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RESUMO

Este trabalho apresenta um novo framework para monitoramento da integridade estrutural para
identificacdo de danos em elementos estruturais lineares de aco (barras comprimidas e vigas),
no contexto de sistemas dindmicos. O framework integra um modelo hibrido baseado na fisica
e orientado a dados (que pode resultar em um modelo generalizavel, acurado, interpretavel e
computacionalmente eficiente) e métodos de machine learning supervisionado, para a
construcdo de um framework digital twin. As equac@es governantes do movimento da estrutura
integra, descobertas pela modelagem hibrida, sdo usadas para simular a resposta do sistema
com dano em diferentes locais e intensidades. A partir dessas simulagfes, um conjunto de dados
é construido para treinar os classificadores de machine learning, considerando os cenarios da
estrutura integra e com dano. O framework digital twin relaciona as entradas do physical twin
a cenarios de danos especificos, para avisar rapidamente se houver dano, onde esté localizado
e qual a sua intensidade, de forma que possa apoiar as decisdes de engenharia. O framework
digital twin foi avaliado em diferentes configuracGes de aplicagcdes, demonstrando a potencial
contribuicdo para o estabelecimento de sistemas monitoramento da integridade estrutural. O
Support Vector Machine foi o classificador que apresentou melhor desempenho, com preciséo
de 93,37% para a barra engastada e 80,33% para a barra biengastada. Os danos nas barras
engastada e biengastada, considerando a vibragdo axial, foram identificados e robustos para
determinados niveis de ruido. A identificacdo de dano em vigas, considerando a vibracdo
transversal, se mostrou promissora, com precisdo de 84,49% para o classificador Support
Vector Machine, usando atributo de deslocamento, e 99,98% para o classificador Quadratic
Discriminant Analysis, usando atributos de deslocamento e aceleragéo.

Palavras-chave: Identificacdo de Dano; Dinamica das Estruturas; Modelo Hibrido; Machine

Learning; Digital Twin.



ABSTRACT

This work presents a novel structural health monitoring framework for damage identification
in linear steel structural elements (compressed bars and beams), in the context of dynamical
systems. The framework integrates a hybrid physics-based and data-driven model (that can
result in a generalizable, accurate, interpretable and computationally efficient model) and
supervised machine learning methods, to construct a digital twin. The governing equations of
motion of the healthy structure, discovered by hybrid modeling, are used to simulate the
response of the system with damage at different locations and intensities. From these
simulations a dataset is constructed to train the machine learning classifiers, considering the
beam scenarios with damage and undamaged. The constructed digital twin relates the inputs of
the physical twin to specific damage scenarios to quickly warn if there is damage, where it is
located and what is its severity, supporting engineering decisions. The DT framework was
evaluated in different application configurations, demonstrating the potential contribution to
the establishment of structural integrity monitoring systems. Support Vector Machine was the
best performing classifier, with a precision of 93.37% for the cantilever bar and 80.33% for the
fixed-end bar. The damage to the cantilever and fixed-end bars, considering axial vibration, was
identified and robust for certain noise levels. The identification of damage in beams,
considering transverse vibration, proved promising, with a precision of 84.49% for the Support
Vector Machine classifier, using the displacement feature, and 99.98% for the Quadratic

Discriminant Analysis classifier, using the displacement and acceleration features.

Keywords: Damage ldentification; Structural Dynamics; Hybrid Model; Machine Learning,
Digital Twin.
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1 INTRODUCAO

Ao longo da vida Util as estruturas se encontram sujeitas a diversas solicitacdes que
podem causar dano estrutural, com potencial de reduzir significativamente tanto sua integridade
quanto sua funcionalidade, podendo ainda originar e/ou propagar problemas estruturais
relevantes, implicando em custo financeiro significativos e, no limite, acarretar a falha
estrutural. Por vezes, torna-se necessario realizar o monitoramento da estrutura ao longo do
tempo para avaliar a sua integridade, de forma que possibilite identificar o estado atual do dano,
para evitar falhas inesperadas. Algumas técnicas tradicionais utilizadas para investigacdo da
integridade estrutural dependem do julgamento humano, podendo produzir informagdes
tendenciosas e, na maioria dos casos, € necessario avaliar toda a estrutura, ou pelo menos 0s
locais que indicam maior probabilidade de dano, porém, existem situacGes em que 0 acesso a
certos pontos da estrutura apresenta custo elevado e risco com relagdo a seguranca da equipe
técnica responsavel pela avaliacdo. Para superar essas limitacfes, muitos pesquisadores se
concentraram no desenvolvimento de sistemas de monitoramento baseados em vibracéo para
avaliar a integridade estrutural (FUGATE, SOHN e FARRAR, 2001; MAGALHAES, CUNHA
e CAETANO, 2012).

Os métodos baseados em vibracdo tém atraido atencéo significativa, permitindo avaliar
0 comportamento dinamico global da estrutura a partir da aplicacdo de excitagdo em
determinados pontos da estrutura. Numerosos estudos de identificacdo de danos baseados em
vibracdo podem ser encontrados na literatura. Esses métodos consistem essencialmente em
extrair um padrdo de referéncia da resposta de vibracao da estrutura integra, para comparagao
com os padrdes de resposta de vibragcdo da estrutura com dano.

O dano produz mudancas nas propriedades fisicas da estrutura e, consequentemente, em
suas caracteristicas dinamicas (que estdo correlacionados com a massa € a rigidez). Assim, 0s
danos presentes em uma estrutura provocam alteracbes dos seus parametros modais, que
incluem as frequéncias naturais, os modos naturais de vibragéo e os fatores de amortecimento.
Dessa forma, muitos trabalhos foram desenvolvidos utilizando métodos que consideram a
mudanca no comportamento dindmico, incluindo variacbes nas frequéncias naturais
(CAWLEY e ADAMS, 1979; PENNY, WILSON e FRISWELL, 1993; SALAWU, 1997,
SAMMAN e BISWAS (1994a-b); YANG e WANG, 2010), dados de modos de vibragao
(LIEVEN e EWINS, 1988; PANDEY, BISWAS e SAMMAN, 1991; YAZDANPANAH,
SEYEDPOOR e BENGAR, 2015), flexibilidade modal (PANDEY e BISWAS, 1994) e energia
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de deformacdo modal (MORADIPOUR, CHAN e GALLAGE, 2015; SHI e LAW, 1998; SHI,
LAW e ZHANG, 2020; WANG e LI, 2012; WU et al., 2017).

Na abordagem baseada em vibragéo, apesar das vantagens notaveis, a avaliacdo precisa
dos danos ainda requer a expertise de especialistas para realizar a analise modal e extrair as
caracteristicas dindmica das estruturas. Além disso, os parametros modais podem ser facilmente
afetados pela presenca de ruido ou mudancas nas condi¢bes ambientais.

Alternativamente, nos ultimos anos, o desenvolvimento de técnicas de reconhecimento
de padrdes, mais especificamente as abordagens baseadas em machine learning (ML),
proporcionou ferramentas com aplicagbes importantes em véarios campos, alcangando
resultados promissores em problemas de identificacdo de danos. O machine learning
corresponde a habilidade de uma maquina de adquirir seu proprio conhecimento
automaticamente a partir dos dados (MULLER e GUIDO, 2017). Os algoritmos de ML tém
sido bem-sucedidos ao aprender com processos passados, que dependem de diversos padrdes
de dados e métodos de reconhecimento. Esses algoritmos sdo particularmente eficazes no
tratamento de problemas que envolvem relacdes néo lineares e dados contaminados por ruido,
que podem ser desafiadores para o discernimento humano (KHAN e YAIRI, 2018; YAGER e
ZADEH, 2012), podendo permitir a identificagdo de dano mesmo com informagdes limitadas
sobre a estrutura. Cada algoritmo tem sua propria técnica e hiperparametros que podem ser
ajustados para conseguir um melhor desempenho na identificacdo de dano.

Nesse contexto, a integracdo das metodologias de digital twin (DT) e machine learning
pode ser muito promissora, uma vez que possibilita a criacdo de melhores modelos de
automacao, que podem ser usados para exibir predi¢cdes de alta qualidade, fornecendo suporte
a tomada de decisdo. O digital twin é uma representacdo digital virtual de um ativo fisico
(physical twin) (GRIEVES, 2014), replicando-o digitalmente com determinados parametros,
que consistem em informacdes geométricas, fisicas e comportamentais (QI et al., 2021), de
modo que com o uso de big data, sinais de sensores, inteligéncia artificial e machine learning
possibilita simular diferentes cenarios para entender seu desempenho (MENDI, 2022;
RATHORE et al., 2021).

Uma representacdo virtual consiste tradicionalmente em um modelo computacional
baseado na fisica ou modelo orientado a dados (com técnicas de machine learning) (LI et al.,
2022; VANDERHORN e MAHADEVAN, 2021). A modelagem baseada na fisica geralmente
descreve o sistema a ser modelado usando um conjunto de equacgbes governantes que
representam fendbmenos fisicos conhecidos e compreendidos (GOMEZ-CABRERA e
ESCAMILLA-AMBROSIO, 2022). A modelagem orientada a dados, usando técnicas de
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machine learning, se baseia na suposi¢cdo de que os dados sdo uma manifestacdo da fisica
conhecida e desconhecida, de forma que podem ser usados para inferir modelos fisicos
interpretaveis, e desempenham um papel importante, uma vez que a modelagem baseada na
fisica geralmente requer conhecimento detalhado do sistema, o que muitas vezes é dificil, pois
apenas informacdes parciais do sistema sdo conhecidas (RASHEED, SAN e KVAMSDAL,
2020).

Alguns trabalhos foram desenvolvidos na tentativa de usar machine learning para inferir
modelos fisicos a partir de dados. Nos trabalhos de Bongard e Lipson (2007) e Schmidt e Lipson
(2009), a regressdo simbolica foi aplicada para inferir a dindmica ndo linear do sistema. O
método funciona notavelmente bem para descobrir modelos fisicos interpretaveis, mas a
regressao simbdlica € computacionalmente cara e pode ser dificil de dimensionar para grandes
problemas (MONTANS et al., 2019). Uma abordagem alternativa baseada em processos
(BRIDEWELL et al., 2008; TANEVSKI, TODOROVSKI e DZEROSKI, 2016; TANEVSKI
et al., 2017) permite especificar uma biblioteca de relacionamentos ou func¢des entre variaveis
com base no conhecimento do dominio para produzir um conjunto interpretavel de equacdes
governantes. Um método que emprega regressao esparsa (sparse identification of nonlinear
dynamics — SINDy) foi proposto por Brunton, Proctor e Kutz (2016) para encontrar 0 menor
ndmero de termos em uma biblioteca de fungdes candidatas necessérias para modelar a
dindmica de sistemas, o que permite que uma classe maior de funcées seja considerada, quando
comparado com o0 método baseado em processos.

O SINDy mostrou ser capaz de produzir modelos de sistemas dindmicos interpretaveis
e generalizaveis a partir de dados limitados (BRUNTON, PROCTOR e KUTZ, 2016) e tem
sido amplamente aplicado para identificar modelos para sistemas Opticos (SOROKINA,
SYGLETOS e TURITSYN, 2016), conveccdo de plasma (DAM et al., 2017), fluxos de fluidos
(LOISEAU e BRUNTON, 2018), controle preditivo de modelo (KAISER, KUTZ e
BRUNTON, 2018), dinamica de reacdo quimica (HOFFMANN, FROHNER e NOE, 2019),
modelagem estrutural (LAl e NAGARAJAIAH, 2019; MOKHTARI e IMANPOUR, 2024) e
modelagem do movimento de objetos em queda (DE SILVA et al., 2020).

No entanto, o digital twin requer modelos que sejam generalizaveis, confiaveis,
autoevolutivos e computacionalmente eficientes, mantendo boa acuréacia (SAN, RASHEED e
KVAMSDAL, 2021). E desafiador conseguir essas caracteristicas de modelagem usando uma
das duas abordagens de modelagem tradicionais. A modelagem baseada na fisica requer
conhecimento para descrever adequadamente os fendmenos do sistema e geralmente é estatica

no sentido de que ndo é atualizado automaticamente para novos cenarios encontrados apés a
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implantacdo do modelo. A modelagem orientada a dados pode apresentar limitagdo de
generalizacdo dos modelos, especialmente para cenérios de extrapolagdo, e pode ser um desafio
estabelecer quais fisicas sdo modeladas (BLAKSETH et al., 2022).

As caracteristicas de modelagem identificadas por San, Rasheed e Kvamsdal (2021)
podem ser alcancadas por meio do modelo hibrido, que combina o modelo baseado na fisica e
0 modelo orientado a dados em uma arquitetura conjunta, de uma forma que potencialize seus
pontos fortes (KURZ et al., 2022), fornecendo um modelo aprimorado que combina
interpretabilidade, robustez, acurécia e eficiéncia (RASHEED, SAN e KVAMSDAL, 2020).

1.1 Justificativa

O monitoramento continuo da integridade estrutural com metodologias e técnicas
adequadas pode permitir a identificacdo de danos em um estdgio inicial para reduzir
consideravelmente o custo de manutencdo, aumentar a durabilidade e a vida Gtil da estrutura,
garantir a seguranca e evitar a falha do elemento estrutural.

Nesse contexto, com as melhorias no poder computacional e os avangos nas tecnologias
de sensores, hardware e software de aquisi¢do de dados, as técnicas de machine learning e
digital twin apresentam grande potencial, uma vez que permitem a criacdo de modelos sob uma
tendéncia mais digital e possibilitam simular diferentes cenarios para o physical twin a ser
monitorado. Dessa forma, o sistema de monitoramento da integridade estrutural (structural
health monitoring - SHM) com as referidas técnicas acompanha o desempenho do physical twin
em condicBes operacionais e fornece suporte de decisdo para melhorar a gestdo e confiabilidade
das estruturas. No caso do monitoramento de physical twin, duas principais abordagens de
modelagem podem ser implementadas, modelagem baseada na fisica e modelagem orientada a
dados. A abordagem de modelo hibrido, que considera os principios das duas abordagens, pode
ser usada para superar as limitacGes das duas abordagens.

Bigoni e Hesthaven (2020) propuseram uma metodologia de identificacdo de anomalias
baseada em simulacdo, que combina modelo baseado na fisica, dados de sinais sintéticos e
técnicas de machine learning para construir classificadores separados de uma classe para
distinguir os dados gerados a partir de uma estrutura integra dos dados gerados a partir de uma
estrutura com dano. Ritto e Rochinha (2021) propuseram a integracdo de modelo baseado na
fisica com machine learning para construir um DT para deteccdo de danos em uma barra
engastada de aco. Svendsen et al. (2023) desenvolveram uma abordagem de SHM para

identificacdo de danos em pontes, usando dados de um modelo numérico de elementos finitos
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e dados experimentais com machine learning. Rhee et al. (2024) apresentaram uma estratégia
que integra diferentes algoritmos de ML e um novo método de filtragem, desenvolvido para
melhorar o processamento de sinais, para predizer o estado de dano em vigas de aco. Os dados
para treinamento e teste foram obtidos por meio de ensaios de vibracdo em vigas de ago. Ruiz
et al. (2024) apresentaram uma estratégia baseada em ML para deteccdo de danos em viga de
aluminio, utilizando funcédo de resposta em frequéncia (FRF), tanto para simulacdo numérica
quanto para avaliagdo com dados experimentais. Torzoni et al. (2024) propuseram um
framework DT para estruturas de engenharia, onde a estratégia apresentada depende de um
modelo grafico probabilistico. Os dados de treinamento foram gerados a partir de um modelo
numerico de ordem reduzida e o diagndstico da integridade estrutural foi indicado pela
assimilacdo de dados detectados com modelos de aprendizado profundo. A estratégia foi
avaliada em dois estudos de caso sintéticos, envolvendo uma viga e uma ponte, demonstrando
a capacidade do DT. Em Siow et al. (2024) foi proposta uma estratégia de integracdo de um
método baseado em parametros modais em um método hibrido baseado em ML (métodos ndo
supervisionados e supervisionado) para deteccdo e localizacdo de danos em estruturas
semelhantes a vigas. Vu, Thom e Tran et al. (2024) utilizaram métodos de ML para deteccédo
de dano em vigas de agos, usando as flutuacdes nas frequéncias naturais sob varios cenarios de
danos de um modelo de método dos elementos finitos (MEF).

Considerando a potencialidade existente nas técnicas supramencionadas, este trabalho
propbe um novo framework para o monitoramento da integridade estrutural, mais
especificamente para identificacdo de danos em elementos estruturais lineares de aco (barras
comprimidas e vigas). O framework integra um modelo hibrido interpretavel, que combina
modelagem fisica e modelagem orientada a dados, e métodos de machine learning para
classificacdo, para a constru¢cdo de um framework digital twin, no contexto de sistemas
dindmicos. O framework digital twin construido relacionara as entradas do physical twin a
cenarios de danos especificos, para avisar rapidamente se houver dano, onde esta localizado e
qual a sua intensidade. Dessa forma, séo abordados, parcial e implicitamente, trés principais
niveis de investigacdo do dano estrutural: deteccdo, localizacdo e quantificacdo. Com essas
informagdes, poderédo ser estabelecidos critérios para a utilizacdo da estrutura com seguranca,
fornecendo suporte para melhor identificar quando sdo necessarias intervencdes e acdes de

manutencdo, contribuindo para a extensdo da vida util e reducéo de custos financeiros.
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1.2 Contribuicdes da Tese

Dentre as principais contribui¢des da tese, destacam-se: (i) construcdo de um framework
digital twin para SHM, no contexto da dindmica estrutural, mais especificamente para
identificacdo de dano estrutural; (ii) proposi¢do de um modelo hibrido que combina modelo
fisico e modelo orientado a dados, para resultar em modelos de maior intepretacao fisica e mais
robusto, e apresentacdo de uma estratégia para simular diferentes cenarios de dano a partir desse
modelo hibrido; (iii) avaliacdo de uma estratégia para combinar modelo hibrido com métodos
de machine learning, com exploracéo de diferentes métodos e a determinacdo dos respectivos
hiperpardmetros 6timos, no contexto da identificacdo de dano.

1.3 Objetivos

O objetivo geral deste trabalho consiste no desenvolvimento de um framework que
integra modelo hibrido, baseado na fisica e orientado a dados, e machine learning para
construcdo de um framework digital twin para monitoramento da integridade estrutural,
avisando se o elemento estrutural de interesse apresenta dano, onde esté localizado e qual a sua
intensidade.

O objetivo geral é alcancado através dos seguintes objetivos especificos:

a) Desenvolver um modelo hibrido que represente as equacdes governantes do sistema de
interesse a partir da combinacdo de um modelo fisico e modelo orientado a dados;

b) Comparar a robustez de diferentes métodos de machine learning para classificacao;

c) Verificar a robustez dos métodos para diferentes locais de danos e intensidades

correspondentes.

1.4 Metodologia

A metodologia empregada para o desenvolvimento deste trabalho foi realizada em
quatro principais macroetapas: descoberta das equacdes governantes do movimento da
estrutura, parametrizacdo de danos, construgdo dos classificadores de machine learning e
construgédo do framework digital twin.

A primeira macroetapa correspondeu ao desenvolvimento de modelos que
representassem as equacgdes governantes do movimento da estrutura, combinando equagdes

diferenciais parciais, que descrevem a fisica do sistema, com modelagem orientada a dados,
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para compensar os parametros desconhecidos. Dessa forma, o SINDy foi estruturado
considerando a estrutura das equacBes de um modelo baseado na fisica. Os dados de
deslocamento (x;(t)), velocidade (x;(t)) e aceleragdo (X;(t)) da estrutura, em diferentes
tempos (t4,t,, ..., ty), foram usados para construir a matriz de estados (X), a primeira derivada
da matriz de estados (X) e a matriz de biblioteca 0(X), de acordo com um conjunto de funcdes
candidatas especificadas. Em seguida, foi determinada a matriz de esparsidade (Z) e,
consequentemente, as equagdes governantes (Figura 1(a)).

Na segunda macroetapa foram usadas as equacdes governantes descobertas,
correspondentes as equacfes governantes da estrutura integra, para simular a resposta do
sistema com diferentes locais de danos e intensidades correspondentes. Uma vez que foi usada
uma estrutura equacional de um modelo fisico, foi possivel representar o dano pela reducdo da
rigidez local (Figura 1(b)).

A terceira macroetapa correspondeu a construcdo do conjunto de dados, considerando
0s cenarios da estrutura integra e com dano, para aplicacdo do classificador de machine
learning. Os cadigos para os classificadores foram desenvolvidos usando o pacote scikit-learn
da linguagem Python 3.9. Foram consideradas as seguintes etapas: (1) os dados de entrada
foram divididos em dois subconjuntos, de treinamento (90% dos dados) e de teste (10% dos
dados); (2) os dados de treinamento foram usados para avaliar diferentes configuracdes de
hiperparametros, para cada configuracao de hiperparametro foi aplicado o método de validacdo
cruzada k-fold (HASTIE, TIBSHIRANI e FRIEDMAN, 2017; KUHN e JOHNSON, 2013),
resultando em varios modelos e estimativas de desempenho; (3) considerando as configuracdes
de hiperparametros que apresentaram os melhores resultados no procedimento de validacédo
cruzada k-fold, foi usado o conjunto de treinamento completo para ajustar o modelo com essas
configuracdes; (4) o conjunto de teste, retido na etapa 1, foi usado para avaliar o modelo obtido
na etapa 3; (5) ap6s conclusdo da etapa de avaliacdo, 0 modelo foi ajustado a todos os dados de
entrada (conjuntos de dados de treinamento e teste) (RASCHKA, 2020). Quando os métodos
ndo tinham hiperparametros para ajustar, as etapas consistiram, essencialmente, em: (1) utilizar
0 método de validacdo cruzada k-fold no conjunto de dados de entrada (dados de treinamento
e teste) para avaliar o modelo; (2) ajustar o modelo a todos os dados de entrada (Figura 1(c)).

A Ultima macroetapa correspondeu a constru¢do do framework digital twin (Figura
1(d)). O framework DT possui uma arquitetura constituida por quatro camadas: parte fisica,
armazenamento de dados, modelagem de DT e servico (Figura 2). A parte fisica (physical twin)

é representada por um modelo de alta fidelidade, correspondente a uma barra prismatica e uma
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viga prismética governadas por equacdes diferenciais parciais, para gerar a resposta dinamica
da estrutura, produzindo dados sintéticos que seriam provenientes de sensores, sendo a base de
construcdo da parte virtual; a segunda camada é o armazenamento de dados, condicao prévia
para a criacdo de novos conhecimentos; a terceira camada € a modelagem de DT, que suporta
a simulacdo e controla a parte fisica; a quarta camada é a de servico, responsavel pelo
desenvolvimento de aplicacdes orientada a dados ou fungdes de anélise de dados padréo para
fornecer informacgfes ao usuario que possibilite a tomada de decisdo, podendo aumentar a

confiabilidade e produtividade do sistema de engenharia.
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Figura 1 — Procedimento metodolégico proposto para a Tese.
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Figura 2 — Framework DT com quatro camadas.
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1.5 Organizagdo da Tese

O texto desta Tese estéa estruturado em seis capitulos. O primeiro capitulo consiste na
parte introdutdria ao tema da pesquisa, com apresentacdo da contextualizacdo, justificativa,
contribuicdes, objetivos e metodologia.

O segundo capitulo apresenta conceitos relativos a dano e monitoramento estrutural,
machine learning e digital twin.

A descricdo do método identificacdo esparsa de dindmica ndo linear (sparse
identification of nonlinear dynamics — SINDy) para descobrir equa¢des governantes de sistema
dindmico a partir de dados ¢é abordado no terceiro capitulo.

O quarto capitulo apresenta as aplica¢fes das técnicas para um modelo de barra de ago,
considerando a vibragdo axial.

O quinto capitulo apresenta as aplicagfes das técnicas para um modelo de viga
em vibracdo transversal.

O sexto capitulo consiste nas conclusdes do trabalho realizado e sugestdes para
trabalhos futuros cientificos.

No Apéndice sdo apresentadas as respostas da aplicacdo do framework digital twin.
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2 DANO E MONITORAMENTO ESTRUTURAL, MACHINE LEARNING E DIGITAL
TWIN

2.1 Dano e Monitoramento Estrutural

Os danos estruturais sdo intrinsecos as estruturas de engenharia e sao
predominantemente propensos a se propagar devido as a¢Ges estaticas (peso proprio e agdes
com variacgdo lenta), acdes dinamicas (por exemplo, vento, trafego rodoviario e/ou ferroviario,
carga de impacto, sismos e explosdes) e outros fatores (mecanicos, fisicos, biologicos, quimicos
e ambientais).

O dano pode ser definido como uma mudancga na propriedade do material ou nas
caracteristicas geométricas dos elementos estruturais, que afeta adversamente seu desempenho,
seguranca e confiabilidade. A mecénica do dano investiga a degradacdo da estrutura,
considerando que o dano se manifesta na escala macroscopica, como uma perda de rigidez local.
Nesse contexto, 0 dano pode estar presente em toda a estrutura, caracterizando o dano global,
ou apenas em alguns pontos especificos, originando o dano local, sendo a ocorréncia desse
ultimo mais comum. Neste conceito, encontra-se inserida a comparacao entre os estados inicial
(denominado de estado integro ou intacto) e final (denominado de estado com dano).

Esses danos podem reduzir significativamente a durabilidade e a vida util dos
elementos estruturais e, com o decorrer do tempo, podem provocar fadiga em seus materiais e
afetar o funcionamento da estrutura, no que se refere ao conforto e seguranga de seus USUArios.
Pode, ainda, vir a se tornar o fator responsavel pelo surgimento de problemas estruturais de
maior relevancia, gerando custos significativos e, no limite, acarretar a falha estrutural.

Dessa forma, é notdria a necessidade da realizacdo de monitoramento ao longo do
tempo para avaliacdo da integridade estrutural. As abordagens iniciais referentes ao
monitoramento de danos estruturais consistiam na inspecao visual para identificar e avaliar, se
houver, as anomalias, falhas e/ou danos e evoluiram com o tempo, com o aperfeicoamento nas
tecnologias de sensores, hardware e software de aquisicdo de dados. O monitoramento da
integridade estrutural é um campo de pesquisa amplo e interdisciplinar que pode envolver
medicdo continua das condicBes ambientais e operacionais, ensaios experimentais,
identificacdo de sistema e aquisi¢do e gerenciamento de dados. O componente mais critico do
SHM ¢ a identificacdo de danos (FARRAR, DOEBLING e NIX, 2001), que se baseia na

utilizacdo de indicadores confidveis e robustos que permitam detectar, localizar e quantificar
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danos, além de, se possivel, estimar a vida util residual da estrutura apds a caracterizacdo do
dano.

Durante décadas, os sistemas de SHM produziram grandes quantidades de dados de
monitoramento para controlar o comportamento estrutural durante a operacdo (FARRAR e
LIEVEN, 2007). Com as melhorias das tecnologias de sensores, poder computacional, machine
learning e internet das coisas (internet of things - 10T), foi desenvolvido um novo paradigma
de avaliacéo de condicGes que fundem informac6es de dados e os modelos sob uma tendéncia
mais digital, denominado digital twin, que consiste essencialmente em um objeto fisico, réplica
digital e a conexdo (ATTARANe CELIK, 2023; CHAKRABORTY, ADHIKARI e
GANGULLI, 2021). O digital twin é uma das tecnologias digitais de rapida evolucdo que
suportam a transformacao digital da engenharia estrutural para permitir o suporte de decisao
para melhorar o gerenciamento, confiabilidade e sustentabilidade das estruturas (CHIACHIO
etal., 2022; LOVE e MATTHEWS, 2019).

Entre as inimeras abordagens para SHM, o modelo DT esta ganhando cada vez mais
atencdo. Esse modelo é uma reconstrucdo digital de um ativo fisico (physical twin) e é
atualizado frequente e automaticamente, usando dados provenientes de uma rede de sensores
instalados no physical twin. Essa ferramenta pode fornecer funcionalidades para monitora-lo e
otimizé-lo, tomar decisGes informadas e baseadas em dados, no contexto das condicGes
operacionais cotidianas e ap0s eventos extremos, e realizar predi¢gdes comportamentais
estruturais e, em certas condi¢des, compensa-las automaticamente (BADO et al., 2022). De um
modo geral, a eficacia de uma abordagem de SHM ¢é tdo boa quanto sua capacidade de detectar
em tempo habil o aumento de criticidades e danos a estrutura (BROWNJOHN, 2007).

A identificacdo do dano, bem como a quantificacdo da sua intensidade, fornece
importantes vantagens, por exemplo, o estabelecimento de critérios para a utilizacdo da
estrutura com seguranca e a capacidade de melhor identificar quando sdo necessarias
intervencbes na estrutura, para que dessa forma se possa realizar convenientemente a

manutencdo na mesma, contribuindo para a extensao da vida Util e reducédo de custos.

2.2 Machine Learning

A inteligéncia artificial (1A) é um campo da ciéncia da computacao que visa desenvolver
atividades associadas ao pensamento humano, como tomada de decisdo, resolucdo de
problemas e aprendizagem (RUSSEL e NORVIG, 1995). As primeiras aplicagdes da IA foram

as abordagens baseadas em conhecimentos, especialmente, direcionadas a problemas baseados
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em regras (GOODFELLOW, BENGIO e COURVILLE, 2017). No entanto, os sistemas de IA
baseado em conhecimento falharam em tarefas que parecem ser automaticas e diretas para um
ser humano, como reconhecer rostos, detectar objetos e compreender a fala. Dessa forma, um
grande desafio foi encontrar formas alternativas de ensinar para computadores conhecimento
intuitivo e de senso comum, que ndo pode ser traduzido em uma lista explicita de regras
(GHAHRAMANI, 2015). Para superar os desafios enfrentados pela abordagem baseada no
conhecimento, o conceito de machine learning foi introduzido nos sistemas de IA (AVCl et al.,
2021). A |A baseada em conhecimento e 0 machine learning sdo um subconjunto da IA e o

deep learning é um subconjunto especializado do machine learning (Figura 3).

Figura 3 — Diagrama de Venn apresentando a relagdo entre os diferentes sistemas de 1A.
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Fonte: Adaptado de Avci et al. (2021).

O machine learning € um campo de pesquisa na intersecdo de estatistica, inteligéncia
artificial e ciéncia da computacio (MULLER e GUIDO, 2017). Como uma aplicacdo de IA, 0s
algoritmos de ML fornecem aos sistemas a capacidade de aprender com um numero suficiente
de amostras de dados 0 conhecimento necessario para realizar uma tarefa especifica, melhorar
automaticamente o desempenho com a experiéncia e fazer predi¢Ges e/ou decisdes acuradas
sem ser explicitamente programado (LI et al., 2018; MOHRI, ROSTAMIZADEH e
TALWALKAR, 2018).

Os algoritmos de ML geralmente podem ser classificados em algoritmos
supervisionados e ndo supervisionado (SANTOS et al., 2016). Os algoritmos supervisionados
requerem um conjunto de dados com rétulos como alvos de aprendizado e seu principal objetivo
é descobrir 0 mapeamento ideal das entradas para as saidas desejadas (KUBAT, 2017), sendo
o0 tipo de ML mais utilizado (JORDAN e MITCHELL, 2015). Algoritmos de aprendizagem néo
supervisionados, por outro lado, requerem conjunto de dados néo rotulados e dependem da

compreensdo dos proprios dados. As tarefas de aprendizado supervisionado mais comuns sdo
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classificacéo e regresséo, enquanto as tarefas de aprendizado ndo supervisionadas mais comuns
séo clustering e reducédo de dimensionalidade (ZHANG et al., 2022).

A classificacdo corresponde a atribuir uma categoria a cada instancia de dados, por
exemplo, classificacdo de diagndstico médico e imagem (AVCI et al., 2021), e a regressdo
consiste em prever um valor real para cada instancia de dados, por exemplo, predi¢do de
temperatura, idade e renda (ZHANG et al., 2022). O Clustering visa dividir o conjunto de dados
de entrada em grupos com caracteristicas semelhantes, por exemplo, reconhecimento de
padrdes, e a reducdo de dimensdo é o processo de transformar uma representacéo inicial de
dados em uma representacdo de dimensdo inferior, preservando algumas propriedades da
representacdo inicial, por exemplo, pré-processamento de imagens digitais em tarefas de viséo
computacional (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018).

Este trabalho se concentra em técnicas de ML supervisionada de classificacdo, uma vez
que os dados sédo rotulados e € de interesse realizar a classificacdo para novos dados de entrada.
No aprendizado supervisionado o conjunto de dados é comumente dividido em dois
subconjuntos. O primeiro é o conjunto de treinamento, usado para treinar um modelo, e 0
segundo é conjunto de teste, usado para avaliacdo de desempenho do modelo criado. Para
dividir esses subconjuntos, os principais métodos utilizados na literatura sdo Holdout e
validacdo cruzada k-fold (CAMPESATO, 2020).

No método Holdout os dados séo divididos aleatoriamente em dois subconjuntos, sendo
um de treinamento e o outro de teste. Comumente, é atribuido 2/3 dos dados ao conjunto de
treinamento e 1/3 dos dados ao conjunto de teste. Se o conjunto de dados for relativamente
grande, pode ser atribuido 90% dos dados para treinamento e 10% para teste. No entanto, essa
abordagem utiliza apenas uma parte dos dados para treinamento, o que pode ndo conter dados
mais representativos, comprometendo a confiabilidade dos resultados (RASCHKA, 2020).

Alternativamente, a validacdo cruzada k-fold consiste em dividir os dados em k
subconjuntos mutuamente exclusivos de tamanhos aproximadamente iguais. O processo tera k
iteragdes, onde, em cada iteragdo, um subconjunto é utilizado para teste e os restantes (k — 1)
para treinamento. Como 0s subconjuntos séo formados aleatoriamente, ndo se sabe se uma
determinada classe estara em todos 0s subconjuntos, o que pode interferir tanto no treinamento
quanto no teste do modelo. Dessa forma, a validagéo cruzada estratificada pode ser utilizada,
de forma que todos os subconjuntos irdo conter aproximadamente a mesma proporcdo de
classes do conjunto de dados de entrada (RASCHKA, 2020).

Para avaliar o desempenho dos modelos, quatro métricas sdo amplamente utilizadas na

literatura, acurécia, precisdo, revocacgdo (sensibilidade ou recall) e F-score (ALI, NEAGU e
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TRUNDLE, 2019). A acuracia € a medida de desempenho mais intuitiva e definida como a
razdo entre o nimero de amostras classificadas corretamente e o numero total de amostras
avaliadas; enquanto a precisao é a razdo entre o numero de classificacdes corretas e o total de
classificacfes de uma determinada classe; a revocacao é definido pelo nimero de classificactes
corretas dividido pelo total de ocorréncias de uma determinada classe; e, por fim, o F-score
pode ser definido como uma média ponderada da preciséo e da revocacéo, o seu valor igual a 1
representa um étimo modelo, enquanto o valor igual a 0 é considera um modelo falho.

A seguir serdo apresentados os algoritmos de classificacdo de machine learning que
foram escolhidos para analise, com base em seu uso na literatura SHM e em sua
interpretabilidade em termos de como usam atributos para predicdo de classes, a saber, k-
Nearest Neighbors (k-NN), Discriminant Analysis (DA), Naive Bayes (NB), Support Vector

Machine (SVM) e Métodos Baseados em Arvores de Decisio.

2.2.1 k-Nearest Neighbors

O k-Nearest Neighbors (k-NN) é um método ndo paramétrico usado para classificacdo
de padrdes e modelos de regressdo (HASTIE, TIBSHIRANI e FRIEDMAN, 2017). Foi
proposto por Fix e Hodges (FIX e HODGES, 1951) e modificado por Cover e Hart (COVER e
HART, 1967). O método k-NN pertence a familia de aprendizado baseado em instancia, que é
uma forma de aprendizado lento, em que nenhuma abstracdo é realizada nos dados de
treinamento para criar um modelo generalizado. Dessa forma, todo o conjunto de dados é
armazenado na memoria, sendo esse conjunto a chamada instdncia do problema
(WETTSCHERECK, AHA e MOHRI, 1997).

Para classificacdo, o0 método possui trés componentes principais: um conjunto de
observacdes rotuladas (conjunto de treino armazenado), uma métrica de distancia (ou métrica
de similaridade) e o valor de k (0 nimero de vizinhos mais préximos). Nesse sentido, as
principais etapas do método consistem, essencialmente, em: (1) determinar o nimero de
vizinhos mais proximos (valor de k); (2) calcular a distancia entre a nova amostra a ser
classificada e as amostras de treinamento; (3) ordenar a distancia e determinar os vizinhos mais
préximos baseada na k-ésima distancia minima; (4) reunir os rotulos dos vizinhos mais
préximos e classificar a amostra em analise como pertencente a classe predominante (Figura
4). Por exemplo, para aamostra em analise, se k = 1 sera classificada como pertencente a classe

da Unica amostra mais proxima e se k > 1 serd classificada como pertencente a classe
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predominante das amostras mais proximas (se k = 3, a classe predominante das trés amostras

mais proximos serd atribuida) (Figura 4(c)).

Figura 4 — Aplicacdo do método k-NN: (a) dados iniciais, (b) calcular distancia e (c) encontrar vizinhos e votar
em atributos.
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Fonte: Autor (2024).

Como a classificacéo é baseada no numero de vizinhos, o valor de k é considerado um
hiperpardmetro que determinara o desempenho do classificador. Diferentes valores podem ter
um grande impacto na acuracia preditiva do método e escolher um bom valor geralmente néo é
intuitivo, olhando para o conjunto de dados (KANG, 2021). Ao escolher um valor pequeno para
k, a classificacdo pode ser indevidamente afetada por outliers e sensiveis ao ruido. Com k
pequeno, por exemplo, k = 1, a nova observacao seré classificada como pertencente a mesma
classe da Unica observacdo mais proxima, um processo que pode levar o algoritmo a um
overfitting, tendendo a memorizar o conjunto de dados de treinamento a custo da generalizag&o.
Por outro lado, escolher um valor de k que ndo seja muito pequeno tenderd a suavizar qualquer
comportamento caracteristico aprendido no conjunto de treinamento. No entanto, se for
escolhido um valor de k muito grande, o comportamento localmente interessante pode ser
ignorado. Entdo, o hiperparametro k € particular a cada problema (LAROSE e LAROSE, 2014).
A otimizacdo de k pode ser realizada por técnicas de reamostragem, como validacdo cruzada
k-fold (HASTIE, TIBSHIRANI e FRIEDMAN, 2017; KUHN e JOHNSON, 2013), sendo
escolhido o valor de k que minimiza o erro de classificagdo (HULETT, HALL e QU, 2012).

Para determinar os vizinhos mais préximos é utilizado o conceito de distancia entre a
instancia a ser classificada e as instancias do conjunto de treinamento. A funcdo de distancia
d(x,y) entre duas instancias x e y, onde x = (xq, x5, ...,xy) € ¥ = (¥1, V2, ..., Yn), ONde N
representa 0 niumero de atributos, é considerada uma métrica se satisfizer as seguintes condi¢des
(DEZA e DEZA, 2009):
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1. Nao negatividade: a distancia entre x e y é sempre um valor maior ou igual a zero,

d(x,y)) = 0. 1)

2. ldentidade dos indiscerniveis: a distancia entre x e y € igual a zero se e somente se x é igual

ay,

d(x,y) = 0 se e somente se x = y. (@)

3. Simetria: A distancia entre x e y € igual a distancia entre y e x (comutatividade),

d(x,y) = d(y, x). 3)

4. Desigualdade triangular: Considerando a presenca de um terceiro ponto z, a distancia entre

x ey € sempre menor ou igual a soma da distancia entre x e z e a distancia entre y e z,

d(x,y) <d(x,z) +d(zv). 4)

Dadas as instancias x e y, com atributos numeéricos, existem diferentes definicbes
matematicas de distancias para medir a proximidade entre elas, como Minkowski, Manhattan
(City Block), Euclidiana, Chebyshev e Cosseno (ALFEILAT et al., 2019) (Quadro 1). Outras
métricas de distancia podem ser encontradas em Alfeilat et al. (2019). Dentre as métricas
citadas, a Euclidiana é a funcdo de distancia mais utilizada com k-NN (WEINBERGER e
SAUL, 2009; LAROSE e LAROSE, 2014). A distancia de Minkowski é uma métrica
generalizada, que inclui trés métricas de distancia como casos especiais, correspondendo a
diferentes valores de s (do Quadro 1). Quando s = 2, a métrica se torna a distancia Euclidiana;
guando s = 1, se torna a distancia de Manhattan; enquanto a distancia de Chebyshev é uma
variante da distancia de Minkowski, onde s = co (ALFEILAT et al., 2019).
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Quadro 1 — Diferentes métricas de distancia.

Nome Definicao
Minkowski
d(x,y) =
Manhattan (City Block) d(x,y) = z |x%; — il
Euclidi >
uclidiana
d(y) = | ) (= y)?
i=1
Chebyshev dx,y) = maxllxl yil
XiYi
Cosseno dlx,y) =1~ Lo
\/Zl 1 l \/Zl 1yl

Fonte: Adaptado de Alfeilat et al. (2019).

Os k vizinhos mais proximos séo selecionados com base em uma métrica de distancia.
Entdo, existe uma variedade de maneiras pelas quais 0s k vizinhos mais proximos podem ser
usados para determinar a classe da amostra de interesse. A abordagem mais direta € atribuir a
classe predominante dos vizinhos mais proximos (ALFEILAT et al., 2019). No entanto, quando
0 nimero de amostras ndo é balanceado, o que ocorre, por exemplo, quando um volume
significativo de dados é pertencente a uma classe, enquanto as outras classes sao pequenas,
pode acontecer erros de classificagdo, porque na predicdo de novas amostras a maioria dos
vizinhos podem pertencer as classes de grandes dimens6es (TANG e HE, 2015). Uma estratégia
¢ atribuir maior peso aos vizinhos mais proximos na decisdo da classe da observacdo. Uma
técnica comumente empregada é ponderar a contribuicdo de cada vizinho de acordo com o
inverso de sua distancia até a nova amostra. Nesse caso, 0s vizinhos mais préximos da amostra
a ser classificada terdo uma influéncia maior do que o0s vizinhos mais distantes
(CUNNINGHAM e DELANY, 2022).

Durante o processo de classificacdo ¢ realizada uma comparacao de distancia entre a
amostra em analise e cada amostra armazenada no conjunto de treinamento. Quando se tem
grandes volumes de dados de treinamento disponiveis, essa busca pode introduzir um atraso
notavel no método de classificacdo e um custo computacional associado (SKIENA, 2017). Uma
abordagem para acelerar a busca envolve o uso de estruturas de dados geométricas, como kd-
tree e ball tree (CUNNINGHAM e DELANY, 2022).
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2.2.2 Naive Bayes

O classificador Naive Bayes (NB) é um método estatistico fundamentado em modelos
paramétricos (distribuicfes de probabilidade) baseado na aplicacdo do teorema de Bayes (da
estatistica Bayesiana) com suposi¢oes de independéncia condicional entre os atributos de cada
classe, o que designa o termo “Naive” (ingénuo) (JOHN e LANGLEY, 1995).

O Naive Bayes pode ser utilizado para categorias bindrias e multiclasse em muitas
aplicacdes, como sistema de recomendacéo, andlise de perfil, classificacdo de documento ou
texto e filtragem de spam (SARKER, 2021). Geralmente, 0 método precisa de uma quantidade
de dados de treinamento relativamente pequeno para estimar os parametros necessarios, quando
comparado com abordagens mais sofisticadas. No entanto, seu desempenho pode ser afetado
devido as suas fortes premissas sobre independéncia de caracteristicas, uma vez que em
aplicacdes praticas € dificil encontrar problemas que sejam completamente independentes. As
variantes comuns do classificador NB incluem, Gaussiano, multinomial, complementar,
Bernoulli e categoérico (SARKER, 2019).

Suponha que se deseje classificar o vetor x = (x4, ...,xy) em uma das g classes

wy, ..., Wq, 0 teorema de Bayes (Equacdo 5) fornece uma maneira de calcular a probabilidade

de cada classe possivel dada x, para que se possa atribuir a x o rétulo da classe com maior
probabilidade (SKIENA, 2017),

P(x|w;)P(w;) ()
P(x)

P(w;]x) =
onde P(w;|x) corresponde a probabilidade posterior ou a posteriori, P(x|w;) é a funcdo de
verossimilhanga, ou simplesmente a verossimilhanga, ou a funcdo de densidade de
probabilidade condicional, P(w;) € a probabilidade a priori da classe (razdo entre o nimero de
amostras nessa classe e 0 nimero total de amostras em todas as classes) com Y.7_, P(w;) = 1,
e P(x) é a evidéncia, que € uma constante normalizadora igual para todas as classes, podendo
ser desconsiderada (DUDA, HART e STORK, 2001).

Geralmente, P(w;|x) € calculado usando a verossimilhanca (P(xlwl-)) e a
probabilidade a priori (P(w;)), uma vez que P(x) corresponde a um termo constante
normalizador que ndo depende da classe w;, é igual para todas as classes, ndo afetando os
valores relativos de suas probabilidades (THARWAT, 2016).
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Assumindo que os valores dos atributos de uma observagdo sdo condicionalmente
independentes entre si dada a classe, a probabilidade de observar a conjuncdo de atributos

X1, X5, -+, Xy |w; € somente o produto das probabilidades para os atributos individuais:

P(xy Xz, e, 2y |07) = ]_—[P(lewi)- (6)

J

Com isso, a probabilidade de uma amostra pertencer a classe w; é proporcional a:

N
P(w;]x) o« P(w;) l_[P(xj|wi). (7
=1

J

Suponha que P(w;|x) denota a probabilidade de uma observacdo x pertencer a classe
w;. A funcdo de custo zero-um, que representa custo de associar x a classe incorreta, é
minimizada se, e somente se, x € associada a classe wy paraa qual P(w;|x) € maxima (DUDA,
HART e STORK, 2001). Esse método é designado por estimativa Mé&ximo a Posteriori
(Maximum A Posteriori — MAP). Formalmente, a classe que deve ser associada a amostra x
corresponde a:

N
Ymap = argmax; P(w;) 1_[ P(xj|wi), (8)

j=1

onde argmax; retorna a classe w; com maior probabilidade de estar associada a x, que é aquela
gue possui o valor maximo para P(w;|x). Os diferentes classificadores Naive Bayes diferem
principalmente pelas suposicbes que fazem em relacdo a distribuicao de P (x|w;).

O classificador obtido pelo uso da funcdo discriminante dada pela Equacdo 7 e pela
regra de decisdo ilustrada na Equacdo 8 é conhecido como classificador de Naive Bayes.

As probabilidades de interesse para a obtencdo do classificador Naive Bayes sdo
computadas a partir dos dados de treinamento. Para calcular a probabilidade a priori de observar
a classe w;, P(w;), € necessario manter um contador para cada classe. Para calcular a
probabilidade condicional de observar um valor de um atributo dado que a amostra pertence a

uma classe, € necessario distinguir entre atributos nominais e atributos continuos. No caso de
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atributos nominais, o conjunto de possiveis valores € um conjunto enumeravel. Para calcular a
probabilidade condicional, basta manter um contador para cada valor de atributo por classe. No
caso de atributos continuos, comumente é assumida uma distribuicdo particular para os valores

dos atributos, sendo geralmente assumida como distribui¢cdo normal.

2.2.3 Discriminant Analysis

A Discriminant Analysis (DA) é usada para classificacdo, reducdo de dimensao e
visualizacdo de dados (ARAVEEPORN, 2022). O classificador andlise discriminante foi
introduzido por Fisher e foi usado em muitos problemas de classificacdo (ALTMAN, MARCO
e VARETTO, 1994; GUO, HASTIE e TIBSHIRANI, 2007). Em anélise discriminante, se
destacam dois métodos, a saber, Linear Discriminant Analysis (LDA) e Quadratic Discriminant
Analysis (QDA). No classificador LDA, a superficie de deciséao € linear, enquanto no QDA a
superficie de decisdo € quadratica (THARWAT, 2016). Esses classificadores tém solucbes de
forma fechada que podem ser facilmente computadas, sao inerentemente multiclasse, provaram
funcionar bem na préatica e ndo tém hiperparametros para ajustar (DILLEN et al., 2022).

Os métodos LDA e QDA utilizam a funcéo de distribuicdo de probabilidade normal
multivariada de variaveis independentes como regra de classificacdo. O pardmetro de
probabilidade a priori, média e matriz de covariancia de cada classe também criam a funcéo
discriminante para o limite das classes. Os métodos sdo considerados como tendo a distribuicéo
normal, que € a distribuicdo mais comum e padrdo em aplica¢fes praticas. Portanto, se as
matrizes de covariancia sdo assumidas iguais, o limite de decisdo de classificagdo é na forma
de uma funcéo discriminante linear. Quando as matrizes de covariancia sao assumidas como
desiguais, o limite de decisdo da classificacdo estd na forma de uma funcdo discriminante
quadratica (ARAVEEPORN, 2022).

Nesse contexto, os métodos DA podem ser derivados de modelos probabilisticos que
modelam a distribuicdo condicional de classe dos dados P(x|w;) para cada classe i. As
predicdes podem ser obtidas usando a regra de Bayes (Equacdo 5), para cada amostra de
treinamento e sendo selecionada a classe i que maximiza essa probabilidade a posteriori
(THARWAT, 2016).

Para andlise discriminante linear e quadratica, a verossimilhanga (P(x|w;)) é modelado
como uma distribuicdo gaussiana multivariada (P (x|w;)~N (;,Z;)) com densidade
(BISHOP, 2006):
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(9)

1
P(x|w;) = N (u;, Z;) = exp {_E (e —p) 27 x — lli)},

1
(mN/2|Z]1/2

onde u; representa a média da i-ésima classe e Z; € a matriz de covariancia da i-ésima classe,
|Z;| e Z;7* representam o determinante e o inverso da matriz de covariancia, respectivamente.
Geralmente, a amostra desconhecida serd classificada para a classe, que maximiza a
probabilidade posterior ou a verossimilhanca, portanto, maximiza a funcdo discriminante para
0 QDA da seguinte forma (THARWAT, 2016; JAMES et al., 2021):

In(P(w;lx)) = In(P(x|w)) + In(P(w))) (10)

1 1
In(P(wil) = =5 Il = (x = kI G = 1) + In(Pw)), ()

onde [n representa o logaritmo natural.

LDA é um caso especial de QDA, onde assume-se que as Gaussianas para cada classe
compartilham a mesma matriz de covariancia, ¥; = X para todos i (GHOJOGH e CROWLEY,
2019):

1
In(P(wil) = =3 G = )57 Cc = ) + In(P(w))). (12

2.2.4 Support Vector Machine

O Support Vector Machine (SVM) constitui uma técnica de aprendizado embasada pela
Teoria de Aprendizado Estatistico, fundamentado no principio da minimizacdo do Risco
Estrutural (Structural Risk Minimization - SRM) (CORTES e VAPNIK, 1995). O SVM permite
obter classificadores com boa generalizagdo, correspondente a sua capacidade de predizer
corretamente a classe de novos dados e pode ser também utilizado para realizar tarefas regressao
e clustering (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018).

O objetivo da classificacdo do SVM é elaborar uma maneira computacionalmente
eficiente de aprender hiperplanos de separacao 6timo, em um espaco de caracteristicas de alta
dimensdo, o qual maximiza a margem dos dados de treinamento (CRISTIANINI e SHAWE-

TAYLOR, 2000). A Figura 5(a) apresenta um conjunto de treinamento, o objetivo do processo
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de aprendizado ¢é encontrar um classificador que separe os dados das classes azul e vermelha.
Nesse contexto, se 0s dados puderem ser perfeitamente separados, existird um ndmero infinito
de hiperplanos candidatos a fronteira de decisao, trés possiveis hiperplanos de separacdo sdo
mostrados Figura 5(b). A distancia (perpendicular) de uma classe a um hiperplano de separacéo
€ a menor distancia entre ele e as observacdes dessa classe, definida como margem. O
hiperplano que sera o escolhido para representar a fronteira de decisdo é o que maximiza a
margem de separacdo (menor distancia perpendicular) entre as observacfes de treinamento
(Figura 5(c)), denominado de hiperplano de margem maxima ou hiperplano de separac¢ao 6timo
(JAMES et al., 2014).

Figura 5 — (a) Conjunto de treinamento binario, (b) trés hiperplanos de separacdo e (c) hiperplano de margem
méaxima.
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Fonte: Adaptado de James et al. (2014).

Na Figura 5(c), trés observacBes de treinamento sdo equidistantes do hiperplano de
margem maxima e estdo ao longo das linhas tracejadas, indicando a largura da margem. Essas
trés observacdes sdo conhecidas como vetores de suporte, uma vez que Sao vetores no espaco
p-dimensional (nesse caso, p = 2), e eles suportam o hiperplano de margem maxima. Assim, o
hiperplano de margem maxima depende diretamente dos vetores de suporte, mas nao das outras
observacdes.

Seja S um conjunto de treinamento, composto de M pares (x;,y;), x; € x € Seus
respectivos rotulos y; € y;aper, ONde x constitui o espago dos dados € yygper = {—1,+1}. S é
considerado linearmente separavel, se for possivel separar os dados das classes —1 e +1 por
um hiperplano. Nesse caso, a solu¢do do problema consiste em encontrar o hiperplano de
margem maxima, que separe os dados de cada classe e a correspondente margem de separacéo

seja maxima (Figura 6(a)), definido por:
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wix+b =0, (13)

onde w € RP ¢ 0 vetor de pesos normal ao hiperplanoe b € R um escalar (bias).

A classificacdo de cada dado x do conjunto de treinamento € realizada de acordo a
proximidade em relagdo as margens do hiperplano separador. Assim, seré classificado como
pertencente a classe —1 se estiver mais proximo da margem negativa e sera pertencente a classe
+1 se estiver mais proximo da margem positiva (Figura 6(b)). Portanto, as amostras mais

préximas do hiperplano canonico (H) devem satisfazer as seguintes condigdes:

Hi:wlx;+b=1 «~ wix;+(b—-1)=0 (14)

H2: WTXi +b=-1 . WTXi + (b + 1) = 0. (15)

Figura 6 — Hiperplano de separa¢do que maximiza a margem.

(@) (b)

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018).
Uma amostra x é considerada classificada corretamente se estiver fora da margem de

separacdo, ou seja, assume-se que todos os dados de treinamento satisfazem as seguintes

restricdes, garantindo que néo existe dados de treinamento entre as margens de separacao:

wlx; +b > 1para y; =1 (16)

wlx; +b < —1para y, < -1 a7

As equacoes (16) e (17) podem ser unificadas:
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yi(wlx;+b)—1=0parai=12,.., M. (18)

A largura da margem, distancia entre os hiperplanos H, e H,, pode ser determinado pela
projecao da diferenca entre os vetores de suporte na direcdo ao vetor normal da superficie de

deciséo (Equacéo 19):

2 (19)

Pim = T
o lwll

A maximizacdo da margem de separacdo dos dados em relacdo ao hiperplano de
separacao pode ser obtida pela minimizacédo de ||w|| (BURGES, 1998). Dessa forma, pode ser
definido o seguinte problema de otimizacdo (MOHRI, ROSTAMIZADEH e TALWALKAR,
2018):

minyy s Wil (20)

sujeito a: y;(wlx; +b) —1>0,parai = 1,2,..., M.

As restricdes sdo impostas para assegurar que ndo existam dados de treinamento entre as
margens de separacdo das classes. Por esse motivo, a SVM obtida possui também a
nomenclatura de SVM com margens rigidas.

O problema de otimizacdo que determina o hiperplano de margem maxima possuli
fungéo objetivo convexa, sendo conveniente resolvé-lo com uso da Teoria Lagrangiana. Para
isso, deve ser construida a funcdo lagrangiana, que engloba as restricbes a funcdo objetivo,
associadas a parametros denominados multiplicadores de Lagrange «;, com a; = 0, a forma
primal da funcdo lagrangiana do problema corresponde a (CRISTIANINI e SHAWE-
TAYLOR, 2000; SMOLA e SCHOLKOPF, 2002; MOHRI, ROSTAMIZADEH e
TALWALKAR, 2018):

u (21)
L(w,b,a) = %llwll2 — Z ai[yi(wal- +b) — 1].
i=1
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A solugdo para esse problema de otimizag&o é determinada minimizando £L(w, b, @) em

relacdo a w, b e maximizando L(w, b, @) com relacéo a «;:

0L(w,b, @)
T Z a;yix; = 0.~ w= z a;iyiXi (22)
MMb@
Z a;y; =0 . Z a;y; =0 (23)
=1 i=1

com as condices: a;[y;(w'x; + b) — 1] = 0, parai = 1,2, ..., M.

As Equacdes 21, 22 e 23 sdo conhecidas como as condic¢Bes de Karush-Kunh-Tucker
(KKT). Substituindo as Equaces (22) e (23) na Equacédo (21), obtém-se o seguinte problema
de otimizacéo:

M (24)
maxy {Z a; — 2 Z a; a]ylyj(x x])}

i=1 i,j=1

sujeitoa: a; = 0eXM, a;y; =0, parai =1,2,.., M.

Essa formulacdo é denominada forma dual. Os problemas primal e dual sdo
equivalentes, ou seja, a solucdo a do problema dual (Equacdo 24) pode ser usada diretamente
para determinar a hipOtese retornada por SVMs, usando a Equacdo 22 (MOHRI,
ROSTAMIZADEH e TALWALKAR, 2018):

& (25)
9(x) = sgn{f (0} = sgn(wx +b) = sgn (Z (el x) + b),

i=1
onde sgn denonta a fung&o sinal:

se g(x) < 0 (sinal negativo): amostra x € classificada como classe 1;

se g(x) > 0 (sinal positivo): amostra x é classificada como classe 2.
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Como os vetores de suporte estdo nos hiperplanos de margem maxima, para qualquer

vetor de suporte x;, w'x; + b = y;, e assim b pode ser obtido via:

M

b=y =) ay(x) (26)

j=1

O problema de otimizacao dual (Equacéo 24) e as Equacdes (25) e (26) apresentam uma
propriedade importante das SVMs, a solucéo de hipoteses depende apenas de produtos internos
entre vetores e ndo diretamente dos vetores em si. Essa observacgdo e fundamental para SVMs
n&o linear.

Em aplicacGes praticas, é dificil que os dados sejam linearmente separaveis. 1sso se deve
a diversas condicdes, entre elas a presenca de ruidos e outliers nos dados ou a propria natureza
do problema, que pode ser ndo linear. Assim, para tornar o método descrito anteriormente capaz
de manipular dados ndo linearmente separaveis é necessario relaxar as restri¢des das Equactes
(16) e (17), que utilizam critérios de margem rigida (hard margin), introduzindo variaveis de
folga ndo negativas &; (i = 1,2, ..., M), definida como margem suave (soft margin) (SMOLA et
al., 1999; SMOLA E SCHOLKOPF, 2002; MOHRI, ROSTAMIZADEH e TALWALKAR,
2018):

yi(wWlx;+b)>1— ¢ parai =1,2,..,.M (27)
& =0, parai =1,2,..., M.

O procedimento de suavizagdo da margem do classificador linear permite que alguns
dados de treinamento possam violar a restricdo e situem-se entre as margens, permitindo que
alguns dados permanecam entre os hiperplanos H, e H, (Figura 7), aléem de permitir a
ocorréncia de erros de classificacdo, por esse motivo, as SVMs obtidas nesse caso também

podem ser referenciadas como SVMs com margens suaves.
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Figura 7 — Um hiperplano de separacdo com amostra x; classificada incorretamente e amostra x; classificada
corretamente, mas com margem menor que 1.

wx+b=0

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018).

Um erro no conjunto de treinamento é indicado por um valor de é; maior que 1. Assim,
a soma dos ¢; representa um limite no nimero de erros de treinamento (BURGES, 1998). Para
considerar esse termo, minimizando assim o erro sobre os dados de treinamento, a fungéo
objetivo da Equacao 20 é reformulada adicionado um termo de regularizacdo (BURGES, 1998;
MOHRI, ROSTAMIZADEH e TALWALKAR, 2018):

_ 1, X (28)
ming e 5wl +C ) ¢,
i=1

sujeito a: y;(Ww'x; +b) = 1—¢,, & >0, parai = 1,2,..., M,

onde ¢ € um termo de regularizacdo que estabelece o equilibrio entre a complexidade do modelo
e o erro de treinamento (PASSERINI, 2004). Esse parametro controla o peso do numero de
erros (que é limitado pelo somatério das variaveis de folga) e do tamanho da margem (que é
inversamente proporcional a norma de w). A minimizacdo ||wl||? resulta na maximizagéo da

margem, enquanto a minimizagéo de Y.}, £, resulta na minimizagéo do erro de classificacéo, uma

vez que um valor de &; € (0,1] indica um dado entre as margens.

Novamente, o problema de otimizagdo gerado é quadratico, com as restricdes lineares
apresentadas na Equacdo 28. A sua solugéo é obtida de forma andloga ao caso separavel, com
a introducéo de uma fungéo Lagrangiana e tornando suas derivadas parciais nulas. Tem-se como
resultado o seguinte problema dual (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018):
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M L& (29)
T
max, Z a; — E aiajyiyj(xi x])
i=1 i,j=1
sujeito a:

0<a;<Cparai=1,...M

M

Z a;yi = 0.

i=1
Essa formulagdo é semelhante a apresentada para as SVMs de margens rigidas, no entanto, a
restricdo nos «; agora sao limitados pelo valor de c.

A funcéo de decisdo é a mesma para o caso de margem rigida (Equacédo 25). Além disso,
b pode ser obtido de qualquer vetor de suporte x; situado em um hiperplano marginal, ou seja,
qualquer vetor x; com 0 < a; < € (Equacao 26).

Como no caso separavel, o problema de otimizacdo dual (Equacdo 29) e as Equacbes
(25) e (26) mostram uma propriedade importante de SVMs, a solucdo da hipotese depende
apenas do produto interno entre vetores e ndo diretamente dos préprios vetores. Esse fato pode
ser usado para estender SVMs para definir limites de decisdo néo lineares.

As SVMs lineares sdo eficazes na classificacdo de conjuntos de dados linearmente
separaveis ou que possuam uma distribuicdo aproximadamente linear, sendo que a versdo de
margens suaves tolera a presenca de alguns ruidos e outliers. No entanto, na prética, a separa¢do
linear geralmente ndo é possivel. A Figura 8(a) mostra que qualquer hiperplano cruza ambas as
classes. No entanto, pode-se usar fun¢es mais complexas para separar os dois conjuntos, como
na Figura 8(b).

Figura 8 — Caso ndo linearmente separével: (a) nenhum hiperplano pode separar as duas classes e (b) um
mapeamento ndo linear pode ser usado.

(@) (b)

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018).
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Quando se tem dados nédo linearmente separaveis, onde qualquer hiperplano cruza
ambas as classes, pode-se usar fun¢Ges mais complexas (funcdo de separa¢do néo linear) para
separar as duas classes. Uma estratégia para definir tal limite de decisdo ndo linear é usar um
mapeamento ndo linear @ do espago de entrada x para um espaco de dimensdo superior H,
chamado de espaco de caracteristicas, sendo possivel a separacdo linear através de um
hiperplano (Figura 9) (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018).

Figura 9 — Um exemplo de mapeamento nao linear de 2 dimensdes para 3 dimens@es, onde as amostras se tornam
linearmente separaveis.

Fonte: Adaptado de Mohri, Rostamizadeh e Talwalkar (2018).

Os métodos kernel sdo amplamente usados para estender algoritmos como SVMs para
definir limites de decisdo ndo lineares. A ideia principal por tras desses métodos baseados em
funcbes kernel é que, sob algumas condicBes de simetria e definicdo positiva, definem
implicitamente um produto interno em um espaco de alta dimenséo, a caracterizacdo de quando
uma funcdo pode ser um kernel € dada pelo teorema de Mercer (HASTIE, TIBSHIRANI e
FRIEDMAN, 2017; MOHRI, ROSTAMIZADEH e TALWALKAR, 2018). Substituir o
produto interno original no espaco de entrada por kernels definidos positivos estende algoritmos
como SVMs para uma separacéo linear naquele espago de alta dimenséo ou, equivalentemente,
para uma separacdo ndo linear no espaco de entrada.

Na prética, a modificagdo necessaria para se implementar as SVMs ndo lineares em um
espaco de caracteristica maior é substituir na Equacdo (29) x por ®(x). A formulagdo
apresentada por SVMs ndo lineares tem uma caracteristica singular, ndo é necessario conhecer
mapeamento em si, apenas como realizar produtos escalares no novo espaco. Nesse sentido, 0

Truque de Kernel (Kernel Trick) e de interesse, que consiste em receber dois vetores no espaco
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de entrada e retorna o valor do produto escalar entre eles no espacgo de caracteristica de maior
dimensdo (HERBRICH, 2001; MULLER e GUIDO, 2017),

K(xi,xj) = CD(XL)TCD(X]) (30)

E comum empregar a fungdo kernel sem conhecer o mapeamento, que é gerado implicitamente.
A utilidade dos kernels esta, portanto, na simplicidade de seu calculo e em sua capacidade de
representar espacos abstratos. A funcdo de decisdo assume a forma a seguir (MOHRI,
ROSTAMIZADEH e TALWALKAR, 2018):

v (3D)
9G) = sgn (Z aiyik (e, %) + b)

i=1
com b = y; — ¥, a;y;K(x;,x;), para qualquer x; com 0 < a; < C.

Diferentes kernels podem ser encontrados na literatura (CRISTIANINI e SHAWE-
TAYLOR, 2000; HASTIE, TIBSHIRANI e FRIEDMAN, 2017; MOHRI, ROSTAMIZADEH e
TALWALKAR, 2018). O kernel radial basis function (RBF) estd entre os kernels mais
frequentemente usados em aplicagcfes (MOHRI, ROSTAMIZADEH e TALWALKAR, 2018)
e possui dois hiperparametros para ajustar, C e y. O parametro y controla a flexibilidade da
funcdo de kernel, valores pequenos permitem ao classificador ajustar todos os rétulos havendo
risco de overfitting, por outro lado, valores grandes de y reduzem o kernel para uma fungéo
constante, tornando impossivel o processo de aprendizagem (JAMES et al., 2004; SHAWE-
TAYLOR; CRISTIANINI, 2004).

SVMs foram desenvolvidas para classificacdo binaria. No caso de classificacdo em
multiplas classes, € necessaria a utilizacdo de algum método para estender a SVM binaria ou
para combinar os resultados das SVMs binérias, as duas propostas mais populares sdo um contra
um (one versus one - OVO) e um contra todos ou um contra o resto (one versus rest - OVR)
(JAMES et al., 2004).
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2.2.5 Métodos Baseados em Arvores de Decisdo

2.2.5.1 Decision Trees

O método Decision Trees (DTs) foi sugerido por Breiman et al. em 1984 (BREIMAN
et al., 1984) e pode ser aplicado para problemas de classificacdo, regressdo e clustering
(MOHRI, ROSTAMIZADEH e TALWALKAR, 2018). Correspondem em estratificar ou
segmentar o espaco preditor em varias regiGes simples. Como o conjunto de regras de divisao
usadas para segmentar 0 espaco preditor pode ser resumido em uma arvore, esses tipos de
abordagens sdo conhecidos como métodos de arvore de decisdo (JAMES et al., 2014). Nesse
contexto, a construcdo de uma arvore de decisdo corresponde a um conjunto de nds de deciséo,
conectados por ramificacdes, estendendo-se para baixo a partir do né raiz até terminar em nds
folha. Comecando no no raiz que, por convencao, é colocado no topo do diagrama da arvore de
decisdo, os atributos sdo testados nos nds de decisdo, com cada resultado possivel resultando
em uma ramificacdo. Cada ramificagdo entdo leva a outro n6 de decisdo ou a um n6 folha de
terminacdo (LAROSE e LAROSE, 2014). Arvores de decisdo buscam criar um conjunto de nds
folha que sejam tdo puros quanto possivel, ou seja, onde cada um dos registros em um no folha
especifico tenha a mesma classificagéo.

Os algoritmos de arvore de decisdo mais utilizados sdo o ID3, C4.5 (QUINLAN, 1992),
C5.0 e CART (BREINMAN et al., 1984). Essencialmente, esses algoritmos diferem da forma
como é construida a arvore e os critérios escolhidos para a divisdo dos dados (LAROSE e
LAROSE, 2014).

A construcdo de uma arvore de classificacdo pode ser baseada no critério da taxa de erro
de classificacdo. Uma vez que o objetivo é atribuir uma observacdo em uma determinada regido
a classe de observacdes de treinamento que ocorre mais frequentemente naquela regido, a taxa
de erro de classificacdo € a razdo das observagdes de treinamento naquela regido que nao
pertencem a classe mais comum (JAMES et al., 2014):

E=1=""Pmq) (32)

onde P4 representa a proporcao de observagdes de treinamento na regido m — ésima que

sdo da classe g — ésima.
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No entanto, verifica-se que o erro de classificacdo nao é suficientemente sensivel para
0 crescimento de arvores e, na pratica, duas outras medidas sdo preferiveis, o indice de Gini e
a entropia (JAMES et al., 2014).

O indice de Gini é definido por:

(33)

uma medida da variancia total entre as classes w. O indice de Gini assume um valor pequeno
se todos 0S P, estiverem proximos de zero ou um. Por esse motivo, o indice de Gini é chamado
de medida da pureza do n6, um valor pequeno indica que um nd contém predominantemente
observacdes de uma Unica classe.

Uma alternativa ao indice de Gini é a entropia, expressa por:

(34)

w
D=- Z ﬁmqlog(ﬁmq)f

q=1

como 0 < Py <1, segue-se que 0 < —ﬁmqlog(ﬁmq). Pode-se mostrar que a entropia
assumira um valor proximo de zero se 0S p,,;'s estiverem todos préximos de zero ou préximos
de um. Portanto, como o indice de Gini, a entropia assumira um valor pequeno se 0 m —
ésimo no for puro.

Ao construir uma arvore de classificacdo, o indice de Gini ou a entropia sdo
normalmente usados para avaliar a qualidade de uma divisao especifica, uma vez que essas duas
abordagens sdo mais sensiveis a pureza do né do que a taxa de erro de classificacdo. Qualquer
uma dessas trés abordagens pode ser usada ao podar a arvore, mas a taxa de erro de classificacao
é preferivel se a acuracia da predicdo da arvore podada final for o objetivo (JAMES et al.,
2014).

Os modelos preditivos resultantes de arvores de decisdo sdo simples e Uteis para
intepretacdo. No entanto, um importante problema do método ¢ a alta variancia. Uma pequena
alteracdo nos dados pode causar uma grande alteracdo na estrutura da arvore e,
consequentemente, alterar a interpretacdo do modelo ajustado. No entanto, ao agregar muitas
arvores de decisdo, o desempenho preditivo das arvores pode ser substancialmente melhorado,
reduzindo essa variancia (HASTIE, TIBSHIRANI e FRIEDMAN, 2017; JAMES et al., 2014).
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2.2.5.2 Random Forest

O Random Forest (RF) (BREIMAN, 2001) é uma modificagdo do método bagging que
constréi uma grande colecdo de arvores descorrelacionadas (HASTIE, TIBSHIRANI e
FRIEDMAN, 2014). Para implementar essa estratégia, é preciso construir muitas arvores de
decisdo. Cada arvore deve fazer um trabalho aceitavel de predizer o alvo e também deve ser
diferente das outras arvores. Random Forest recebe esse nome por atribuir aleatoriedade na
construcdo da arvore para garantir que cada arvore seja diferente. H4 duas formas pelas quais
as arvores em uma floresta aleatoria sdo aleatorizadas: selecionando os pontos de dados usados
para construir uma arvore e selecionando os atributos em cada teste de divisdo (MULLER e
GUIDO, 2017). Para classificagdo, cada arvore na floresta atribui um voto para a classificagéo
de uma nova amostra, e a propor¢ao de votos em cada classe em todo o conjunto é o vetor de
probabilidade previsto, enquanto para regressdo, € feita uma média (KUHN e JOHNSON,
2013).

Como o algoritmo seleciona aleatoriamente os preditores em cada diviséo, a correlagao
da arvore serd necessariamente reduzida. Ao construir essas arvores de decisdo, cada vez que
uma divisdo em uma arvore é considerada, uma amostra aleatéria de m preditores é escolhida
como candidata a divisao do conjunto completo de p preditores, a divisdo pode usar apenas um
desses m preditores (JAMES et al., 2014). Uma nova amostra de m preditores é obtida em cada
divisdo, sendo recomendado definir um terco do nimero de preditores em problemas de
regressdo e a raiz quadrada do numero de preditores em problemas de classificacdo
(BREIMAN, 2001).

O numero de arvores para a floresta também deve ser escolhido. Na prética, quanto
maior a floresta, pode melhorar o modelo, mas também maior sera a custo computacional.
Breiman (2001) mostrou que as florestas aleatdrias sao protegidas de overfitting, portanto, o
modelo ndo serd afetado negativamente se um grande nimero de arvores for construido para a

floresta.

2.2.5.3 Extremely Randomized Trees

O metodo Extremely Randomized Trees (Extra-Trees - ET) (GEURTS, ERNST e
WEHENKEL, 2006) foi proposto para problemas de classificagdo e regresséo supervisionados
e consiste essencialmente em randomizar fortemente a escolha de atributos e pontos de corte

enquanto divide um n6 de arvore. Como em Random Forest, um subconjunto aleatorio de
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caracteristicas candidatas é usado, mas os limites discriminantes sdo feitos aleatoriamente para
cada caracteristica candidata e o melhor desses limites gerados aleatoriamente é escolhido como
a regra de divisdo. O aumento da aleatoriedade geralmente permite reduzir um pouco mais a

variancia do modelo, as custas de um aumento no Vviés.

2.3 Digital Twin

O Digital Twin (DT) esta na vanguarda da quarta revolucdo industrial, potencializado
por meio de andlise avancada de dados, big data, inteligéncia artificial, machine learning e
conectividade de internet das coisas (FULLER et al., 2020; RATHORE et al., 2021). O
interesse no DT tem crescido significativamente na academia e na industria, no entanto, ndo
existe na literatura uma definicéo unificada sobre o que € 0 DT e como o conceito esta evoluindo
para atender as diferentes necessidades de aplicacBes (JONES et al., 2020). Entretanto, é
consensual que um DT é uma tecnologia emergente que permite uma representacao virtual de
um sistema fisico (cada vez mais, esse sistema fisico € chamado de physical twin), que usa
dados coletados desse sistema para conectar partes digitais e fisicas, o que pode ser definido
como um processo de coletar informacBes sobre ativos fisicos e converté-las em uma
representacédo digital que pode ser processada automaticamente (CALLCUT et al., 2021). No
ambito deste trabalho, DT é definido como um conceito engenhoso que articula modelos
computacionais baseado na fisica e orientado a dados, sinais de sensores e machine learning,
com o objetivo de apoiar decisfes de engenharia relacionadas a um physical twin.

Grieves (2014) definiu o framework DT como consistindo em trés componentes: um
objeto fisico, uma representacdo virtual desse objeto e a conexdo para troca bidirecional de
dados entre eles, que alimentam dados da representacéo fisica para a virtual e informacoes e
processos da representacdo virtual para a fisica.

Tao e Zhang (2017) propuseram um modelo para DT com cinco componentes: parte
fisica, parte virtual, conexdo, dados e servicos. A parte fisica é a base da construcdo da parte
virtual; a parte virtual suporta a simulacdo, tomada de decisdo e controle da parte fisica; o0s
dados constituem a parte central, sendo fundamentais para a criagédo de novos conhecimentos;
0 que levam a novos servicos que podem aumentar a conveniéncia, confiabilidade e
produtividade de um sistema projetado; a conex@o conecta a parte fisica, a parte virtual, 0s
dados e o servigo (TAO et al., 2019).

Singh, Weebera e Birke (2021) propuseram um framework DT com sete componentes,

0 que inclui: o physical twin composto por uma unidade de controle, sensores e atuadores; a
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parte de comunicacdo responsavel pela aquisicdo e processamento de dados; a parte de
seguranca responsavel pelo manuseio seguro do fluxo de dados; a parte de armazenamento de
dados; a parte de modelagem e otimizacdo de DT; a parte de servi¢co responsavel pelo
desenvolvimento de aplicacfes avancadas orientadas a dados ou funcGes de analise de dados
padrdo; e, por fim, a Gltima parte responsavel por fornecer as informacdes a parte interessada
usando a visualizagdo de dados, o0 que também inclui dispositivos que permitem a tomada de
deciséo para o usuério e o feedback de informac6es para o dispositivo fisico (por exemplo, por
meio de uma interface homem-maquina (IHM) ou feedback direto para a unidade de controle
do physical twin). Essa arquitetura coloca o processo fisico no centro e constr6i o DT em torno
das funcionalidades do mundo real. Também pode ser criado de forma incremental, com adicao
de novos componentes em diferentes ciclos de implementacéo.

Em um DT, os elementos fisicos e virtuais trocam informacGes para monitorar, simular,
prever, otimizar, diagnosticar e controlar o estado e o comportamento do objeto fisico dentro
do espaco virtual. Assim, espera-se que os DTs prevejam a evolucdo do estado do objeto fisico
usando os dados trocados. Um uso comum de DTs para essa finalidade é evitar a interrupcao
do servico em situagdes de manutencdo. Um DT também pode ser usado para realizar
monitoramento continuo por meio de aquisicdo de dados em tempo real. Outro uso comum do
DT é melhorar a seguranca e a resiliéncia, devido a capacidade do DT de detectar acdes
maliciosas em um sistema. Além disso, permite uma melhor avalia¢do de risco para testar varios
casos hipotéticos que podem afetar os objetos fisicos (SEGOVIA e GARCIA-ALFARO, 2022).

Nesse sentido, um DT se atualiza para rastrear o physical twin por meio do uso de
sensores, andlise de dados, machine learning e loT (CHAKRABORTY, ADHIKARI e
GANGULLI, 2021).

No contexto da engenharia estrutural, a parte fisica compreende os componentes e
subsistemas estruturais do ativo fisico (physical twin) em questdo, que interage com 0 meio
ambiente por meio de processos fisicos ou quimicos, o ambiente circundante é responsavel
pelas a¢Oes externas na estrutura, cComo carregamentos, temperatura e umidade. Por outro lado,
a parte virtual fornece uma idealizacdo do physical twin sob um nivel especifico de abstracédo
por meio de modelos matematicos baseados em leis da fisica, dados ou ambos. A conexao
realiza a interacdo do objeto fisico e do objeto virtual, por meio de sensores e atuadores, que
coletam e processam dados sobre o comportamento estrutural e as condi¢gdes ambientais. O
desempenho estrutural e sua evolucdo ao longo do tempo sdo descritos pelos modelos usando
estados e parametros. O modelo virtual é atualizado de forma adaptativa com base no

desempenho do physical twin medido pelos sensores ao longo de parte ou de todo o ciclo de
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vida estrutural. Ao mesmo tempo, fornece uma ferramenta para inferir o estado da integridade
estrutural, realizar avaliagbes de confiabilidade e risco, prever sua vida Gtil remanescente e
obter autonomamente planejamento de cenarios e acbes de tomada de decisdo
(VANDERHORN e MAHADEVAN, 2021; KAN e ANUMBA, 2019).

E importante entender que um DT estrutural pode ndo modelar perfeitamente o
desempenho real da estrutura. Uma vez que determinados estados estruturais e variaveis
ambientais podem ndo ser medidos diretamente com os métodos de deteccdo disponiveis e todo
0 desempenho estrutural pode ndo ser idealizado através de todos os niveis possiveis de
abstracdo dentro de um framework de modelagem, devido a limitacdo de conhecimento,
tecnologia ou economia (CHIACHIO et al., 2022). Nesse sentido, um framework DT estrutural
deve ser definido usando twins contextuais (WORDEN et al., 2020), onde o contexto é dado
por um subconjunto de parametros estruturais, estados de integridade ou danos e variaveis
ambientais de interesse (CHIACHIO et al., 2022).
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3 IDENTIFICACAO ESPARSA DE DINAMICA NAO LINEAR

Neste capitulo sdo apresentados o método utilizado neste trabalho, o qual emprega
regressao esparsa para descobrir equacbes governantes do sistema dindmico a partir de dados,
0s conhecimentos matematicos necessarios para aprender a dindmica através de regressdo
esparsa e a configuracdo do problema de descoberta de modelo que sera de interesse resolver.

A identificacdo esparsa de dindmica n&o linear (sparse identification of nonlinear
dynamics — SINDy) é um método desenvolvido por Brunton, Proctor e Kutz (2016) que associa
técnicas de esparsidade e machine learning para descobrir equacBes governantes de sistemas
dindmicos a partir de dados medidos.

Considere o sistema dindmico ndo linear para o vetor de estado x(t) = [x;(t), x,(t),

., x,(®)]" € R™ definido por:

x = f(x(1)). (35)

Dado um conjunto de medi¢es de x(t), o método SINDy busca identificar f: R™ — R™. Para
muitos sistemas dindmicos, quando representados na base de fungfes candidatas apropriada, a
funcdo que especifica a dindmica, f, consiste em apenas alguns termos importantes, de forma
que as equacgdes sdo esparsas no espaco de funcBes possiveis. Entdo, usando técnicas de
regressao esparsa pode-se determinar o nimero suficiente de termos para representar f, sendo
esperados modelos parcimoniosos que equilibram a acuracia com a complexidade do modelo
para evitar overfitting.

Para determinar a funcao f, é coletado um conjunto de dados, provavelmente ruidosos,
do estado x(t) e sua primeira derivada x(t) ou do estado x(t) e da aproximagdo numérica de
sua primeira derivada Xx(t), amostrados no tempo, t, t,, .., ty. Essas medidas sdo
concatenadas em duas matrizes, a matriz de estados X (X € RM*™) (Equagéo 36) e a matriz da
derivada de estados X (X € RM ><") (Equacéo 37), onde as colunas correspondem a diferentes

variaveis de estado e as linhas correspondem a diferentes pontos no tempo:

x(ty)" x1(t)  x(t) o xp(ty)
X = X(t.Z)T — xl(:tZ) xZ(:tZ) xn(:tZ) (36)

X(t;w)T xl(-tM) xz(‘tM) xn(.tM)
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x(t)" x1(t1)  X(t) o Xn(ty)
X = x(t)" | 2 xl(tz) Xp(t2) v xp(ty) . (37)
x(ty)" X1 (ty) Xa(ty) - Xn(ty)
Em seguida, € especificada uma base de fung¢des candidatas, {¢;(x), i = 1,2, ..., p},

com a qual se pretende representar f. As fun¢des candidatas séo avaliadas em X para construir

uma matriz de biblioteca de dados:

I I I
PX) = [ (X) $.(X) - (X (38)
| I I

Na matriz ®(X) (®(X) € RM*?), onde Q é nimero total de fungBes distintas na biblioteca,
cada coluna corresponde a uma unica funcdo candidata, que podem incluir, por exemplo, termos
constantes, monémios até certo grau finito, funcbes trigonométricas e fungdes racionais. Por
exemplo, se ¢, (X) for um polindmio de grau 2, ¢», (X) denota ndo linearidade quadréatica que

pode ser expressa como:

xf(t) o (t)x(t) - x5() - xn(ty)
(X)) = x3 (-tz) X1 (tz)‘xz (t2) x5 (-tz) x‘rzl('tZ) _ (39)
X3 (tM) X1 (tmsz(tM) x5 (tM) x‘rzl(‘tM)

Na pratica, a selecdo dessas fun¢des candidatas pode ser informada pelo conhecimento prévio
do profissional sobre o sistema dindmico que esta sendo medido.

Cada componente de f pode ser representado como uma combinacdo linear esparsa da
base de funcdes candidatas, 0 que permite apresentar um problema de regressdo esparsa a ser

resolvido para os coeficientes usados nessas combinacdes lineares:

X = d(X)E, (40)

onde E (E € R%*™) ¢ a matriz esparsa, onde cada coluna corresponde a um vetor esparso (&)
de coeficientes que determina quais termos estdo ativos (diferentes de zero) no lado direito para
cada componente de f. Uma vez que E tenha sido determinada, um modelo de cada componente

das equacdes governantes pode ser construido da seguinte forma:
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% = f;(x) = D&, (41)

onde ®(x7) deve ser interpretado como um vetor (linha) de fungGes simbdlicas de componentes
de x. O sistema completo de equacdes diferenciais € entdo dado por:
T
k= f(x) = 2T(o ") . (42)
Para ilustracdo do método SINDy é apresentado um exemplo usando as equac@es do sistema
cadtico de Lorenz (LORENZ, 1963), desenvolvidas para descrever alguns dos comportamentos

imprevisiveis caracteristicos do tempo meteorolégico (SPARROW, 1982),

X = —ox + gy,
y =px—y—xz (43)
z=xy—fz.

Essas equacdes originam a dinamica caotica que evolui em um atrator e apenas alguns termos
estdo ativos no lado direito. Considerando as fun¢Ges candidatas [1, x, vy, z, x2, xy, xz, y?,

yz, z*], adindmica esparsa é identificada de forma que o sistema pode ser expresso como:

_1_

X

y

p? o—aaoooooooxz2

X:y:ET(CD(xT)) =[0 p =1 0 00 -1 0 0 0 (44)

7 0 0 0 -8 01 0 0 0 0l
2

y

vz

_ZZ_

Na prética, as medicBes sdo contaminadas por ruido, sendo observada uma versdo
perturbada de x(t), e, em muitos casos, x(t) ndo é observado diretamente, sendo aproximado
de x(t), estabelecendo outra fonte de erro. A Equacéo (40) anteriormente exata, a ser resolvida
para E, é suplantada pelo problema de aproximacgéo. Além disso, na maioria das aplicacdes,
M > Q, dessa forma, a Equacdo (40) e sobredeterminada. Assim, é buscada uma solugéo

esparsa para um sistema sobredeterminado com ruido (BRUNTON, PROCTOR e KUTZ, 2016;
DE SILVA et al., 2020):
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X ~ ®(X)E. (45)

3.1 Otimizadores

Para determinar Z, o SINDy busca resolver o seguinte problema de otimizacdo
(CHAMPION et al., 2020):

* +AR(3), (46)

1.
mgn§||x— P(X)E

onde ||*||z ¢ a norma de Frobenius, R(-) é um termo de regularizacdo que promove solucdes
esparsas e A € um hiperparametro que determina a forca da regularizacdo. Cada coluna de Z
codifica uma equacdo diferencial para um Gnico componente de x. Entéo, resolver a Equacgao

(46) consiste em resolver n problemas desacoplados.
3.1.1 Least Absolute Shrinkage and Selection Operator

Uma abordagem comum é escolher R(-) para ser a norma £; promotora de esparsidade,
que € a relaxacdo convexa da norma ¢,. Nesse caso, SINDy é resolvido via Least Absolute
Shrinkage and Selection Operator (LASSO) (BRUNTON, PROCTOR e KUTZ, 2016;
CHAMPION et al., 2020). O método LASSO (TIBSHIRANI, 1996; HASTIE, TIBSHIRANI e
WAINWRIGHT, 2015) (Equagédo 47) executa tanto a selecdo de coeficientes, ao ser capaz de

tornar alguns coeficientes nulos, quanto a regularizacdo com base na penalidade #1:

1,.
min = [[X = ®(OE|; + 211z, (47)

=
=

onde ||. ||2é norma-2 de um vetor e |. ||1 € a norma-1 de um vetor. Quando A=0, a Equacéo (47)
é reduzida a minimos quadrados, a medida que A aumenta, Zjasso fica mais esparso. Ao
selecionar A adequado, a solucdo pode equilibrar a compensacdo entre a acuracia e a
complexidade do modelo. O método LASSO normalmente € resolvido por um algoritmo de

otimizacao.
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3.1.2 Sequential Thresholded Least Squares

O método LASSO pode se tornar computacionalmente caro para grandes conjuntos de
dados e ndo identificar com sucesso modelos esparsos, apresentando padrbes de esparsidade
incorretos (BRUNTON, PROCTOR e KUTZ, 2016; SU, BOGDAN e CANDES, 2017).
Mesmo com dados sem ruidos, 0s modelos LASSO para SINDy normalmente tém muitos
coeficientes que sdo pequenos em magnitude, mas diferentes de zero (CHAMPION et al.,
2020). Nesse contexto, Brunton, Proctor e Kutz (2016) propuseram o método sequential
thresholded least squares (STLSQ) como um algoritmo computacionalmente eficiente,
notavelmente robusto ao ruido e que converge rapidamente para uma solugdo esparsa em um
pequeno numero de iteracGes. O método STLSQ possui um Unico pardmetro § necessario para
determinar o grau de esparsidade em E.

Dado um limite de esparsidade &§, que especifica a magnitude minima para um
coeficiente em E, o algoritmo de STLSQ alterna em (a) resolver sucessivamente o problema de
minimos quadrados para cada coluna de Z e (b) remover fun¢des candidatas de consideracdo

cujos coeficientes correspondentes em E estdo com magnitude abaixo do limite especificado.
3.2 Equag0es de Movimento

As equacdes de movimento do sistema dinamico, x(t), envolvem um termo de
aceleracdo. Consequentemente, € imposta a restricdo de que as equagdes governantes do modelo

sejam equac0es diferenciais de segunda ordem:
i = f(x, x). (48)

A estrutura SINDYy ¢é projetada para trabalhar com sistemas de equacdes diferenciais de

primeira ordem, entdo a Equacado (48) € convertida em tal sistema:

{ff =xg=(xli V). (49)

Em seguida, o SINDy pode ser aplicado, com x = [x v]T e f(x) = [v g(x)]”, e ¢ tentado
aprender a fungédo g. De fato, como ja é conhecida a fungédo correta do lado direito para x, €

preciso encontrar uma expressado para v.
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Caso se tenha conhecimento do modelo fisico da estrutura, o SINDy pode ser
estruturado considerando a estrutura das equagdes de um modelo baseado na fisica.
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4 EXEMPLOS DE APLICACAO: VIBRACAO AXIAL

Este capitulo apresenta as aplicacGes das técnicas supramencionadas para um modelo
de barra de aco, considerando a vibracdo axial. Inicialmente, sdo apresentadas as etapas para
aplicacdo das técnicas. E em seguida, demonstra-se a aplicabilidade a dois modelos de barra de
aco: engastada e biengastada. Cada modelo foi discretizado em dois, quatro e seis elementos
finitos, correspondendo a seis configuracbes de andlises. As propriedades do material e
informacdes geométricas dos modelos sdo: comprimento L = 1,00 m, altura e largura da se¢éo
transversal retangular h x b = 0,025 m x 0,05 m, massa especifica p = 7850 kg/m> e
modulo de elasticidade £ = 210 x 10° N/m?2.

4.1 Procedimento para Aplicacdo Pratica das Técnicas

4.1.1 Physical Twin

Nestas aplicacdes, o physical twin consistiu em uma barra uniforme sob excitacdo axial,
considerado como um modelo de alta fidelidade da estrutura em analise, e sua equacdo de

movimento longitudinal pode ser expressa como:

oA 0%u(x,t) ey 0%u(x,t)

at2 oxz PxD, 0)

onde u(x,t) é o deslocamento longitudinal da barra, x é a posicao espacial ao longo de seu
comprimento, t é o tempo, E é o modulo de elasticidade, A é a area da secdo transversal, p é a
massa especifica e p(x,t) é a forca axial distribuida. Essa equacdo diferencial parcial foi
discretizada através do método dos elementos finitos, sendo empregadas funcbes de forma
linear, de modo que foi obtido o seguinte sistema discreto (CRAIG e KURDILA, 2006):

[Mpt]upt(t) + [Cpt]upt(t) + [Kpt]upt(t) = ppt(t)' (51)

onde o subscrito pt representa o physical twin, [M,,] é a matriz de massa, [K,.] é a matriz de
rigidez e [C,.] é a matriz de amortecimento proporcional ([Cp.] = a[M,.] + B[K,¢]), onde a
e [ sdo constantes de proporcionalidade reais e positivas (amortecimento de Rayleigh),

estabelecidas partindo da especificacdo das razdes de amortecimento para o modo fundamental
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e para um dos modos de frequéncia mais alta que contribui significativamente para a resposta
dindmica (CLOUGH e PENZIEN, 2003). O sistema foi discretizado em dois, quatro e seis
elementos finitos e foram aplicadas as condi¢6es de contorno adequadas para 0 modelo de barra

engastada e para 0 modelo de barra biengastada.

4.1.2 Modelo Baseado na Fisica

A idealizacdo do modelo de barra (physical twin) foi baseada na fisica e construida
utilizando uma descricdo de parametros concentrados de n graus de liberdade (degrees of
freedom — DOF) (n-DOF), para representacdo do modelo de barra engastada (Figura 10(a)) e
biengastada (Figura 10(b)):

Figura 10 — Idealizagdo do modelo de barra (a) engastada e (b) biengastada, utilizando descri¢do de pardmetros
concentrados de n-DOF.

Kz i k Kx
A A L AAM LA vy
m m; m m, My
e P B T
(v c; C, Cn
(@)

k k k k. kn k
1 LA a A AR FAAM b
m, m, m m Mn
1+ — — —H — M —
Cq Co Ci CJ Cn Criq
(b)

Fonte: Autor (2024).

As equacbes de movimento do sistema n-DOF sdo:
[Mmf]jémf(t) + [Cmf]xmf(t) + [Kmf]xmf(t) = fmf(t)’ (52)

onde o subscrito mf representa o modelo fisico, [C,,s] € a matriz de amortecimento
proporcional ([Cor] = a[Mys] + B[Crns])-

A estrutura SINDy é projetada para trabalhar com sistemas de equacdes diferenciais de
primeira ordem, entdo as equacdes de movimento (Equagdo 52) foram convertidas em tal

sistema (Equacéo 53), para 0 modelo de barra engastada, k,,; = 0:
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(561 =Xy
(f1(t)>+ k1+k2>x1+(_a(m1)+ﬁ(k1+k2)>x2_I_(E)xs
my my
(.B(kz)>

Xoi—1 = Xai

1 k; ki +kiy
<f (t)> Xpi-3 T (%) Xi—2 T <_ %) Y2ic1 (53)
l ki + ky, kis kit
+ (_ a(m;) + l[j,i + 1)> Xy + (7:) X2i+1 T <ﬁ(mi 1)> X2i+2

parai=2,3,..,n—1

Xon—1 = Xon

Xon = <f:r5,tl)> + (kn -;:nﬂ) Xon-3 T <ﬁ1(::)> Xon—2 T (— :1_1;) Xon-1

n (_ a(my) + Bk, + kn+1)> Yogm

mpy

4.1.3 Respostas do SINDy

Para gerar os dados de treinamento para o SINDy, foi aplicada uma forca de compresséo
com magnitude de 10 x 103 N na extremidade direita do modelo da barra engastada e de
50 x 103 N no Gltimo DOF do modelo da barra biengastada (modelo do physical twin). As
forgas foram escolhidas de modo a mobilizar a estrutura e atender ao seu critério de estabilidade
estatica. As respectivas respostas de deslocamento no tempo foram entdo registradas. As
respostas mostraram que o sistema oscila de forma rapida até decair para a resposta referente a
forca aplicada e as maiores amplitudes de deslocamento ocorrem para os DOFs que estdo mais
préximos do ponto de aplicacdo da forga.

A taxa de amostragem utilizada foi determinada usando o teorema da amostragem de
Nyquist-Shannon* (SHANNON, 1949), considerada uma taxa de amostragem de

aproximadamente duas vezes e meia a maior frequéncia do modelo de alta fidelidade.

1 Um sinal analdgico que foi amostrado pode ser recuperado a partir de uma sequéncia de amostras, se a taxa de

amostragem for superior a 2Fs amostras por segundo, onde Fs é a maior componente de frequéncia contida em um
sinal original (LATHI, 1998).
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Os dados de velocidade (x(t)) e aceleracdo (%(t)) foram obtidos através da
diferenciacdo numérica dos dados de deslocamento (x(t) ), via método das diferengas finitas
centrais de segunda ordem (KUTZ, 2013).

Foram comparados os algoritmos STLSQ e LASSO, usando 0 pacote PySINDy da
linguagem Python 3.9 (DE SILVA et al., 2020). Os modelos LASSO foram ajustados usando
0 pacote scikit-learn (PEDREGOSA et al., 2011). A matriz da biblioteca SINDy ®(X) foi
construida usando termos polinomiais de primeira ordem. O SINDy foi estruturado
considerando a estrutura das equacdes de um modelo baseado na fisica (Equacéo 53).

O parametro &, para o algoritmo STLSQ, e o hiperpardmetro A, para o algoritmo
LASSO, foram variados considerando um determinado intervalo, de modo que aumentar & ou
A produziam modelos com poucos ou nenhum termo e diminui-los produziam modelos
convergentes. A medida que os resultados foram gerados pelo SINDy, para cada pardmetro & e
hiperparametro A variado, foi avaliada a raiz do erro quadratico médio (root mean square error
— RMSE) (WILLMOTT e MATSUURA, 2005) entre os sinais de entrada de aceleracédo e a
predicdo das equacOes descobertas para aceleracdo. O parametro 6timo & (8stimo) € O

hiperparametro 6timo A (A4:m0) foram escolhidos de forma que minimizasse a medida de erro.

4.1.4 Parametrizacdo de Dano

O dano foi representado pela reducéo da rigidez da mola (como uma perda de rigidez
local), parametrizado por meio de um escalar n € [0, 1]. O valor da rigidez foi multiplicado por
n, onde d =1 —mn, com d a porcentagem do dano que corresponde a sua intensidade. A
parametrizacdo de dano para os termos das equacfes que contém uma Unica mola correspondeu

a Equacdo (54), para cada i-ésima mola de interesse:

k. nik ks
L= —T]l L= (1—-d)). (54)
m m m

Para os termos das equagdes que contém duas molas,

m m '

(55)

Uma vez que a estrutura esta sem dano, k; = k; = k. Entdo,
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k 2k( d; d;
((1—di)+(1—dj))=E(2—di—dj)=z<1—?—?’>

k

m

kit k; ) d; d
T m 2 2)

Portanto, a parametrizacdo de dano para os termos das equacdes em que contém duas molas

k
E(”i +1;) =

correspondeu a Equacéo (57), para cada i-ésima e j-ésima mola de interesse:

ki + k; _ ki + k; <1 d; d]-> 57)

m m 2 2)
Uma estrutura integra € representada por d = 0 em todas as molas. A representacao do
dano corresponde a reducdo na matriz de rigidez, enquanto a matriz de amortecimento
permanece constante.
As melhores equagdes de movimento descobertas pelo SINDy foram reescritas para
parametrizacdo de dano, modelo de barra engastada (Equacdo 58) e modelo de barra
biengastada (Equacao 59):

(561 = X

4 = (ff)) s ((1 ~ oz7 ~ %) (_ k;k)> . <_ a(m,) + n/i(k + k2>> .

+ ((1 —d,) (%)) x5 + (ﬁ r(:f)> .

X2i—1 = X3j

Xpi = <f;fli > + <(1 —d;) (%)) X2i-3 t <%k:)> Xai—2 T (— kl+T]fl+1> X2i-1

n (_ a(m) + Bk + ki+1)> Xpi + (%) Xoi+1 T <ﬁ(fr;+1)> X2i+2

A

(58)

m; i
parai =2,3,..,n—1

Xon—-1 = Xon

Xon = <fnft)> + ((1 —dy) (m_)> Xon-3 t <%) Xon-2

+ ((1 - dn) <_ ﬁ)) Xon-1 t <_ a(mn) i 'B(kn)> X2n
\ my my
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(561 =Xy

. (f(©®) d; d, ki+k; a(my) + p(ky + k;)
o= (B0) o (1- % - ) () o (- Hm ),
+ ((1 —d,) (E)) xs + (ﬁ(kz)> %
my my
Xoi-1 = Xz
i ki ki ki + kit
) Xoi = <f‘rr(lf > + <(1 —d;) (E)> X2i-3 t <%1)> X2i-2 T (— %) X2i-1

n (_ a(m) + Bk + ki+1)> Xy + (%) X2i+1 T <ﬁ(:;+1)> X2i+2

m; i
parai =2,3,..,n—1

(59)

Xon—-1 = Xon

iy = <ﬁ;§z)> N <(1 _ % _ dnz+1) (kn ‘lr'nl:‘wl)) tans+ <Br(::)> o

kn n kn kn+
\ + ((1 - dn) (_ m_)> Xop-1 T <_ a(m ) " ﬁ( " 1)> X2n-

n mn

4.1.5 Construcdo do Conjunto de Dados

A estrutura do conjunto de dados X 4,4,s eMpregada para o aprendizado supervisionado
de classificacdo foi construida usando M amostras de deslocamentos do sistema
Uy, U,, ..., Uy), equacdes descobertas através do SINDy. O conjunto de dados X 4405
(atributos) e o cenario de dano associado V,s:,10 (rétulos) sdo o par de entrada para o
classificador.

A estrutura do conjunto de dados compreende M amostras de deslocamentos para cada
um dos r cenarios de dano, que sdo gerados usando as equacdes descobertas. A resposta de
cada amostra de deslocamento corresponde a uma linha da matriz X;,4,s. POr exemplo, o
cenario de dano d, pode ser de dano nulo em todas as molas (que caracteriza a estrutura integra),

que esta associada ao rétulo d; (integra), correspondendo a classe integra (d1 X gq405)- POrtanto,

(1) 1)
U; U, U}S}l) Yai
dlxdados = o o o .
M
U; U, Uy Yai
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O conjunto de dados final X ;,4,s € Uma matriz de dimensao ((M X71r) X N), composta das M
amostras de deslocamentos de cada r cenarios de dano, incluindo a estrutura integra (classes),

com N deslocamentos medidos (atributos):

dlxdados
_ |d2X
Xdadosfinal - 2 .C.lfldos .

erdados

4.1.6 Construcdo dos Classificadores de Machine Learning

Na construcdo do conjunto de dados usado para treinar os classificadores, as equagdes
do modelo SINDy foram usadas para simular a resposta de deslocamento no tempo do sistema
com diferentes locais de danos e diferentes intensidades correspondentes. O modelo SINDy foi
integrado no tempo, de forma que 300 amostras foram coletadas para cada um dos cenérios de
interesse: nenhum dano (integra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-
ésimamola (i =1, ..., n), onde n corresponde ao nimero de molas. S&o intensidades de dano
amplamente investigado na literatura (PARVIZ, CHAN e GALLAGE, 2020; RATCLIFFE,
1997; SHI, LAW e ZHANG, 2000; WANG e LI, 2012; WU et al., 2017). Isso resultou em um
conjunto de dados de treinamento na forma ((300 X (integra + n° de molas X
4 intensidades de dano) X (n° de DOFs)), onde uma validacdo cruzada estratificada de 5
folds foi empregada. Para melhorar as condicdes de treinamento, os dados foram normalizados
subtraindo a média e dividindo pelo desvio padrdo das amostras.

Um conjunto de algoritmos de classificacdo de machine learning foi escolhido para
analises, com base em seu uso na literatura SHM e em sua interpretabilidade em termos de
como usam atributos para predicdo de classes. Os algoritmos de classifica¢do escolhidos foram:
Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive Bayes (NB), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forest (RF),
Decision Trees (DTs) e Extremely Randomized Trees (ET). Os cddigos para os referidos
classificadores foram desenvolvidos usando o pacote scikit-learn da linguagem Python 3.9
(PEDREGOSA et al., 2011).

O procedimento de busca em grade, utilizando o método de validacao cruzada k-fold,
foi empregado para identificar os valores dos hiperparametros para cada modelo de

classificagdo. A busca em grade, com validagdo cruzada, é o0 método mais amplamente usado
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para otimizar os parametros de um classificador de machine learning (PEDREGOSA et al.,
2011). Esse método gera uma lista de modelos candidatos a partir de uma grade de valores de
parametros. O tamanho da grade de hiperparametros € determinado pelo intervalo e combinacéo
de hiperparametros escolhidos para cada modelo. Os hiperparametros 6timos sdo entdo
escolhidos a partir do modelo com melhor desempenho de classificagdo. O intervalo e a
combinacao de hiperparametros, para cada um dos algoritmos de classificacdo, sdo escolhidos
como o espaco de hiperparametros dentro do qual se espera que estejam 0s parametros do
modelo 6timo para o problema de classificagéo.

O intervalo de hiperparametros foi escolhido com base nos intervalos de
hiperparametros recomendados na literatura de SHM e machine learning (BUCKLEY, GHOSH
e PAKRASHI, 2023; HASTIE, TIBSHIRANI e FRIEDMAN, 2017; KUHN e JOHNSON,
2013) e documentacdo do scikit-learn (PEDREGOSA et al., 2011). Os hiperparametros do
modelo para cada algoritmo de classificacdo sdo mostrados na Tabela 1. Para os métodos que
possuem hiperparametros, 90% dos dados foram usados para treinamento e 10% para teste, e 0

modelo final foi ajustado com todos os dados.

Tabela 1 — Hiperparametros dos classificadores de ML, modelo de barra.

Classificador Parametro Valor

QDA - -

LDA - -

NB Modelo Gaussiano

k-NN NuUmero de vizinhos k=3;4;...;25
Peso Uniforme; distancia
Métrica Cosseno; Euclidiana

SVM C 0,1; 1; 10; 100; 1000
Kernel Linear; RBF; sigmoide; polinomial
Grau 2,3
Gama (kernel néo linear) 1;0,1; 0,01; 0,001
Funcdo de decisao Um contra um (OVO); um contra o resto

(OVR)

RF Numero de estimadores 100; 150; 200; 300; 500
Profundidade maxima da arvore 6; 8; 10; 12; 14
Critério Gini; entropia

ET NUmero de estimadores 100; 150; 200; 300; 500
Profundidade méaxima da arvore 12; 14; 16; 18; 20
Critério Gini; entropia

DTs Profundidade méaxima da arvore 8; 10; 12; 14; 16
Critério Gini; entropia

Fonte: Autor (2024).
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4.2 Barra Engastada

4.2.1 Barra Engastada Discretizada em Dois Elementos Finitos

O sistema foi discretizado em dois elementos finitos (Figura 11(a)) e foram aplicadas as
condic@es de contorno fixa-livre (Equacdo 51) e a idealizacéo da barra foi construida como um
modelo 2-DOF (Figura 11(b)).

As duas frequéncias naturais, obtidas a partir das matrizes de massa e rigidez do sistema
(problema de autovalor generalizado), foram {1326; 4634} Hz e as duas razbes de
amortecimento obtidas foram {2,0; 2,0} %, com a = 259,1883 e £ = 1,0681 x 107°,
estabelecidas para 0 modo fundamental e o segundo modo.

A resposta dinamica mostra que o sistema oscila de forma rapida até decair para a
resposta referente a forca aplicada e as maiores amplitudes de deslocamento ocorre para 0 DOF
2, que esta mais préximo do ponto de aplicacdo da forca (Figura 12).

Figura 11 — (a) Barra engastada discretizada em dois elementos finitos e (b) correspondente idealizacéo.
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(a) (b)
Fonte: Autor (2024).

Figura 12 — Respostas de deslocamento no tempo, barra engastada discretizada em dois elementos finitos
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4.2.1.1 Respostas do SINDy

Para gerar os dados de treinamento para o SINDy, o sistema (Equacéo 51) foi simulado
com as condi¢des iniciais x(t = 0) = [0,0,0,0]7, no tempo de 0 a 0,04 s, com periodo de
amostragem de 8,3333 x 107> s, que correspondem a sensores com taxa de amostragem de 12
kHz. Isso resultou em um conjunto de dados com 480 amostras.

As equacdes de movimento do modelo 2-DOF foram convertidas em um sistema de

equac0es diferenciais de primeira ordem utilizando a Equacao (53):

(X1 = Xp
%, = (ﬂ(t)) N (_ ky + kz)xl N (_ a(my) + Bk + k2)> ‘t <E> .
M my my my
k
* (ﬁr(nf)> T (60)
X3 = X4
iy = (fz(t)> N (k_z) o+ (ﬁ(kz)> ‘t (_ E) - (_ a(m,) + ﬁ(kz)) ..
L my m; m m; m,

O SINDy foi estruturado considerando a estrutura das equaces de um modelo baseado
na fisica (Equacio 60). A medida que os resultados foram gerados pelo SINDy, para cada
parametro § (algoritmo STLSQ) e hiperpardametro A (algoritmo LASSO) variado, foram
avaliados a raiz do erro quadratico médio (RMSE) entre 0s sinais de entrada de aceleracao e a
predicdo das equacOes descobertas para aceleracdo. A Figura 13 apresenta no eixo das
ordenadas os valores do RMSE para os correspondentes valores de parametros § (Figura 13(a))
e hiperparametros A (Figura 13(b)), que estdo no eixo das abscissas. Os valores de parametros
&, correspondem ao DOF 1, enquanto os valores de parametros &, correspondem ao DOF 2,
uma vez que as equac0es diferenciais foram convertidas em um sistema de primeira ordem. As
mesmas ideias sdo realizadas para o hiperparametro A. O parametro 6timo 6 (Sstimo =
3 x 1071) e o hiperparametro 6timo A (Agrime = 1 X 1075) foram escolhidos de forma que
minimizasse a medida de erro (Figura 13). Nesses cenarios, os dois algoritmos descobriram as
mesmas equacgdes de movimento, que foram reescritas para parametrizacdo de dano (Equacéo
61).
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Figura 13 — Determinag&o do (2) 8:imo € (0) Asrimo, Darra engastada discretizada em dois elementos finitos.
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Fonte: Autor (2024).

561 =Xy

d, d
%, = 459,428 — (1 - 71 - ;) 286002077,029x, — 747,538 x, + (1 — d,)155061225,545x,

! +292,208x, (61)
X3 = X4
%, = —4988,241 + (1 — d,)310122079,663x, + 585,687x, — (1 — d,)286002641,293x;
—746,631x,,.

O modelo SINDy (Equacéo 61) foi integrado no tempo e comparado com a resposta de
entrada (physical twin) (Figura 14(a)), sendo observada uma boa correspondéncia das respostas
de deslocamento no tempo, com a raiz do erro quadratico médio normalizado (normalized root
mean square error — NRMSE) para os DOFs 1 e 2 inferiores a 6,5% (Figura 14(b)). Também
foram comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical
twin, para dois cenarios: dano de 5% em cada uma das molas e dano de 20% em cada uma das
molas (Figuras 15 e 16), sendo apresentadas as respostas que apresentam menor e maior
NRMSE. A resposta muda dependendo da intensidade do dano, bem como da mola com dano
observada. Para a intensidade de dano de 5%, quando o dano é introduzido na mola 1 verifica-
se uma correspondéncia bem representativa e maior NRMSE (inferior a 8,75%) (Figura 15(a-
b)) e quando o dano esta ha mola 2 é observada uma boa correspondéncia, com NRMSE menor
que 5,75% (Figura 15(c-d)). Para a intensidade de dano de 20%, quando o dano esta na mola 1
é observada uma concordancia satisfatoria (com NRMSE inferior a 12,75%) (Figura 16(a-b)) e
guando o dano esta ha mola 2 constata-se uma boa correspondéncia, com NRMSE menor que
2,75% (Figura 16(c-d)).
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Figura 14 — (a) Comparagdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em dois elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.
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Fonte: Autor (2024).

Figura 15 — Comparacao das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) primeira mola, (b) com
correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE.
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Figura 16 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) primeira mola, (b) com
correspondentes NRMSE, e (b) segunda mola, (d) com correspondentes NRMSE.
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4.2.1.2 Resultados e Discussdes dos Métodos de Machine Learning

Para construcdo do conjunto de dados usado para treinar os classificadores de machine
learning, o modelo SINDy (Equagéo 61) foi integrado no tempo de 0 a 0,03 s, usando um
periodo de amostragem de 1 x 10~* s, para cada um dos cenarios de interesse: nenhum dano
(integra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-ésima mola (i = 1, 2). Isso
resultou em um conjunto de dados de treinamento de 2700 amostras (300 x 9), sendo o conjunto
de dados final uma matriz de dimenséo ((300 x 9) x 2).

Os hiperparametros étimos obtidos da busca em grade, com validacdo cruzada, aplicada
usando o conjunto de dados, sdo mostrados na Tabela 2. A Tabela 3 apresenta as métricas de
desempenho dos classificadores. A precisdao mostra que 0os métodos SVM e k-NN apresentaram
os melhores resultados, seguido dos métodos baseados em arvores, método LDA e do método
QDA, para os quais ocorre uma diminuicdo da precisao, e, por fim, o método NB, que apresenta
desempenho bem inferior em relagdo aos outros métodos. Como é de interesse identificar danos

no sistema, o falso negativo € de grande relevancia, uma vez que pode ser um problema critico
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a estrutura estar com dano e o método indicar que a estrutura esta integra. Portanto, um sistema
construido para esse proposito deve levar em consideracdo uma taxa de falsos negativos
préoxima a zero. Uma meétrica que pode ser utilizada para comparar sistemas diferentes é a
revocacao, valores altos de revocacgdo indicam altos valores de verdadeiros positivos mesmo
quando se leva em conta o total de falsos negativos, ou seja, um bom modelo deve ter alta
revocacao. Avaliando a métrica de desempenho revocacao, as conclusfes sdo semelhantes as
constatadas na preciséo.

Tabela 2 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de barra engastada
discretizada em dois elementos finitos.

Classificador Parametro Valor
QDA - -
LDA - -
NB Modelo Gaussiano
k-NN Ndmero de vizinhos 4
Peso Distancia
Métrica Euclidiana
SVM C 1000
Kernel RBF
Gama (kernel néo linear) 0,1
Funcéo de decisao Um contra um (OVO)
RF Numero de estimadores 200
Profundidade maxima da arvore 14
Critério Entropia
ET Numero de estimadores 200
Profundidade maxima da arvore 20
Critério Gini
DTs Profundidade maxima da arvore 16
Critério Entropia

Fonte: Autor (2024).

Tabela 3 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra
engastada discretizada em dois elementos finitos.

Classificador ~ Acuracia (%)  Precisdo (%)  Revocacdo (%)  F-score

SVM 84,44 84,54 84,25 0,84
k-NN 80,37 80,57 80,46 0,80
ET 78,15 78,11 78,68 0,78
RF 77,41 77,74 77,65 0,77
DTs 74,44 74,83 74,44 0,74
LDA 74,96 74,48 74,96 0,74
QDA 69,22 69,70 69,22 0,69
NB 18,52 21,78 18,52 0,15

Fonte: Autor (2024).
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E analisada a matriz de confusdo para o método SVM (Figura 17), que apresentou
melhor desempenho. Cada linha representa o cenario de dano real, e as colunas exibem os
resultados do classificador. A primeira linha mostra que 30 das 34 amostras (soma da linha)
para a condicdo da estrutura integra estdo classificadas corretamente. Trés amostras foram
classificadas incorretamente como d1 (dano de 5% na primeira mola) e 1 amostra classificada
incorretamente como d2 (dano de 5% na segunda mola). De forma anéloga, para as linhas
sucessivas, as estatisticas para identificacdo de danos podem ser obtidas. Portanto, os termos
diagonais estdo relacionados as amostras classificadas corretamente, e os termos fora da
diagonal estdo relacionados as amostras classificadas incorretamente. Ha muitas informagdes
nesta matriz, como a quantificacdo de verdadeiros positivos e falsos negativos. A probabilidade
de classificar corretamente um dano é muito alta na primeira mola com dano de 20% (95,7%)
(22/23) e na segunda mola com dano de 20% (91,4%) (32/35), e alta na segunda mola com dano
de 5% (86,7%) (26/30), na primeira mola com dano de 5% (85,7%) (30/35), na segunda mola
com dano de 15% (84,4%) (27/32), na segunda mola com dano de 10% (76%) (19/25), na
primeira mola com dano de 15% (76%) (19/25) e na primeira mola com dano de 10% (74,2%)
(23/31). Ainda, a probabilidade de indicar uma estrutura integra quando o sistema esta com
dano (falso negativo) na primeira mola com dano de 5% é 8,6% (3/35), na primeira mola com
dano de 10% € 3,2% (1/31), na segunda mola com dano de 10% é 8% (2/25) e na primeira mola
com dano de 15% é 4% (1/25). Outra informacdo que pode ser obtida dessa matriz é a
probabilidade de considerar um dano quando o sistema esta integro (falso positivo), que
corresponde a 11,8% (4/34).

Figura 17 — Matriz de confusdo do classificador SVM, conjunto de dados do modelo de barra engastada
discretizada em dois elementos finitos.
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4.2.1.3 Aplicacdes do Framework Digital Twin

Para ilustracdo do framework DT do classificador SVM, o physical twin foi simulado
no tempo de 0 a 0,03 s, usando um periodo de amostragem de 2 X 10~> s, que correspondeu a
1500 amostras para cada um dos cenarios de interesse (dano investigado — DI), condicéo integra
e de 1% até 25% de dano em cada elemento, para verificar qual cenario de dano treinado sera
associado (dano associado — DA), podendo ser integra, 5% de dano, 10% de dano, 15% de dano
e 20% de dano. Esses dados de entrada (sinais simulados) né&o sdo rotulados, uma vez que na
préatica ndo é conhecida a classe a qual pertence o sinal medido. Portanto, o framework DT
apresenta a probabilidade de os dados pertencerem a determinada classe, sendo apresentada a
maior probabilidade (P). Varias quantidades de ruido foram adicionadas aos dados de inferéncia
(correspondentes a 1500 amostras) para avaliar a tolerancia do modelo de classificacdo ao ruido.
Um ruido gaussiano aleatdrio foi adicionado, com média zero e diferentes niveis de ruido (1%,
3%, 5% e 10%), obtidos a partir de um desvio padrdo que compreende o fendbmeno em analise,
correspondente a 5 x 1076 m.

A aplicacdo mostra 0s seguintes resultados para a primeira mola (Tabela 4), nas
condicdes analisadas sem ruido, 1% de ruido e 3% de ruido: de 0% a 2% de dano, indica que a
estrutura esta integra; de 3% a 7% de dano, indica que a estrutura esta com dano de 5%; de 8%
a 12% de dano, indica que a estrutura estd com dano de 10%; de 13% a 16% de dano, indica
que a estrutura estd com dano de 15% e, por fim, de 17% a 25% de dano, indica que estrutura
estd com dano de 20%. Para 5% de ruido, ocorre uma diminuicdo da probabilidade de
identificacdo de dano nos cenarios investigados, no entanto, as maiores probabilidades séo
constatadas para dano de 20%. Para 10% de ruido, as maiores probabilidades ocorrem para

dano de 20%. As respostas para a segunda mola estdo no Apéndice.
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Tabela 4 — Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra
engastada discretizada em dois elementos finitos.

sem 1% de 3%de
DI ruido ruido ruido

5% de ruido  10% de ruido

P%) P®%) P(®%) DA P(%) DA P(%) DA
0% 8507 8467 6493 S 5140 29,87
1% 8427 7833 5827 & 4973 & 30,07
2% 80,33 59,73 5047 S 4367 § 2853
3% 7340 5453 4107 4047 S 2627 5
4% 7893 73,67 46,73 3 3340 2813 £
5% 80,00 77,80 4887 2o 31,93 o _ 2367
6% 7980 7353 4780 S 3313 co%g 22,47
7% 7520 54,80 4227 31,47 22,07
8% 7367 5867 4460 o 3553 o 2047 o
9% 7873 7567 5047 & 3647 & 2287 é%g,'
10% 81,00 7947 5367 o 3740 o 2327
11% 80,40 73,60 50,73 § 35,53 §

12% 73,67 54,60 44,13 34,27

13% 70,60 58,13 41,40 30,47

5 o
14% 7533 72,87 4787 |9 31,20 @&
15% 76,73 7453 4887 | & @ 3407  ©
16% 7587 6540 4287 . O 37,67
17% 67,53 48,00 47,60 46,87
18% 8327 7587 57,87 56,20
19% 8507 84,13 70,27 61,93
20% 86,87 86,47 77,87 68,47
21% 88,13 88,07 83,93 75,80
22% 88,60 88,47 87,13 79,53
23% 88,73 88,80 88,40 83,07
24% 89,53 89,47 89,07 85,87
25% 90,80 90,73 90,53 88,40

Fonte: Autor (2024).

4.2.2 Barra Engastada Discretizada em Quatro Elementos Finitos

O sistema foi discretizado em quatro elementos finitos (Figura 18(a)) e idealizado como
modelo de 4-DOF (Figura 18(b)). As trés primeiras frequéncias naturais obtidas foram {1301,
4105; 7458} Hz e as trés primeiras razdes de amortecimento obtidas foram {2,0; 1,2; 1,5} %,
com a = 291,8517 e B = 5,2676 x 1077, estabelecidas para o modo fundamental e o quarto
modo.

A resposta dindmica mostra que o sistema oscila de forma répida até decair para a
resposta referente a forca aplicada e as maiores amplitudes de deslocamento ocorrem para 0s

DOFs que estdo mais proximos do ponto de aplicagdo da forca (Figura 19).



Figura 18 — (a) Barra engastada discretizada em quatro elementos finitos e (b) correspondente idealizacéo.
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Figura 19 — Respostas de deslocamento no tempo, barra engastada discretizada em quatro elementos finitos.
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4.2.2.1 Respostas do SINDy
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O sistema foi simulado com as condigGes iniciais x(t = 0) = [0,0,0,0,0,0,0,0]7, no

tempo de 0 a 0,04 s, com periodo de amostragem de 4 x 10™> s, que corresponde a sensores

com taxa de amostragem de 25 kHz. Isso resultou em um conjunto de dados com 1000 amostras.

O parametro 6timo & (8gtimo = 3 X 1072) e o hiperpardmetro 6timo 1 (As¢imo =

1 x 1075) foram determinados de forma que minimizasse a medida de RMSE (Figura 20).

Nesses cenarios, os dois algoritmos descobriram as mesmas equacgdes de movimento, que foram

reescritas para parametrizagéo de dano (Equagéo 62).
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Figura 20 — Determinag&o do (2) 8stimo € (0) Asrimo, Darra engastada discretizada em quatro elementos finitos.
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J'Cl = X2
d, d
%, = 160,041 — (1 -2 72) 1057912720,767x, — 848,171x, + (1 — d,)537352655,210x;
+277,279%,
XI3 = X4
. d, dj
%, = 305,440+ (1 — d,)637429664,452x, + 360,989, — (1 -2 7) 1143327449,657x,

—915,973x, + (1 — d;)560428386,284x; + 300,041x, (62)
.7‘(5 = Xg

3_

d
X¢ = 953,504 + (1 — d3)577427586,222x5 + 600,552x, — <1 573 ) 1183763540,630x5
—1600,078x, + (1 — d,)624138668,116x; + 752,041xg

X7 = Xg
%g = —9714,180 + (1 — d,)1087683486,632x5 + 1377,734 x4 — (1 — d,)1070764725,287x,
_1588,453x,.

O modelo SINDy (Equagéo 62) foi integrado no tempo e comparado com a resposta
de entrada (Figura 21(a)), sendo observada uma 6tima correspondéncia das respostas, € 0s
valores de NRMSE para os DOFs sdo inferiores a 3% (Figura 21(b)). Também foram
comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical twin, para
dois cenarios: dano de 5% em cada uma das molas e dano de 20% em cada uma das molas
(Figuras 22 e 23), sendo apresentadas as respostas que apresentam menor e maior erro
(NRMSE). A resposta muda dependendo da intensidade do dano, bem como da mola com dano
observada. Quando o dano de 5% esta na mola 1 verifica-se uma boa correspondéncia e maior
NRMSE (NRMSE inferior a 5%) (Figura 22(a-b)), e quando o dano de 5% esta na mola 4 ¢é
observada uma étima correspondéncia e menor erro, os resultados de NRMSE sdo inferiores a
2,5% (Figura 22(c-d)). Para o dano de 20%, quando o dano é introduzido na mola 1 constata-

se uma concordancia satisfatoria (com maior NRMSE entre 9 e 11,5%) (Figura 23(a-b)) e
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quando o dano de 20% esta na mola 2 é observada uma 6tima correspondéncia e menor erro
(NRMSE inferior a 2,5%) (Figura 23(c-d)).

Figura 21 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.
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Fonte: Autor (2024).

Figura 22 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) primeira mola, (b) com
correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).
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Figura 23 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) primeira mola, (b) com
correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).

4.2.2.2 Resultados e Discussfes dos Métodos de Machine Learning

O modelo SINDy (Equagéo 62) foi integrado no tempo de 0 a 0,03 s, usando um periodo
de amostragem de 1 x 10™* s, para cada um dos cenarios de interesse: nenhum dano (integra)
e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-ésima mola (i = 1, ..., 4). Isso
resultou em um conjunto de dados de treinamento de 5100 amostras (300 x 17), sendo o
conjunto de dados final uma matriz de dimens&o ((300 x 17) x 4).

Os hiperparametros 6timos obtidos da busca em grade, com validacao cruzada, aplicada
usando o conjunto de dados sdo mostrados na Tabela 5. A Tabela 6 apresenta as métricas de
desempenho para os classificadores. A precisdo indica que os métodos SVM e QDA
apresentaram o0s melhores desempenhos, seguido dos métodos LDA, k-NN e os baseados em
arvores, novamente, o0 método NB apresentou desempenho bem inferior em relagdo aos outros
métodos. Analisando a métrica de desempenho revocacdo, as conclusdes sdo semelhantes as
constatadas na precisao.
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Tabela 5 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de barra engastada
discretizada em quatro elementos finitos.

Classificador Parametro Valor
QDA - -
LDA - -
NB Modelo Gaussiano
k-NN Numero de vizinhos 3
Peso Distancia
Métrica Euclidiana
SVM C 1000
Kernel Linear
Funcéo de decisao Um contra um (OVO)
RF Numero de estimadores 500
Profundidade méaxima da arvore 14
Critério Entropia
ET Numero de estimadores 150
Profundidade maxima da arvore 18
Critério Gini
DTs Profundidade méaxima da arvore 16
Critério Entropia

Fonte: Autor (2024).

Tabela 6 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra
engastada discretizada em quatro elementos finitos.

Classificador  Acuracia (%)  Precisdo (%)  Revocacdo (%)  F-score
SVM 90,78 91,09 90,88 0,91
QDA 90,25 90,86 90,25 0,90
LDA 83,96 83,71 83,96 0,84
k-NN 76,07 76,63 76,49 0,76

ET 72,35 72,66 72,74 0,72
RF 71,18 71,45 71,69 0,71
DTs 68,43 70,16 68,85 0,69
NB 10,88 15,03 10,88 0,09

Fonte: Autor (2024).

A matriz de confusdo do método SVM mostra que a probabilidade de considerar um

dano quando o sistema esta integro é 10,5% (4/38) e a probabilidade de indicar uma estrutura
integra quando a primeira mola esta com dano de 5% é 3% (1/33) e quando a primeira mola
estd com dano de 10% é 2,9% (1/34) (Figura 24).
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Figura 24 — Matriz de confusdo do classificador SVM, conjunto de dados do modelo de barra engastada
discretizada em quatro elementos finitos.
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4.2.2.3 Aplicacgdes do Framework Digital Twin

O physical twin foi simulado no tempo de 0 a 0,03 s, usando um periodo de amostragem
de 2 x 1075 s, que correspondeu a 1500 amostras para cada um dos cenarios de interesse,
condicdo integra e de 1% até 25% de dano em cada elemento. Um ruido gaussiano aleatorio foi
adicionado aos dados (1500 amostras), com média zero e diferentes niveis de ruido, a partir de
um desvio padréo de 2,60 x 10~ m, que compreende o desvio padrdo do fendmeno em analise.

A aplicacdo do framework DT indica os seguintes resultados para a primeira mola
(Tabela 7), nas condi¢Bes sem ruido, 1% de ruido e 3% de ruido: de 0% a 2% de dano, a
estrutura esta integra; de 3% a 7% de dano, a estrutura estd com dano de 5%; de 8% a 12% de
dano, a estrutura esta com dano de 10%; de 13% a 17%, a estrutura esta com dano de 15% e,
por fim, de 18% a 25% de dano, a estrutura estd com dano de 20%. Para 5% de ruido, ocorre
uma diminuicdo da probabilidade de identificagdo de dano, no entanto, as maiores
probabilidades sdo apresentadas para dano de 20%. Para 10% de ruido, as maiores
probabilidades ocorrem para dano de 20%. As respostas para as demais molas estdo no

Apéndice.
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Tabela 7 — Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra
engastada discretizada em quatro elementos finitos.

sem 1%de 3%de

0, 1 0, 1
DI wido  ruido  ruido 5% de ruido  10% de ruido

P(%) P(%) P(®%) DA P(%) DA P (%) DA
0% 8587 8367 5280 & 2940 . 1473
1% 8340 7793 4647 & 2873 5 1640
2% 77,80 57,80 3700 S 2400 £ 1333 o
3% 7460 5673 3493 _ 2220 " 1447 @ ®©
4% 7960 7460 4000 g 2287 o _ 1540 X
5% 80,20 78,60 4567 o 2307 && 1613 o
6% 7887 7447 41,40 S 2487 2 1573 5%
7% 71,47 51,47 40,13 2580 o 14,80
8% 7573 6320 4487 o 3140 & 1520
9% 7913 7620 5500 & 3427 o 1547
10% 80,60 7920 5627 o 3460 & 1713 @ o o
11% 78,33 7540 5240 & 3347 O 19,60 §§
12% 70,3 50,80 41,20 3480 | o | 22,67
13% 77,00 6873 5307 o | 4233 | & 2367
14% 79,80 7907 6280 & 4500 | 5| 2667
15% 80,13 79,80 66,33 | o 4527 | & 32,47
16% 78,73 76,00 59,13 § 4547 | 2 38,20
17% 70,13 53,07 4540 45,67 41,60
18% 82,80 78,13 63,20 58,20 49,33
19% 87,33 86,73 77,67 66,67 54,13
20% 89,60 89,40 84,93 76,13 63,13
21% 91,13 90,93 89,40 83,47 66,47
22% 92,60 92,67 91,60 88,67 69,20
23% 93,60 9347 93,33 90,27 7713
24% 94,20 94,20 93,47 92,60 80,87
25% 94,47 9433 94,20 93,47 84,07

Fonte: Autor (2024).

4.2.3 Barra Engastada Discretizada em Seis Elementos Finitos

O sistema foi discretizado em seis elementos finitos (Figura 25(a)) e representado como
modelo de 6-DOF (Figura 25(b)). As trés primeiras frequéncias naturais obtidas foram {1297,
3979; 6930} Hz e as duas razbes de amortecimento obtidas foram {2,0; 1,0; 1,1} %, com a =
302,3999 e B = 3,5411 x 1077, estabelecidas para o0 modo fundamental e o sexto modo.

As respostas de deslocamento no tempo séo apresentadas na Figura 26, mostrando que
o sistema oscila de forma rapida e as maiores amplitudes ocorrem para os DOFs que estdo mais

préximos do ponto de aplicacéo da forca.
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Figura 25 — (a) Barra engastada discretizada em seis elementos finitos e (b) correspondente idealizacdo.

(a) (b)
Fonte: Autor (2024).

Figura 26 — Respostas de deslocamento no tempo, barra engastada discretizada em seis elementos finitos

1E-05
0E+00
-1E-05
-2E-05
-3E-05
-4E-05
-5E-05
-6E-05
-7TE-05

-8E-05
0E+00 1E-02 2E-02 3E-02 4E-02 5E-02
Tempo (s)

Deslocamento (m)

——DOF1 ——DOF2 DOF3 DOF4 ——DOF5 ——DOF6

Fonte: Autor (2024).

4.2.3.1 Respostas do SINDy

O sistema foi simulado com as condicdes iniciais x(t = 0) = [0,0,0,0,0,0,0,0,0,0,0,0]7,
no tempo de 0 a 0,04 s, com periodo de amostragem de 2,5 X 10~° s, que corresponde a
sensores com taxa de amostragem de 40 kHz. Isso resultou em um conjunto de dados com 1600
amostras.

O parametro 6timo & (8gtimo = 3 X 1072) e o hiperpardmetro 6timo 1 (Asrimo =
1 x 107°) foram escolhidos de forma que minimizasse a medida de RMSE (Figura 27). Nesses
cenarios, os dois algoritmos descobriram as mesmas equacdes de movimento, que foram

reescritas para parametrizacdo de dano (Equacéo 63).
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Figura 27 — Determina¢o do (a) 8stimo € (b) Astimo, Darra engastada discretizada em seis elementos finitos.
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Fonte: Autor (2024).

(%1 = X,
d, d
x, = 120,710 — (1 — ?1 — 72> 2363127733,487x, — 1077,953x, + (1 — d,)1191067236,552x5

+381,955x,
.Q.C3 = X4

2 _ds

d
%, = 160,591+ (1 — d,)1456560637,342x, + 184,494x, — (1 - ) 2525378734,397x5
—776,547%, + (1 — d3)1206495186,072xs + 240,567,

565 = x6
d; d
%s = 248,318 + (1 — d3)1316271294,278x5 + 335,930x, — (1 - 73 - ?‘*) 2486409542,476x
{ —943,039x, + (1 — d,)1216445368,318x, + 305,661xg (63)
567 = x8

Xg = 507,755+ (1 —d,)1281851519,765x5 + 585,608x, — <1 - % - %) 2530536531,606x,
—1410,958x5 + (1 — ds)1271307335,705x + 544,542x,,
X9 = X10
X10 = 1675,871 + (1 — d5)1257346166,867x; + 1493,529x5 — <1 - % - %) 2703517402,506x4
—4026,713x,9 + (1 — dg)1458693097,918x,, + 2288,672x;,

X11 = X1z
X1, = —14340,963 + (1 — d)2346362864,977x9 + 2897,921x,5 — (1 — d)2331762418,059x,,
—3094,836x,,.

O modelo SINDy (Equagéo 63) foi integrado no tempo e comparado com a resposta
de entrada (Figura 28), sendo observada uma étima correspondéncia das respostas (Figura
28(a)) e o0 NRMSE para os DOFs sédo inferiores a 3,25% (Figura 28(b)). Também foram
comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical twin, para
dois cenérios: dano de 5% em cada uma das molas e dano de 20% em cada uma das molas
(Figuras 29 e 30), sendo apresentadas as respostas que apresentam menor e maior erro
(NRMSE). A resposta muda dependendo da intensidade do dano, bem como da mola com dano
observada. Quando o dano de 5% estd na mola 2 é apresentada uma étima concordancia e

menor erro, com NRMSE inferior a 3,25% (Figura 29(a-b)) e quando o dano de 5% esta na
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mola 5 é observada uma correspondéncia bem representativa, com NRMSE entre 5,5 a 7,5%
(Figura 29(c-d)). Para o dano de 20%, quando o dano de 20% esta na mola 3 é observada uma
Otima correspondéncia e menor erro (NRMSE inferior a 3,25%) (Figura 30(a-b)) e quando o
dano ¢ introduzido na mola 1 é apresentada uma concordéancia satisfatoria (com maior NRMSE
entre 12,5 a 16,25%) (Figura 30(c-d)).

Figura 28 — (a) Comparagdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em seis elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.
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Fonte: Autor (2024).

Figura 29 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em seis elementos finitos, e modelo SINDy (MS), para dano de 5% na (a) segunda mola, (b) com
correspondentes NRMSE, e (c) quinta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).
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Figura 30 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra engastada
discretizada em seis elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) terceira mola, (b) com
correspondentes NRMSE, e (c) quinta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).

4.2.3.2 Resultados e Discussdes dos Métodos de Machine Learning

O modelo SINDy (Equacéo 63) foi integrado no tempo de 0 a 0,03 s, usando um periodo
de amostragem de 1 x 10™* s, para cada um dos cenarios de interesse: nenhum dano (integra)
e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-ésima mola (i = 1, ..., 6). Iss0
resultou em um conjunto de dados de treinamento de 7500 amostras (300 x 25 ), sendo o
conjunto de dados final uma matriz de dimenséo ((300 x 25) X 6).

Foram obtidos os hiperpardmetros 6timos da busca em grade, com validacdo cruzada,
usando o conjunto de dados (Tabela 8) e as respectivas métricas de desempenho dos
classificadores (Tabela 9). A precisdo indica que os métodos SVM e QDA apresentaram 0s
melhores resultados, seguido dos métodos LDA, k-NN e os baseados em arvores, mais uma
vez, 0 método NB apresentou desempenho bem inferior em relacdo aos outros métodos.
Analisando a métrica de desempenho revocacao, as conclusdes sdo semelhantes as constatadas

na preciséo.
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Tabela 8 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de barra engastada
discretizada em seis elementos finitos.

Classificador Parametro Valor
QDA - -
LDA - -
NB Modelo Gaussiano
k-NN Numero de vizinhos 3
Peso Distancia
Métrica Euclidiana
SVM C 1000
Kernel Linear
Funcéo de decisao Um contra um (OVO)
RF Numero de estimadores 200
Profundidade méaxima da arvore 14
Critério Entropia
ET Numero de estimadores 300
Profundidade maxima da arvore 20
Critério Gini
DTs Profundidade méaxima da arvore 16
Critério Entropia

Fonte: Autor (2024).

Tabela 9 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra
engastada discretizada em seis elementos finitos.

Classificador  Acuracia (%)  Precisdo (%)  Revocacdo (%)  F-score
SVM 93,47 93,37 93,36 0,93
QDA 92,48 93,21 92,48 0,93
LDA 84,71 84,49 84,71 0,84
k-NN 70,40 71,13 71,40 0,70

ET 69,47 69,66 70,51 0,69
RF 67,60 68,38 68,79 0,68
DTs 63,20 68,01 64,25 0,65
NB 7,55 11,55 7,55 0,05

Fonte: Autor (2024).

A matriz de confusdo do método SVM apresenta que a probabilidade de considerar um

dano quando o sistema esta integro é 6,06% (2/33), enquanto a probabilidade de indicar uma
estrutura integra quando a primeira mola esta com dano de 5% é de 3,4% (1/29) e quando a

primeira mola estd com dano de 10% é 3,1% (1/32) (Figura 31).
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Figura 31 — Matriz de confusdo do classificador SVM, conjunto de dados do modelo de barra engastada
discretizada em seis elementos finitos.
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Fonte: Autor (2024).

4.2.3.3 Aplicagdes do Framework Digital Twin

O physical twin foi simulado no tempo de 0 a 0,03 s, usando um periodo de amostragem
de 2 x 107> s, que correspondeu a 1500 amostras para cada um dos cenarios de interesse,
condicdo integra e de 1% até 25% de dano em cada elemento. Um ruido gaussiano aleatorio foi
adicionado aos dados (1500 amostras), com média zero e diferentes niveis de ruido, a partir de
um desvio padréo de 1,70 x 10~ m, que compreende o desvio padrdo do fendmeno em analise.

A aplicacdo do framework DT apresenta para a primeira mola (Tabela 10) os seguintes

resultados nas condi¢6es sem ruido e 1% de ruido: de 0% a 2% de dano, a estrutura esta integra;
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de 3% a 7% de dano, a estrutura esta com dano de 5%; de 8% a 12% de dano, a estrutura esta

com dano de 10%; de 13% a 16% de dano, a estrutura esta com dano de 15% e, por fim, de

17% a 25% de dano, a estrutura estd com dano de 20%. Para 3% de ruido, as maiores

probabilidades de identificacdo de dano séo apresentadas a partir de 10% de dano. Para 5% e

10% de ruido, as maiores probabilidades ocorrem para dano de 20%. As respostas para as

demais molas estédo no Apéndice.

Tabela 10 — Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra
engastada discretizada em seis elementos finitos.

sem 1%de 3% de 5% de .
DI ruido  ruido ruido  ruido 10% de ruido

P%) P(®%) DA P(%) P(%) DA P(%) DA
0% 8853 8573 & 3873 1713 & 1120 8
1% 8720 8120 & 3647 1713 & 1260
2% 81,60 6093 S 3040 1680 S 1200 &
3% 8140 6280 _ 3127 1673 ¢ 1233 2
4% 8507 8220 § 37,53 1920 © 1233
5% 8573 8353 o 4127 1720 § 1253 @
6% 8467 7973 S 3820 1780 O 1380 @
7% 76,73 55,53 3340 2107 o 1280
8% 8273 7127 o 4553 2433 & 1440
9% 8573 8420 & 51,20 2400 o 1313 2
10% 8647 8520 o 5187 2813 & 1533 &8
11% 84,93 76,67 co% 4867 27,87 2 1560
12% 58,53 46,13 4027 2920 | o 16,13
13% 84,67 77,20 50,47 3227 | & 17,67
14% 8653 8527 | 2% 5680 3387 | 1867
15% 87,40 8553 | A9 5693 3660 @ & 21,47
16% 84,40 69,13 49,60 3420 |2 26,40
17% 78,80 53,33 50,80 40,53 27,87
18% 88,33 82,27 61,27 50,13 33,53
19% 90,87 90,20 74,27 59,20 35,27
20% 92,13 91,93 81,53 66,53 40,00
21% 92,93 92,80 87,20 71,93 41,87
22% 93,33 93,20 89,47 77,67 46,93
23% 93,67 93,60 92,53 80,53 47,87
24% 93,87 93,73 92,73 83,60 50,67
25% 94,47 94,00 93,20 85,33 57,73

Fonte: Autor (2024).
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4.3 Barra Biengastada

4.3.1 Barra Biengastada Discretizada em Dois Elementos Finitos

O sistema foi discretizado em dois elementos finitos (Figura 32(a)) e idealizado como
modelo de 1-DOF (Figura 32(b)). A frequéncia natural obtida foi {2851} Hz. Foram adotadas
as constantes de proporcionalidade o = 518,3765 e 8 = 5,3404 x 10~7, oriundas do modelo
de barra biengastada discretizada em quatro elementos finitos. A resposta dinamica mostra que
0 sistema oscila de forma rapida até decair para a resposta referente a forca aplicada (Figura
33).

Figura 32 — (a) Barra biengastada discretizada em dois elementos finitos e (b) correspondente idealizagéo.
ko

Ak .
‘ % S Ay .
s ™
/ my N
1 2 R TN
4 Ca

c, L

(a) (b)
Fonte: Autor (2024).

Figura 33 — Resposta de deslocamento no tempo, barra biengastada discretizada em dois elementos finitos

0E+00
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0,0E+00 5,0E-03 1,0E-02 15E-02 2,0E-02 2,5E-02 3,0E-02
Tempo (s)

Deslocamento (m)

——DOF1

Fonte: Autor (2024).

4.3.1.1 Respostas do SINDy

O sistema foi simulado com as condicdes iniciais x(t = 0) = [0,0]7, no tempo de 0 a
0,02 s, com periodo de amostragem de 1,4286 x 10~* s, que corresponde a sensores com taxa

de amostragem de 7 kHz. Isso resultou em um conjunto de dados com 140 amostras.
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O pardmetro 6timo 8 (8s1imo = 2 X 1072) e o hiperparametro 6timo A (As¢imo =
1 x 10™*) foram determinados de forma que minimizasse a medida de RMSE (Figura 34).
Nesses cenarios, os dois algoritmos descobriram as mesmas equacgdes de movimento, que foram
reescritas para parametrizacdo de dano (Equagéo 64).

Figura 34 — Determinacdo do (a) 8s¢imo € (B) Astimo. Darra biengastada discretizada em dois elementos finitos.

0,15 —
0.15 Astime = 1 X 1074

N

Sstimo = 4 x 1071 oo oo o+ o o0

RMSE
RMSE

0,125 0,125
4E-05 4E-04 4E-03 4E-02 4E-01 1E-16 1E-14 1E-12 1E-10 1E-08 1E-06 1E-04
5 A
——62 ——12
(@) (b)

Fonte: Autor (2024).

Xl = xZ
d, d 64
{xz = —8560,396 — (1 - 71 - 72) 179768334,214x, — 690,652x,. (64)

O modelo SINDy (Equacéo 64) foi integrado no tempo e comparado com a resposta de
entrada (Figura 35(a)), sendo observada uma comparacédo satisfatoria e NRMSE de 14,85%.
Para melhor visualizacdo da resposta, o sistema foi amostrando com uma taxa de amostragem
de 14 kHz (Figura 35(b)), o NRMSE correspondente foi de 13,02%.

Figura 35 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em dois elementos finitos, e modelo SINDy (MS) considerando a taxa de amostragem de (a) 7 kHz e
(b) 14 kHz, respectivamente.
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———DOF1 (PT) DOF1 (MS) ——— DOF1 (PT) DOF1 (MS)
(a) (b)

Fonte: Autor (2024).



98

4.3.1.2 Resultados e Discussfes dos Métodos de Machine Learning

O modelo SINDy (Equagéo 64) foi integrado no tempo de 0 a 0,015 s, usando um
periodo de amostragem de 5 x 10™> s, para cada um dos cenarios de interesse: nenhum dano
(integra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-ésima mola (i = 1, 2). Isso
resultou em um conjunto de dados de treinamento de 2700 amostras (300 x 9), sendo o conjunto
de dados final uma matriz de dimensdo ((300 x 9) x 1).

Como os resultados dos classificadores ndo foram satisfatorios, quando considerada
uma taxa de amostragem de 7 kHz, que corresponde a aproximadamente duas vezes e meia a
frequéncia do modelo de alta fidelidade, foi realizada outra andlise usando uma taxa de
amostragem de 14 kHz, correspondente a cinco vezes a frequéncia do modelo. O procedimento
foi repetido e obtido um novo conjunto de dados final na forma ((300 x 9) x 1).

Os hiperparametros étimos obtidos da busca em grade, com validacdo cruzada, aplicada
usando o conjunto de dados de 7 kHz e 14 kHz sdo apresentadas na Tabela 11. A Tabela 12
apresenta as métricas de desempenho dos classificadores para as duas situagdes, indicando

desempenho insatisfatorio.

Tabela 11 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de barra
biengastada discretizada em dois elementos finitos.

Classificador ~ Parametro Valor
7 kHz 14 kHz
QDA - - -
LDA - - -
NB Modelo Gaussiano Gaussiano
k-NN Ndmero de vizinhos 24 24
Peso Uniforme Uniforme
Métrica Euclidiana Euclidiana
SVM C 1000 1000
Kernel RBF RBF
Gama (kernel néo linear) 1 1
Funcdo de decisao Um contra um Um contra um
(OVO) (OVO)
RF Ndmero de estimadores 300 300
Profundidade méaxima da arvore 2 2
Critério Gini Gini
ET Ndmero de estimadores 150 150
Profundidade méaxima da arvore 3 3
Critério Gini Gini
DTs Profundidade maxima da arvore 3 3
Critério Gini Gini

Fonte: Autor (2024).
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Tabela 12 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra
biengastada discretizada em dois elementos finitos.

Classificador Acurécia (%) Precisédo (%) Revocacdo (%) F-score
7kHz 14kHz 7kHz 14kHz 7kHz 14kHz 7kHz 14KkHz
SVM 20,74 21,85 1497 1454 22,41 23,46 0,16 0,17
LDA 24,26 24,19 13,01 1323 2426 24,19 0,16 0,16
ET 21,11 21,11 1145 11,75 22,87 22,95 0,14 0,15
RF 22,96 2185 1344 16,43 2439 2257 0,15 0,16
DTs 22,59 21,85 17,12 1330 2291 22,27 0,18 0,15
k-NN 13,33 14,04 1053 13,09 1344 1369 0,11 0,13
QDA 13,19 13,26 5,34 5,69 13,19 1326 0,06 0,07
NB 13,19 13,26 5,37 5,70 13,19 1326 0,06 0,07

Fonte: Autor (2024).

4.3.2 Barra Biengastada Discretizada em Quatro Elementos Finitos

O sistema foi discretizado em quatro elementos finitos (Figura 36(a)) e idealizado como
modelo de 3-DOF (Figura 36(b)). As trés frequéncias naturais obtidas foram {2653; 5703;
9268} Hz e as trés primeiras razOes de amortecimento obtidas foram {2,0; 1,7; 2,0} %, com
a = 518,3765 e f = 5,3404 x 1077, estabelecidas para 0 modo fundamental e o terceiro
modo.

A resposta dinamica mostra que o sistema oscila de forma rapida até decair para a
resposta referente a forca aplicada e as maiores amplitudes de deslocamento ocorrem para 0s

DOFs que estdo mais proximos do ponto de aplicacdo da forca (Figura 37).
Figura 36 — (a) Barra biengastada discretizada em quatro elementos finitos e (b) correspondente idealizacéo.

g N o 2 -, SN
f RN e e e
- 1 2 3 4 \ - o ‘ﬁ1 o \

(a) (b)
Fonte: Autor (2024).
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Figura 37 — Respostas de deslocamento no tempo, barra biengastada discretizada em quatro elementos finitos
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Fonte: Autor (2024).

4.3.2.1 Respostas do SINDy

O sistema foi simulado com as condigdes iniciais x(t = 0) = [0,0,0,0,0,0]7, no tempo
de 0 a 0,02 s, com periodo de amostragem de 4,3478 x 107> s, que corresponde a sensores
com taxa de amostragem de 23 kHz. Isso resultou em um conjunto de dados com 460 amostras.

O pardmetro 6timo & (8s:imo = 2 X 1072) e 0 hiperparametro 6timo A (As¢imo =
1 x 10™*) foram determinados de forma que minimizasse a medida de RMSE (Figura 38).
Nesses cenarios, os dois algoritmos descobriram as mesmas equacdes de movimento, que foram

reescritas para parametrizagéo de dano (Equagéo 65).

Figura 38 — Determinag&o do (2) 8¢imo € (D) Assimo, Darra biengastada discretizada em quatro elementos finitos.
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Fonte: Autor (2024).
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561 =Xy

d, d
%, = 734,191 — (1 - 71 —~ 72> 1052602976,874x, — 1182,783x, + (1 — d,)557119326,092x,

+359,321x,
5{3 = X4
. d, dj
%, = 1847,961+ (1 — d,)586372155,950x, + 586,427x, — (1 - 7) 1095127926,492x, (65)
—1497,707x, + (1 — d3)586370681,297x5 + 587,312,
5C5 = X¢

d; d
%g = —24290,724 + (1 — d3)555457705,429x; + 459,502x, — (1 — — — —) 1050452131,947 x5
2 2
—1310,705x,.

O modelo SINDy (Equagéo 65) foi integrado no tempo e comparado com a resposta
de entrada (Figura 39(a)), sendo observada uma correspondéncia bem representativa das
respostas, e 0 NRMSE para os DOFs sdo inferiores a 7,5% (Figura 39(b)). Também foram
comparadas as respostas de deslocamento no tempo, do modelo SINDy e do physical twin, para
dois cenarios: dano de 5% em cada uma das molas e dano de 20% em cada uma das molas
(Figuras 40 e 41), sendo apresentadas as respostas que apresentam maior e menor erro
(NRMSE). Para o dano de 5% € observada uma correspondéncia bem representativa, com
menor erro na mola 3 (NRMSE inferior a 8%) (Figura 40(a-b)), enquanto o maior erro ocorre
quando o dano estd na mola 4, com NRMSE inferior a 9% (Figura 40(c-d)). Para o dano de
20%, quando o dano é introduzido na mola 2 verifica-se uma concordancia representativa, com
menor NRMSE (sendo inferior a 7%) (Figura 41(a-b)) e quando o dano de 20% esta na mola 4

é observada uma resposta bem representativa (NRMSE inferior a 10%) (Figura 41(c-d)).

Figura 39 — (a) Comparacéo das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.
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Fonte: Autor (2024).
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Figura 40 — Comparagdo das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) terceira mola, (b) com
correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.
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Figura 41 — Comparagdo das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) segunda mola, (b) com
correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.
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4.3.2.2 Resultados e Discussfes dos Métodos de Machine Learning

O modelo SINDy (Equagéo 65) foi integrado no tempo de 0 a 0,015 s, usando um
periodo de amostragem de 5 x 10™> s, para cada um dos cenarios de interesse: nenhum dano
(integra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-ésimamola (i = 1, ..., 4).
Isso resultou em um conjunto de dados de treinamento de 5100 amostras (300 x 17), sendo
o conjunto de dados final uma matriz de dimensdo ((300 x 17) x 3).

Os hiperparametros 6timos obtidos da busca em grade, com validacdo cruzada, usando
0 conjunto de dados sdo mostrados na Tabela 13. A Tabela 14 apresenta as métricas de
desempenho para os classificadores. A precisao indica que os métodos SVM apresentou melhor
desempenho, seguido dos métodos k-NN, LDA e baseados em arvores, o método QDA
apresentou uma diminuicdo consideravel de precisdo e, por fim, o método NB apresentou
desempenho inferior em relagdo aos outros métodos. Analisando a métrica de desempenho

revocacgdo, as conclusdes sdo semelhantes as constatadas na precisao.

Tabela 13 — Hiperparametros étimos para os classificadores de ML, conjunto de dados do modelo de barra
biengastada discretizada em quatro elementos finitos.

Classificador Parametro Valor
QDA - -
LDA - -
NB Modelo Gaussiano
k-NN Numero de vizinhos 6
Peso Distancia
Métrica Euclidiana
SVM C 1000
Kernel RBF
Gama (kernel n&o linear) 1
Funcéo de decisao Um contra um (OVO)
RF Numero de estimadores 150
Profundidade maxima da arvore 14
Critério Gini
ET Numero de estimadores 500
Profundidade méaxima da arvore 20
Critério Entropia
DTs Profundidade méaxima da arvore 14
Critério Entropia

Fonte: Autor (2024).
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Tabela 14 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra
biengastada discretizada em quatro elementos finitos.

Classificador Acuracia (%)  Precisdo (%)  Revocacdo (%)  F-score

SVM 76,66 77,10 77,17 0,76
K-NN 65,29 66,20 65,71 0,65
LDA 63,29 62,84 63,29 0,62
RF 62,55 63,02 63,06 0,62
ET 60,59 61,06 61,30 0,60
DTs 57,45 59,05 57,86 0,58
QDA 37,78 37,59 37,78 0,34
NB 10,49 14,88 10,49 0,08

Fonte: Autor (2024).

Na matriz de confusdo do método SVM é constatado que a probabilidade de considerar
um dano quando o sistema esta integro é 31,6% (12/38) e a probabilidade de indicar uma
estrutura integra quando a segunda mola estd com dano de 5% é 3,3% (1/30), quando a quarta
mola estd com dano de 5% € 2,9% (1/35), quando a primeira mola estd com dano de 10% é
2,9% (1/34) e quando a segunda mola esta com dano de 10% € 4% (1/25) (Figura 42).

Figura 42 — Matriz de confusdo do classificador SVM, conjunto de dados do modelo de barra biengastada
discretizada em quatro elementos finitos.
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Fonte: Autor (2024).

4.3.2.3 Aplicagdes Framework Digital Twin

O physical twin foi simulado no tempo de 0 a 0,02 s, usando um periodo de amostragem
de 1,3333 x 1075 s, que correspondeu a 1500 amostras para cada um dos cenarios de interesse,

condicdo integra e de 1% até 25% de dano em cada elemento. Um ruido gaussiano aleatorio foi
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adicionado aos dados (1500 amostras), com média zero e diferentes niveis de ruido, a partir de
um desvio padréo de 4,50 x 10~ m, que compreende o desvio padrdo do fendmeno em analise.

A aplicacdo do framework DT apresenta para a primeira mola (Tabela 15) os seguintes
resultados para as condigdes sem ruido e 1% de ruido: de 0% a 2% de dano, a estrutura esta
integra; de 3% a 6% de dano, a estrutura estd com dano de 5%; de 7% a 12% de dano, a estrutura
estd com dano de 10%; de 13% a 16% de dano, a estrutura esta com dano de 15% e, por fim,
de 17% a 25% de dano a estrutura esta com dano de 20%. Para 3% e 5% de ruido, maiores
probabilidade de identificacdo de dano sdo apresentadas para dano de 20%. Quando utilizado
10% de ruido, verifica-se uma baixa probabilidade, ndo identificando o elemento com dano. As

respostas para as demais molas estdo no Apéndice.

Tabela 15 — Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra
biengastada discretizada em quatro elementos finitos.

sgm 10/? de 30/9 de 5% de ruido 10% de ruido
DI ruido ruido ruido

P®%) P(®) DA P®) DA P®%) DA P(%) DA
0% 7953 63,13 s 2907 & 2073 ~ 1427 29w
1% 7900 5580 & 2693 & 1840 2© 1407 A ® ®
2% 7353 4413 & 2507 S 1727 & S 1347

3% 74,27 49,53 24,13 17,20 13,40

4% 76,87 5573 2o 2633 ¢ 1593 1480 @
c © Z AN
5% 77,67 5807 A 2640 © 1713 g 11,13
6% 77,47 51,27 2847 £ 1753 o 1220 S
7% 53,47 38,73 2567 O 1807 S 1213 @ 2
8% 7480 50,33 ¥ 2480 17,53 1221 8
9% 76,20 60,07 S 2487 16,67 12,60
10% 75,93 64,80 2 2860 ¥ 1553 ¥ @ 11,20
11% 7540 5913 & 2900 S 2007 2 1307
12% 69,00 49,07 29,93 § 21,00 § 1393 |
13% 71,67 39,80 2727 A 2080 Ao 1540 | @
14% 7527 4973 | €8 2693 20,00 1427 | 9
15% 75,73 5240 |82 | 29,60 21,33 1693 | B
16% 73,67 42,27 33,60 22,67 1520 | 8
17% 74,40 46,80 35,27 24,27 1760 | 8
18% 7827 59,07 40,07 29,27 17,27
19% 79,27 68,00 41,00 29,53 17,87

20% 80,07 74,87 42,07 31,47 17,27
21% 80,87 77,67 44,53 31,60 17,20
22% 81,47 78,67 46,60 33,53 19,53
23% 80,87 76,20 46,07 33,73 20,07
24% 81,33 72,73 46,73 35,20 21,00

25% 81,20 72,07 48,53

Fonte: Autor (2024).

35,33 21,93
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4.3.3 Barra Biengastada Discretizada em Seis Elementos Finitos

O sistema foi discretizado em seis elementos finitos (Figura 43(a)) e idealizado como

modelo de 5-DOF (Figura 43(b)). As trés primeiras frequéncias naturais obtidas foram {2616;

5410; 8555} Hz e as trés primeiras razdes de amortecimento obtidas foram {2,0; 1,4; 1,5} %,

com a = 562,5844 e § = 3,5104 x 1077, estabelecidas para 0 modo fundamental e para o

quinto modo.

A resposta dindmica indica que o sistema oscila de forma rapida até decair para a

resposta referente a forca aplicada e as maiores amplitudes de deslocamento ocorrem para 0s

DOFs que estdo mais proximos do ponto de aplicacédo da forca (Figura 44).

Figura 43 — (a) Barra biengastada discretizada em seis elementos finitos e (b) correspondente idealizagéo.

~ A K Kz Ky ky ks ks [
| | ‘ ‘ N e VS LA A L] NVYS N
‘ ™ m; m; my ms
* 23 + s 6 AAH - HH - HH H—H " HHY
. : o

¢ ¢ Cs Cs 5

(a) (b)
Fonte: Autor (2024).

Figura 44 — Respostas de deslocamento no tempo, barra biengastada discretizada em seis elementos finitos
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Fonte: Autor (2024).

4.3.3.1 Respostas do SINDy

O sistema foi simulado com as condigdes iniciais x(t = 0) = [0,0,0,0,0,0,0,0,0,0]7, no

tempo de 0 a 0,02 s, com periodo de amostragem de 2,6316 x 10~° s, que corresponde a

sensores com taxa de amostragem de 38 kHz. Isso resultou em um conjunto de dados com 760



107

amostras. O pardmetro 6timo & (Ssrimo = 1 X 1072) e o hiperpardmetro 6timo A
(Astimo = 1 X 107*) foram determinados de forma que minimizasse a medida de RMSE
(Figura 45). Nesses cenarios, os dois algoritmos descobriram as mesmas equacdes de

movimento, que foram reescritas para parametrizagao de dano (Equacéo 66).

Figura 45 — Determinagdo do (2) 8imo € (0) Astimo, Darra biengastada discretizada em seis elementos finitos.
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Fonte: Autor (2024).

(561 = xZ
d, d
%, = 513,506 — (1 - 71 - 72) 2420461894,276x, — 1359,173x, + (1 — d,)1258738094,121x,
+360,321x,
X3 = Xy

d
)2513099364,8583(3

%, = 705,514+ (1 — d,)1386824387,400x, + 296,762x, — (1 - 73

—1171,136x, + (1 — d3)1257537034,695x5 + 252,47 7x,
5C5 = Xg

2
2

d; d

%e = 1250,169 + (1 — d5)1276991365,542x5 + 500,905x, — (1 - 73 - 7“) 2478312704,101xs
—1519,659x, + (1 — d,)1279275620,141x, + 485,705x,

5@7 = xS

. dy ds

xg = 3287,514 + (1 — d,)1251052355,486x5 + 995,646, — (1 -5 7) 2499171261,202x,

—2547,485x4 + (1 — d5)1372990599,153x, + 1426,658x,,
X9 = Xq19
ds d

%10 = —37206,103 + (1 — ds)1251987379,441x, + 1041,324x, — (1 - 75 - 76> 2408011390,353x,

—2244,117x,,.

O modelo SINDy (Equacéo 66) foi integrado no tempo e comparado com a resposta
de entrada (Figura 46), sendo observado uma boa correspondéncia das respostas, e 0 NRMSE
para 0s DOFs sdo inferiores a 7,25% (Figura 46(b)). Também foram comparadas as respostas
de deslocamento no tempo, do modelo SINDy e do physical twin, para dois cenarios: dano de
5% em cada uma das molas e dano de 20% em cada uma das molas (Figuras 47 e 48), sendo

apresentadas as respostas que apresentam menor e maior erro (NRMSE). Quando o dano é de
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5%, constata-se uma resposta bem representativa, com menor erro na mola 5 (NRMSE inferior
a 8%) (Figura 47(a-b)) e maior erro na mola 6 (NRMSE inferior a 9,5%) (Figura 47(c-d)). Para
0 dano de 20%, quando o dano é introduzido na mola 2 verifica-se uma concordancia bem
representativa, com menor erro (NRMS inferior a 6,5%) (Figura 48(a-b)), e quando o dano esta
na mola 6 é observada uma correspondéncia satisfatoria, com maior erro (NRMSE entre 7% a
12,5%) (Figura 48(c-d)).

Figura 46 — Comparacao das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em seis elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.
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Fonte: Autor (2024).

Figura 47 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em seis elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) quinta mola, (b) com
correspondentes NRMSE, e (c) sexta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).
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Figura 48 — Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), barra biengastada
discretizada em seis elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) segunda mola, (b) com
correspondentes NRMSE, e (c) sexta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).

4.3.3.2 Resultados e Discussdes dos Métodos de Machine Learning

O modelo SINDy (Equagéo 66) foi integrado no tempo de 0 a 0,015 s, usando um
periodo de amostragem de 5 x 1075 s, para cada um dos cenarios de interesse: nenhum dano
(integra) e 4 intensidades de dano (5%, 10%, 15% e 20%) em cada i-ésima mola (i = 1, ...,6).
Isso resultou em um conjunto de dados de treinamento de 7500 amostras (300 x 25), sendo o
conjunto de dados final uma matriz de dimenséo ((300 x 25) x 5),

Os hiperparametros 6timos obtidos da busca em grade, com validacgdo cruzada, aplicada
usando o conjunto de dados sdo mostrados na Tabela 16. A Tabela 17 apresenta as métricas de
desempenho para os classificadores. A precisdo indica que o0 método SVM apresentou melhor
desempenho, seguido dos métodos LDA, k-NN e baseados em arvores, mais uma vez, 0S
métodos QDA e NB apresentou desempenho bem inferior em relacdo aos outros métodos.
Analisando a métrica de desempenho revocacao, as conclusdes sdo semelhantes as constatadas
na precisao.
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Tabela 16 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de barra
biengastada discretizada em seis elementos finitos.

Classificador Parametro Valor

QDA - -

LDA - -

NB Modelo Gaussiano

k-NN Numero de vizinhos 3
Peso Distancia
Métrica Euclidiana

SVM C 1000
Kernel RBF
Gama (kernel ndo linear) 0,1
Funcéo de decisdo Um contra um (OVO)

RF Numero de estimadores 500
Profundidade maxima da arvore 14
Critério Gini

ET Numero de estimadores 300
Profundidade méaxima da arvore 20
Critério Gini

DTs Numero de estimadores 14
Critério Entropia

Fonte: Autor (2024).

Tabela 17 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de barra
biengastada discretizada em seis elementos finitos.

Classificador Acuracia (%)  Precisdo (%)  Revocacdo (%)  F-score
SVM 80,00 80,33 80,57 0,80
LDA 69,11 69,70 69,11 0,69
k-NN 56,80 57,65 57,66 0,57

ET 54,93 55,49 55,98 0,55
RF 54,27 55,15 55,22 0,54
DTs 51,07 53,38 51,96 0,52
QDA 27,11 27,78 27,11 0,22
NB 7,83 9,78 7,83 0,05

Fonte: Autor (2024).

A matriz de confusdo do método SVM mostra que a probabilidade de considerar um

dano quando o sistema esta integro é 33,3% (11/33) (Figura 49).
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discretizada em seis elementos finitos.

Rétulo predito
Fonte: Autor (2024).

O physical twin foi simulado no tempo de 0 a 0,02 s, usando um periodo de amostragem
de 1,3333 x 1075 s, que correspondeu a 1500 amostras para cada um dos cenarios de interesse,
condicdo integra e de 1% até 25% de dano em cada elemento. Um ruido gaussiano aleatorio foi
adicionado aos dados (1500 amostras), com média zero e diferentes niveis de ruido, a partir de
um desvio padréo de 2,30 x 10~° m, que compreende o desvio padrdo do fendmeno em analise.

4.3.3.3 Aplicagdes do Framework Digital Twin
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A aplicacdo do framework DT apresenta os seguintes resultados para a primeira mola
(Tabela 18) nas condigdes sem ruido e 1% de ruido: de 0% a 2% de dano, a estrutura esta
integra; de 3% a 7% de dano, a estrutura esta com dano de 5%; de 8% a 12% de dano, a estrutura
estd com dano de 10%; de 13% a 16% de dano, a estrutura esta com dano de 15% e, por fim,
de 17% a 25% de dano a estrutura esta com dano de 20%. Para 3% e 5% de ruido, maiores
probabilidades de identificacdo de dano séo apresentadas para dano de 20%. Quando utilizado
10% de ruido, constata-se uma baixa probabilidade, ndo identificando o elemento com dano.

As respostas para as demais molas estdo no Apéndice.

Tabela 18 — Respostas do framework DT do classificador SVM para a primeira mola, considerando a barra
biengastada discretizada em seis elementos finitos.

sem 10/‘3 de 30/‘3 de 5% de ruido  10% de ruido
DI ruido  ruido ruido

P(%) P(%) DA P(%) DA P(%) DA P(%) DA
0% 81,13 7040 © 2227 14,60 820
1% 8020 6353 & 21,53 & 14,33 853 ©
2% 7567 4813 £ 1893 & 14727 953 X
3% 7420 4720 _ 1693 & 1507 o 947 ‘o
4% 7787 5860 & 16,53 1407 © 887 é%
5% 7840 6307 o 1613 o _ 1613 X 9,20
6% 7680 5533 S 1503 & o 1487 o 893 o
. (a) I AW P o ®
7% 68,73 4053 14,73 1520 & 973 2%
8% 7427 5180 @ o 1913 o 1427 1227 QS
9% 7900 6287 & 1933 & 13,67 1127 S
10% 7880 6453 o 2093 o 14,40 11,87
11% 77,40 55,87 § 20,13 § 16,13 12,67
12% 51,20 41,07 19,87 15,60 14,13
13% 77,87 59,13 2427 | o o 16,80 12,33
14% 80,47 6660 | 2 2473 | §@ 20,00 15,40
15% 80,13 6640 & & 92 84 20,67 17,87
16% 78,00 54,87 24,60 18,87
17% 72,07 47,27 28,33 19,53
18% 80,27 66,87 30,27 20,40
19% 82,67 77,47 35,47 19,20
20% 83,40 82,00 38,33 21,13
21% 84,20 84,33 41,00 23,87
22% 84,60 84,07 44,67 27,00
23% 85,00 84,80 45,00 27,40
24% 8507 84,93 51,20 25,53

25% 85,80 85,87 52,20 29,27

Fonte: Autor (2024).
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5 EXEMPLOS DE APLICACAO: VIBRACAO TRANSVERSAL

Este capitulo apresenta as etapas para aplicagdo das técnicas supramencionadas para um
modelo de viga em vibracdo transversal. Em seguida, as técnicas sao aplicadas a um modelo de
viga de aco engastada, discretizado em dois e quatro elementos finitos. As propriedades do
material e informacfes geométricas dos modelos sdo as mesmas apresentadas no capitulo

quatro.

5.1 Procedimento para Aplicacdo Pratica das Técnicas
5.1.1 Physical Twin

O physical twin correspondeu a uma viga prismatica em vibracdo transversal. A equacao
diferencial de movimento que governa a sua vibracdo, considerando a teoria de viga de Euler-

Bernoulli, consiste em:

2 2 2
0 (EI 0%v(x, t)> + i 0%v(x,t) - (67)

0x? 0x? ot2

onde v(x, t) é a deflexdo transversal, x é a posicao espacial ao longo de seu comprimento, t é
0 tempo, E é o moédulo de elasticidade, I € 0 momento de inércia da se¢do transversal, A é a
area da secdo transversal, p é a massa especifica e p(x,t) é a forca de excitacdo transversal
distribuida. Essa equac&o diferencial parcial foi discretizada através do método dos elementos
finitos, empregando-se fun¢des de forma polinomial clbica, sendo obtido um sistema discreto
(Equacdo 51) (CRAIG e KURDILA, 2006).

As constantes de proporcionalidade (¢ e f) foram estabelecidas para 0 modo
fundamental e para um dos modos de frequéncia mais alta que contribui significativamente para
a resposta dindmica (CLOUGH e PENZIEN, 2003). O sistema foi discretizado em dois e quatro
elementos finitos e foram aplicadas as condic¢Ges de contorno adequada para 0 modelo de viga

engastada.
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5.1.2 Modelo Baseado na Fisica

O modelo de viga (physical twin) foi idealizado baseado na fisica e construido utilizando
uma descricdo de parametros concentrados de n graus de liberdade (n-DOF), cada DOF foi
representado por um modelo solido linear padrdo (standard linear solid — SLS), obtidos pela
associacdo de uma mola em paralelo ao modelo de Maxwell (Figura 50). O sistema equivalente

para uma representacdo n-DOF é apresentado na Figura 51.

Figura 50 — Idealizacdo do modelo de viga (a) engastada e (b) biengastada, utilizando descricdo de parametros
concentrados de n-DOF representado por um modelo SLS.

2

(@)

my

(b)
Fonte: Autor (2024)

Figura 51 — Idealizacdo do sistema equivalente n-DOF do modelo de viga (a) engastada e (b) biengastada.

!k‘% %c‘

P

(b)
Fonte: Autor (2024).
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As equacOes de movimento do sistema equivalente n-DOF (Figura 51) (Equacdo 52)
foram convertidas em um sistema de equacdes diferenciais de primeira ordem (Equacdo 68),

para 0 modelo de viga engastada, ndo haveréd as parcelas correspondentes a k41, Kant1 €

konyo:

J'Cl=x2

0] ki + k3 1 (cy(ky +k3) 1 (cy(ks + ks)
Xy = ( m ) + <— —ml )xl + <_m_1<—k2 )) X + <_m_1<—k4_ >) X
k3 1 Cy (k3 + k4)
o 2 (T))x4

5521 1= X2
fz(t) kZL 1 ci(kaiq + k2p) N (_ kpi_q + k2i+1)x .
X2i-3 T ™ —kzi 2i-2 EE— R
+ 1 ( (kZL 1t k21)> Xy + _i(ci+1(k2i+1 + k2i+2)> - (k2i+1> pie (68)
m; kaitz m;

+ L<Ci+1(k2i+1 + k2i+2)> .
m; kaito 2z

parai=23,..,n—1
X2n-1 = X2n

= fa(®) + <k2n—1 + k2n+1)x + 1 ci(kop—1 + k2n) x n (_ k2n—1)x
2n m, m, 2n-3 m, an 2n-2 m, 2n-1

+ _i(cn(anq + k2n)> N _i<cn+1(k2n+1 + k2n+2)) N
my kan o my koo am

5.1.3 Respostas do SINDy

Os dados de treinamento para o SINDy foram gerados com a aplica¢do de uma forca
vertical com magnitude de 100 N na extremidade direita do modelo de viga engastada (physical
twin), escolhida de forma que mobilizasse a estrutura e atendesse ao seu critério de estabilidade
estatica. As respectivas respostas de deslocamento no tempo foram entdo registradas.

Foi considerada uma taxa de amostragem de aproximadamente duas vezes e meia a
maior frequéncia do modelo de alta fidelidade.

Os dados de velocidade (x(t)) e aceleragdo (i(t) ) foram determinados através da
diferenciacdo numérica dos dados de deslocamento (x(t) ), via método das diferengas finitas
centrais de segunda ordem.

Foram comparados os algoritmos STLSQ e LASSO, utilizando o pacote PySINDy,
sendo os modelos LASSO ajustados usando o pacote scikit-learn. O parametro § para o
algoritmo STLSQ e o hiperparametro A para o algoritmo LASSO foram variados considerando

um determinado intervalo, de modo que aumentar § ou A produziam modelos com poucos ou
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nenhum termo e diminui-los produziam modelos convergentes, e escolhidos de forma que
minimizasse a medida de erro (RMSE) entre os sinais de entrada de aceleracéo e a predicdo das
equacOes descobertas para aceleracéo.

A matriz da biblioteca SINDy &(X) foi construida usando termos polinomiais de
primeira ordem. O SINDy foi estruturado considerando a estrutura das equac¢des de um modelo

baseado na fisica (Equacéo 68).

5.1.4 Parametrizacdo de Dano

A parametrizacdo de dano para os termos das equacfes que contém uma Unica mola
correspondeu a Equacdo (54), enquanto para 0s termos em que contém duas molas
correspondeu a Equacdo (57) e os termos correspondentes a equivaléncia do amortecimento

foram parametrizados usando as Equacdes (54) e (57), resultando em:

i(ci(ki"’kj)) :< _%_%) i(ci(ki"'kj)) | (69)

As melhores equagdes de movimento descobertas pelo SINDy foram reescritas para
parametrizacdo de dano, modelo de barra engastada (Equacdo 70) e modelo de barra

biengastada (Equacdo 71):
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dy _d,

. @) dy ds ky + ks (1_7_7) 1 (c(ky +ky)
xz—(m—1)+<(1‘7‘?>(‘ ™ ))’“(W _m_l(k—2> %2
d d
(1-2-%)( 1 fca(ks + ko) k
2 2 2\t3 4 3
(SR ) o (- )
d d
[O=F =) (1t + k),
(1—-dy) my ky *

X2i-1 = X2i
/ 1—%2im1 _ dai

Xai = <%f)> + <(1 —dyi—1) (k::lzl)) Xgi-3 t k( (1 E dy) 2 )<mil (Ci(kh;lz:- kZi)>)) X2i-2
dyio1 dy kyioq + ko ((“%‘%) 1 (ci(kpioq + kap) w
n ((1 _ G2i-1 2l+1) (_ 2i-1 21+1)> Xpia + \ (__( i(K2i-1 2i >> %oy

2 2 m; (1—dy) m; ki

(1_M_m) 1 (ciyr(kaivs + Kaig2) \‘ . (70)
1 E d2i+2)2 <__<Cl+1 s ) /Xzi + ((1 —dpi41) <E>) X9i41
(1t i)

m; m;
2 2 1 (cip1(Kaipr + kaiv2) \
+ — / X2i+2

kaiyz

(1 —dzi+2) m; 2tz

parai=23,..,n—1
Xon-1 = Xon

3 Ky
Xop = (f;t)) + <(1 - dZn—l)( :n 1)) Xon-3
(1 - gt dﬁ) 1 (c(k k K
+ 2 2 ( (Ci( 2l * 2n)>> Xon-2 + ((1 - dZn—l) (_ :;1—1)) Xon-1

(1 - dZn) m_n an n

+

(1 Cdang dﬂ)
2 2 < 1 <cn(k2n_1 + an)>)

(1 - dZn) my k2n
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dy _d,

. @) dy ds ky + ks (1_7_7) 1 (c(ky +ky)
= (5 (-2 >)"1+(—u-dz> w5 J
d d
(1——3——4) 1 (cy(ks + ky) k
2 2 2\t3 4 3
( 581t (ma)-
d d
(0= =) (1 fatks k)
(1—-ds) my ky X4

X2i-1 = X2i

dyi1  dyi
figy = <f;r(lf)> <(1 —dy 1)( 21[1)) P ((1 _(123—;2i) 22 )(mil (Ci(kZi;;z:- kzi)))) Xpios

/ o dzl \
+ (1 _ dyiq _ d2i+1)( kyi 1+ k21+1 n 1 ci(kai—1 + k) .
2 2 Y21 k (1-dy) m; kai ) “
(1 Cdaigq d2i+2)
+ 2 2 __<C1+1(k21+1 + k21+2)> X —dyd) ( 2l+1> o
(1 - d2i+2) m; k21+2 2[ 2 m; 2 (71)

(1 d2i+1 d2i+2)

T2 T2 < 1 (Ci+1(k2i+1 + k2i+2)>)w
+ — X2i42
m; /

(1 —dzi+2) 2tz

parai=23,..,n—1
Xon-1 = Xon

= fa(0) + (1 _ don-1 B d2n+1 an 1t k2n+1
m m, 2 2
(1 don-1 4

- = 1 ikn— +kn kn—
| e 2>>> <<>>

(1 _ d2n—1 _ dﬂ)
+ 2 2 _i Cn(an—l + an) x
(1 - dZn) my an o

(1 _ Aot d2n+2)
2 2 ( 1 <Cn+1(k2n+1 + k2n+2)>>
I Xon-

(1 - d2n+2) mp

k2n+2
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5.1.5 Construcdo do Conjunto de Dados

O conjunto de dados final X ,4,s € Uma matriz de dimenséo ((M X71r) X N),
formada das M amostras de deslocamentos de cada r cenarios de dano, incluindo a

estrutura integra (classes), com N deslocamentos medidos (atributos):

dlxdados
_ |d2X
Xdadosfinal - 2 .C.lfldos .

er dados

5.1.6 Construcdo dos Classificadores de Machine Learning

O conjunto de dados, usado para treinar os classificadores de machine learning, foi
construido simulando a resposta de deslocamento no tempo do sistema (equacdes do modelo
SINDy) com diferentes locais de danos e diferentes intensidades correspondentes. Dessa forma,
300 amostras foram obtidas para cada um dos cenarios de interesse: nenhum dano (integra) e 4
intensidades de dano (5%, 10%, 15% e 20%), distribuido para a i-ésima mola (i = 1, ...,2n —
1) e j-ésimamola (j = 2, ...,2n), que representam a rigidez elementar. Uma validag&o cruzada
estratificada de 5 folds foi empregada. Para melhorar as condicdes de treinamento, os dados
foram normalizados subtraindo a média e dividindo pelo desvio padrdo de todas as amostras.

Um conjunto de classificadores de machine learning, desenvolvido usando o pacote
scikit-learn da linguagem Python 3.9, foi selecionado para analises, considerando seu uso na
literatura SHM e sua interpretabilidade. O procedimento de busca em grade, utilizando o
método de validacdo cruzada k-fold, foi usado para identificar os hiperparametros 6timos de
cada modelo de classificagcdo, com base em intervalos recomendados na literatura de SHM e
machine learning e documentacdo do scikit-learn. Os modelos para cada algoritmo de
classificacdo e 0s respectivos hiperparametros sao correspondentes 0s mesmos apresentados na
Tabela 1. Para os métodos que possuem hiperparametros, 90% dos dados foram usados para

treinamento e 10% para teste, e 0 modelo final foi ajustado com todos os dados.
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5.2 Viga Engastada

5.2.1 Viga Engastada Discretizada em Dois Elementos Finitos

O sistema foi discretizado em dois elementos finitos (Figura 52(a)), aplicando as
condigdes de contorno fixa-livre (Equacdo 51), e 0 modelo de viga foi idealizado como um
modelo 2-DOF (Figura 52(b)).

As trés primeiras frequéncias naturais, obtidas a partir das matrizes de massa e rigidez
do sistema (problema de autovalor generalizado), foram {20,898; 132,013; 446,493} Hz e as
trés primeiras raz0es de amortecimento obtidas foram {2,0; 0,5; 0,8} %, com a = 5,1689 e
B = 4,8346 x 10~°, estabelecidas para 0 modo fundamental e para o quarto modo.

A resposta dinamica mostra que o sistema oscila de forma rapida até decair para a
resposta referente a forca aplicada e as maiores amplitudes de deslocamento ocorrem para o

DOF que esta mais préximos do ponto de aplicacdo da forca (Figura 53).

Figura 52 — (a) Viga engastada discretizada em dois elementos finitos e (b) correspondente idealizagéo.

(a) (b)
Fonte: Autor (2024).

Figura 53 — Respostas de deslocamento no tempo, viga engastada discretizada em dois elementos finitos
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Fonte: Autor (2024).
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5.2.1.1 Respostas do SINDy

Os dados de treinamento para o SINDy foram gerados simulado o sistema (Equacdo 51)
com as condicdes iniciais x(t = 0) = [0,0,0,0,0,0,0,0]”, no tempo de 0 a 2,5 s, com periodo
de amostragem de 2,8571 x 10~* s, que corresponde a sensores com taxa de amostragem de
3,5 kHz. Isso resultou em um conjunto de dados com 8750 amostras.

As equacbes de movimento do modelo 2-DOF foram convertidas em sistemas de

equac0es diferenciais de primeira ordem, para uso do SINDy:

J'Cl=x2

. (f1(t)> k1 + k3 < 1 fei(ky +k2) (k1 + k3) ) < 1 <C2 (k3 + k4)>>
Xy = — X+ | ——(————) |x,
my ml my k‘l-
ks Cz(k3 + ky)
) <1< )=

Xon—1 = Xon

gy = (fn(t)> an 1 Xy + ( ci(kapn- 1+k2n)>> x2n—2+(_ k:;:ﬂ) o

mn n

+ _i Cn(an—l + an) x
my kon o

O SINDy foi estruturado considerando a estrutura das equaces de um modelo baseado

(72)

na fisica (Equacédo 72).

O parametro 6 (algoritmo STLSQ) e hiperparametro A (algoritmo LASSO) foram
variados a medida que os valores de RMSE foram computados. Entdo, o parametro 6timo &
(85timo = 4 X 1071) e 0 hiperpardmetro 6timo A (A44ime = 1 X 107>) foram escolhidos de
forma que minimizasse a medida de erro (Figura 54). Os dois algoritmos descobriram as
mesmas equacgdes de movimento, que foram reescritas para parametriza¢do de dano (Equacéo
73). O tempo de execucdo do algoritmo STLSQ foi de 4,1942 s, enquanto para o do algoritmo
LASSO foi 20 minutos e 1534 segundos.
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Figura 54 — Determinag&o do (2) 8stimo € (0) Asrimo, Viga engastada discretizada em dois elementos finitos.
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Fonte: Autor (2024).

(X1 =X,
_di_dy
%, = 16,855 — (1 _4 —@> 471838,773x, — M 3,636 x,
2 ’ 2 2 A (1—d,) ’
(1-%-%) (-4
~ £ _2713636x,+(1—dy)154362,151x,+ [~ 2 27
(1-d,) 2 3 3 a-dy) 0,626 x4
.Q.C3 = X4 (73)
(1-%-%)
%, = —83,158 + ((1 — d3))627583,891x; + ECETAI 3,941 x,
— Uy
(1-%-%)
— (1 —d3)230230,665x; — | —~4—4217,014 x,.
( 3) 3 (1 _d4_) 4

Comparando as respostas de deslocamento no tempo do modelo SINDy (Equagéo 73) e
a resposta de entrada (physical twin) (Figura 55(a)), constata-se uma 6tima concordancia das
respostas, e 0 NRMSE para os DOFs 1 e 2 sdo inferiores a 0,60% (Figura 55(b)).
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Figura 55 — (a) Comparacdo das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em dois elementos finitos, e modelo SINDy (MS) e (b) correspondentes NRMSE.

1E-03
0,75
OE+00 |7

-1B-03 |4

-2E-03 05

Deslocamento (m)

-3E-03

NRMSE (%)

4E-03
0,25
-5E-03
0 0.5 1 15 2 2.5
Tempo (s)

——DOF1 (PT) DOF1 (MS) DOF2 (PT) DOF2 (MS)
DOF1 = DOF2

(a) (b)

Fonte: Autor (2024).

5.2.1.2 Resultados e Discussdes dos Métodos de Machine Learning

O modelo SINDy (Equacéao 73) foi integrado no tempo de 0 a 2 s, usando um periodo
de amostragem de 6,6667 x 10~* s, para cada um dos cendrios de interesse: nenhum dano
(integra) e 4 intensidades de dano (5%, 10%, 15% e 20%). Cada intensidade de dano foi
distribuida para cada i-ésima mola (i = 1,3) e j-ésima mola (i = 2,4) (Figura 52). Foi
considerada uma porcentagem de distribuicdo (D), para cada intensidade de dano, de 10% e
90% (D 1), 15% e 85% (D 2), 20% e 80% (D 3), 25% e 75% (D 4), em cada i-ésima mola e j-
ésima mola, respectivamente. Isso resultou em quatro conjuntos de dados (CD) de treinamento
diferentes, cada um com 2700 amostras (300 x 9), sendo cada conjunto de dados final uma
matriz de dimenséo ((300 X 9) X 2). Para as quatro porcentagens de distribui¢do das molas
foram calculados 0 NRMSE em relagéo as respostas do MEF, considerando um dano com
intensidade de 20% em cada mola, uma vez gque € esperado que ocorra 0 maior erro entre as
respostas. Quando comparado as respostas, constata-se que o maior erro ocorre para 0 DOF2,
quando o dano € introduzido na mola 2, e o erro aumento a medida que a intensidade de dano
na i-ésima aumenta (Figura 56).

Foi escolhido o método SVM para avaliagdo do desempenho dos quatro conjuntos de
dados, sendo comparados com respostas de um conjunto de dados gerado do modelo MEF. O
método SVM foi escolhido devido ter apresentado o melhor desempenho para identificacdo de
dano nas investigacOes anteriores (Capitulo 4). Para cada conjunto de dados, foi realizada uma
busca de grade com base nos hiperparametros da Tabela 1. Dada a constatacdo de desempenho

insatisfatdrio ao utilizar apenas deslocamento como atributo, foram investigados 7 diferentes
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indices de dano (ID), atributos de deslocamento (ID 1), deslocamento e aceleracdo (ID 2),
deslocamento, velocidade e aceleracdo (ID 3), deslocamento e velocidade (ID 4), velocidade e
aceleracao (ID 5), velocidade (ID 6) e aceleracéo (ID 7), usando conjunto de dados do MEF
(Figura 57(a)). Desses, foi escolhido o indice de dano de deslocamento e aceleracéo (ID 2),
visto que apresentou melhor desempenho na comparagdo com os demais, considerando-se a
precisdo e o nUmero de atributos dos cenarios investigados. Dessa forma, foram comparados 0s
indices de dano com atributo de deslocamento (ID 1) e com atributos de deslocamento e
aceleracao (ID 2) com dados do MEF (Figura 57(b)). Foi constatado que, a medida que o erro
aumenta (Figura 56(b)), a precisdo do modelo de ML também aumenta (Figura 57(b)) e, para o
conjunto de dados de 25% e 75%, apresenta um desempenho superior ao do modelo MEF. Em
seguida, foi escolhida a porcentagem de distribuicdo 20% e 80%, adotada considerando o
equilibrio entre o erro, discrepancia entre as respostas MEF e SINDy, e o desempenho do

modelo.

Figura 56 — (a) Comparacéo das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em dois elementos finitos, e modelo SINDy (MS) para o DOF 2 e (b) correspondentes NRMSE.
0E+00

-1E-03 |}

-2E-03

-3E-03

Deslocamento (m)

NRMSE (%)

-4E-03 8
-5E-03 6
0 05 1 15 2 4
Tempo (s) 2
—_— - 0/ — - 0 0
MEF - d20% @2 SINDy - 620% @2 (D 1) Porcentagem de distribuicéo das molas
SINDy - d20% @2 (D 2) SINDy - d20% @2 (D 3)
——SINDy - d20% @2 (D 4) =d20% @2 (D 1) =d20% @2 (D2) =d20% @2 (D3) =d20% @2 (D 4)
(a) (b)

Fonte: Autor (2024).

Figura 57 — (a) Indices de dano para o conjunto de dados do MEF e (b) indices de dano para os conjuntos de
dados.

100 100

80 80
60 .
40
20
0
l . D1 ID2
D1 D2 D3

Conjunto de dados

@
o

N
5]

Precisao (%)
Precisdo (%)

n
o

ID4 ID5 ID6 ID7
indice de dano ®CD(MEF) =CD1(D1) =CD2(D2) =CD3(D3) =CD4(D4)

(a) (b)
Fonte: Autor (2024).



125

Foram comparadas as respostas de deslocamento no tempo, do physical twin e do
modelo SINDy, para dois cenarios: dano de 5% em cada uma das molas e dano de 20% em cada
uma das molas (Figuras 58 e 59). Para a intensidade de dano de 5%, quando o dano é
introduzido na mola 1 € apresentada uma 6tima correspondéncia, com NRMSE inferior a 0,6%
(Figura 58(a-b)) e quando o dano esti na mola 2 é observada uma boa correspondéncia, com
NRMSE inferior a 5,75% (Figura 58(c-d)). Quando o dano de 20% esta na mola 1 verifica-se
uma 6tima correspondéncia (NRMSE inferior a 2,5%) (Figura 59(a-b)) e quando o dano é
introduzido na mola 2 constata-se uma concordancia satisfatoria (com NRMSE inferior a 14%)
(Figura 59(c-d)).

Figura 58 — Comparagdo das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada

discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) primeira mola, (b) com
correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).
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Figura 59 — Comparacédo das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em dois elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) primeira mola, (b) com
correspondentes NRMSE, e (c) segunda mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).

Os hiperpardmetros 6timos obtidos da busca em grade, com validacéo cruzada, usando
0 conjunto de dados com porcentagem de distribuicdo 20% e 80% (CD 3) para os dois indices
de dano, com atributos de deslocamento (ID 1) e deslocamento e aceleracdo (ID 2) sdo
mostrados na Tabela 19. A Tabela 20 apresenta as métricas de desempenho dos classificadores.
Considerando o indice de dano 1, a precisao indica que 0os métodos SVM e LDA apresentaram
os melhores desempenhos, seguido dos métodos k-NN, QDA e os baseados em arvores, € 0
método NB apresentou desempenho bem inferior em relacdo aos outros métodos. Analisando a
métrica de desempenho revocacao, as conclusdes sdo semelhantes as constatadas na precisao.
A anélise por meio do indice de dano 2 promoveu o aumento significativo de desempenho, com
valores de precisdo indicando que os métodos QDA e SVM apresentaram os melhores
resultados, seguido dos métodos LDA, k-NN e os baseados em arvores, e 0 método NB
novamente apresentou desempenho bem inferior em relacdo aos outros metodos. Analisando a

métrica de desempenho revocagéo, as conclusdes sdo semelhantes as constatadas na preciséo.
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Tabela 19 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de viga
engastada discretizada em dois elementos finitos.

Classificador  Parametro Valor
ID1 ID 2
QDA - - -
LDA - - -
NB Modelo Gaussiano Gaussiano
k-NN Ndmero de vizinhos 3 4
Peso Distancia Distancia
Métrica Euclidiana Euclidiana
SVM C 1000 1000
Kernel RBF Linear
Gama (kernel ndo linear) 1 -
Funcdo de decisao Um contra um Um contra um
(OVO) (OVO)
RF Ndmero de estimadores 500 200
Profundidade maxima da arvore 14 14
Critério Gini Entropia
ET Ndmero de estimadores 500 300
Profundidade maxima da arvore 20 20
Critério Gini Entropia
DTs Profundidade maxima da arvore 14 12
Critério Entropia Entropia

Fonte: Autor (2024).

Tabela 20 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de viga
engastada discretizada em dois elementos finitos.

Classificador Acuracia (%) Preciséo (%) Revocacéo (%) F-score

D1 ID 2 ID1 ID 2 ID1 ID 2 ID1 ID 2

SVM 67,41 98,52 68,04 9854 67,85 9858 0,69 0,99
LDA 66,00 88,59 6466 88331 66,00 8859 0,65 0,88
k-NN 59,63 7555 5989 7591 60,28 7563 0,59 0,76
QDA 56,07 99,56 55,84 99,57 56,07 9956 0,54 0,96

ET 54,44 73,70 54,15 7339 5505 7369 054 0,74

DTs 52,96 71,85 53,08 7185 5265 7224 0,53 71,82

RF 52,22 73,70 5184 7350 52,34 7387 0,52 0,74

NB 17,67 21,00 16,90 12,19 1767 21,00 0,14 0,13

Fonte: Autor (2024).

Analisando a matriz de confusdo do método SVM (Figura 60), conjunto de dados com

atributos de deslocamento, a probabilidade de classificar corretamente um dano na segunda

mola com dano de 20% corresponde a 77,1% (27/35), na segunda mola com dano de 5%

corresponde a 76,7% (23/30), na primeira mola com dano de 5% corresponde a 65,7% (23/35),

na segunda mola com dano de 15% corresponde a 62,5% (20/32), na primeira mola com dano

de 15% corresponde a 60% (15/25), na primeira mola com dano de 10% de corresponde a 54,8%
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(17/31) e na segunda mola com dano de 10% corresponde a 52% (13/25). Outra informacéo
que pode ser obtida dessa matriz é a probabilidade de considerar um dano quando o sistema
estd integro, que corresponde a 38,2% (13/34). Ja a probabilidade de indicar uma estrutura
integra quando o sistema esta com dano (falso negativo) na primeira mola com dano de 5% é
8,6% (3/35), na primeira mola com dano de 10% é 3,2% (1/31), na segunda mola com dano de
10% € 4% (1/25), na primeira mola com dano de 15% é 8% (2/25) e na segunda mola com dano
de 20% é 2,9% (1/35).

Figura 60 — Matriz de confusao do classificador SVM, conjunto de dados, indice de dano 1, do modelo de viga
engastada discretizada em dois elementos finitos.
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Fonte: Autor (2024).

Na matriz de confusdo do método SVM (Figura 61), conjunto de dados com atributos
de deslocamento e aceleragéo, a primeira linha mostra que 34 das 34 amostras (soma da linha)
para a condicdo da estrutura integra estéo classificadas corretamente e, de forma anéloga, para
as linhas sucessivas, as estatisticas para identificacdo de danos podem ser obtidas. A
probabilidade de classificar corretamente um dano é excelente na segunda mola com dano de
15% (96,9%) (31/32) e na primeira mola com dano de 10% (90,3%) (28/31), enquanto para 0S
demais cenarios de danos, todas as amostras sdo classificadas corretamente. Na matriz de
confusdo do método QDA (Figura 62), a primeira linha mostra que 298 das 300 amostras para
a condicdo da estrutura integra estdo classificadas corretamente e, de forma analoga, para as
linhas sucessivas, as estatisticas para identificacdo de danos podem ser obtidas. A probabilidade
de considerar um dano quando o sistema esta integro é 0,7% (2/300) e a probabilidade de indicar

uma estrutura integra quando a segunda mola esta com dano de 5% é 0,3% (1/300).
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Figura 61 — Matriz de confuséo do classificador SVM, conjunto de dados, indice de dano 2, do modelo de viga
engastada discretizada em dois elementos finitos.
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Figura 62 — Matriz de confusdo do classificador QDA, conjunto de dados, indice de dano 2, do modelo de viga
engastada discretizada em dois elementos finitos.
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5.2.1.3 Aplicacdes do Framework Digital Twin

Para ilustracdo do framework DT, o physical twin foi simulado no tempo de 0 a 2 s,
usando um periodo de amostragem de 1,3333 x 1073 s, que correspondeu a 1500 amostras
para cada um dos nove cenarios de interesse (dano investigado — DI): nenhum dano (integra) e

4 intensidades de dano (5%, 10%, 15% e 20%) em cada elemento, de forma que tivesse um
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namero representativo de novos dados. Esses dados de entrada (sinais simulados) ndo sdo
rotulados, uma vez que na préatica ndo é conhecida a classe a qual pertencera o sinal medido.
Portanto, o framework DT apresenta a probabilidade de os dados pertencerem a determinada
classe.

Para o indice de dano 1 (ID 1), atributo de deslocamento, foi avaliado o0 método SVM
que apresentou melhor desempenho (Tabela 21) e para o indice de dano 2 (ID 2), atributos de
deslocamento e aceleracdo, foram avaliados os métodos SVM e QDA, que apresentaram
melhores resultados (Tabela 22). A Tabela 21 mostra que 0 método SVM identifica o elemento
integro e com dano em todos os cenérios investigados. No entanto, 3 dos 4 cenarios investigados
identificam corretamente a intensidade de dano na primeira mola e 1 dos 4 cenarios investigados
identifica corretamente a intensidade de dano na segunda mola. Quando os dados foram
analisados com atributos de deslocamento e aceleracdo (ID 2), 0 método SVM identifica e
quantifica corretamente todos os cenarios investigados no elemento 1 e 0 método QDA
identifica corretamente a localizag&o do dano nos elementos 1 e 2.

Tabela 21 — Resultados do framework DT utilizando o método SVM com ID 1, modelo de viga engastada
discretizada em dois elementos finitos.

Dl DA P (%)
integra integra 62,80
d5% @1 d5% @1 60,66
d10% @1 d10% @1 57,73
di5% @1 d15% @1 38,00
d20% @1 d15% @1 51,07
d5% @2 d10% @2 57,87
d10% @2 d20% @2 59,33
d15% @2 d20% @2 70,80
d20% @2 d20% @2 71,87
Fonte: Autor (2024).
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Tabela 22 — Resultados do framework DT utilizando os métodos SVM e QDA com ID 2, modelo de viga engastada
discretizada em dois elementos finitos.

DI SVM QDA

DA P (%) DA P (%)

integra integra 93,53 integra 96,07
d5% @1 d5% @1 91,00 d5% @1 91,73
di0% @1 d10% @1 89,80 d5% @1 82,19
di5% @1 d15% @1 87,93 d10% @1 87,87
d20% @1 d20% @1 93,47 d15% @1 80,33
d5% @2 d5% @2 85,27 d10% @2 91,73
d10% @2 d5% @2 76,07 d15% @2 87,60
di5% @2 d5% @1 66,87 d20% @2 99,33
d20% @2 d10% @1 72,67 d20% @2 99,67

Fonte: Autor (2024).

Foi utilizado o conjunto de dados com atributo de deslocamento (ID 1) para construir

um framework DT do classificador SVM para deteccdo e localizagdo de dano. Os

hiperpardmetros 6timos obtidos da busca em grade, com validacéo cruzada, sdo mostrados na

Tabela 23. A Tabela 24 apresenta as métricas de desempenho para o classificador, mostrando

que ocorreu um aumento na precisdo (Tabelas 20 e 24). E constatado que o método SVM

detecta, localiza e quantifica corretamente todos os cenarios de dano investigados, e com

excecdo da viga com condicdo integra, € apresentada 6tima probabilidade (Tabela 25).

Tabela 23 — Hiperparametros 6timos para o classificador SVM, conjunto de dados do modelo de viga engastada
discretizada em dois elementos finitos.

Classificador  Parametro Valor

SVM C 1000
Kernel RBF
Gama (kernel ndo linear) 1

Funcéo de decisao

Um contra um

(OVO)

Fonte: Autor (2024).

Tabela 24 — Métricas de desempenho para o classificador SVM, conjunto de dados do modelo de viga engastada
discretizada em dois elementos finitos.

Método Acurécia (%)

Precisdo (%)

Revocacdo (%)

F-score

SVM

85,19

81,96

79,61

80,64

Fonte: Autor (2024).
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Tabela 25 — Resultados do framework DT para os dois primeiros niveis de investigacdo do dano estrutural,
utilizando o método SVM com ID 1, modelo de viga engastada discretizada em dois elementos finitos.

DI DA P (%)
integra integra 56,60
d5% @1 d @1 79,53
d10% @1 d @1 88,13
d15% @1 d @1 91,00
d20% @1 d @1 92,53
d5% @2 d @2 86,93
d10% @2 d @2 91,00
d15% @2 d @2 93,53
d20% @2 d @2 95,19

Fonte: Autor (2024).

5.2.2 Viga Engastada Discretizada em Quatro Elementos Finitos

O sistema foi discretizado em quatro elementos finitos (Figura 63(a)) e a idealizacdo do

modelo de viga foi construida com um modelo 4-DOF (Figura 63(b)). As trés primeiras

frequéncias naturais obtidas foram {20,889; 131,055; 369,368} Hz e as trés primeiras razoes
de amortecimento obtidas foram {2,0; 0,4; 0,5} %, com a = 5,2000 e = 2,8970 x 107,

estabelecidas para 0 modo fundamental e para o sexto modo.

A resposta dindmica mostra que o sistema oscila de forma réapida até decair para a

resposta referente a forca aplicada e as maiores amplitudes de deslocamento ocorrem para o

DOF que esta mais proximo do ponto de aplicacdo da forca (Figura 64).

Figura 63 — (a) Viga engastada discretizada em quatro elementos finitos e (b) correspondente idealizag&o.
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Figura 64 — Respostas de deslocamento no tempo, viga engastada discretizada em quatro elementos finitos.
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5.2.2.1 Respostas do SINDy

Os dados de treinamento para o SINDy foram gerados simulando o sistema (Equacao
51) com as condigBes iniciais x(t = 0) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]7. Foi usado um
periodo de amostragem de 7,1429 x 10~> s, que corresponde a sensores com taxa de
amostragem de 14 kHz. Foram avaliados cinco diferentes conjuntos de treinamento para
verificar as respostas geradas, 0 parametro &, para o algoritmo STLSQ, e o hiperparametro A,
para o algoritmo LASSO, foram variados considerando um determinado intervalo, sendo
escolhidos 0S 8stimo € Astimo de forma que minimizasse a medida de erro (RMSE) (Tabela 26
e Figura 65). O SINDy foi estruturado considerando a estrutura das equagdes de um modelo
baseado na fisica (Equacéo 68).

O método LASSO para o primeiro conjunto de treinamento, com 7000 amostras, teve
um tempo de execucdo de 71 minutos e 10 segundos, mesmo reduzindo o intervalo em que o
algoritmo foi variado, considerando a convergéncia. A medida que o nimero de amostras
aumenta, o tempo de execu¢do consequentemente aumenta, mostrando que o método LASSO
tem um custo computacional maior, quando comparado com o método STLSQ. Dessa forma,

foi escolhido para as analises 0 método STLSQ.
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Tabela 26 — Avaliacdo das equac@es descobertas para os cinco conjuntos de treinamento, considerando 0 método
STLSQ.

Método STLSQ
Tempo de NUmero de
integracdo (s)  amostras TempEJ de 86timo
execucéo (s)
0,5 7000 4,0524 3 x 1072
1 14000 6,8191 3 x 1072
1,5 21000 10,0179 3x 1072
2 28000 13,1456 3x 1072
2,5 35000 16,4387 3 x 1072

Fonte: Autor (2024).

Figura 65 — Avaliacéo do erro (RMSE) para os cinco conjuntos de treinamento.
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Fonte: Autor (2024).

Foi escolhido o conjunto de dados com 28000 amostras, uma vez 0 RMSE néo
apresentou diferenca significativa quando comparado com o conjunto de dados com 35000
amostras. O parametro 6timo & (8s1imo = 3 X 1072) foi determinado de forma que
minimizasse a medida de RMSE (Figura 66). As equacdes de movimento descoberta pelo

método STLSQ foram reescritas para parametrizacdo de dano (Equacéo 74).



Figura 66 — Determinag&0o do J;::m0, Viga engastada discretizada em quatro elementos finitos.
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Comparando as respostas de deslocamento no tempo do modelo SINDy (Equacdo 74)

com a resposta de entrada (Figura 67(a)), uma otima concordancia das respostas pode ser

observada, e 0 NRMSE para os DOFs séo inferiores a 1,5% (Figura 67(b)).
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Figura 67 — Comparacdo de respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS).
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Fonte: Autor (2024).

5.2.2.2 Resultados e Discussdes dos Métodos de Machine Learning

O modelo SINDy (Equacéao 74) foi integrado no tempo de 0 a 2 s, usando um periodo
de amostragem de 6,6667 x 10~* s, para cada um dos cenarios de interesse: nenhum dano
(integra) e 4 intensidades de dano (5%, 10%, 15% e 20%). Cada intensidade de dano foi
distribuida para cada i-ésima mola (i =1, 3, 5, 7) e j-ésima mola (i = 2, 4, 6, 8) (Figura
63). Foi considerada uma porcentagem de distribuigdo (D), para cada intensidade de dano, de
10% e 90% (D 1), 15% e 85% (D 2), 20% e 80% (D 3), 25% e 75% (D 4), em cada i-ésima
mola e j-ésima mola, respectivamente. 1sso resultou em quatro conjuntos de dados (CD) de
treinamento diferentes, cada um com 5100 amostras (300 x 17), sendo cada conjunto de dados
final uma matriz de dimensao ((300 X 17) X 4). Para as quatro porcentagens de distribuicdo
das molas foram calculados 0 NRMSE em relagéo as respostas do MEF, considerando um dano
com intensidade de 20% em cada mola, uma vez que € esperado que ocorra 0 maior erro entre
as respostas. Comparando as respostas, € observado que o maior erro ocorre para 0 DOF3
quando o dano é introduzido na mola 4 e o erro aumento a medida que a intensidade de dano
na i-ésima aumenta (Figura 68).

Foi escolhido o método SVM para avaliagdo do desempenho dos quatro conjuntos de
dados, considerando como comparativo respostas de um conjunto de dados gerado do modelo
MEF. Para cada conjunto de dados, foi realizada uma busca de grade com base nos
hiperpardmetros da Tabela 19. Foram investigados 7 diferentes indices de dano (ID), com
conjunto de dados do MEF, com atributo de deslocamento (ID 1), deslocamento e aceleragédo
(ID 2), deslocamento, velocidade e aceleracdo (ID 3), deslocamento e velocidade (ID 4),
velocidade e aceleragéo (ID 5), velocidade (ID 6) e aceleracdo (ID 7) (Figura 69(a)). Foi
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escolhido o indice de dano de deslocamento e aceleracdo (ID 2), que apresentou desempenho
significativo quando comparado a precisdo e o nimero de atributos dos cenarios investigados.
Dessa forma, foram comparados os indices de dano com atributo de deslocamento (ID 1) e com
atributos de deslocamento e aceleragéo (ID 2) com dados do MEF (Figura 69(b)). Foi constado
que & medida que o erro aumenta (Figura 68(b)) aumenta a precisdo do modelo de ML (Figura
69(b)). Dessa forma, deve ser escolhida uma porcentagem de distribuicdo que considere o
equilibrio entre o erro, discrepancia entre as respostas SINDy e MEF, e o desempenho do

modelo. Portanto, foi escolhido como porcentagem de distribuicdo 20% e 80%.

Figura 68 — (a) Comparacédo de respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para o DOF 3 e (b) correspondentes NRMSE.
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Fonte: Autor (2024).

Figura 69 — (a) indices de dano para o conjunto de dados do MEF e (b) indices de dano para os conjuntos de dados.
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Foram comparadas as respostas de deslocamento no tempo, do physical twin e do
modelo SINDy, para dois cenarios: dano de 5% em cada uma das molas e dano de 20% em cada
uma das molas (Figuras 70 e 71), sendo apresentadas as respostas que apresentam menor e

maior erro (NRMSE). A resposta muda dependendo da intensidade do dano, bem como da mola
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com dano observada. Quando o dano de 5% est4d na mola 3 é apresentada uma 6tima
correspondéncia e menor NRMSE (NRMSE inferior a 1,3%) (Figura 70(a-b)) e quando o dano
estd na mola 4 é observada uma boa correspondéncia e maior NRMSE (NRMSE inferior a
5,6%) (Figura 70(c-d)). Para o dano de 20%, quando o dano esta na mola 3 é observada uma
6tima correspondéncia e menor erro (NRMSE inferior 2,1%) (Figura 71(a-b)) e quando o dano
é introduzido na mola 4 verifica-se uma concordéncia satisfatoria com maior NRMSE (NRMSE
inferior a 14%) (Figura 71(c-d)).

Figura 70 — Comparacgdo das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 5% na (a) terceira mola, (b) com
correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).
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Figura 71 — Comparacgdo das respostas de deslocamento no tempo entre o physical twin (PT), viga engastada
discretizada em quatro elementos finitos, e modelo SINDy (MS) para dano de 20% na (a) terceira mola, (b) com
correspondentes NRMSE, e (c) quarta mola, (d) com correspondentes NRMSE.
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Fonte: Autor (2024).

Os hiperpardmetros 6timos obtidos da busca em grade, com validacéo cruzada, usando
0 conjunto de dados com porcentagem de distribuicdo 20% e 80% (CD 3) para os dois indices
de dano, com atributos de deslocamento (ID 1) e deslocamento e aceleracdo (ID 2) sdo
mostrados na Tabela 27. A Tabela 28 apresenta as métricas de desempenho para dos
classificadores. Para o indice de dano 1 (ID 1), a precisdo indica que os métodos SVM e QDA
apresentaram os melhores desempenhos, seguido dos métodos LDA, k-NN e os baseados em
arvores, e 0 método NB apresentou desempenho bem inferior em relagdo aos outros métodos.
Analisando a métrica de desempenho revocacao, as conclusdes sdo semelhantes as constatadas
na precisdo. Quando analisado o indice de dano 2 (ID 2) a precisdo indica que os métodos QDA
e SVM apresentaram os melhores desempenhos, seguido dos métodos LDA, os baseados em
arvore e 0 k-NN. O método NB novamente apresentou desempenho bem inferior em relacdo
aos outros métodos. Analisando a métrica de desempenho revocacdo, as conclusdes sdo
semelhantes as constatadas na precisao.
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Tabela 27 — Hiperparametros 6timos para os classificadores de ML, conjunto de dados do modelo de viga
engastada discretizada em quatro elementos finitos.

Classificador  Parametro Valor
ID1 ID 2

QDA - - -

LDA - - -

NB Modelo Gaussiano Gaussiano

k-NN Ndmero de vizinhos 3 3
Peso Distancia Distancia
Métrica Euclidiana Euclidiana

SVM C 1000 1000
Kernel Linear Linear
Funcéo de decisdo Um contra um Um contra um

(OVO) (OVO)

RF Numero de estimadores 100 500
Profundidade maxima da arvore 14 14
Critério Entropia Entropia

ET Numero de estimadores 150 500
Profundidade maxima da arvore 20 20
Critério Gini Entropia

DTs Profundidade maxima da arvore 16 14
Critério Entropia Entropia

Fonte: Autor (2024).

Tabela 28 — Métricas de desempenho para os classificadores de ML, conjunto de dados do modelo de viga
engastada discretizada em quatro elementos finitos.

Classificador Acuracia (%) Preciséo (%) Revocacéo (%) F-score

D1 ID2 ID1 ID2 ID1 ID2 ID1 ID2

SVM 84,31 96,86 84,49 97,10 8501 97,08 0,84 0,97
QDA 81,25 99,98 81,34 99,98 8125 99,98 081 0,99
LDA 78,94 88,39 78,92 8794 7894 8839 78,73 0,88
k-NN 55,69 50,39 57,06 51,78 56,43 50,83 55,95 0,51

ET 54,12 53,73 55,67 54,13 5486 5395 0,54 0,54

RF 51,76 5451 52,37 5553 5222 54,75 0,52 0,55

DTs 47,65 48,23 48,89 48,88 48,01 48,65 0,47 0,48

NB 8,92 8,22 7,19 4,76 8,92 8,22 0,06 0,05

Fonte: Autor (2024).

A matriz de confusdo do método SVM (Figura 72), conjunto de dados com atributos de

deslocamento, mostra que a probabilidade de considerar um dano quando o sistema esta integro

¢ 31,6% (12/38) e a probabilidade de indicar uma estrutura integra quando a segunda mola esta
com dano de 5% é 3,3% (1/30).
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Figura 72 — Matriz de confuséo do classificador SVM, conjunto de dados, indice de dano 1, do modelo de viga
engastada discretizada em quatro elementos finitos.
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Fonte: Autor (2024).

A matriz de confusdo do método SVM (Figura 73), conjunto de dados com atributos de
deslocamento e aceleracdo, mostra que a probabilidade de considerar um dano quando o sistema
esta integro € 5,3% (2/38) e a probabilidade de indicar uma estrutura integra quando a quarta
mola esta com dano de 5% é 2,9% (1/35) e quando a segunda mola estd com dano de 15% é
3,7% (1/27). A matriz de confusdo do método QDA (Figura 74) indica que a probabilidade de
considerar um dano quando o sistema esta integro é 0,7% (2/300) e a probabilidade de indicar

uma estrutura integra quando a segunda mola esta com dano de 5% é 0,3% (1/300).

Figura 73 — Matriz de confuséo do classificador SVM, conjunto de dados, indice de dano 2, do modelo de viga
engastada discretizada em quatro elementos finitos.
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Fonte: Autor (2024).
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Figura 74 — Matriz de confuséo do classificador QDA, conjunto de dados, indice de dano 2, do modelo de viga
engastada discretizada em quatro elementos finitos.
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Fonte: Autor (2024).

5.2.2.3 Aplicacdes do Framework Digital Twin

Para ilustracdo do framework DT, o physical twin foi simulado no tempo de 0 a 2 s,
usando um periodo de amostragem de 1,3333 x 1073 s, que correspondeu a 1500 amostras
para cada um dos cendrios de interesse (dano investigado — DI): nenhum dano (integra) e 4
intensidades de dano (5%, 10%, 15% e 20%) em cada elemento, de forma que tivesse um
namero representativo de dados que o modelo ndo conhecesse. Esses dados de entrada (sinais
simulados) ndo sao rotulados, uma vez que na pratica ndao é conhecida a classe ao qual pertence
o sinal medido. Portanto, o framework DT apresenta a probabilidade de os dados pertencer a
determinada classe.

Para o indice de dano 1 (ID 1), atributo de deslocamento, foi avaliado o0 método SVM,
uma vez que apresentou melhor desempenho (Tabela 29) e para o indice de dano 2 (ID 2),
atributos de deslocamento e aceleracdo, foram avaliados os métodos SVM e QDA, que
apresentaram melhores resultados (Tabela 30). Considerando o indice de dano 1, o classificador
SVM identifica e quantifica corretamente os danos nos elementos 1 e 3 dos 4 cenarios
investigados no elemento 2. No elemento 3 ndo séo identificados os danos, embora acerte a
quantificacédo, e no elemento 4, 3 dos 4 cenarios investigados detecta e localiza o dano (Tabela
29). Para o indice de dano 2, o classificador SVM detecta e localiza os danos nos elementos 1
e 3, com alguns acertos quanto & quantificagdo. No elemento 2, ndo sdo identificados os danos

e no elemento 4, 1 dos 4 cenarios investigados detecta e localiza o dano (Tabela 30). O
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classificador QDA detecta e localiza os danos nos elementos 1, com alguns acertos quanto a
quantificacdo. No elemento 2, os danos sdo identificados e quantificados corretamente e no
elemento 3 os danos ndo sdo identificados. E, por fim, no elemento 4, 3 dos 4 cenarios

investigados detecta e localiza o dano.

Tabela 29 — Resultados do framework DT utilizando o método SVM com ID 1, modelo de viga engastada
discretizada em quatro elementos finitos.

DI DA P (%)
integra integra 85,73
d5% @1 d5% @1 80,07
d10% @1 d10% @1 80,40
d15% @1 d15% @1 80,33
d20% @1 d20% @1 89,47
d5% @2 d5% @2 91,13
d10% @2 d10% @2 89,20
d15% @2 d15% @2 77,80
d20% @2 d15% @2 91,07
d5% @3 d5% @1 80,27
d10% @3 d10% @1 81,47
d15% @3 d15% @1 81,60
d20% @3 d20% @1 91,73
d5% @4 integra 74,93
d10% @4 d5% @4 86,27
d15% @4 d5% @4 78,47
d20% @4 d10% @4 87,33

Fonte: Autor (2024).
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Tabela 30 — Resultados do framework DT utilizando os métodos SVM e QDA com ID 2, modelo de viga engastada
discretizada em quatro elementos finitos.

DI SVM QDA

DA P (%) DA P (%)

integra integra 84,60 integra 83,00
d5% @1  d10% @1 75,33 d5% @1 85,87
d10% @1 d20% @1 93,40 d10% @1 79,13
d15% @1 d20% @1 95,40 d10% @1 80,80
d20% @1 d20% @1 95,6 d15% @1 86,13
d5% @2  d15% @3 76,87 d5% @2 90,27
d10% @2 d20% @3 91,67 d10% @2 89,80
d15% @2 d20% @3 93,47 d15% @2 91,47
d20% @2 d20% @3 94,93 d20% @2 90,27
d5% @3 d5% @3 82,87 d5% @1 85,47
d10% @3  d15% @3 75,87 d10% @1 82,07
d15% @3 d20% @3 87,93 d15% @1 78,73
d20% @3  d20% @3 92,60 d20% @1 87,47
d5% @4 integra 83,53 integra 76,93
d10% @4 integra 81,40 d5% @4 75,93
d15% @4 integra 65,53 d5% @4 77,33
d20% @4  d5% @4 73,13 d10% @4 71,20

Fonte: Autor (2024).
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6. CONCLUSOES E SUGESTOES DE TRABALHOS FUTUROS

6.1 Conclusdes

Neste trabalho foi construido e apresentado um novo framework para SHM, mais
especificamente para identificagdo de danos em elementos estruturais lineares de aco (barras
comprimidas e vigas). O framework construido integra um modelo hibrido baseado na fisica e
orientado a dados e métodos de machine learning, para a construcdo de um framework digital
twin. O framework digital twin construido relaciona as entradas do physical twin a cenarios de
danos especificos, avisando se a estrutura apresenta dano, onde esta localizado e qual a sua
intensidade, dessa forma, foram abordados trés principais niveis de investigacdo do dano
estrutural: deteccdo, localizacdo e quantificacdo. A estratégia foi avaliada em diferentes
configuracdes de aplicacdes, considerando a vibragéo axial e vibragdo transversal da estrutura.

Considerando o modelo de barra engastada, com vibracao axial, os métodos SVM, LDA
e QDA apresentaram melhor desempenho a medida que aumentou o namero de classes e,
consequentemente, o nimero de amostras e o nimero de atributos, enquanto os métodos k-NN
e baseados em &rvores apresentam menor desempenho. Esses resultados podem ser atribuidos
devido os métodos SVM, LDA e QDA criarem fungdes de decisao.

A identificacdo do dano na barra biengastada apresentou menor desempenho, quando
comparada com a condi¢do engastada, sendo constatado que identificar dano em estruturas
hiperestaticas é mais desafiador. A discretizacdo da estrutura em dois elementos finitos,
resultando em um unico atributo, ndo foi suficiente para detectar, localizar e quantificar os
danos estruturais. Os métodos SVM e LDA apresentaram melhor desempenho a medida que o
namero de classes foi aumentado e, consequentemente, 0 numero de amostras e 0 nimero de
atributos, enquanto os demais métodos apresentaram menor desempenho.

Na vibracéo transversal foram investigados dois indices de dano, utilizando atributo de
deslocamento e atributos de deslocamento e aceleracdo. Considerando o atributo de
deslocamento, os métodos SVM, LDA e QDA apresentaram melhor desempenho a medida que
0 numero de classes foi aumentado e, consequentemente, 0 numero de amostras e 0 nimero de
atributos, enquanto os metodos k-NN e baseados em arvores apresentam menor desempenho
ou desempenho semelhante. Para os atributos de deslocamento e aceleracdo, os metodos SVM,
LDA e QDA apresentaram desempenho semelhante a medida que aumentou o namero de
classes e, consequentemente, 0 numero de amostras e 0 numero de atributos, enquanto os

métodos k-NN e baseados em arvores apresentam menor desempenho. Apesar do aumento de
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desempenho considerdvel quando do uso do atributo de deslocamento e aceleragdo, apenas o
uso de recurso de deslocamento se mostrou promissor para detectar e localizar o dano.

O método SVM apresentou melhor desempenho para identificacdo de danos estruturais,
0 que pode ser atribuido a sua capacidade de formar um limite preciso, com possibilidade de
fungdes ndo lineares, a partir de uma pequena quantidade de dados de treinamento. O método
Naive Bayes apresentou desempenho muito inferior em relacéo aos demais métodos, sendo um
método ineficaz para identificacdo de dano, devido a suposi¢des de independéncia condicional
entre as caracteristicas de cada classe.

A aplicacdo do framework digital twin, considerando as condi¢des integra e de 1% até
25% de dano em cada elemento discretizado do modelo de barra, mostrou que o framework DT
associa os cenarios de dano investigados com cenarios de danos especificos esperados e se
mostrou robusto para determinados niveis de ruido.

Neste estudo, foram considerados para o treinamento cenérios da estrutura integra e
quatro intensidades de dano (5%, 10%, 15% e 20%) em cada elemento, considerando uma
investigacdo mais desafiadora, no entanto, que considera 0 mapeamento de toda estrutura.
Reduzir os cenarios de intensidade de dano ou considerar os dois primeiros niveis de
investigacdo do dano estrutural, detec¢éo e localizacdo, pode aumentar a precisdo do framework

digital twin.

6.2 Sugestbes de Trabalhos Futuros

Considerando os diferentes cenarios avaliados, as técnicas propostas apresentaram
contribuicdes significativas para o estabelecimento de um sistema de SHM, podendo ser
expandidas para varias aplicacdes de engenharia.

Para aplicacGes futuras, sugere-se investigar o dano maltiplo, considerando mais de um
elemento com dano simultaneamente, bem como utilizar dados de sensores fisicos e adicionar
ao DT uma camada de comunicacgdo. Outra vertente promissora consiste em investigar modelos
baseados na fisica e construidos utilizando uma descricdo de parametros concentrados para
idealizacdo do modelo de viga, aléem da adogéo de condigdes de vinculagcdes e carregamentos
distintas das utilizadas pelo autor.
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Tabela 31 — Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra

engastada discretizada em dois elementos finitos.

sem 1% de 3%de 5%de 10% de
DI ruido ruido  ruido  ruido ruido
P(%) P(%) P(%) P (%) P(%) DA
0% 85,07 84,67 64,93 51,40 29,87 =
1% 85,07 84,87 6893 51,47 27,20 3
2% 82,33 73,93 5580 48,20 31,33 &£
3% 80,80 69,00 54,87 49,27 36,07 o
4% 84,20 83,67 72,27 60,87 36,60 f},
50 84,60 84,27 79,47 65,20 39,40 =
6% 83,87 8327 77,13 60,00 37,13 8
7% 80,33 73,60 57,60 49,60 36,87
8% 83,47 75,07 58,87 52,27 39,40 ©
9% 86,53 86,27 77,53 65,93 43,47 °c3|
10% 87,20 87,00 85,13 70,33 45,60 o
11% 86,53 86,40 78,80 67,07 43,27 co%
12% 82,60 77,27 61,20 53,33 40,87
13% 81,60 76,60 57,93 52,53 40,20 ©
14% 8453 84,33 78,93 68,27 43,33 Pg
15% 84,87 84,80 8293 71,60 47,00 o
16% 84,87 84,47 78,60 68,87 43,80 cDCcs
17% 81,27 7253 58,27 5247 42 87
18% 8580 82,73 66,53 60,40 53,13
19% 89,20 89,33 8540 75,73 64,07
20% 91,07 90,93 90,13 85,93 73,40
21% 92,07 92,00 91,60 90,47 82,40
22% 9293 92,87 93,20 92,73 87,67
23% 93,73 93,73 93,67 93,40 89,87
24% 94,20 9420 94,20 93,87 91,87
25% 94,73 9453 94,47 94,47 93,93

Fonte: Autor (2024).
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Tabela 32 — Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra
engastada discretizada em quatro elementos finitos.

DI riei:jno 1;3: dd: 3:3‘: ddoe 5% de ruido 10% de ruido
P(%) P(®%) P®%) DA P(%) DA P (%) DA

0% 8587 8367 5280 © 2940 © 1473 Dano5% @4
1% 8707 8293 5180 @ 3167 Z 1547 poiocor @3
2% 83,67 62,40 4333 & 2833 & 14093

3% 87,20 69,20 50,00 3293 o 1460

4% 888 8800 6147 R 3807 % 16,27

50 89,20 8880 6373 o 4020 § 1813 ©
6% 87,73 8353 608 S 4160 2 2147 =
7% 7473 47,80 4520 40,60 24,67 §
8% 87,27 8160 6120 @ 5073 | ¢ 2613 a
9% 8853 8760 7273 & 5527 'S @ 27,60
10% 87,67 8747 7673 o 56,80 § 28,33

11% 8567 83,80 67,93 ‘o% 4987 O 29,33 _
12% 75,73 5547 50,33 42,67 30,47 )
13% 8307 8080 6327 | = 5407 |8 3393 2
14% 86,67 8653 76,73 | & 61,33 | 8 3740 é%
15% 86,20 8580 7813 |5 6253 % 37,60

16% 83,87 82,87 70,47 é% 5520 | O @ 39,67

17% 67,33 4813 49,73 47,67 48,73

18% 88,40 86,87 71,27 65,13 58,67

19% 91,67 91,33 86,73 78,53 65,60
20% 93,87 93,73 91,93 86,73 73,87
21% 94,47 94,47 94,00 91,87 79,07
2206 9500 94,87 94,73 94,33 85,93
23% 9553 9560 9527 95,20 89,13
24% 96,13 9587 95,87 95,80 91,93
2506 96,33 96,27 96,27 96,13 94,13

Fonte: Autor (2024).
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Tabela 33 — Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra
engastada discretizada em quatro elementos finitos.

Sem 10/? de 30/‘3 de 5% de ruido 10% de ruido
DI ruido ruido ruido

P(%) P(®%) P(®%) DA P(®%) DA P (%) DA
0% 8587 8367 5280 © 2940 ¢ o 1473 Dano5% @4
1% 8387 77,47 4800 8 2700 S 1587
2% 7893 5820 39,13 S 2967 15,13 °
3% 80,40 56,53 4587 3367 o 1673 E’g
4% 8933 8287 5807 R 4033 ?3 18,47 =
5% 9013 8907 6407 o 4000 § 2013 o
6% 90,07 8887 6233 S 4307 B 2047
7% 90,20 75,07 55,33 40,47 22,73
8% 8447 57,07 4947 39,80 23,87 ©
9% 9120 8633 6127 & 4460 S 2627 E
10% 91,87 9140 71,40 o 4800 5 26,87 g
11% 92,60 91,80 70,60 § 46,87 § 25,33 )
12% 9147 83,33 61,07 45,87 26,13
13% 58,93 4853 48,00 4060 | 27,07 _
14% 9187 8573 6300 | 4920 | & 29,60 )
15% 92,93 9247 7227 |8 5467 @ o 31,40 a =
16% 92,67 92,40 73,20 g 53,60 § 31,33
17% 92,80 87,87 6587 QO 49,00
18% 78,33 52,60 50,67
19% 9153 84,33 64,13
20% 9253 92,13 79,47
21% 92,67 92,53 87,40
220 92,80 92,87 90,47
23% 93,67 9353 92,53
24% 9380 93,73 93,60
2506 9433 9420 94,00

Fonte: Autor (2024).
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Tabela 34 — Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra engastada
discretizada em quatro elementos finitos.

sem 10/? de 30/9 de 5% de ruido  10% de ruido
DI ruido  ruido ruido

P(%) P(%) P(®%) DA P((®%) DA P(%) DA
0% 8587 8367 5280 o 2940 ¢ o 1473
1% 86,00 8407 4913 & 2720 £ © 1880
2% 8513 70,53 40,13 = 32,60 2233 R
3% 88,00 67,93 51,33 428 o 2347 2
4% 90,73 89,00 6847 X 5073 fg 2653 8
5% 91,20 91,07 7933 o 5480 £ 27,20
6% 9133 91,13 7727 S 5467 O 2673
7% 91,07 86,80 63,60 49,93 30,93
8% 79,33 5147 48,07 47 47 32,33
9% 9253 9107 6980 o 5593 o 3767 S
10% 9307 9300 8147 S 6307 S 3827 o
11% 92,93 92,67 83,07 % 65,60 § 40,80 §
12% 91,73 90,27 7407 QO 6147 0O 3947
13% 85,73 60,87 52,20 47,40 35,93
14% 90,47 8500 62,27 | 5467 | 13567 | _
15% 91,27 91,13 80,20 | & 6380 | & 3740 @SB
16% 9140 9133 8387 = 6600 | o 3680 2T
17% 90,60 90,47 78,60 § 62,67 co%
18% 87,47 72,87 56,33 51,27
19% 92,27 84,53 6547 58,00
20% 95,13 9453 84,27 74,20
21% 9560 9553 93,40 85,67
22% 96,07 9587 9553 91,13
23% 96,33 96,27 96,07 94,07
24% 96,67 96,87 96,87 96,33
25% 97,47 97,33 97,07 96,87

Fonte: Autor (2024).
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Tabela 35 — Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra
engastada discretizada em seis elementos finitos.

Sem 1%3 de 3%3 de 5% de ruido  10% de ruido
DI ruido ruido  ruido

P%) P(®%) P(®%) DA P(®%) DA P(%) DA
0% 8353 873 3873 © 1713 ¢ g 11,20
1% 89,40 8640 3740 & 1693 £ 1247
2% 87,20 5927 32,00 = 18,60 1287 ®
3% 89,73 7593 44,40 2407 8 1380 X
4% 9153 9000 5287 R} 2780 o 1387 g
5% 9127 9060 5673 o 2840 § 1347 &
6% 8960 8513 5520 S 2827 12,27
7% 57,00 4820 3840 27,47 13,13
8% 9120 8587 57,73 ¢ 37,07 S 13,00 )
9% 91,73 9060 69,13 S 4080 5 1293 S
10% 9093 9047 69,87 £ 4087 § 13,47 “8'
11% 88,13 81,33 57,33 0O 37,47 1527 &
12% 8507 6387 4947 | 3440 [ s 1673
13% 92,53 91,40 67,00 | & 4720 | 9
14% 93,13 92,33 77,80 | o 48,27 §
15% 92,67 89,40 66,67 § 4993 | A
16% 76,40 49,87 49,13 45,13
17% 94,40 92,40 69,53 59,20
18% 9547 9540 85,20 70,67
19% 96,13 96,00 93,07 82,13
20% 96,73 96,60 95,93 88,53
21% 97,20 96,93 96,73 92,60
22% 97,53 97,40 96,93 94,53
23% 97,60 97,73 97,20 96,47
24% 97,60 97,80 97,40 96,40
250 97,80 98,00 97,73 97,27

Fonte: Autor (2024).
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Tabela 36 — Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra
engastada discretizada em seis elementos finitos.

sem  1%de  3%ade 5% de ruido  10% de ruido
DI ruido ruido ruido

P (%) P (%) P% DA P(@®) DA P(%) DA
0% 88,53 85,73 873 w© 1713 &« 11,20 -8
1% 88,00 74,53 3460 & 1693 £ > 1193 &
2% 68,33 46,27 30,27 = 19,27 12,67 03
3% 88,80 76,33 4420 o 2353 S 9,53

S - o " 24

4% 9147 8667 4560 © = 2527 o 9,93 cﬂ%g
5% 91,93 88,00 4787 £ 2487 8 10,07
6% 88,13 64,87 43,00 O 26,93 11,60 <
7% 87,53 65,40 4207 9 2107 9 12,60 S
8% 92,53 84,67 51,67 S 29,13 S 13,87 %
9% 93,33 90,27 51,80 § 31,67 § 13,67 o)
10% 92,07 81,20 50,60 @O 31,27 O 14,67 <
11% 49,07 47,73 42,80 . 3320 | @ 16,07 ot
12% 91,73 80,47 5187 | 3867 | 9 17,27 g
13% 93,20 90,33 56,33 | o 39,53 % 18,87 @)
14% 9253 8853 57,00 co% 39,13 | O
15% 89,00 66,33 48,60
16% 89,13 67,13 54,80
17% 93,80 89,40 69,07
18% 94,80 94,20 80,07
19% 95,00 94,87 86,00
20% 95,47 95,33 89,53
21% 95,87 95,87 89,80
22% 96,07 95,93 89,33
23% 95,87 95,60 88,00
24% 95,60 95,40 87,67
25% 95,33 94,67 83,00

Fonte: Autor (2024).
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Tabela 37 — Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra engastada
discretizada em seis elementos finitos.

se,m 1%3 de 30/? de 5% de ruido 10% de ruido
DI ruido ruido ruido

P%) P(%) P(®%) DA P(%) DA  P(%) DA

0% 8853 8573 3873 & 17,13 integra 11,20 5% @5
1% 87,87 8380 3880 & 2213 12,47 5% @4
2% 8520 6273 3326 = 2820 16,00
3% 8933 6767 4947 o 32,27 E«’; 16,93
4% 9200 8927 5887 ©® 3667 £ 20,80
5% 9280 9207 6400 & 3860 O 23,07 <
6% 91,73 8473 58,00 O 36,33 22,47 =
7% 7047 49,40 48,80 41,87 26,73 2

o (=] _— ©
8% 9207 8607 6353 & 4800 & 25,33 a
9% 9320 9273 72,60 o 5213 o 28,20
10% 92,73 93,07 70,73 § 50,13 EE 28,60
11% 90,73 7887 61,20 44,00 28,53
12% 8307 6387 5360 | = 4647 | _ 29,20 _
13% 9287 9027 7020 ' & 5253 | & 2067 | 89
14% 9420 9387 7853 | g | 5793 o 3480 | 27
15% 94,00 93,67 76,60 § 57,20 co%

16% 92,87 87,13 64,73 52,07
17% 81,80 56,53 52,00 51,93
18% 9560 91,93 70,87 63,07
19% 96,60 96,47 84,60 74,53
20% 97,07 97,07 93,47 84,27
21% 97,47 97,40 96,20 89,93
22% 97,80 97,73 97,27 93,20
23% 98,00 98,00 97,80 95,60
24% 98,07 98,13 97,93 97,27

25% 98,13 98,20 98,13 97,73
Fonte: Autor (2024).
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Tabela 38 — Respostas do framework DT do classificador SVM para a quinta mola, considerando a barra engastada
discretizada em seis elementos finitos.

sem 1%de  3%de 5% de 10% de
DI ruido ruido ruido ruido ruido
P®%) P@®) P(%) DA P (%) DA P(%) DA

0% 88,53 85,73 3873 17,13  Integra 11,20

1% 8873 8027 3460 & 20,67 1467 o
2% 8493 5800 3053 = 25,27 1560 b
3% 4687 47,87 40,33 240 1620 £
4% 91,73 8293 5640 o 38,67 ‘L’g 1753 O
50 9353 91,93 66,00 43,47 c 19,73

6% 9440 93,80 70,60 § 48,67 Q 21,40

7% 9440 9293 69,53 O 46,27 24,40

8% 92,73 7820 56,27 44,27 2460
9% 8453 56,60 50,20 41,07 2407 S
10% 9387 8893 6353 % 48,80 < 27,00 %
11% 9500 9420 7380 S 52,93 S 30,33 'O
12% 9540 94,87 78,13 g 55,80 % 29,93
13% 95,07 9387 70,80 O 53,67 o 29,60
14% 93,07 76,67 58,53 46,47 29,07 |9
15% 90,07 64,13 53,07 46,13 30,73 | 8
16% 9520 9273 6873 | @ 51,73 < 30,60 §
17% 95,73 95,53 7887 |8 57,33 it 3340 O
18% 9560 9587 79,27 % 60,27 §
19% 9507 93,00 7093 | O 55,33 o)

20% 8947 7347 59,07 49,40 47,60

21% 9280 7693 59,53
22% 9660 9540 76,73
23% 97,07 97,13 89,07
24% 97,67 97,53 95,00
25% 98,00 98,00 97,00

Fonte: Autor (2024).
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Tabela 39 — Respostas do framework DT do classificador SVM para a sexta mola, considerando a barra engastada
discretizada em seis elementos finitos.

se,m 10/9 de 3% de ruido 5% de ruido 10% de ruido
DI ruido ruido

P®%) P(®) DA P(%) DA P(®%) DA P(%) DA
0% 8853 85,73 3873 © 1713 4o 1120 2o
0, E (o) E 5 (US)@
1% 87,67 8527 s 3747 8 1587 & 1067 A
2% 86,67 77,73 2 3153 & 1753 12,33
3% 77,47 48,33 31,73 26,07 1287 o
4% 90,33 77,93 5040 o 3393 E}j 14,33 fg
5% 94,00 92,60 § 65,27 ?g 4187 o 1420 =
6% 9460 9453 o 7367 £ 4553 8 1787 O
7% 9440 9327 8 7067 2 47,80 20,47
8% 92,20 83,67 62,53 47,27 21,73
9% 66,67 49,53 50,53 44,33 2580 @
10% 92,87 87,07 © 6593 e 5473 o 2780  §
11% 95,07 94,40 S 7627 S 5707 S @ 2920 %
12% 9520 94,87 % 82,93 g 58,20 g 2080 O
13% 94,47 92,93 QO 7287 O 5587 0O 30,67
14% 89,00 75,67 59,00 49,47 35,20
15% 90,27 75,60 60,33 53,20 4007 | e
16% 94,60 94,13 © 789 e 6413 | o 4373 | §
17% 95,33 95,20 L 8720 | 71,731 B 43,07 §
18% 94,80 94,27 § 87,33 % 71,67 % 44,23 &
19% 92,13 91,07 Q 7353 'O 6047 O 42,00
20% 65,33 52,13 50,00 48,47 48,80

21% 93,67 91,87 74,53 66,13
22% 95,80 95,67
23% 96,40 96,53
24% 96,73 96,80
25% 97,07 97,07

Fonte: Autor (2024).
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Tabela 40 — Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra
biengastada discretizada em quatro elementos finitos.

Sem 1%de 3% de 5% de ruido  10% de ruido

DI ruido ruido ruido

P(%) P(®%) P(%) DA P(%) DA P(%) DA
0% 7953 6313 29,07 & & 20,73 14,27
1% 80,73 60,13 2940 £ © 2440 14,20
2% 67,47 4493 38,00 2040 ¢ 1807 g
3% 7920 6900 4487 3013 © 1627 P
4% 8180 7880 5033 ®© 3273 § 1700 §
5% 8153 8080 51,73 £ 3320 O 1780 O
6% 81,60 7453 4927 O 3380 18,20
7% 78,20 56,93 46,67 31,07 19,80
8% 7867 5407 4160 o 3087 1907 | o o
9% 81,33 7353 4827 & 3127 2% 2000 &
10% 81,87 8000 5093 o 3193 &S 2060 2T
11% 81,73 76,73 47,33 § 31,20 2113 o o
12% 76,47 54,33 40,40 3493 o 2267 S
13% 8120 6300 4953 | & 3747 D SRS
14% 82,73 8053 59,00 | = 3933 o
15% 82,40 82,00 60,00 § 43,73 §
16% 82,27 80,33 57,13 | A @ 42,07

17% 78,13 66,73 50,80
18% 76,67 56,27 48,60
19% 82,47 80,33 61,13
20% 83,67 83,47 73,07
21% 84,87 84,53 80,27
22% 85,27 85,13 83,47
23% 86,27 86,13 85,33
24% 86,40 86,33 85,80

25% 86,67 86,33 86,13
Fonte: Autor (2024).
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Tabela 41 — Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra
biengastada discretizada em quatro elementos finitos.

Sem 10/9 de 3% de ruido 5% de ruido 10% de ruido
DI ruido  ruido

P%) P(® DA P®) DA P®) DA P(%) DA
0% 7953 6313 S 2007 £ 2073 PAN0O g0 §

' 2 5% @2 o

1% 41,93 4440 E 2427 \E 1920 ¢ o 13,00 S
2% 7773 5760 2o 2807 2o 1827 E O 1293 2
3% 7393 4927 S©® 2600 S®® 1780 113 A&

1] ] ] ] {) ]
4% 71,93 47,40 ° 30,47 18,60 © 15,53

S 2 e 57 S

5% 75,40 68,07 D 32,40 8% 1960 S 1527
6% 73,07 67,80 = 31,07 2180 O 1513 o
7% 62,13 44,13 o 31,93 2653 _ 15,00 §
8% 68,33 56,20 3987 e 2900 S 16,07
9% 7540 7133 @ e 4707 S 3180 o 1840 | @
10% 76,53 75,33 S 47,33 % 33,47 é% 19,00 @ 8§
11% 77,20 74,87 § 46,87 O 28,33 19,53 §
12% 76,73 70,40 a 38,60 27,27 20,07 | @
13% 73,67 45,73 34,60 31,00 | ¢
14% 74,07 54,80 . 43,07 < 31,80 & 8
15% 80,87 7373 | & 4833 | 9 3873 | £
16% 81,13 79,47 = 53,53 § 3493 | O
17% 80,60 76,80 é% 50,60 | O 33,47
18% 78,87 57,20 43,20 36,40
19% 77,53 59,07 47,33
20% 79,60 77,20
21% 80,27 79,93
22% 80,27 80,07
23% 80,13 80,07
24% 80,13 80,00
25% 79,73 79,53

Fonte: Autor (2024).
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Tabela 42 — Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra
biengastada discretizada em quatro elementos finitos.

sem 1%de 3% de

0 , 0 .
DI wido  ruido  ruido 5% de ruido 10% de ruido

P(%) P (%) P (%) DA P(%) DA P(%) DA
0% 79,53 63,13 29,07 integra 2073 5% @2 1427 o
1% 7053 41,87 27,20 ° o 1853 @ 1467 @
2% 7747 5713 2480 S®® 1840 § 1293 B
3% 6240 36,60 2260 Dano5% @3 16,07 = 1421 2
4% 67,40 4873 28,67 < 1900 o 1113 O
5% 7533 72,60 40,33 o 2573 B 11,73
6% 7513 72,47 4647 c 2647 £ 1493 §X
7% 66,87 50,40 39,80 O 30,27 o 1453 ©
8% 72,07 64,33 3893 26,73 1373 @
9% 7753 7693 51,20 S 31,00 1587 S
10% 79,73 79,33 5547 S 36,20 o 18,80 %
11% 80,60 74,07 50,67 é% 36,60 § 1840 O

12% 64,13 50,47 41,47 33,00 21,27

13% 76,80 66,20 42,20 < 29,67 © 24,93
14% 79,87 77,67 46,07 9 31,60 =
15% 80,07 70,73 43,20 % 32,80 %
16% 57,00 40,47 36,13 a 36,73 a

17% 76,40 55,27 48,20
18% 81,47 76,07 58,67
19% 82,40 82,07 68,00
20% 83,13 83,07 75,60
21% 82,87 82,73 79,87
22% 83,33 83,20 81,93
23% 82,60 82,53 82,00
24% 82,20 81,93 81,80
25% 80,40 80,27 79,27

45,00

Fonte: Autor (2024).
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Tabela 43 — Respostas do framework DT do classificador SVM para a segunda mola, considerando a barra
biengastada discretizada em seis elementos finitos.

sem 1%de 3%de 5% de ruido 10% de ruido
DI ruido ruido  ruido
P(%) P(%) P(%) DA P (%) DA P (%) DA
0% 81,13 70,40 2227 w® 1460 2o« 820 Dano5% @4
1% 8093 7200 2200 § 1220 85® 3g20 o o
2% 79,27 5387 21,86 = 13,60 © 7,87 %éé)
3% 80,27 57,40 30,07 14,60 Ty 8,67 Q=
4% 8227 7513 3427 X 15,27 §
5% 8320 8093 3947 o 17,67 a
6% 8280 7460 3753 S 20,33
7% 78,13 5253 32,27 21,67 ©
8% 8267 6493 4093 ¢ 26,00 S
9% 84,13 81,00 4553 S 26,93 %
10% 84,13 81,47 47,80 § 29,13 o)
11% 82,40 69,20 42,73 O 28,13
12% 7693 4587 3913 | _ 26,20 ©
13% 83,73 72,40 4587 | @ 2887 | =
14% 84,67 82,07 4927 | o 31,27 §
15% 84,13 80,27 50,13 co% 31,87 o)
16% 82,47 65,13 42,60
17% 83,07 56,33 48,20
18% 86,67 78,53 61,93
19% 88,47 87,00 69,73
20% 88,87 88,80 77,13
21% 89,73 89,67 82,47
22% 90,47 90,13 86,27
23% 90,73 90,60 88,67
24% 90,60 90,53 89,53
25% 91,47 91,33 91,20

Fonte: Autor (2024).
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Tabela 44 — Respostas do framework DT do classificador SVM para a terceira mola, considerando a barra
biengastada discretizada em seis elementos finitos.

sem 1% de 3% de 5% de ruido  10% de ruido
DI ruido  ruido ruido
P(%) P(%) DA P(®%) DA P(%) DA P (%) DA
0% 81,13 7040 © 2227 @ 1460 _ = 820 =
® 2®
1% 7967 6087 § 2212 P 1400 §go 798 &g
20 7587 4193 = 1933 & 1220 ° 8 767 O3

3% 71,27 45,20 23,60 11,60 8,87

4% 8207 6660 X 27,33 X 1213 §§
5% 8340 7540 o 2840 9o 1287
6% 8393 7247 S 2867 S 1560
7% 80,33 52,20 29,27 1720 ¢
8% 8280 57,07 33,13 1887 = S
(=) (=}
9% 8433 7427 & 3647 S 1987 &
10% 8540 7893 = 3813 = 2207 QO
11% 8500 71,20 5% 38,00 § 21,87
12% 77,67 51,13 37,47 2480 | o .
13% 8247 6153 | 3827 | o 2427 S
14% 8333 7633 | & 3840 |8 2693 |
16% 8327 7747 | 4167 | 8 2880
16% 82,73 67,27 écu 38,73 | @ 37,40
17% 6580 45,13 42,60 41,73
18% 83,47 67,33 53,87 48,00
19% 8527 80,20 61,93 53,87
20% 8567 85,13 68,27 60,60
21% 86,53 86,33 74,20 64,40
22% 87,13 86,93 79,47 68,87
23% 87,33 87,27 83,20 71,93
24% 87,87 87,67 85,47 77,63

25% 88,60 88,40 87,33

Fonte: Autor (2024).

79,93
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Tabela 45 — Respostas do framework DT do classificador SVM para a quarta mola, considerando a barra
biengastada discretizada em seis elementos finitos.

sem  1%de 3% de 5% deruido  10% de ruido
DI ruido ruido ruido
P%) P(® DA P®%) DA P®%) DA P(%) DA
0% 8113 7040 © 2227 4 1460 820 2
— 4 S l— o
1% 8047 6580 & 2220 £ 1540 880 AS©
29 7853 51,33 & 2533 1780 o 920 | _
3% 8140 47,73 31,80 o 1867 fg 1093  $3
- o180 867 09 895
4% 8560 7100 o 3453 fcg 20,87 S 1253 =
50 85,67 80,80 ?3 39,00 S 2040 © 1240
6% 8387 7807 £ 37,87 B 2200 13,73
7% 8127 6540 © 37,07 23,87 15,80
8% 6513 4443 38,87 25 80 17.73
9% 8600 6933 4120 g 2820 g 20,07
10% 86,07 8087 & 4620 S 2820 S 2060
11% 86,00 81,87 5 4347 § 27,67 % 2553
12% 8460 7127 § 4447 Q2913 O 26,07
13% 75,80 49,40 40,13 28,87 28.73
14% 8427 6147 | = 4260 | s | 2647 | _ 3087
15% 8560 7873 | & 4680 | 8 3033 | §% 3460
16% 8527 82,73 | o 46,60 % 3300 | 27 37.00
17% 8480 7540 § 4547 | Q | 3727 40,87
18% 81,87 5280 43,73 47,00 44.80
19% 86,73 66,87 5313 50,67 47,13
20% 8887 83,80 64,80 57,47 50,20
21% 8953 88,93 72.20 61,27 53,20
22% 90,00 89,67 79.67 69,20 54 87
23% 90,67 90,53 84.07 74.60 59.33
24% 90,67 90,53 88,53 77,53 63,47
2506 9127 91,13 89.60 81,73 64.27

Fonte: Autor (2024).
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Tabela 46 — Respostas do framework DT do classificador SVM para a quinta mola, considerando a barra

biengastada discretizada em seis elementos finitos.

sem  1%de 3% de 5% de ruido 10% de ruido
DI ruido  ruido ruido
P%) P(%) P®) DA P%) DA P(®%) DA
0% 8113 7040 2227 © 1460 2o« 820 2o«
1% 8080 7013 2053 8 12271 S © 787 85 ©
2% 7953 5833 2000 = 1503 7,53
3% 73,60 4220 2820 1600 S 7,53
4% 8140 6713 3560 o 1773 o 6,93
e ~ SO N
5% 8367 8007 3947 © 1847  § 8,00 %
6% 8360 8293 3967 £ 18,00 933 | o
7% 8267 7720 3687 2 19,00 1120 8
8% 8040 5933 33,00 21,47 9,67
9% 7300 4827 37,33 2413 = & 1047
10% 8007 7113 4253 ¢ 2613 g 10,20
11% 8253 7753 4527 | S 2653 &
12% 8287 8080 4720 2 2640
13% 8260 7820 4433 O 26,00
14% 7893 6267 37,93 24,27
15% 76,93 51,93 39,47 2607 | 9
16% 8273 7600 4587 | e 2993 | o
17% 8400 8267 4867 |8 2753 | &
18% 8453 8353 4907 | & 2733
19% 8293 7593 4273 | @
20% 78,47 5620 37,47
21% 8093 6060 49,60
22% 84,40 7947 57,67
23% 84,87 84,00 67,87
24% 86,13 8580 73,20
25% 8587 8547 77,33

Fonte: Autor (2024).
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Tabela 47 — Respostas do framework DT do classificador SVM para a sexta mola, considerando a barra biengastada
discretizada em seis elementos finitos.

sem 1% de 3% de ruido 5% de ruido 10% de ruido
DI ruido  ruido

P(%) P(%) DA P(%) DA P(%) DA P(%) DA

© Integra Dano
0 —- o
0% 81,13 70,40 5 22,27 14,60 o @4 8,20 2 § 3
1% 7880 5313 £ 2193 14,00 687 O
2% 8227 7473 2o, 3600 Sxg 1707 §3g 7.67
3% 8173 7133 A© 35,47 18,40 7.27
4% 8180 7200 3847 2333 10,13
(=) — -~ —~ | o o
506 8360 8273 S 5253 S 3073 S 1267
6% 8320 77,53 50,87 31,80 1607 &
7% 5480 34,93 34,13 27,67 18,67 2
8% 8220 7887 @ 5387 @ 38,13 © 19,87 §
9% 8547 8527 S 68,73 S 48,80 S 24.73
10% 86,20 85,87 g 75,27 g 55,27 g 26,27
11% 8580 8513 O 68,80 a) 53,80 a) 29,60
12% 76,47 58,20 51,93 45,07 27,73
13% 84,60 82,87 64,07 52,73 3040 | @
(=) _ (=) \o o

14% 86,13 8627 | 7973 | & 64,40 S 3560 9
15% 86,73 86,47 | o 8373 | o 70,33 S 36,40 §
16% 8567 8520 cDCU 74,93 cDCU 63,00 cDCU 3607 | O

17% 74,60 58,80 50,67 46,73
18% 87,80 86,07 72,00 62,40
19% 89,80 89,33

20% 90,87 90,53

21% 91,33 91,33

22% 92,20 92,00

23% 92,53 92,60

24% 93,00 92,87

25% 93,13 93,07

Fonte: Autor (2024).



