigado por tudo.

i

Resumo

As linguagens de programação C e C++ permitem uma ferramenta de preprocessador para es-
crever anotações condicionais. Comunidades de software relevantes tais como Linux e Apache
tem usado anotações condicionais em seus projetos. No entanto, desenvolvedores escrevem
estas anotações condicionais de uma forma indisciplinada muitas vezes. A aplicação de an-
otações condicionais indisciplinadas ou anotações indisciplinadas pode ter um efeito negativo
sobre a legibilidade do código e o aumento da propensão de erros. Ao longo desses últimos
10 anos, estudos empíricos tem investigado como o uso de anotações indisciplinada tem afe-
tado a qualidade do software e como disciplinar essas anotações. Uma estratégia proposta
para resolver anotações indisciplinadas é aplicar refatorações. Refatoração é uma transfor-
mação de código que almeja melhorar a qualidade do código preservando o comportamento
do programa. No contexto de anotações disciplinadas, uma refatoração almeja disciplinar uma
anotação indisciplinada. No entanto, não existem evidências empíricas sobre até que ponto o
número de anotações disciplinadas tem aumentado e/ou diminuído ao longo desses últimos dez
anos. Principalmente, se desenvolvedores aplicam refatorações sobre anotações disciplinadas e
se essas refatorações disciplinam essas anotações. Baseado nessas limitações da literatura, esse
estudo almeja verifica se a frequência de anotações indisciplinadas e disciplinadas ao longo
desses últimos dez anos, e se desenvolvedores aplicam refatorações sobre anotações indisci-
plinadas na prática. Nós investigamos 23 projetos de software que foram investigados dez anos
atrás sobre anotações indisciplinadas. Nossos resultados apresentam que somente 10 projetos
de sobre tiveram um aumento significativo no número de anotações disciplinadas nesses últi-
mos dez anos, nós também apresentamos 19 refatorações que foram aplicadas na prática. Nós
observamos que desenvolvedores refatoram não sobre anotações disciplinadas, mas também
anotações indisciplinadas. Esses resultados podem motivar estudos futuros para investigar se
contribuições e recomendações de refatorações existentes tem ajudado desenvolvedores para
disciplinar anotações ou se os desenvolvedores tem usado o conhecimento empírico existente
para resolver anotações disciplinadas.

Palavras-chave: Anotações Condicionais, Anotações Disciplinadas, Anotações Indisci-
plinadas, Refatoração, Mineração de Repositório de Sistemas de Softwares

ii

Abstract

The C and C++ programming languages allow a preprocessor tool to write conditional annota-
tions. Relevant software communities such as Linux and Apache have used conditional annota-
tions in their software projects. However, developers write these conditional annotations in an
undisciplined way. The application of undisciplined conditional annotations or undisciplined
annotations can have a negative effect on code readability and increasing the error proneness.
Over the last ten years, empirical studies have investigated how the use of undisciplined an-
notations can affect the software quality and how to discipline these annotations. A proposed
strategy to solve undisciplined annotation is to apply refactorings. Refactoring is a code trans-
formation that aims to improve the code quality, preserving the program behavior. In the context
of undisciplined annotations, one refactoring aims to discipline it. However, there is no empiri-
cal evidence on to what extent the number of disciplined annotations increased and/or decreased
over the last ten years. Mainly, if developers applied refactorings on undisciplined annotations
and these refactorings disciplined these annotations. Based on those literature limitations, our
study aims to verify if the frequency of disciplined and undisciplined annotations during the
last ten years, if developers apply refactorings on undisciplined annotations in the practice. We
investigated 23 software projects that were investigated ten years ago on undisciplined anno-
tations. Our results presented that only ten software projects had an increase in the number
of disciplined annotations over the last ten years, and we presented 19 refactorings that were
applied in practice. We observed that developers refactor not only undisciplined annotations
but also disciplined ones. These results can motivate future studies to investigate if existing
findings and recommendations of refactorings have helped developers to discipline annotations
or if developers have used the existing empirical knowledge to solve undisciplined annotations.

Keywords: Conditional Annotations, Disciplined Annotations, Undisciplined Annotations,
Refactoring, Mining Software Repositories

iii

List of Figures

3.1 Study Steps . 9
3.2 ifdef-catcher algorithm flow . 11
3.3 Malaquias Heuristic of Refactoring Candidates 12
4.1 Distribution of changes in the percentage of disciplined annotations 15
4.2 Projects with Refactorings Candidates . 16
4.3 Refactors over time . 19

iv

Contents

List of Figures iii

1 Introduction 1

2 Background 3
2.1 C Preprocessors . 3
2.2 Disciplined and Undisciplined Annotations 3
2.3 Refactoring on Conditional Annotations . 4
2.4 Related Work and Existing Limitations . 6

3 Study Settings 8
3.1 Goal, Research Questions . 8
3.2 Study Steps . 9

3.2.1 Select projects . 9
3.2.2 Collect annotations . 9
3.2.3 Analyze annotations. 10
3.2.4 Analyze refactorings. 11

4 Results 13
4.1 Frequency of Disciplined and Undisciplined Annotations along the last Ten years 13
4.2 Refactorings on Undisciplined and Disciplined Annotations along the last Ten

years . 16

5 Threats to Validity 20

6 Conclusion 21

References 22

v

1
Introduction

Complex systems are difficult to manage and maintain. The C and C++ languages have prepro-
cessor directives or annotations, and these annotations are used to add variability to software
development and to handle this complexity Liebig et al. (2011); Fenske et al. (2020). These
directives can be used in the form of disciplined and undisciplined annotations Liebig et al.
(2011). Disciplined annotations can be defined as annotations that do not break the structure
of elements of the AST (Abstract Syntax Tree) Schulze et al. (2013), do not break any struc-
ture of the language. Undisciplined annotations, on the other hand, break the elements of the
AST. Undisciplined annotations can cause code readability issues and can make it difficult or
impossible to use parser tools that handle or manipulate AST Liebig et al. (2011).

Knowing the problems caused by undisciplined annotations, one solution is to write the
annotation in disciplined form or discipline undisciplined annotations. Over the last ten years,
empirical studies have investigated how to discipline these annotations. A proposed strategy
to solve undisciplined annotation is to apply refactorings. Refactoring is a code transformation
that aims to improve code quality, preserving the program behavior. In the context of undisci-
plined annotations, one refactoring aims to discipline it Medeiros et al. (2017). However, the
literature is limited about how if developers have disciplined annotations in the practice, and if
developers have applied refactorings on undisciplined annotations. These limitations can guide
two research questions: to what extent has the number of disciplined annotations increased or
decreased over the last ten years? Do developers refactor undisciplined annotations? The an-
swers to these questions are necessary to have minimal empirical evidence if the effort of the
existing studies has helped to improve software quality, decreasing the number of undisciplined
annotations.

We then performed our study to answer these questions. We investigated a set of 23 reposi-
tories investigated on undisciplined annotations ten years ago Liebig et al. (2011). Using a tool
called cppstats Liebig et al. (2011), we created a script to extract and analyze some metrics

1

INTRODUCTION 2

from these projects. We then collected the frequency of disciplined and undisciplined anno-
tations of these projects. Based on this analysis, we selected projects that had a significant
increase of disciplined annotations, because these projects can be considered candidates to have
refactorings. We then used a heuristic on these projects that were selected to search the refac-
toring candidates Malaquias (2018). Therefore, we applied a manual analysis to confirm these
refactorings.

The results showed that the proportion of disciplined and undisciplined annotations re-
mained stable over the 10 years, considering all 23 projects. This indicates that there has not
been a remarkable evolution or change in this proportion, leading to observe that there have
not been many refactorings. We have found that only ten software projects had a significant
increase of undisciplined annotations. We then executed the previously mentioned heuristic on
these ten projects to collect refactorings. The analysis resulted in 19 refactorings. We performed
a manual analysis, and we found that developers refactor not only undisciplined annotations but
also disciplined (undisciplined them). These results confirmed that developers refactor anno-
tations, but do not reveal the motivation behind them. Is it something motivated by theory, or
some practical necessity? These results can motivate future studies to investigate if existing
findings and recommendations of refactorings have helped developers to discipline annotations
or if developers have used the existing empirical knowledge to solve undisciplined annotations.

2
Background

2.1 C Preprocessors

The C and C++ programming languages allow a preprocessor tool in which developers can write
conditional or optional annotations Liebig et al. (2011); Fenske et al. (2020). These annotations
can be controlled by a macro Fenske et al. (2020); Medeiros et al. (2017). That preproces-
sor tool is a language independent tool that was initially proposed for working on different
hardware and operational systems Medeiros et al. (2017). The C preprocessor is often used in
many open and industrial software projects from several domains, allowing these systems to
customize their demands from conditional annotations. The Linux Kernel project has over 26
million lines of code and over 15 thousand configuration options, the Apache web server, and
Hewlett-Packard’s printer firmware also use conditional annotations from the C preprocessor
tool Fenske et al. (2020). However, that tool does not change since 70’s year. Therefore, the
lack of evolution and maintenance on these preprocessors has become difficult the improvement
of the conditional annotation application. Besides, developers write these conditional annota-
tions of an undisciplined way. The application of undisciplined conditional annotations can
have a negative effect on code readability and increasing the error proneness.

2.2 Disciplined and Undisciplined Annotations

.
We adopted the following definition of a disciplined annotation Schulze et al. (2013) “Dis-

ciplined annotations align with the underlying structure of the source code by targeting only

code fragments that belong to entire subtrees in the corresponding abstract syntax tree.” There-
fore, a disciplined annotation is an #ifdef encompassing an entire if statement. On another
hand, an undisciplined annotation is when annotating just part of the conditional expression of

3

BACKGROUND 4

an if statement. Figure 2.1 presents an example of an undisciplined annotation and Figure 2.2
showed a disciplined annotation. These annotations are from the Emacs software project 1. This
source code was found in the commit 3d1afd119. We can observe in Figure 2.1 the directive is
undisciplined because the #ifdef and #endif annotations is inside the conditional expression,
and in Figure 2.2 is a disciplined annotation because the the #ifdef annotation is before the
conditional expression and the #endif annotation is after the conditional expression.

want_this=

#ifdef HAVE_XFT

(nlen > 6 && strncmp(name , ‘Xft‘, 4) == 0)

OR strcmp(XSETTINGS_FONT_NAME , name) == 0

OR

#endif

strcmp (XSETTINGS_TOOL_BAR_STYLE , name) == 0

Listing 2.1: Undisciplined Annotation

want_this = strcmp (XSETTINGS_TOOL_BAR_STYLE , name) == 0

#ifdef HAVE_XFT

if ((nlen > 6 && strncmp(name , ‘Xft‘, 4) == 0)

OR strcmp(XSETTINGS_FONT_NAME , name) == 0)

want_this = true

#endif

Listing 2.2: Disciplined Annotation

Existing studies have investigated how the use of undisciplined annotations can affect the
software quality and how to discipline these annotations. Mainly, because undisciplined anno-
tations are not aligned with syntactic units Liebig et al. (2011). It degrades the code comprehen-
sion Ernst et al. (2002); Le et al. (2011); Lohmann et al. (2006), increasing the code complexity
and affecting negatively the code readability Baxter and Mehlich (2001). Moreover, it can in-
crease fault proneness Abal et al. (2014); Ernst et al. (2002); Ferreira et al. (2016), and harm
maintainability McCloskey and Brewer (2005). In that way, studies that have investigated how
undisciplined and disciplined annotations are applied in practice is very relevant because it can
help to improve the existing approaches, helping developers to know how to discipline these
annotations and improve the code quality.

2.3 Refactoring on Conditional Annotations

Along the last ten years, researchers defined approaches to help developers to remove undis-
ciplined conditional annotations, one of these approaches is the application of refactor-

1https://github.com/emacs-mirror/emacs

BACKGROUND 5

ings Medeiros et al. (2017). Refactoring is a code transformation that aims to improve the
code quality preserving the program behavior Fowler (1999). In the context of undisciplined
annotations, a refactoring aims to discipline it. Improving then the code quality because undis-
ciplined annotations increase the code complex, worse the code readability, degrading the code
quality. Medeiros et al. (2017) propose a catalog of refactorings to discipline undisciplined
annotations. They classified the refactorings in four categories : single statements, conditions,
wrappers, and comma-separated elements. These categories are detailed as follows.

• Single statements. In this category, language tokens are duplicated to encompass with
preprocessor annotations only entire statements. 2 An example of a language that can
be duplicated is the return token to encompass an entire statement. The Medeiros’
catalog presents variations that use fresh local variables to keep condition expressions in
situations in which these sub expressions are complex enough to justify the introduction
of new variables. Developers, then, can select the variation according to their concerns.

• Conditions. This refactoring is to solve undisciplined annotations surrounding Boolean
expressions (used in if and while statements). Developers can use a fresh variable to
maintain the statement’s conditions. In that case, variables can not have the same iden-
tifier name in the same scope. In that way, developers might rename the variable(s) to
choose a suitable identifier based on the real responsibility of the source code.

• Wrappers. This category presents three types of refactorings to wrap C statements. Pre-
processor annotations are often used to wrap C statements in different ways, but it can
help the application of an undisciplined annotation. First wrapper refactoring can be ap-
plied in case of undisciplined preprocessor usage: alternative statements, developers then
need a fresh variable to keep the statement condition. Second wrapper refactoring can be
used a fresh variable to preserve the statement’s condition and to discipline the preproces-
sor annotations. Third wrapper refactoring is to remove if statements ending with an else
statement. In this case, developers can replace the else by another if statement to resolve
the undisciplined usage of the preprocessor.

• Comma-separated elements. In this refactoring, developers can set a precondition that the
original code does not define a macro PARAM or contains a token with that name, such
as a type definition or identifier. If they change a macro definition that the original code
is already using, it can change the program behavior. In this way, the catalog suggest
modifications to the code locally without global impact. Developers might handle other
types of comma separated elements, such as array and enum elements, with a similar
refactoring.

2A single statement contains no compound blocks. Examples of single statements are variable initializations,
function calls, and return statements.

BACKGROUND 6

The figure 2.2 presented an example of a refactoring applied on an undisciplined annota-
tion. As mentioned, the figure 2.1 was an undisciplined annotation, developer then disciplined
this annotation when he/she added all conditional expression inside the ifdef and endif an-
notations. Developer also added a boolean value on the want_this variable, it preserves the
program behavior to this variable to be true if the conditional expression to be true. Thus, this
refactoring is the conditions category because it was applied to solve a boolean expression, and
from this refactoring the annotation was disciplined and the program behavior was kept.

2.4 Related Work and Existing Limitations

Fenske et al. (2020) investigated the comprehension of developers about C preprocessors. They
aimed to understand if the objective correctness of developers during the program comprehen-
sion is aligned to the subjective preference of a certain style of conditional directives. In this
study, 521 developers evaluated original code (undisciplined directives) and refactored code
(disciplined code). In their results, they observed that the most developers had a better com-
prehension on the undisciplined directives, few developers had a better comprehension on the
disciplined directives. A previous work Medeiros et al. (2015) interviewed developers about
the use of preprocessors, and specifically on the relation between conditional directives and er-
ror proneness. Their results presented that developers perceived the use of preprocessors as an
elegant solution. However, developers are aware of the problems of the preprocessors applica-
tion, such as the increasing of error proneness. In this study, developers mentioned that avoid
to use preprocessors and when it is necessary, they try to follow the existing guidelines of best
practices applying conditional directives. Also, developers reported to fix bugs that are related
to the use of directives.

Malaquias et al. (2017) submitted pull requests on undisciplined directives, aiming to eval-
uate if developers are interested in to discipline these directives. This study also evaluated if
disciplined directives improve the software maintenance. The developers accepted the most of
the pull requests and the results presented that the use of undisciplined directives is more time-
consuming and error-prone, thus degrading the software maintenance. Other study Liebig et al.
(2011) described types of disciplined and undisciplined directives according to the practice.
They analyzed 40 software projects and presented recommendation to discipline some types of
undisciplined directives.

Another study investigated the number of possibilities of refactorings to apply on undisci-
plined directives Medeiros et al. (2017). They provided a catalog of refactoring types to apply
on undisciplined directives. This study provides empirical evidences that developers prefer the
use of refactored code (disciplined directives). Developers accepted 75% of patches that were
submitted according to the proposed catalog. Besides, the study presented that refactorings of
catalog preserved the system behavior. These results increase the confidence of this catalog of

BACKGROUND 7

refactorings did not change the system behavior and it has a high acceptance of developers.
However, despite to the preposition that refactorings can discipline annotations, there are no

empirical evidences on to what extent the number of disciplined annotations increased and/or
decreased over the last ten years. Mainly, if developers applied refactorings on undisciplined
annotations and these refactorings disciplined these annotations in the practice.

3
Study Settings

This chapter presents the study goal, research questions and the steps of this study.

3.1 Goal, Research Questions

Liebig et al. (2011) presented a study about the disciplinarity of annotations in 2011. Along
the last ten years, researchers defined a set of refactorings to discipline undisciplined annota-
tions (Medeiros et al. (2017)). Other studies evaluated if the refactored code improved the code
readability along the software development. However, despite the preposition that refactorings
can discipline annotations, there are no empirical evidences on to what extent the number of
disciplined annotations increased and/or decreased over the last ten years. Mainly, if develop-
ers applied refactorings on undisciplined annotations and these refactorings disciplined these
annotations. Based on those literature limitations, the main goal of this study is to verify if the
frequency of disciplined and undisciplined annotations during the last ten years. Mainly, the
literature about if disciplined annotations have increased due to the application of refactorings
on undisciplined annotations in this last ten years.

RQ1:To what extent the number of disciplined annotations increased/decreased over
the last ten years?

Studies have presented how to discipline undisciplined annotations along this last ten years.
Based on that, it is expected that the number of disciplined annotations have increased and the
number of undisciplined annotations have decreased along this last ten years in practice. We
aimed to present if these expectations is a reality or not in practice. We then presented the
frequency of disciplined and undisciplined annotations over the last ten years.

RQ2:Do developers refactor undisciplined annotations?

8

STUDY SETTINGS 9

Previous studies presented refactorings to discipline undisciplined annotations, but the liter-
ature is limited to know if developers apply these refactorings in practice. We aimed to present
scenarios in which developers applied refactorings on undisciplined and they disciplined these
annotations through these refactorings.

3.2 Study Steps

Figure 3.1 presents the steps of our study. First, we selected projects that were investigated
in a previous study in 2011, exactly ten years ago, to evaluate to what extent the number of
disciplined annotations increased/decreased over the last ten years. Second, we collected refac-
torings that were applied to undisciplined annotations. Each study step is detailed as follows.

GitHub

23 projects

Select Projects

#
Collect

Annotations

Annotations

Analyze
annotations

Analyze
refactorings

 cppstats

 Malaquias’ heuristic

 Refactorings

ifdef catcher

Figure 3.1: Study Steps

3.2.1 Select projects

The projects were selected from the previous study Liebig et al. (2011), which served as a
conceptual starting point for our study. However, the source code for some of these projects
was not found, which were promptly discarded. The table 3.1 presents the selected projects
used in the study.

3.2.2 Collect annotations

We used the Cppstats tool to count and classify the annotations of a source code. This tool
was detailed in Liebig et al. (2011). The version of this tool used was the most recent in

STUDY SETTINGS 10

Project Domain old version new version
apache Web server 2.2.11 2.4.46
berkeley.db Web server 4.7.25 18.1
cherokee database system 0.99.11 1.2.104
clamav antivirus program 0.94.2 0.104
cpython program interpreter 2.6.1 3.9.3
dia diagramming software 0.96.1 0.97.2
emacs text editor 22.3 27.1.91
freebsd operating system 7.1 12.2
gcc compiler framework 4.3.3 10.2.0
gimp graphics editor 2.6.4 2.10.24
glibc programming library 2.9 2.33
gnumeric spreadsheet application 1.9.5 1.12.49
gnuplot plotting tool 4.2.5 5.4.1
libxml2 XML library 2.7.3 2.9.10
lighttpd Web server 1.4.22 1.4.59
linux operating system 2.6.28.7 5.12.5
openldap LDAP directory service 2.4.16 2.4.58
parrot virtual machine 0.9.1 2.9.1
php program interpreter 5.2.8 8.0.4.rc1
postgres database system 8.4.beta2 13.2
sqlite database system 3.6.10 3.35.4
tcl program interpreter 8.5.7 8.6.11
xterm terminal emulator 2.4.3 3.1.7c

Table 3.1: Selected projects

their repository1; the version at the time of the study did not contain execution instructions
and depended on other tools whose versions were not found (Liebig et al. (2011)). We created a
script called IfDef Catcher2 to extract metrics (amount of annotations, percentage of disciplined
annotations, and percentage of undisciplined annotations) from the output of the Cppstats tools,
using the older and recent versions of each selected project. Figure 3.2 illustrates the flow of the
IfDef Catcher. The objective of this script was to collect data, obtaining a general picture of the
evolution of the use of disciplined and undisciplined annotations of the selected projects over
time. To achieve the goal of evolutionary analysis, we did need to discard unmodified source
code over time, or source code with unchanged annotations. An intermediate step of this script
was to use a filter that did just that.

3.2.3 Analyze annotations.

After collecting the metrics for each project, tables and graphs were created to identify projects
with a marked evolution in the number of annotations. This step allows us to answer our first

1https://github.com/clhunsen/cppstats
2https://github.com/easy-software-ufal/ifdef-catcher/tree/main/phase-2-quantitative-analysis

STUDY SETTINGS 11

Figure 3.2: ifdef-catcher algorithm flow

research question on to what extent the number of disciplined annotations has increased or
decreased over the last ten years. We then applied criteria to select projects that had a significant
increase or decrease of disciplined annotations. These projects that had a significant increase of
disciplined annotations, were project candidates to have refactorings. It helps us also to answer
our second research question.

3.2.4 Analyze refactorings.

We developed a script based on the Malaquias‘ Heuristic3 to collect candidates of refactor-
ings Malaquias (2018). We used the project candidates to have refactorings that were defined
in the previous step to execute the script. Figure 3.3 presents the flow of the script based on
Malaquias’ heuristic. This heuristic identifies files that had an increase of one type of anno-
tations and decreasing another type between a given commit (commit n) to a subsequent one
(commit n+1). For each project, the script navigates through all commits, using cppstats to
count and classify the annotations in each file. We then have the files that had at least one anno-
tation that was disciplined between two commits, this annotation then can have been refactored
between these commits. Thus, we then have a refactoring candidate with better accuracy. Once

3https://github.com/easy-software-ufal/ifdef-catcher/tree/main/phase-3-ifdef-transformation-
detector/check_commits

STUDY SETTINGS 12

the files are tagged, we performed a manual analysis to validate each refactoring candidate,
answering then our second research question.

Figure 3.3: Malaquias Heuristic of Refactoring Candidates

4
Results

4.1 Frequency of Disciplined and Undisciplined Annotations
along the last Ten years

This section presents the results of our first research question. The first question is about to what
extent the number of disciplined and undisciplined annotations have increased or decreased over
the last ten years.

Table 4.1 presents the results of the number of three metrics (lines of code, total of anno-
tations and percentage of disciplined annotations) from 23 projects. Each metric has a value
related to the old and a new version of each software project. For example, for project Apache,
it is observed that, in column "Total of annotations", there was an 350 value in the first collected
version, and a 387 value in the second collected version, where 37 is the difference of the two
values.The column "Lines of code" denotes the code size of the project in terms of code lines.
A little variation may mean that the project has changed little over the years. Regarding the
column "Total of annotations", it indicates how relevant the pre-processor directives are for the
project. If there is a positive variance, then it could mean that the project has come to rely more
on annotations, and perhaps code disciplinarity will be more critical. If there was a negative
variation, the project started to depend less on the annotations, and maybe disciplinarity will
not be so important. The most important column in the table is "% disciplined". This column
shows whether there has been an increase or decrease in disciplined code in the project. If the
evolution is marked, then there is evidence that the project has seen significant changes in code
discipline and perhaps more refactorings. For the apache project, there was a significant change
in the lines of code (i.e. the project evolved a lot), the use of annotations grew, and code disci-
plinarity had a 4.3% change; this project is a good candidate for looking for refactorings. In the
case of berkeley.db, for example, it also had a lot of change in the lines of code and the use of

13

RESULTS 14

annotations, but it seems to have not had much change in the code disciplinarity (0.22%), so it
is not a good candidate.

Lines of code Total of annotations % disciplined
Projects old new (new - old) old new (new - old) old new (new - old)
apache 35873 78287 42414 350 387 37 82.0% 86.3% 4.30%
berkeley.db 178003 252018 74015 3077 3823 746 92.46% 92.68% 0.22%
cherokee 4383 5926 1543 19 37 18 89.47% 100.0% 10.53%
clamav 17379 166726 149347 237 1439 1202 88.61% 90.48% 1.87%
cpython 155860 203773 47913 4643 4036 -607 96.58% 95.0% -1.58%
dia 13937 17526 3589 46 80 34 95.65% 100.0% 4.35%
emacs 8654 42568 33914 322 2583 2261 94.41% 93.57% -0.84%
freebsd 1632428 7601435 5969007 20155 70904 50749 91.67% 92.09% 0.42%
gcc 644729 2117635 1472906 4880 10729 5849 85.78% 88.39% 2.61%
gimp 119810 247393 127583 267 358 91 97.75% 96.09% -1.66%
glibc 107781 230290 122509 2721 4093 1372 89.97% 93.43% 3.46%
gnumeric 59399 49814 -9585 792 94 -698 82.58% 90.43% 7.85%
gnuplot 3772 10190 6418 61 89 28 83.61% 88.76% 5.15%
libxml2 47647 58701 11054 1005 1070 65 98.81% 97.76% -1.05%
lighttpd 3341 42278 38937 58 790 732 98.28% 92.03% -6.25%
linux 2969690 16014484 13044794 20011 40877 20866 96.39% 97.17% 0.78%
openldap 9431 28539 19108 68 316 248 95.59% 92.09% -3.50%
parrot 28164 45939 17775 582 278 -304 97.42% 98.56% 1.14%
php 192829 315432 122603 2640 4838 2198 90.08% 92.79% 2.71%
postgres 29494 250686 221192 199 1291 1092 92.46% 89.54% -2.92%
sqlite 3424 127642 124218 43 1099 1056 93.02% 93.99% 0.97%
tcl 10192 24585 14393 262 607 345 95.42% 88.8% -6.62%
xterm 1729 7780 6051 99 70 -29 94.95% 100.0% 5.05%

Table 4.1: Number of Disciplined and Undisciplined Annotations

To answer RQ1, we can look at the "% disciplined" column. For the difference between the
old and new versions of each project, the mean of this column is 1.17, so it appears to be posi-
tive, that is, there seems to have been an increase in disciplined annotations over the 10 years.
As the types of annotations are mutually exclusive and annotations can only be disciplined
or undisciplined, this possible growth in disciplined annotations means a possible decrease in
undisciplined annotations. However, we must perform a hypothesis test to see if this 1.17 mean
is significantly greater than zero. A t-test was used in this case, since the sample is small and
approximately normal. Figure 4.1 shows that the distribution is approximately normal, and a
Shapiro-Wilk test considering an alpha value of 0.05 shows that there is sufficient evidence that
the sample is normal, at least at the 95% confidence level. So, proceeding to the hypothesis test,
we consider the following hypotheses:H0: the mean is less than or equal to zero.

H1: the mean is greater than zero.
(4.1)

The p-value of the test was 0.0929 (one tail), which is greater than the alpha value. That
is, there is not enough evidence to reject the null hypothesis, so we cannot say, at the 95%

RESULTS 15

Figure 4.1: Distribution of changes in the percentage of disciplined annotations

confidence level, that the mean is significantly greater than zero. We cannot say that there has
been a significant growth in the use of disciplined annotations in the last 10 years, just as we
cannot say that there was a decrease in the use of undisciplined annotations. This may indicate
that, at least, the use of disciplined and undisciplined annotations remained stable over the years,
considering the analyzed projects.

Some projects had a variation well above the average in the "% disciplined" column (for
example, the apache project). A question that can be asked is whether the developers of these
projects were aware of the theory’s existence, and the increase in disciplined annotations was
due to this knowledge. Some projects also had a marked reduction in disciplined annotations; in
these projects, what led you to move in this direction? Did the developers have some knowledge
of the theory and still decided to take another path? These are questions that may be answered
in future research.

For the next stage of the study, it was necessary to select one or more projects, from which
the refactorings will be collected. The projects with the greatest variations in the column "%
disciplined" (sub-column "new - old"), both positively and negatively, were selected. This
is expected to find refactorings of both disciplined and undisciplined annotations. We used
another criterion to have a better precision on projects that had refactorings. This criterion is
based on a variation value of +3% on the increase of disciplined annotations, and -3% on the
decrease of undisciplined annotation. The graph 4.2 presents the projects that had an increase
of disciplined annotations (projects that had a variation marked by the green line) according to
this criterion, and the projects that had a decreasing of disciplined annotations (projects that had
a variation marked by the red line) according to this criterion. These projects were selected for
the next phase of the study. According to this criterion, we then have ten projects that had a
significant increase or decrease of disciplined annotations.

RESULTS 16

Figure 4.2: Projects with Refactorings Candidates

4.2 Refactorings on Undisciplined and Disciplined Annota-
tions along the last Ten years

This section presents the results of our second research question. We then presented if devel-
opers have applied refactorings on undisciplined and disciplined annotations over the least ten
years.

In the previous session, 10 candidates were chosen for refactorings to be extracted. After
running the refactoring capture heuristic on these 10 projects, 19 refactorings were found. Ta-
ble 4.2 summarizes the results by project. Note that some projects had no results; there are
indications of what may have happened:

• cherokee: this project is small (5926 lines of code in the most recent version used) and has
few annotations (37 in the most recent version used). Disciplinary variation of 10.53%
may have been due to adding disciplined annotations or removing undisciplined annota-
tions, or even both.

• tcl: This project has seen reasonable growth (14393 lines of code, with the addition of
345 annotations). What might have happened here is this: there was no effort to refactor
annotations.

Most projects have had 1 or 2 refactorings. Most of the time, the refactorings found were
well isolated and had no clues whether they were done to improve code readability. Even some
refactorings were carried out to indiscipline a disciplined annotation, as can be seen in table 4.2.

RESULTS 17

All refactorings found can be seen on the github 1.

Projects # of refactorings # of ND -> D # of D -> ND
apache 6 3 3
cherokee 0 0 0
dia 1 0 1
glibc 1 1 0
gnumeric 1 0 1
gnuplot 2 0 2
lighttpd 2 2 0
openldap 4 4 0
tcl 0 0 0
xterm 2 1 1

Table 4.2: Resume of refactorings found

#ifdef HAVE_THR

switch (fork1())

#else

switch (fork())

#endif

{

case -1:

sleep(5);

continue;

case 0:

break;

default:

_exit(EXIT_SUCCESS);

}

Listing 4.1: Undisciplined annotation

#ifdef HAVE_THR

pid = fork1();

#else

pid = fork();

#endif

switch (pid)

{

case -1:

sleep(5);

continue;

case 0:

break;

default:

return pid;

}

Listing 4.2: Disciplined annotation

1https://github.com/easy-software-ufal/ifdef-catcher/blob/main/phase-3-ifdef-transformation-
detector/check_commits/refactorings_found.md

RESULTS 18

#ifdef GNM_USE_HILDON

go_action_combo_text_set_width (

wbcg ->zoom , "100000000%");

#else

go_action_combo_text_set_width (

wbcg ->zoom , "10000%");

#endif

Listing 4.3: Disciplined annotation

go_action_combo_text_set_width (

wbcg ->zoom_haction ,

#ifdef GNM_USE_HILDON

"100000000%"

#else

"10000%"

#endif

);

Listing 4.4: Undisciplined annotation

To exemplify the two types of refactorings found (to discipline or indiscipline an annota-
tion), we have chosen two cases to comment below.

In Listing 4.1, we have a #ifdef separating a switch from its body, which makes this an-
notation undisciplined. To discipline it, the variable pid was introduced inside #ifdef, to be
used as a switch parameter (Listing 4.2). This way, the annotation does not break the switch.
According to Medeiros et al. (2017), this refactoring is of the wrapper type.

In Listing 4.3, on the other hand, we have a disciplined #ifdef on the left side, where each
statement is kept in one piece. The right-hand transformation (Listing 4.4) disrupts the di-
rective, perhaps in order to avoid code repetition. This transformation makes the annotation
undisciplined because it breaks the statement. In the Medeiros et al. (2017) catalog, this anno-
tation is the inverse of the comma-separated elements type. The undisciplined annotation has
its advantages (less code repetition, for example), although it can decrease code readability and
therefore make maintenance difficult (Medeiros et al. (2015)).

More refactorings were found to discipline undisciplined code (11 refactorings) than indis-
cipline a disciplined code (8 refactorings). Furthermore, as can be seen in Figure 4.3, most
results occur until 2016; this could mean that the importance of this type of refactoring has
diminished over time, or that other solutions have been found to override annotations, or that
code disciplinarity is no longer as relevant. These are all assumptions to be investigated further
in future research.

RESULTS 19

Figure 4.3: Refactors over time

Thus, the results found are indications that developers refactor not only undisciplined anno-
tations, but also disciplined ones. What it is not possible to conclude, with just these results, is
whether these refactorings were motivated by the disciplinarity theory or if they were motivated
by other diverse issues. Future studies can answer these and other questions about refactor-
ings linked to code disciplinarity. A more accurate selection of projects could have led to more
refactorings. A suggestion for future research is to look at the characteristics of projects that
had more refactorings, and establish more accurate criteria for selecting other candidates.

5
Threats to Validity

The projects were selected from Liebig et al. (2011), as they have a list of projects with metrics
similar to what we were looking for in the analysis. However, we did not find some source
codes or we did not find the latest version of some projects. We then avoided to replicate the
study in every detail, using only a few methodologies to avoid having an inconsistent basis in
relation to the original article.

In the selection of candidate projects for the search for refactorings, the variation in the
use of disciplined annotations was considered as a criterion for this selection. However, only
19 refactorings were found in a set of 10 projects. Even not invalidating the analysis (some
refactorings were found, and some conclusions could be drawn from these data), perhaps the
selection criteria was not as accurate as we thought. In future research, it is recommended to
refine this criterion to make it possible to select projects with more refactorings.

The heuristics to collect refactorings parse the entire file, and the tagged files are then handed
over to manual analysis for refactorings. The problem is that some files are gigantic, which
makes manual analysis very difficult. To minimize this problem, we used the github diff tool,
which only shows the changes that have occurred in the file from one commit to another, making
manual analysis much easier. As a suggestion for future research, perhaps handing in snippets
of annotations for manual analysis will be more productive than handing in an entire file.

20

6
Conclusion

According to the results extracted from the analyzed projects, we observed that the amount of
annotations remained stable over the years. Even after ten years or more, projects continue
to use annotations at the same disciplined/undisciplined ratio. As it was necessary to select
projects with greater evolution, the remaining option was to select projects with greater varia-
tions in the use of disciplined annotations.

The criteria used to select projects to collect refactorings led to 19 refactorings. For 10
projects, we believe that it may have been a result below expectations. Some projects had more
refactorings found, and their characteristics may lead to better criteria for selecting projects in
future research.

The refactorings found show that developers refactor both undisciplined and disciplined
annotations. The results do not show, however, whether these refactorings are motivated by
theory or by other reasons. So, this is a question that remains unanswered: did the developers
have theoretical knowledge about annotation disciplinarity? Did the theory make an impact on
the industry, or did it remain reclusive in academia? These are questions to be answered in
future research.

21

References

Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42 variability bugs in the linux kernel: a
qualitative analysis. In Proceedings of the 29th ACM/IEEE international conference on

Automated software engineering, pages 421–432, 2014.

Ira D Baxter and Michael Mehlich. Preprocessor conditional removal by simple partial
evaluation. In Proceedings Eighth Working Conference on Reverse Engineering, pages
281–290. IEEE, 2001.

Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis of c preprocessor
use. IEEE Transactions on Software Engineering, 28(12):1146–1170, 2002.

Wolfram Fenske, Jacob Krüger, Maria Kanyshkova, and Sandro Schulze. # ifdef directives and
program comprehension: The dilemma between correctness and preference. In 2020 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages
255–266. IEEE, 2020.

Gabriel Ferreira, Momin Malik, Christian Kästner, Jürgen Pfeffer, and Sven Apel. Do# ifdefs
influence the occurrence of vulnerabilities? an empirical study of the linux kernel. In
Proceedings of the 20th International Systems and Software Product Line Conference, pages
65–73, 2016.

Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1 edition, 1999.

Duc Le, Eric Walkingshaw, and Martin Erwig. # ifdef confirmed harmful: Promoting
understandable software variation. In 2011 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), pages 143–150. IEEE, 2011.

Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of preprocessor
annotations in 30 million lines of c code. In Proceedings of the tenth international

conference on Aspect-oriented software development, pages 191–202, 2011.

22

REFERENCES 23

Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. A quantitative analysis of aspects in the ecos kernel. ACM SIGOPS

Operating Systems Review, 40(4):191–204, 2006.

Romero Malaquias, Márcio Ribeiro, Rodrigo Bonifácio, Eduardo Monteiro, Flávio Medeiros,
Alessandro Garcia, and Rohit Gheyi. The discipline of preprocessor-based
annotations-does# ifdef tag n’t# endif matter. In 2017 IEEE/ACM 25th International

Conference on Program Comprehension (ICPC), pages 297–307. IEEE, 2017.

Romero Bezerra de Souza Malaquias. A disciplinaridade das anotações condicionais de
pré-processamento #ifdef tag não #endif importa. Master’s thesis, Instituto de Computação -
Universidade Federal de Alagoas, 2018.

Bill McCloskey and Eric Brewer. Astec: a new approach to refactoring c. ACM SIGSOFT

Software Engineering Notes, 30(5):21–30, 2005.

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi. The
love/hate relationship with the c preprocessor: An interview study. In 29th European

Conference on Object-Oriented Programming (ECOOP 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner, Bruno Ferreira,
Luiz Carvalho, and Baldoino Fonseca. Discipline matters: Refactoring of preprocessor
directives in the# ifdef hell. IEEE Transactions on Software Engineering, 44(5):453–469,
2017.

Sandro Schulze, Jörg Liebig, Janet Siegmund, and Sven Apel. Does the discipline of
preprocessor annotations matter? a controlled experiment. In Proceedings of the 12th

international conference on Generative programming: concepts & experiences, pages
65–74, 2013.

