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RESUMO

Fermentacdo alcoolica € um processo bioquimico no qual ha conversdo de agucares simples em
compostos de interesse comercial, como, por exemplo, o etanol. A industria brasileira de etanol
chegou a produzir 35,6 bilhdes de litros na safra de 2019/2020. O processo produtivo é influ-
enciado por diversas variaveis, tais como o tipo de levedura, contaminacao bacteriana, concen-
tracdo de aclcares no meio reacional, tempo de alimentacao das dornas, temperatura, pH, entre
outras, e isso torna o controle e otimizacdo do processo complexo, principalmente quando essas
variaveis devem ser medidas diretamente por sensores fisicos convencionais ou por analises em
laboratdrio. Ao contrario das medicBes convencionais, os soft-sensors utilizam algoritmos ma-
tematicos, técnicas de inteligéncia artificial ou modelos estatisticos para inferir ou prever essas
variaveis com base em informacdes indiretas, como medidas disponiveis, historico de dados ou
correlagdes entre variaveis no qual modelos classicos ndo conseguem explicar. Processos em
batelada, diferentemente de processos continuos, apresentam dificuldades em relacéo a utiliza-
cao de técnicas para elaboracdo de modelos empiricos para inferéncia, que é como a variavel
tempo é considerada e incorporada ao modelo. Autoencoder (AE) é uma rede de aprendizado
profundo ndo supervisionado composta por um codificador e um decodificador que pode ser
utilizada para reduzir a dimensionalidade dos dados e facilitar o treinamento de um modelo, a
mesma vem sendo muito utilizada como classificadora na deteccao e diagnoéstico de falha, po-
rém a sua utilizacdo como soft-sensor ainda é relativamente nova. Com base nisso, o trabalho
teve como objetivo explorar a utilizacdo do AE, assim como algumas técnicas ja bastante utili-
zadas na elaboracdo dos soft-sensors como as redes neurais artificiais (RNAS) e as long short
term memory (LSTM) focando a problematica da incorporacdo da variavel tempo aos modelos.
Todas as trés redes apresentaram bons resultados para prever a concentracdo de etanol, com
valores de R2 acima de 0,9 e erros abaixo de 2,5, entretanto a rede LSTM se destacou como a
mais eficaz pois apresentou os melhores valores nas métricas avaliadas (R2 =0,9973, RMSE =
0,4336 e MAE = 0,3055). Ja 0 modelo LSTM-Autoencoder mostrou-se uma alternativa promis-
sora, capaz de manter boa precisdao mesmo utilizando uma quantidade menor de informacéo (R2
= 0,9551, RMSE = 1,7722 e MAE = 1,5142), se mostrando relevante para aplicacGes onde a

eficiéncia computacional € um ponto critico.

Palavras-Chave: Processo Fermentativo; Redes Neurais Artificiais; Soft-Sensor; Autoencoder.



ABSTRACT

Alcoholic fermentation is a biochemical process in which simple sugars are converted into
commercially interesting compounds, such as ethanol, for example. The Brazilian ethanol in-
dustry reached a production of 35.6 billion liters in the 2019/2020 harvest. The production pro-
cess is influenced by various variables, such as the type of yeast, bacterial contamination, sugar
concentration in the reaction medium, feeding time of the fermenters, temperature, pH, among
others, and this makes the control and optimization of the process complex, especially when
these variables must be measured directly by conventional physical sensors or laboratory anal-
yses. Unlike conventional measurements, soft sensors use mathematical algorithms, artificial
intelligence techniques, or statistical models to infer or predict these variables based on indirect
information, such as available measurements, historical data, or correlations between variables
that classical models cannot explain. Batch processes, unlike continuous processes, present a
difficulty regarding the use of techniques for the development of empirical models for infer-
ence, which is how the time variable is considered and incorporated into the model. An Auto-
encoder (AE) is an unsupervised deep learning network composed of an encoder and a decoder
that can be used to reduce data dimensionality and facilitate model training. It has been widely
used as a classifier in fault detection and diagnosis; however, its use as a soft-sensor is still
relatively new. Based on this, the work aimed to explore the use of AE, as well as some tech-
niques already widely used in the development of soft sensors such as artificial neural networks
(ANNS) and long short-term memory (LSTM), focusing on the issue of incorporating the time
variable into the models. All three networks showed good results in predicting ethanol concen-
tration, with R2 values above 0,9 and errors below 2,5. However, the LSTM network stood out
as the most effective, presenting better metrics for the evaluated variables (R2 = 0.9973, RMSE
= 0.4336 and MAE = 0.3055). The LSTM-Autoencoder model, on the other hand, proved to be
a promising alternative, capable of maintaining good accuracy even when using a smaller
amount of information (Rz = 0.9551, RMSE = 1.7722 and MAE = 1.5142), making it relevant

for applications where computational efficiency is a critical point.

Keywords: Fermentation Process; Artificial Neural Networks; Soft-Sensor; Autoencoder.
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1. INTRODUCAO

Fermentacéo alcodlica € um processo microbiano no qual bactérias ou leveduras con-
vertem aclcares em etanol e outros compostos, sendo o etanol um produto com alto valor agre-
gado e utilizado em bebidas alcodlicas, industrias de perfumaria e principalmente como com-
bustivel (JUNIOR, 2012). O Brasil é o segundo maior produtor de etanol do mundo, com 27,5%
do volume global em 2021 (VIDAL, 2022).

A via fermentativa é a principal maneira de obtencéo do etanol no Brasil, sendo a cana-
de-agUcar a principal matéria-prima. O processo consiste resumidamente em fermentar o caldo
e 0 mosto produzidos nas industrias agucareiras e posteriormente leva-lo ao processo de desti-
lagdo e desidratac3o, para o caso da producdo do etanol anidro (JUNIOR, 2012). O processo
fermentativo depende de fatores fisicos (temperatura e pressdo osmdtica), quimicos (reacdes,
nivel de oxigenacdo, quantidade de nutrientes e inibicdes, pH) e microbioldgicos (espécie e
concentracdo do microrganismo, presenca de contaminantes) (LIMA, 2019).

O controle de bioprocessos é uma tarefa complexa devido a quantidade de variaveis a
serem controladas simultaneamente e também devido a dindmica n&o linear dos sistemas. Pro-
cessos convencionais de andlise do produto e controle das varidveis que envolvem analises la-
boratoriais podem ser ineficientes devido a elevados tempos de resposta das analises e impre-
cisdes associadas aos instrumentos e erros humanos (DESAI et al., 2006). Uma alternativa em
relacdo a medidas convencionais € a utilizacdo de soft-sensors, que se baseiam em dados do
processo, normalmente variaveis secundarias, para prever ou inferir o comportamento de vari-
aveis mais criticas, também chamadas de variaveis primarias (WANG et al., 2019).

Soft-sensors frequentemente usam redes neurais, incluindo Multilayer Perceptron
(MLP) e Long Short-Term Memory (LSTM). As LSTM séo favoraveis para processos dinami-
cos porque capturam dependéncias temporais, enquanto as MLP modelam correlagdes néo li-
neares entre variaveis. Para processos com um grande namero de variaveis esse tipo de sensor
pode ser utilizado paralelamente com autoencoder (AE) para reducdo de dimensionalidade,
compressédo de dados e também deteccdo de outliers, podendo melhorar a eficiéncia dos senso-
res (KAY et al., 2022).

A industria 4.0 representa a evolucdo do setor industrial impulsionada pela implemen-
tacdo de tecnologias como a Internet das Coisas (10T, em inglés), sistemas fisico-cibernéticos
e inteligéncia artificial (1A). Estas tecnologias permitem que os sistemas aprendam a partir da
experiéncia utilizando dados do processo e se adaptem a novas situacées (BANITAAN et al.,
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2023). Empresas como a Dow e Shell tem casos de sucesso utilizando 1A em seus processos. A
Dow desenvolveu uma capacidade de Inteligéncia Preditiva que transforma o desenvolvimento
de produtos de poliuretanos, acelerando em até 200 mil vezes a formulacdo de novos produtos
e reduzindo o tempo de descoberta para cerca de 30 segundos. J& a Shell aplicou IA na anélise
de dados das bombas submersas de sua plataforma Perdido no Golfo do México, identificando
um padrdo que antecipa falhas em 70% dos casos, prevenindo interrupc6es de producdo e au-
mentando a eficiéncia operacional.

Um tema de interesse tanto para a comunidade académica quanto para a industria € a
utilizacdo de soft-sensors em conjunto com sistemas inteligentes ou IA, como os deep learning
autoencoders, para a estimativa de variaveis em processos fermentativos. Dessa forma, o obje-
tivo deste trabalho é simular o bioprocesso de fermentacdo alcodlica em batelada alimentada a
fim de gerar dados emulados do processo e aplicar técnicas de IA, como MLP e deep learning
autoencoders, para desenvolver um soft-sensor. Além disso, sera avaliada a eficacia de estraté-
gias para a elaboracdo do soft-sensor em processos em batelada que apresentam particularida-

des na representacdo da variavel tempo, utilizando as redes LSTM.
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2. OBJETIVOS

2.1. Geral

Desenvolver um soft-sensor, em linguagem Python, eficaz para predicao de variaveis

do processo de fermentagéo alcodlica em batelada alimentada.

2.2. Especificos

e Simular o processo de fermentacdo alcodlica em batelada alimentada, em linguagem
Python, utilizando um modelo ja validado com dados experimentais;

e Desenvolver um soft-sensor que realize inferéncias sobre variaveis de interesse do processo
utilizando as redes MLP e LSTM,;

e Utilizar a deep learning autoencoder para melhorar as relac6es entre os dados gerados da

simulacdo e avaliar sua influéncia na acuracidade do sensor.
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3. REVISAO BIBLIOGRAFICA

Na revisao sera feita uma andlise sobre o atual mercado acucareiro e de alcool no Brasil
e sobre o0 processo fermentativo em batelada alimentada. Serdo abordados topicos sobre soft-
sensor e as suas aplicagdes, machine learning, redes neurais artificiais, autoencoders e as suas

utilizacdes em processos.

3.1. Industria Acgucareira e 0 Processo Fermentativo

O etanol pode ser obtido por trés vias basicas, como a destilatéria, a sintética e por
bioprocesso, sendo a principal e mais utilizada no Brasil a Gltima. O processo fermentativo
utiliza como matérias-primas vegetais ricos em carboidratos, que podem ser classificados como
sacarinos, amilaceos e celulésicos (LIMA, 2019).

O Brasil é 0o maior produtor de agucar e 0 segundo maior produtor de etanol do mundo,
e isso é consequéncia de o pais ter condi¢des climaticas 6timas para cultivo da cana-de-agucar
e investimentos no setor sucroalcooleiro. O pais registra uma producdo de 713,2 milhdes de
toneladas de cana-de-acUcar na safra 2023/2024, com a producdo de etanol superando 35 bi-
IhGes de litros, tendo um aumento de 15% em relagéo ao ano anterior (CONAB, 2024; VIDAL,
2022).

Figura 1 - Producéo de cana-de-acUcar e etanol entre o periodo de 2019 e 2024. A informacdo para a
safra 24/25 é uma estimativa.

Produgdo de Cana-de-Agucar ¢ Etanol

Em Produgio Cana-de-aciicar (milhoes de toneladas) = Producéo Etanol (bilhdes de litros)
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Fonte: Autor (2024).
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A obtencdo do alcool por via fermentativa pode ser dividida em trés fases: preparo do
substrato, a fermentacéo e a destilacdo. Esse processo pode acontecer em diferentes regimes
como em batelada, batelada alimentada, semicontinuo, continuo e em estado sélido, sendo o
foco deste trabalho a fermentagdo em batelada alimentada. No processo descontinuo alimen-
tado, um ou mais nutrientes sdo adicionados ao fermentador durante o cultivo e os produtos
permanecem até o final da operacdo. A vazdo de alimentacdo de nutrientes pode variar com o
tempo e a do mosto pode se dar de forma continua ou intermitente e essa exerce grande influén-
cia sobre o rendimento do processo (SCHMIDELL, 2001; COELHO, 2009). Como j&a mencio-
nado, o processo fermentativo depende de fatores fisicos, quimicos e microbioldgicos, tais
como: temperatura, pressdo, nivel de oxigenacdo, presenca de inibidores e contaminantes. As
principais condi¢des que influenciam na cinética da populacéo celular so as reacdes em solu-
¢do, pH, temperatura, reologia do meio, quantidade de nutrientes e uniformidade no reator
(BAILEY, 1986).
A modelagem matematica do processo fermentativo em batelada alimentada se baseia
no que foi proposto por Vasconcelos (1987) e validado por Coelho (2009) com dados experi-
mentais em escala piloto e industrial. As seguintes consideracdes sdo feitas:

e Sistema com mistura perfeita com densidade constante;

e Misturas do mosto e do meio de fermentacdo consideradas diluidas;
e Sistema isotérmico;

e Consumo de substrato para manutencéo celular desprezivel;

e Sem perdas de etanol por arraste com CO2 ou evaporagéo.

Considerando isso, o balanco de massa global do processo é dado pela Equagdo 1,

onde a variacdo de massa do meio depende apenas da alimentagao.

d(pV) B A\

—_— =F 1
P o @ ()

Para as células (Equacao 2) considera-se que ndo ha morte celular nem alimentacgéo
durante todo o processo, entéo a variagcdo depende apenas da taxa de crescimento celular ry e
do volume, sendo assim:

d(XV)
X

)
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Para as concentracdes de substrato e etanol, os balancos sdo mostrados nas Equac6es
3e4,onde S, S, e E sdo as concentracdes de substrato no meio, substrato na alimentacéo e

etanol, respectivamente.

d(sv)

— = SaF sV (3)

d(EV)

dt I‘EV (4)

Manipulando as equac@es 2, 3 e 4 a fim de isolarmos as variaveis de interesse temos:

dX Xdv
e 5
dt XV ©)
dS _F s dv
a5y TV a ©)
dE EdV
. 7
dt - ETVdr ()

Utilizando a Equacdo 1 e o fator de diluicdo, definido como D, onde D = F/V, obtém-

Se.

E =TIx— XD (8)
ds
az D(Sa—S)—rs (9)
dE
ToET ED (10)

Usando as expressdes para as taxas, nas quais ry = pX, rs = oX e rg = yX, em que
i, o ey sdo as velocidades especificas de crescimento celular, consumo de substrato e formacéo

de etanol, respectivamente, o balango se resume as Equacfes 11, 12, 13 e 14.
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dv
—=F 11
T (11)
dX
= _ — 12
It (u—D)X (12)
dS Loy
5 =DGa—9) - X %5 (13)
S S
dE
— =vX—ED 14
x =Y (14)

Em resumo, as concentragdes X, S e E, dadas em gramas por litro (g/L), séo, respecti-
vamente, a concentracdo de células (leveduras), a concentracdo de substrato e a concentracdo
de etanol. A variavel V é o volume da dorna e é dada em litros (L). O parametro D representa o
efeito de diluigio provocado pelo aumento de volume na dorna e sua unidade é h™X. F ¢ o perfil

de alimentacdo do mosto, dado em litros por segundo (L/s). Os parametros adimensionais Yx e
N

Y» representam os fatores de rendimento substrato-célula e substrato-etanol, respectivamente.
N

Os parametros u e y (h) representam as velocidades especificas de crescimento e dependem
do modelo cinético (Coelho, 2009).

Figura 2 - Representacdo de um processo fermentativo em batelada alimentada.

Mosto Fermento Tratado @‘:
Cuba .

Centrifuga

Volante de
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Destilaciao

Tanque Pulmio
Vinho Bruto
Trocador de Calor

Fonte: Autor (2024).

Alguns dos diversos modelos cinéticos que buscam descrever o comportamento da
fermentacdo existentes na literatura estdo dispostos na Tabela 1. Eles buscam descrever o com-
portamento da fermentacgéo considerando ou néo a inibi¢do por substrato ou produto. O modelo

de Monod, diferente do modelo de Teissier, ndo leva em consideracéao a inibicdo por substrato,
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na medida em que os modelos de Hinshelwood, Aiba e VVasconcelos levam em consideracdo a
inibicdo por produto. As constantes K, K¢, Kp € Kpr S0 constantes cinéticas obtidas a partir

de experimentos.

Tabela 1 - Modelos cinéticos.

Modelo u Y
Monod Mmax * (L) Ymax * ( > )
Ks+S Ke +S
.. S S

Teissier Hmx * (1 — exp <— K_s>) Ymax <1 T exp <_ Ky))

Hinshelwood i - <L) “(1-Kp E)  Ymax" (L) “(1=Kpr-E)
Ks+ S Ke + S

Aiba, Shoda e S S

Nagatani Hmax * (m) “exp(Kp " E)  VYmax- (m) - exp(Kpr - E)

Vasconcelos

) (%) relom) (%)
Mmax KS +S KP Ymax KS’ +5S KP’

Fonte: Adaptado de Belo (2021).

3.2. Soft-Sensors

Um soft-sensor é um sensor que utiliza inferéncia estatistica para determinar o valor
de variaveis primarias de dificil medicdo a partir de variaveis secundarias faceis de mensurar.
Na maioria das vezes esse tipo de sensor utiliza modelos empiricos para correlacionar as vari-
aveis dos processos e sdo especialmente utilizados em processos complexos, nos quais nédo
existem modelos matematicos e/ou fenomenoldgicos que definam o sistema. Sua principal fun-
cdo € substituir sensores convencionais, que podem ter um custo de aquisi¢do e manutencdo
elevado, e analises laboratoriais de amostras coletadas do processo que, a depender da natureza
da anélise, podem ter um alto tempo de resposta e a chance de erros humanos (YAN, W.,
SHAO, G., WANG, X., 2004; LOTUFO, F. A., GARCIA, C., 2008). O conceito de um soft-

sensor pode ser visto na Figura abaixo (Figura 3).
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Figura 3 - Modelo adaptado de um soft-sensor com um hardware e um estimador.
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Fonte: Adaptado de Zhu (2020).
A Tabela 2 mostra diversas aplicacdes de soft-sensor em diversos setores industriais.

Tabela 2 - Exemplos de aplicacdo de soft-sensors em processos quimicos.

Publicacéo Inddstria Aplicacéo
Zhao et al. (2021) Indiistria de Cimento Previsdo do contetido de éxig?r:eenfglcio livre em um clinquer de
Farahani et al. (2021) Usina Elétrica Previsdo da poténcia ativa e fluxo de combustivel
Wang et al. (2019b) Industria Siderurgica Previsdo da operacgdo de témpera a seco de coque

Estacdo de Tratamento de

Yanetal. (2020) Aguas Residuais

Phatwong and Kool-
piruck (2019)

Sun and Ge (2019)  Processo de Sintese de Amonia

Previséo do nitrogénio Kjeldahl total

Industria de Papel e Celulose Previsdo do nimero Kappa de um digestor de celulose
Previsdo da concentragdo de CO2 em uma coluna de absorcéo de

CO2
Liu et al. (2021a) Indstria de Processamento de Previsdo do indice de fluxo de fusdo (MFI) em um processo de
' Polimeros polimerizagdo de polipropileno

Previsdo do conte(ido de butano em uma coluna de debutanizador

Guo et al. (2020b) IndUstria Petroquimica L .
de uma refinaria de petréleo
Qiu et al. (2021) Inddstria Farmacéutica Previsdo da concentracdo d~e penlcnl.ng €M Um processo de
fermentac&o de penicilina
Industria de Processamento de Previséo da pureza do liquido-mae e supersaturagdo em um

Meng et al. (2019) alimentos processo de cristalizacdo de agucar de cana

Fonte: Adaptado de Perera, Y.S. et al (2023).

A industria 4.0 é impulsionada pela implementacdo deste tipo de tecnologia para o
controle e otimizagdo de processos em tempo real. Ela permite a monitorizacdo de equipamen-
tos industriais através de sensores, combinando dados historicos com analises preditivas para

otimizar a manutencéo e prevenir falhas.
3.3. Machine Learning

Machine Learning (ML) é um campo da ciéncia da computacdo que foca na aplicagdo
de algoritmos para resolver problemas da vida real. Esses algoritmos se baseiam em informa-

¢des do problema para criar modelos estatisticos capaz de realizar predi¢des. Existem diferentes
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tipos de algoritmos que definem como o aprendizado acontece, sendo de forma supervisionada,
semi-supervisionada, ndo supervisionada e de reforco.

No aprendizado supervisionado o algoritmo aprende a partir de um conjunto de dados
definidos, onde as entradas tem correlacfes com as saidas, e entdo o modelo tenta prever as
saidas corretamente. As principais aplicacdes sdo para regressao, que € o caso deste trabalho, e
classificacdo. O aprendizado ndo supervisionado nédo rotula os dados e, portanto, ndo ha resul-
tados pré-definidos para 0 modelo utilizar como referéncia para aprender. Normalmente estes
modelos sdo utilizados para descobrir padrdes entre os dados e suas principais aplicacfes sdo
para clustering e reducéo de dimensionalidade, como é o caso do AE, foco deste estudo. J& no
aprendizado por reforco o modelo é treinado para aprender uma politica de a¢do que recebe
recompensas ou penalidades com base nas acOes realizadas, se adaptando para maximizar a

funcdo de recompensa. Exemplos de aplicacdo dos aprendizados estdo na Figura 4.

Figura 4 - Exemplos de aplicagdo em funcéo do tipo de aprendizado.
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HLURIS 1L S

o DEC 2025 EM
LM RLAL

Fonte: DIO. Diferencas entre aprendizado supervisionado e ndo supervisionado®.

Um soft-sensor é uma aplicacéo especifica de aprendizado de maquina em sistemas
industriais para prever as variaveis do processo utilizando os dados disponiveis (BURKOV,
2019).

L Disponivel em: https://www.dio.me/articles/diferencas-entre-aprendizado-supervisionado-e-nao-supervisio-
nado. Acesso em: 10 nov. 2024.
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3.4. Redes Neurais Artificiais

Redes Neurais Artificiais (RNA) sdo modelos matematicos que sdo aplicados como
ML e que sdo baseadas em como o neurdnio e cérebro humano funcionam (BELO, 2021). De-
vido ao avanco da capacidade de processamento de dados dos computadores modernos, a apli-
cacdo de RNAs ganhou espagco em muitas areas como na economia, satde, finangas e processos
industrias, sendo aplicados a soft-sensor. As principais vantagens do uso de RNAs séo a velo-
cidade e volume de processamento, tolerancia a erros, escalabilidade e adaptabilidade (ABIO-
DUN et al., 2018).

A unidade principal de processamento de uma rede neural é 0 neurénio e ele tem trés
elementos basicos, sendo: um conjunto de sinapses, que sdo caracterizados por pesos; um so-
mador, que soma os sinais de entrada e uma funcdo de ativacdo que limita a amplitude de saida
do neurénio (HAYKIN, 1999). A Figura a seguir (Figura 5) mostra o esquema de um modelo

de neuronio.

Figura 5 - Neurdnio artificial e seus elementos basicos.
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Fonte: Belo (2021).

A saida do neurénio (Equacao 15) é definida como uma funcéo aplicada a soma pon-
derada do produto escalar do vetor de entradas (x) pelo vetor de pesos (w), acrescido do bias
(b), que tem como funcdo ajustar a saida do neurénio. A funcao que transforma a soma é cha-
mada de fungdo de ativagdo e tem como objetivo introduzir a ndo linearidade aos calculos
(HAYKIN, 1999; CASTRO, 2007).

m
Vi = f zwijj+bk — f(w - x +b) (15)

=1
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Existem diversos tipos de fungdes de ativacdo e cada uma tem uma aplicacéo especi-

fica, conforme exibido na tabela abaixo (Tabela 3).

Tabela 3 - Funges de ativacédo e suas aplicacGes.

Funcao Equacéo Aplicacao
. _ Utilizada em regresséo, principal-
Linear fu) = ux mente nas camadas de saida
_(lseu =0 Utilizada para classificacdo de pa-
Degrau fui) = {0 seu, <0 drdes com separacao linear
1 Como a degrau, é adequada para
Sigmoid fluy) = —— classificagéo binaria, porém intro-
IT+emtk duz néo linearidade
. - e'k —e7lk Utilizada quando valores negati-
Tangente Hiperbdlica (tanh) f(uy,) = A= vos tem significancia

Muito eficiente e utilizada para re-
Rectified Linear Unit (ReLU) f(uy) = max (0, uy) des profundas pois evita o pro-
blema de Vanishing Gradient

Fonte: Autor (2024).

Uma arquitetura especifica de rede neural € a multilayer perceptron (Figura 6). A rede
é a combinacdo de unidades légicas organizadas em uma ou mais camadas que recebem as
informac@es de entrada, aplicam uma operacdo matematica e geram uma saida. O treinamento
desse tipo de rede utiliza o algoritmo chamado de retropropagacéo de erros (backpropagation,
em inglés), geralmente combinado com o método de otimizacéo chamado de gradiente descen-
dente. Inicialmente a saida da rede é calculada com base nas entradas e em seguida o gradiente
da funcdo objetivo, como, por exemplo, o erro quadratico, é computado. Os pesos sdo atualiza-
dos subtraindo-se o gradiente, ajustado pela taxa de aprendizado, para corrigir as conexdes entre
a camada de saida e a ultima camada oculta. Esse processo de ajuste prossegue de forma itera-
tiva, retrocedendo até a camada de entrada. O ciclo completo de célculo da saida, ajuste dos
pesos e reinicio do processo € chamado de época (epoch, em inglés). Durante o treinamento, 0s
erros das etapas de treino e teste sdo registrados e frequentemente apresentados em gréaficos
para monitorar o desempenho e evitar sobreajustes (SOARES, 2017).

Na Figura 6 é possivel ver uma MLP de 3 camadas, com duas camadas ocultas e uma
de saida. Essa rede pode ser um modelo de classificacdo ou regressdo, a depender da fungéo de

ativagdo usada na terceira camada.
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Figura 6 - Representa¢do de uma rede neural MLP de 3 camadas.

vy
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\ D —gi(wyax + by 4) ) Y2 — ga(Waay1 + b2,0)

Fonte: Burkov (2019).

Um dos tipos de redes neurais sdo as redes neurais recorrentes (RNNSs) e sdo utilizadas
para classificar e gerar sequéncias, como séries temporais, e devido a isso suas principais apli-
cacOes sao em processamento de texto e fala e tratamento de dados temporais, que € o interesse
deste trabalho. Esse tipo de rede contém loops e cada camada contém um valor real de estado
(memodria da unidade). Cada unidade em cada camada recebe duas entradas que sdo: um vetor
de estados da camada anterior e o estado da camada atual (Figura 7) (BURKQV, 2019). Um
problema que redes desse tipo tém ¢é a dificuldade de lidar com entradas muito longas porque

as entradas dos vetores do inicio tendem a ser esquecidas devido ao estado de cada unidade.

Figura 7 - Rede Neural Recorrente Simples.

Fonte: Autor (2024).

Para contornar esse problema foram desenvolvidos modelos de maquinas de aprendi-
zado especificas para dados temporais como o gated recurrent neural network (GRU) e long
short-term memory (BURKOQOV, 2019). A arquitetura da rede LSTM (Figura 8) a ser utilizada
nesse trabalho consiste em sub redes neurais conectadas, conhecidas como blocos de memoria,
que mantém o estado de cada camada e regula a informacéo que é passada (HOUDT, G. V.,
MOSQUERA, C., NAPOLES, G., 2020).
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Figura 8 - Arquitetura tipica de um bloco LSTM. A rede é composta por um portdo de entrada (input gate), um
portdo de esquecimento (forget gate), a célula (cell) e o portédo de saida (output gate).

LSTM

forget gate cell state

input gate output gate

Fonte: Deep Learning Book?.

O portdo de entrada de uma rede LSTM determina as informagdes que devem ser ar-
mazenadas na célula de memoria. O portdo de esquecimento decide quais informacfes devem
ser mantidas ou esquecidas e o portdo de saida filtra as informacdes com base no estado da
célula, controlando a saida para a proxima etapa. Conforme destaca Houdt (2020), esse tipo de
rede tem a capacidade de lidar com diversos cenarios de previsdo de séries temporais e pode
ser aplicado em diversas areas como previsdes do mercado financeiro, producdo de petrdleo,

preco do petroleo e diagndsticos de falhas.
3.5. Autoencoders

Outro tipo de RNA é autoencoder, que é uma rede de aprendizado ndo supervisionado
na qual sua principal funcéo é reconstruir os dados de entrada, extraindo as informacGes mais
relevantes (LIMA, 2021). Sua estrutura basica (Figura 9) consiste em um codificador, que com-
pacta os dados de entrada para o espaco latente de menor dimensionalidade, e um decodificador,
que reconstroi a entrada a partir do cédigo latente. A reconstrucdo é otimizada para que o valor
reconstruido seja 0 mais proximo possivel do original. A camada compactada atua como uma
representacdo comprimida das caracteristicas mais importantes do dado original (BURKOQV,
2019). A otimizacéo do processo de reconstrucao dos dados é feita reduzindo o erro quadratico

médio entre o dado previsto e o real e é dado por:

N
%(ani - f(xi)||2> (16)

2 Disponivel em: https://www.deeplearningbook.com.br/arquitetura-de-redes-neurais-gated-recurrent-unit-gru/.
Acesso em: 17 de jan. de 2024.
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Esse tipo de rede é muito usado para reducdo de dimensionalidade, remocéo de ruidos

em dados, geracdo de dados sintéticos e problemas de deteccdo de anomalias (KIM, S. G.,
CHAE, Y. G., SEONG, P. H., 2019). A utilizacdo de autoencoders como ferramenta no desen-
volvimento de soft-sensor vem sendo estudada ultimamente, como pode ser destacado nos tra-
balhos de Kay (2022), que utiliza a rede para reducdo de dimensionalidade e melhora de per-
formance na predicéo de viscosidade do produto, e no trabalho de Menegolla (2019), que utiliza
para inferéncias em processos quimicos. Neste trabalho o AE sera utilizado para reducdo de
dimensionalidade e sera avaliado sua influéncia na capacidade do modelo em realizar as infe-

réncias das variaveis do processo fermentativo em batelada alimentada.

Figura 9 - Estrutura basica de um autoencoder.
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Fonte: Autor (2024).
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4. METODOLOGIA

A metodologia para realizacéo desse trabalho pode ser resumida conforme Figura 10.
Primeiramente ocorreu a revisdo bibliogréfica sobre a construcdo de modelos de redes neurais
em linguagem Python, com foco nas MLP, LSTM e AE e também sobre processo fermentativo.
Em seguida, foi utilizado o método Runge Kutta de quarta ordem para resolucdo das equacoes
diferenciais resultantes do balanco de massa do processo de fermentagédo alcoolica em batelada

alimentada.

Figura 10 - Fluxo da metodologia do trabalho.
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Fonte: Autor (2024).

4.1. Simulacgéo do Processo Fermentativo

Para simulagéo do processo foram utilizadas as bibliotecas SciPy e NumPy para reso-
lucdo das equacdes diferenciais e Matplotlib para elaboragdo dos graficos. As varidveis que
tiveram seus valores alterados para realizacdo das simulacdes foram a vazdo de alimentagéo e
concentracdo inicial do substrato e seus valores estdo na tabela abaixo (Tabela 4). O modelo

cinético utilizado foi o modelo de Teissier. No total foram feitas dez simulacGes, sendo nove
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para geracdo de dados que foram utilizados para treinar o modelo e uma para testa-lo. A Tabela

5 mostra os valores das outras variaveis do processo.

Tabela 4 - Valores das variaveis em cada simulacéo.

SIMUIAGE0  pjehce (L) doMosto (gL

1 7 88,0
2 7 1325
8 7 177,0
4 13 88,0
5 13 132,5
6 13 177,0
! 19 88,0
8 19 1325
9 19 177,0

10 (teste) 12 150.0

Fonte: Autor (2024).

Tabela 5 - Valores das variaveis do processo.

Variavel Valor Utilizado  Unidade
Ksx 168,2761 g/L
Ksp 43,5830 g/L
Yais 0,51 -

Yois 0,57 -
Upix 0,0022356 st
Y mix 0,0008194 st

Vo 4375 L

Xo 30 g/L

Fonte: Autor (2024).

4.2. Coleta de Dados

O tempo utilizado para cada simulacao de batelada foi de dez horas, com a alimentagéo
de mosto acontecendo somente nas seis primeiras horas. Foi feita a avaliagdo dos modelos
usando um minuto como tempo de amostragem, gerando assim 600 linhas de dados por batelada
contendo 12 variaveis, sendo as variaveis tempo, vazdo, concentracdo inicial de mosto, e as

concentragdes de etanol, células e substrato com atraso (lag, em inglés).

4.3. Pré-processamento dos Dados
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A Tabela 6 mostra os valores de uma variavel arbitraria A ao longo do tempo. Imagi-

nando que queremos usar os trés valores anteriores (lag = 3) da variavel para prever o proximo,
devemos organizar os dados da seguinte forma, conforme ilustrado na Tabela 7. A tabela mostra
a sequéncia de informacGes que deve ser fornecida ao modelo para que ele preveja o préximo

valor. A Ultima linha da tabela mostra o valor esperado da sequéncia com base no historico.

Tabela 6 - Valores de uma variavel arbitraria A ao longo do tempo.

Tempo (min) Valor da variavel A
0
5
10
15
20
25
30
35
40
45
50

Boovoor~rwnr O

Fonte: Autor (2024).

Tabela 7 - Exemplo de como os dados sdo organizados e inseridos na rede.

Sequéncia de Entrada (Lag 3) Target (Préximo valor)
[0, 1, 2] 3
[1,2,3]
[2,3,4]
[3, 4, 5]
[4,5, 6]
[5, 6, 7]
[6,7, 8]
[7,8,9] 10
[8, 9, 10] 11 (valor esperado)

Fonte: Autor (2024).

© 0o N OB

Essa mesma metodologia foi aplicada nos dados do processo que foram utilizados na
MLP e LSTM. Como queremos prever o valor das variaveis de interesse, foi aplicado um lag
de 3 nelas e os dados foram divididos em dois arquivos, um contendo os dados de entrada e no
outro os dados do proximo valor, conforme exibido na Tabela 8. Foi avaliado também a eficacia

do modelo usando somente a variavel de interesse (etanol) nos dados de entrada e de saida.
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Tabela 8 — Variaveis alimentadas em cada teste. Os subscritos 1, 2 e 3 representam o atraso da variavel.

Teste Dados de Entrada Dados de Saida (targets)
1 t, F, Sa, E1, Ea, Es, S1, S2, S3, X1, X2, X3 E, S, X
2 t, F, Sa, E1, E2, E3 E

Fonte: Autor (2024).

Uma das etapas mais importantes em qualquer atividade relacionada a ciéncia de dados
é o pré-processamento, que inclui normalizacdo, tratamento de valores ausentes, reducdo de
dimensionalidade, remogéo de outliers, entre outros (ALIABADI, 2020). Como os dados foram
obtidos da simulacdo do processo, foi somente preciso normaliza-los. Para normalizacédo foi
utilizado o método MinMaxScaler da biblioteca Scikit-learn, que reescala os dados para um
intervalo especifico, normalmente entre 0 e 1, conforme mostra a Equacao 17. Essa metodolo-
gia preserva a relagdo entre os valores originais e facilitando o desempenho do modelo. E uma
abordagem vantajosa especialmente em redes neurais, onde a escala dos dados pode impactar
0 processo de aprendizado (BURKOV, 2019).

X L = Xmax ~ Xmin 17)
normalizado —
X — Xmin

Onde X é o valor original, Xwin € 0 valor minimo do conjunto de dados, Xwmax é 0 valor

maximo e X o valor original.
4.4. Construcao das Redes

Para construcao de todas as redes foram utilizadas as bibliotecas Scikit-learn, Tensor-
Flow e Keras. Foram utilizadas técnicas para evitar o fenbmeno de overfitting (sobreajuste),
exemplificado na Figura 11, no qual o modelo se adapta excessivamente aos dados de treina-
mento e posteriormente ndo consegue realizar previsdes precisas nos dados de teste (BURKOV,
2019).
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Figura 11 - Exemplos visuais de ajustes aos dados. A figura mais a esquerda representa uma falta de ajuste en-
quanto que a mais a direita representa o sobreajuste. A figura central representa um bom ajuste.
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Fonte: Burkov (2019).
As técnicas utilizadas foram a de Dropout e Earlystoping. A primeira € uma técnica

de regularizacdo que previne o overfit desativando aleatoriamente uma fracdo dos neurénios
durante a fase de treinamento em cada iteracdo, fazendo com que estes neurdnios ndo partici-
pem do célculo e nem da retropropagacéo, melhorando assim a generalizacdo do modelo. Neste
trabalho foi utilizado um dropout (esquecimento) de 30% na MLP e 20% nas LSTM e LSTM-
AE. A segunda técnica faz com que o treinamento do modelo seja interrompido caso 0 modelo
ndo esteja mais melhorando seu desempenho no conjunto de validacdo. Neste caso a funcéo de
perda é monitorada em cada época (ciclo de treinamento e ajuste de parametros) e caso ela
esteja variando pouco o treinamento é interrompido apds um ndmero definido de épocas, cha-
mado de patience (paciéncia). Em todas as redes foi utilizado um valor de patience de 10. Para
o tipo de treinamento foi utilizado o método de mini-batch em todos os modelos. Nesse método
os dados sdo divididos e processados em batchs e 0 modelo atualiza os pesos apds cada proces-
samento. Para as fungdes de ativacdo foram utilizados a ReLU e a Linear, sendo a segunda
apenas para a ultima camada. Todos os modelos utilizaram 2 camadas ocultas, sendo a primeira
com 24 neurbnios e a segunda com 12. As camadas iniciais e finais tiveram o mesmo tamanho
das quantidades de varidveis dos vetores de entrada e saida, respectivamente.
A Tabela 9 mostra as arquiteturas das redes MLP, LSTM e LSTM-AE.

Tabela 9 — Parametros das redes.

Pardmetro MLP LSTM LSTM-AE
Epochs (max.) 200 100 100
Dropout 30% 20% 20%
Patience 10 10 10
Taxa de Aprendizado 0.001 0.001 0.001
Tipo de Treinamento Mini-batch (32) Mini-batch (32) Mini-batch (32)
Funcdo de Ativacao ReLU e Linear ReLU e Linear ReLU e Linear

Fonte: Autor (2024).

4.5. Analise Comparativa
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As métricas utilizadas para avaliar os modelos foram mean absolute error (MAE), root

mean squared error (RMSE) e R2 e suas formas de calculo podem ser vistas nas Equacfes 18
e 19.

O MAE calcula a média dos erros absolutos entre as previsdes e os valores reais, sendo

uma métrica simples que mostra a magnitude média dos erros cometidos pelo modelo, sem

considerar a direcéo dos erros (positivos ou negativos).
n
1 A
MAE =" |y, = 31 (18)
i=1

O RMSE mede a diferenca entre os valores previstos pelo modelo e os valores reais e
é obtido fazendo-se a raiz quadrada da média dos erros quadraticos. O RMSE penaliza erros

maiores mais severamente devido a operacdo de quadrado.

n
1
RMSE = |~ (= 9))? (19)
i=1

Tanto para 0 MAE quanto para 0 RMSE, n representa o nimero de amostras, y; 0 valor
real, y; o valor predito.

Ja 0 R2 é uma métrica que indica a proporcao da variancia nos dados que é previsivel
a partir do modelo. Ele varia de 0 a 1, onde 1 indica que o modelo explica completamente a

variancia dos dados.
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5. RESULTADOS E DISCUSSAO

Os resultados serdo apresentados conforme a ordem cronoldgica de execugéo dos coé-
digos. Logo apos serdo mostrados o comparativo das métricas entre os trés modelos, para 0s
dois testes executados.

5.1. Simulacéo do Processo Fermentativo

As Figuras 12 e 13 exibem os graficos das simulacdes feitas para as diversas combi-
nagOes, conforme citado na Tabela 4. Foi possivel verificar que a concentragdo inicial de subs-
trato elevada fez com que a concentracdo de células diminua antes de aumentar no inicio, con-
forme prevé o modelo de Teissier. Esse fato dificultou os modelos de predicéo, principalmente

para os valores iniciais, conforme serd mostrado mais adiante.

Figura 12 - Graficos das simulagdes feitas para geracéo e coleta de dados do processo.
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Fonte: Autor (2024).

Apo0s a interrupcao na adicdo da alimentacdo € possivel ver que ha um aumento na

concentracgéo de etanol produzido.
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Figura 13 - Grafico da simulagdo para geracédo de dados para o teste dos modelos.
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Fonte: Autor (2024).

Durante o treinamento da rede é acompanhado a fungdo de perda (loss, em inglés) e
ela deve ter um comportamento caracteristico quando um modelo esta bem generalizado ou
ndo. Para uma boa generalizacdo, as curvas de perda do treinamento e de validacdo devem
diminuir gradativamente até um ponto de convergéncia, conforme pode ser visto na Figura 14
para 0s modelos utilizados neste trabalho.

Figura 14 - Curvas de perda do treinamento e da validacdo. A figura (a) é a rede MLP, a (b) da rede
LSTM e a(c) é do LSTM-AE.
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Fonte: Autor (2024).
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5.2. MLP

A Tabela 10 exibe os valores das métricas utilizadas para cada uma das variaveis es-
tudadas. E possivel ver que o valor de R2 foi maior e os valores RMSE e MAE foram menores
para o etanol, mas o contrario aconteceu com a concentragdo de celulas, mostrando assim o
quanto a variacao na concentracdo devido ao decaimento celular influencia na capacidade do
modelo.

Tabela 10 — Métricas de desempenho da MLP para o primeiro teste.

Variavel R? RMSE MAE
Etanol 0,9285 2,2360 1,7562
Substrato  0,9188  6,7738  2,4014

Células 0,7253 1,3219  0,6938
Fonte: Autor (2024).

No inicio da simulacdo 0 modelo prevé com um erro maior, mas rapidamente ele con-
verge para um valor bem préximo do real, conforme mostra a Figura 15. A maior diferenga,
embora pequena, estd na primeira hora da simulacdo, quando os valores estdo convergindo para
um valor estacionario. E possivel visualizar também que o modelo prevé o aumento da concen-

tracdo quando a alimentagéo cessa.

Figura 15 - Grafico das concentracOes de etanol real versus previsto pela MLP para o primeiro teste.
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Fonte: Autor (2024).
Para o segundo teste, no qual foi utilizado apenas os dados da concentracédo de etanol
para o treinamento da rede, verificou-se um aumento na acuracidade geral do modelo, com um

valor de R2 maior e erros menores, conforme mostra a Tabela 11 e a Figura 16.



37

Tabela 11 - Métricas de desempenho da MLP para o segundo teste.

Variavel R2 RMSE MAE

Etanol 0,9783 1,2326  0,9320
Fonte: Autor (2024).

Figura 16 - Grafico das concentracGes de etanol real versus previsto pela MLP para o segundo teste.
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Fonte: Autor (2024).

A Figura 17 mostra o grafico de paridade entre o valor previsto e o real.

Figura 17 - Gréfico de paridade entre os valores reais e previstos da MLP.
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Fonte: Autor (2024).

53.LSTM

A rede LSTM se mostrou melhor que a MLP de um modo geral, como referenciado na

literatura, pois conseguiu desempenhar bem para as trés variaveis principais do estudo. Para o
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segundo teste da LSTM a rede desempenhou ainda melhor. As Tabelas 12 a Figura 18 mostram

0s resultados para o primeiro teste.

Tabela 12 - Métricas de desempenho da LSTM para o primeiro teste.

Variavel R? RMSE MAE
Etanol 0,9614 16419 1,3915
Substrato  0,9570  4,9307  1,9079

Células 0,8356 1,0227 0,4990
Fonte: Autor (2024).

Figura 18 - Grafico das concentracGes de etanol real versus previsto pela LSTM para o primeiro teste.
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Fonte: Autor (2024).

A rede LSTM conseguiu se adaptar bem a variacao inicial dos valores, que sdo maio-

res. A tabela 13 mostra e as Figuras 19, 20 e 21 mostram os resultados para o segundo teste.

Tabela 13 - Métricas de desempenho da LSTM para o segundo teste.

Variavel R2 RMSE MAE

Etanol 0,9973 0,4336 0,3055
Fonte: Autor (2024).




Figura 19 - Variaveis do processo ao longo da simulagéo.
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Figura 20 - Gréfico de paridade entre os valores reais e previstos da LSTM para 0 segundo teste.
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Figura 21 - Gréfico das concentracGes de etanol real versus previsto pela LSTM para o segundo teste.
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5.4. LSTM-AUTOENCODER

Para a simulacdo de teste, 0 modelo foi capaz de prever com muita exatiddo mesmo
utilizando os dados reduzidos, conforme mostram os resultados na Tabela 14. As métricas do
teste utilizando apenas os dados de etanol estdo na Tabela 15 e, diferente dos outros modelos,

0 modelo desempenhou um pouco pior em relacdo a utilizacdo de todas as variaveis.

Tabela 14 - Métricas de desempenho da LSTM-AE para o primeiro teste.

Variavel R2 RMSE MAE

Etanol 0,9661 15385 1,2371

Substrato  0,9540 5,0969  2,6388

Células 0,7389 1,2888 0,7488
Fonte: Autor (2024).

Tabela 15 - Métricas de desempenho da LSTM-AE para o segundo teste.

Variavel R2 RMSE MAE

Etanol 0,9551 1,7722  1,5242
Fonte: Autor (2024).

A rede se mostrou bem capaz de realizar inferéncias mesmo utilizando os dados com
dimensionalidade reduzida, quase ndo perdendo acuracidade quando comparadaa LSTM, o que
mostra que o método é valido quando se deseja aumentar a eficiéncia computacional. As Figu-

ras 22 e 23 mostram o grafico do real versus o previsto e da regressdo para o segundo teste.

Figura 22 - Gréfico das concentracGes de etanol real versus previsto pela LSTM-AE para o segundo
teste.
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Figura 23 - Grafico de paridade entre os valores reais e previstos da LSTM-AE para o segundo teste.

40 1
r
30 >
./.

= e
g Vg

20 L~

o
o
o
10 e
e
-~
-~
04
10 15 20 25 30 35 40 45
Previsto

Fonte: Autor (2024).



42
6. CONCLUSAO

No presente trabalho, desenvolveu-se um soft-sensor em linguagem Python, utilizando
redes neurais para a predicdo de varidveis do processo de fermentagdo alcoodlica em batelada
alimentada. A partir de simulagdes realizadas, foram gerados dados que permitiram o treina-

mento e a avaliacdo dos modelos, atingindo os objetivos propostos com resultados satisfatorios.

Arede LSTM se destacou como a técnica mais eficaz, apresentando melhores métricas
para as variaveis avaliadas (Rz = 0,9973, RMSE = 0,4336 e MAE = 0,3055). Ja 0 modelo
LSTM-Autoencoder mostrou-se uma alternativa promissora, capaz de manter boa precisdo
mesmo utilizando uma quantidade menor de informacao, se mostrando relevante para aplica-
¢des onde a eficiéncia computacional é um ponto critico. Em contrapartida, a MLP, embora
tenha desempenhado de forma adequada, teve o pior resultado e apresentou limitacGes para

capturar a complexidade das dindmicas do processo.

A aplicagdo da linguagem Python e suas bibliotecas para simulagéo do processo e de-
senvolvimento dos modelos confirmou ser eficaz, permitindo atender os objetivos propostos.
Além disso, a integracdo de conceitos aprendidos durante a graduacao nas disciplinas de méto-
dos numéricos, biotecnologia industrial e, principalmente, topicos de inteligéncia artificial apli-
cados a engenharia, mostrou-se crucial para o sucesso deste trabalho, evidenciando a relevancia

desses conhecimentos para a formacao de um engenheiro quimico na era da Industria 4.0.

Embora os resultados tenham sido satisfatérios algumas melhorias podem ser imple-
mentadas para aprimorar ainda mais o desempenho e a aplicabilidade do sensor. Uma das pos-
siveis melhorias envolve testar diferentes arquiteturas, alterando o nimero de camadas, testando
diferentes quantidades de neurénios e utilizando diferentes combinacdes de funcdes de ativacdo

na arquitetura dos modelos.

Outra possivel melhoria seria a ampliacdo da base de dados. A coleta de dados reais
de processos industriais permitiria uma compara¢do mais robusta dos modelos com cenérios
mais proximos da aplicacdo pratica. Além disso, aumentar o numero de simulagdes e/ou variar

0s parametros da simulacéo pode ajudar a tornar os modelos mais precisos.



43
REFERENCIAS

ABIODUN, O. I. et al. State-of-the-art in artificial neural network applications: A survey.
Heliyon, vol. 4 (11), 2018. Disponivel em: https://www.sciencedirect.com/science/arti-
cle/pii/S2405844018332067. Acesso em: 21 jan. 2024.

ALIABADI, M. M. Process data analytics using Deep Learning Techniques. Dissertacéo
(Mestrado) — Curso de Computer Science, Graduate School, Wayne State University, Detroit,
2020.

BAILEY, J. E., OLLIS, D. F. Biochemical Engineering Fundamentals. 2 ed. New York:
McGraw-Hill, 1986. p. 374.

BANITAAN, S. et al. A Review on Artificial Intelligence in the Context of Industry 4.0.
International Journal of Advanced Computer Science and Applications, Vol. 14, No. 2, 2023.
p. 24-30.

BELO, M. I. O. Sistemas Inteligentes Aplicados a Otimizacao de Parametros Cinéticos e
Modelagem de Bioprocessos. Trabalho de Conclusdo de Curso — Faculdade de Engenharia
Quimica, Universidade de Alagoas. Macei6, 2021.

BRASIL. Companhia Nacional de Abastecimento (Conab). Disponivel em: https://www.co-
nab.gov.br/ultimas-noticias/5489-producao-de-cana-de-acucar-na-safra-2023-24-chega-a-713-
2-milhoes-de-toneladas-a-maior-da-serie-historica. Acesso em: 10 nov. 2024.

BURKOV, A. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.
CASTRO, L. N. Fundamentals of natural computing: basic concepts, algorithms, and appli-
cations. Chapman & Hall, 2007.

COELHO, F. A. et al. Modelagem do Processo de Fermentacdo Alcoodlica em Batelada
Alimentada e Determinac&o do Perfil Otimo de Alimentagdo de Mosto. VIII COBEQ-IC.
Minas Gerais, 20009.

DESALI, K. et al. Soft-sensor development for fed-batch bioreactors using support vector
regression. Biochemical Engineering Journal 27 (2006) p. 225-239.

DOW. Dow recebe prémio Future Edge 50 2021 por capacidade de inteligéncia preditiva. 27
abr. 2021. Disponivel em: https://br.dow.com/pt-br/noticias/dow-recebe-premio-future-edge-
50-2021-por-capacidade-de-inteligencia-preditiva.html. Acesso em: 10 nov. 2024.

HAYKIN, S. Neural Networks: A Comprehensive Foundation. Delhi: Pearson Education,
1999.

HOUDT, G. V., MOSQUERA, C., NAPOLES, G. A review on the long short-term memory
model. Artificial Intelligence Review, vol. 53 (8), 2020.



44
Indlstria 4.0: muito além da automacdo. Bosch no Brasil. Disponivel em:
https://www.bosch.com.br/noticias-e-historias/industria-4-0/. Acesso em: 12 jan. 2024.
JUNIOR, J. B. J. Tecnologia e Fabricacdo do Alcool. Inhumas: IFG; Santa Maria: Universi-
dade Federal de Santa Maria, 2012.
KAY, S. et al. Integrating Autoencoder and Heteroscedastic Noise Neural Networks for
the Batch Process Soft-Sensor Design. Industrial & Engineering Chemistry Research, 2022
61 (36), p. 13559-135609.
KIM, S. G.,, CHAE, Y. G., SEONG, P. H. Signal Fault Identification in Nuclear Power
Plants based on Deep Neural Networks. 30th DAAAM International Symposium On Intelli-
gent Manufacturing And Automation, 2019. p. 0846-0852.
LIMA, J. M. M. Extracdo de Caracteristicas Representativas Para o Desenvolvimento de
Soft-sensor Industriais: Uma Abordagem Baseada em Aprendizado Profundo. Tese de
Doutorado - Programa de Pds-Graduacdo em Engenharia Elétrica e de Computacdo da UFRN.
Natal, 2021.
LIMA, U. A. et al. Processos Fermentativos e Enzimaticos. 2 ed. S&o Paulo: Blucher, 2019.
LOTUFO, F. A, GARCIA, C. Soft-sensor ou Soft Sensors: Uma Introducdo. 7" Brazilian
Conference on Dynamics, Control and Applications. FCT — Unesp, Séo Paulo, 2009.
MENEGOLLA, H. B. Estudos sobre a aplicacdo de autoencoder para Construcéo de Infe-
réncias na Industria Quimica. Tese (Mestrado em Engenharia Quimica) — Universidade Fe-
deral do Rio Grande do Sul. Porto Alegra, 2019.
PERERA, Y. S. et al. The role of artificial intelligence-driven soft sensors in advanced sus-
tainable process industries: A critical review. Engineering Applications of Artificial Intelli-
gence, v. 121, 2023. Disponivel em: https://doi.org/10.1016/j.engappai.2023.105988. Acesso
em: 10 nov. 2024.
SCHMIDELL, W. et al. Biotecnologia Industrial. vol. 2. Sdo Paulo: Blucher, 2001.
SHELL. Artificial intelligence. Disponivel em: https://www.shell.com/what-we-do/digitalisa-
tion/artificial-intelligence.html. Acesso em: 10 nov. 2024.
SOARES, F. D. R. Técnicas de Machine Learning Aplicadas a Inferéncia e Deteccéo e
Diagnostico de Falhas de Processos Quimicos Industriais em Contexto Big Data. Tese
(Mestrado em Tecnologia de Processos Quimicos e Bioguimicos) — Universidade Federal do
Rio de Janeiro. Rio de Janeiro, 2017.
TORTORA, G. J.; FUNKE, B. R.; CASE, C. L. Microbiologia. 10 ed. Porto Alegre: Artmed,
2012. p. 135.



45
VASCONCELOS. J. N. Operacao e Simulacédo do Processo de Fermentacéo Alcodlica em
Batelada Alimentada com Vazéo Variagao de Alimentacdo. Rio de Janeiro, 1987. (Disser-
tacdo de Mestrado. Escola de Quimica da UFRJ).
VIDAL, M. F. Agroindustria — Etanol. Caderno Setorial ETENE. Ano 7, N° 237, set. 2022.
Disponivel em: https://www.bnb.gov.br/s482-
dspace/bitstream/123456789/1409/3/2022_CDS_237.pdf. Acesso em: 15 jan. 2024.
WANG, K. et al. Dynamic Soft Sensor Development Based on Convolutional Neural Net-
works. Industrial & Engineering Chemistry Research 2019 58 (26), p. 11521-11531.
YAN, W., SHAO, G., WANG, X. Soft sensing modeling based on support vector machine
and Bayesian model selection. Computers and Chemical Engineering 28 (2004). p. 1489—
1498.
ZHU, X. et al. Modern Soft-Sensing Modeling Methods for Fermentation Processes. Sen-
sors 2020, 20(6), p. 1771.



