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RESUMO 

 

Este trabalho apresenta um novo framework para monitoramento da integridade estrutural para 

identificação de danos em elementos estruturais lineares de aço (barras comprimidas e vigas), 

no contexto de sistemas dinâmicos. O framework integra um modelo híbrido baseado na física 

e orientado a dados (que pode resultar em um modelo generalizável, acurado, interpretável e 

computacionalmente eficiente) e métodos de machine learning supervisionado, para a 

construção de um framework digital twin. As equações governantes do movimento da estrutura 

íntegra, descobertas pela modelagem híbrida, são usadas para simular a resposta do sistema 

com dano em diferentes locais e intensidades. A partir dessas simulações, um conjunto de dados 

é construído para treinar os classificadores de machine learning, considerando os cenários da 

estrutura íntegra e com dano. O framework digital twin relaciona as entradas do physical twin 

a cenários de danos específicos, para avisar rapidamente se houver dano, onde está localizado 

e qual a sua intensidade, de forma que possa apoiar as decisões de engenharia. O framework 

digital twin foi avaliado em diferentes configurações de aplicações, demonstrando a potencial 

contribuição para o estabelecimento de sistemas monitoramento da integridade estrutural. O 

Support Vector Machine foi o classificador que apresentou melhor desempenho, com precisão 

de 93,37% para a barra engastada e 80,33% para a barra biengastada. Os danos nas barras 

engastada e biengastada, considerando a vibração axial, foram identificados e robustos para 

determinados níveis de ruído. A identificação de dano em vigas, considerando a vibração 

transversal, se mostrou promissora, com precisão de 84,49% para o classificador Support 

Vector Machine, usando atributo de deslocamento, e 99,98% para o classificador Quadratic 

Discriminant Analysis, usando atributos de deslocamento e aceleração. 

 

Palavras-chave: Identificação de Dano; Dinâmica das Estruturas; Modelo Híbrido; Machine 

Learning; Digital Twin. 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

 

This work presents a novel structural health monitoring framework for damage identification 

in linear steel structural elements (compressed bars and beams), in the context of dynamical 

systems. The framework integrates a hybrid physics-based and data-driven model (that can 

result in a generalizable, accurate, interpretable and computationally efficient model) and 

supervised machine learning methods, to construct a digital twin. The governing equations of 

motion of the healthy structure, discovered by hybrid modeling, are used to simulate the 

response of the system with damage at different locations and intensities. From these 

simulations a dataset is constructed to train the machine learning classifiers, considering the 

beam scenarios with damage and undamaged. The constructed digital twin relates the inputs of 

the physical twin to specific damage scenarios to quickly warn if there is damage, where it is 

located and what is its severity, supporting engineering decisions. The DT framework was 

evaluated in different application configurations, demonstrating the potential contribution to 

the establishment of structural integrity monitoring systems. Support Vector Machine was the 

best performing classifier, with a precision of 93.37% for the cantilever bar and 80.33% for the 

fixed-end bar. The damage to the cantilever and fixed-end bars, considering axial vibration, was 

identified and robust for certain noise levels. The identification of damage in beams, 

considering transverse vibration, proved promising, with a precision of 84.49% for the Support 

Vector Machine classifier, using the displacement feature, and 99.98% for the Quadratic 

Discriminant Analysis classifier, using the displacement and acceleration features. 

 

Keywords: Damage Identification; Structural Dynamics; Hybrid Model; Machine Learning, 

Digital Twin. 
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1 INTRODUÇÃO 

 

Ao longo da vida útil as estruturas se encontram sujeitas a diversas solicitações que 

podem causar dano estrutural, com potencial de reduzir significativamente tanto sua integridade 

quanto sua funcionalidade, podendo ainda originar e/ou propagar problemas estruturais 

relevantes, implicando em custo financeiro significativos e, no limite, acarretar a falha 

estrutural. Por vezes, torna-se necessário realizar o monitoramento da estrutura ao longo do 

tempo para avaliar a sua integridade, de forma que possibilite identificar o estado atual do dano, 

para evitar falhas inesperadas. Algumas técnicas tradicionais utilizadas para investigação da 

integridade estrutural dependem do julgamento humano, podendo produzir informações 

tendenciosas e, na maioria dos casos, é necessário avaliar toda a estrutura, ou pelo menos os 

locais que indicam maior probabilidade de dano, porém, existem situações em que o acesso a 

certos pontos da estrutura apresenta custo elevado e risco com relação à segurança da equipe 

técnica responsável pela avaliação. Para superar essas limitações, muitos pesquisadores se 

concentraram no desenvolvimento de sistemas de monitoramento baseados em vibração para 

avaliar a integridade estrutural (FUGATE, SOHN e FARRAR, 2001; MAGALHÃES, CUNHA 

e CAETANO, 2012).  

Os métodos baseados em vibração têm atraído atenção significativa, permitindo avaliar 

o comportamento dinâmico global da estrutura a partir da aplicação de excitação em 

determinados pontos da estrutura. Numerosos estudos de identificação de danos baseados em 

vibração podem ser encontrados na literatura. Esses métodos consistem essencialmente em 

extrair um padrão de referência da resposta de vibração da estrutura íntegra, para comparação 

com os padrões de resposta de vibração da estrutura com dano.  

O dano produz mudanças nas propriedades físicas da estrutura e, consequentemente, em 

suas características dinâmicas (que estão correlacionados com a massa e a rigidez). Assim, os 

danos presentes em uma estrutura provocam alterações dos seus parâmetros modais, que 

incluem as frequências naturais, os modos naturais de vibração e os fatores de amortecimento. 

Dessa forma, muitos trabalhos foram desenvolvidos utilizando métodos que consideram a 

mudança no comportamento dinâmico, incluindo variações nas frequências naturais 

(CAWLEY e ADAMS, 1979; PENNY, WILSON e FRISWELL, 1993; SALAWU, 1997; 

SAMMAN e BISWAS (1994a-b); YANG e WANG, 2010), dados de modos de vibração 

(LIEVEN e EWINS, 1988; PANDEY, BISWAS e SAMMAN, 1991; YAZDANPANAH, 

SEYEDPOOR e BENGAR, 2015), flexibilidade modal (PANDEY e BISWAS, 1994) e energia 
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de deformação modal (MORADIPOUR, CHAN e GALLAGE, 2015; SHI e LAW, 1998; SHI, 

LAW e ZHANG, 2020; WANG e LI, 2012; WU et al., 2017).  

Na abordagem baseada em vibração, apesar das vantagens notáveis, a avaliação precisa 

dos danos ainda requer a expertise de especialistas para realizar a análise modal e extrair as 

características dinâmica das estruturas. Além disso, os parâmetros modais podem ser facilmente 

afetados pela presença de ruído ou mudanças nas condições ambientais. 

Alternativamente, nos últimos anos, o desenvolvimento de técnicas de reconhecimento 

de padrões, mais especificamente as abordagens baseadas em machine learning (ML), 

proporcionou ferramentas com aplicações importantes em vários campos, alcançando 

resultados promissores em problemas de identificação de danos. O machine learning 

corresponde à habilidade de uma máquina de adquirir seu próprio conhecimento 

automaticamente a partir dos dados (MÜLLER e GUIDO, 2017). Os algoritmos de ML têm 

sido bem-sucedidos ao aprender com processos passados, que dependem de diversos padrões 

de dados e métodos de reconhecimento. Esses algoritmos são particularmente eficazes no 

tratamento de problemas que envolvem relações não lineares e dados contaminados por ruído, 

que podem ser desafiadores para o discernimento humano (KHAN e YAIRI, 2018; YAGER e 

ZADEH, 2012), podendo permitir a identificação de dano mesmo com informações limitadas 

sobre a estrutura. Cada algoritmo tem sua própria técnica e hiperparâmetros que podem ser 

ajustados para conseguir um melhor desempenho na identificação de dano.  

Nesse contexto, a integração das metodologias de digital twin (DT) e machine learning 

pode ser muito promissora, uma vez que possibilita a criação de melhores modelos de 

automação, que podem ser usados para exibir predições de alta qualidade, fornecendo suporte 

à tomada de decisão. O digital twin é uma representação digital virtual de um ativo físico 

(physical twin) (GRIEVES, 2014), replicando-o digitalmente com determinados parâmetros, 

que consistem em informações geométricas, físicas e comportamentais (QI et al., 2021), de 

modo que com o uso de big data, sinais de sensores, inteligência artificial e machine learning 

possibilita simular diferentes cenários para entender seu desempenho (MENDI, 2022; 

RATHORE et al., 2021).  

Uma representação virtual consiste tradicionalmente em um modelo computacional 

baseado na física ou modelo orientado a dados (com técnicas de machine learning) (LI et al., 

2022; VANDERHORN e MAHADEVAN, 2021). A modelagem baseada na física geralmente 

descreve o sistema a ser modelado usando um conjunto de equações governantes que 

representam fenômenos físicos conhecidos e compreendidos (GOMEZ-CABRERA e 

ESCAMILLA-AMBROSIO, 2022). A modelagem orientada a dados, usando técnicas de 
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machine learning, se baseia na suposição de que os dados são uma manifestação da física 

conhecida e desconhecida, de forma que podem ser usados para inferir modelos físicos 

interpretáveis, e desempenham um papel importante, uma vez que a modelagem baseada na 

física geralmente requer conhecimento detalhado do sistema, o que muitas vezes é difícil, pois 

apenas informações parciais do sistema são conhecidas (RASHEED, SAN e KVAMSDAL, 

2020).  

Alguns trabalhos foram desenvolvidos na tentativa de usar machine learning para inferir 

modelos físicos a partir de dados. Nos trabalhos de Bongard e Lipson (2007) e Schmidt e Lipson 

(2009), a regressão simbólica foi aplicada para inferir a dinâmica não linear do sistema. O 

método funciona notavelmente bem para descobrir modelos físicos interpretáveis, mas a 

regressão simbólica é computacionalmente cara e pode ser difícil de dimensionar para grandes 

problemas (MONTÁNS et al., 2019). Uma abordagem alternativa baseada em processos 

(BRIDEWELL et al., 2008; TANEVSKI, TODOROVSKI e DŽEROSKI, 2016; TANEVSKI 

et al., 2017) permite especificar uma biblioteca de relacionamentos ou funções entre variáveis 

com base no conhecimento do domínio para produzir um conjunto interpretável de equações 

governantes. Um método que emprega regressão esparsa (sparse identification of nonlinear 

dynamics – SINDy) foi proposto por Brunton, Proctor e Kutz (2016) para encontrar o menor 

número de termos em uma biblioteca de funções candidatas necessárias para modelar a 

dinâmica de sistemas, o que permite que uma classe maior de funções seja considerada, quando 

comparado com o método baseado em processos.  

O SINDy mostrou ser capaz de produzir modelos de sistemas dinâmicos interpretáveis 

e generalizáveis a partir de dados limitados (BRUNTON, PROCTOR e KUTZ, 2016) e tem 

sido amplamente aplicado para identificar modelos para sistemas ópticos (SOROKINA, 

SYGLETOS e TURITSYN, 2016), convecção de plasma (DAM et al., 2017), fluxos de fluidos 

(LOISEAU e BRUNTON, 2018), controle preditivo de modelo (KAISER, KUTZ e 

BRUNTON, 2018), dinâmica de reação química (HOFFMANN, FRÖHNER e NOÉ, 2019), 

modelagem estrutural (LAI e NAGARAJAIAH, 2019; MOKHTARI e IMANPOUR, 2024) e 

modelagem do movimento de objetos em queda (DE SILVA et al., 2020).  

No entanto, o digital twin requer modelos que sejam generalizáveis, confiáveis, 

autoevolutivos e computacionalmente eficientes, mantendo boa acurácia (SAN, RASHEED e 

KVAMSDAL, 2021). É desafiador conseguir essas características de modelagem usando uma 

das duas abordagens de modelagem tradicionais. A modelagem baseada na física requer 

conhecimento para descrever adequadamente os fenômenos do sistema e geralmente é estática 

no sentido de que não é atualizado automaticamente para novos cenários encontrados após a 
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implantação do modelo. A modelagem orientada a dados pode apresentar limitação de 

generalização dos modelos, especialmente para cenários de extrapolação, e pode ser um desafio 

estabelecer quais físicas são modeladas (BLAKSETH et al., 2022).  

As características de modelagem identificadas por San, Rasheed e Kvamsdal (2021) 

podem ser alcançadas por meio do modelo híbrido, que combina o modelo baseado na física e 

o modelo orientado a dados em uma arquitetura conjunta, de uma forma que potencialize seus 

pontos fortes (KURZ et al., 2022), fornecendo um modelo aprimorado que combina 

interpretabilidade, robustez, acurácia e eficiência (RASHEED, SAN e KVAMSDAL, 2020).  

 

1.1 Justificativa 

 

O monitoramento contínuo da integridade estrutural com metodologias e técnicas 

adequadas pode permitir a identificação de danos em um estágio inicial para reduzir 

consideravelmente o custo de manutenção, aumentar a durabilidade e a vida útil da estrutura, 

garantir a segurança e evitar a falha do elemento estrutural.  

Nesse contexto, com as melhorias no poder computacional e os avanços nas tecnologias 

de sensores, hardware e software de aquisição de dados, as técnicas de machine learning e 

digital twin apresentam grande potencial, uma vez que permitem a criação de modelos sob uma 

tendência mais digital e possibilitam simular diferentes cenários para o physical twin a ser 

monitorado. Dessa forma, o sistema de monitoramento da integridade estrutural (structural 

health monitoring - SHM) com as referidas técnicas acompanha o desempenho do physical twin 

em condições operacionais e fornece suporte de decisão para melhorar a gestão e confiabilidade 

das estruturas. No caso do monitoramento de physical twin, duas principais abordagens de 

modelagem podem ser implementadas, modelagem baseada na física e modelagem orientada a 

dados. A abordagem de modelo híbrido, que considera os princípios das duas abordagens, pode 

ser usada para superar as limitações das duas abordagens.  

Bigoni e Hesthaven (2020) propuseram uma metodologia de identificação de anomalias 

baseada em simulação, que combina modelo baseado na física, dados de sinais sintéticos e 

técnicas de machine learning para construir classificadores separados de uma classe para 

distinguir os dados gerados a partir de uma estrutura íntegra dos dados gerados a partir de uma 

estrutura com dano. Ritto e Rochinha (2021) propuseram a integração de modelo baseado na 

física com machine learning para construir um DT para detecção de danos em uma barra 

engastada de aço. Svendsen et al. (2023) desenvolveram uma abordagem de SHM para 

identificação de danos em pontes, usando dados de um modelo numérico de elementos finitos 
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e dados experimentais com machine learning. Rhee et al. (2024) apresentaram uma estratégia 

que integra diferentes algoritmos de ML e um novo método de filtragem, desenvolvido para 

melhorar o processamento de sinais, para predizer o estado de dano em vigas de aço. Os dados 

para treinamento e teste foram obtidos por meio de ensaios de vibração em vigas de aço. Ruiz 

et al. (2024) apresentaram uma estratégia baseada em ML para detecção de danos em viga de 

alumínio, utilizando função de resposta em frequência (FRF), tanto para simulação numérica 

quanto para avaliação com dados experimentais. Torzoni et al. (2024) propuseram um 

framework DT para estruturas de engenharia, onde a estratégia apresentada depende de um 

modelo gráfico probabilístico. Os dados de treinamento foram gerados a partir de um modelo 

numérico de ordem reduzida e o diagnóstico da integridade estrutural foi indicado pela 

assimilação de dados detectados com modelos de aprendizado profundo. A estratégia foi 

avaliada em dois estudos de caso sintéticos, envolvendo uma  viga  e uma ponte, demonstrando 

a capacidade do DT. Em Siow et al. (2024) foi proposta uma estratégia de integração de um 

método baseado em parâmetros modais em um método híbrido baseado em ML (métodos não 

supervisionados e supervisionado) para detecção e localização de danos em estruturas 

semelhantes a vigas. Vu, Thom e Tran et al. (2024) utilizaram métodos de ML para detecção 

de dano em vigas de aços, usando as flutuações nas frequências naturais sob vários cenários de 

danos de um modelo de método dos elementos finitos (MEF).  

Considerando a potencialidade existente nas técnicas supramencionadas, este trabalho 

propõe um novo framework para o monitoramento da integridade estrutural, mais 

especificamente para identificação de danos em elementos estruturais lineares de aço (barras 

comprimidas e vigas). O framework integra um modelo híbrido interpretável, que combina 

modelagem física e modelagem orientada a dados, e métodos de machine learning para 

classificação, para a construção de um framework digital twin, no contexto de sistemas 

dinâmicos. O framework digital twin construído relacionará as entradas do physical twin a 

cenários de danos específicos, para avisar rapidamente se houver dano, onde está localizado e 

qual a sua intensidade. Dessa forma, são abordados, parcial e implicitamente, três principais 

níveis de investigação do dano estrutural: detecção, localização e quantificação. Com essas 

informações, poderão ser estabelecidos critérios para a utilização da estrutura com segurança, 

fornecendo suporte para melhor identificar quando são necessárias intervenções e ações de 

manutenção, contribuindo para a extensão da vida útil e redução de custos financeiros.  
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1.2 Contribuições da Tese 

 

Dentre as principais contribuições da tese, destacam-se: (i) construção de um framework 

digital twin para SHM, no contexto da dinâmica estrutural, mais especificamente para 

identificação de dano estrutural;  (ii) proposição de um modelo híbrido que combina modelo 

físico e modelo orientado a dados, para resultar em modelos de maior intepretação física e mais 

robusto, e apresentação de uma estratégia para simular diferentes cenários de dano a partir desse 

modelo híbrido; (iii) avaliação de uma estratégia para combinar modelo híbrido com métodos 

de machine learning, com exploração de diferentes métodos e a determinação dos respectivos 

hiperparâmetros ótimos, no contexto da identificação de dano.  

 

1.3 Objetivos 

 

O objetivo geral deste trabalho consiste no desenvolvimento de um framework que 

integra modelo híbrido, baseado na física e orientado a dados, e machine learning para 

construção de um framework digital twin para monitoramento da integridade estrutural, 

avisando se o elemento estrutural de interesse apresenta dano, onde está localizado e qual a sua 

intensidade. 

O objetivo geral é alcançado através dos seguintes objetivos específicos: 

a) Desenvolver um modelo híbrido que represente as equações governantes do sistema de 

interesse a partir da combinação de um modelo físico e modelo orientado a dados; 

b) Comparar a robustez de diferentes métodos de machine learning para classificação; 

c) Verificar a robustez dos métodos para diferentes locais de danos e intensidades 

correspondentes. 

 

1.4 Metodologia  

 

A metodologia empregada para o desenvolvimento deste trabalho foi realizada em 

quatro principais macroetapas: descoberta das equações governantes do movimento da 

estrutura, parametrização de danos, construção dos classificadores de machine learning e 

construção do framework digital twin.  

A primeira macroetapa correspondeu ao desenvolvimento de modelos que 

representassem as equações governantes do movimento da estrutura, combinando equações 

diferenciais parciais, que descrevem a física do sistema, com modelagem orientada a dados, 
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para compensar os parâmetros desconhecidos. Dessa forma, o SINDy foi estruturado 

considerando a estrutura das equações de um modelo baseado na física. Os dados de 

deslocamento (𝑥𝑖(𝑡)), velocidade (𝑥̇𝑖(𝑡)) e aceleração (𝑥̈𝑖(𝑡)) da estrutura, em diferentes 

tempos (𝑡1, 𝑡2, . . . , 𝑡𝑀), foram usados para construir a matriz de estados (X), a primeira derivada 

da matriz de estados (Ẋ) e a matriz de biblioteca Θ(X), de acordo com um conjunto de funções 

candidatas especificadas. Em seguida, foi determinada a matriz de esparsidade (Ξ) e, 

consequentemente, as equações governantes (Figura 1(a)). 

Na segunda macroetapa foram usadas as equações governantes descobertas, 

correspondentes às equações governantes da estrutura íntegra, para simular a resposta do 

sistema com diferentes locais de danos e intensidades correspondentes. Uma vez que foi usada 

uma estrutura equacional de um modelo físico, foi possível representar o dano pela redução da 

rigidez local (Figura 1(b)).  

A terceira macroetapa correspondeu à construção do conjunto de dados, considerando 

os cenários da estrutura íntegra e com dano, para aplicação do classificador de machine 

learning. Os códigos para os classificadores foram desenvolvidos usando o pacote scikit-learn 

da linguagem Python 3.9. Foram consideradas as seguintes etapas: (1) os dados de entrada 

foram divididos em dois subconjuntos, de treinamento (90% dos dados) e de teste (10% dos 

dados); (2) os dados de treinamento foram usados para avaliar diferentes configurações de 

hiperparâmetros, para cada configuração de hiperparâmetro foi aplicado o método de validação 

cruzada 𝑘-fold (HASTIE, TIBSHIRANI e FRIEDMAN, 2017; KUHN e JOHNSON, 2013), 

resultando em vários modelos e estimativas de desempenho; (3) considerando as configurações 

de hiperparâmetros que apresentaram os melhores resultados no procedimento de validação 

cruzada 𝑘-fold, foi usado o conjunto de treinamento completo para ajustar o modelo com essas 

configurações; (4) o conjunto de teste, retido na etapa 1, foi usado para avaliar o modelo obtido 

na etapa 3; (5) após conclusão da etapa de avaliação, o modelo foi ajustado a todos os dados de 

entrada (conjuntos de dados de treinamento e teste) (RASCHKA, 2020). Quando os métodos 

não tinham hiperparâmetros para ajustar, as etapas consistiram, essencialmente, em: (1) utilizar 

o método de validação cruzada 𝑘-fold no conjunto de dados de entrada (dados de treinamento 

e teste) para avaliar o modelo; (2) ajustar o modelo a todos os dados de entrada (Figura 1(c)).  

A última macroetapa correspondeu à construção do framework digital twin (Figura 

1(d)). O framework DT possui uma arquitetura constituída por quatro camadas: parte física, 

armazenamento de dados, modelagem de DT e serviço (Figura 2).  A parte física (physical twin) 

é representada por um modelo de alta fidelidade, correspondente a uma barra prismática e uma 
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viga prismática governadas por equações diferenciais parciais, para gerar a resposta dinâmica 

da estrutura, produzindo dados sintéticos que seriam provenientes de sensores, sendo a base de 

construção da parte virtual; a segunda camada é o armazenamento de dados, condição prévia 

para a criação de novos conhecimentos; a terceira camada é a modelagem de DT, que suporta 

a simulação e controla a parte física; a quarta camada é a de serviço, responsável pelo 

desenvolvimento de aplicações orientada a dados ou funções de análise de dados padrão para 

fornecer informações ao usuário que possibilite a tomada de decisão, podendo aumentar a 

confiabilidade e produtividade do sistema de engenharia.  
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Figura 1 – Procedimento metodológico proposto para a Tese. 

 

 

Fonte: Autor (2024). 

 

 

 

 

 

 



31 
 

 

Figura 2 – Framework DT com quatro camadas. 

 

 

 

 

 

 

 

 

Fonte: Adaptado de Singh, Weebera e Birke (2021). 

 

1.5 Organização da Tese  

 

O texto desta Tese está estruturado em seis capítulos. O primeiro capítulo consiste na 

parte introdutória ao tema da pesquisa, com apresentação da contextualização, justificativa, 

contribuições, objetivos e metodologia. 

O segundo capítulo apresenta conceitos relativos a dano e monitoramento estrutural, 

machine learning e digital twin.  

A descrição do método identificação esparsa de dinâmica não linear (sparse 

identification of nonlinear dynamics – SINDy) para descobrir equações governantes de sistema 

dinâmico a partir de dados é abordado no terceiro capítulo.  

O quarto capítulo apresenta as aplicações das técnicas para um modelo de barra de aço, 

considerando a vibração axial. 

O quinto capítulo apresenta as aplicações das técnicas para um modelo de viga 

em vibração transversal. 

O sexto capítulo consiste nas conclusões do trabalho realizado e sugestões para 

trabalhos futuros científicos. 

No Apêndice são apresentadas as respostas da aplicação do framework digital twin.  
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2 DANO E MONITORAMENTO ESTRUTURAL, MACHINE LEARNING E DIGITAL 

TWIN 

 

2.1 Dano e Monitoramento Estrutural  

 

Os danos estruturais são intrínsecos às estruturas de engenharia e são 

predominantemente propensos a se propagar devido às ações estáticas (peso próprio e ações 

com variação lenta), ações dinâmicas (por exemplo, vento, tráfego rodoviário e/ou ferroviário, 

carga de impacto, sismos e explosões) e outros fatores (mecânicos, físicos, biológicos, químicos 

e ambientais).  

O dano pode ser definido como uma mudança na propriedade do material ou nas 

características geométricas dos elementos estruturais, que afeta adversamente seu desempenho, 

segurança e confiabilidade. A mecânica do dano investiga a degradação da estrutura, 

considerando que o dano se manifesta na escala macroscópica, como uma perda de rigidez local. 

Nesse contexto, o dano pode estar presente em toda a estrutura, caracterizando o dano global, 

ou apenas em alguns pontos específicos, originando o dano local, sendo a ocorrência desse 

último mais comum. Neste conceito, encontra-se inserida a comparação entre os estados inicial 

(denominado de estado íntegro ou intacto) e final (denominado de estado com dano).  

Esses danos podem reduzir significativamente a durabilidade e a vida útil dos 

elementos estruturais e, com o decorrer do tempo, podem provocar fadiga em seus materiais e 

afetar o funcionamento da estrutura, no que se refere ao conforto e segurança de seus usuários. 

Pode, ainda, vir a se tornar o fator responsável pelo surgimento de problemas estruturais de 

maior relevância, gerando custos significativos e, no limite, acarretar a falha estrutural.  

Dessa forma, é notória a necessidade da realização de monitoramento ao longo do 

tempo para avaliação da integridade estrutural. As abordagens iniciais referentes ao 

monitoramento de danos estruturais consistiam na inspeção visual para identificar e avaliar, se 

houver, as anomalias, falhas e/ou danos e evoluíram com o tempo, com o aperfeiçoamento nas 

tecnologias de sensores, hardware e software de aquisição de dados. O monitoramento da 

integridade estrutural é um campo de pesquisa amplo e interdisciplinar que pode envolver 

medição contínua das condições ambientais e operacionais, ensaios experimentais, 

identificação de sistema e aquisição e gerenciamento de dados. O componente mais crítico do 

SHM é a identificação de danos (FARRAR, DOEBLING e NIX, 2001), que se baseia na 

utilização de indicadores confiáveis e robustos que permitam detectar, localizar e quantificar 
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danos, além de, se possível, estimar a vida útil residual da estrutura após a caracterização do 

dano.  

Durante décadas, os sistemas de SHM produziram grandes quantidades de dados de 

monitoramento para controlar o comportamento estrutural durante a operação (FARRAR e 

LIEVEN, 2007). Com as melhorias das tecnologias de sensores, poder computacional, machine 

learning e internet das coisas (internet of things - IoT), foi desenvolvido um novo paradigma 

de avaliação de condições que fundem informações de dados e os modelos sob uma tendência 

mais digital, denominado digital twin, que consiste essencialmente em um objeto físico, réplica 

digital e a conexão (ATTARAN e CELIK, 2023; CHAKRABORTY, ADHIKARI e 

GANGULI, 2021). O digital twin é uma das tecnologias digitais de rápida evolução que 

suportam a transformação digital da engenharia estrutural para permitir o suporte de decisão 

para melhorar o gerenciamento, confiabilidade e sustentabilidade das estruturas (CHIACHÍO 

et al., 2022; LOVE e MATTHEWS, 2019).  

Entre as inúmeras abordagens para SHM, o modelo DT está ganhando cada vez mais 

atenção. Esse modelo é uma reconstrução digital de um ativo físico (physical twin) e é 

atualizado frequente e automaticamente, usando dados provenientes de uma rede de sensores 

instalados no physical twin. Essa ferramenta pode fornecer funcionalidades para monitorá-lo e 

otimizá-lo, tomar decisões informadas e baseadas em dados, no contexto das condições 

operacionais cotidianas e após eventos extremos, e realizar predições comportamentais 

estruturais e, em certas condições, compensá-las automaticamente (BADO et al., 2022). De um 

modo geral, a eficácia de uma abordagem de SHM é tão boa quanto sua capacidade de detectar 

em tempo hábil o aumento de criticidades e danos à estrutura (BROWNJOHN, 2007).  

A identificação do dano, bem como a quantificação da sua intensidade, fornece 

importantes vantagens, por exemplo, o estabelecimento de critérios para a utilização da 

estrutura com segurança e a capacidade de melhor identificar quando são necessárias 

intervenções na estrutura, para que dessa forma se possa realizar convenientemente a 

manutenção na mesma, contribuindo para a extensão da vida útil e redução de custos. 

 

2.2 Machine Learning 

 

A inteligência artificial (IA) é um campo da ciência da computação que visa desenvolver 

atividades associadas ao pensamento humano, como tomada de decisão, resolução de 

problemas e aprendizagem (RUSSEL e NORVIG, 1995). As primeiras aplicações da IA foram 

as abordagens baseadas em conhecimentos, especialmente, direcionadas a problemas baseados 
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em regras (GOODFELLOW, BENGIO e COURVILLE, 2017). No entanto, os sistemas de IA 

baseado em conhecimento falharam em tarefas que parecem ser automáticas e diretas para um 

ser humano, como reconhecer rostos, detectar objetos e compreender a fala. Dessa forma, um 

grande desafio foi encontrar formas alternativas de ensinar para computadores conhecimento 

intuitivo e de senso comum, que não pode ser traduzido em uma lista explícita de regras 

(GHAHRAMANI, 2015). Para superar os desafios enfrentados pela abordagem baseada no 

conhecimento, o conceito de machine learning foi introduzido nos sistemas de IA (AVCI et al., 

2021). A IA baseada em conhecimento e o machine learning são um subconjunto da IA e o 

deep learning é um subconjunto especializado do machine learning (Figura 3).  

 

Figura 3 – Diagrama de Venn apresentando a relação entre os diferentes sistemas de IA. 

 

 

 

 

 

 

 

Fonte: Adaptado de Avci et al. (2021). 

 

O machine learning é um campo de pesquisa na interseção de estatística, inteligência 

artificial e ciência da computação (MÜLLER e GUIDO, 2017). Como uma aplicação de IA, os 

algoritmos de ML fornecem aos sistemas a capacidade de aprender com um número suficiente 

de amostras de dados o conhecimento necessário para realizar uma tarefa específica, melhorar 

automaticamente o desempenho com a experiência e fazer predições e/ou decisões acuradas 

sem ser explicitamente programado (LI et al., 2018; MOHRI, ROSTAMIZADEH e 

TALWALKAR, 2018).  

Os algoritmos de ML geralmente podem ser classificados em algoritmos 

supervisionados e não supervisionado (SANTOS et al., 2016). Os algoritmos supervisionados 

requerem um conjunto de dados com rótulos como alvos de aprendizado e seu principal objetivo 

é descobrir o mapeamento ideal das entradas para as saídas desejadas (KUBAT, 2017), sendo 

o tipo de ML mais utilizado (JORDAN e MITCHELL, 2015). Algoritmos de aprendizagem não 

supervisionados, por outro lado, requerem conjunto de dados não rotulados e dependem da 

compreensão dos próprios dados. As tarefas de aprendizado supervisionado mais comuns são 
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classificação e regressão, enquanto as tarefas de aprendizado não supervisionadas mais comuns 

são clustering e redução de dimensionalidade (ZHANG et al., 2022).  

A classificação corresponde a atribuir uma categoria a cada instância de dados, por 

exemplo, classificação de diagnóstico médico e imagem (AVCI et al., 2021), e a regressão 

consiste em prever um valor real para cada instância de dados, por exemplo, predição de 

temperatura, idade e renda (ZHANG et al., 2022). O Clustering visa dividir o conjunto de dados 

de entrada em grupos com características semelhantes, por exemplo, reconhecimento de 

padrões, e a redução de dimensão é o processo de transformar uma representação inicial de 

dados em uma representação de dimensão inferior, preservando algumas propriedades da 

representação inicial, por exemplo, pré-processamento de imagens digitais em tarefas de visão 

computacional (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018).  

Este trabalho se concentra em técnicas de ML supervisionada de classificação, uma vez 

que os dados são rotulados e é de interesse realizar a classificação para novos dados de entrada. 

No aprendizado supervisionado o conjunto de dados é comumente dividido em dois 

subconjuntos. O primeiro é o conjunto de treinamento, usado para treinar um modelo, e o 

segundo é conjunto de teste, usado para avaliação de desempenho do modelo criado. Para 

dividir esses subconjuntos, os principais métodos utilizados na literatura são Holdout e 

validação cruzada 𝑘-fold (CAMPESATO, 2020).  

No método Holdout os dados são divididos aleatoriamente em dois subconjuntos, sendo 

um de treinamento e o outro de teste. Comumente, é atribuído 2/3 dos dados ao conjunto de 

treinamento e 1/3 dos dados ao conjunto de teste. Se o conjunto de dados for relativamente 

grande, pode ser atribuído 90% dos dados para treinamento e 10% para teste. No entanto, essa 

abordagem utiliza apenas uma parte dos dados para treinamento, o que pode não conter dados 

mais representativos, comprometendo a confiabilidade dos resultados (RASCHKA, 2020). 

Alternativamente, a validação cruzada 𝑘-fold consiste em dividir os dados em 𝑘 

subconjuntos mutuamente exclusivos de tamanhos aproximadamente iguais. O processo terá 𝑘 

iterações, onde, em cada iteração, um subconjunto é utilizado para teste e os restantes (𝑘 − 1) 

para treinamento. Como os subconjuntos são formados aleatoriamente, não se sabe se uma 

determinada classe estará em todos os subconjuntos, o que pode interferir tanto no treinamento 

quanto no teste do modelo. Dessa forma, a validação cruzada estratificada pode ser utilizada, 

de forma que todos os subconjuntos irão conter aproximadamente a mesma proporção de 

classes do conjunto de dados de entrada (RASCHKA, 2020).  

Para avaliar o desempenho dos modelos, quatro métricas são amplamente utilizadas na 

literatura, acurácia, precisão, revocação (sensibilidade ou recall) e F-score (ALI, NEAGU e 
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TRUNDLE, 2019). A acurácia é a medida de desempenho mais intuitiva e definida como a 

razão entre o número de amostras classificadas corretamente e o número total de amostras 

avaliadas; enquanto a precisão é a razão entre o número de classificações corretas e o total de 

classificações de uma determinada classe; a revocação é definido pelo número de classificações 

corretas dividido pelo total de ocorrências de uma determinada classe; e, por fim, o F-score 

pode ser definido como uma média ponderada da precisão e da revocação, o seu valor igual a 1 

representa um ótimo modelo, enquanto o valor igual a 0 é considera um modelo falho.  

A seguir serão apresentados os algoritmos de classificação de machine learning que 

foram escolhidos para análise, com base em seu uso na literatura SHM e em sua 

interpretabilidade em termos de como usam atributos para predição de classes, a saber, k-

Nearest Neighbors (k-NN), Discriminant Analysis (DA), Naive Bayes (NB), Support Vector 

Machine (SVM) e Métodos Baseados em Árvores de Decisão. 

 

2.2.1 k-Nearest Neighbors  

 

O k-Nearest Neighbors (k-NN) é um método não paramétrico usado para classificação 

de padrões e modelos de regressão (HASTIE, TIBSHIRANI e FRIEDMAN, 2017). Foi 

proposto por Fix e Hodges (FIX e HODGES, 1951) e modificado por Cover e Hart (COVER e 

HART, 1967). O método k-NN pertence à família de aprendizado baseado em instância, que é 

uma forma de aprendizado lento, em que nenhuma abstração é realizada nos dados de 

treinamento para criar um modelo generalizado. Dessa forma, todo o conjunto de dados é 

armazenado na memória, sendo esse conjunto a chamada instância do problema 

(WETTSCHERECK, AHA e MOHRI, 1997).   

Para classificação, o método possui três componentes principais: um conjunto de 

observações rotuladas (conjunto de treino armazenado), uma métrica de distância (ou métrica 

de similaridade) e o valor de k (o número de vizinhos mais próximos). Nesse sentido, as 

principais etapas do método consistem, essencialmente, em: (1) determinar o número de 

vizinhos mais próximos (valor de k); (2) calcular a distância entre a nova amostra a ser 

classificada e as amostras de treinamento; (3) ordenar a distância e determinar os vizinhos mais 

próximos baseada na k-ésima distância mínima; (4) reunir os rótulos dos vizinhos mais 

próximos e classificar a amostra em análise como pertencente à classe predominante (Figura 

4). Por exemplo, para a amostra em análise, se k = 1 será classificada como pertencente à classe 

da única amostra mais próxima e se k > 1 será classificada como pertencente a classe 
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predominante das amostras mais próximas (se k = 3, a classe predominante das três amostras 

mais próximos será atribuída) (Figura 4(c)). 

 

Figura 4 – Aplicação do método k-NN: (a) dados iniciais, (b) calcular distância e (c) encontrar vizinhos e votar 

em atributos. 

 

 

 

 

 

 

                              (a)                                                   (b)                                               (c) 

Fonte: Autor (2024). 

 

Como a classificação é baseada no número de vizinhos, o valor de k é considerado um 

hiperparâmetro que determinará o desempenho do classificador. Diferentes valores podem ter 

um grande impacto na acurácia preditiva do método e escolher um bom valor geralmente não é 

intuitivo, olhando para o conjunto de dados (KANG, 2021). Ao escolher um valor pequeno para 

k, a classificação pode ser indevidamente afetada por outliers e sensíveis ao ruído. Com k 

pequeno, por exemplo, k = 1, a nova observação será classificada como pertencente à mesma 

classe da única observação mais próxima, um processo que pode levar o algoritmo a um 

overfitting, tendendo a memorizar o conjunto de dados de treinamento a custo da generalização. 

Por outro lado, escolher um valor de k que não seja muito pequeno tenderá a suavizar qualquer 

comportamento característico aprendido no conjunto de treinamento. No entanto, se for 

escolhido um valor de k muito grande, o comportamento localmente interessante pode ser 

ignorado. Então, o hiperparâmetro k é particular a cada problema (LAROSE e LAROSE, 2014). 

A otimização de k pode ser realizada por técnicas de reamostragem, como validação cruzada 

𝑘-fold (HASTIE, TIBSHIRANI e FRIEDMAN, 2017; KUHN e JOHNSON, 2013), sendo 

escolhido o valor de k que minimiza o erro de classificação (HULETT, HALL e QU, 2012). 

Para determinar os vizinhos mais próximos é utilizado o conceito de distância entre a 

instância a ser classificada e as instâncias do conjunto de treinamento. A função de distância 

𝑑(𝑥, 𝑦) entre duas instâncias 𝑥 e 𝑦, onde 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) e 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁), onde 𝑁 

representa o número de atributos, é considerada uma métrica se satisfizer as seguintes condições 

(DEZA e DEZA, 2009):  

 

 

? ? 

Classe A 

Classe B 

? 
𝒌 = 𝟑 

𝒌 = 𝟏 
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1. Não negatividade: a distância entre 𝑥 e 𝑦 é sempre um valor maior ou igual a zero,  

 

𝑑(𝑥, 𝑦)) ≥ 0. (1) 

 

2. Identidade dos indiscerníveis: a distância entre 𝑥 e 𝑦 é igual a zero se e somente se 𝑥 é igual 

a 𝑦, 

 

𝑑(𝑥, 𝑦) = 0 se e somente se 𝑥 = 𝑦. 

 

(2) 

3. Simetria: A distância entre 𝑥 e 𝑦 é igual à distância entre 𝑦 e 𝑥 (comutatividade),  

 

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). (3) 

 

4. Desigualdade triangular: Considerando a presença de um terceiro ponto 𝑧, a distância entre 

𝑥 e 𝑦 é sempre menor ou igual à soma da distância entre 𝑥 e 𝑧 e a distância entre 𝑦 e 𝑧,   

 

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). (4) 

 

Dadas as instâncias 𝑥 e 𝑦, com atributos numéricos, existem diferentes definições 

matemáticas de distâncias para medir a proximidade entre elas, como Minkowski, Manhattan 

(City Block), Euclidiana, Chebyshev e Cosseno (ALFEILAT et al., 2019) (Quadro 1). Outras 

métricas de distância podem ser encontradas em Alfeilat et al. (2019). Dentre as métricas 

citadas, a Euclidiana é a função de distância mais utilizada com k-NN (WEINBERGER e 

SAUL, 2009; LAROSE e LAROSE, 2014). A distância de Minkowski é uma métrica 

generalizada, que inclui três métricas de distância como casos especiais, correspondendo a 

diferentes valores de 𝑠 (do Quadro 1). Quando 𝑠 = 2, a métrica se torna a distância Euclidiana; 

quando 𝑠 = 1, se torna a distância de Manhattan; enquanto a distância de Chebyshev é uma 

variante da distância de Minkowski, onde 𝑠 = ∞ (ALFEILAT et al., 2019). 
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Quadro 1 – Diferentes métricas de distância. 

Nome Definição  

 

Minkowski 
𝑑(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑠

𝑁

𝑖=1

𝑆

 

 

Manhattan (City Block) 𝑑(𝑥, 𝑦) =∑|𝑥𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 

 

Euclidiana 
𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

Chebyshev 𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥𝑖|𝑥𝑖 − 𝑦𝑖| 
 

Cosseno 𝑑(𝑥, 𝑦) = 1 −
∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1

√∑ 𝑥𝑖
2𝑁

𝑖=1 √∑ 𝑦𝑖
2𝑁

𝑖=1

 

Fonte: Adaptado de Alfeilat et al. (2019). 

 

Os k vizinhos mais próximos são selecionados com base em uma métrica de distância. 

Então, existe uma variedade de maneiras pelas quais os k vizinhos mais próximos podem ser 

usados para determinar a classe da amostra de interesse. A abordagem mais direta é atribuir a 

classe predominante dos vizinhos mais próximos (ALFEILAT et al., 2019). No entanto, quando 

o número de amostras não é balanceado, o que ocorre, por exemplo, quando um volume 

significativo de dados é pertencente a uma classe, enquanto as outras classes são pequenas, 

pode acontecer erros de classificação, porque na predição de novas amostras a maioria dos 

vizinhos podem pertencer às classes de grandes dimensões (TANG e HE, 2015). Uma estratégia 

é atribuir maior peso aos vizinhos mais próximos na decisão da classe da observação. Uma 

técnica comumente empregada é ponderar a contribuição de cada vizinho de acordo com o 

inverso de sua distância até a nova amostra. Nesse caso, os vizinhos mais próximos da amostra 

a ser classificada terão uma influência maior do que os vizinhos mais distantes 

(CUNNINGHAM e DELANY, 2022).  

Durante o processo de classificação é realizada uma comparação de distância entre a 

amostra em análise e cada amostra armazenada no conjunto de treinamento. Quando se tem 

grandes volumes de dados de treinamento disponíveis, essa busca pode introduzir um atraso 

notável no método de classificação e um custo computacional associado (SKIENA, 2017). Uma 

abordagem para acelerar a busca envolve o uso de estruturas de dados geométricas, como kd-

tree e ball tree (CUNNINGHAM e DELANY, 2022).  
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2.2.2 Naive Bayes 

 

O classificador Naive Bayes (NB) é um método estatístico fundamentado em modelos 

paramétricos (distribuições de probabilidade) baseado na aplicação do teorema de Bayes (da 

estatística Bayesiana) com suposições de independência condicional entre os atributos de cada 

classe, o que designa o termo “Naive” (ingênuo) (JOHN e LANGLEY, 1995).  

O Naive Bayes pode ser utilizado para categorias binárias e multiclasse em muitas 

aplicações, como sistema de recomendação, análise de perfil, classificação de documento ou 

texto e filtragem de spam (SARKER, 2021). Geralmente, o método precisa de uma quantidade 

de dados de treinamento relativamente pequeno para estimar os parâmetros necessários, quando 

comparado com abordagens mais sofisticadas. No entanto, seu desempenho pode ser afetado 

devido as suas fortes premissas sobre independência de características, uma vez que em 

aplicações práticas é difícil encontrar problemas que sejam completamente independentes. As 

variantes comuns do classificador NB incluem, Gaussiano, multinomial, complementar, 

Bernoulli e categórico (SARKER, 2019). 

Suponha que se deseje classificar o vetor 𝑥 = (𝑥1, … , 𝑥𝑁) em uma das 𝑞 classes 

𝜔1, … , 𝜔𝑞, o teorema de Bayes (Equação 5) fornece uma maneira de calcular a probabilidade 

de cada classe possível dada 𝑥, para que se possa atribuir a 𝑥 o rótulo da classe com maior 

probabilidade (SKIENA, 2017), 

 

𝑃(𝜔𝑖|𝑥) =
𝑃(𝑥|𝜔𝑖)𝑃(𝜔𝑖)

𝑃(𝑥)
, 

(5) 

 

onde 𝑃(𝜔𝑖|𝑥) corresponde a probabilidade posterior ou a posteriori,  𝑃(𝑥|𝜔𝑖) é a função de 

verossimilhança, ou simplesmente a verossimilhança, ou a função de densidade de 

probabilidade condicional, 𝑃(𝜔𝑖) é a probabilidade a priori da classe (razão entre o número de 

amostras nessa classe e o número total de amostras em todas as classes) com ∑ 𝑃(𝜔𝑖)
𝑞
𝑖=1 = 1, 

e 𝑃(𝑥) é a evidência, que é uma constante normalizadora igual para todas as classes, podendo 

ser desconsiderada (DUDA, HART e STORK, 2001).  

Geralmente, 𝑃(𝜔𝑖|𝑥) é calculado usando a verossimilhança (𝑃(𝑥|𝜔𝑖)) e a 

probabilidade a priori (𝑃(𝜔𝑖)), uma vez que 𝑃(𝑥) corresponde a um termo constante 

normalizador que não depende da classe 𝜔𝑖, é igual para todas as classes, não afetando os 

valores relativos de suas probabilidades (THARWAT, 2016). 
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Assumindo que os valores dos atributos de uma observação são condicionalmente 

independentes entre si dada a classe, a probabilidade de observar a conjunção de atributos  

𝑥1, 𝑥2, ⋯ , 𝑥𝑁|𝜔𝑖 é somente o produto das probabilidades para os atributos individuais: 

 

𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑁|𝜔𝑖) =∏𝑃(𝑥𝑗|𝜔𝑖)

𝑁

𝑗=1

. 
 

(6) 

 

Com isso, a probabilidade de uma amostra pertencer à classe 𝜔𝑖 é proporcional a: 

 

𝑃(𝜔𝑖|𝑥) ∝ 𝑃(𝜔𝑖)∏𝑃(𝑥𝑗|𝜔𝑖)

𝑁

𝑗=1

. 
 

(7) 

 

Suponha que 𝑃(𝜔𝑖|𝑥) denota a probabilidade de uma observação 𝑥 pertencer à classe 

𝜔𝑖. A função de custo zero-um, que representa custo de associar 𝑥 à classe incorreta, é 

minimizada se, e somente se, 𝑥 é associada à classe 𝜔𝑘 para a qual 𝑃(𝜔𝑘|𝑥) é máxima (DUDA, 

HART e STORK, 2001). Esse método é designado por estimativa Máximo a Posteriori 

(Maximum A Posteriori – MAP). Formalmente, a classe que deve ser associada a amostra 𝑥 

corresponde a: 

 

𝑦𝑚𝑎𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑃(𝜔𝑖)∏𝑃(𝑥𝑗|𝜔𝑖)

𝑁

𝑗=1

, 
 

(8) 

 

onde 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 retorna a classe 𝜔𝑖 com maior probabilidade de estar associada a 𝑥, que é aquela 

que possui o valor máximo para 𝑃(𝜔𝑖|𝑥). Os diferentes classificadores Naive Bayes diferem 

principalmente pelas suposições que fazem em relação à distribuição de 𝑃(𝑥|𝜔𝑖). 

O classificador obtido pelo uso da função discriminante dada pela Equação 7 e pela 

regra de decisão ilustrada na Equação 8 é conhecido como classificador de Naive Bayes.  

As probabilidades de interesse para a obtenção do classificador Naive Bayes são 

computadas a partir dos dados de treinamento. Para calcular a probabilidade a priori de observar 

a classe 𝜔𝑖, 𝑃(𝜔𝑖), é necessário manter um contador para cada classe. Para calcular a 

probabilidade condicional de observar um valor de um atributo dado que a amostra pertence a 

uma classe, é necessário distinguir entre atributos nominais e atributos contínuos. No caso de 
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atributos nominais, o conjunto de possíveis valores é um conjunto enumerável. Para calcular a 

probabilidade condicional, basta manter um contador para cada valor de atributo por classe. No 

caso de atributos contínuos, comumente é assumida uma distribuição particular para os valores 

dos atributos, sendo geralmente assumida como distribuição normal.  

 

2.2.3 Discriminant Analysis 

 

A Discriminant Analysis (DA) é usada para classificação, redução de dimensão e 

visualização de dados (ARAVEEPORN, 2022). O classificador análise discriminante foi 

introduzido por Fisher e foi usado em muitos problemas de classificação (ALTMAN, MARCO 

e VARETTO, 1994; GUO, HASTIE e TIBSHIRANI, 2007). Em análise discriminante, se 

destacam dois métodos, a saber, Linear Discriminant Analysis (LDA) e Quadratic Discriminant 

Analysis (QDA). No classificador LDA, a superfície de decisão é linear, enquanto no QDA a 

superfície de decisão é quadrática (THARWAT, 2016). Esses classificadores têm soluções de 

forma fechada que podem ser facilmente computadas, são inerentemente multiclasse, provaram 

funcionar bem na prática e não têm hiperparâmetros para ajustar (DILLEN et al., 2022).  

Os métodos LDA e QDA utilizam a função de distribuição de probabilidade normal 

multivariada de variáveis independentes como regra de classificação. O parâmetro de 

probabilidade a priori, média e matriz de covariância de cada classe também criam a função 

discriminante para o limite das classes. Os métodos são considerados como tendo a distribuição 

normal, que é a distribuição mais comum e padrão em aplicações práticas. Portanto, se as 

matrizes de covariância são assumidas iguais, o limite de decisão de classificação é na forma 

de uma função discriminante linear. Quando as matrizes de covariância são assumidas como 

desiguais, o limite de decisão da classificação está na forma de uma função discriminante 

quadrática (ARAVEEPORN, 2022).  

Nesse contexto, os métodos DA podem ser derivados de modelos probabilísticos que 

modelam a distribuição condicional de classe dos dados 𝑃(𝑥|𝜔𝑖) para cada classe 𝑖. As 

predições podem ser obtidas usando a regra de Bayes (Equação 5), para cada amostra de 

treinamento e sendo selecionada a classe 𝑖 que maximiza essa probabilidade a posteriori 

(THARWAT, 2016).  

Para análise discriminante linear e quadrática, a verossimilhança (𝑃(𝑥|𝜔𝑖)) é modelado 

como uma distribuição gaussiana multivariada (𝑃(𝑥|𝜔𝑖)~𝒩(𝜇𝑖, Σ𝑖)) com densidade 

(BISHOP, 2006): 

 



43 
 

 

𝑃(𝑥|𝜔𝑖) = 𝒩(𝜇𝑖, Σ𝑖) =
1

(2π)𝑁/2|Σ𝑖|1/2
exp {−

1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖)}, 

(9) 

 

onde 𝜇𝑖 representa a média da 𝑖-ésima classe e Σ𝑖 é a matriz de covariância da 𝑖-ésima classe, 

|Σ𝑖| e Σ𝑖
−1 representam o determinante e o inverso da matriz de covariância, respectivamente.  

Geralmente, a amostra desconhecida será classificada para a classe, que maximiza a 

probabilidade posterior ou a verossimilhança, portanto, maximiza a função discriminante para 

o QDA da seguinte forma (THARWAT, 2016; JAMES et al., 2021): 

 

𝑙𝑛(𝑃(𝜔𝑖|𝑥)) = 𝑙𝑛(𝑃(𝑥|𝜔𝑖)) + 𝑙𝑛(𝑃(𝜔𝑖)) 

 

 (10) 

𝑙𝑛(𝑃(𝜔𝑖|𝑥)) = −
1

2
𝑙𝑛|Σ𝑖| −

1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖) + 𝑙𝑛(𝑃(𝜔𝑖)), 

(11) 

 

onde 𝑙𝑛 representa o logaritmo natural.  

LDA é um caso especial de QDA, onde assume-se que as Gaussianas para cada classe 

compartilham a mesma matriz de covariância, Σ𝑖 = Σ para todos 𝑖 (GHOJOGH e CROWLEY, 

2019): 

 

𝑙𝑛(𝑃(𝜔𝑖|𝑥)) = −
1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖) + 𝑙𝑛(𝑃(𝜔𝑖)). 

(12) 

 

2.2.4 Support Vector Machine 

 

O Support Vector Machine (SVM) constitui uma técnica de aprendizado embasada pela 

Teoria de Aprendizado Estatístico, fundamentado no princípio da minimização do Risco 

Estrutural (Structural Risk Minimization - SRM) (CORTES e VAPNIK, 1995). O SVM permite 

obter classificadores com boa generalização, correspondente a sua capacidade de predizer 

corretamente a classe de novos dados e pode ser também utilizado para realizar tarefas regressão 

e clustering (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018).  

O objetivo da classificação do SVM é elaborar uma maneira computacionalmente 

eficiente de aprender hiperplanos de separação ótimo, em um espaço de características de alta 

dimensão, o qual maximiza a margem dos dados de treinamento (CRISTIANINI e SHAWE-

TAYLOR, 2000). A Figura 5(a) apresenta um conjunto de treinamento, o objetivo do processo 
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de aprendizado é encontrar um classificador que separe os dados das classes azul e vermelha. 

Nesse contexto, se os dados puderem ser perfeitamente separados, existirá um número infinito 

de hiperplanos candidatos à fronteira de decisão, três possíveis hiperplanos de separação são 

mostrados Figura 5(b). A distância (perpendicular) de uma classe a um hiperplano de separação 

é a menor distância entre ele e as observações dessa classe, definida como margem. O 

hiperplano que será o escolhido para representar a fronteira de decisão é o que maximiza a 

margem de separação (menor distância perpendicular) entre as observações de treinamento 

(Figura 5(c)), denominado de hiperplano de margem máxima ou hiperplano de separação ótimo 

(JAMES et al., 2014).  

 
Figura 5 – (a) Conjunto de treinamento binário, (b) três hiperplanos de separação e (c) hiperplano de margem 

máxima. 

 

 

 

 

 

 

 

 

Fonte: Adaptado de James et al. (2014). 

 

Na Figura 5(c), três observações de treinamento são equidistantes do hiperplano de 

margem máxima e estão ao longo das linhas tracejadas, indicando a largura da margem. Essas 

três observações são conhecidas como vetores de suporte, uma vez que são vetores no espaço 

p-dimensional (nesse caso, p = 2), e eles suportam o hiperplano de margem máxima. Assim, o 

hiperplano de margem máxima depende diretamente dos vetores de suporte, mas não das outras 

observações. 

Seja 𝑆 um conjunto de treinamento, composto de 𝑀 pares (𝑥𝑖, 𝑦𝑖), 𝑥𝑖 ∈ 𝑥 e seus 

respectivos rótulos 𝑦𝑖 ∈ 𝑦𝑙𝑎𝑏𝑒𝑙, onde 𝑥 constitui o espaço dos dados e 𝑦𝑙𝑎𝑏𝑒𝑙 =  {−1,+1}. S é 

considerado linearmente separável, se for possível separar os dados das classes −1 e +1 por 

um hiperplano. Nesse caso, a solução do problema consiste em encontrar o hiperplano de 

margem máxima, que separe os dados de cada classe e a correspondente margem de separação 

seja máxima (Figura 6(a)), definido por: 

(a) (b) 
(c) 
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w𝑇𝑥 + 𝑏 = 0, (13) 

 

onde w  ∈  ℝ𝑝 é o vetor de pesos normal ao hiperplano e 𝑏 ∈  ℝ  um escalar (bias).  

A classificação de cada dado 𝑥 do conjunto de treinamento é realizada de acordo a 

proximidade em relação às margens do hiperplano separador. Assim, será classificado como 

pertencente à classe −1 se estiver mais próximo da margem negativa e será pertencente a classe 

+1 se estiver mais próximo da margem positiva (Figura 6(b)). Portanto, as amostras mais 

próximas do hiperplano canônico (𝐻) devem satisfazer as seguintes condições:  

 

H1: w
T𝑥i + b = 1 ∴  wT𝑥i + (b − 1) = 0 (14) 

 

H2: w
T𝑥i + b = −1 ∴  w

T𝑥i + (b + 1) = 0. (15) 

 

Figura 6 – Hiperplano de separação que maximiza a margem. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

 

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018). 

 

Uma amostra 𝑥 é considerada classificada corretamente se estiver fora da margem de 

separação, ou seja, assume-se que todos os dados de treinamento satisfazem as seguintes 

restrições, garantindo que não existe dados de treinamento entre as margens de separação: 

 

w𝑇𝑥𝑖 + 𝑏 ≥ 1 𝑝𝑎𝑟𝑎 𝑦
𝑖
≥ 1 (16) 

 

w𝑇𝑥𝑖 + 𝑏 ≤ −1 𝑝𝑎𝑟𝑎 𝑦
𝑖
≤ −1. (17) 

 

 

As equações (16) e (17) podem ser unificadas: 
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𝑦𝑖(w
𝑇𝑥𝑖 + 𝑏)− 1 ≥ 0 𝑝𝑎𝑟𝑎 𝑖 = 1,2,… ,𝑀. 

 

(18) 

 

A largura da margem, distância entre os hiperplanos 𝐻1 e 𝐻2, pode ser determinado pela 

projeção da diferença entre os vetores de suporte na direção ao vetor normal da superfície de 

decisão (Equação 19):  

 

𝜌𝑙𝑚 =
2

‖w‖
. 

(19) 

 

A maximização da margem de separação dos dados em relação ao hiperplano de 

separação pode ser obtida pela minimização de ‖w‖ (BURGES, 1998). Dessa forma, pode ser 

definido o seguinte problema de otimização (MOHRI, ROSTAMIZADEH e TALWALKAR, 

2018): 

 

𝑚𝑖𝑛w,𝑏
1

2
‖w‖2  (20) 

 

sujeito a: 𝑦𝑖(w
𝑇𝑥𝑖 + 𝑏)− 1 ≥ 0, para 𝑖 = 1,2, … ,𝑀. 

 

As restrições são impostas para assegurar que não existam dados de treinamento entre as 

margens de separação das classes. Por esse motivo, a SVM obtida possui também a 

nomenclatura de SVM com margens rígidas. 

O problema de otimização que determina o hiperplano de margem máxima possui 

função objetivo convexa, sendo conveniente resolvê-lo com uso da Teoria Lagrangiana. Para 

isso, deve ser construída a função lagrangiana, que engloba as restrições à função objetivo, 

associadas a parâmetros denominados multiplicadores de Lagrange 𝛼𝑖, com 𝛼𝑖 ≥ 0, a forma 

primal da função lagrangiana do problema corresponde a (CRISTIANINI e SHAWE-

TAYLOR, 2000; SMOLA e SCHÖLKOPF, 2002; MOHRI, ROSTAMIZADEH e 

TALWALKAR, 2018):  

ℒ(w, 𝑏, 𝛼) =
1

2
‖w‖2 −∑𝛼𝑖[𝑦𝑖(w

𝑇𝑥𝑖 + 𝑏) − 1]

𝑀

𝑖=1

. 

 

(21) 
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A solução para esse problema de otimização é determinada minimizando ℒ(w, 𝑏, 𝛼) em 

relação a w, 𝑏 e maximizando ℒ(w, 𝑏, 𝛼) com relação a 𝛼𝑖: 

 

 

𝜕ℒ(w,𝑏, 𝛼)

𝜕𝑤
= w −∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑀

𝑖=1

= 0 ∴  w =∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑀

𝑖=1

 
 

(22) 

 

 

𝜕ℒ(w, 𝑏, 𝛼)

𝜕𝑏
= −∑𝛼𝑖𝑦𝑖

𝑀

𝑖=1

= 0 ∴  ∑𝛼𝑖𝑦𝑖

𝑀

𝑖=1

= 0 
 

(23) 

 

 

com as condições: 𝛼𝑖[𝑦𝑖(w
𝑇𝑥𝑖 + 𝑏)− 1] = 0, para 𝑖 = 1,2, … ,𝑀. 

 

As Equações 21, 22 e 23 são conhecidas como as condições de Karush-Kunh-Tucker 

(KKT). Substituindo as Equações (22) e (23) na Equação (21), obtém-se o seguinte problema 

de otimização: 

 

𝑚𝑎𝑥𝛼 {∑𝛼𝑖

𝑀

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖

𝑇𝑥𝑗)

𝑀

𝑖,𝑗=1

} 

(24) 

 

 

sujeito a:  𝛼𝑖 ≥ 0 𝑒 ∑ 𝛼𝑖𝑦𝑖 = 0
𝑀
𝑖=1 , para 𝑖 = 1,2,… ,𝑀. 

 

Essa formulação é denominada forma dual. Os problemas primal e dual são 

equivalentes, ou seja, a solução 𝛼 do problema dual (Equação 24) pode ser usada diretamente 

para determinar a hipótese retornada por SVMs, usando a Equação 22 (MOHRI, 

ROSTAMIZADEH e TALWALKAR, 2018): 

 

𝑔(𝑥) = 𝑠𝑔𝑛{𝑓(𝑥)} = 𝑠𝑔𝑛(w𝑥 + 𝑏) = 𝑠𝑔𝑛 (∑𝛼𝑖𝑦𝑖(𝑥𝑖
𝑇𝑥)

𝑀

𝑖=1

+ 𝑏), 
(25) 

 

onde sgn denonta a função sinal: 

se 𝑔(𝑥) < 0 (sinal negativo): amostra 𝑥 é classificada como classe 1; 

se 𝑔(𝑥) > 0 (sinal positivo): amostra 𝑥 é classificada como classe 2. 
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Como os vetores de suporte estão nos hiperplanos de margem máxima, para qualquer 

vetor de suporte 𝑥𝑖, w
𝑇𝑥𝑖 + 𝑏 = 𝑦𝑖, e assim 𝑏 pode ser obtido via: 

 

𝑏 = 𝑦𝑖 −∑𝛼𝑗𝑦𝑗(𝑥𝑗
𝑇𝑥𝑖)

𝑀

𝑗=1

. 

 

 

(26) 

 

O problema de otimização dual (Equação 24) e as Equações (25) e (26) apresentam uma 

propriedade importante das SVMs, a solução de hipóteses depende apenas de produtos internos 

entre vetores e não diretamente dos vetores em si. Essa observação é fundamental para SVMs 

não linear. 

Em aplicações práticas, é difícil que os dados sejam linearmente separáveis. Isso se deve 

a diversas condições, entre elas a presença de ruídos e outliers nos dados ou à própria natureza 

do problema, que pode ser não linear. Assim, para tornar o método descrito anteriormente capaz 

de manipular dados não linearmente separáveis é necessário relaxar as restrições das Equações 

(16) e (17), que utilizam critérios de margem rígida (hard margin), introduzindo variáveis de 

folga não negativas 𝜉𝑖(𝑖 = 1,2, … ,𝑀), definida como margem suave (soft margin) (SMOLA et 

al., 1999; SMOLA E SCHÖLKOPF, 2002; MOHRI, ROSTAMIZADEH e TALWALKAR, 

2018): 

 

𝑦𝑖(w
𝑇𝑥𝑖 + 𝑏) ≥ 1− 𝜉𝑖 para 𝑖 = 1,2, … ,𝑀 

𝜉𝑖 ≥ 0,  para 𝑖 = 1,2, … ,𝑀. 
 

(27) 

 

O procedimento de suavização da margem do classificador linear permite que alguns 

dados de treinamento possam violar a restrição e situem-se entre as margens, permitindo que 

alguns dados permaneçam entre os hiperplanos 𝐻1 e 𝐻2 (Figura 7), além de permitir a 

ocorrência de erros de classificação, por esse motivo, as SVMs obtidas nesse caso também 

podem ser referenciadas como SVMs com margens suaves. 
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Figura 7 – Um hiperplano de separação com amostra 𝑥𝑖 classificada incorretamente e amostra 𝑥𝑗 classificada 

corretamente, mas com margem menor que 1.  

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018). 

 

Um erro no conjunto de treinamento é indicado por um valor de 𝜉𝑖 maior que 1. Assim, 

a soma dos 𝜉𝑖 representa um limite no número de erros de treinamento (BURGES, 1998). Para 

considerar esse termo, minimizando assim o erro sobre os dados de treinamento, a função 

objetivo da Equação 20 é reformulada adicionado um termo de regularização (BURGES, 1998; 

MOHRI, ROSTAMIZADEH e TALWALKAR, 2018):  

 

𝑚𝑖𝑛w,𝑏,𝜉  
1

2
‖w‖2 + 𝐶∑ 𝜉𝑖

𝑀

𝑖=1

 

 

(28) 

sujeito a: 𝑦𝑖(w
T𝑥i + b) ≥ 1− 𝜉𝑖, 𝜉𝑖 ≥ 0,  para 𝑖 = 1,2, … ,𝑀, 

 

onde 𝑐 é um termo de regularização que estabelece o equilíbrio entre a complexidade do modelo 

e o erro de treinamento (PASSERINI, 2004). Esse parâmetro controla o peso do número de 

erros (que é limitado pelo somatório das variáveis de folga) e do tamanho da margem (que é 

inversamente proporcional à norma de w). A minimização ‖w‖2 resulta na maximização da 

margem, enquanto a minimização de ∑ 𝜉𝑖
𝑀
𝑖=1  resulta na minimização do erro de classificação, uma 

vez que um valor de 𝜉𝑖 ∈ (0,1] indica um dado entre as margens. 

Novamente, o problema de otimização gerado é quadrático, com as restrições lineares 

apresentadas na Equação 28. A sua solução é obtida de forma análoga ao caso separável, com 

a introdução de uma função Lagrangiana e tornando suas derivadas parciais nulas. Tem-se como 

resultado o seguinte problema dual (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018): 
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𝑚𝑎𝑥𝛼 {∑𝛼𝑖

𝑀

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖

𝑇𝑥𝑗)

𝑀

𝑖,𝑗=1

} 

 

sujeito a: 

 

0 ≤ 𝛼𝑖 ≤ 𝐶, para  𝑖 = 1,… ,𝑀 

 

∑𝛼𝑖𝑦𝑖 = 0

𝑀

𝑖=1

.  

 

(29) 

Essa formulação é semelhante à apresentada para as SVMs de margens rígidas, no entanto, a 

restrição nos 𝛼𝑖 agora são limitados pelo valor de 𝑐. 

A função de decisão é a mesma para o caso de margem rígida (Equação 25). Além disso, 

𝑏 pode ser obtido de qualquer vetor de suporte 𝑥𝑖 situado em um hiperplano marginal, ou seja, 

qualquer vetor 𝑥𝑖 com 0 < 𝛼𝑖 < 𝐶 (Equação 26).  

Como no caso separável, o problema de otimização dual (Equação 29) e as Equações 

(25) e (26) mostram uma propriedade importante de SVMs, a solução da hipótese depende 

apenas do produto interno entre vetores e não diretamente dos próprios vetores. Esse fato pode 

ser usado para estender SVMs para definir limites de decisão não lineares. 

As SVMs lineares são eficazes na classificação de conjuntos de dados linearmente 

separáveis ou que possuam uma distribuição aproximadamente linear, sendo que a versão de 

margens suaves tolera a presença de alguns ruídos e outliers. No entanto, na prática, a separação 

linear geralmente não é possível. A Figura 8(a) mostra que qualquer hiperplano cruza ambas as 

classes. No entanto, pode-se usar funções mais complexas para separar os dois conjuntos, como 

na Figura 8(b). 

 

Figura 8 – Caso não linearmente separável: (a) nenhum hiperplano pode separar as duas classes e (b) um 

mapeamento não linear pode ser usado. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

 

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018). 
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Quando se tem dados não linearmente separáveis, onde qualquer hiperplano cruza 

ambas as classes, pode-se usar funções mais complexas (função de separação não linear) para 

separar as duas classes. Uma estratégia para definir tal limite de decisão não linear é usar um 

mapeamento não linear Φ do espaço de entrada x para um espaço de dimensão superior H, 

chamado de espaço de características, sendo possível a separação linear através de um 

hiperplano (Figura 9) (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018).  

 

Figura 9 – Um exemplo de mapeamento não linear de 2 dimensões para 3 dimensões, onde as amostras se tornam 

linearmente separáveis. 
 

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018). 

 

Os métodos kernel são amplamente usados para estender algoritmos como SVMs para 

definir limites de decisão não lineares. A ideia principal por trás desses métodos baseados em 

funções kernel é que, sob algumas condições de simetria e definição positiva, definem 

implicitamente um produto interno em um espaço de alta dimensão, a caracterização de quando 

uma função pode ser um kernel é dada pelo teorema de Mercer (HASTIE, TIBSHIRANI e 

FRIEDMAN, 2017; MOHRI, ROSTAMIZADEH e TALWALKAR, 2018). Substituir o 

produto interno original no espaço de entrada por kernels definidos positivos estende algoritmos 

como SVMs para uma separação linear naquele espaço de alta dimensão ou, equivalentemente, 

para uma separação não linear no espaço de entrada. 

Na prática, a modificação necessária para se implementar as SVMs não lineares em um 

espaço de característica maior é substituir na Equação (29) 𝑥 por Φ(𝑥). A formulação 

apresentada por SVMs não lineares tem uma característica singular, não é necessário conhecer 

mapeamento em si, apenas como realizar produtos escalares no novo espaço. Nesse sentido, o 

Truque de Kernel (Kernel Trick) é de interesse, que consiste em receber dois vetores no espaço 
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de entrada e retorna o valor do produto escalar entre eles no espaço de característica de maior 

dimensão (HERBRICH, 2001; MÜLLER e GUIDO, 2017),  

 

𝐾(𝑥𝑖, 𝑥𝑗) = Φ(𝑥𝑖)
𝑇Φ(𝑥𝑗). 

 

(30) 

 

É comum empregar a função kernel sem conhecer o mapeamento, que é gerado implicitamente. 

A utilidade dos kernels está, portanto, na simplicidade de seu cálculo e em sua capacidade de 

representar espaços abstratos. A função de decisão assume a forma a seguir (MOHRI, 

ROSTAMIZADEH e TALWALKAR, 2018): 

 

𝑔(𝑥) = 𝑠𝑔𝑛 (∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥)

𝑁

𝑖=1

+ 𝑏) 

 

(31) 

 

com 𝑏 = 𝑦𝑖 − ∑ 𝛼𝑗𝑦𝑗𝐾(𝑥𝑗, 𝑥𝑖)
𝑁
𝑗=1 , para qualquer 𝑥𝑖 com  0 < 𝛼𝑖 < 𝐶. 

 

Diferentes kernels podem ser encontrados na literatura (CRISTIANINI e SHAWE-

TAYLOR, 2000; HASTIE, TIBSHIRANI e FRIEDMAN, 2017; MOHRI, ROSTAMIZADEH e 

TALWALKAR, 2018). O kernel radial basis function (RBF) está entre os kernels mais 

frequentemente usados em aplicações (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018) 

e possui dois hiperparametros para ajustar, C e 𝛾. O parâmetro 𝛾  controla a flexibilidade da 

função de kernel, valores pequenos permitem ao classificador ajustar todos os rótulos havendo 

risco de overfitting, por outro lado, valores grandes de 𝛾 reduzem o kernel para uma função 

constante, tornando impossível o processo de aprendizagem (JAMES et al., 2004; SHAWE-

TAYLOR; CRISTIANINI, 2004).  

SVMs foram desenvolvidas para classificação binária. No caso de classificação em 

múltiplas classes, é necessária a utilização de algum método para estender a SVM binária ou 

para combinar os resultados das SVMs binárias, as duas propostas mais populares são um contra 

um (one versus one - OVO) e um contra todos ou um contra o resto (one versus rest - OVR) 

(JAMES et al., 2004).  
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2.2.5 Métodos Baseados em Árvores de Decisão  

 

2.2.5.1 Decision Trees 

 

O método Decision Trees (DTs) foi sugerido por Breiman et al. em 1984 (BREIMAN 

et al., 1984) e pode ser aplicado para problemas de classificação, regressão e clustering 

(MOHRI, ROSTAMIZADEH e TALWALKAR, 2018). Correspondem em estratificar ou 

segmentar o espaço preditor em várias regiões simples. Como o conjunto de regras de divisão 

usadas para segmentar o espaço preditor pode ser resumido em uma árvore, esses tipos de 

abordagens são conhecidos como métodos de árvore de decisão (JAMES et al., 2014). Nesse 

contexto, a construção de uma árvore de decisão corresponde a um conjunto de nós de decisão, 

conectados por ramificações, estendendo-se para baixo a partir do nó raiz até terminar em nós 

folha. Começando no nó raiz que, por convenção, é colocado no topo do diagrama da árvore de 

decisão, os atributos são testados nos nós de decisão, com cada resultado possível resultando 

em uma ramificação. Cada ramificação então leva a outro nó de decisão ou a um nó folha de 

terminação (LAROSE e LAROSE, 2014). Árvores de decisão buscam criar um conjunto de nós 

folha que sejam tão puros quanto possível, ou seja, onde cada um dos registros em um nó folha 

específico tenha a mesma classificação.  

Os algoritmos de árvore de decisão mais utilizados são o ID3, C4.5 (QUINLAN, 1992), 

C5.0 e CART (BREINMAN et al., 1984). Essencialmente, esses algoritmos diferem da forma 

como é construída a árvore e os critérios escolhidos para a divisão dos dados (LAROSE e 

LAROSE, 2014).  

A construção de uma árvore de classificação pode ser baseada no critério da taxa de erro 

de classificação. Uma vez que o objetivo é atribuir uma observação em uma determinada região 

à classe de observações de treinamento que ocorre mais frequentemente naquela região, a taxa 

de erro de classificação é a razão das observações de treinamento naquela região que não 

pertencem à classe mais comum (JAMES et al., 2014): 

 

𝐸 = 1 − (𝑝̂𝑚𝑞)𝑘

𝑚𝑎𝑥
, (32) 

 

onde  𝑝̂𝑚𝑞 representa a proporção de observações de treinamento na região 𝑚 − é𝑠𝑖𝑚𝑎  que 

são da classe 𝑞 − é𝑠𝑖𝑚𝑎. 
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No entanto, verifica-se que o erro de classificação não é suficientemente sensível para 

o crescimento de árvores e, na prática, duas outras medidas são preferíveis, o índice de Gini e 

a entropia (JAMES et al., 2014). 

O índice de Gini é definido por: 

 

𝐺 =∑ 𝑝̂𝑚𝑞(1 − 𝑝̂𝑚𝑞)

𝜔

𝑞=1

, 
(33) 

 

uma medida da variância total entre as classes 𝜔. O índice de Gini assume um valor pequeno 

se todos os 𝑝̂𝑚𝑘 estiverem próximos de zero ou um. Por esse motivo, o índice de Gini é chamado 

de medida da pureza do nó, um valor pequeno indica que um nó contém predominantemente 

observações de uma única classe. 

Uma alternativa ao índice de Gini é a entropia, expressa por: 

 

𝐷 = −∑𝑝̂𝑚𝑞𝑙𝑜𝑔(𝑝̂𝑚𝑞)

𝜔

𝑞=1

, 
(34) 

 

como 0 ≤ 𝑝̂𝑚𝑞 ≤ 1, segue-se que 0 ≤ −𝑝̂𝑚𝑞𝑙𝑜𝑔(𝑝̂𝑚𝑞). Pode-se mostrar que a entropia 

assumirá um valor próximo de zero se os 𝑝̂𝑚𝑘′𝑠 estiverem todos próximos de zero ou próximos 

de um. Portanto, como o índice de Gini, a entropia assumirá um valor pequeno se o 𝑚−

é𝑠𝑖𝑚𝑜 nó for puro.  

Ao construir uma árvore de classificação, o índice de Gini ou a entropia são 

normalmente usados para avaliar a qualidade de uma divisão específica, uma vez que essas duas 

abordagens são mais sensíveis à pureza do nó do que a taxa de erro de classificação. Qualquer 

uma dessas três abordagens pode ser usada ao podar a árvore, mas a taxa de erro de classificação 

é preferível se a acurácia da predição da árvore podada final for o objetivo (JAMES et al., 

2014).  

Os modelos preditivos resultantes de árvores de decisão são simples e úteis para 

intepretação. No entanto, um importante problema do método é a alta variância. Uma pequena 

alteração nos dados pode causar uma grande alteração na estrutura da árvore e, 

consequentemente, alterar a interpretação do modelo ajustado. No entanto, ao agregar muitas 

árvores de decisão, o desempenho preditivo das árvores pode ser substancialmente melhorado, 

reduzindo essa variância (HASTIE, TIBSHIRANI e FRIEDMAN, 2017; JAMES et al., 2014).  
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2.2.5.2 Random Forest 

 

O Random Forest (RF) (BREIMAN, 2001) é uma modificação do método bagging que 

constrói uma grande coleção de árvores descorrelacionadas (HASTIE, TIBSHIRANI e 

FRIEDMAN, 2014). Para implementar essa estratégia, é preciso construir muitas árvores de 

decisão. Cada árvore deve fazer um trabalho aceitável de predizer o alvo e também deve ser 

diferente das outras árvores. Random Forest recebe esse nome por atribuir aleatoriedade na 

construção da árvore para garantir que cada árvore seja diferente. Há duas formas pelas quais 

as árvores em uma floresta aleatória são aleatorizadas: selecionando os pontos de dados usados 

para construir uma árvore e selecionando os atributos em cada teste de divisão (MÜLLER e 

GUIDO, 2017). Para classificação, cada árvore na floresta atribui um voto para a classificação 

de uma nova amostra, e a proporção de votos em cada classe em todo o conjunto é o vetor de 

probabilidade previsto, enquanto para regressão, é feita uma média (KUHN e JOHNSON, 

2013).  

Como o algoritmo seleciona aleatoriamente os preditores em cada divisão, a correlação 

da árvore será necessariamente reduzida. Ao construir essas árvores de decisão, cada vez que 

uma divisão em uma árvore é considerada, uma amostra aleatória de 𝑚 preditores é escolhida 

como candidata à divisão do conjunto completo de 𝑝 preditores, a divisão pode usar apenas um 

desses 𝑚 preditores (JAMES et al., 2014). Uma nova amostra de 𝑚 preditores é obtida em cada 

divisão, sendo recomendado definir um terço do número de preditores em problemas de 

regressão e a raiz quadrada do número de preditores em problemas de classificação 

(BREIMAN, 2001). 

 O número de árvores para a floresta também deve ser escolhido. Na prática, quanto 

maior a floresta, pode melhorar o modelo, mas também maior será a custo computacional. 

Breiman (2001) mostrou que as florestas aleatórias são protegidas de overfitting, portanto, o 

modelo não será afetado negativamente se um grande número de árvores for construído para a 

floresta. 

 

2.2.5.3 Extremely Randomized Trees  

 

O método Extremely Randomized Trees (Extra-Trees - ET) (GEURTS, ERNST e 

WEHENKEL, 2006) foi proposto para problemas de classificação e regressão supervisionados 

e consiste essencialmente em randomizar fortemente a escolha de atributos e pontos de corte 

enquanto divide um nó de árvore. Como em Random Forest, um subconjunto aleatório de 
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características candidatas é usado, mas os limites discriminantes são feitos aleatoriamente para 

cada característica candidata e o melhor desses limites gerados aleatoriamente é escolhido como 

a regra de divisão. O aumento da aleatoriedade geralmente permite reduzir um pouco mais a 

variância do modelo, às custas de um aumento no viés. 

 

2.3 Digital Twin   

 

O Digital Twin (DT) está na vanguarda da quarta revolução industrial, potencializado 

por meio de análise avançada de dados, big data, inteligência artificial, machine learning e 

conectividade de internet das coisas (FULLER et al., 2020; RATHORE et al., 2021). O 

interesse no DT tem crescido significativamente na academia e na indústria, no entanto, não 

existe na literatura uma definição unificada sobre o que é o DT e como o conceito está evoluindo 

para atender às diferentes necessidades de aplicações (JONES et al., 2020). Entretanto, é 

consensual que um DT é uma tecnologia emergente que permite uma representação virtual de 

um sistema físico (cada vez mais, esse sistema físico é chamado de physical twin), que usa 

dados coletados desse sistema para conectar partes digitais e físicas, o que pode ser definido 

como um processo de coletar informações sobre ativos físicos e convertê-las em uma 

representação digital que pode ser processada automaticamente (CALLCUT et al., 2021). No 

âmbito deste trabalho, DT é definido como um conceito engenhoso que articula modelos 

computacionais baseado na física e orientado a dados, sinais de sensores e machine learning, 

com o objetivo de apoiar decisões de engenharia relacionadas a um physical twin.  

Grieves (2014) definiu o framework DT como consistindo em três componentes: um 

objeto físico, uma representação virtual desse objeto e a conexão para troca bidirecional de 

dados entre eles, que alimentam dados da representação física para a virtual e informações e 

processos da representação virtual para a física.  

Tao e Zhang (2017) propuseram um modelo para DT com cinco componentes: parte 

física, parte virtual, conexão, dados e serviços. A parte física é a base da construção da parte 

virtual; a parte virtual suporta a simulação, tomada de decisão e controle da parte física; os 

dados constituem a parte central, sendo fundamentais para a criação de novos conhecimentos; 

o que levam a novos serviços que podem aumentar a conveniência, confiabilidade e 

produtividade de um sistema projetado; a conexão conecta a parte física, a parte virtual, os 

dados e o serviço (TAO et al., 2019).  

Singh, Weebera e Birke (2021) propuseram um framework DT com sete componentes, 

o que inclui: o physical twin composto por uma unidade de controle, sensores e atuadores; a 
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parte de comunicação responsável pela aquisição e processamento de dados; a parte de 

segurança responsável pelo manuseio seguro do fluxo de dados; a parte de armazenamento de 

dados; a parte de modelagem e otimização de DT; a parte de serviço responsável pelo 

desenvolvimento de aplicações avançadas orientadas a dados ou funções de análise de dados 

padrão; e, por fim, a última parte responsável por fornecer as informações à parte interessada 

usando a visualização de dados, o que também inclui dispositivos que permitem a tomada de 

decisão para o usuário e o feedback de informações para o dispositivo físico (por exemplo, por 

meio de uma interface homem-máquina (IHM) ou feedback direto para a unidade de controle 

do physical twin). Essa arquitetura coloca o processo físico no centro e constrói o DT em torno 

das funcionalidades do mundo real. Também pode ser criado de forma incremental, com adição 

de novos componentes em diferentes ciclos de implementação. 

Em um DT, os elementos físicos e virtuais trocam informações para monitorar, simular, 

prever, otimizar, diagnosticar e controlar o estado e o comportamento do objeto físico dentro 

do espaço virtual. Assim, espera-se que os DTs prevejam a evolução do estado do objeto físico 

usando os dados trocados. Um uso comum de DTs para essa finalidade é evitar a interrupção 

do serviço em situações de manutenção. Um DT também pode ser usado para realizar 

monitoramento contínuo por meio de aquisição de dados em tempo real. Outro uso comum do 

DT é melhorar a segurança e a resiliência, devido à capacidade do DT de detectar ações 

maliciosas em um sistema. Além disso, permite uma melhor avaliação de risco para testar vários 

casos hipotéticos que podem afetar os objetos físicos (SEGOVIA e GARCIA-ALFARO, 2022).  

Nesse sentido, um DT se atualiza para rastrear o physical twin por meio do uso de 

sensores, análise de dados, machine learning e IoT (CHAKRABORTY, ADHIKARI e 

GANGULI, 2021). 

No contexto da engenharia estrutural, a parte física compreende os componentes e 

subsistemas estruturais do ativo físico (physical twin) em questão, que interage com o meio 

ambiente por meio de processos físicos ou químicos, o ambiente circundante é responsável 

pelas ações externas na estrutura, como carregamentos, temperatura e umidade. Por outro lado, 

a parte virtual fornece uma idealização do physical twin sob um nível específico de abstração 

por meio de modelos matemáticos baseados em leis da física, dados ou ambos. A conexão 

realiza a interação do objeto físico e do objeto virtual, por meio de sensores e atuadores, que 

coletam e processam dados sobre o comportamento estrutural e as condições ambientais. O 

desempenho estrutural e sua evolução ao longo do tempo são descritos pelos modelos usando 

estados e parâmetros. O modelo virtual é atualizado de forma adaptativa com base no 

desempenho do physical twin medido pelos sensores ao longo de parte ou de todo o ciclo de 
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vida estrutural. Ao mesmo tempo, fornece uma ferramenta para inferir o estado da integridade 

estrutural, realizar avaliações de confiabilidade e risco, prever sua vida útil remanescente e 

obter autonomamente planejamento de cenários e ações de tomada de decisão 

(VANDERHORN e MAHADEVAN, 2021; KAN e ANUMBA, 2019).  

É importante entender que um DT estrutural pode não modelar perfeitamente o 

desempenho real da estrutura. Uma vez que determinados estados estruturais e variáveis 

ambientais podem não ser medidos diretamente com os métodos de detecção disponíveis e todo 

o desempenho estrutural pode não ser idealizado através de todos os níveis possíveis de 

abstração dentro de um framework de modelagem, devido à limitação de conhecimento, 

tecnologia ou economia (CHIACHÍO et al., 2022). Nesse sentido, um framework DT estrutural 

deve ser definido usando twins contextuais (WORDEN et al., 2020), onde o contexto é dado 

por um subconjunto de parâmetros estruturais, estados de integridade ou danos e variáveis 

ambientais de interesse (CHIACHÍO et al., 2022).  
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3 IDENTIFICAÇÃO ESPARSA DE DINÂMICA NÃO LINEAR  

 

Neste capítulo são apresentados o método utilizado neste trabalho, o qual emprega 

regressão esparsa para descobrir equações governantes do sistema dinâmico a partir de dados, 

os conhecimentos matemáticos necessários para aprender a dinâmica através de regressão 

esparsa e a configuração do problema de descoberta de modelo que será de interesse resolver. 

A identificação esparsa de dinâmica não linear (sparse identification of nonlinear 

dynamics – SINDy) é um método desenvolvido por Brunton, Proctor e Kutz (2016) que associa 

técnicas de esparsidade e machine learning para descobrir equações governantes de sistemas 

dinâmicos a partir de dados medidos. 

Considere o sistema dinâmico não linear para o vetor de estado x(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),

… , 𝑥𝑛(𝑡)]
𝑇  ∈ ℝ𝑛 definido por: 

 

ẋ = f(x(𝑡)). (35) 

 

Dado um conjunto de medições de x(𝑡), o método SINDy busca identificar f: ℝ𝑛 ⟶ℝ𝑛. Para 

muitos sistemas dinâmicos, quando representados na base de funções candidatas apropriada, a 

função que especifica a dinâmica, f, consiste em apenas alguns termos importantes, de forma 

que as equações são esparsas no espaço de funções possíveis. Então, usando técnicas de 

regressão esparsa pode-se determinar o número suficiente de termos para representar f, sendo 

esperados modelos parcimoniosos que equilibram a acurácia com a complexidade do modelo 

para evitar overfitting. 

Para determinar a função f, é coletado um conjunto de dados, provavelmente ruidosos, 

do estado x(𝑡) e sua primeira derivada ẋ(𝑡) ou do estado x(𝑡) e da aproximação numérica de 

sua primeira derivada ẋ(𝑡), amostrados no tempo, 𝑡1, 𝑡2, … , 𝑡𝑀. Essas medidas são 

concatenadas em duas matrizes, a matriz de estados X (X ∈ ℝ𝑀×𝑛) (Equação 36) e a matriz da 

derivada de estados Ẋ (Ẋ ∈ ℝ𝑀×𝑛) (Equação 37), onde as colunas correspondem a diferentes 

variáveis de estado e as linhas correspondem a diferentes pontos no tempo:   

 

X = [

x(𝑡1)
𝑇

x(𝑡2)
𝑇

⋮
x(𝑡𝑀)

𝑇

] = [

𝑥1(𝑡1) 𝑥2(𝑡1) ⋯ 𝑥𝑛(𝑡1)

𝑥1(𝑡2) 𝑥2(𝑡2) ⋱ 𝑥𝑛(𝑡2)
⋮

𝑥1(𝑡𝑀)
⋮

𝑥2(𝑡𝑀)
⋯
⋯

⋮
𝑥𝑛(𝑡𝑀)

] (36) 
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Ẋ = [

ẋ(𝑡1)
𝑇

ẋ(𝑡2)
𝑇

⋮
ẋ(𝑡𝑀)

𝑇

] = [

𝑥̇1(𝑡1) 𝑥̇2(𝑡1) ⋯ 𝑥̇𝑛(𝑡1)

𝑥̇1(𝑡2) 𝑥̇2(𝑡2) ⋱ 𝑥̇𝑛(𝑡1)
⋮

𝑥̇1(𝑡𝑀)
⋮

𝑥̇2(𝑡𝑀)
⋯
⋯

⋮
𝑥̇𝑛(𝑡𝑀)

]. (37) 

 

Em seguida, é especificada uma base de funções candidatas, {𝜙𝑖(x), 𝑖 = 1, 2, … , 𝑝}, 

com a qual se pretende representar f. As funções candidatas são avaliadas em X para construir 

uma matriz de biblioteca de dados: 

 

Φ(X) = [

|

𝜙1(X)

|
   

|

𝜙2(X)

|
   ⋯   

|

𝜙𝑝(X)

|

]. (38) 

 

Na matriz Φ(X) (Φ(X)  ∈ ℝ𝑀×𝑄), onde Q é número total de funções distintas na biblioteca, 

cada coluna corresponde a uma única função candidata, que podem incluir, por exemplo, termos 

constantes, monômios até certo grau finito, funções trigonométricas e funções racionais. Por 

exemplo, se 𝜙1(𝑋) for um polinômio de grau 2, 𝜙1(𝑋) denota não linearidade quadrática que 

pode ser expressa como: 

 

𝜙1(𝑋) =

[
 
 
 
𝑥1
2(𝑡1) 𝑥1(𝑡1)𝑥2(𝑡1) ⋯

𝑥1
2(𝑡2) 𝑥1(𝑡2)𝑥2(𝑡2) ⋯
⋮ ⋮ ⋱

𝑥2
2(𝑡1) ⋯ 𝑥𝑛

2(𝑡1)

𝑥2
2(𝑡2) ⋯ 𝑥𝑛

2(𝑡2)
⋮ ⋱ ⋮

𝑥1
2(𝑡𝑀) 𝑥1(𝑡𝑀)𝑥2(𝑡𝑀) ⋯ 𝑥2

2(𝑡𝑀) ⋯ 𝑥𝑛
2(𝑡𝑀)]

 
 
 
. (39) 

 

Na prática, a seleção dessas funções candidatas pode ser informada pelo conhecimento prévio 

do profissional sobre o sistema dinâmico que está sendo medido. 

Cada componente de f pode ser representado como uma combinação linear esparsa da 

base de funções candidatas, o que permite apresentar um problema de regressão esparsa a ser 

resolvido para os coeficientes usados nessas combinações lineares: 

 

Ẋ = Φ(X)Ξ, (40) 

 

onde Ξ (Ξ ∈ ℝ𝑄×𝑛) é a matriz esparsa, onde cada coluna corresponde a um vetor esparso (𝜉𝑘) 

de coeficientes que determina quais termos estão ativos (diferentes de zero) no lado direito para 

cada componente de f . Uma vez que Ξ tenha sido determinada, um modelo de cada componente 

das equações governantes pode ser construído da seguinte forma: 
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 ẋ𝑗 = fj(x) = Φ(x
𝑇)𝜉𝑘, (41) 

 

onde Φ(x𝑇) deve ser interpretado como um vetor (linha) de funções simbólicas de componentes 

de x. O sistema completo de equações diferenciais é então dado por: 

 

ẋ = f(x) = ΞT(Φ(xT))
T

. (42) 

 

Para ilustração do método SINDy é apresentado um exemplo usando as equações do sistema 

caótico de Lorenz (LORENZ, 1963), desenvolvidas para descrever alguns dos comportamentos 

imprevisíveis característicos do tempo meteorológico (SPARROW, 1982),  

 

{

𝑥̇ = −𝜎𝑥 + 𝜎𝑦,
𝑦̇ = 𝜌𝑥 − 𝑦 − 𝑥𝑧,
𝑧̇ = 𝑥𝑦 − 𝛽𝑧.

 (43) 

 

Essas equações originam a dinâmica caótica que evolui em um atrator e apenas alguns termos 

estão ativos no lado direito. Considerando as funções candidatas [1, 𝑥, 𝑦, 𝑧, 𝑥2, 𝑥𝑦, 𝑥𝑧, 𝑦2,

𝑦𝑧, 𝑧2], a dinâmica esparsa é identificada de forma que o sistema pode ser expresso como: 

 

ẋ = [
𝑥̇
𝑦̇
𝑧̇
] = ΞT(Φ(xT))

T

= [
0 −𝜎 𝜎 0 0 0 0 0 0 0
0 𝜌 −1 0 0 0 −1 0 0 0
0 0 0 −𝛽 0 1 0 0 0 0

]

[
 
 
 
 
 
 
 
 
 
1
𝑥
𝑦
𝑧
𝑥2

𝑥𝑦
𝑥𝑧
𝑦2

𝑦𝑧

𝑧2 ]
 
 
 
 
 
 
 
 
 

. (44) 

 

Na prática, as medições são contaminadas por ruído, sendo observada uma versão 

perturbada de x(𝑡), e, em muitos casos, ẋ(𝑡) não é observado diretamente, sendo aproximado 

de x(𝑡), estabelecendo outra fonte de erro. A Equação (40) anteriormente exata, a ser resolvida 

para Ξ, é suplantada pelo problema de aproximação. Além disso, na maioria das aplicações, 

𝑀 ≫ 𝑄, dessa forma, a Equação (40) é sobredeterminada. Assim, é buscada uma solução 

esparsa para um sistema sobredeterminado com ruído (BRUNTON, PROCTOR e KUTZ, 2016; 

DE SILVA et al., 2020): 
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Ẋ ≈ Φ(X)Ξ. (45) 

 

3.1 Otimizadores 

 

Para determinar Ξ, o SINDy busca resolver o seguinte problema de otimização 

(CHAMPION et al., 2020): 

 

min
Ξ

1

2
‖Ẋ − Φ(X)Ξ‖

𝐹

2
+ 𝜆R(Ξ), (46) 

 

onde ‖∙‖𝐹 é a norma de Frobenius, R(∙) é um termo de regularização que promove soluções 

esparsas e 𝜆 é um hiperparâmetro que determina a força da regularização. Cada coluna de Ξ 

codifica uma equação diferencial para um único componente de x. Então, resolver a Equação 

(46) consiste em resolver 𝑛 problemas desacoplados.  

 

3.1.1 Least Absolute Shrinkage and Selection Operator  

 

Uma abordagem comum é escolher R(∙) para ser a norma ℓ1 promotora de esparsidade, 

que é a relaxação convexa da norma ℓ0. Nesse caso, SINDy é resolvido via Least Absolute 

Shrinkage and Selection Operator (LASSO) (BRUNTON, PROCTOR e KUTZ, 2016; 

CHAMPION et al., 2020). O método LASSO (TIBSHIRANI, 1996; HASTIE, TIBSHIRANI e 

WAINWRIGHT, 2015) (Equação 47) executa tanto a seleção de coeficientes, ao ser capaz de 

tornar alguns coeficientes nulos, quanto a regularização com base na penalidade ℓ1: 

 

min
Ξ

1

2
‖Ẋ − Φ(X)Ξ‖

2

2
+ 𝜆‖Ξ‖1, (47) 

 

onde ‖. ‖2 é norma-2 de um vetor e ‖. ‖1 é a norma-1 de um vetor. Quando 𝜆=0, a Equação (47) 

é reduzida a mínimos quadrados, à medida que 𝜆 aumenta, Ξlasso fica mais esparso. Ao 

selecionar 𝜆 adequado, a solução pode equilibrar a compensação entre a acurácia e a 

complexidade do modelo. O método LASSO normalmente é resolvido por um algoritmo de 

otimização.  
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3.1.2 Sequential Thresholded Least Squares 

 

O método LASSO pode se tornar computacionalmente caro para grandes conjuntos de 

dados e não identificar com sucesso modelos esparsos, apresentando padrões de esparsidade 

incorretos (BRUNTON, PROCTOR e KUTZ, 2016; SU, BOGDAN e CANDÈS, 2017). 

Mesmo com dados sem ruídos, os modelos LASSO para SINDy normalmente têm muitos 

coeficientes que são pequenos em magnitude, mas diferentes de zero (CHAMPION et al., 

2020). Nesse contexto, Brunton, Proctor e Kutz (2016) propuseram o método sequential 

thresholded least squares (STLSQ) como um algoritmo computacionalmente eficiente, 

notavelmente robusto ao ruído e que converge rapidamente para uma solução esparsa em um 

pequeno número de iterações. O método STLSQ possui um único parâmetro 𝛿 necessário para 

determinar o grau de esparsidade em Ξ.  

Dado um limite de esparsidade 𝛿, que especifica a magnitude mínima para um 

coeficiente em Ξ, o algoritmo de STLSQ alterna em (a) resolver sucessivamente o problema de 

mínimos quadrados para cada coluna de Ξ e (b) remover funções candidatas de consideração 

cujos coeficientes correspondentes em Ξ estão com magnitude abaixo do limite especificado.  

 

3.2 Equações de Movimento  

 

As equações de movimento do sistema dinâmico, x(t), envolvem um termo de 

aceleração. Consequentemente, é imposta a restrição de que as equações governantes do modelo 

sejam equações diferenciais de segunda ordem: 

 

𝑥̈ = f(𝑥, 𝑥̇). (48) 

 

A estrutura SINDy é projetada para trabalhar com sistemas de equações diferenciais de 

primeira ordem, então a Equação (48) é convertida em tal sistema:  

 

{
𝑥̇ = 𝑣

𝑣̇ = 𝑔(𝑥, 𝑣).
 (49) 

 

Em seguida, o SINDy pode ser aplicado, com x = [𝑥 𝑣]𝑇 e 𝑓(x) = [𝑣 𝑔(x)]𝑇, e é tentado 

aprender a função 𝑔. De fato, como já é conhecida a função correta do lado direito para 𝑥̇, é 

preciso encontrar uma expressão para 𝑣̇. 
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Caso se tenha conhecimento do modelo físico da estrutura, o SINDy pode ser 

estruturado considerando a estrutura das equações de um modelo baseado na física.   
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4 EXEMPLOS DE APLICAÇÃO: VIBRAÇÃO AXIAL 

 

Este capítulo apresenta as aplicações das técnicas supramencionadas para um modelo 

de barra de aço, considerando a vibração axial. Inicialmente, são apresentadas as etapas para 

aplicação das técnicas. E em seguida, demonstra-se a aplicabilidade a dois modelos de barra de 

aço: engastada e biengastada. Cada modelo foi discretizado em dois, quatro e seis elementos 

finitos, correspondendo a seis configurações de análises. As propriedades do material e 

informações geométricas dos modelos são: comprimento 𝐿 = 1,00 m, altura e largura da seção 

transversal retangular ℎ × 𝑏 = 0,025 m × 0,05 m, massa específica 𝜌 = 7850 kg/m3 e 

módulo de elasticidade 𝐸 = 210 × 109 N/m2.  

 

4.1 Procedimento para Aplicação Prática das Técnicas   

 

4.1.1 Physical Twin 

 

Nestas aplicações, o physical twin consistiu em uma barra uniforme sob excitação axial, 

considerado como um modelo de alta fidelidade da estrutura em análise, e sua equação de 

movimento longitudinal pode ser expressa como: 

 

𝜌𝐴
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝐸𝐴

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝑝(𝑥, 𝑡), (50) 

 

onde 𝑢(𝑥, 𝑡) é o deslocamento longitudinal da barra, 𝑥 é a posição espacial ao longo de seu 

comprimento, 𝑡 é o tempo, 𝐸 é o módulo de elasticidade, 𝐴 é a área da seção transversal, 𝜌 é a 

massa específica e 𝑝(𝑥, 𝑡) é a força axial distribuída. Essa equação diferencial parcial foi 

discretizada através do método dos elementos finitos, sendo empregadas funções de forma 

linear, de modo que foi obtido o seguinte sistema discreto (CRAIG e KURDILA, 2006): 

 

[𝑀𝑝𝑡]𝑢̈𝑝𝑡(𝑡) + [𝐶𝑝𝑡]𝑢̇𝑝𝑡(𝑡) + [𝐾𝑝𝑡]𝑢𝑝𝑡(𝑡) = 𝑝𝑝𝑡(𝑡), (51) 

 

onde o subscrito 𝑝𝑡 representa o physical twin, [𝑀𝑝𝑡] é a matriz de massa, [𝐾𝑝𝑡] é a matriz de 

rigidez e  [𝐶𝑝𝑡] é a matriz de amortecimento proporcional ([𝐶𝑝𝑡] = 𝛼[𝑀𝑝𝑡] + 𝛽[𝐾𝑝𝑡]), onde 𝛼 

e 𝛽 são constantes de proporcionalidade reais e positivas (amortecimento de Rayleigh), 

estabelecidas partindo da especificação das razões de amortecimento  para o modo fundamental 
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e para um dos modos de frequência mais alta que contribui significativamente para a resposta 

dinâmica (CLOUGH e PENZIEN, 2003). O sistema foi discretizado em dois, quatro e seis 

elementos finitos e foram aplicadas as condições de contorno adequadas para o modelo de barra 

engastada e para o modelo de barra biengastada. 

 

4.1.2 Modelo Baseado na Física 

 

A idealização do modelo de barra (physical twin) foi baseada na física e construída 

utilizando uma descrição de parâmetros concentrados de 𝑛 graus de liberdade (degrees of 

freedom – DOF) (𝑛-DOF), para representação do modelo de barra engastada (Figura 10(a)) e 

biengastada (Figura 10(b)): 

 

Figura 10 – Idealização do modelo de barra (a) engastada e (b) biengastada, utilizando descrição de parâmetros 

concentrados de 𝑛-DOF. 

 

 

 

 

Fonte: Autor (2024). 

 

As equações de movimento do sistema 𝑛-DOF são: 

 

[𝑀𝑚𝑓]𝑥̈𝑚𝑓(𝑡) + [𝐶𝑚𝑓]𝑥̇𝑚𝑓(𝑡) + [𝐾𝑚𝑓]𝑥𝑚𝑓(𝑡) = 𝑓𝑚𝑓(𝑡), (52) 

 

onde o subscrito 𝑚𝑓 representa o modelo físico, [𝐶𝑚𝑓] é a matriz de amortecimento 

proporcional ([𝐶𝑚𝑓] = 𝛼[𝑀𝑚𝑓] + 𝛽[𝐶𝑚𝑓]).  

A estrutura SINDy é projetada para trabalhar com sistemas de equações diferenciais de 

primeira ordem, então as equações de movimento (Equação 52) foram convertidas em tal 

sistema (Equação 53), para o modelo de barra engastada,  𝑘𝑛+1 = 0: 

 

 

 

 

 

 

(a) 

 
 
 
 
 

(b) 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + (−

𝑘1 + 𝑘2
𝑚1

) 𝑥1 + (−
𝛼(𝑚1) + 𝛽(𝑘1 + 𝑘2)

𝑚1
) 𝑥2 + (

𝑘2
𝑚1
) 𝑥3

     + (
𝛽(𝑘2)

𝑚1
)𝑥4

𝑥̇2𝑖−1 = 𝑥2𝑖

   

𝑥̇2𝑖 = (
𝑓𝑖(𝑡)

𝑚𝑖
) + (

𝑘𝑖
𝑚𝑖
) 𝑥2𝑖−3 + (

𝛽(𝑘𝑖)

𝑚𝑖
) 𝑥2𝑖−2 + (−

𝑘𝑖 + 𝑘𝑖+1
𝑚𝑖

) 𝑥2𝑖−1

        + (−
𝛼(𝑚𝑖) + 𝛽(𝑘𝑖 + 𝑘𝑖+1)

𝑚𝑖
) 𝑥2𝑖 + (

𝑘𝑖+1
𝑚𝑖

) 𝑥2𝑖+1 + (
𝛽(𝑘𝑖+1)

𝑚𝑖
)𝑥2𝑖+2

         para 𝑖 = 2,3, … , 𝑛 − 1
𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + (

𝑘𝑛 + 𝑘𝑛+1
𝑚𝑛

) 𝑥2𝑛−3 + (
𝛽(𝑘𝑛)

𝑚𝑛
) 𝑥2𝑛−2 + (−

𝑘𝑛
𝑚𝑛
) 𝑥2𝑛−1

         + (−
𝛼(𝑚𝑛) + 𝛽(𝑘𝑛 + 𝑘𝑛+1)

𝑚𝑛
) 𝑥2𝑛.

 (53) 

 

 

4.1.3 Respostas do SINDy  

 

Para gerar os dados de treinamento para o SINDy, foi aplicada uma força de compressão 

com magnitude de 10 × 103 N na extremidade direita do modelo da barra engastada e de 

50 × 103 N no último DOF do modelo da barra biengastada (modelo do physical twin). As 

forças foram escolhidas de modo a mobilizar a estrutura e atender ao seu critério de estabilidade 

estática. As respectivas respostas de deslocamento no tempo foram então registradas. As 

respostas mostraram que o sistema oscila de forma rápida até decair para a resposta referente a 

força aplicada e as maiores amplitudes de deslocamento ocorrem para os DOFs que estão mais 

próximos do ponto de aplicação da força.   

A taxa de amostragem utilizada foi determinada usando o teorema da amostragem de 

Nyquist–Shannon1 (SHANNON, 1949), considerada uma taxa de amostragem de 

aproximadamente duas vezes e meia a maior frequência do modelo de alta fidelidade. 

 
1 Um sinal analógico que foi amostrado pode ser recuperado a partir de uma sequência de amostras, se a taxa de 

amostragem for superior a 2Fs amostras por segundo, onde Fs é a maior componente de frequência contida em um 

sinal original (LATHI, 1998). 
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Os dados de velocidade (𝑥̇(𝑡)) e aceleração (𝑥̈(𝑡) ) foram obtidos através da 

diferenciação numérica dos dados de deslocamento (𝑥(𝑡) ), via método das diferenças finitas 

centrais de segunda ordem (KUTZ, 2013). 

Foram comparados os algoritmos STLSQ e LASSO, usando o pacote PySINDy da 

linguagem Python 3.9 (DE SILVA et al., 2020). Os modelos LASSO foram ajustados usando 

o pacote scikit-learn (PEDREGOSA et al., 2011). A matriz da biblioteca SINDy Φ(X) foi 

construída usando termos polinomiais de primeira ordem. O SINDy foi estruturado 

considerando a estrutura das equações de um modelo baseado na física (Equação 53).  

O parâmetro 𝛿, para o algoritmo STLSQ, e o hiperparâmetro 𝜆, para o algoritmo 

LASSO, foram variados considerando um determinado intervalo, de modo que aumentar 𝛿 ou 

𝜆 produziam modelos com poucos ou nenhum termo e diminuí-los produziam modelos 

convergentes. À medida que os resultados foram gerados pelo SINDy, para cada parâmetro 𝛿 e 

hiperparâmetro 𝜆 variado, foi avaliada a raiz do erro quadrático médio (root mean square error 

– RMSE) (WILLMOTT e MATSUURA, 2005) entre os sinais de entrada de aceleração e a 

predição das equações descobertas para aceleração. O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜) e o 

hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜) foram escolhidos de forma que minimizasse a medida de erro.  

 

4.1.4 Parametrização de Dano 

 

O dano foi representado pela redução da rigidez da mola (como uma perda de rigidez 

local), parametrizado por meio de um escalar 𝜂 ∈ [0, 1]. O valor da rigidez foi multiplicado por 

𝜂, onde 𝑑 = 1 − 𝜂, com 𝑑 a porcentagem do dano que corresponde a sua intensidade. A 

parametrização de dano para os termos das equações que contêm uma única mola correspondeu 

à Equação (54), para cada 𝑖-ésima mola de interesse:  

 

𝑘𝑖
𝑚
=
𝜂𝑖𝑘𝑖
𝑚

=
𝑘𝑖
𝑚
(1 − 𝑑𝑖). (54) 

 

Para os termos das equações que contêm duas molas, 

 

𝑘𝑖 + 𝑘𝑗

𝑚
=
𝜂𝑖𝑘𝑖 + 𝜂𝑗𝑘𝑗

𝑚
. (55) 

 

Uma vez que a estrutura está sem dano, 𝑘𝑖 = 𝑘𝑗 = 𝑘. Então,   
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𝑘

𝑚
(𝜂𝑖 + 𝜂𝑗) =

𝑘

𝑚
((1 − 𝑑𝑖) + (1 − 𝑑𝑗)) =

𝑘

𝑚
(2 − 𝑑𝑖 − 𝑑𝑗) =

2𝑘

𝑚
(1 −

𝑑𝑖
2
−
𝑑𝑗

2
)

=
𝑘𝑖 + 𝑘𝑗

𝑚
(1 −

𝑑𝑖
2
−
𝑑𝑗

2
). 

(56) 

 

Portanto, a parametrização de dano para os termos das equações em que contêm duas molas 

correspondeu à Equação (57), para cada 𝑖-ésima e 𝑗-ésima mola de interesse:  

 

𝑘𝑖 + 𝑘𝑗

𝑚
=
𝑘𝑖 + 𝑘𝑗

𝑚
(1 −

𝑑𝑖
2
−
𝑑𝑗

2
). (57) 

 

Uma estrutura íntegra é representada por 𝑑 = 0 em todas as molas. A representação do 

dano corresponde à redução na matriz de rigidez, enquanto a matriz de amortecimento 

permanece constante.  

As melhores equações de movimento descobertas pelo SINDy foram reescritas para 

parametrização de dano, modelo de barra engastada (Equação 58) e modelo de barra 

biengastada (Equação 59): 

 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + ((1 −

𝑑1
2
−
𝑑2
2
) (−

𝑘1 + 𝑘2
𝑚1

)) 𝑥1 + (−
𝛼(𝑚1) + 𝛽(𝑘1 + 𝑘2)

𝑚1
) 𝑥2

     +((1 − 𝑑2) (
𝑘2
𝑚1
))𝑥3 + (

𝛽(𝑘2)

𝑚1
)𝑥4

𝑥̇2𝑖−1 = 𝑥2𝑖

   

𝑥̇2𝑖 = (
𝑓𝑖(𝑡)

𝑚𝑖
) + ((1 − 𝑑𝑖) (

𝑘𝑖
𝑚𝑖
)) 𝑥2𝑖−3 + (

𝛽(𝑘𝑖)

𝑚𝑖
) 𝑥2𝑖−2 + (−

𝑘𝑖 + 𝑘𝑖+1
𝑚𝑖

) 𝑥2𝑖−1

        + (−
𝛼(𝑚𝑖) + 𝛽(𝑘𝑖 + 𝑘𝑖+1)

𝑚𝑖
) 𝑥2𝑖 + (

𝑘𝑖+1
𝑚𝑖

) 𝑥2𝑖+1 + (
𝛽(𝑘𝑖+1)

𝑚𝑖
)𝑥2𝑖+2

         para 𝑖 = 2,3, … , 𝑛 − 1
𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + ((1 − 𝑑𝑛) (

𝑘𝑛
𝑚𝑛
)) 𝑥2𝑛−3 + (

𝛽(𝑘𝑛)

𝑚𝑛
) 𝑥2𝑛−2

         +((1 − 𝑑𝑛) (−
𝑘𝑛
𝑚𝑛
))𝑥2𝑛−1 + (−

𝛼(𝑚𝑛) + 𝛽(𝑘𝑛)

𝑚𝑛
)𝑥2𝑛

 (58) 
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + ((1 −

𝑑1
2
−
𝑑2
2
) (−

𝑘1 + 𝑘2
𝑚1

)) 𝑥1 + (−
𝛼(𝑚1) + 𝛽(𝑘1 + 𝑘2)

𝑚1
) 𝑥2

     +((1 − 𝑑2) (
𝑘2
𝑚1
))𝑥3 + (

𝛽(𝑘2)

𝑚1
)𝑥4

𝑥̇2𝑖−1 = 𝑥2𝑖

   

𝑥̇2𝑖 = (
𝑓𝑖(𝑡)

𝑚𝑖
) + ((1 − 𝑑𝑖) (

𝑘𝑖
𝑚𝑖
)) 𝑥2𝑖−3 + (

𝛽(𝑘𝑖)

𝑚𝑖
) 𝑥2𝑖−2 + (−

𝑘𝑖 + 𝑘𝑖+1
𝑚𝑖

) 𝑥2𝑖−1

        + (−
𝛼(𝑚𝑖) + 𝛽(𝑘𝑖 + 𝑘𝑖+1)

𝑚𝑖
) 𝑥2𝑖 + (

𝑘𝑖+1
𝑚𝑖

) 𝑥2𝑖+1 + (
𝛽(𝑘𝑖+1)

𝑚𝑖
)𝑥2𝑖+2

         para 𝑖 = 2,3, … , 𝑛 − 1
𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + ((1 −

𝑑𝑛
2
−
𝑑𝑛+1
2
) (
𝑘𝑛 + 𝑘𝑛+1

𝑚𝑛
))𝑥2𝑛−3 + (

𝛽(𝑘𝑛)

𝑚𝑛
)𝑥2𝑛−2

         +((1 − 𝑑𝑛) (−
𝑘𝑛
𝑚𝑛
))𝑥2𝑛−1 + (−

𝛼(𝑚𝑛) + 𝛽(𝑘𝑛 + 𝑘𝑛+1)

𝑚𝑛
)𝑥2𝑛.

 (59) 

 

 

4.1.5 Construção do Conjunto de Dados  

 

A estrutura do conjunto de dados 𝑋𝑑𝑎𝑑𝑜𝑠 empregada para o aprendizado supervisionado 

de classificação foi construída usando 𝑀 amostras de deslocamentos do sistema 

(𝑈1, 𝑈2, … , 𝑈𝑁 ), equações descobertas através do SINDy. O conjunto de dados 𝑋𝑑𝑎𝑑𝑜𝑠 

(atributos) e o cenário de dano associado 𝑦𝑟ó𝑡𝑢𝑙𝑜 (rótulos) são o par de entrada para o 

classificador. 

A estrutura do conjunto de dados compreende 𝑀 amostras de deslocamentos para cada 

um dos 𝑟 cenários de dano, que são gerados usando as equações descobertas. A resposta de 

cada amostra de deslocamento corresponde a uma linha da matriz 𝑋𝑑𝑎𝑑𝑜𝑠. Por exemplo, o 

cenário de dano 𝑑1 pode ser de dano nulo em todas as molas (que caracteriza a estrutura íntegra), 

que está associada ao rótulo 𝑑1 (íntegra), correspondendo a classe íntegra (𝑑1𝑋𝑑𝑎𝑑𝑜𝑠). Portanto,  

 

𝑑1𝑋𝑑𝑎𝑑𝑜𝑠 = [
𝑈1
(1) 𝑈2

(1)
⋯ 𝑈𝑁

(1) 𝑦𝑑1
  ⋯

𝑈1
(𝑀) 𝑈2

(𝑀)
⋯ 𝑈𝑁

(𝑀) 𝑦𝑑1

]. 
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O conjunto de dados final 𝑋𝑑𝑎𝑑𝑜𝑠 é uma matriz de dimensão ((𝑀 × 𝑟) ×  𝑁), composta das 𝑀 

amostras de deslocamentos de cada 𝑟 cenários de dano, incluindo a estrutura íntegra (classes), 

com 𝑁 deslocamentos medidos (atributos): 

 

𝑋𝑑𝑎𝑑𝑜𝑠𝑓𝑖𝑛𝑎𝑙 = [

𝑑1𝑋𝑑𝑎𝑑𝑜𝑠
𝑑2𝑋𝑑𝑎𝑑𝑜𝑠

⋯
𝑑𝑟𝑋𝑑𝑎𝑑𝑜𝑠

]. 

 

4.1.6 Construção dos Classificadores de Machine Learning  

 

Na construção do conjunto de dados usado para treinar os classificadores, as equações 

do modelo SINDy foram usadas para simular a resposta de deslocamento no tempo do sistema 

com diferentes locais de danos e diferentes intensidades correspondentes. O modelo SINDy foi 

integrado no tempo, de forma que 300 amostras foram coletadas para cada um dos cenários de 

interesse: nenhum dano (íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-

ésima mola (𝑖 = 1, … , 𝑛), onde 𝑛 corresponde ao número de molas. São intensidades de dano 

amplamente investigado na literatura (PARVIZ, CHAN e GALLAGE, 2020; RATCLIFFE, 

1997; SHI, LAW e ZHANG, 2000; WANG e LI, 2012; WU et al., 2017). Isso resultou em um 

conjunto de dados de treinamento na forma ((300 × (í𝑛𝑡𝑒𝑔𝑟𝑎 + 𝑛𝑜 𝑑𝑒 𝑚𝑜𝑙𝑎𝑠 ×

4 intensidades de dano) × (𝑛𝑜 de DOFs)), onde uma validação cruzada estratificada de 5 

folds foi empregada. Para melhorar as condições de treinamento, os dados foram normalizados 

subtraindo a média e dividindo pelo desvio padrão das amostras.  

Um conjunto de algoritmos de classificação de machine learning foi escolhido para 

análises, com base em seu uso na literatura SHM e em sua interpretabilidade em termos de 

como usam atributos para predição de classes. Os algoritmos de classificação escolhidos foram: 

Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive Bayes (NB), Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forest (RF), 

Decision Trees (DTs) e Extremely Randomized Trees (ET).  Os códigos para os referidos 

classificadores foram desenvolvidos usando o pacote scikit-learn da linguagem Python 3.9 

(PEDREGOSA et al., 2011). 

O procedimento de busca em grade, utilizando o método de validação cruzada k-fold, 

foi empregado para identificar os valores dos hiperparâmetros para cada modelo de 

classificação. A busca em grade, com validação cruzada, é o método mais amplamente usado 
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para otimizar os parâmetros de um classificador de machine learning (PEDREGOSA et al., 

2011). Esse método gera uma lista de modelos candidatos a partir de uma grade de valores de 

parâmetros. O tamanho da grade de hiperparâmetros é determinado pelo intervalo e combinação 

de hiperparâmetros escolhidos para cada modelo. Os hiperparâmetros ótimos são então 

escolhidos a partir do modelo com melhor desempenho de classificação. O intervalo e a 

combinação de hiperparâmetros, para cada um dos algoritmos de classificação, são escolhidos 

como o espaço de hiperparâmetros dentro do qual se espera que estejam os parâmetros do 

modelo ótimo para o problema de classificação.  

O intervalo de hiperparâmetros foi escolhido com base nos intervalos de 

hiperparâmetros recomendados na literatura de SHM e machine learning (BUCKLEY, GHOSH 

e PAKRASHI, 2023; HASTIE, TIBSHIRANI e FRIEDMAN, 2017; KUHN e JOHNSON, 

2013) e documentação do scikit-learn (PEDREGOSA et al., 2011). Os hiperparâmetros do 

modelo para cada algoritmo de classificação são mostrados na Tabela 1. Para os métodos que 

possuem hiperparâmetros, 90% dos dados foram usados para treinamento e 10% para teste, e o 

modelo final foi ajustado com todos os dados. 

 

Tabela 1 – Hiperparâmetros dos classificadores de ML, modelo de barra. 

Classificador Parâmetro  Valor 

QDA - - 

LDA - - 

NB Modelo Gaussiano   

k-NN Número de vizinhos 

Peso 

Métrica  

𝑘 = 3; 4; …; 25 

Uniforme; distância 

Cosseno; Euclidiana  

SVM C 

Kernel 

Grau 

Gama (kernel não linear) 

Função de decisão 

0,1; 1; 10; 100; 1000 

Linear; RBF; sigmoide; polinomial 

2; 3 

1; 0,1; 0,01; 0,001 

Um contra um (OVO); um contra o resto 

(OVR) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

100; 150; 200; 300; 500 

6; 8; 10; 12; 14 

Gini; entropia  

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

100; 150; 200; 300; 500 

12; 14; 16; 18; 20 

Gini; entropia 

DTs Profundidade máxima da árvore 

Critério 

8; 10; 12; 14; 16 

Gini; entropia 
Fonte: Autor (2024). 
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4.2 Barra Engastada 

 

4.2.1 Barra Engastada Discretizada em Dois Elementos Finitos 

 

O sistema foi discretizado em dois elementos finitos (Figura 11(a)) e foram aplicadas as 

condições de contorno fixa-livre (Equação 51) e a idealização da barra foi construída como um 

modelo 2-DOF (Figura 11(b)).  

As duas frequências naturais, obtidas a partir das matrizes de massa e rigidez do sistema 

(problema de autovalor generalizado), foram {1326; 4634} Hz e as duas razões de 

amortecimento obtidas foram {2,0; 2,0} %, com 𝛼 = 259,1883 e 𝛽 = 1,0681 × 10−6, 

estabelecidas para o modo fundamental e o segundo modo.  

A resposta dinâmica mostra que o sistema oscila de forma rápida até decair para a 

resposta referente a força aplicada e as maiores amplitudes de deslocamento ocorre para o DOF 

2, que está mais próximo do ponto de aplicação da força (Figura 12). 

 

Figura 11 – (a) Barra engastada discretizada em dois elementos finitos e (b) correspondente idealização. 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 12 – Respostas de deslocamento no tempo, barra engastada discretizada em dois elementos finitos 

 

Fonte: Autor (2024). 
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4.2.1.1 Respostas do SINDy  

 

Para gerar os dados de treinamento para o SINDy, o sistema (Equação 51) foi simulado 

com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0]𝑇, no tempo de 0  a 0,04 𝑠, com período de 

amostragem de 8,3333 × 10−5 s, que correspondem a sensores com taxa de amostragem de 12 

kHz. Isso resultou em um conjunto de dados com 480 amostras.  

As equações de movimento do modelo 2-DOF foram convertidas em um sistema de 

equações diferenciais de primeira ordem utilizando a Equação (53):  

 

{
 
 
 
 

 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + (−

𝑘1 + 𝑘2
𝑚1

) 𝑥1 + (−
𝛼(𝑚1) + 𝛽(𝑘1 + 𝑘2)

𝑚1
) 𝑥2 + (

𝑘2
𝑚1
) 𝑥3

     + (
𝛽(𝑘2)

𝑚1
)𝑥4   

𝑥̇3 = 𝑥4

𝑥̇4 = (
𝑓2(𝑡)

𝑚2
) + (

𝑘2
𝑚2
) 𝑥1 + (

𝛽(𝑘2)

𝑚2
) 𝑥2 + (−

𝑘2
𝑚2
) 𝑥3 + (−

𝛼(𝑚2) + 𝛽(𝑘2)

𝑚2
)𝑥4.

         

 (60) 

 

O SINDy foi estruturado considerando a estrutura das equações de um modelo baseado 

na física (Equação 60). À medida que os resultados foram gerados pelo SINDy, para cada 

parâmetro 𝛿 (algoritmo STLSQ) e hiperparâmetro 𝜆 (algoritmo LASSO) variado, foram 

avaliados a raiz do erro quadrático médio (RMSE) entre os sinais de entrada de aceleração e a 

predição das equações descobertas para aceleração. A Figura 13 apresenta no eixo das 

ordenadas os valores do RMSE para os correspondentes valores de parâmetros 𝛿 (Figura 13(a)) 

e hiperparâmetros 𝜆 (Figura 13(b)), que estão no eixo das abscissas. Os valores de parâmetros 

𝛿2 correspondem ao DOF 1, enquanto os valores de parâmetros 𝛿4 correspondem ao DOF 2, 

uma vez que as equações diferenciais foram convertidas em um sistema de primeira ordem. As 

mesmas ideias são realizadas para o hiperparâmetro 𝜆. O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 =

3 × 10−1) e o hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜 = 1 × 10−5) foram escolhidos de forma que 

minimizasse a medida de erro (Figura 13). Nesses cenários, os dois algoritmos descobriram as 

mesmas equações de movimento, que foram reescritas para parametrização de dano (Equação 

61). 
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Figura 13 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, barra engastada discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

{
 
 
 

 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = 459,428 − (1 −
𝑑1
2
−
𝑑2
2
) 286002077,029𝑥1 − 747,538 𝑥2 + (1 − 𝑑2)155061225,545𝑥3

      +292,208𝑥4
𝑥̇3 = 𝑥4

   

𝑥̇4 = −4988,241 + (1 − 𝑑2)310122079,663𝑥1 + 585,687𝑥2 − (1 − 𝑑2)286002641,293𝑥3
        −746,631𝑥4.

 (61) 

 

O modelo SINDy (Equação 61) foi integrado no tempo e comparado com a resposta de 

entrada (physical twin) (Figura 14(a)), sendo observada uma boa correspondência das respostas 

de deslocamento no tempo, com a raiz do erro quadrático médio normalizado (normalized root 

mean square error – NRMSE) para os DOFs 1 e 2 inferiores a 6,5% (Figura 14(b)). Também 

foram comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical 

twin, para dois cenários: dano de 5% em cada uma das molas e dano de 20% em cada uma das 

molas (Figuras 15 e 16), sendo apresentadas as respostas que apresentam menor e maior 

NRMSE. A resposta muda dependendo da intensidade do dano, bem como da mola com dano 

observada. Para a intensidade de dano de 5%, quando o dano é introduzido na mola 1 verifica-

se uma correspondência bem representativa e maior NRMSE (inferior a 8,75%) (Figura 15(a-

b)) e quando o dano está na mola 2 é observada uma boa correspondência, com NRMSE menor 

que 5,75% (Figura 15(c-d)). Para a intensidade de dano de 20%, quando o dano está na mola 1 

é observada uma concordância satisfatória (com NRMSE inferior a 12,75%) (Figura 16(a-b)) e 

quando o dano está na mola 2 constata-se uma boa correspondência, com NRMSE menor que 

2,75% (Figura 16(c-d)). 
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Figura 14 – (a) Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.  

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 15 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) primeira mola, (b) com 

correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE.  
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(c) (d) 

Fonte: Autor (2024). 
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Figura 16 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) primeira mola, (b) com 

correspondentes NRMSE, e (b) segunda mola, (d) com correspondentes NRMSE.  
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(c) (d) 

Fonte: Autor (2024). 

 

4.2.1.2 Resultados e Discussões dos Métodos de Machine Learning  

 

Para construção do conjunto de dados usado para treinar os classificadores de machine 

learning, o modelo SINDy (Equação 61) foi integrado no tempo de 0 a 0,03 s, usando um 

período de amostragem de 1 × 10−4 s, para cada um dos cenários de interesse: nenhum dano 

(íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-ésima mola (𝑖 = 1, 2). Isso 

resultou em um conjunto de dados de treinamento de 2700 amostras (300 × 9), sendo o conjunto 

de dados final uma matriz de dimensão ((300 × 9) ×  2). 

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, aplicada 

usando o conjunto de dados, são mostrados na Tabela 2. A Tabela 3 apresenta as métricas de 

desempenho dos classificadores. A precisão mostra que os métodos SVM e k-NN apresentaram 

os melhores resultados, seguido dos métodos baseados em árvores, método LDA e do método 

QDA, para os quais ocorre uma diminuição da precisão, e, por fim, o método NB, que apresenta 

desempenho bem inferior em relação aos outros métodos. Como é de interesse identificar danos 

no sistema, o falso negativo é de grande relevância, uma vez que pode ser um problema crítico 

 

 

-9E-05

-8E-05

-7E-05

-6E-05

-5E-05

-4E-05

-3E-05

-2E-05

-1E-05

0E+00

1E-05

0E+00 1E-02 2E-02 3E-02

D
es

lo
ca

m
en

to
 (

m
)

Tempo (s)

DOF1 (PT) DOF1 (MS) DOF2 (PT) DOF2 (MS)

 

 

-9E-05

-8E-05

-7E-05

-6E-05

-5E-05

-4E-05

-3E-05

-2E-05

-1E-05

0E+00

1E-05

0E+00 1E-02 2E-02 3E-02

D
es

lo
ca

m
en

to
 (

m
)

Tempo (s)

DOF1 (PT) DOF1 (MS) DOF2 (PT) DOF2 (MS)

 

 

0

0,5

1

1,5

2

2,5

3

N
R

M
S

E
 (

%
)

DOF 1 DOF 2

 

0

2

4

6

8

10

12

14

N
R

M
S

E
 (

%
)

DOF 1 DOF 2



78 
 

 

a estrutura estar com dano e o método indicar que a estrutura está integra. Portanto, um sistema 

construído para esse propósito deve levar em consideração uma taxa de falsos negativos 

próxima a zero. Uma métrica que pode ser utilizada para comparar sistemas diferentes é a 

revocação, valores altos de revocação indicam altos valores de verdadeiros positivos mesmo 

quando se leva em conta o total de falsos negativos, ou seja, um bom modelo deve ter alta 

revocação. Avaliando a métrica de desempenho revocação, as conclusões são semelhantes às 

constatadas na precisão.   

 

Tabela 2 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de barra engastada 

discretizada em dois elementos finitos. 

 

Classificador    Parâmetro Valor 

QDA - - 

LDA - - 

NB Modelo Gaussiano  

k-NN Número de vizinhos 

Peso 

Métrica  

4 

Distância  

Euclidiana  

SVM C 

Kernel 

Gama (kernel não linear) 

Função de decisão 

1000 

RBF 

0,1 

Um contra um (OVO)  

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

200 

14 

Entropia 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

200 

20 

Gini 

DTs Profundidade máxima da árvore 

Critério 

16 

Entropia 
Fonte: Autor (2024). 

 

Tabela 3 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra 

engastada discretizada em dois elementos finitos. 

 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  

SVM 84,44 84,54 84,25 0,84 

k-NN 80,37 80,57 80,46 0,80 

ET 78,15 78,11 78,68 0,78 

RF 77,41 77,74 77,65 0,77 

DTs 74,44 74,83 74,44 0,74 

LDA 74,96 74,48 74,96 0,74 

QDA 69,22 69,70 69,22 0,69 

NB 18,52 21,78 18,52 0,15 
Fonte: Autor (2024). 
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É analisada a matriz de confusão para o método SVM (Figura 17), que apresentou 

melhor desempenho. Cada linha representa o cenário de dano real, e as colunas exibem os 

resultados do classificador. A primeira linha mostra que 30 das 34 amostras (soma da linha) 

para a condição da estrutura íntegra estão classificadas corretamente. Três amostras foram 

classificadas incorretamente como d1 (dano de 5% na primeira mola) e 1 amostra classificada 

incorretamente como d2 (dano de 5% na segunda mola). De forma análoga, para as linhas 

sucessivas, as estatísticas para identificação de danos podem ser obtidas. Portanto, os termos 

diagonais estão relacionados às amostras classificadas corretamente, e os termos fora da 

diagonal estão relacionados às amostras classificadas incorretamente. Há muitas informações 

nesta matriz, como a quantificação de verdadeiros positivos e falsos negativos. A probabilidade 

de classificar corretamente um dano é muito alta na primeira mola com dano de 20% (95,7%) 

(22/23) e na segunda mola com dano de 20% (91,4%) (32/35), e alta na segunda mola com dano 

de 5% (86,7%) (26/30), na primeira mola com dano de 5% (85,7%) (30/35), na segunda mola 

com dano de 15% (84,4%) (27/32), na segunda mola com dano de 10%  (76%) (19/25), na 

primeira mola com dano de 15% (76%) (19/25) e na primeira mola com dano de 10% (74,2%) 

(23/31). Ainda, a probabilidade de indicar uma estrutura íntegra quando o sistema está com 

dano (falso negativo) na primeira mola com dano de 5% é 8,6% (3/35), na primeira mola com 

dano de 10% é 3,2% (1/31), na segunda mola com dano de 10% é 8% (2/25) e na primeira mola 

com dano de 15% é 4% (1/25). Outra informação que pode ser obtida dessa matriz é a 

probabilidade de considerar um dano quando o sistema está íntegro (falso positivo), que 

corresponde a 11,8% (4/34).   

 
 

Figura 17 – Matriz de confusão do classificador SVM, conjunto de dados do modelo de barra engastada 

discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 
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4.2.1.3 Aplicações do Framework Digital Twin  

 

Para ilustração do framework DT do classificador SVM, o physical twin foi simulado 

no tempo de 0 a 0,03 s, usando um período de amostragem de 2 × 10−5 s, que correspondeu a 

1500 amostras para cada um dos cenários de interesse (dano investigado – DI), condição íntegra 

e de 1% até 25% de dano em cada elemento, para verificar qual cenário de dano treinado será 

associado (dano associado – DA), podendo ser íntegra, 5% de dano, 10% de dano, 15% de dano 

e 20% de dano. Esses dados de entrada (sinais simulados) não são rotulados, uma vez que na 

prática não é conhecida a classe à qual pertence o sinal medido. Portanto, o framework DT 

apresenta a probabilidade de os dados pertencerem a determinada classe, sendo apresentada a 

maior probabilidade (P). Várias quantidades de ruído foram adicionadas aos dados de inferência 

(correspondentes a 1500 amostras) para avaliar a tolerância do modelo de classificação ao ruído. 

Um ruído gaussiano aleatório foi adicionado, com média zero e diferentes níveis de ruído (1%, 

3%, 5% e 10%), obtidos a partir de um desvio padrão que compreende o fenômeno em análise, 

correspondente a 5 × 10−6 m. 

A aplicação mostra os seguintes resultados para a primeira mola (Tabela 4), nas 

condições analisadas sem ruído, 1% de ruído e 3% de ruído: de 0% a 2% de dano, indica que a 

estrutura está integra; de 3% a 7% de dano, indica que a estrutura está com dano de 5%; de 8% 

a 12% de dano, indica que a estrutura está com dano de 10%; de 13% a 16% de dano, indica 

que a estrutura está com dano de 15% e, por fim, de 17% a 25% de dano, indica que estrutura 

está com dano de 20%. Para 5% de ruído, ocorre uma diminuição da probabilidade de 

identificação de dano nos cenários investigados, no entanto, as maiores probabilidades são 

constatadas para dano de 20%. Para 10% de ruído, as maiores probabilidades ocorrem para 

dano de 20%. As respostas para a segunda mola estão no Apêndice.  
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Tabela 4 – Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra 

engastada discretizada em dois elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 85,07 84,67 64,93 

Ín
te

g
ra

 

51,40 

Ín
te

g
ra

 29,87 

Ín
te

g
ra

 

1% 84,27 78,33 58,27 49,73 30,07 

2% 80,33 59,73 50,47 43,67 28,53 

3% 73,40 54,53 41,07 

D
a
n

o
 5

%
 40,47 26,27 

4% 78,93 73,67 46,73 33,40 28,13 

5% 80,00 77,80 48,87 31,93 

D
a
n

o
 

5
%

 23,67 

6% 79,80 73,53 47,80 33,13 22,47 

7% 75,20 54,80 42,27 31,47 22,07 

8% 73,67 58,67 44,60 

D
a
n

o
 1

0
%

 35,53 

D
a
n

o
 1

0
%

 20,47 

D
a
n

o
 

1
0
%

 

9% 78,73 75,67 50,47 36,47 22,87 

10% 81,00 79,47 53,67 37,40 23,27 

11% 80,40 73,60 50,73 35,53 27,27 

D
a
n

o
 2

0
%

 

12% 73,67 54,60 44,13 34,27 28,67 

13% 70,60 58,13 41,40 

D
a
n

o
 1

5
%

 

30,47 

D
a
n

o
 

1
5
%

 31,93 

14% 75,33 72,87 47,87 31,20 34,53 

15% 76,73 74,53 48,87 34,07 38,60 

16% 75,87 65,40 42,87 37,67 
D
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o
 2

0
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43,47 

17% 67,53 48,00 47,60 

D
a
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o
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0
%

 

46,87 46,67 

18% 83,27 75,87 57,87 56,20 52,33 

19% 85,07 84,13 70,27 61,93 58,27 

20% 86,87 86,47 77,87 68,47 59,53 

21% 88,13 88,07 83,93 75,80 63,73 

22% 88,60 88,47 87,13 79,53 68,33 

23% 88,73 88,80 88,40 83,07 70,40 

24% 89,53 89,47 89,07 85,87 76,73 

25% 90,80 90,73 90,53 88,40 78,00 
Fonte: Autor (2024). 

 

4.2.2 Barra Engastada Discretizada em Quatro Elementos Finitos 

 

O sistema foi discretizado em quatro elementos finitos (Figura 18(a)) e idealizado como 

modelo de 4-DOF (Figura 18(b)). As três primeiras frequências naturais obtidas foram {1301; 

4105; 7458} Hz e as três primeiras razões de amortecimento obtidas foram {2,0; 1,2; 1,5} %, 

com 𝛼 = 291,8517 e 𝛽 = 5,2676 × 10−7, estabelecidas para o modo fundamental e o quarto 

modo.  

A resposta dinâmica mostra que o sistema oscila de forma rápida até decair para a 

resposta referente a força aplicada e as maiores amplitudes de deslocamento ocorrem para os 

DOFs que estão mais próximos do ponto de aplicação da força (Figura 19). 
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Figura 18 – (a) Barra engastada discretizada em quatro elementos finitos e (b) correspondente idealização. 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 19 – Respostas de deslocamento no tempo, barra engastada discretizada em quatro elementos finitos. 

 

Fonte: Autor (2024). 

 

4.2.2.1 Respostas do SINDy  

 

O sistema foi simulado com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0,0,0,0,0]𝑇, no 

tempo de 0  a 0,04 𝑠, com período de amostragem de 4 × 10−5 s, que corresponde a sensores 

com taxa de amostragem de 25 kHz. Isso resultou em um conjunto de dados com 1000 amostras.  

O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 = 3 × 10−2) e o hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜 =

1 × 10−5) foram determinados de forma que minimizasse a medida de RMSE (Figura 20). 

Nesses cenários, os dois algoritmos descobriram as mesmas equações de movimento, que foram 

reescritas para parametrização de dano (Equação 62). 
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Figura 20 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, barra engastada discretizada em quatro elementos finitos. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = 160,041 − (1 −
𝑑1
2
−
𝑑2
2
)1057912720,767𝑥1 − 848,171𝑥2 + (1 − 𝑑2)537352655,210𝑥3

      +277,279𝑥4
𝑥̇3 = 𝑥4

   

𝑥̇4 = 305,440+ (1 − 𝑑2)637429664,452𝑥1 + 360,989𝑥2 − (1 −
𝑑2
2
−
𝑑3
2
) 1143327449,657𝑥3

        −915,973𝑥4 + (1 − 𝑑3)560428386,284𝑥5 + 300,041𝑥6
𝑥̇5 = 𝑥6

𝑥̇6 = 953,504 + (1 − 𝑑3)577427586,222𝑥3 + 600,552𝑥4 − (1 −
𝑑3
2
−
𝑑4
2
)1183763540,630𝑥5

      −1600,078𝑥6 + (1 − 𝑑4)624138668,116𝑥7 + 752,041𝑥8
𝑥̇7 = 𝑥8
𝑥̇8 = −9714,180 + (1 − 𝑑4)1087683486,632𝑥5 + 1377,734 𝑥6 − (1 − 𝑑4)1070764725,287𝑥7
          −1588,453𝑥8.

 (62) 

 

O modelo SINDy (Equação 62) foi integrado no tempo e comparado com a resposta 

de entrada (Figura 21(a)), sendo observada uma ótima correspondência das respostas, e os 

valores de NRMSE para os DOFs são inferiores a 3% (Figura 21(b)). Também foram 

comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical twin, para 

dois cenários: dano de 5% em cada uma das molas e dano de 20% em cada uma das molas 

(Figuras 22 e 23), sendo apresentadas as respostas que apresentam menor e maior erro 

(NRMSE). A resposta muda dependendo da intensidade do dano, bem como da mola com dano 

observada. Quando o dano de 5% está na mola 1 verifica-se uma boa correspondência e maior 

NRMSE (NRMSE inferior a 5%) (Figura 22(a-b)), e quando o dano de 5% está na mola 4 é 

observada uma ótima correspondência e menor erro, os resultados de NRMSE são inferiores a 

2,5% (Figura 22(c-d)). Para o dano de 20%, quando o dano é introduzido na mola 1 constata-

se uma concordância satisfatória (com maior NRMSE entre 9 e 11,5%) (Figura 23(a-b)) e 
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quando o dano de 20% está na mola 2 é observada uma ótima correspondência e menor erro 

(NRMSE inferior a 2,5%) (Figura 23(c-d)).  

 

Figura 21 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 22 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) primeira mola, (b) com 

correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.  
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(c) (d) 

Fonte: Autor (2024). 
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Figura 23 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) primeira mola, (b) com 

correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE.  
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(c) (d) 

Fonte: Autor (2024). 

 

4.2.2.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 62) foi integrado no tempo de 0 a 0,03 s, usando um período 

de amostragem de 1 × 10−4 s, para cada um dos cenários de interesse: nenhum dano (íntegra) 

e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-ésima mola (𝑖 = 1, … , 4). Isso 

resultou em um conjunto de dados de treinamento de 5100 amostras (300 ×  17) , sendo o 

conjunto de dados final uma matriz de dimensão ((300 ×  17)  ×  4). 

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, aplicada 

usando o conjunto de dados são mostrados na Tabela 5.  A Tabela 6 apresenta as métricas de 

desempenho para os classificadores. A precisão indica que os métodos SVM e QDA 

apresentaram os melhores desempenhos, seguido dos métodos LDA, k-NN e os baseados em 

árvores, novamente, o método NB apresentou desempenho bem inferior em relação aos outros 

métodos. Analisando a métrica de desempenho revocação, as conclusões são semelhantes às 

constatadas na precisão.   
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Tabela 5 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de barra engastada 

discretizada em quatro elementos finitos. 

Classificador Parâmetro Valor 

QDA - - 

LDA - - 

NB Modelo Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica  

3 

Distância  

Euclidiana 

SVM C 

Kernel 

Função de decisão 

1000 

Linear 

Um contra um (OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

500 

14 

Entropia 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

150 

18 

Gini 

DTs Profundidade máxima da árvore 

Critério 

16 

Entropia 
Fonte: Autor (2024). 

 

Tabela 6 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra 

engastada discretizada em quatro elementos finitos. 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  

SVM 90,78 91,09 90,88 0,91 

QDA 90,25 90,86 90,25 0,90 

LDA 83,96 83,71 83,96 0,84 

k-NN 76,07 76,63 76,49 0,76 

ET 72,35 72,66 72,74 0,72 

RF 71,18 71,45 71,69 0,71 

DTs 68,43 70,16 68,85 0,69 

NB 10,88 15,03 10,88 0,09 
Fonte: Autor (2024). 

 

A matriz de confusão do método SVM mostra que a probabilidade de considerar um 

dano quando o sistema está íntegro é 10,5% (4/38) e a probabilidade de indicar uma estrutura 

íntegra quando a primeira mola está com dano de 5% é 3% (1/33) e quando a primeira mola 

está com dano de 10% é 2,9% (1/34) (Figura 24).  
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Figura 24 – Matriz de confusão do classificador SVM, conjunto de dados do modelo de barra engastada 

discretizada em quatro elementos finitos. 

 

 

Fonte: Autor (2023). 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

4.2.2.3 Aplicações do Framework Digital Twin 

 

O physical twin foi simulado no tempo de 0 a 0,03 s, usando um período de amostragem 

de 2 × 10−5 s, que correspondeu a 1500 amostras para cada um dos cenários de interesse, 

condição íntegra e de 1% até 25% de dano em cada elemento. Um ruído gaussiano aleatório foi 

adicionado aos dados (1500 amostras), com média zero e diferentes níveis de ruído, a partir de 

um desvio padrão de 2,60 × 10−6 m, que compreende o desvio padrão do fenômeno em análise. 

A aplicação do framework DT indica os seguintes resultados para a primeira mola 

(Tabela 7), nas condições sem ruído, 1% de ruído e 3% de ruído: de 0% a 2% de dano, a 

estrutura está integra; de 3% a 7% de dano, a estrutura está com dano de 5%; de 8% a 12% de 

dano, a estrutura está com dano de 10%; de 13% a 17%, a estrutura está com dano de 15% e, 

por fim, de 18% a 25% de dano, a estrutura está com dano de 20%. Para 5% de ruído, ocorre 

uma diminuição da probabilidade de identificação de dano, no entanto, as maiores 

probabilidades são apresentadas para dano de 20%. Para 10% de ruído, as maiores 

probabilidades ocorrem para dano de 20%. As respostas para as demais molas estão no 

Apêndice.  
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Tabela 7 – Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra 

engastada discretizada em quatro elementos finitos.   

 

Fonte: Autor (2024). 

 

4.2.3 Barra Engastada Discretizada em Seis Elementos Finitos 

 

O sistema foi discretizado em seis elementos finitos (Figura 25(a)) e representado como 

modelo de 6-DOF (Figura 25(b)). As três primeiras frequências naturais obtidas foram {1297; 

3979; 6930} Hz e as duas razões de amortecimento obtidas foram {2,0; 1,0; 1,1} %, com 𝛼 =

302,3999 e 𝛽 = 3,5411 × 10−7, estabelecidas para o modo fundamental e o sexto modo.  

As respostas de deslocamento no tempo são apresentadas na Figura 26, mostrando que 

o sistema oscila de forma rápida e as maiores amplitudes ocorrem para os DOFs que estão mais 

próximos do ponto de aplicação da força. 
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Figura 25 – (a) Barra engastada discretizada em seis elementos finitos e (b) correspondente idealização. 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 26 – Respostas de deslocamento no tempo, barra engastada discretizada em seis elementos finitos 

 

Fonte: Autor (2024). 

 

4.2.3.1 Respostas do SINDy  

 

O sistema foi simulado com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0,0,0,0,0,0,0,0,0]𝑇, 

no tempo de 0  a 0,04 𝑠, com período de amostragem de 2,5 × 10−5 s, que corresponde a 

sensores com taxa de amostragem de 40 kHz. Isso resultou em um conjunto de dados com 1600 

amostras.  

O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 = 3 × 10−2) e o hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜 =

1 × 10−6) foram escolhidos de forma que minimizasse a medida de RMSE (Figura 27). Nesses 

cenários, os dois algoritmos descobriram as mesmas equações de movimento, que foram 

reescritas para parametrização de dano (Equação 63). 
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Figura 27 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, barra engastada discretizada em seis elementos finitos. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 
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𝑥̇1 = 𝑥2

𝑥̇2 = 120,710 − (1 −
𝑑1
2
−
𝑑2
2
) 2363127733,487𝑥1 − 1077,953𝑥2 + (1 − 𝑑2)1191067236,552𝑥3

      +381,955𝑥4
𝑥̇3 = 𝑥4

   

𝑥̇4 = 160,591+ (1 − 𝑑2)1456560637,342𝑥1 + 184,494𝑥2 − (1 −
𝑑2
2
−
𝑑3
2
)2525378734,397𝑥3

        −776,547𝑥4 + (1 − 𝑑3)1206495186,072𝑥5 + 240,567𝑥6
𝑥̇5 = 𝑥6

𝑥̇6 = 248,318 + (1 − 𝑑3)1316271294,278𝑥3 + 335,930𝑥4 − (1 −
𝑑3
2
−
𝑑4
2
) 2486409542,476𝑥5

      −943,039𝑥6 + (1 − 𝑑4)1216445368,318𝑥7 + 305,661𝑥8
𝑥̇7 = 𝑥8

𝑥̇8 = 507,755 + (1 − 𝑑4)1281851519,765𝑥5 + 585,608𝑥6 − (1 −
𝑑4
2
−
𝑑5
2
) 2530536531,606𝑥7

          −1410,958𝑥8 + (1 − 𝑑5)1271307335,705𝑥9 + 544,542𝑥10
𝑥̇9 = 𝑥10

𝑥̇10 = 1675,871 + (1 − 𝑑5)1257346166,867𝑥7 + 1493,529𝑥8 − (1 −
𝑑5
2
−
𝑑6
2
) 2703517402,506𝑥9

        −4026,713𝑥10 + (1 − 𝑑6)1458693097,918𝑥11 + 2288,672𝑥12
𝑥̇11 = 𝑥12
𝑥̇12 = −14340,963 + (1 − 𝑑6)2346362864,977𝑥9 + 2897,921𝑥10 − (1 − 𝑑6)2331762418,059𝑥11
       −3094,836𝑥12.

 (63)  

 

O modelo SINDy (Equação 63) foi integrado no tempo e comparado com a resposta 

de entrada (Figura 28), sendo observada uma ótima correspondência das respostas (Figura 

28(a)) e o NRMSE para os DOFs são inferiores a 3,25% (Figura 28(b)). Também foram 

comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical twin, para 

dois cenários: dano de 5% em cada uma das molas e dano de 20% em cada uma das molas 

(Figuras 29 e 30), sendo apresentadas as respostas que apresentam menor e maior erro 

(NRMSE). A resposta muda dependendo da intensidade do dano, bem como da mola com dano 

observada.  Quando o dano de 5% está na mola 2 é apresentada uma ótima concordância e 

menor erro, com NRMSE inferior a 3,25% (Figura 29(a-b)) e quando o dano de 5% está na 
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mola 5 é observada uma correspondência bem representativa, com NRMSE entre 5,5 a 7,5% 

(Figura 29(c-d)). Para o dano de 20%, quando o dano de 20% está na mola 3 é observada uma 

ótima correspondência e menor erro (NRMSE inferior a 3,25%) (Figura 30(a-b)) e quando o 

dano é introduzido na mola 1 é apresentada uma concordância satisfatória (com maior NRMSE 

entre 12,5 a 16,25%) (Figura 30(c-d)).  

 

Figura 28 – (a) Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em seis elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.  

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 29 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em seis elementos finitos, e modelo SINDy (MS), para dano de 5% na (a) segunda mola, (b) com 

correspondentes NRMSE, e (c) quinta mola, (d) com correspondentes NRMSE. 
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(c) (d) 

Fonte: Autor (2024). 
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Figura 30 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada 

discretizada em seis elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) terceira mola, (b) com 

correspondentes NRMSE, e (c) quinta mola, (d) com correspondentes NRMSE.  
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(c) (d) 

Fonte: Autor (2024). 

 

4.2.3.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 63) foi integrado no tempo de 0 a 0,03 s, usando um período 

de amostragem de 1 × 10−4 s, para cada um dos cenários de interesse: nenhum dano (íntegra) 

e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-ésima mola (𝑖 = 1, … , 6). Isso 

resultou em um conjunto de dados de treinamento de 7500 amostras (300 × 25 ), sendo o 

conjunto de dados final uma matriz de dimensão ((300 × 25 ) ×  6). 

Foram obtidos os hiperparâmetros ótimos da busca em grade, com validação cruzada, 

usando o conjunto de dados (Tabela 8) e as respectivas métricas de desempenho dos 

classificadores (Tabela 9). A precisão indica que os métodos SVM e QDA apresentaram os 

melhores resultados, seguido dos métodos LDA, k-NN e os baseados em árvores, mais uma 

vez, o método NB apresentou desempenho bem inferior em relação aos outros métodos. 

Analisando a métrica de desempenho revocação, as conclusões são semelhantes às constatadas 

na precisão.   
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Tabela 8 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de barra engastada 

discretizada em seis elementos finitos. 

Classificador Parâmetro Valor 

QDA - - 

LDA - - 

NB Modelo Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica  

3 

Distância  

Euclidiana 

SVM C 

Kernel 

Função de decisão 

1000 

Linear 

Um contra um (OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

200 

14 

Entropia 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

300 

20 

Gini 

DTs Profundidade máxima da árvore 

Critério 

16 

Entropia 
Fonte: Autor (2024). 

 

Tabela 9 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra 

engastada discretizada em seis elementos finitos. 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  

SVM 93,47 93,37 93,36 0,93 

QDA 92,48 93,21 92,48 0,93 

LDA 84,71 84,49 84,71 0,84 

k-NN 70,40 71,13 71,40 0,70 

ET 69,47 69,66 70,51 0,69 

RF 67,60 68,38 68,79 0,68 

DTs 63,20 68,01 64,25 0,65 

NB 7,55 11,55 7,55 0,05 
Fonte: Autor (2024). 

 

A matriz de confusão do método SVM apresenta que a probabilidade de considerar um 

dano quando o sistema está íntegro é 6,06% (2/33), enquanto a probabilidade de indicar uma 

estrutura íntegra quando a primeira mola está com dano de 5% é de 3,4% (1/29) e quando a 

primeira mola está com dano de 10% é 3,1% (1/32) (Figura 31).  
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Figura 31 – Matriz de confusão do classificador SVM, conjunto de dados do modelo de barra engastada 

discretizada em seis elementos finitos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

4.2.3.3 Aplicações do Framework Digital Twin 

 

O physical twin foi simulado no tempo de 0 a 0,03 s, usando um período de amostragem 

de 2 × 10−5 s, que correspondeu a 1500 amostras para cada um dos cenários de interesse, 

condição íntegra e de 1% até 25% de dano em cada elemento. Um ruído gaussiano aleatório foi 

adicionado aos dados (1500 amostras), com média zero e diferentes níveis de ruído, a partir de 

um desvio padrão de 1,70 × 10−6 m, que compreende o desvio padrão do fenômeno em análise. 

A aplicação do framework DT apresenta para a primeira mola (Tabela 10) os seguintes 

resultados nas condições sem ruído e 1% de ruído: de 0% a 2% de dano, a estrutura está integra; 
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de 3% a 7% de dano, a estrutura está com dano de 5%; de 8% a 12% de dano, a estrutura está 

com dano de 10%; de 13% a 16% de dano, a estrutura está com dano de 15% e, por fim, de 

17% a 25% de dano, a estrutura está com dano de 20%. Para 3% de ruído, as maiores 

probabilidades de identificação de dano são apresentadas a partir de 10% de dano. Para 5% e 

10% de ruído, as maiores probabilidades ocorrem para dano de 20%. As respostas para as 

demais molas estão no Apêndice.  

 

Tabela 10 – Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra 

engastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

 3% de 

ruído 

5% de 

ruído 

 
 

10% de ruído 

P (%) P (%) DA P (%) P (%) DA P (%) DA 

0% 88,53 85,73 

Ín
te

g
ra

 

38,73 17,13 

Ín
te

g
ra

 

11,20 

D
a
n

o
 5

%
 @

5
 

1% 87,20 81,20 36,47 17,13 12,60 

2% 81,60 60,93 30,40 16,80 12,00 

3% 81,40 62,80 

D
a
n

o
 5

%
 31,27 16,73 

D
a
n

o
 5

%
 

12,33 

4% 85,07 82,20 37,53 19,20 12,33 

5% 85,73 83,53 41,27 17,20 12,53 

D
a
n

o
 1

0
%

 @
4
 

6% 84,67 79,73 38,20 17,80 13,80 

7% 76,73 55,53 33,40 21,07 

D
a
n

o
 1

0
%

 12,80 

8% 82,73 71,27 

D
a
n

o
 1

0
%

 45,53 24,33 14,40 

9% 85,73 84,20 51,20 24,00 13,13 

10% 86,47 85,20 51,87 28,13 15,33 

11% 84,93 76,67 48,67 27,87 15,60 

12% 58,53 46,13 40,27 29,20 

D
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o
 1

5
%

 

 

16,13 

D
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n

o
 2

0
%

 

13% 84,67 77,20 

D
a
n

o
 

1
5
%

 50,47 32,27 17,67 

14% 86,53 85,27 56,80 33,87 18,67 

15% 87,40 85,53 56,93 36,60 21,47 

16% 84,40 69,13 49,60 34,20 26,40 

17% 78,80 53,33 

D
a
n

o
 2

0
%

 

50,80 40,53 

D
a
n

o
 2

0
%

 

27,87 

18% 88,33 82,27 61,27 50,13 33,53 

19% 90,87 90,20 74,27 59,20 35,27 

20% 92,13 91,93 81,53 66,53 40,00 

21% 92,93 92,80 87,20 71,93 41,87 

22% 93,33 93,20 89,47 77,67 46,93 

23% 93,67 93,60 92,53 80,53 47,87 

24% 93,87 93,73 92,73 83,60 50,67 

25% 94,47 94,00 93,20 85,33 57,73 
Fonte: Autor (2024). 
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4.3 Barra Biengastada  

 

4.3.1 Barra Biengastada Discretizada em Dois Elementos Finitos 

 

O sistema foi discretizado em dois elementos finitos (Figura 32(a)) e idealizado como 

modelo de 1-DOF (Figura 32(b)). A frequência natural obtida foi {2851} Hz. Foram adotadas 

as constantes de proporcionalidade 𝛼 = 518,3765 e 𝛽 = 5,3404 × 10−7, oriundas do modelo 

de barra biengastada discretizada em quatro elementos finitos. A resposta dinâmica mostra que 

o sistema oscila de forma rápida até decair para a resposta referente a força aplicada (Figura 

33). 

 

Figura 32 – (a) Barra biengastada discretizada em dois elementos finitos e (b) correspondente idealização. 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 33 – Resposta de deslocamento no tempo, barra biengastada discretizada em dois elementos finitos 

Fonte: Autor (2024). 

 

4.3.1.1 Respostas do SINDy  

 

O sistema foi simulado com as condições iniciais 𝒙(𝑡 = 0) = [0,0]𝑇, no tempo de 0  a 

0,02 𝑠, com período de amostragem de 1,4286 × 10−4 s, que corresponde a sensores com taxa 

de amostragem de 7 kHz. Isso resultou em um conjunto de dados com 140 amostras.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-9E-05

-8E-05

-7E-05

-6E-05

-5E-05

-4E-05

-3E-05

-2E-05

-1E-05

0E+00

0,0E+00 5,0E-03 1,0E-02 1,5E-02 2,0E-02 2,5E-02 3,0E-02

D
es

lo
ca

m
en

to
 (

m
)

Tempo (s)

DOF1



97 
 

 

O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 = 2 × 10−2) e o hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜 =

1 × 10−4) foram determinados de forma que minimizasse a medida de RMSE (Figura 34). 

Nesses cenários, os dois algoritmos descobriram as mesmas equações de movimento, que foram 

reescritas para parametrização de dano (Equação 64). 

 

Figura 34 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, barra biengastada discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

{

𝑥̇1 = 𝑥2

𝑥̇2 = −8560,396 − (1 −
𝑑1
2
−
𝑑2
2
)179768334,214𝑥1 − 690,652𝑥2.

 (64) 

 

 

O modelo SINDy (Equação 64) foi integrado no tempo e comparado com a resposta de 

entrada (Figura 35(a)), sendo observada uma comparação satisfatória e NRMSE de 14,85%. 

Para melhor visualização da resposta, o sistema foi amostrando com uma taxa de amostragem 

de 14 kHz (Figura 35(b)), o NRMSE correspondente foi de 13,02%.  

 
Figura 35 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) considerando a taxa de amostragem de (a) 7 kHz e 

(b) 14 kHz, respectivamente.  
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Fonte: Autor (2024). 
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4.3.1.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 64) foi integrado no tempo de 0 a 0,015 s, usando um 

período de amostragem de 5 × 10−5 s, para cada um dos cenários de interesse: nenhum dano 

(íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-ésima mola (𝑖 = 1, 2). Isso 

resultou em um conjunto de dados de treinamento de 2700 amostras (300 × 9), sendo o conjunto 

de dados final uma matriz de dimensão ((300 ×  9 ) ×  1).  

Como os resultados dos classificadores não foram satisfatórios, quando considerada 

uma taxa de amostragem de 7 kHz, que corresponde a aproximadamente duas vezes e meia a 

frequência do modelo de alta fidelidade, foi realizada outra análise usando uma taxa de 

amostragem de 14 kHz, correspondente a cinco vezes a frequência do modelo. O procedimento 

foi repetido e obtido um novo conjunto de dados final na forma ((300 ×  9 ) ×  1).  

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, aplicada 

usando o conjunto de dados de 7 kHz e 14 kHz são apresentadas na Tabela 11. A Tabela 12 

apresenta as métricas de desempenho dos classificadores para as duas situações, indicando 

desempenho insatisfatório.  

 

Tabela 11 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de barra 

biengastada discretizada em dois elementos finitos. 

Classificador Parâmetro Valor 

  7 kHz 14 kHz 

QDA - - - 

LDA - - - 

NB Modelo Gaussiano Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica  

24 

Uniforme 

Euclidiana 

24 

Uniforme 

Euclidiana  

SVM C 

Kernel 

Gama (kernel não linear) 

Função de decisão 

1000 

RBF 

1 

Um contra um 

(OVO) 

1000 

RBF 

1 

Um contra um 

(OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

300 

2 

Gini 

300 

2 

Gini 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

150 

3 

Gini 

150 

3 

Gini 

DTs Profundidade máxima da árvore 

Critério 

3 

Gini 

3 

Gini 
Fonte: Autor (2024). 
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Tabela 12 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra 

biengastada discretizada em dois elementos finitos. 

 

Classificador 
Acurácia (%) Precisão (%) Revocação (%) F-score  

7 kHz 14 kHz 7 kHz 14 kHz 7 kHz 14 kHz 7 kHz 14 kHz 

SVM 20,74 21,85 14,97 14,54 22,41 23,46 0,16 0,17 

LDA 24,26 24,19 13,01 13,23 24,26 24,19 0,16 0,16 

ET 21,11 21,11 11,45 11,75 22,87 22,95 0,14 0,15 

RF 22,96 21,85 13,44 16,43 24,39 22,57 0,15 0,16 

DTs 22,59 21,85 17,12 13,30 22,91 22,27 0,18 0,15 

k-NN 13,33 14,04 10,53 13,09 13,44 13,69 0,11 0,13 

QDA 13,19 13,26 5,34 5,69 13,19 13,26 0,06 0,07 

NB 13,19 13,26 5,37 5,70 13,19 13,26 0,06 0,07 
Fonte: Autor (2024). 

 

4.3.2 Barra Biengastada Discretizada em Quatro Elementos Finitos 

 

O sistema foi discretizado em quatro elementos finitos (Figura 36(a)) e idealizado como 

modelo de 3-DOF (Figura 36(b)). As três frequências naturais obtidas foram {2653; 5703; 

9268} Hz e as três primeiras razões de amortecimento obtidas foram {2,0; 1,7; 2,0} %, com 

𝛼 = 518,3765 e 𝛽 = 5,3404 × 10−7, estabelecidas para o modo fundamental e o terceiro 

modo. 

A resposta dinâmica mostra que o sistema oscila de forma rápida até decair para a 

resposta referente a força aplicada e as maiores amplitudes de deslocamento ocorrem para os 

DOFs que estão mais próximos do ponto de aplicação da força (Figura 37). 

 

Figura 36 – (a) Barra biengastada discretizada em quatro elementos finitos e (b) correspondente idealização. 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 
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Figura 37 – Respostas de deslocamento no tempo, barra biengastada discretizada em quatro elementos finitos 

Fonte: Autor (2024). 

 

4.3.2.1 Respostas do SINDy  

 

O sistema foi simulado com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0,0,0]𝑇, no tempo 

de 0  a 0,02 𝑠, com período de amostragem de 4,3478 × 10−5 s, que corresponde a sensores 

com taxa de amostragem de 23 kHz. Isso resultou em um conjunto de dados com 460 amostras.  

O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 = 2 × 10−2) e o hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜 =

1 × 10−4) foram determinados de forma que minimizasse a medida de RMSE (Figura 38). 

Nesses cenários, os dois algoritmos descobriram as mesmas equações de movimento, que foram 

reescritas para parametrização de dano (Equação 65). 

 

Figura 38 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, barra biengastada discretizada em quatro elementos finitos. 
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Fonte: Autor (2024). 
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{
 
 
 
 
 
 

 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = 734,191 − (1 −
𝑑1
2
−
𝑑2
2
) 1052602976,874𝑥1 − 1182,783𝑥2 + (1 − 𝑑2)557119326,092𝑥3

      +359,321𝑥4
𝑥̇3 = 𝑥4

   

𝑥̇4 = 1847,961+ (1 − 𝑑2)586372155,950𝑥1 + 586,427𝑥2 − (1 −
𝑑2
2
−
𝑑3
2
)1095127926,492𝑥3

        −1497,707𝑥4 + (1 − 𝑑3)586370681,297𝑥5 + 587,312𝑥6
𝑥̇5 = 𝑥6

𝑥̇6 = −24290,724 + (1 − 𝑑3)555457705,429𝑥3 + 459,502𝑥4 − (1 −
𝑑3
2
−
𝑑4
2
)1050452131,947𝑥5

          −1310,705𝑥6.

 (65)  

 

O modelo SINDy (Equação 65) foi integrado no tempo e comparado com a resposta 

de entrada (Figura 39(a)), sendo observada uma correspondência bem representativa das 

respostas, e o NRMSE para os DOFs são inferiores a 7,5% (Figura 39(b)).  Também foram 

comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical twin, para 

dois cenários: dano de 5% em cada uma das molas e dano de 20% em cada uma das molas 

(Figuras 40 e 41), sendo apresentadas as respostas que apresentam maior e menor erro 

(NRMSE). Para o dano de 5% é observada uma correspondência bem representativa, com 

menor erro na mola 3 (NRMSE inferior a 8%) (Figura 40(a-b)), enquanto o maior erro ocorre 

quando o dano está na mola 4, com NRMSE inferior a 9% (Figura 40(c-d)). Para o dano de 

20%, quando o dano é introduzido na mola 2 verifica-se uma concordância representativa, com 

menor NRMSE (sendo inferior a 7%) (Figura 41(a-b)) e quando o dano de 20% está na mola 4 

é observada uma resposta bem representativa (NRMSE inferior a 10%) (Figura 41(c-d)).  

 

Figura 39 – (a) Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.  
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Fonte: Autor (2024). 
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Figura 40 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) terceira mola, (b) com 

correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE. 
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(c) (d) 

Fonte: Autor (2024). 
 

Figura 41 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) segunda mola, (b) com 

correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE. 
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Fonte: Autor (2024). 
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4.3.2.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 65) foi integrado no tempo de 0 a 0,015 s, usando um 

período de amostragem de 5 × 10−5 s, para cada um dos cenários de interesse: nenhum dano 

(íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-ésima mola (𝑖 = 1, … , 4). 

Isso resultou em um conjunto de dados de treinamento de 5100 amostras (300 ×  17), sendo 

o conjunto de dados final uma matriz de dimensão ((300 ×  17)  ×  3). 

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, usando 

o conjunto de dados são mostrados na Tabela 13. A Tabela 14 apresenta as métricas de 

desempenho para os classificadores. A precisão indica que os métodos SVM apresentou melhor 

desempenho, seguido dos métodos k-NN, LDA e baseados em árvores, o método QDA 

apresentou uma diminuição considerável de precisão e, por fim, o método NB apresentou 

desempenho inferior em relação aos outros métodos. Analisando a métrica de desempenho 

revocação, as conclusões são semelhantes às constatadas na precisão.   

 

Tabela 13 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de barra 

biengastada discretizada em quatro elementos finitos. 

 

Classificador Parâmetro Valor 

QDA - - 

LDA - - 

NB Modelo Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica  

6 

Distância  

Euclidiana 

SVM C 

Kernel 

Gama (kernel não linear) 

Função de decisão 

1000 

RBF 

1 

Um contra um (OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

150 

14 

Gini 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

500 

20 

Entropia 

DTs Profundidade máxima da árvore 

Critério 

14 

Entropia  
Fonte: Autor (2024). 
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Tabela 14 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra 

biengastada discretizada em quatro elementos finitos. 

 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  

SVM 76,66 77,10 77,17 0,76 

k-NN 65,29 66,20 65,71 0,65 

LDA 63,29 62,84 63,29 0,62 

RF 62,55 63,02 63,06 0,62 

ET 60,59 61,06 61,30 0,60 

DTs 57,45 59,05 57,86 0,58 

QDA 37,78 37,59 37,78 0,34 

NB 10,49 14,88 10,49 0,08 
Fonte: Autor (2024). 

 

Na matriz de confusão do método SVM é constatado que a probabilidade de considerar 

um dano quando o sistema está íntegro é 31,6% (12/38) e a probabilidade de indicar uma 

estrutura íntegra quando a segunda mola está com dano de 5% é 3,3% (1/30), quando a quarta 

mola está com dano de 5% é 2,9% (1/35), quando a primeira mola está com dano de 10% é 

2,9% (1/34) e quando a segunda mola está com dano de 10% é 4% (1/25) (Figura 42).  

 

Figura 42 – Matriz de confusão do classificador SVM, conjunto de dados do modelo de barra biengastada 

discretizada em quatro elementos finitos. 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 
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adicionado aos dados (1500 amostras), com média zero e diferentes níveis de ruído, a partir de 

um desvio padrão de 4,50 × 10−6 m, que compreende o desvio padrão do fenômeno em análise. 

A aplicação do framework DT apresenta para a primeira mola (Tabela 15) os seguintes 

resultados para as condições sem ruído e 1% de ruído: de 0% a 2% de dano, a estrutura está 

integra; de 3% a 6% de dano, a estrutura está com dano de 5%; de 7% a 12% de dano, a estrutura 

está com dano de 10%; de 13% a 16% de dano, a estrutura está com dano de 15% e, por fim, 

de 17% a 25% de dano a estrutura está com dano de 20%. Para 3% e 5% de ruído, maiores 

probabilidade de identificação de dano são apresentadas para dano de 20%. Quando utilizado 

10% de ruído, verifica-se uma baixa probabilidade, não identificando o elemento com dano. As 

respostas para as demais molas estão no Apêndice.  

 

Tabela 15 – Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra 

biengastada discretizada em quatro elementos finitos.   
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21% 80,87 77,67 44,53 31,60 17,20 

22% 81,47 78,67 46,60 33,53 19,53 

23% 80,87 76,20 46,07 33,73 20,07 

24% 81,33 72,73 46,73 35,20 21,00 

25% 81,20 72,07 48,53 35,33 21,93 
Fonte: Autor (2024). 
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4.3.3 Barra Biengastada Discretizada em Seis Elementos Finitos 

 

O sistema foi discretizado em seis elementos finitos (Figura 43(a)) e idealizado como 

modelo de 5-DOF (Figura 43(b)). As três primeiras frequências naturais obtidas foram {2616; 

5410; 8555} Hz e as três primeiras razões de amortecimento obtidas foram {2,0; 1,4; 1,5} %, 

com 𝛼 = 562,5844 e 𝛽 = 3,5104 × 10−7, estabelecidas para o modo fundamental e para o 

quinto modo.  

A resposta dinâmica indica que o sistema oscila de forma rápida até decair para a 

resposta referente a força aplicada e as maiores amplitudes de deslocamento ocorrem para os 

DOFs que estão mais próximos do ponto de aplicação da força (Figura 44). 

 

Figura 43 – (a) Barra biengastada discretizada em seis elementos finitos e (b) correspondente idealização. 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 44 – Respostas de deslocamento no tempo, barra biengastada discretizada em seis elementos finitos 

 

Fonte: Autor (2024). 

 

4.3.3.1 Respostas do SINDy  

 

O sistema foi simulado com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0,0,0,0,0,0,0]𝑇, no 

tempo de 0  a 0,02 𝑠, com período de amostragem de 2,6316 × 10−5 s, que corresponde a 

sensores com taxa de amostragem de 38 kHz. Isso resultou em um conjunto de dados com 760 
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amostras. O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 = 1 × 10−2) e o hiperparâmetro ótimo 𝜆 

(𝜆ó𝑡𝑖𝑚𝑜 = 1 × 10−4) foram determinados de forma que minimizasse a medida de RMSE 

(Figura 45). Nesses cenários, os dois algoritmos descobriram as mesmas equações de 

movimento, que foram reescritas para parametrização de dano (Equação 66). 

 

Figura 45 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, barra biengastada discretizada em seis elementos finitos. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = 513,506 − (1 −
𝑑1
2
−
𝑑2
2
) 2420461894,276𝑥1 − 1359,173𝑥2 + (1 − 𝑑2)1258738094,121𝑥3

      +360,321𝑥4
𝑥̇3 = 𝑥4

   

𝑥̇4 = 705,514+ (1 − 𝑑2)1386824387,400𝑥1 + 296,762𝑥2 − (1 −
𝑑2
2
−
𝑑3
2
)2513099364,858𝑥3

        −1171,136𝑥4 + (1 − 𝑑3)1257537034,695𝑥5 + 252,477𝑥6
𝑥̇5 = 𝑥6

𝑥̇6 = 1250,169 + (1 − 𝑑3)1276991365,542𝑥3 + 500,905𝑥4 − (1 −
𝑑3
2
−
𝑑4
2
) 2478312704,101𝑥5

      −1519,659𝑥6 + (1 − 𝑑4)1279275620,141𝑥7 + 485,705𝑥8
𝑥̇7 = 𝑥8

𝑥̇8 = 3287,514 + (1 − 𝑑4)1251052355,486𝑥5 + 995,646𝑥6 − (1 −
𝑑4
2
−
𝑑5
2
) 2499171261,202𝑥7

          −2547,485𝑥8 + (1 − 𝑑5)1372990599,153𝑥9 + 1426,658𝑥10
𝑥̇9 = 𝑥10

𝑥̇10 = −37206,103 + (1 − 𝑑5)1251987379,441𝑥7 + 1041,324𝑥8 − (1 −
𝑑5
2
−
𝑑6
2
)2408011390,353𝑥9

       −2244,117𝑥10.

 

 

 

 

 

 

(66) 

 

O modelo SINDy (Equação 66) foi integrado no tempo e comparado com a resposta 

de entrada (Figura 46), sendo observado uma boa correspondência das respostas, e o NRMSE 

para os DOFs são inferiores a 7,25% (Figura 46(b)). Também foram comparadas as respostas 

de deslocamento no tempo, do modelo SINDy e do physical twin, para dois cenários: dano de 

5% em cada uma das molas e dano de 20% em cada uma das molas (Figuras 47 e 48), sendo 

apresentadas as respostas que apresentam menor e maior erro (NRMSE). Quando o dano é de 
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5%, constata-se uma resposta bem representativa, com menor erro na mola 5 (NRMSE inferior 

a 8%) (Figura 47(a-b)) e maior erro na mola 6 (NRMSE inferior a 9,5%) (Figura 47(c-d)). Para 

o dano de 20%, quando o dano é introduzido na mola 2 verifica-se uma concordância bem 

representativa, com menor erro (NRMS inferior a 6,5%) (Figura 48(a-b)), e quando o dano está 

na mola 6 é observada uma correspondência satisfatória, com maior erro (NRMSE entre 7% a 

12,5%) (Figura 48(c-d)).  

 

Figura 46 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em seis elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 47 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em seis elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) quinta mola, (b) com 

correspondentes NRMSE, e (c) sexta mola, (d) com correspondentes NRMSE. 
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(c) (d) 

Fonte: Autor (2024). 
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Figura 48 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada 

discretizada em seis elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) segunda mola, (b) com 

correspondentes NRMSE, e (c) sexta mola, (d) com correspondentes NRMSE. 
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(c) (d) 

Fonte: Autor (2024). 

 

4.3.3.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 66) foi integrado no tempo de 0 a 0,015 s, usando um 

período de amostragem de 5 × 10−5 s, para cada um dos cenários de interesse: nenhum dano 

(íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada 𝑖-ésima mola (𝑖 = 1,… ,6). 

Isso resultou em um conjunto de dados de treinamento de 7500 amostras (300 × 25), sendo o 

conjunto de dados final uma matriz de dimensão ((300 × 25)  ×  5), 

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, aplicada 

usando o conjunto de dados são mostrados na Tabela 16.  A Tabela 17 apresenta as métricas de 

desempenho para os classificadores. A precisão indica que o método SVM apresentou melhor 

desempenho, seguido dos métodos LDA, k-NN e baseados em árvores, mais uma vez, os 

métodos QDA e NB apresentou desempenho bem inferior em relação aos outros métodos. 

Analisando a métrica de desempenho revocação, as conclusões são semelhantes às constatadas 

na precisão.   
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Tabela 16 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de barra 

biengastada discretizada em seis elementos finitos. 

 

Classificador Parâmetro  Valor 

QDA - - 

LDA - - 

NB Modelo Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica 

3 

Distância  

Euclidiana  

SVM C 

Kernel 

Gama (kernel não linear) 

Função de decisão 

1000 

RBF 

0,1 

Um contra um (OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

500 

14 

Gini 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

300 

20 

Gini 

DTs Número de estimadores 

Critério 

14 

Entropia 
Fonte: Autor (2024). 

 

Tabela 17 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra 

biengastada discretizada em seis elementos finitos. 

 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  

SVM 80,00 80,33 80,57 0,80 

LDA 69,11 69,70 69,11 0,69 

k-NN 56,80 57,65 57,66 0,57 

ET 54,93 55,49 55,98 0,55 

RF 54,27 55,15 55,22 0,54 

DTs 51,07 53,38 51,96 0,52 

QDA 27,11 27,78 27,11 0,22 

NB 7,83 9,78 7,83 0,05 
Fonte: Autor (2024). 

 

A matriz de confusão do método SVM mostra que a probabilidade de considerar um 

dano quando o sistema está íntegro é 33,3% (11/33) (Figura 49).  
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Figura 49 – Matriz de confusão do classificador SVM, conjunto de dados do modelo de barra biengastada 

discretizada em seis elementos finitos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

4.3.3.3 Aplicações do Framework Digital Twin 

 

O physical twin foi simulado no tempo de 0 a 0,02 s, usando um período de amostragem 

de 1,3333 × 10−5 s, que correspondeu a 1500 amostras para cada um dos cenários de interesse, 

condição íntegra e de 1% até 25% de dano em cada elemento. Um ruído gaussiano aleatório foi 

adicionado aos dados (1500 amostras), com média zero e diferentes níveis de ruído, a partir de 

um desvio padrão de 2,30 × 10−6 m, que compreende o desvio padrão do fenômeno em análise. 
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A aplicação do framework DT apresenta os seguintes resultados para a primeira mola 

(Tabela 18) nas condições sem ruído e 1% de ruído: de 0% a 2% de dano, a estrutura está 

integra; de 3% a 7% de dano, a estrutura está com dano de 5%; de 8% a 12% de dano, a estrutura 

está com dano de 10%; de 13% a 16% de dano, a estrutura está com dano de 15% e, por fim, 

de 17% a 25% de dano a estrutura está com dano de 20%. Para 3% e 5% de ruído, maiores 

probabilidades de identificação de dano são apresentadas para dano de 20%. Quando utilizado 

10% de ruído, constata-se uma baixa probabilidade, não identificando o elemento com dano. 

As respostas para as demais molas estão no Apêndice.  

 

Tabela 18 – Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra 

biengastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

 3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) DA P (%) DA P (%) DA P (%) DA 

0% 81,13 70,40 

Ín
te

g
ra

 

22,27 

Ín
te

g
ra

 

14,60 

D
a
n

o
 5

%
 @

4
 

8,20 

D
a
n

o
 5

%
 @

4
 

 

1% 80,20 63,53 21,53 14,33 8,53 

2% 75,67 48,13 18,93 14,27 9,53 

3% 74,20 47,20 

D
a
n

o
 5

%
 16,93 15,07 9,47 

4% 77,87 58,60 16,53 14,07 8,87 

5% 78,40 63,07 16,13 

D
a
n

o
 

5
%

 16,13 9,20 

6% 76,80 55,33 15,93 14,87 8,93 

D
a
n

o
 

2
0
%

 @
3
 

 7% 68,73 40,53 14,73 15,20 9,73 

8% 74,27 51,80 

D
a
n

o
 1

0
%

 19,13 

D
a
n

o
 1

0
%

 14,27 12,27 

9% 79,00 62,87 19,33 13,67 11,27 

10% 78,80 64,53 20,93 14,40 11,87 
D

a
n

o
 2

0
%

 

11% 77,40 55,87 20,13 16,13 12,67 

12% 51,20 41,07 19,87 15,60 

D
a
n

o
 2

0
%

  

14,13 

13% 77,87 59,13 

D
a
n

o
 

1
5
%

 24,27 

D
a
n

o
 

1
5
%

 16,80 12,33 

14% 80,47 66,60 24,73 20,00 15,40 

15% 80,13 66,40 25,27 20,67 17,87 

16% 78,00 54,87 30,87 

D
a
n

o
 2

0
%

 

24,60 18,87 

17% 72,07 47,27 

D
a
n

o
 2

0
%

 

37,53 28,33 19,53 

18% 80,27 66,87 45,00 30,27 20,40 

19% 82,67 77,47 49,27 35,47 19,20 

20% 83,40 82,00 53,40 38,33 21,13 

21% 84,20 84,33 60,00 41,00 23,87 

22% 84,60 84,07 61,33 44,67 27,00 

23% 85,00 84,80 66,27 45,00 27,40 

24% 85,07 84,93 70,00 51,20 25,53 

25% 85,80 85,87 72,00 52,20 29,27 
Fonte: Autor (2024). 
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5 EXEMPLOS DE APLICAÇÃO: VIBRAÇÃO TRANSVERSAL 

 

Este capítulo apresenta as etapas para aplicação das técnicas supramencionadas para um 

modelo de viga em vibração transversal. Em seguida, as técnicas são aplicadas a um modelo de 

viga de aço engastada, discretizado em dois e quatro elementos finitos. As propriedades do 

material e informações geométricas dos modelos são as mesmas apresentadas no capítulo 

quatro.  

 

5.1 Procedimento para Aplicação Prática das Técnicas   

 

5.1.1 Physical Twin 

 

O physical twin correspondeu a uma viga prismática em vibração transversal. A equação 

diferencial de movimento que governa a sua vibração, considerando a teoria de viga de Euler-

Bernoulli, consiste em: 

 

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
) + 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 𝑝(𝑥, 𝑡), (67) 

 

onde 𝑣(𝑥, 𝑡) é a deflexão transversal, 𝑥 é a posição espacial ao longo de seu comprimento, 𝑡 é 

o tempo, 𝐸 é o módulo de elasticidade, 𝐼 é o momento de inércia da seção transversal, 𝐴 é a 

área da seção transversal, 𝜌 é a massa específica e 𝑝(𝑥, 𝑡) é a força de excitação transversal 

distribuída. Essa equação diferencial parcial foi discretizada através do método dos elementos 

finitos, empregando-se funções de forma polinomial cúbica, sendo obtido um sistema discreto 

(Equação 51) (CRAIG e KURDILA, 2006).  

As constantes de proporcionalidade (𝛼 e 𝛽) foram estabelecidas para o modo 

fundamental e para um dos modos de frequência mais alta que contribui significativamente para 

a resposta dinâmica (CLOUGH e PENZIEN, 2003). O sistema foi discretizado em dois e quatro 

elementos finitos e foram aplicadas as condições de contorno adequada para o modelo de viga 

engastada. 
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5.1.2 Modelo Baseado na Física 

 

O modelo de viga (physical twin) foi idealizado baseado na física e construído utilizando 

uma descrição de parâmetros concentrados de 𝑛 graus de liberdade (𝑛-DOF), cada DOF foi 

representado por um modelo sólido linear padrão (standard linear solid – SLS), obtidos pela 

associação de uma mola em paralelo ao modelo de Maxwell (Figura 50). O sistema equivalente 

para uma representação 𝑛-DOF é apresentado na Figura 51. 

 

Figura 50 – Idealização do modelo de viga (a) engastada e (b) biengastada, utilizando descrição de parâmetros 

concentrados de  𝑛-DOF representado por um modelo SLS. 

 

Fonte: Autor (2024) 

 

Figura 51 – Idealização do sistema equivalente 𝑛-DOF do modelo de viga (a) engastada e (b) biengastada.  

 

 

 

Fonte: Autor (2024). 
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As equações de movimento do sistema equivalente 𝑛-DOF (Figura 51) (Equação 52) 

foram convertidas em um sistema de equações diferenciais de primeira ordem (Equação 68), 

para o modelo de viga engastada, não haverá as parcelas correspondentes a 𝑘𝑛+1, 𝑘2𝑛+1 e 

𝑘2𝑛+2:   

 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + (−

𝑘1 + 𝑘3
𝑚1

) 𝑥1 + (−
1

𝑚1
(
𝑐1(𝑘1 + 𝑘2)

𝑘2
))𝑥2 + (−

1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))𝑥2

      + (−
𝑘3
𝑚1
) 𝑥3 + (

1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))𝑥4

𝑥̇2𝑖−1 = 𝑥2𝑖

   

𝑥̇2𝑖 = (
𝑓𝑖(𝑡)

𝑚𝑖
) + (

𝑘2𝑖−1
𝑚𝑖

) 𝑥2𝑖−3 + (
1

𝑚𝑖
(
𝑐𝑖(𝑘2𝑖−1 + 𝑘2𝑖)

𝑘2𝑖
))𝑥2𝑖−2 + (−

𝑘2𝑖−1 + 𝑘2𝑖+1
𝑚𝑖

) 𝑥2𝑖−1

      +(−
1

𝑚𝑖
(
𝑐𝑖(𝑘2𝑖−1 + 𝑘2𝑖)

𝑘2𝑖
))𝑥2𝑖   + (−

1

𝑚𝑖
(
𝑐𝑖+1(𝑘2𝑖+1 + 𝑘2𝑖+2)

𝑘2𝑖+2
))𝑥2𝑖 + (

𝑘2𝑖+1
𝑚𝑖

) 𝑥2𝑖+1

      +(
1

𝑚𝑖
(
𝑐𝑖+1(𝑘2𝑖+1 + 𝑘2𝑖+2)

𝑘2𝑖+2
))𝑥2𝑖+2

         para 𝑖 = 2,3, … , 𝑛 − 1
𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + (

𝑘2𝑛−1 + 𝑘2𝑛+1
𝑚𝑛

) 𝑥2𝑛−3 + (
1

𝑚𝑛
(
𝑐𝑖(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))𝑥2𝑛−2 + (−

𝑘2𝑛−1
𝑚𝑛

) 𝑥2𝑛−1

      +(−
1

𝑚𝑛
(
𝑐𝑛(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))𝑥2𝑛 + (−

1

𝑚𝑛
(
𝑐𝑛+1(𝑘2𝑛+1 + 𝑘2𝑛+2)

𝑘2𝑛+2
))𝑥2𝑛 .

 (68) 

 

5.1.3 Respostas do SINDy  

 

Os dados de treinamento para o SINDy foram gerados com a aplicação de uma força 

vertical com magnitude de 100 N na extremidade direita do modelo de viga engastada (physical 

twin), escolhida de forma que mobilizasse a estrutura e atendesse ao seu critério de estabilidade 

estática. As respectivas respostas de deslocamento no tempo foram então registradas. 

Foi considerada uma taxa de amostragem de aproximadamente duas vezes e meia a 

maior frequência do modelo de alta fidelidade.  

Os dados de velocidade (𝑥̇(𝑡)) e aceleração (𝑥̈(𝑡) ) foram determinados através da 

diferenciação numérica dos dados de deslocamento (𝑥(𝑡) ), via método das diferenças finitas 

centrais de segunda ordem.  

Foram comparados os algoritmos STLSQ e LASSO, utilizando o pacote PySINDy, 

sendo os modelos LASSO ajustados usando o pacote scikit-learn. O parâmetro 𝛿 para o 

algoritmo STLSQ e o hiperparâmetro 𝜆 para o algoritmo LASSO foram variados considerando 

um determinado intervalo, de modo que aumentar 𝛿 ou 𝜆 produziam modelos com poucos ou 
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nenhum termo e diminuí-los produziam modelos convergentes, e escolhidos de forma que 

minimizasse a medida de erro (RMSE) entre os sinais de entrada de aceleração e a predição das 

equações descobertas para aceleração.  

A matriz da biblioteca SINDy Φ(X) foi construída usando termos polinomiais de 

primeira ordem. O SINDy foi estruturado considerando a estrutura das equações de um modelo 

baseado na física (Equação 68).  

 

5.1.4 Parametrização de Dano 

 

A parametrização de dano para os termos das equações que contêm uma única mola 

correspondeu à Equação (54), enquanto para os termos em que contêm duas molas 

correspondeu à Equação (57) e os termos correspondentes a equivalência do amortecimento 

foram parametrizados usando as Equações (54) e (57), resultando em:  

 

(−
1

𝑚𝑖
(
𝑐𝑖(𝑘𝑖 + 𝑘𝑗)

𝑘𝑗
)) =

(1 −
𝑑𝑖
2 −

𝑑𝑗
2
)

(1 − 𝑑𝑖)
(−

1

𝑚𝑖
(
𝑐𝑖(𝑘𝑖 + 𝑘𝑗)

𝑘𝑗
)).  (69) 

 

As melhores equações de movimento descobertas pelo SINDy foram reescritas para 

parametrização de dano, modelo de barra engastada (Equação 70) e modelo de barra 

biengastada (Equação 71): 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + ((1 −

𝑑1
2
−
𝑑3
2
) (−

𝑘1 + 𝑘3
𝑚1

)) 𝑥1 +

(

 
(1 −

𝑑1
2
−
𝑑2
2
)

(1 − 𝑑2)
(−

1

𝑚1
(
𝑐1(𝑘1 + 𝑘2)

𝑘2
))

)

 𝑥2

      +

(

 
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
(−

1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))

)

 𝑥2 + ((1 − 𝑑3) (
𝑘3
𝑚𝑖
)) 𝑥3

          

      +

(

 
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
(
1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))

)

 𝑥4

𝑥̇2𝑖−1 = 𝑥2𝑖

   

𝑥̇2𝑖 = (
𝑓𝑖(𝑡)

𝑚𝑖
) + ((1 − 𝑑2𝑖−1) (

𝑘2𝑖−1
𝑚𝑖

)) 𝑥2𝑖−3 +

(

 
 (1 −

𝑑2𝑖−1
2

−
𝑑2𝑖
2
)

(1 − 𝑑2𝑖)
(
1

𝑚𝑖
(
𝑐𝑖(𝑘2𝑖−1 + 𝑘2𝑖)

𝑘2𝑖
))

)

 
 
𝑥2𝑖−2

      +((1 −
𝑑2𝑖−1
2

−
𝑑2𝑖+1
2

) (−
𝑘2𝑖−1 + 𝑘2𝑖+1

𝑚𝑖
)) 𝑥2𝑖−1  +

(

 
 (1 −

𝑑2𝑖−1
2

−
𝑑2𝑖
2
)

(1 − 𝑑2𝑖)
(−

1

𝑚𝑖
(
𝑐𝑖(𝑘2𝑖−1 + 𝑘2𝑖)

𝑘2𝑖
))

)

 
 
𝑥2𝑖

      +

(

 
 (1 −

𝑑2𝑖+1
2

−
𝑑2𝑖+2
2

)

(1 − 𝑑2𝑖+2)
(−

1

𝑚𝑖
(
𝑐𝑖+1(𝑘2𝑖+1 + 𝑘2𝑖+2)

𝑘2𝑖+2
))

)

 
 
𝑥2𝑖 + ((1 − 𝑑2𝑖+1) (

𝑘2𝑖+1
𝑚𝑖

)) 𝑥2𝑖+1

      +

(

 
 (1 −

𝑑2𝑖+1
2

−
𝑑2𝑖+2
2

)

(1 − 𝑑2𝑖+2)
(
1

𝑚𝑖
(
𝑐𝑖+1(𝑘2𝑖+1 + 𝑘2𝑖+2)

𝑘2𝑖+2
))

)

 
 
𝑥2𝑖+2

         para 𝑖 = 2,3,… , 𝑛 − 1
𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + ((1 − 𝑑2𝑛−1) (

𝑘2𝑛−1
𝑚𝑛

)) 𝑥2𝑛−3

       +

(

 
 (1 −

𝑑2𝑛−1
2

−
𝑑2𝑛
2
)

(1 − 𝑑2𝑛)
(
1

𝑚𝑛
(
𝑐𝑖(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))

)

 
 
𝑥2𝑛−2 + ((1 − 𝑑2𝑛−1) (−

𝑘2𝑛−1
𝑚𝑛

)) 𝑥2𝑛−1

     +

(

 
 (1 −

𝑑2𝑛−1
2

−
𝑑2𝑛
2
)

(1 − 𝑑2𝑛)
(−

1

𝑚𝑛
(
𝑐𝑛(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))

)

 
 
𝑥2𝑛

 (70) 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + ((1 −

𝑑1
2
−
𝑑3
2
) (−

𝑘1 + 𝑘3
𝑚1

)) 𝑥1 +

(

 
(1 −

𝑑1
2
−
𝑑2
2
)

(1 − 𝑑2)
(−

1

𝑚1
(
𝑐1(𝑘1 + 𝑘2)

𝑘2
))

)

 𝑥2

      +

(

 
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
(−

1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))

)

 𝑥2 + ((1 − 𝑑3) (
𝑘3
𝑚𝑖
)) 𝑥3

          

      +

(

 
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
(
1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))

)

 

𝑥̇2𝑖−1 = 𝑥2𝑖

𝑥4   

𝑥̇2𝑖 = (
𝑓𝑖(𝑡)

𝑚𝑖
) + ((1 − 𝑑2𝑖−1) (

𝑘2𝑖−1
𝑚𝑖

)) 𝑥2𝑖−3 +

(

 
 (1 −

𝑑2𝑖−1
2

−
𝑑2𝑖
2
)

(1 − 𝑑2𝑖)
(
1

𝑚𝑖
(
𝑐𝑖(𝑘2𝑖−1 + 𝑘2𝑖)

𝑘2𝑖
))

)

 
 
𝑥2𝑖−2

      +((1 −
𝑑2𝑖−1
2

−
𝑑2𝑖+1
2

) (−
𝑘2𝑖−1 + 𝑘2𝑖+1

𝑚𝑖
)) 𝑥2𝑖−1  +

(

 
 (1 −

𝑑2𝑖−1
2

−
𝑑2𝑖
2
)

(1 − 𝑑2𝑖)
(−

1

𝑚𝑖
(
𝑐𝑖(𝑘2𝑖−1 + 𝑘2𝑖)

𝑘2𝑖
))

)

 
 
𝑥2𝑖

      +

(

 
 (1 −

𝑑2𝑖+1
2

−
𝑑2𝑖+2
2

)

(1 − 𝑑2𝑖+2)
(−

1

𝑚𝑖
(
𝑐𝑖+1(𝑘2𝑖+1 + 𝑘2𝑖+2)

𝑘2𝑖+2
))

)

 
 
𝑥2𝑖 + ((1 − 𝑑2𝑖+1) (

𝑘2𝑖+1
𝑚𝑖

)) 𝑥2𝑖+1

      +

(

 
 (1 −

𝑑2𝑖+1
2

−
𝑑2𝑖+2
2

)

(1 − 𝑑2𝑖+2)
(
1

𝑚𝑖
(
𝑐𝑖+1(𝑘2𝑖+1 + 𝑘2𝑖+2)

𝑘2𝑖+2
))

)

 
 
𝑥2𝑖+2

         para 𝑖 = 2,3,… , 𝑛 − 1
𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + ((1 −

𝑑2𝑛−1
2

−
𝑑2𝑛+1
2

) (
𝑘2𝑛−1 + 𝑘2𝑛+1

𝑚𝑛
)) 𝑥2𝑛−3

      +

(

 
 (1 −

𝑑2𝑛−1
2

−
𝑑2𝑛
2
)

(1 − 𝑑2𝑛)
(
1

𝑚𝑛
(
𝑐𝑖(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))

)

 
 
𝑥2𝑛−2 + ((1 − 𝑑2𝑛−1) (−

𝑘2𝑛−1
𝑚𝑛

)) 𝑥2𝑛−1

      +

(

 
 (1 −

𝑑2𝑛−1
2

−
𝑑2𝑛
2
)

(1 − 𝑑2𝑛)
(−

1

𝑚𝑛
(
𝑐𝑛(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))

)

 
 
𝑥2𝑛

      +

(

 
 (1 −

𝑑2𝑛+1
2

−
𝑑2𝑛+2
2

)

(1 − 𝑑2𝑛+2)
(−

1

𝑚𝑛
(
𝑐𝑛+1(𝑘2𝑛+1 + 𝑘2𝑛+2)

𝑘2𝑛+2
))

)

 
 
𝑥2𝑛 .

 

 

(71) 
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5.1.5 Construção do Conjunto de Dados  
 

O conjunto de dados final 𝑋𝑑𝑎𝑑𝑜𝑠 é uma matriz de dimensão ((𝑀 × 𝑟)  ×  𝑁), 

formada das 𝑀 amostras de deslocamentos de cada 𝑟 cenários de dano, incluindo a 

estrutura íntegra (classes), com 𝑁 deslocamentos medidos (atributos): 

 

𝑋𝑑𝑎𝑑𝑜𝑠𝑓𝑖𝑛𝑎𝑙 = [

𝑑1𝑋𝑑𝑎𝑑𝑜𝑠
𝑑2𝑋𝑑𝑎𝑑𝑜𝑠

⋯
𝑑𝑟𝑋𝑑𝑎𝑑𝑜𝑠

]. 

 

5.1.6 Construção dos Classificadores de Machine Learning 

 

O conjunto de dados, usado para treinar os classificadores de machine learning, foi 

construído simulando a resposta de deslocamento no tempo do sistema (equações do modelo 

SINDy) com diferentes locais de danos e diferentes intensidades correspondentes. Dessa forma, 

300 amostras foram obtidas para cada um dos cenários de interesse: nenhum dano (íntegra) e 4 

intensidades de dano (5%, 10%, 15% e 20%), distribuído para a 𝑖-ésima mola (𝑖 = 1,… ,2𝑛 −

1) e 𝑗-ésima mola (𝑗 = 2,… ,2𝑛), que representam a rigidez elementar. Uma validação cruzada 

estratificada de 5 folds foi empregada. Para melhorar as condições de treinamento, os dados 

foram normalizados subtraindo a média e dividindo pelo desvio padrão de todas as amostras. 

Um conjunto de classificadores de machine learning, desenvolvido usando o pacote 

scikit-learn da linguagem Python 3.9, foi selecionado para análises, considerando seu uso na 

literatura SHM e sua interpretabilidade. O procedimento de busca em grade, utilizando o 

método de validação cruzada k-fold, foi usado para identificar os hiperparâmetros ótimos de 

cada modelo de classificação, com base em intervalos recomendados na literatura de SHM e 

machine learning e documentação do scikit-learn. Os modelos para cada algoritmo de 

classificação e os respectivos hiperparâmetros são correspondentes os mesmos apresentados na 

Tabela 1. Para os métodos que possuem hiperparâmetros, 90% dos dados foram usados para 

treinamento e 10% para teste, e o modelo final foi ajustado com todos os dados. 
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5.2 Viga Engastada 

 

5.2.1 Viga Engastada Discretizada em Dois Elementos Finitos 

 

O sistema foi discretizado em dois elementos finitos (Figura 52(a)), aplicando as 

condições de contorno fixa-livre (Equação 51), e o modelo de viga foi idealizado como um 

modelo 2-DOF (Figura 52(b)).  

As três primeiras frequências naturais, obtidas a partir das matrizes de massa e rigidez 

do sistema (problema de autovalor generalizado), foram {20,898; 132,013; 446,493} Hz e as 

três primeiras razões de amortecimento obtidas foram {2,0; 0,5; 0,8} %, com 𝛼 = 5,1689 e 

𝛽 = 4,8346 × 10−6, estabelecidas para o modo fundamental e para o quarto modo. 

A resposta dinâmica mostra que o sistema oscila de forma rápida até decair para a 

resposta referente a força aplicada e as maiores amplitudes de deslocamento ocorrem para o 

DOF que está mais próximos do ponto de aplicação da força (Figura 53). 

 

Figura 52 – (a) Viga engastada discretizada em dois elementos finitos e (b) correspondente idealização. 

 

 

 

 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 53 – Respostas de deslocamento no tempo, viga engastada discretizada em dois elementos finitos 

Fonte: Autor (2024). 
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5.2.1.1 Respostas do SINDy  

 

Os dados de treinamento para o SINDy foram gerados simulado o sistema (Equação 51) 

com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0,0,0,0,0]𝑇, no tempo de 0  a 2,5 𝑠, com período 

de amostragem de 2,8571 × 10−4 s, que corresponde a sensores com taxa de amostragem de 

3,5 kHz. Isso resultou em um conjunto de dados com 8750 amostras.  

As equações de movimento do modelo 2-DOF foram convertidas em sistemas de 

equações diferenciais de primeira ordem, para uso do SINDy: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑥̇1 = 𝑥2

𝑥̇2 = (
𝑓1(𝑡)

𝑚1
) + (−

𝑘1 + 𝑘3
𝑚1

) 𝑥1 + (−
1

𝑚1
(
𝑐1(𝑘1 + 𝑘2)

𝑘2
))𝑥2 + (−

1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
))𝑥2

      + (
𝑘3
𝑚1
) 𝑥3 + (

1

𝑚1
(
𝑐2(𝑘3 + 𝑘4)

𝑘4
)) 𝑥4   

𝑥̇2𝑛−1 = 𝑥2𝑛

𝑥̇2𝑛 = (
𝑓𝑛(𝑡)

𝑚𝑛
) + (

𝑘2𝑛−1
𝑚𝑛

) 𝑥2𝑛−3 + (
1

𝑚𝑛
(
𝑐𝑖(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))𝑥2𝑛−2 + (−

𝑘2𝑛−1
𝑚𝑛

) 𝑥2𝑛−1

      +(−
1

𝑚𝑛
(
𝑐𝑛(𝑘2𝑛−1 + 𝑘2𝑛)

𝑘2𝑛
))𝑥2𝑛 .

 (72) 

 

O SINDy foi estruturado considerando a estrutura das equações de um modelo baseado 

na física (Equação 72). 

O parâmetro 𝛿 (algoritmo STLSQ) e hiperparâmetro 𝜆 (algoritmo LASSO) foram 

variados à medida que os valores de RMSE foram computados. Então, o parâmetro ótimo 𝛿 

(𝛿ó𝑡𝑖𝑚𝑜 = 4 × 10−1) e o hiperparâmetro ótimo 𝜆 (𝜆ó𝑡𝑖𝑚𝑜 = 1 × 10−5) foram escolhidos de 

forma que minimizasse a medida de erro (Figura 54). Os dois algoritmos descobriram as 

mesmas equações de movimento, que foram reescritas para parametrização de dano (Equação 

73). O tempo de execução do algoritmo STLSQ foi de 4,1942 s, enquanto para o do algoritmo 

LASSO foi 20 minutos e 1534 segundos.  
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Figura 54 – Determinação do (a) 𝛿ó𝑡𝑖𝑚𝑜 e (b) 𝜆ó𝑡𝑖𝑚𝑜, viga engastada discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

𝑥̇1 = 𝑥2

𝑥̇2 = 16,855 − (1 −
𝑑1
2
−
𝑑3
2
) 471838,773𝑥1 − (

(1 −
𝑑1
2
−
𝑑2
2
)

(1 − 𝑑2)
)3,636 𝑥2   

      −(
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
)3,636 𝑥2 + (1 − 𝑑3)154362,151𝑥3 +

          

 (
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
)0,626 x4   

𝑥̇3 = 𝑥4

𝑥̇4 = −83,158 + ((1 − 𝑑3))627583,891𝑥1  + (
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
)3,941 𝑥2

      

      − (1 − 𝑑3)230230,665𝑥3  − (
(1 −

𝑑3
2
−
𝑑4
2
)

(1 − 𝑑4)
)7,014 𝑥4.

 (73) 

 

Comparando as respostas de deslocamento no tempo do modelo SINDy (Equação 73) e 

a resposta de entrada (physical twin) (Figura 55(a)), constata-se uma ótima concordância das 

respostas, e o NRMSE para os DOFs 1 e 2 são inferiores a 0,60% (Figura 55(b)).  
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Figura 55 – (a) Comparação das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE. 
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Fonte: Autor (2024). 

 

5.2.1.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 73) foi integrado no tempo de 0 a 2 s, usando um período 

de amostragem de 6,6667 × 10−4 s, para cada um dos cenários de interesse: nenhum dano 

(íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%). Cada intensidade de dano foi 

distribuída para cada 𝑖-ésima mola (𝑖 = 1, 3) e 𝑗-ésima mola (𝑖 = 2, 4) (Figura 52). Foi 

considerada uma porcentagem de distribuição (D), para cada intensidade de dano, de 10% e 

90% (D 1), 15% e 85% (D 2), 20% e 80% (D 3), 25% e 75% (D 4), em cada 𝑖-ésima mola e 𝑗-

ésima mola, respectivamente. Isso resultou em quatro conjuntos de dados (CD) de treinamento 

diferentes, cada um com 2700 amostras (300 × 9), sendo cada conjunto de dados final uma 

matriz de dimensão ((300 × 9)  ×  2). Para as quatro porcentagens de distribuição das molas 

foram calculados o NRMSE em relação as respostas do MEF, considerando um dano com 

intensidade de 20% em cada mola, uma vez que é esperado que ocorra o maior erro entre as 

respostas. Quando comparado as respostas, constata-se que o maior erro ocorre para o DOF2, 

quando o dano é introduzido na mola 2, e o erro aumento à medida que a intensidade de dano 

na 𝑖-ésima aumenta (Figura 56).  

Foi escolhido o método SVM para avaliação do desempenho dos quatro conjuntos de 

dados, sendo comparados com respostas de um conjunto de dados gerado do modelo MEF. O 

método SVM foi escolhido devido ter apresentado o melhor desempenho para identificação de 

dano nas investigações anteriores (Capítulo 4). Para cada conjunto de dados, foi realizada uma 

busca de grade com base nos hiperparâmetros da Tabela 1. Dada a constatação de desempenho 

insatisfatório ao utilizar apenas deslocamento como atributo, foram investigados 7 diferentes 
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índices de dano (ID), atributos de deslocamento (ID 1), deslocamento e aceleração (ID 2), 

deslocamento, velocidade e aceleração (ID 3), deslocamento e velocidade (ID 4), velocidade e 

aceleração (ID 5), velocidade (ID 6) e aceleração (ID 7), usando conjunto de dados do MEF 

(Figura 57(a)). Desses, foi escolhido o índice de dano de deslocamento e aceleração (ID 2), 

visto que apresentou melhor desempenho na comparação com os demais, considerando-se a 

precisão e o número de atributos dos cenários investigados. Dessa forma, foram comparados os 

índices de dano com atributo de deslocamento (ID 1) e com atributos de deslocamento e 

aceleração (ID 2) com dados do MEF (Figura 57(b)). Foi constatado que, à medida que o erro 

aumenta (Figura 56(b)), a precisão do modelo de ML também aumenta (Figura 57(b)) e, para o 

conjunto de dados de 25% e 75%, apresenta um desempenho superior ao do modelo MEF. Em 

seguida, foi escolhida a porcentagem de distribuição 20% e 80%, adotada considerando o 

equilíbrio entre o erro, discrepância entre as respostas MEF e SINDy, e o desempenho do 

modelo. 

 

Figura 56 – (a) Comparação das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) para o DOF 2 e (b) correspondentes NRMSE. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 57 – (a) Índices de dano para o conjunto de dados do MEF e (b) índices de dano para os conjuntos de 

dados. 
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Fonte: Autor (2024). 
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Foram comparadas as respostas de deslocamento no tempo, do physical twin e do 

modelo SINDy, para dois cenários: dano de 5% em cada uma das molas e dano de 20% em cada 

uma das molas (Figuras 58 e 59). Para a intensidade de dano de 5%, quando o dano é 

introduzido na mola 1 é apresentada uma ótima correspondência, com NRMSE inferior a 0,6% 

(Figura 58(a-b)) e quando o dano está na mola 2 é observada uma boa correspondência, com 

NRMSE inferior a 5,75% (Figura 58(c-d)). Quando o dano de 20% está na mola 1 verifica-se 

uma ótima correspondência (NRMSE inferior a 2,5%) (Figura 59(a-b)) e quando o dano é 

introduzido na mola 2 constata-se uma concordância satisfatória (com NRMSE inferior a 14%) 

(Figura 59(c-d)). 

 

Figura 58 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) primeira mola, (b) com 

correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE. 
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(c) (d) 

Fonte: Autor (2024). 
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Figura 59 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) primeira mola, (b) com 

correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE. 
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Fonte: Autor (2024). 

 

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, usando 

o conjunto de dados com porcentagem de distribuição 20% e 80% (CD 3) para os dois índices 

de dano, com atributos de deslocamento (ID 1) e deslocamento e aceleração (ID 2) são 

mostrados na Tabela 19. A Tabela 20 apresenta as métricas de desempenho dos classificadores. 

Considerando o índice de dano 1, a precisão indica que os métodos SVM e LDA apresentaram 

os melhores desempenhos, seguido dos métodos k-NN, QDA e os baseados em árvores, e o 

método NB apresentou desempenho bem inferior em relação aos outros métodos. Analisando a 

métrica de desempenho revocação, as conclusões são semelhantes às constatadas na precisão. 

A análise por meio do índice de dano 2 promoveu o aumento significativo de desempenho, com 

valores de precisão indicando que os métodos QDA e SVM apresentaram os melhores 

resultados, seguido dos métodos LDA, k-NN e os baseados em árvores, e o método NB 

novamente apresentou desempenho bem inferior em relação aos outros métodos. Analisando a 

métrica de desempenho revocação, as conclusões são semelhantes às constatadas na precisão. 
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Tabela 19 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de viga 

engastada discretizada em dois elementos finitos. 

Classificador Parâmetro Valor 

  ID 1 ID 2 

QDA - - - 

LDA - - - 

NB Modelo Gaussiano Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica  

 3 

Distância 

Euclidiana  

4 

Distância 

Euclidiana  

SVM C 

Kernel 

Gama (kernel não linear) 

Função de decisão 

1000 

RBF 

1 

Um contra um 

(OVO) 

1000 

Linear 

- 

Um contra um 

(OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

500 

14 

Gini 

200 

14 

Entropia 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

500 

20 

Gini 

300 

20 

Entropia 

DTs Profundidade máxima da árvore 

Critério 

14 

Entropia 

12 

Entropia 
Fonte: Autor (2024). 

 
Tabela 20 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de viga 

engastada discretizada em dois elementos finitos. 

 
 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  
ID 1 ID 2 ID1 ID 2 ID 1 ID 2 ID 1 ID 2 

SVM 67,41 98,52 68,04 98,54 67,85 98,58 0,69 0,99 

LDA 66,00 88,59 64,66 88,31 66,00 88,59 0,65 0,88 

k-NN 59,63 75,55 59,89 75,91 60,28 75,63 0,59 0,76 

QDA 56,07 99,56 55,84 99,57 56,07 99,56 0,54 0,96 

ET 54,44 73,70 54,15 73,39 55,05 73,69 0,54 0,74 

DTs 52,96 71,85 53,08 71,85 52,65 72,24 0,53 71,82 

RF 52,22 73,70 51,84 73,50 52,34 73,87 0,52 0,74 

NB 17,67 21,00 16,90 12,19 17,67 21,00 0,14 0,13 
Fonte: Autor (2024). 

 

Analisando a matriz de confusão do método SVM (Figura 60), conjunto de dados com 

atributos de deslocamento, a probabilidade de classificar corretamente um dano na segunda 

mola com dano de 20% corresponde a 77,1% (27/35), na segunda mola com dano de 5% 

corresponde a 76,7% (23/30), na primeira mola com dano de 5% corresponde a 65,7% (23/35), 

na segunda mola com dano de 15% corresponde a 62,5% (20/32), na primeira mola com dano 

de 15% corresponde a 60% (15/25), na primeira mola com dano de 10% de corresponde a 54,8% 
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(17/31) e na segunda mola com dano de 10% corresponde a 52% (13/25). Outra informação 

que pode ser obtida dessa matriz é a probabilidade de considerar um dano quando o sistema 

está íntegro, que corresponde a 38,2% (13/34). Já a probabilidade de indicar uma estrutura 

íntegra quando o sistema está com dano (falso negativo) na primeira mola com dano de 5% é 

8,6% (3/35), na primeira mola com dano de 10% é 3,2% (1/31), na segunda mola com dano de 

10% é 4% (1/25), na primeira mola com dano de 15% é 8% (2/25) e na segunda mola com dano 

de 20% é 2,9% (1/35). 

 

Figura 60 – Matriz de confusão do classificador SVM, conjunto de dados, índice de dano 1, do modelo de viga 

engastada discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

Na matriz de confusão do método SVM (Figura 61), conjunto de dados com atributos 

de deslocamento e aceleração, a primeira linha mostra que 34 das 34 amostras (soma da linha) 

para a condição da estrutura íntegra estão classificadas corretamente e, de forma análoga, para 

as linhas sucessivas, as estatísticas para identificação de danos podem ser obtidas. A 

probabilidade de classificar corretamente um dano é excelente na segunda mola com dano de 

15% (96,9%) (31/32) e na primeira mola com dano de 10% (90,3%) (28/31), enquanto para os 

demais cenários de danos, todas as amostras são classificadas corretamente. Na matriz de 

confusão do método QDA (Figura 62), a primeira linha mostra que 298 das 300 amostras para 

a condição da estrutura íntegra estão classificadas corretamente e, de forma análoga, para as 

linhas sucessivas, as estatísticas para identificação de danos podem ser obtidas. A probabilidade 

de considerar um dano quando o sistema está íntegro é 0,7% (2/300) e a probabilidade de indicar 

uma estrutura íntegra quando a segunda mola está com dano de 5% é 0,3% (1/300). 
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Figura 61 – Matriz de confusão do classificador SVM, conjunto de dados, índice de dano 2, do modelo de viga 

engastada discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

Figura 62 – Matriz de confusão do classificador QDA, conjunto de dados, índice de dano 2, do modelo de viga 

engastada discretizada em dois elementos finitos. 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

 

5.2.1.3 Aplicações do Framework Digital Twin 

 

Para ilustração do framework DT, o physical twin foi simulado no tempo de 0 a 2 s, 

usando um período de amostragem de 1,3333 × 10−3 s, que correspondeu a 1500 amostras 

para cada um dos nove cenários de interesse (dano investigado – DI): nenhum dano (íntegra) e 

4 intensidades de dano (5%, 10%, 15% e 20%) em cada elemento, de forma que tivesse um 
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número representativo de novos dados. Esses dados de entrada (sinais simulados) não são 

rotulados, uma vez que na prática não é conhecida a classe à qual pertencerá o sinal medido. 

Portanto, o framework DT apresenta a probabilidade de os dados pertencerem a determinada 

classe.  

Para o índice de dano 1 (ID 1), atributo de deslocamento, foi avaliado o método SVM 

que apresentou melhor desempenho (Tabela 21) e para o índice de dano 2 (ID 2), atributos de 

deslocamento e aceleração, foram avaliados os métodos SVM e QDA, que apresentaram 

melhores resultados (Tabela 22). A Tabela 21 mostra que o método SVM identifica o elemento 

íntegro e com dano em todos os cenários investigados. No entanto, 3 dos 4 cenários investigados 

identificam corretamente a intensidade de dano na primeira mola e 1 dos 4 cenários investigados 

identifica corretamente a intensidade de dano na segunda mola. Quando os dados foram 

analisados com atributos de deslocamento e aceleração (ID 2), o método SVM identifica e 

quantifica corretamente todos os cenários investigados no elemento 1 e o método QDA 

identifica corretamente a localização do dano nos elementos 1 e 2. 

 

Tabela 21 – Resultados do framework DT utilizando o método SVM com ID 1, modelo de viga engastada 

discretizada em dois elementos finitos.  

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

 

 

 

 

 

 

 

 

 

DI DA P (%) 

íntegra íntegra 62,80 

d5% @1 d5% @1 60,66 

d10% @1 d10% @1 57,73 

d15% @1 d15% @1 38,00 

d20% @1 d15% @1 51,07 

d5% @2 d10% @2 57,87 

d10% @2 d20% @2 59,33 

d15% @2 d20% @2 70,80 

d20% @2 d20% @2 71,87 
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Tabela 22 – Resultados do framework DT utilizando os métodos SVM e QDA com ID 2, modelo de viga engastada 

discretizada em dois elementos finitos.  

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

Foi utilizado o conjunto de dados com atributo de deslocamento (ID 1) para construir 

um framework DT do classificador SVM para detecção e localização de dano. Os 

hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, são mostrados na 

Tabela 23. A Tabela 24 apresenta as métricas de desempenho para o classificador, mostrando 

que ocorreu um aumento na precisão (Tabelas 20 e 24). É constatado que o método SVM 

detecta, localiza e quantifica corretamente todos os cenários de dano investigados, e com 

exceção da viga com condição íntegra, é apresentada ótima probabilidade (Tabela 25).  

 

Tabela 23 – Hiperparâmetros ótimos para o classificador SVM, conjunto de dados do modelo de viga engastada 

discretizada em dois elementos finitos. 

 

Classificador Parâmetro Valor 

SVM C 

Kernel 

Gama (kernel não linear) 

Função de decisão 

1000 

RBF 

1 

Um contra um 

(OVO) 
Fonte: Autor (2024). 

 

Tabela 24 – Métricas de desempenho para o classificador SVM, conjunto de dados do modelo de viga engastada 

discretizada em dois elementos finitos. 

 

Método Acurácia (%) Precisão (%) Revocação (%) F-score  

SVM 85,19 81,96 79,61 80,64 
Fonte: Autor (2024). 

 

 

 

 

DI 
SVM QDA 

DA P (%) DA P (%) 

íntegra íntegra 93,53 íntegra 96,07 

d5% @1 d5% @1 91,00 d5% @1 91,73 

d10% @1 d10% @1 89,80 d5% @1 82,19 

d15% @1 d15% @1 87,93 d10% @1 87,87 

d20% @1 d20% @1 93,47 d15% @1 80,33 

d5% @2 d5% @2 85,27 d10% @2 91,73 

d10% @2 d5% @2 76,07 d15% @2 87,60 

d15% @2 d5% @1 66,87 d20% @2 99,33 

d20% @2 d10% @1 72,67 d20% @2 99,67 
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Tabela 25 – Resultados do framework DT para os dois primeiros níveis de investigação do dano estrutural, 

utilizando o método SVM com ID 1, modelo de viga engastada discretizada em dois elementos finitos.  

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

5.2.2 Viga Engastada Discretizada em Quatro Elementos Finitos 

 

O sistema foi discretizado em quatro elementos finitos (Figura 63(a)) e a idealização do 

modelo de viga foi construída com um modelo 4-DOF (Figura 63(b)). As três primeiras 

frequências naturais obtidas foram {20,889; 131,055; 369,368} Hz e as três primeiras razões 

de amortecimento obtidas foram {2,0; 0,4; 0,5} %, com 𝛼 = 5,2000 e 𝛽 = 2,8970 × 10−6, 

estabelecidas para o modo fundamental e para o sexto modo. 

A resposta dinâmica mostra que o sistema oscila de forma rápida até decair para a 

resposta referente a força aplicada e as maiores amplitudes de deslocamento ocorrem para o 

DOF que está mais próximo do ponto de aplicação da força (Figura 64). 

 

Figura 63 – (a) Viga engastada discretizada em quatro elementos finitos e (b) correspondente idealização. 

 

 

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

 

 

 

 

 

 

 

DI DA P (%) 

íntegra íntegra 56,60 

d5% @1 d @1 79,53 

d10% @1 d @1 88,13 

d15% @1 d @1 91,00 

d20% @1 d @1 92,53 

d5% @2 d @2 86,93 

d10% @2 d @2 91,00 

d15% @2 d @2 93,53 

d20% @2 d @2 95,19 
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Figura 64 – Respostas de deslocamento no tempo, viga engastada discretizada em quatro elementos finitos. 

 

Fonte: Autor (2024). 

 

5.2.2.1 Respostas do SINDy  

 

Os dados de treinamento para o SINDy foram gerados simulando o sistema (Equação 

51) com as condições iniciais 𝒙(𝑡 = 0) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]𝑇. Foi usado um 

período de amostragem de 7,1429 × 10−5 s, que corresponde a sensores com taxa de 

amostragem de 14 kHz. Foram avaliados cinco diferentes conjuntos de treinamento para 

verificar as respostas geradas, o parâmetro 𝛿, para o algoritmo STLSQ, e o hiperparâmetro 𝜆, 

para o algoritmo LASSO, foram variados considerando um determinado intervalo, sendo 

escolhidos os 𝛿ó𝑡𝑖𝑚𝑜 e 𝜆ó𝑡𝑖𝑚𝑜 de forma que minimizasse a medida de erro (RMSE) (Tabela 26 

e Figura 65). O SINDy foi estruturado considerando a estrutura das equações de um modelo 

baseado na física (Equação 68). 

O método LASSO para o primeiro conjunto de treinamento, com 7000 amostras, teve 

um tempo de execução de 71 minutos e 10 segundos, mesmo reduzindo o intervalo em que o 

algoritmo foi variado, considerando a convergência. À medida que o número de amostras 

aumenta, o tempo de execução consequentemente aumenta, mostrando que o método LASSO 

tem um custo computacional maior, quando comparado com o método STLSQ. Dessa forma, 

foi escolhido para as análises o método STLSQ.  
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Tabela 26 – Avaliação das equações descobertas para os cinco conjuntos de treinamento, considerando o método  

STLSQ. 

 
 
 

Tempo de 

integração (s) 
 

 
 

Número de 

amostras  

Método STLSQ 
 

 

Tempo de 

execução (s) 

 

 

𝛿ó𝑡𝑖𝑚𝑜 

0,5 7000 4,0524 3 × 10−2 

1 14000 6,8191 3 × 10−2 

1,5 21000 10,0179 3 × 10−2 

2 28000 13,1456 3 × 10−2 

2,5 35000 16,4387 3 × 10−2 
Fonte: Autor (2024). 

 

Figura 65 – Avaliação do erro (RMSE) para os cinco conjuntos de treinamento. 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

Foi escolhido o conjunto de dados com 28000 amostras, uma vez o RMSE não 

apresentou diferença significativa quando comparado com o conjunto de dados com 35000 

amostras. O parâmetro ótimo 𝛿 (𝛿ó𝑡𝑖𝑚𝑜 = 3 × 10−2) foi determinado de forma que 

minimizasse a medida de RMSE (Figura 66). As equações de movimento descoberta pelo 

método STLSQ foram reescritas para parametrização de dano (Equação 74). 
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Figura 66 – Determinação do 𝛿ó𝑡𝑖𝑚𝑜, viga engastada discretizada em quatro elementos finitos. 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 
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𝑥̇1 = 𝑥2
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2
)1609040,873𝑥1 −(
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2
−
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2
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      −(
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2
−
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2
)
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)3,409 𝑥2 + (1 − 𝑑3)456323,345𝑥3 +
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𝑑3
2
−
𝑑4
2
)
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2
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2
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𝑑7
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−
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)10,259 𝑥8.

 

 

(74) 

 

Comparando as respostas de deslocamento no tempo do modelo SINDy (Equação 74) 

com a resposta de entrada (Figura 67(a)), uma ótima concordância das respostas pode ser 

observada, e o NRMSE para os DOFs são inferiores a 1,5% (Figura 67(b)).  
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Figura 67 – Comparação de respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS). 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

5.2.2.2 Resultados e Discussões dos Métodos de Machine Learning  

 

O modelo SINDy (Equação 74) foi integrado no tempo de 0 a 2 s, usando um período 

de amostragem de 6,6667 × 10−4 s, para cada um dos cenários de interesse: nenhum dano 

(íntegra) e 4 intensidades de dano (5%, 10%, 15% e 20%). Cada intensidade de dano foi 

distribuída para cada 𝑖-ésima mola (𝑖 = 1, 3, 5, 7) e 𝑗-ésima mola (𝑖 = 2, 4, 6, 8) (Figura 

63). Foi considerada uma porcentagem de distribuição (D), para cada intensidade de dano, de 

10% e 90% (D 1), 15% e 85% (D 2), 20% e 80% (D 3), 25% e 75% (D 4), em cada 𝑖-ésima 

mola e 𝑗-ésima mola, respectivamente. Isso resultou em quatro conjuntos de dados (CD) de 

treinamento diferentes, cada um com 5100 amostras (300 × 17), sendo cada conjunto de dados 

final uma matriz de dimensão ((300 × 17)  ×  4). Para as quatro porcentagens de distribuição 

das molas foram calculados o NRMSE em relação as respostas do MEF, considerando um dano 

com intensidade de 20% em cada mola, uma vez que é esperado que ocorra o maior erro entre 

as respostas. Comparando as respostas, é observado que o maior erro ocorre para o DOF3 

quando o dano é introduzido na mola 4 e o erro aumento à medida que a intensidade de dano 

na 𝑖-ésima aumenta (Figura 68).  

Foi escolhido o método SVM para avaliação do desempenho dos quatro conjuntos de 

dados, considerando como comparativo respostas de um conjunto de dados gerado do modelo 

MEF. Para cada conjunto de dados, foi realizada uma busca de grade com base nos 

hiperparâmetros da Tabela 19. Foram investigados 7 diferentes índices de dano (ID), com 

conjunto de dados do MEF, com atributo de deslocamento (ID 1), deslocamento e aceleração 

(ID 2), deslocamento, velocidade e aceleração (ID 3), deslocamento e velocidade (ID 4), 

velocidade e aceleração (ID 5), velocidade (ID 6) e aceleração (ID 7) (Figura 69(a)). Foi 
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escolhido o índice de dano de deslocamento e aceleração (ID 2), que apresentou desempenho 

significativo quando comparado a precisão e o número de atributos dos cenários investigados. 

Dessa forma, foram comparados os índices de dano com atributo de deslocamento (ID 1) e com 

atributos de deslocamento e aceleração (ID 2) com dados do MEF (Figura 69(b)). Foi constado 

que à medida que o erro aumenta (Figura 68(b)) aumenta a precisão do modelo de ML (Figura 

69(b)). Dessa forma, deve ser escolhida uma porcentagem de distribuição que considere o 

equilíbrio entre o erro, discrepância entre as respostas SINDy e MEF, e o desempenho do 

modelo. Portanto, foi escolhido como porcentagem de distribuição 20% e 80%.  

 

Figura 68 – (a) Comparação de respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para o DOF 3 e (b) correspondentes NRMSE. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Figura 69 – (a) Índices de dano para o conjunto de dados do MEF e (b) índices de dano para os conjuntos de dados. 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

(a) (b) 

Fonte: Autor (2024). 

 

Foram comparadas as respostas de deslocamento no tempo, do physical twin e do 

modelo SINDy, para dois cenários: dano de 5% em cada uma das molas e dano de 20% em cada 

uma das molas (Figuras 70 e 71), sendo apresentadas as respostas que apresentam menor e 

maior erro (NRMSE). A resposta muda dependendo da intensidade do dano, bem como da mola 
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com dano observada. Quando o dano de 5% está na mola 3 é apresentada uma ótima 

correspondência e menor NRMSE (NRMSE inferior a 1,3%) (Figura 70(a-b)) e quando o dano 

está na mola 4 é observada uma boa correspondência e maior NRMSE (NRMSE inferior a 

5,6%) (Figura 70(c-d)). Para o dano de 20%, quando o dano está na mola 3 é observada uma 

ótima correspondência e menor erro (NRMSE inferior 2,1%) (Figura 71(a-b)) e quando o dano 

é introduzido na mola 4 verifica-se uma concordância satisfatória com maior NRMSE (NRMSE 

inferior a 14%) (Figura 71(c-d)). 

 

Figura 70 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) terceira mola, (b) com 

correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.  
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(c) (d) 

Fonte: Autor (2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

N
R

M
S

E
 (

%
)

DOF 1 DOF 2 DOF 3 DOF 4

 

 

0

0,25

0,5

0,75

1

1,25

1,5

N
R

M
S

E
 (

%
)

DOF 1 DOF 2 DOF 3 DOF 4



139 
 

 

Figura 71 – Comparação das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada 

discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) terceira mola, (b) com 

correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE. 
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(c) (d) 

Fonte: Autor (2024). 

 

Os hiperparâmetros ótimos obtidos da busca em grade, com validação cruzada, usando 

o conjunto de dados com porcentagem de distribuição 20% e 80% (CD 3) para os dois índices 

de dano, com atributos de deslocamento (ID 1) e deslocamento e aceleração (ID 2) são 

mostrados na Tabela 27. A Tabela 28 apresenta as métricas de desempenho para dos 

classificadores. Para o índice de dano 1 (ID 1), a precisão indica que os métodos SVM e QDA 

apresentaram os melhores desempenhos, seguido dos métodos LDA, k-NN e os baseados em 

árvores, e o método NB apresentou desempenho bem inferior em relação aos outros métodos. 

Analisando a métrica de desempenho revocação, as conclusões são semelhantes às constatadas 

na precisão. Quando analisado o índice de dano 2 (ID 2) a precisão indica que os métodos QDA 

e SVM apresentaram os melhores desempenhos, seguido dos métodos LDA, os baseados em 

árvore e o k-NN. O método NB novamente apresentou desempenho bem inferior em relação 

aos outros métodos. Analisando a métrica de desempenho revocação, as conclusões são 

semelhantes às constatadas na precisão.  
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Tabela 27 – Hiperparâmetros ótimos para os classificadores de ML, conjunto de dados do modelo de viga 

engastada discretizada em quatro elementos finitos. 

Classificador Parâmetro Valor 

  ID 1 ID 2 

QDA - - - 

LDA - - - 

NB Modelo Gaussiano Gaussiano 

k-NN Número de vizinhos 

Peso 

Métrica  

3 

Distância 

Euclidiana 

3 

Distância 

Euclidiana 

SVM C 

Kernel 

Função de decisão 

1000 

Linear  

Um contra um 

(OVO) 

1000 

Linear 

Um contra um 

(OVO) 

RF Número de estimadores 

Profundidade máxima da árvore 

Critério 

100 

14 

Entropia 

500 

14 

Entropia 

ET Número de estimadores 

Profundidade máxima da árvore 

Critério 

150 

20 

Gini 

500 

20  

Entropia 

DTs Profundidade máxima da árvore 

Critério 

16 

Entropia 

14 

Entropia 
Fonte: Autor (2024). 

 

Tabela 28 – Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de viga 

engastada discretizada em quatro elementos finitos. 

 

Classificador Acurácia (%) Precisão (%) Revocação (%) F-score  
ID 1 ID 2 ID1 ID 2 ID 1 ID 2 ID 1 ID 2 

SVM 84,31 96,86 84,49 97,10 85,01 97,08 0,84 0,97 

QDA 81,25 99,98 81,34 99,98 81,25 99,98 0,81 0,99 

LDA 78,94 88,39 78,92 87,94 78,94 88,39 78,73 0,88 

k-NN 55,69 50,39 57,05 51,78 56,43 50,83 55,95 0,51 

ET 54,12 53,73 55,67 54,13 54,86 53,95 0,54 0,54 

RF 51,76 54,51 52,37 55,53 52,22 54,75 0,52 0,55 

DTs 47,65 48,23 48,89 48,88 48,01 48,65 0,47 0,48 

NB 8,92 8,22 7,19 4,76 8,92 8,22 0,06 0,05 
Fonte: Autor (2024). 

 

A matriz de confusão do método SVM (Figura 72), conjunto de dados com atributos de 

deslocamento, mostra que a probabilidade de considerar um dano quando o sistema está íntegro 

é 31,6% (12/38) e a probabilidade de indicar uma estrutura íntegra quando a segunda mola está 

com dano de 5% é 3,3% (1/30).  
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Figura 72 – Matriz de confusão do classificador SVM, conjunto de dados, índice de dano 1, do modelo de viga 

engastada discretizada em quatro elementos finitos. 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

A matriz de confusão do método SVM (Figura 73), conjunto de dados com atributos de 

deslocamento e aceleração, mostra que a probabilidade de considerar um dano quando o sistema 

está íntegro é 5,3% (2/38) e a probabilidade de indicar uma estrutura íntegra quando a quarta 

mola está com dano de 5% é 2,9% (1/35) e quando a segunda mola está com dano de 15% é 

3,7% (1/27). A matriz de confusão do método QDA (Figura 74) indica que a probabilidade de 

considerar um dano quando o sistema está íntegro é 0,7% (2/300) e a probabilidade de indicar 

uma estrutura íntegra quando a segunda mola está com dano de 5% é 0,3% (1/300). 

 

Figura 73 – Matriz de confusão do classificador SVM, conjunto de dados, índice de dano 2, do modelo de viga 

engastada discretizada em quatro elementos finitos. 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 
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Figura 74 – Matriz de confusão do classificador QDA, conjunto de dados, índice de dano 2, do modelo de viga 

engastada discretizada em quatro elementos finitos. 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

5.2.2.3 Aplicações do Framework Digital Twin 

 

Para ilustração do framework DT, o physical twin foi simulado no tempo de 0 a 2 s, 

usando um período de amostragem de 1,3333 × 10−3 s, que correspondeu a 1500 amostras 

para cada um dos cenários de interesse (dano investigado – DI): nenhum dano (íntegra) e 4 

intensidades de dano (5%, 10%, 15% e 20%) em cada elemento, de forma que tivesse um 

número representativo de dados que o modelo não conhecesse. Esses dados de entrada (sinais 

simulados) não são rotulados, uma vez que na prática não é conhecida a classe ao qual pertence 

o sinal medido. Portanto, o framework DT apresenta a probabilidade de os dados pertencer a 

determinada classe. 

Para o índice de dano 1 (ID 1), atributo de deslocamento, foi avaliado o método SVM, 

uma vez que apresentou melhor desempenho (Tabela 29) e para o índice de dano 2 (ID 2), 

atributos de deslocamento e aceleração, foram avaliados os métodos SVM e QDA, que 

apresentaram melhores resultados (Tabela 30). Considerando o índice de dano 1, o classificador 

SVM identifica e quantifica corretamente os danos nos elementos 1 e 3 dos 4 cenários 

investigados no elemento 2. No elemento 3 não são identificados os danos, embora acerte a 

quantificação, e no elemento 4, 3 dos 4 cenários investigados detecta e localiza o dano (Tabela 

29).  Para o índice de dano 2, o classificador SVM detecta e localiza os danos nos elementos 1 

e 3, com alguns acertos quanto à quantificação. No elemento 2, não são identificados os danos 

e no elemento 4, 1 dos 4 cenários investigados detecta e localiza o dano (Tabela 30). O 
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classificador QDA detecta e localiza os danos nos elementos 1, com alguns acertos quanto à 

quantificação. No elemento 2, os danos são identificados e quantificados corretamente e no 

elemento 3 os danos não são identificados. E, por fim, no elemento 4, 3 dos 4 cenários 

investigados detecta e localiza o dano.  

 

Tabela 29 – Resultados do framework DT utilizando o método SVM com ID 1, modelo de viga engastada 

discretizada em quatro elementos finitos.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DI DA P (%) 

íntegra íntegra 85,73 

d5% @1 d5% @1 80,07 

d10% @1 d10% @1 80,40 

d15% @1 d15% @1 80,33 

d20% @1 d20% @1 89,47 

d5% @2 d5% @2 91,13 

d10% @2 d10% @2 89,20 

d15% @2 d15% @2 77,80 

d20% @2 d15% @2 91,07 

d5% @3 d5% @1 80,27 

d10% @3 d10% @1 81,47 

d15% @3 d15% @1 81,60 

d20% @3 d20% @1 91,73 

d5% @4 íntegra 74,93 

d10% @4 d5% @4 86,27 

d15% @4 d5% @4 78,47 

d20% @4 d10% @4 87,33 
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Tabela 30 – Resultados do framework DT utilizando os métodos SVM e QDA com ID 2, modelo de viga engastada 

discretizada em quatro elementos finitos.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DI 
SVM QDA 

DA P (%) DA P (%) 

íntegra íntegra 84,60 íntegra 83,00 

d5% @1 d10% @1 75,33 d5% @1 85,87 

d10% @1 d20% @1 93,40 d10% @1 79,13 

d15% @1 d20% @1 95,40 d10% @1 80,80 

d20% @1 d20% @1 95,6 d15% @1 86,13 

d5% @2 d15% @3 76,87 d5% @2 90,27 

d10% @2 d20% @3 91,67 d10% @2 89,80 

d15% @2 d20% @3 93,47 d15% @2 91,47 

d20% @2 d20% @3 94,93 d20% @2 90,27 

d5% @3 d5% @3 82,87 d5% @1 85,47 

d10% @3 d15% @3 75,87 d10% @1 82,07 

d15% @3 d20% @3 87,93 d15% @1 78,73 

d20% @3 d20% @3 92,60 d20% @1 87,47 

d5% @4 íntegra 83,53 íntegra 76,93 

d10% @4 íntegra 81,40 d5% @4 75,93 

d15% @4 íntegra 65,53 d5% @4 77,33 

d20% @4 d5% @4 73,13 d10% @4 71,20 
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6. CONCLUSÕES E SUGESTÕES DE TRABALHOS FUTUROS 

 

6.1 Conclusões 

 

Neste trabalho foi construído e apresentado um novo framework para SHM, mais 

especificamente para identificação de danos em elementos estruturais lineares de aço (barras 

comprimidas e vigas). O framework construído integra um modelo híbrido baseado na física e 

orientado a dados e métodos de machine learning, para a construção de um framework digital 

twin. O framework digital twin construído relaciona as entradas do physical twin a cenários de 

danos específicos, avisando se a estrutura apresenta dano, onde está localizado e qual a sua 

intensidade, dessa forma, foram abordados três principais níveis de investigação do dano 

estrutural: detecção, localização e quantificação. A estratégia foi avaliada em diferentes 

configurações de aplicações, considerando a vibração axial e vibração transversal da estrutura. 

Considerando o modelo de barra engastada, com vibração axial, os métodos SVM, LDA 

e QDA apresentaram melhor desempenho à medida que aumentou o número de classes e, 

consequentemente, o número de amostras e o número de atributos, enquanto os métodos k-NN 

e baseados em árvores apresentam menor desempenho. Esses resultados podem ser atribuídos 

devido os métodos SVM, LDA e QDA criarem funções de decisão.  

A identificação do dano na barra biengastada apresentou menor desempenho, quando 

comparada com a condição engastada, sendo constatado que identificar dano em estruturas 

hiperestáticas é mais desafiador. A discretização da estrutura em dois elementos finitos, 

resultando em um único atributo, não foi suficiente para detectar, localizar e quantificar os 

danos estruturais. Os métodos SVM e LDA apresentaram melhor desempenho à medida que o 

número de classes foi aumentado e, consequentemente, o número de amostras e o número de 

atributos, enquanto os demais métodos apresentaram menor desempenho.  

Na vibração transversal foram investigados dois índices de dano, utilizando atributo de 

deslocamento e atributos de deslocamento e aceleração. Considerando o atributo de 

deslocamento, os métodos SVM, LDA e QDA apresentaram melhor desempenho à medida que 

o número de classes foi aumentado e, consequentemente, o número de amostras e o número de 

atributos, enquanto os métodos k-NN e baseados em árvores apresentam menor desempenho 

ou desempenho semelhante. Para os atributos de deslocamento e aceleração, os métodos SVM, 

LDA e QDA apresentaram desempenho semelhante à medida que aumentou o número de 

classes e, consequentemente, o número de amostras e o número de atributos, enquanto os 

métodos k-NN e baseados em árvores apresentam menor desempenho. Apesar do aumento de 
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desempenho considerável quando do uso do atributo de deslocamento e aceleração, apenas o 

uso de recurso de deslocamento se mostrou promissor para detectar e localizar o dano.  

O método SVM apresentou melhor desempenho para identificação de danos estruturais, 

o que pode ser atribuído à sua capacidade de formar um limite preciso, com possibilidade de 

funções não lineares, a partir de uma pequena quantidade de dados de treinamento.  O método 

Naive Bayes apresentou desempenho muito inferior em relação aos demais métodos, sendo um 

método ineficaz para identificação de dano, devido a suposições de independência condicional 

entre as características de cada classe.  

A aplicação do framework digital twin, considerando as condições íntegra e de 1% até 

25% de dano em cada elemento discretizado do modelo de barra, mostrou que o framework DT 

associa os cenários de dano investigados com cenários de danos específicos esperados e se 

mostrou robusto para determinados níveis de ruído.  

Neste estudo, foram considerados para o treinamento cenários da estrutura íntegra e 

quatro intensidades de dano (5%, 10%, 15% e 20%) em cada elemento, considerando uma 

investigação mais desafiadora, no entanto, que considera o mapeamento de toda estrutura. 

Reduzir os cenários de intensidade de dano ou considerar os dois primeiros níveis de 

investigação do dano estrutural, detecção e localização, pode aumentar a precisão do framework 

digital twin. 

 

6.2 Sugestões de Trabalhos Futuros 

 

Considerando os diferentes cenários avaliados, as técnicas propostas apresentaram 

contribuições significativas para o estabelecimento de um sistema de SHM, podendo ser 

expandidas para várias aplicações de engenharia. 

Para aplicações futuras, sugere-se investigar o dano múltiplo, considerando mais de um 

elemento com dano simultaneamente, bem como utilizar dados de sensores físicos e adicionar 

ao DT uma camada de comunicação. Outra vertente promissora consiste em investigar modelos 

baseados na física e construídos utilizando uma descrição de parâmetros concentrados para 

idealização do modelo de viga, além da adoção de condições de vinculações e carregamentos 

distintas das utilizadas pelo autor.   
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APÊNDICE: RESPOSTAS DO FRAMEWORK DT DO CLASSIFICADOR SVM 

 

Barra Engastada Discretizada em Dois Elementos Finitos 

 

Tabela 31 – Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra 

engastada discretizada em dois elementos finitos. 

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

5% de 

ruído 

10% de 

ruído 

 

P (%) P (%) P (%) P (%) P (%) DA 

0% 85,07 84,67 64,93 51,40 29,87 

Ín
te

g
ra

 

1% 85,07 84,87 68,93 51,47 27,20 

2% 82,33 73,93 55,80 48,20 31,33 

3% 80,80 69,00 54,87 49,27 36,07 

D
a
n

o
 5

%
 

4% 84,20 83,67 72,27 60,87 36,60 

5% 84,60 84,27 79,47 65,20 39,40 

6% 83,87 83,27 77,13 60,00 37,13 

7% 80,33 73,60 57,60 49,60 36,87 

8% 83,47 75,07 58,87 52,27 39,40 

D
a
n

o
 1

0
%

 

9% 86,53 86,27 77,53 65,93 43,47 

10% 87,20 87,00 85,13 70,33 45,60 

11% 86,53 86,40 78,80 67,07 43,27 

12% 82,60 77,27 61,20 53,33 40,87 

13% 81,60 76,60 57,93 52,53 40,20 
D

a
n

o
 1

5
%

 
14% 84,53 84,33 78,93 68,27 43,33 

15% 84,87 84,80 82,93 71,60 47,00 

16% 84,87 84,47 78,60 68,87 43,80 

17% 81,27 72,53 58,27 52,47 42,87 

18% 85,80 82,73 66,53 60,40 53,13 

D
a
n

o
 2

0
%

 19% 89,20 89,33 85,40 75,73 64,07 

20% 91,07 90,93 90,13 85,93 73,40 

21% 92,07 92,00 91,60 90,47 82,40 

22% 92,93 92,87 93,20 92,73 87,67 

23% 93,73 93,73 93,67 93,40 89,87 

24% 94,20 94,20 94,20 93,87 91,87 

25% 94,73 94,53 94,47 94,47 93,93 
Fonte: Autor (2024). 
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Barra Engastada Discretizada em Quatro Elementos Finitos 

 

Tabela 32 – Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra 

engastada discretizada em quatro elementos finitos.   

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 85,87 83,67 52,80 

Ín
te

g
ra

 

29,40 

Ín
te

g
ra

 

14,73 Dano 5% @4 

1% 87,07 82,93 51,80 31,67 15,47 
 

Dano 5% @3 
2% 83,67 62,40 43,33 28,33 14,93 

3% 87,20 69,20 50,00 

D
a
n

o
 5

%
 32,93 

D
a
n

o
 5

%
 14,60 

  

D
a
n

o
 1

0
%

 

4% 88,80 88,00 61,47 38,07 16,27 

5% 89,20 88,80 63,73 40,20 18,13 

6% 87,73 83,53 60,80 41,60 21,47 

7% 74,73 47,80 45,20 40,60 

D
a
n

o
 1

0
%

 

24,67 

8% 87,27 81,60 61,20 

D
a
n

o
 1

0
%

 50,73 26,13 

9% 88,53 87,60 72,73 55,27 27,60 

10% 87,67 87,47 76,73 56,80 28,33 

11% 85,67 83,80 67,93 49,87 29,33 

  

D
a
n

o
 1

5
%

 

12% 75,73 55,47 50,33 42,67 30,47 

13% 83,07 80,80 63,27 

D
a
n

o
 1

5
%

 54,07 

D
a
n

o
 1

5
%

 

33,93 

14% 86,67 86,53 76,73 61,33 37,40 

15% 86,20 85,80 78,13 62,53 37,60 

16% 83,87 82,87 70,47 55,20 39,67 

  

D
a
n

o
 2

0
%

 
17% 67,33 48,13 49,73 47,67 

D
a
n

o
 2

0
%

 

48,73 

18% 88,40 86,87 71,27 

D
a
n

o
 2

0
%

 

65,13 58,67 

19% 91,67 91,33 86,73 78,53 65,60 

20% 93,87 93,73 91,93 86,73 73,87 

21% 94,47 94,47 94,00 91,87 79,07 

22% 95,00 94,87 94,73 94,33 85,93 

23% 95,53 95,60 95,27 95,20 89,13 

24% 96,13 95,87 95,87 95,80 91,93 

25% 96,33 96,27 96,27 96,13 94,13 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Quatro Elementos Finitos 

 

Tabela 33 – Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra 

engastada discretizada em quatro elementos finitos.   

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 85,87 83,67 52,80 

Ín
te

g
ra

 

29,40 

Ín
te

-

g
ra

 14,73 Dano 5% @4 

1% 83,87 77,47 48,00 27,00 15,87 

  

D
a
n

o
 5

%
 2% 78,93 58,20 39,13 29,67 

 

D
a
n

o
 5

%
 

15,13 

3% 80,40 56,53 45,87 

D
a
n

o
 5

%
 33,67 16,73 

4% 89,33 82,87 58,07 40,33 18,47 

5% 90,13 89,07 64,07 40,00 20,13 

6% 90,07 88,87 62,33 43,07 20,47 

7% 90,20 75,07 55,33 40,47 22,73 

  

D
a
n

o
 1

0
%

 

8% 84,47 57,07 49,47 

D
a
n

o
 1

0
%

 39,80 

 

D
a
n

o
 1

0
%

 23,87 

9% 91,20 86,33 61,27 44,60 26,27 

10% 91,87 91,40 71,40 48,00 26,87 

11% 92,60 91,80 70,60 46,87 25,33 

12% 91,47 83,33 61,07 45,87 26,13 

13% 58,93 48,53 48,00 

D
a
n

o
 1

5
%

 

40,60 

 

D
a
n

o
 1

5
%

 27,07 

  

D
a
n

o
 

1
5
%

 

14% 91,87 85,73 63,00 49,20 29,60 

15% 92,93 92,47 72,27 54,67 31,40 

16% 92,67 92,40 73,20 53,60 31,33 

  

D
a
n

o
 2

0
%

 
17% 92,80 87,87 65,87 49,00 38,13 

18% 78,33 52,60 50,67 46,40 

 

D
a
n

o
 2

0
%

 

42,20 

19% 91,53 84,33 64,13 

D
a
n

o
 2

0
%

 

58,53 49,27 

20% 92,53 92,13 79,47 66,40 57,13 

21% 92,67 92,53 87,40 77,73 62,93 

22% 92,80 92,87 90,47 83,53 67,20 

23% 93,67 93,53 92,53 87,47 70,67 

24% 93,80 93,73 93,60 91,27 78,33 

25% 94,33 94,20 94,00 92,13 81,13 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Quatro Elementos Finitos 

 

Tabela 34 – Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra engastada 

discretizada em quatro elementos finitos.   

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 85,87 83,67 52,80 

Ín
te

g
ra

 

29,40 

Ín
te

-

g
ra

 14,73 

 

D
a
n

o
 5

%
 1% 86,00 84,07 49,13 27,20 18,80 

2% 85,13 70,53 40,13 32,60 

 

D
a
n

o
 5

%
 

22,33 

3% 88,00 67,93 51,33 

D
a
n

o
 5

%
 42,80 23,47 

4% 90,73 89,00 68,47 50,73 26,53 

5% 91,20 91,07 79,33 54,80 27,20 

6% 91,33 91,13 77,27 54,67 26,73 

7% 91,07 86,80 63,60 49,93 30,93 

 

D
a
n

o
 1

0
%

 8% 79,33 51,47 48,07 

D
a
n

o
 1

0
%

 

47,47 

 

D
a
n

o
 1

0
%

 

32,33 

9% 92,53 91,07 69,80 55,93 37,67 

10% 93,07 93,00 81,47 63,07 38,27 

11% 92,93 92,67 83,07 65,60 40,80 

12% 91,73 90,27 74,07 61,47 39,47 

13% 85,73 60,87 52,20 47,40 35,93 

14% 90,47 85,00 62,27 

D
a
n

o
 1

5
%

 54,67 

 

D
a
n

o
 1

5
%

 35,67 

D
a
n

o
 

1
5
%

  

15% 91,27 91,13 80,20 63,80 37,40 

16% 91,40 91,33 83,87 66,00 36,80 

17% 90,60 90,47 78,60 62,67 38,27 

 

D
a
n

o
 2

0
%

 

18% 87,47 72,87 56,33 51,27 47,27 

19% 92,27 84,53 65,47 

D
a
n

o
 2

0
%

 

58,00 

 

D
a
n

o
 2

0
%

 

54,33 

20% 95,13 94,53 84,27 74,20 61,20 

21% 95,60 95,53 93,40 85,67 70,07 

22% 96,07 95,87 95,53 91,13 74,53 

23% 96,33 96,27 96,07 94,07 85,20 

24% 96,67 96,87 96,87 96,33 89,20 

25% 97,47 97,33 97,07 96,87 92,27 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Seis Elementos Finitos 

 

Tabela 35 – Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra 

engastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 88,53 85,73 38,73 

Ín
te

g
ra

 

17,13 

Ín
te

-

g
ra

 11,20 

D
a
n

o
 5

%
 @

5
 1% 89,40 86,40 37,40 16,93 12,47 

2% 87,20 59,27 32,00 18,60 

 

D
a
n

o
 5

%
 12,87 

3% 89,73 75,93 44,40 

D
a
n

o
 5

%
 24,07 13,80 

4% 91,53 90,00 52,87 27,80 13,87 

5% 91,27 90,60 56,73 28,40 13,47 

6% 89,60 85,13 55,20 28,27 12,27 

7% 57,00 48,20 38,40 27,47 

 

D
a
n

o
 1

0
%

 13,13 

8% 91,20 85,87 57,73 

D
a
n

o
 1

0
%

 

37,07 13,00 

D
a
n

o
 1

0
%

 

9% 91,73 90,60 69,13 40,80 12,93 

10% 90,93 90,47 69,87 40,87 13,47 

11% 88,13 81,33 57,33 37,47 15,27 

12% 85,07 63,87 49,47 

D
a
n

o
 1

5
%

 34,40 

 

D
a
n

o
 1

5
%

 
16,73 

13% 92,53 91,40 67,00 47,20 19,33 

D
a
n

o
 2

0
%

 

14% 93,13 92,33 77,80 48,27 24,93 

15% 92,67 89,40 66,67 49,93 30,40 

16% 76,40 49,87 49,13 45,13 

 

D
a
n

o
 2

0
%

 

36,27 

17% 94,40 92,40 69,53 

D
a
n

o
 2

0
%

 

59,20 43,87 

18% 95,47 95,40 85,20 70,67 49,93 

19% 96,13 96,00 93,07 82,13 56,67 

20% 96,73 96,60 95,93 88,53 64,53 

21% 97,20 96,93 96,73 92,60 69,60 

22% 97,53 97,40 96,93 94,53 75,53 

23% 97,60 97,73 97,20 96,47 79,27 

24% 97,60 97,80 97,40 96,40 83,40 

25% 97,80 98,00 97,73 97,27 88,80 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Seis Elementos Finitos 

 

Tabela 36 – Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra 

engastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 88,53 85,73 38,73 

Ín
te

g
ra

 

17,13 

Ín
te

-

g
ra

 11,20 

D
a
n

o
 

5
%

 @
5
 

1% 88,00 74,53 34,60 16,93 11,93 

2% 68,33 46,27 30,27 19,27 

 

D
a
n

o
 5

%
 12,67 

3% 88,80 76,33 44,20 

D
a
n

o
 5

%
 23,53 9,53 

D
a
n

o
 

5
%

 

4% 91,47 86,67 45,60 25,27 9,93 

5% 91,93 88,00 47,87 24,87 10,07 

6% 88,13 64,87 43,00 26,93 11,60 

 

D
a
n

o
 1

0
%

 

7% 87,53 65,40 42,07 
D

a
n

o
 1

0
%

 
27,07 

 

D
a
n

o
 1

0
%

 

12,60 

8% 92,53 84,67 51,67 29,13 13,87 

9% 93,33 90,27 51,80 31,67 13,67 

10% 92,07 81,20 50,60 31,27 14,67 

 

D
a
n

o
 1

5
%

 

11% 49,07 47,73 42,80 

D
a
n

o
 1

5
%

 33,20 
 

D
a
n

o
 1

5
%

 

16,07 

12% 91,73 80,47 51,87 38,67 17,27 

13% 93,20 90,33 56,33 39,53 18,87 

14% 92,53 88,53 57,00 39,13 19,33 

 

D
a
n

o
 2

0
%

 

15% 89,00 66,33 48,60 37,33 

 

D
a
n

o
 2

0
%

 

23,73 

16% 89,13 67,13 54,80 

D
a
n

o
 2

0
%

 

46,13 29,93 

17% 93,80 89,40 69,07 54,33 31,80 

18% 94,80 94,20 80,07 62,80 35,93 

19% 95,00 94,87 86,00 69,67 37,00 

20% 95,47 95,33 89,53 71,47 40,13 

21% 95,87 95,87 89,80 74,93 42,53 

22% 96,07 95,93 89,33 76,27 44,20 

23% 95,87 95,60 88,00 76,53 46,73 

24% 95,60 95,40 87,67 73,73 47,07 

25% 95,33 94,67 83,00 70,60 46,87 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Seis Elementos Finitos 

 

Tabela 37 – Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra engastada 

discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 88,53 85,73 38,73 

Ín
te

g
ra

 

17,13 Íntegra 11,20 5% @5 

1% 87,87 83,80 38,80 22,13 

 

D
a
n

o
 5

%
 

12,47 5% @4 

2% 85,20 62,73 33,26 28,20 16,00 

 

D
a
n

o
 1

0
%

 

3% 89,33 67,67 49,47 

D
a
n

o
 5

%
 32,27 16,93 

4% 92,00 89,27 58,87 36,67 20,80 

5% 92,80 92,07 64,00 38,60 23,07 

6% 91,73 84,73 58,00 36,33 22,47 

7% 70,47 49,40 48,80 

D
a
n

o
 1

0
%

 41,87 

 

D
a
n

o
 1

0
%

 26,73 

8% 92,07 86,07 63,53 48,00 25,33 

9% 93,20 92,73 72,60 52,13 28,20 

10% 92,73 93,07 70,73 50,13 28,60 

11% 90,73 78,87 61,20 44,00 28,53 

12% 83,07 63,87 53,60 

D
a
n

o
 1

5
%

 46,47 

 

D
a
n

o
 1

5
%

 29,20 

 

D
a
n

o
 

1
5
%

 

13% 92,87 90,27 70,20 52,53 29,67 

14% 94,20 93,87 78,53 57,93 34,80 

15% 94,00 93,67 76,60 57,20 36,33 

 

D
a
n

o
 2

0
%

 

16% 92,87 87,13 64,73 52,07 43,93 

17% 81,80 56,53 52,00 

D
a
n

o
 2

0
%

 

51,93 

 

D
a
n

o
 2

0
%

 

48,93 

18% 95,60 91,93 70,87 63,07 57,53 

19% 96,60 96,47 84,60 74,53 63,27 

20% 97,07 97,07 93,47 84,27 70,00 

21% 97,47 97,40 96,20 89,93 73,73 

22% 97,80 97,73 97,27 93,20 82,27 

23% 98,00 98,00 97,80 95,60 84,67 

24% 98,07 98,13 97,93 97,27 88,27 

25% 98,13 98,20 98,13 97,73 90,47 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Seis Elementos Finitos 

 

Tabela 38 – Respostas do framework DT do classificador SVM para a quinta mola, considerando a barra engastada 

discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
5% de 

ruído 

 
10% de 

ruído 

 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 88,53 85,73 38,73 

Ín
te

g
ra

 

17,13 Íntegra 11,20 

D
a
n

o
 5

%
 1% 88,73 80,27 34,60 20,67 

 

D
a
n

o
 5

%
 

14,67 

2% 84,93 58,00 30,53 25,27 15,60 

3% 46,87 47,87 40,33 

D
a
n

o
 5

%
 

32,40 16,20 

4% 91,73 82,93 56,40 38,67 17,53 

5% 93,53 91,93 66,00 43,47 19,73 

6% 94,40 93,80 70,60 48,67 21,40 

D
a
n

o
 1

0
%

 

7% 94,40 92,93 69,53 46,27 24,40 

8% 92,73 78,20 56,27 44,27 24,60 

9% 84,53 56,60 50,20 

D
a
n

o
 1

0
%

 

41,07 

 

D
a
n

o
 1

0
%

 

24,07 

10% 93,87 88,93 63,53 48,80 27,00 

11% 95,00 94,20 73,80 52,93 30,33 

12% 95,40 94,87 78,13 55,80 29,93 

13% 95,07 93,87 70,80 53,67 29,60 

14% 93,07 76,67 58,53 46,47 29,07 

D
a
n

o
 1

5
%

 

15% 90,07 64,13 53,07 

D
a
n

o
 1

5
%

 

46,13 

 

D
a
n

o
 1

5
%

 

30,73 

16% 95,20 92,73 68,73 51,73 30,60 

17% 95,73 95,53 78,87 57,33 33,40 

18% 95,60 95,87 79,27 60,27 35,07 
D

a
n

o
 2

0
%

 

19% 95,07 93,00 70,93 55,33 41,73 

20% 89,47 73,47 59,07 49,40 47,60 

21% 92,80 76,93 59,53 

D
a
n

o
 2

0
%

 56,13 

 

D
a
n

o
 2

0
%

 53,47 

22% 96,60 95,40 76,73 68,53 59,07 

23% 97,07 97,13 89,07 76,73 66,53 

24% 97,67 97,53 95,00 85,33 69,47 

25% 98,00 98,00 97,00 91,93 76,40 

Fonte: Autor (2024). 
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Barra Engastada Discretizada em Seis Elementos Finitos 

 

Tabela 39 – Respostas do framework DT do classificador SVM para a sexta mola, considerando a barra engastada 

discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

 
 

3% de ruído 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) DA P (%) DA P (%) DA P (%) DA 

0% 88,53 85,73 

Ín
te

g
ra

 38,73 

Ín
te

g
ra

 

17,13 

Ín
te

-

g
ra

 11,20 

D
a
n

o
 

5
%

 

@
5

 

1% 87,67 85,27 37,47 15,87 10,67 

2% 86,67 77,73 31,53 17,53 

 

D
a
n

o
 5

%
 

12,33 

 

D
a
n

o
 5

%
 3% 77,47 48,33 31,73 

D
a
n

o
 5

%
 

26,07 12,87 

4% 90,33 77,93 

D
a
n

o
 5

%
 50,40 33,93 14,33 

5% 94,00 92,60 65,27 41,87 14,20 

6% 94,60 94,53 73,67 45,53 17,87 

7% 94,40 93,27 70,67 47,80 20,47 

8% 92,20 83,67 62,53 47,27 21,73 

 

D
a
n

o
 1

0
%

 

9% 66,67 49,53 

D
a
n

o
 1

0
%

 

50,53 

D
a
n

o
 1

0
%

 

44,33 

 

D
a
n

o
 1

0
%

 

25,80 

10% 92,87 87,07 65,93 54,73 27,80 

11% 95,07 94,40 76,27 57,07 29,20 

12% 95,20 94,87 82,93 58,20 29,80 

13% 94,47 92,93 72,87 55,87 30,67 

14% 89,00 75,67 59,00 49,47 35,20 

 

D
a
n

o
 1

5
%

 

15% 90,27 75,60 

D
a
n

o
 1

5
%

 

60,33 

D
a
n

o
 1

5
%

 

53,20 

 

D
a
n

o
 1

5
%

 

40,07 

16% 94,60 94,13 78,93 64,13 43,73 

17% 95,33 95,20 87,20 71,73 43,07 

18% 94,80 94,27 87,33 71,67 44,23 

19% 92,13 91,07 73,53 60,47 42,00 

20% 65,33 52,13 50,00 48,47 48,80 

  

D
a
n

o
 2

0
%

 

21% 93,67 91,87 

D
a
n

o
 2

0
%

 74,53 

D
a
n

o
 2

0
%

 66,13 

 

D
a
n

o
 2

0
%

 55,87 

22% 95,80 95,67 90,40 78,53 65,33 

23% 96,40 96,53 95,60 88,27 75,40 

24% 96,73 96,80 96,73 94,67 81,80 

25% 97,07 97,07 97,00 96,47 87,60 

Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Quatro Elementos Finitos 

 

Tabela 40 – Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra 

biengastada discretizada em quatro elementos finitos.   

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 79,53 63,13 29,07 

Ín
te

-

g
ra

 

20,73 

 

D
a
n

o
 5

%
 

14,27 

 

D
a
n

o
 5

%
 

1% 80,73 60,13 29,40 24,40 14,20 

2% 67,47 44,93 38,00 

 

D
a
n

o
 5

%
 

29,40 18,07 

3% 79,20 69,00 44,87 30,13 16,27 

4% 81,80 78,80 50,33 32,73 17,00 

5% 81,53 80,80 51,73 33,20 17,80 

6% 81,60 74,53 49,27 33,80 18,20 

7% 78,20 56,93 46,67 31,07 19,80 

8% 78,67 54,07 41,60 
 

D
a
n

o
 1

0
%

 30,87 

D
a
n

o
 

1
0
%

 19,07 

D
a
n

o
 

1
0
%

 

9% 81,33 73,53 48,27 31,27 20,00 

10% 81,87 80,00 50,93 31,93 20,60 

11% 81,73 76,73 47,33 31,20 21,13 

D
a
n

o
 

1
5
%

 

12% 76,47 54,33 40,40 34,93 
 

D
a
n

o
 1

5
%

 22,67 

13% 81,20 63,00 49,53 

 

D
a
n

o
 1

5
%

 

37,47 24,33 

14% 82,73 80,53 59,00 39,33 24,93 

 

D
a
n

o
 2

0
%

 

15% 82,40 82,00 60,00 43,73 29,60 

16% 82,27 80,33 57,13 42,07 35,20 

17% 78,13 66,73 50,80 

 

D
a
n

o
 2

0
%

 

38,47 

 

D
a
n

o
 2

0
%

 

38,60 

18% 76,67 56,27 48,60 45,87 42,33 

19% 82,47 80,33 61,13 54,27 45,60 

20% 83,67 83,47 73,07 63,80 53,73 

21% 84,87 84,53 80,27 72,13 58,67 

22% 85,27 85,13 83,47 74,87 62,33 

23% 86,27 86,13 85,33 79,67 66,33 

24% 86,40 86,33 85,80 83,07 68,93 

25% 86,67 86,33 86,13 84,53 72,60 
Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Quatro Elementos Finitos 

 

Tabela 41 – Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra 

biengastada discretizada em quatro elementos finitos.   

 

DI 

sem 

ruído 

1% de 

ruído 

 
 

3% de ruído 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) DA P (%) DA P (%) DA P (%) DA 
 

0% 
 

79,53 
 

63,13 
 

Ín
te

g
ra

  

29,07 

 

Ín
te

g
ra

  

20,73 
Dano 

5% @2 

 

14,27 

D
a
n

o
 5

%
 @

2
 

1% 41,93 44,40 24,27 19,20 

Ín
te

-

g
ra

 13,00 

2% 77,73 57,60 

D
a
n

o
 

5
%

 

@
1
 28,07 

D
a
n

o
 

5
%

 

@
1
 18,27 12,93 

3% 73,93 49,27 26,00 17,80 

 

D
a
n

o
 5

%
 11,13 

4% 71,93 47,40 

 

D
a
n

o
 5

%
 30,47 

 

D
a
n

o
 

5
%

 18,60 15,53 

D
a
n

o
 1

0
%

 

5% 75,40 68,07 32,40 19,60 15,27 

6% 73,07 67,80 31,07 21,80 15,13 

7% 62,13 44,13 31,93 

 

D
a
n

o
 1

0
%

 

26,53 

 

D
a
n

o
 1

0
%

 15,00 

8% 68,33 56,20 

 

D
a
n

o
 1

0
%

 

39,87 29,00 16,07 

9% 75,40 71,33 47,07 31,80 18,40 

D
a
n

o
 1

5
%

 

10% 76,53 75,33 47,33 33,47 19,00 

11% 77,20 74,87 46,87 28,33 19,53 

12% 76,73 70,40 38,60 27,27 
 

D
a
n

o
 1

5
%

 
20,07 

13% 73,67 45,73 34,60 

 

D
a
n

o
 1

5
%

 

31,00 22,67 

D
a
n

o
 2

0
%

 

14% 74,07 54,80 

 

D
a
n

o
 1

5
%

 43,07 31,80 23,27 

15% 80,87 73,73 48,33 33,73 29,47 

16% 81,13 79,47 53,53 34,93 31,27 

17% 80,60 76,80 50,60 33,47 34,67 

18% 78,87 57,20 43,20 36,40 

 

D
a
n

o
 2

0
%

 

38,27 

19% 77,53 59,07 

 

D
a
n

o
 2

0
%

 

47,33 

 

D
a
n

o
 2

0
%

 

45,53 40,73 

20% 79,60 77,20 58,60 52,40 45,20 

21% 80,27 79,93 67,87 58,93 47,40 

22% 80,27 80,07 73,87 65,07 53,60 

23% 80,13 80,07 77,13 68,20 55,33 

24% 80,13 80,00 78,60 72,07 57,40 

25% 79,73 79,53 79,40 74,33 60,80 

Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Quatro Elementos Finitos 

 

Tabela 42 – Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra 

biengastada discretizada em quatro elementos finitos.   

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 79,53 63,13 29,07 Íntegra 20,73 5% @2 14,27 

 

D
a
n

o
 5

%
 @

2
 

1% 70,53 41,87 27,20  

D
a
n

o
 

5
%

 

@
1

 18,53 

 

Ín
te

g
ra

 

14,67 

2% 77,47 57,13 24,80 18,40 12,93 

3% 62,40 36,60 22,60 Dano 5% @3 16,07 14,27 

4% 67,40 48,73 28,67 
  

D
a
n

o
 5

%
 19,00 

 

D
a
n

o
 5

%
 11,13 

5% 75,33 72,60 40,33 25,73 11,73 

D
a
n

o
 

5
%

 

6% 75,13 72,47 46,47 26,47 14,93 

7% 66,87 50,40 39,80 30,27 14,53 

8% 72,07 64,33 38,93 

  

D
a
n

o
 1

0
%

 26,73 

 

D
a
n

o
 1

0
%

 13,73 

 

D
a
n

o
 1

0
%

 

9% 77,53 76,93 51,20 31,00 15,87 

10% 79,73 79,33 55,47 36,20 18,80 

11% 80,60 74,07 50,67 36,60 18,40 

12% 64,13 50,47 41,47 33,00 21,27 

 

D
a
n

o
 2

0
%

 

13% 76,80 66,20 42,20 

  

D
a
n

o
 1

5
%

 

29,67 

 

D
a
n

o
 1

5
%

 
24,93 

14% 79,87 77,67 46,07 31,60 31,60 

15% 80,07 70,73 43,20 32,80 35,93 

16% 57,00 40,47 36,13 36,73 38,87 

17% 76,40 55,27 48,20 

  

D
a
n

o
 2

0
%

 

45,00 

 

D
a
n

o
 2

0
%

 

43,53 

18% 81,47 76,07 58,67 52,40 48,73 

19% 82,40 82,07 68,00 58,93 51,53 

20% 83,13 83,07 75,60 65,87 56,47 

21% 82,87 82,73 79,87 72,87 58,40 

22% 83,33 83,20 81,93 75,93 59,93 

23% 82,60 82,53 82,00 77,20 62,60 

24% 82,20 81,93 81,80 76,60 64,27 

25% 80,40 80,27 79,27 77,40 62,53 

Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Seis Elementos Finitos 

 

Tabela 43 – Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra 

biengastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
5% de ruído 10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 81,13 70,40 22,27 

Ín
te

g
ra

 

14,60 

D
a
n

o
  

5
%

  
 

@
4

 8,20 Dano 5% @4 

1% 80,93 72,00 22,00 12,20 8,20 

 

D
a
n

o
 

1
0
%

 

@
4
 

2% 79,27 53,87 21,86 13,60 

 

D
a
n

o
 5

%
 7,87 

3% 80,27 57,40 30,07 
D

a
n

o
 5

%
 14,60 8,67 

4% 82,27 75,13 34,27 15,27 8,93 

  

D
a
n

o
 2

0
%

 

5% 83,20 80,93 39,47 17,67 9,67 

6% 82,80 74,60 37,53 20,33 

 

D
a
n

o
 1

0
%

 

11,00 

7% 78,13 52,53 32,27 21,67 12,00 

8% 82,67 64,93 40,93 

D
a
n

o
 1

0
%

 

26,00 15,33 

9% 84,13 81,00 45,53 26,93 16,53 

10% 84,13 81,47 47,80 29,13 17,67 

11% 82,40 69,20 42,73 28,13 20,67 

12% 76,93 45,87 39,13 

D
a
n

o
 1

5
%

 26,20 

 

D
a
n

o
 1

5
%

 

24,27 

13% 83,73 72,40 45,87 28,87 25,80 

14% 84,67 82,07 49,27 31,27 27,27 

15% 84,13 80,27 50,13 31,87 31,80 

16% 82,47 65,13 42,60 38,93 

 

D
a
n

o
 2

0
%

 

35,20 

17% 83,07 56,33 48,20 

D
a
n

o
 2

0
%

 

46,40 40,27 

18% 86,67 78,53 61,93 55,93 44,33 

19% 88,47 87,00 69,73 60,40 47,87 

20% 88,87 88,80 77,13 67,20 48,93 

21% 89,73 89,67 82,47 72,20 52,47 

22% 90,47 90,13 86,27 78,20 58,67 

23% 90,73 90,60 88,67 82,80 60,80 

24% 90,60 90,53 89,53 84,07 64,53 

25% 91,47 91,33 91,20 86,80 68,13 

Fonte: Autor (2024). 

 

 

 

 

 

 



175 
 

 

Barra Biengastada Discretizada em Seis Elementos Finitos 

 

Tabela 44 – Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra 

biengastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

 
3% de 

ruído 

 
5% de ruído 10% de ruído 

P (%) P (%) DA P (%) DA P (%) DA P (%) DA 

0% 81,13 70,40 

Ín
te

g
ra

 

22,27 

Ín
te

g
ra

 

14,60 

D
a
n

o
 

5
%

 @
4
 

8,20 

D
a
n

o
 

5
%

 @
4
 

1% 79,67 60,87 22,12 14,00 7,93 

2% 75,87 41,93 19,33 12,20 7,67 

3% 71,27 45,20 
D

a
n

o
 5

%
 23,60 

D
a
n

o
 5

%
 11,60 

D
a
n

o
 

5
%

 8,87 

 

D
a
n

o
 2

0
%

 

4% 82,07 66,60 27,33 12,13 10,67 

5% 83,40 75,40 28,40 12,87 11,87 

6% 83,93 72,47 28,67 15,60 

 

D
a
n

o
 1

0
%

 

13,80 

7% 80,33 52,20 29,27 17,20 14,93 

8% 82,80 57,07 

D
a
n

o
 1

0
%

 33,13 
D

a
n

o
 1

0
%

 18,87 15,13 

9% 84,33 74,27 36,47 19,87 16,60 

10% 85,40 78,93 38,13 22,07 20,80 

11% 85,00 71,20 38,00 21,87 23,07 

12% 77,67 51,13 37,47 24,80 
D

a
n

o
 

1
5
%

 23,47 

13% 82,47 61,53 

D
a
n

o
 1

5
%

 38,27 

D
a
n

o
 1

5
%

 

24,27 27,07 

14% 83,33 76,33 38,40 26,93 28,80 

15% 83,27 77,47 41,67 28,80 

 

D
a
n

o
 2

0
%

 

31,47 

16% 82,73 67,27 38,73 37,40 34,07 

17% 65,80 45,13 42,60 

D
a
n

o
 2

0
%

 

41,73 36,93 

18% 83,47 67,33 

D
a
n

o
 2

0
%

 

53,87 48,00 40,27 

19% 85,27 80,20 61,93 53,87 42,40 

20% 85,67 85,13 68,27 60,60 46,00 

21% 86,53 86,33 74,20 64,40 49,60 

22% 87,13 86,93 79,47 68,87 53,27 

23% 87,33 87,27 83,20 71,93 56,47 

24% 87,87 87,67 85,47 77,63 57,53 

25% 88,60 88,40 87,33 79,93 59,73 

Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Seis Elementos Finitos 

 

Tabela 45 – Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra 

biengastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

 
3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) DA P (%) DA P (%) DA P (%) DA 

0% 81,13 70,40 

Ín
te

g
ra

 

22,27 

ín
te

-

g
ra

 14,60 

 

D
a
n

o
 5

%
 

8,20 

D
a
n

o
 

5
%

 

1% 80,47 65,80 22,20 15,40 8,80 

2% 78,53 51,33 25,33 

 

D
a
n

o
 5

%
 

17,80 9,20 

D
a
n

o
 

1
0
%

 

3% 81,40 47,73 

D
a
n

o
 5

%
 

31,80 18,67 10,93 

4% 85,60 71,00 34,53 20,87 12,53 

5% 85,67 80,80 39,00 20,40 12,40 

 

D
a
n

o
 2

0
%

 

6% 83,87 78,07 37,87 22,00 13,73 

7% 81,27 65,40 37,07 23,87 15,80 

8% 65,13 44,43 38,87 

 

D
a
n

o
 1

0
%

 

25,80 

 

D
a
n

o
 1

0
%

 

17,73 

9% 86,00 69,33 

D
a
n

o
 1

0
%

 41,20 28,20 20,07 

10% 86,07 80,87 46,20 28,20 20,60 

11% 86,00 81,87 43,47 27,67 25,53 

12% 84,60 71,27 44,47 29,13 26,07 

13% 75,80 49,40 40,13 28,87 28,73 

14% 84,27 61,47 

D
a
n

o
 1

5
%

 42,60 

 

D
a
n

o
 1

5
%

 

26,47 

D
a
n

o
 

1
5
%

 30,87 

15% 85,60 78,73 46,80 30,33 34,60 

16% 85,27 82,73 46,60 33,00 37,00 

17% 84,80 75,40 45,47 37,27 

 

D
a
n

o
 2

0
%

 

40,87 

18% 81,87 52,80 43,73 

 

D
a
n

o
 2

0
%

 

47,00 44,80 

19% 86,73 66,87 

D
a
n

o
 2

0
%

 

53,13 50,67 47,13 

20% 88,87 83,80 64,80 57,47 50,20 

21% 89,53 88,93 72,20 61,27 53,20 

22% 90,00 89,67 79,67 69,20 54,87 

23% 90,67 90,53 84,07 74,60 59,33 

24% 90,67 90,53 88,53 77,53 63,47 

25% 91,27 91,13 89,60 81,73 64,27 

Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Seis Elementos Finitos 

 

Tabela 46 – Respostas do framework DT do classificador SVM para a quinta mola, considerando a barra 

biengastada discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

3% de 

ruído 

 
 

5% de ruído 
 

10% de ruído 

P (%) P (%) P (%) DA P (%) DA P (%) DA 

0% 81,13 70,40 22,27 

Ín
te

g
ra

 

14,60 

D
a
n

o
 

5
%

 

@
4

 8,20 

D
a
n

o
 

5
%

 

@
4

 

1% 80,80 70,13 20,53 12,27 7,87 

2% 79,53 58,33 20,00 15,93 

 

D
a
n

o
 5

%
 7,53 

 

D
a
n

o
 1

0
%

 

3% 73,60 42,20 28,20 

D
a
n

o
 5

%
 

16,00 7,53 

4% 81,40 67,13 35,60 17,73 6,93 

5% 83,67 80,07 39,47 18,47 8,00 

6% 83,60 82,93 39,67 18,00 9,33 

7% 82,67 77,20 36,87 19,00 

 

D
a
n

o
 1

0
%

 

11,20 

8% 80,40 59,33 33,00 21,47 9,67 

9% 73,00 48,27 37,33 

D
a
n

o
 1

0
%

 

24,13 10,47 

10% 80,07 71,13 42,53 26,13 10,20 

11% 82,53 77,53 45,27 26,53 14,13 

 

D
a
n

o
 2

0
%

 

12% 82,87 80,80 47,20 26,40 14,00 

13% 82,60 78,20 44,33 26,00 18,20 

14% 78,93 62,67 37,93 24,27 

 

D
a
n

o
 1

5
%

 18,73 

15% 76,93 51,93 39,47 

D
a
n

o
 1

5
%

 

26,07 21,40 

16% 82,73 76,00 45,87 29,93 21,87 

17% 84,00 82,67 48,67 27,53 25,20 

18% 84,53 83,53 49,07 27,33 29,67 

19% 82,93 75,93 42,73 33,47 

 

D
a

n
o
 2

0
%

 

32,80 

20% 78,47 56,20 37,47 39,40 34,07 

21% 80,93 60,60 49,60 

D
a
n

o
 2

0
%

 45,00 39,67 

22% 84,40 79,47 57,67 49,20 41,87 

23% 84,87 84,00 67,87 53,40 39,73 

24% 86,13 85,80 73,20 60,33 44,33 

25% 85,87 85,47 77,33 63,40 44,73 

Fonte: Autor (2024). 
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Barra Biengastada Discretizada em Seis Elementos Finitos 

 

Tabela 47 – Respostas do framework DT do classificador SVM para a sexta mola, considerando a barra biengastada 

discretizada em seis elementos finitos.  

 

DI 

sem 

ruído 

1% de 

ruído 

 
3% de ruído 5% de ruído 10% de ruído 

P (%) P (%) DA P (%) DA P (%) DA P (%) DA 
 

0% 
 

81,13 
 

70,40 
 

Ín
te

g
ra

  

22,27 
Íntegra 

 

14,60 
Dano 

5% @4 

 

8,20 

D
a
n

o
 

5
%

 

@
4

 

1% 78,80 53,13 21,93 

D
a
n

o
 

5
%

 

@
5
 14,00 

D
a
n

o
 

5
%

 

@
5
 6,87 

2% 82,27 74,73 

D
a
n

o
 

5
%

 

@
5
 36,00 17,07 7,67 

 

D
a
n

o
 1

0
%

 

3% 81,73 71,33 35,47 18,40 7,27 

4% 81,80 72,00 

 

D
a
n

o
 

5
%

 38,47 

 

D
a
n

o
 

5
%

 23,33 

 

D
a
n

o
 

5
%

 10,13 

5% 83,60 82,73 52,53 30,73 12,67 

6% 83,20 77,53 50,87 31,80 16,07 

7% 54,80 34,93 

 

D
a
n

o
 1

0
%

 

34,13 

 

D
a
n

o
 1

0
%

 

27,67 

 

D
a
n

o
 1

0
%

 

18,67 

8% 82,20 78,87 53,87 38,13 19,87 

9% 85,47 85,27 68,73 48,80 24,73 

10% 86,20 85,87 75,27 55,27 26,27 

11% 85,80 85,13 68,80 53,80 29,60 

12% 76,47 58,20 51,93 45,07 27,73 

13% 84,60 82,87 

 

D
a
n

o
 1

5
%

 64,07 

 

D
a
n

o
 1

5
%

 52,73 

 

D
a
n

o
 1

5
%

 30,40 

 

D
a
n

o
 1

5
%

 

14% 86,13 86,27 79,73 64,40 35,60 

15% 86,73 86,47 83,73 70,33 36,40 

16% 85,67 85,20 74,93 63,00 36,07 

17% 74,60 58,80 50,67 46,73 44,60 
 

D
a
n

o
 2

0
%

 
18% 87,80 86,07 

 

D
a
n

o
 2

0
%

 

72,00 

 

D
a
n

o
 2

0
%

 

62,40 

 

D
a
n

o
 2

0
%

 

54,93 

19% 89,80 89,33 86,53 78,00 64,87 

20% 90,87 90,53 90,53 85,20 74,60 

21% 91,33 91,33 91,33 90,53 80,73 

22% 92,20 92,00 92,07 91,93 85,73 

23% 92,53 92,60 92,80 92,40 89,20 

24% 93,00 92,87 92,87 92,53 91,20 

25% 93,13 93,07 93,20 93,13 91,67 

Fonte: Autor (2024). 

 

 


