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Só é útil o conhecimento que nos faz melhores. 

 

Sócrates  



 

RESUMO 

 

Fermentação alcoólica é um processo bioquímico no qual há conversão de açúcares simples em 

compostos de interesse comercial, como, por exemplo, o etanol. A indústria brasileira de etanol 

chegou a produzir 35,6 bilhões de litros na safra de 2019/2020. O processo produtivo é influ-

enciado por diversas variáveis, tais como o tipo de levedura, contaminação bacteriana, concen-

tração de açúcares no meio reacional, tempo de alimentação das dornas, temperatura, pH, entre 

outras, e isso torna o controle e otimização do processo complexo, principalmente quando essas 

variáveis devem ser medidas diretamente por sensores físicos convencionais ou por análises em 

laboratório. Ao contrário das medições convencionais, os soft-sensors utilizam algoritmos ma-

temáticos, técnicas de inteligência artificial ou modelos estatísticos para inferir ou prever essas 

variáveis com base em informações indiretas, como medidas disponíveis, histórico de dados ou 

correlações entre variáveis no qual modelos clássicos não conseguem explicar. Processos em 

batelada, diferentemente de processos contínuos, apresentam dificuldades em relação à utiliza-

ção de técnicas para elaboração de modelos empíricos para inferência, que é como a variável 

tempo é considerada e incorporada ao modelo. Autoencoder (AE) é uma rede de aprendizado 

profundo não supervisionado composta por um codificador e um decodificador que pode ser 

utilizada para reduzir a dimensionalidade dos dados e facilitar o treinamento de um modelo, a 

mesma vem sendo muito utilizada como classificadora na detecção e diagnóstico de falha, po-

rém a sua utilização como soft-sensor ainda é relativamente nova. Com base nisso, o trabalho 

teve como objetivo explorar a utilização do AE, assim como algumas técnicas já bastante utili-

zadas na elaboração dos soft-sensors como as redes neurais artificiais (RNAs) e as long short 

term memory (LSTM) focando a problemática da incorporação da variável tempo aos modelos. 

Todas as três redes apresentaram bons resultados para prever a concentração de etanol, com 

valores de R² acima de 0,9 e erros abaixo de 2,5, entretanto a rede LSTM se destacou como a 

mais eficaz pois apresentou os melhores valores nas métricas avaliadas (R² = 0,9973, RMSE = 

0,4336 e MAE = 0,3055). Já o modelo LSTM-Autoencoder mostrou-se uma alternativa promis-

sora, capaz de manter boa precisão mesmo utilizando uma quantidade menor de informação (R² 

= 0,9551, RMSE = 1,7722 e MAE = 1,5142), se mostrando relevante para aplicações onde a 

eficiência computacional é um ponto crítico. 

 

Palavras-Chave: Processo Fermentativo; Redes Neurais Artificiais; Soft-Sensor; Autoencoder. 

 

 

 



 

ABSTRACT 

 

Alcoholic fermentation is a biochemical process in which simple sugars are converted into 

commercially interesting compounds, such as ethanol, for example. The Brazilian ethanol in-

dustry reached a production of 35.6 billion liters in the 2019/2020 harvest. The production pro-

cess is influenced by various variables, such as the type of yeast, bacterial contamination, sugar 

concentration in the reaction medium, feeding time of the fermenters, temperature, pH, among 

others, and this makes the control and optimization of the process complex, especially when 

these variables must be measured directly by conventional physical sensors or laboratory anal-

yses. Unlike conventional measurements, soft sensors use mathematical algorithms, artificial 

intelligence techniques, or statistical models to infer or predict these variables based on indirect 

information, such as available measurements, historical data, or correlations between variables 

that classical models cannot explain. Batch processes, unlike continuous processes, present a 

difficulty regarding the use of techniques for the development of empirical models for infer-

ence, which is how the time variable is considered and incorporated into the model. An Auto-

encoder (AE) is an unsupervised deep learning network composed of an encoder and a decoder 

that can be used to reduce data dimensionality and facilitate model training. It has been widely 

used as a classifier in fault detection and diagnosis; however, its use as a soft-sensor is still 

relatively new. Based on this, the work aimed to explore the use of AE, as well as some tech-

niques already widely used in the development of soft sensors such as artificial neural networks 

(ANNs) and long short-term memory (LSTM), focusing on the issue of incorporating the time 

variable into the models. All three networks showed good results in predicting ethanol concen-

tration, with R² values above 0,9 and errors below 2,5. However, the LSTM network stood out 

as the most effective, presenting better metrics for the evaluated variables (R² = 0.9973, RMSE 

= 0.4336 and MAE = 0.3055). The LSTM-Autoencoder model, on the other hand, proved to be 

a promising alternative, capable of maintaining good accuracy even when using a smaller 

amount of information (R² = 0.9551, RMSE = 1.7722 and MAE = 1.5142), making it relevant 

for applications where computational efficiency is a critical point. 

 

Keywords: Fermentation Process; Artificial Neural Networks; Soft-Sensor; Autoencoder. 
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1. INTRODUÇÃO 

Fermentação alcoólica é um processo microbiano no qual bactérias ou leveduras con-

vertem açúcares em etanol e outros compostos, sendo o etanol um produto com alto valor agre-

gado e utilizado em bebidas alcoólicas, indústrias de perfumaria e principalmente como com-

bustível (JÚNIOR, 2012). O Brasil é o segundo maior produtor de etanol do mundo, com 27,5% 

do volume global em 2021 (VIDAL, 2022). 

A via fermentativa é a principal maneira de obtenção do etanol no Brasil, sendo a cana-

de-açúcar a principal matéria-prima. O processo consiste resumidamente em fermentar o caldo 

e o mosto produzidos nas indústrias açucareiras e posteriormente levá-lo ao processo de desti-

lação e desidratação, para o caso da produção do etanol anidro (JÚNIOR, 2012). O processo 

fermentativo depende de fatores físicos (temperatura e pressão osmótica), químicos (reações, 

nível de oxigenação, quantidade de nutrientes e inibições, pH) e microbiológicos (espécie e 

concentração do microrganismo, presença de contaminantes) (LIMA, 2019). 

O controle de bioprocessos é uma tarefa complexa devido à quantidade de variáveis a 

serem controladas simultaneamente e também devido a dinâmica não linear dos sistemas. Pro-

cessos convencionais de análise do produto e controle das variáveis que envolvem análises la-

boratoriais podem ser ineficientes devido a elevados tempos de resposta das análises e impre-

cisões associadas aos instrumentos e erros humanos (DESAI et al., 2006). Uma alternativa em 

relação a medidas convencionais é a utilização de soft-sensors, que se baseiam em dados do 

processo, normalmente variáveis secundárias, para prever ou inferir o comportamento de vari-

áveis mais críticas, também chamadas de variáveis primárias (WANG et al., 2019). 

Soft-sensors frequentemente usam redes neurais, incluindo Multilayer Perceptron 

(MLP) e Long Short-Term Memory (LSTM). As LSTM são favoráveis para processos dinâmi-

cos porque capturam dependências temporais, enquanto as MLP modelam correlações não li-

neares entre variáveis. Para processos com um grande número de variáveis esse tipo de sensor 

pode ser utilizado paralelamente com autoencoder (AE) para redução de dimensionalidade, 

compressão de dados e também detecção de outliers, podendo melhorar a eficiência dos senso-

res (KAY et al., 2022). 

A indústria 4.0 representa a evolução do setor industrial impulsionada pela implemen-

tação de tecnologias como a Internet das Coisas (IoT, em inglês), sistemas físico-cibernéticos 

e inteligência artificial (IA). Estas tecnologias permitem que os sistemas aprendam a partir da 

experiência utilizando dados do processo e se adaptem a novas situações (BANITAAN et al., 
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2023). Empresas como a Dow e Shell tem casos de sucesso utilizando IA em seus processos. A 

Dow desenvolveu uma capacidade de Inteligência Preditiva que transforma o desenvolvimento 

de produtos de poliuretanos, acelerando em até 200 mil vezes a formulação de novos produtos 

e reduzindo o tempo de descoberta para cerca de 30 segundos. Já a Shell aplicou IA na análise 

de dados das bombas submersas de sua plataforma Perdido no Golfo do México, identificando 

um padrão que antecipa falhas em 70% dos casos, prevenindo interrupções de produção e au-

mentando a eficiência operacional. 

Um tema de interesse tanto para a comunidade acadêmica quanto para a indústria é a 

utilização de soft-sensors em conjunto com sistemas inteligentes ou IA, como os deep learning 

autoencoders, para a estimativa de variáveis em processos fermentativos. Dessa forma, o obje-

tivo deste trabalho é simular o bioprocesso de fermentação alcoólica em batelada alimentada a 

fim de gerar dados emulados do processo e aplicar técnicas de IA, como MLP e deep learning 

autoencoders, para desenvolver um soft-sensor. Além disso, será avaliada a eficácia de estraté-

gias para a elaboração do soft-sensor em processos em batelada que apresentam particularida-

des na representação da variável tempo, utilizando as redes LSTM. 
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2. OBJETIVOS 

2.1. Geral 

Desenvolver um soft-sensor, em linguagem Python, eficaz para predição de variáveis 

do processo de fermentação alcoólica em batelada alimentada. 

2.2. Específicos 

• Simular o processo de fermentação alcoólica em batelada alimentada, em linguagem 

Python, utilizando um modelo já validado com dados experimentais; 

• Desenvolver um soft-sensor que realize inferências sobre variáveis de interesse do processo 

utilizando as redes MLP e LSTM; 

• Utilizar a deep learning autoencoder para melhorar as relações entre os dados gerados da 

simulação e avaliar sua influência na acuracidade do sensor.  
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3. REVISÃO BIBLIOGRÁFICA 

Na revisão será feita uma análise sobre o atual mercado açucareiro e de álcool no Brasil 

e sobre o processo fermentativo em batelada alimentada. Serão abordados tópicos sobre soft-

sensor e as suas aplicações, machine learning, redes neurais artificiais, autoencoders e as suas 

utilizações em processos. 

3.1. Indústria Açucareira e o Processo Fermentativo 

O etanol pode ser obtido por três vias básicas, como a destilatória, a sintética e por 

bioprocesso, sendo a principal e mais utilizada no Brasil a última. O processo fermentativo 

utiliza como matérias-primas vegetais ricos em carboidratos, que podem ser classificados como 

sacarinos, amiláceos e celulósicos (LIMA, 2019). 

O Brasil é o maior produtor de açúcar e o segundo maior produtor de etanol do mundo, 

e isso é consequência de o país ter condições climáticas ótimas para cultivo da cana-de-açúcar 

e investimentos no setor sucroalcooleiro. O país registra uma produção de 713,2 milhões de 

toneladas de cana-de-açúcar na safra 2023/2024, com a produção de etanol superando 35 bi-

lhões de litros, tendo um aumento de 15% em relação ao ano anterior (CONAB, 2024; VIDAL, 

2022). 

 

Figura 1 - Produção de cana-de-açúcar e etanol entre o período de 2019 e 2024. A informação para a 

safra 24/25 é uma estimativa. 

 

Fonte: Autor (2024). 
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A obtenção do álcool por via fermentativa pode ser dividida em três fases: preparo do 

substrato, a fermentação e a destilação.  Esse processo pode acontecer em diferentes regimes 

como em batelada, batelada alimentada, semicontínuo, contínuo e em estado sólido, sendo o 

foco deste trabalho a fermentação em batelada alimentada. No processo descontínuo alimen-

tado, um ou mais nutrientes são adicionados ao fermentador durante o cultivo e os produtos 

permanecem até o final da operação. A vazão de alimentação de nutrientes pode variar com o 

tempo e a do mosto pode se dar de forma contínua ou intermitente e essa exerce grande influên-

cia sobre o rendimento do processo (SCHMIDELL, 2001; COELHO, 2009). Como já mencio-

nado, o processo fermentativo depende de fatores físicos, químicos e microbiológicos, tais 

como: temperatura, pressão, nível de oxigenação, presença de inibidores e contaminantes. As 

principais condições que influenciam na cinética da população celular são as reações em solu-

ção, pH, temperatura, reologia do meio, quantidade de nutrientes e uniformidade no reator 

(BAILEY, 1986). 

A modelagem matemática do processo fermentativo em batelada alimentada se baseia 

no que foi proposto por Vasconcelos (1987) e validado por Coelho (2009) com dados experi-

mentais em escala piloto e industrial. As seguintes considerações são feitas: 

 

• Sistema com mistura perfeita com densidade constante; 

• Misturas do mosto e do meio de fermentação consideradas diluídas; 

• Sistema isotérmico; 

• Consumo de substrato para manutenção celular desprezível; 

• Sem perdas de etanol por arraste com CO2 ou evaporação. 

 

Considerando isso, o balanço de massa global do processo é dado pela Equação 1, 

onde a variação de massa do meio depende apenas da alimentação.  

 

d(ρV)

dt
= ρaF      

ρ=ρa
→         

dV

dt
= F (1) 

 

Para as células (Equação 2) considera-se que não há morte celular nem alimentação 

durante todo o processo, então a variação depende apenas da taxa de crescimento celular rX e 

do volume, sendo assim: 

d(XV)

dt
= rXV (2) 
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Para as concentrações de substrato e etanol, os balanços são mostrados nas Equações 

3 e 4, onde 𝑆, 𝑆𝑎  e 𝐸 são as concentrações de substrato no meio, substrato na alimentação e 

etanol, respectivamente. 

 

d(SV)

dt
= SaF − rSV (3) 

 

d(EV)

dt
= rEV (4) 

 

Manipulando as equações 2, 3 e 4 a fim de isolarmos as variáveis de interesse temos: 

 

dX

dt
= rX −

X

V

dV

dt
 (5) 

 

dS

dt
= Sa

F

V
− rs −

S

V

dV

dt
 (6) 

 

dE

dt
= rE −

E

V

dV

dt
 (7) 

 

Utilizando a Equação 1 e o fator de diluição, definido como D, onde D = F/V, obtém-

se: 

 

dX

dt
= rX − XD (8) 

 

dS

dt
= D(Sa − S) − rS (9) 

 

dE

dt
= rE − ED (10) 

 

Usando as expressões para as taxas, nas quais rX = μX, rS = σX e rE = γX, em que 

μ, σ e γ são as velocidades específicas de crescimento celular, consumo de substrato e formação 

de etanol, respectivamente, o balanço se resume às Equações 11, 12, 13 e 14. 
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dV

dt
= F (11) 

dX

dt
= (μ − D)X (12) 

dS

dt
= D(Sa − S) − X(

μ

Yx
s

+
γ

Yp
s

) (13) 

dE

dt
= γX − ED (14) 

 

Em resumo, as concentrações X, S e E, dadas em gramas por litro (g/L), são, respecti-

vamente, a concentração de células (leveduras), a concentração de substrato e a concentração 

de etanol. A variável V é o volume da dorna e é dada em litros (L). O parâmetro D representa o 

efeito de diluição provocado pelo aumento de volume na dorna e sua unidade é h-1. F é o perfil 

de alimentação do mosto, dado em litros por segundo (L/s). Os parâmetros adimensionais 𝑌𝑥
𝑠
 e 

𝑌𝑝
𝑠
 representam os fatores de rendimento substrato-célula e substrato-etanol, respectivamente. 

Os parâmetros 𝜇 e 𝛾 (h-1) representam as velocidades específicas de crescimento e dependem 

do modelo cinético (Coelho, 2009). 

 

Figura 2 - Representação de um processo fermentativo em batelada alimentada. 

 

Fonte: Autor (2024). 

 

Alguns dos diversos modelos cinéticos que buscam descrever o comportamento da 

fermentação existentes na literatura estão dispostos na Tabela 1. Eles buscam descrever o com-

portamento da fermentação considerando ou não a inibição por substrato ou produto. O modelo 

de Monod, diferente do modelo de Teissier, não leva em consideração a inibição por substrato, 
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na medida em que os modelos de Hinshelwood, Aiba e Vasconcelos levam em consideração a 

inibição por produto. As constantes KS, KS′, KP e KP′ são constantes cinéticas obtidas a partir 

de experimentos. 

 

Tabela 1 - Modelos cinéticos. 

Modelo μ γ 

Monod μmáx ∙ (
S

KS + S
) γmáx ∙ (

S

KS′ + S
) 

Teissier μmáx ∙ (1 − exp (−
S

KS
)) γmáx ∙ (1 − exp (−

S

KS′
)) 

Hinshelwood μmáx ∙ (
S

KS + S
) ∙ (1 − KP ∙ E) γmáx ∙ (

S

KS′ + S
) ∙ (1 − KP′ ∙ E) 

Aiba, Shoda e 

Nagatani 
μmáx ∙ (

S

KS + S
) ∙ exp(KP ∙ E) γmáx ∙ (

S

KS′ + S
) ∙ exp(KP′ ∙ E) 

Vasconcelos μmáx ∙ (
S

KS + S
) ∙ (1 −

E

KP
) γmáx ∙ (

S

KS′ + S
) ∙ (1 −

E

KP′
) 

Fonte: Adaptado de Belo (2021). 

 

3.2. Soft-Sensors 

Um soft-sensor é um sensor que utiliza inferência estatística para determinar o valor 

de variáveis primárias de difícil medição a partir de variáveis secundárias fáceis de mensurar. 

Na maioria das vezes esse tipo de sensor utiliza modelos empíricos para correlacionar as vari-

áveis dos processos e são especialmente utilizados em processos complexos, nos quais não 

existem modelos matemáticos e/ou fenomenológicos que definam o sistema. Sua principal fun-

ção é substituir sensores convencionais, que podem ter um custo de aquisição e manutenção 

elevado, e análises laboratoriais de amostras coletadas do processo que, a depender da natureza 

da análise, podem ter um alto tempo de resposta e a chance de erros humanos (YAN, W., 

SHAO, G., WANG, X., 2004; LOTUFO, F. A., GARCIA, C., 2008). O conceito de um soft-

sensor pode ser visto na Figura abaixo (Figura 3). 
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Figura 3 - Modelo adaptado de um soft-sensor com um hardware e um estimador. 

 

Fonte: Adaptado de Zhu (2020). 

A Tabela 2 mostra diversas aplicações de soft-sensor em diversos setores industriais. 

 

Tabela 2 - Exemplos de aplicação de soft-sensors em processos químicos. 

Publicação Indústria Aplicação 

Zhao et al. (2021) Indústria de Cimento 
Previsão do conteúdo de óxido de cálcio livre em um clínquer de 

cimento 

Farahani et al. (2021) Usina Elétrica Previsão da potência ativa e fluxo de combustível 

Wang et al. (2019b) Indústria Siderúrgica Previsão da operação de têmpera a seco de coque 

Yan et al. (2020) 
Estação de Tratamento de 

Águas Residuais 
Previsão do nitrogênio Kjeldahl total 

Phatwong and Kool-

piruck (2019) 
Indústria de Papel e Celulose Previsão do número Kappa de um digestor de celulose 

Sun and Ge (2019) Processo de Síntese de Amônia 
Previsão da concentração de CO2 em uma coluna de absorção de 

CO2 

Liu et al. (2021a) 
Indústria de Processamento de 

Polímeros 

Previsão do índice de fluxo de fusão (MFI) em um processo de 

polimerização de polipropileno 

Guo et al. (2020b) Indústria Petroquímica 
Previsão do conteúdo de butano em uma coluna de debutanizador 

de uma refinaria de petróleo 

Qiu et al. (2021) Indústria Farmacêutica 
Previsão da concentração de penicilina em um processo de 

fermentação de penicilina 

Meng et al. (2019) 
Indústria de Processamento de 

alimentos 

Previsão da pureza do líquido-mãe e supersaturação em um 

processo de cristalização de açúcar de cana 

Fonte: Adaptado de Perera, Y.S. et al (2023). 

 

A indústria 4.0 é impulsionada pela implementação deste tipo de tecnologia para o 

controle e otimização de processos em tempo real. Ela permite a monitorização de equipamen-

tos industriais através de sensores, combinando dados históricos com análises preditivas para 

otimizar a manutenção e prevenir falhas. 

3.3. Machine Learning 

Machine Learning (ML) é um campo da ciência da computação que foca na aplicação 

de algoritmos para resolver problemas da vida real. Esses algoritmos se baseiam em informa-

ções do problema para criar modelos estatísticos capaz de realizar predições. Existem diferentes 
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tipos de algoritmos que definem como o aprendizado acontece, sendo de forma supervisionada, 

semi-supervisionada, não supervisionada e de reforço.  

No aprendizado supervisionado o algoritmo aprende a partir de um conjunto de dados 

definidos, onde as entradas tem correlações com as saídas, e então o modelo tenta prever as 

saídas corretamente. As principais aplicações são para regressão, que é o caso deste trabalho, e 

classificação. O aprendizado não supervisionado não rotula os dados e, portanto, não há resul-

tados pré-definidos para o modelo utilizar como referência para aprender. Normalmente estes 

modelos são utilizados para descobrir padrões entre os dados e suas principais aplicações são 

para clustering e redução de dimensionalidade, como é o caso do AE, foco deste estudo. Já no 

aprendizado por reforço o modelo é treinado para aprender uma política de ação que recebe 

recompensas ou penalidades com base nas ações realizadas, se adaptando para maximizar a 

função de recompensa. Exemplos de aplicação dos aprendizados estão na Figura 4. 

 

 

Figura 4 - Exemplos de aplicação em função do tipo de aprendizado. 

 

Fonte: DIO. Diferenças entre aprendizado supervisionado e não supervisionado1. 

 

Um soft-sensor é uma aplicação específica de aprendizado de máquina em sistemas 

industriais para prever as variáveis do processo utilizando os dados disponíveis (BURKOV, 

2019). 

 

1 Disponível em: https://www.dio.me/articles/diferencas-entre-aprendizado-supervisionado-e-nao-supervisio-

nado. Acesso em: 10 nov. 2024. 
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3.4. Redes Neurais Artificiais 

Redes Neurais Artificiais (RNA) são modelos matemáticos que são aplicados como 

ML e que são baseadas em como o neurônio e cérebro humano funcionam (BELO, 2021). De-

vido ao avanço da capacidade de processamento de dados dos computadores modernos, a apli-

cação de RNAs ganhou espaço em muitas áreas como na economia, saúde, finanças e processos 

indústrias, sendo aplicados a soft-sensor. As principais vantagens do uso de RNAs são a velo-

cidade e volume de processamento, tolerância a erros, escalabilidade e adaptabilidade (ABIO-

DUN et al., 2018). 

A unidade principal de processamento de uma rede neural é o neurônio e ele tem três 

elementos básicos, sendo: um conjunto de sinapses, que são caracterizados por pesos; um so-

mador, que soma os sinais de entrada e uma função de ativação que limita a amplitude de saída 

do neurônio (HAYKIN, 1999). A Figura a seguir (Figura 5) mostra o esquema de um modelo 

de neurônio. 

 

Figura 5 - Neurônio artificial e seus elementos básicos. 

 

Fonte: Belo (2021). 

 

A saída do neurônio (Equação 15) é definida como uma função aplicada a soma pon-

derada do produto escalar do vetor de entradas (x) pelo vetor de pesos (w), acrescido do bias 

(b), que tem como função ajustar a saída do neurônio. A função que transforma a soma é cha-

mada de função de ativação e tem como objetivo introduzir a não linearidade aos cálculos 

(HAYKIN, 1999; CASTRO, 2007). 

 

yk = f(∑wkjxj + bk

m

j=1

) = f(w ∙ x + b) (15) 
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Existem diversos tipos de funções de ativação e cada uma tem uma aplicação especí-

fica, conforme exibido na tabela abaixo (Tabela 3). 

 

Tabela 3 - Funções de ativação e suas aplicações. 

Função Equação Aplicação 

Linear f(uk) = uk 
Utilizada em regressão, principal-

mente nas camadas de saída 

Degrau f(uk) = {
1 se uk ≥ 0
0 se uk < 0

 
Utilizada para classificação de pa-

drões com separação linear 

Sigmoid f(uk) =
1

1 + e−uk
 

Como a degrau, é adequada para 

classificação binária, porém intro-

duz não linearidade 

Tangente Hiperbólica (tanh) f(uk) =
euk − e−uk

euk + e−uk
 

Utilizada quando valores negati-

vos tem significância 

Rectified Linear Unit (ReLU) f(uk) = max (0, uk) 
Muito eficiente e utilizada para re-

des profundas pois evita o pro-

blema de Vanishing Gradient 

Fonte: Autor (2024). 

 

Uma arquitetura específica de rede neural é a multilayer perceptron (Figura 6). A rede 

é a combinação de unidades lógicas organizadas em uma ou mais camadas que recebem as 

informações de entrada, aplicam uma operação matemática e geram uma saída. O treinamento 

desse tipo de rede utiliza o algoritmo chamado de retropropagação de erros (backpropagation, 

em inglês), geralmente combinado com o método de otimização chamado de gradiente descen-

dente. Inicialmente a saída da rede é calculada com base nas entradas e em seguida o gradiente 

da função objetivo, como, por exemplo, o erro quadrático, é computado. Os pesos são atualiza-

dos subtraindo-se o gradiente, ajustado pela taxa de aprendizado, para corrigir as conexões entre 

a camada de saída e a última camada oculta. Esse processo de ajuste prossegue de forma itera-

tiva, retrocedendo até a camada de entrada. O ciclo completo de cálculo da saída, ajuste dos 

pesos e reinício do processo é chamado de época (epoch, em inglês). Durante o treinamento, os 

erros das etapas de treino e teste são registrados e frequentemente apresentados em gráficos 

para monitorar o desempenho e evitar sobreajustes (SOARES, 2017). 

Na Figura 6 é possível ver uma MLP de 3 camadas, com duas camadas ocultas e uma 

de saída. Essa rede pode ser um modelo de classificação ou regressão, a depender da função de 

ativação usada na terceira camada. 
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Figura 6 - Representação de uma rede neural MLP de 3 camadas. 

 

Fonte: Burkov (2019). 

 

Um dos tipos de redes neurais são as redes neurais recorrentes (RNNs) e são utilizadas 

para classificar e gerar sequências, como séries temporais, e devido a isso suas principais apli-

cações são em processamento de texto e fala e tratamento de dados temporais, que é o interesse 

deste trabalho. Esse tipo de rede contém loops e cada camada contém um valor real de estado 

(memória da unidade). Cada unidade em cada camada recebe duas entradas que são: um vetor 

de estados da camada anterior e o estado da camada atual (Figura 7) (BURKOV, 2019). Um 

problema que redes desse tipo têm é a dificuldade de lidar com entradas muito longas porque 

as entradas dos vetores do início tendem a ser esquecidas devido ao estado de cada unidade. 

 

Figura 7 - Rede Neural Recorrente Simples. 

 

Fonte: Autor (2024). 

 

Para contornar esse problema foram desenvolvidos modelos de máquinas de aprendi-

zado específicas para dados temporais como o gated recurrent neural network (GRU) e long 

short-term memory (BURKOV, 2019). A arquitetura da rede LSTM (Figura 8) a ser utilizada 

nesse trabalho consiste em sub redes neurais conectadas, conhecidas como blocos de memória, 

que mantêm o estado de cada camada e regula a informação que é passada (HOUDT, G. V., 

MOSQUERA, C., NÁPOLES, G., 2020).  
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Figura 8 - Arquitetura típica de um bloco LSTM. A rede é composta por um portão de entrada (input gate), um 

portão de esquecimento (forget gate), a célula (cell) e o portão de saída (output gate). 

 

Fonte: Deep Learning Book2. 

O portão de entrada de uma rede LSTM determina as informações que devem ser ar-

mazenadas na célula de memória. O portão de esquecimento decide quais informações devem 

ser mantidas ou esquecidas e o portão de saída filtra as informações com base no estado da 

célula, controlando a saída para a próxima etapa. Conforme destaca Houdt (2020), esse tipo de 

rede tem a capacidade de lidar com diversos cenários de previsão de séries temporais e pôde 

ser aplicado em diversas áreas como previsões do mercado financeiro, produção de petróleo, 

preço do petróleo e diagnósticos de falhas. 

3.5. Autoencoders 

Outro tipo de RNA é autoencoder, que é uma rede de aprendizado não supervisionado 

na qual sua principal função é reconstruir os dados de entrada, extraindo as informações mais 

relevantes (LIMA, 2021). Sua estrutura básica (Figura 9) consiste em um codificador, que com-

pacta os dados de entrada para o espaço latente de menor dimensionalidade, e um decodificador, 

que reconstrói a entrada a partir do código latente. A reconstrução é otimizada para que o valor 

reconstruído seja o mais próximo possível do original. A camada compactada atua como uma 

representação comprimida das características mais importantes do dado original (BURKOV, 

2019). A otimização do processo de reconstrução dos dados é feita reduzindo o erro quadrático 

médio entre o dado previsto e o real e é dado por: 

 

1

N
(∑||xi − f(xi)||

2
N

i=1

) (16) 

 

 

2 Disponível em: https://www.deeplearningbook.com.br/arquitetura-de-redes-neurais-gated-recurrent-unit-gru/. 

Acesso em: 17 de jan. de 2024. 
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Esse tipo de rede é muito usado para redução de dimensionalidade, remoção de ruídos 

em dados, geração de dados sintéticos e problemas de detecção de anomalias (KIM, S. G., 

CHAE, Y. G., SEONG, P. H., 2019). A utilização de autoencoders como ferramenta no desen-

volvimento de soft-sensor vem sendo estudada ultimamente, como pode ser destacado nos tra-

balhos de Kay (2022), que utiliza a rede para redução de dimensionalidade e melhora de per-

formance na predição de viscosidade do produto, e no trabalho de Menegolla (2019), que utiliza 

para inferências em processos químicos. Neste trabalho o AE será utilizado para redução de 

dimensionalidade e será avaliado sua influência na capacidade do modelo em realizar as infe-

rências das variáveis do processo fermentativo em batelada alimentada. 

 

Figura 9 - Estrutura básica de um autoencoder. 

 

Fonte: Autor (2024). 
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4. METODOLOGIA 

A metodologia para realização desse trabalho pode ser resumida conforme Figura 10. 

Primeiramente ocorreu a revisão bibliográfica sobre a construção de modelos de redes neurais 

em linguagem Python, com foco nas MLP, LSTM e AE e também sobre processo fermentativo. 

Em seguida, foi utilizado o método Runge Kutta de quarta ordem para resolução das equações 

diferenciais resultantes do balanço de massa do processo de fermentação alcoólica em batelada 

alimentada. 

 

Figura 10 - Fluxo da metodologia do trabalho. 

 

Fonte: Autor (2024). 

 

4.1. Simulação do Processo Fermentativo 

Para simulação do processo foram utilizadas as bibliotecas SciPy e NumPy para reso-

lução das equações diferenciais e Matplotlib para elaboração dos gráficos. As variáveis que 

tiveram seus valores alterados para realização das simulações foram a vazão de alimentação e 

concentração inicial do substrato e seus valores estão na tabela abaixo (Tabela 4). O modelo 

cinético utilizado foi o modelo de Teissier. No total foram feitas dez simulações, sendo nove 
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para geração de dados que foram utilizados para treinar o modelo e uma para testá-lo. A Tabela 

5 mostra os valores das outras variáveis do processo. 

Tabela 4 - Valores das variáveis em cada simulação. 

Simulação 
Vazão de  

Alimentação (L/s) 

Concentração Inicial  

do Mosto (g/L) 

1 7 88,0 

2 7 132,5 

3 7 177,0 

4 13 88,0 

5 13 132,5 

6 13 177,0 

7 19 88,0 

8 19 132,5 

9 19 177,0 

10 (teste) 12 150,0 

Fonte: Autor (2024). 

 

Tabela 5 - Valores das variáveis do processo. 

Variável Valor Utilizado Unidade 

Ksx 168,2761 g/L 

Ksp 43,5830 g/L 

Yx/s 0,51 - 

Yp/s 0,57 - 

𝑢𝑀Á𝑋 0,0022356 s-1 

𝛾𝑀Á𝑋 0,0008194 s-1 

V0 4375 L 

X0 30 g/L 

Fonte: Autor (2024). 

 

4.2. Coleta de Dados 

O tempo utilizado para cada simulação de batelada foi de dez horas, com a alimentação 

de mosto acontecendo somente nas seis primeiras horas. Foi feita a avaliação dos modelos 

usando um minuto como tempo de amostragem, gerando assim 600 linhas de dados por batelada 

contendo 12 variáveis, sendo as variáveis tempo, vazão, concentração inicial de mosto, e as 

concentrações de etanol, células e substrato com atraso (lag, em inglês). 

4.3. Pré-processamento dos Dados 
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A Tabela 6 mostra os valores de uma variável arbitrária A ao longo do tempo. Imagi-

nando que queremos usar os três valores anteriores (lag = 3) da variável para prever o próximo, 

devemos organizar os dados da seguinte forma, conforme ilustrado na Tabela 7. A tabela mostra 

a sequência de informações que deve ser fornecida ao modelo para que ele preveja o próximo 

valor. A última linha da tabela mostra o valor esperado da sequência com base no histórico. 

 

Tabela 6 - Valores de uma variável arbitrária A ao longo do tempo. 

Tempo (min) Valor da variável A 

0 0 

5 1 

10 2 

15 3 

20 4 

25 5 

30 6 

35 7 

40 8 

45 9 

50 10 

Fonte: Autor (2024). 

 

Tabela 7 - Exemplo de como os dados são organizados e inseridos na rede. 

Sequência de Entrada (Lag 3) Target (Próximo valor) 

[0, 1, 2] 3 

[1, 2, 3] 4 

[2, 3, 4] 5 

[3, 4, 5] 6 

[4, 5, 6] 7 

[5, 6, 7] 8 

[6, 7, 8] 9 

[7, 8, 9] 10 

[8, 9, 10] 11 (valor esperado) 

Fonte: Autor (2024). 

 

Essa mesma metodologia foi aplicada nos dados do processo que foram utilizados na 

MLP e LSTM. Como queremos prever o valor das variáveis de interesse, foi aplicado um lag 

de 3 nelas e os dados foram divididos em dois arquivos, um contendo os dados de entrada e no 

outro os dados do próximo valor, conforme exibido na Tabela 8. Foi avaliado também a eficácia 

do modelo usando somente a variável de interesse (etanol) nos dados de entrada e de saída. 
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Tabela 8 – Variáveis alimentadas em cada teste. Os subscritos 1, 2 e 3 representam o atraso da variável. 

Teste Dados de Entrada Dados de Saída (targets) 

1 t, F, Sa, E1, E2, E3, S1, S2, S3, X1, X2, X3 E, S, X 

2 t, F, Sa, E1, E2, E3 E 

Fonte: Autor (2024). 

 

Uma das etapas mais importantes em qualquer atividade relacionada à ciência de dados 

é o pré-processamento, que inclui normalização, tratamento de valores ausentes, redução de 

dimensionalidade, remoção de outliers, entre outros (ALIABADI, 2020). Como os dados foram 

obtidos da simulação do processo, foi somente preciso normaliza-los. Para normalização foi 

utilizado o método MinMaxScaler da biblioteca Scikit-learn, que reescala os dados para um 

intervalo específico, normalmente entre 0 e 1, conforme mostra a Equação 17. Essa metodolo-

gia preserva a relação entre os valores originais e facilitando o desempenho do modelo. É uma 

abordagem vantajosa especialmente em redes neurais, onde a escala dos dados pode impactar 

o processo de aprendizado (BURKOV, 2019). 

 

Xnormalizado =
XMÁX − XMÍN
X − XMÍN

 
(17) 

 

Onde X é o valor original, XMÍN é o valor mínimo do conjunto de dados, XMÁX é o valor 

máximo e X o valor original. 

4.4. Construção das Redes 

Para construção de todas as redes foram utilizadas as bibliotecas Scikit-learn, Tensor-

Flow e Keras. Foram utilizadas técnicas para evitar o fenômeno de overfitting (sobreajuste), 

exemplificado na Figura 11, no qual o modelo se adapta excessivamente aos dados de treina-

mento e posteriormente não consegue realizar previsões precisas nos dados de teste (BURKOV, 

2019). 
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Figura 11 - Exemplos visuais de ajustes aos dados. A figura mais à esquerda representa uma falta de ajuste en-

quanto que a mais à direita representa o sobreajuste. A figura central representa um bom ajuste. 

 

Fonte: Burkov (2019). 

As técnicas utilizadas foram a de Dropout e Earlystoping. A primeira é uma técnica 

de regularização que previne o overfit desativando aleatoriamente uma fração dos neurônios 

durante a fase de treinamento em cada iteração, fazendo com que estes neurônios não partici-

pem do cálculo e nem da retropropagação, melhorando assim a generalização do modelo. Neste 

trabalho foi utilizado um dropout (esquecimento) de 30% na MLP e 20% nas LSTM e LSTM-

AE. A segunda técnica faz com que o treinamento do modelo seja interrompido caso o modelo 

não esteja mais melhorando seu desempenho no conjunto de validação. Neste caso a função de 

perda é monitorada em cada época (ciclo de treinamento e ajuste de parâmetros) e caso ela 

esteja variando pouco o treinamento é interrompido após um número definido de épocas, cha-

mado de patience (paciência). Em todas as redes foi utilizado um valor de patience de 10. Para 

o tipo de treinamento foi utilizado o método de mini-batch em todos os modelos. Nesse método 

os dados são divididos e processados em batchs e o modelo atualiza os pesos após cada proces-

samento. Para as funções de ativação foram utilizados a ReLU e a Linear, sendo a segunda 

apenas para a última camada. Todos os modelos utilizaram 2 camadas ocultas, sendo a primeira 

com 24 neurônios e a segunda com 12. As camadas iniciais e finais tiveram o mesmo tamanho 

das quantidades de variáveis dos vetores de entrada e saída, respectivamente.  

A Tabela 9 mostra as arquiteturas das redes MLP, LSTM e LSTM-AE. 

 

Tabela 9 – Parâmetros das redes. 

Parâmetro MLP LSTM LSTM-AE 

Epochs (max.) 200 100 100 

Dropout 30% 20% 20% 

Patience 10 10 10 

Taxa de Aprendizado 0.001 0.001 0.001 

Tipo de Treinamento Mini-batch (32) Mini-batch (32) Mini-batch (32) 

Função de Ativação ReLU e Linear ReLU e Linear ReLU e Linear 

Fonte: Autor (2024). 

4.5. Análise Comparativa 
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As métricas utilizadas para avaliar os modelos foram mean absolute error (MAE), root 

mean squared error (RMSE) e R² e suas formas de cálculo podem ser vistas nas Equações 18 

e 19. 

O MAE calcula a média dos erros absolutos entre as previsões e os valores reais, sendo 

uma métrica simples que mostra a magnitude média dos erros cometidos pelo modelo, sem 

considerar a direção dos erros (positivos ou negativos). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (18) 

O RMSE mede a diferença entre os valores previstos pelo modelo e os valores reais e 

é obtido fazendo-se a raiz quadrada da média dos erros quadráticos. O RMSE penaliza erros 

maiores mais severamente devido à operação de quadrado.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2
𝑛

𝑖=1

 (19) 

Tanto para o MAE quanto para o RMSE, n representa o número de amostras, yi o valor 

real, 𝑦̂𝑖 o valor predito. 

Já o R² é uma métrica que indica a proporção da variância nos dados que é previsível 

a partir do modelo. Ele varia de 0 a 1, onde 1 indica que o modelo explica completamente a 

variância dos dados. 
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5. RESULTADOS E DISCUSSÃO 

Os resultados serão apresentados conforme a ordem cronológica de execução dos có-

digos. Logo após serão mostrados o comparativo das métricas entre os três modelos, para os 

dois testes executados. 

5.1. Simulação do Processo Fermentativo 

As Figuras 12 e 13 exibem os gráficos das simulações feitas para as diversas combi-

nações, conforme citado na Tabela 4. Foi possível verificar que a concentração inicial de subs-

trato elevada fez com que a concentração de células diminua antes de aumentar no início, con-

forme prevê o modelo de Teissier. Esse fato dificultou os modelos de predição, principalmente 

para os valores iniciais, conforme será mostrado mais adiante. 

 

Figura 12 - Gráficos das simulações feitas para geração e coleta de dados do processo. 

 

Fonte: Autor (2024). 

 

Após a interrupção na adição da alimentação é possível ver que há um aumento na 

concentração de etanol produzido. 
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Figura 13 - Gráfico da simulação para geração de dados para o teste dos modelos. 

 
Fonte: Autor (2024). 

 

 

Durante o treinamento da rede é acompanhado a função de perda (loss, em inglês) e 

ela deve ter um comportamento característico quando um modelo está bem generalizado ou 

não. Para uma boa generalização, as curvas de perda do treinamento e de validação devem 

diminuir gradativamente até um ponto de convergência, conforme pode ser visto na Figura 14 

para os modelos utilizados neste trabalho. 

 

Figura 14 - Curvas de perda do treinamento e da validação. A figura (a) é a rede MLP, a (b) da rede 

LSTM e a (c) é do LSTM-AE. 

 

Fonte: Autor (2024). 
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5.2. MLP 

A Tabela 10 exibe os valores das métricas utilizadas para cada uma das variáveis es-

tudadas. É possível ver que o valor de R² foi maior e os valores RMSE e MAE foram menores 

para o etanol, mas o contrário aconteceu com a concentração de células, mostrando assim o 

quanto a variação na concentração devido ao decaimento celular influencia na capacidade do 

modelo. 

Tabela 10 – Métricas de desempenho da MLP para o primeiro teste. 

 Variável R² RMSE MAE 

Etanol 0,9285 2,2360 1,7562 

Substrato 0,9188 6,7738 2,4014 

Células 0,7253 1,3219 0,6938 

Fonte: Autor (2024). 

No início da simulação o modelo prevê com um erro maior, mas rapidamente ele con-

verge para um valor bem próximo do real, conforme mostra a Figura 15. A maior diferença, 

embora pequena, está na primeira hora da simulação, quando os valores estão convergindo para 

um valor estacionário. É possível visualizar também que o modelo prevê o aumento da concen-

tração quando a alimentação cessa. 

 

Figura 15 - Gráfico das concentrações de etanol real versus previsto pela MLP para o primeiro teste. 

 

Fonte: Autor (2024). 

Para o segundo teste, no qual foi utilizado apenas os dados da concentração de etanol 

para o treinamento da rede, verificou-se um aumento na acuracidade geral do modelo, com um 

valor de R² maior e erros menores, conforme mostra a Tabela 11 e a Figura 16. 
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Tabela 11 - Métricas de desempenho da MLP para o segundo teste. 

 Variável R² RMSE MAE 

Etanol 0,9783 1,2326 0,9320 

Fonte: Autor (2024). 

 

Figura 16 - Gráfico das concentrações de etanol real versus previsto pela MLP para o segundo teste. 

 

Fonte: Autor (2024). 

 

A Figura 17 mostra o gráfico de paridade entre o valor previsto e o real. 

 

Figura 17 - Gráfico de paridade entre os valores reais e previstos da MLP. 

 

Fonte: Autor (2024). 

5.3. LSTM 

A rede LSTM se mostrou melhor que a MLP de um modo geral, como referenciado na 

literatura, pois conseguiu desempenhar bem para as três variáveis principais do estudo. Para o 
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segundo teste da LSTM a rede desempenhou ainda melhor. As Tabelas 12 a Figura 18 mostram 

os resultados para o primeiro teste. 

 

Tabela 12 - Métricas de desempenho da LSTM para o primeiro teste. 

Variável  R² RMSE MAE 

Etanol 0,9614 1,6419 1,3915 

Substrato 0,9570 4,9307 1,9079 

Células 0,8356 1,0227 0,4990 

Fonte: Autor (2024). 

 

Figura 18 - Gráfico das concentrações de etanol real versus previsto pela LSTM para o primeiro teste. 

 

Fonte: Autor (2024). 

 

A rede LSTM conseguiu se adaptar bem a variação inicial dos valores, que são maio-

res. A tabela 13 mostra e as Figuras 19, 20 e 21 mostram os resultados para o segundo teste. 

 

Tabela 13 - Métricas de desempenho da LSTM para o segundo teste. 

 Variável R² RMSE MAE 

Etanol 0,9973 0,4336 0,3055 

Fonte: Autor (2024). 
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Figura 19 - Variáveis do processo ao longo da simulação. 

 

Fonte: Autor (2024). 

 

Figura 20 - Gráfico de paridade entre os valores reais e previstos da LSTM para o segundo teste. 

 

Fonte: Autor (2024). 

 

Figura 21 - Gráfico das concentrações de etanol real versus previsto pela LSTM para o segundo teste. 

 

Fonte: Autor (2024). 
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5.4. LSTM-AUTOENCODER 

Para a simulação de teste, o modelo foi capaz de prever com muita exatidão mesmo 

utilizando os dados reduzidos, conforme mostram os resultados na Tabela 14. As métricas do 

teste utilizando apenas os dados de etanol estão na Tabela 15 e, diferente dos outros modelos, 

o modelo desempenhou um pouco pior em relação a utilização de todas as variáveis. 

 

Tabela 14 - Métricas de desempenho da LSTM-AE para o primeiro teste. 

 Variável R² RMSE MAE 

Etanol 0,9661 1,5385 1,2371 

Substrato 0,9540 5,0969 2,6388 

Células 0,7389 1,2888 0,7488 

Fonte: Autor (2024). 

Tabela 15 - Métricas de desempenho da LSTM-AE para o segundo teste. 

Variável  R² RMSE MAE 

Etanol 0,9551 1,7722 1,5242 

Fonte: Autor (2024). 

 

A rede se mostrou bem capaz de realizar inferências mesmo utilizando os dados com 

dimensionalidade reduzida, quase não perdendo acuracidade quando comparada a LSTM, o que 

mostra que o método é válido quando se deseja aumentar a eficiência computacional. As Figu-

ras 22 e 23 mostram o gráfico do real versus o previsto e da regressão para o segundo teste. 

 

Figura 22 - Gráfico das concentrações de etanol real versus previsto pela LSTM-AE para o segundo 

teste. 

 

Fonte: Autor (2024). 
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Figura 23 - Gráfico de paridade entre os valores reais e previstos da LSTM-AE para o segundo teste. 

  

Fonte: Autor (2024). 
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6. CONCLUSÃO 

No presente trabalho, desenvolveu-se um soft-sensor em linguagem Python, utilizando 

redes neurais para a predição de variáveis do processo de fermentação alcoólica em batelada 

alimentada. A partir de simulações realizadas, foram gerados dados que permitiram o treina-

mento e a avaliação dos modelos, atingindo os objetivos propostos com resultados satisfatórios. 

A rede LSTM se destacou como a técnica mais eficaz, apresentando melhores métricas 

para as variáveis avaliadas (R² = 0,9973, RMSE = 0,4336 e MAE = 0,3055). Já o modelo 

LSTM-Autoencoder mostrou-se uma alternativa promissora, capaz de manter boa precisão 

mesmo utilizando uma quantidade menor de informação, se mostrando relevante para aplica-

ções onde a eficiência computacional é um ponto crítico. Em contrapartida, a MLP, embora 

tenha desempenhado de forma adequada, teve o pior resultado e apresentou limitações para 

capturar a complexidade das dinâmicas do processo. 

A aplicação da linguagem Python e suas bibliotecas para simulação do processo e de-

senvolvimento dos modelos confirmou ser eficaz, permitindo atender os objetivos propostos. 

Além disso, a integração de conceitos aprendidos durante a graduação nas disciplinas de méto-

dos numéricos, biotecnologia industrial e, principalmente, tópicos de inteligência artificial apli-

cados a engenharia, mostrou-se crucial para o sucesso deste trabalho, evidenciando a relevância 

desses conhecimentos para a formação de um engenheiro químico na era da Indústria 4.0. 

Embora os resultados tenham sido satisfatórios algumas melhorias podem ser imple-

mentadas para aprimorar ainda mais o desempenho e a aplicabilidade do sensor. Uma das pos-

síveis melhorias envolve testar diferentes arquiteturas, alterando o número de camadas, testando 

diferentes quantidades de neurônios e utilizando diferentes combinações de funções de ativação 

na arquitetura dos modelos. 

Outra possível melhoria seria a ampliação da base de dados. A coleta de dados reais 

de processos industriais permitiria uma comparação mais robusta dos modelos com cenários 

mais próximos da aplicação prática. Além disso, aumentar o número de simulações e/ou variar 

os parâmetros da simulação pode ajudar a tornar os modelos mais precisos. 
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