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Resumo

Este trabalho concentra-se no estudo de sequéncias numéricas, com uma énfase particular nas
relacdes de recorréncias lineares de primeira ordem. Exploramos como essas relagcdes podem
ser aplicadas em diversas dreas da matematica, incluindo a geometria. O principal objetivo €
capacitar os alunos a estabelecer conexdes significativas entre conceitos matematicos distintos,
promovendo um entendimento mais profundo da teoria das sequéncias.

A eficécia da nossa abordagem € avaliada através da aplicacao de dois testes, um antes e outro apds
a intervengdo. Esses testes evidenciam uma melhoria no desempenho dos alunos na compreensao
das sequéncias numéricas. As aplicagdes discutidas abrangem tanto o ensino fundamental quanto
o ensino médio, com adaptacdes especificas para cada nivel escolar. O foco primordial € o
desenvolvimento do raciocinio recursivo e a transicao de férmulas recursivas para férmulas
fechadas, permitindo o cdlculo preciso e eficiente de qualquer termo subsequente na sequéncia.
Iniciamos nossa investigagdo modelando um problema especifico, partindo de informagdes
iniciais previamente estabelecidas como pontos de partida. A partir disso, adotamos uma
abordagem formal, fundamentada em métodos rigorosos, para demonstrar propriedades relevantes
e construir as devidas formaliza¢Ges e provas. Para evidenciar a aplicacdo prética do conhecimento
desenvolvido, exploramos a resolugdo de trés problemas distintos: a Torre de Handi, o problema
das moedas dispostas em hexdgonos regulares e um desafio envolvendo liquidos coloridos
organizados em garrafas. Cada um desses exemplos ilustra, de forma concreta, a versatilidade e a
profundidade das técnicas abordadas.

E importante notar que a literatura existente frequentemente apresenta apenas esbogos superficiais
na deducdo de férmulas recursivas, especialmente no contexto de sequéncias numéricas e outros
tipos de sequéncias. Muitas vezes, o foco estd apenas no resultado final, sem aprofundar nos
passos e fundamentos subjacentes. Este estudo visa oferecer uma compreensao abrangente do
processo de derivagao de formulas recursivas e como, a partir delas, é possivel obter formulas
fechadas. Ao longo do trabalho, demonstramos como transitar de problemas especificos para
sequéncias numéricas e férmulas fechadas, fornecendo uma visdo detalhada e sistemadtica desse

percurso.

Palavras-chave: Recorréncias. Recorréncias lineares. Recorréncias lineares de primeira ordem.

Modelagem. Férmulas recursivas.



Abstract

This work focuses on the study of numerical sequences, with particular emphasis on first-order
linear recurrence relations. We explore how these relations can be applied in various mathematical
areas, including geometry. The main goal is to enable students to make meaningful connections
between distinct mathematical concepts, fostering a deeper understanding of sequence theory.
The effectiveness of this approach is evaluated through two tests, one administered before and
one after the intervention. These tests demonstrate an improvement in students’ performance
regarding their understanding of numerical sequences. The applications discussed cover both
elementary and secondary education, with specific adaptations for each educational level. The
primary focus is on developing recursive reasoning and transitioning from recursive formulas to
closed formulas, allowing for the precise and efficient calculation of any subsequent term in the
sequence.

We began our investigation by modeling a specific problem, starting from initial information
established as the foundation. Subsequently, we adopted a formal approach grounded in rigorous
methods to demonstrate relevant properties and construct the necessary formalizations and proofs.
To illustrate the practical application of the developed knowledge, we explored the resolution of
three distinct problems: the Tower of Hanoi, the problem of coins arranged in regular hexagons,
and a challenge involving colored liquids organized in bottles. Each of these examples concretely
demonstrates the versatility and depth of the techniques addressed.

It is important to note that existing literature often presents only superficial outlines for deriving
recursive formulas, especially in the context of numerical and non-numerical sequences. The
focus is frequently on the final result without delving into the underlying steps and fundamental
ideas. This study aims to offer a comprehensive understanding of the process of deriving recursive
formulas and how to obtain closed formulas from them. Throughout the work, we demonstrate
how to transition from specific problems to numerical sequences and closed formulas, providing

a detailed and systematic view of this process.

Keywords: Recurrences. Linear recurrences. First-order linear recurrences. Modeling. Recursive

formulas.
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1 Introducao

Neste trabalho, abordaremos as relagdes de recorréncia lineares de primeira ordem,
descrevendo sequéncias numéricas e estabelecendo, sempre que possivel, uma lei de formacao
recursiva. Isto €, apresentaremos uma expressao que descreva todos os elementos da sequéncia a
partir dos elementos anteriores. Esse tema estd alinhado com a Base Nacional Comum Curricular
(BNCC), um documento normativo essencial para as redes de ensino publicas e privadas (Brasil.
Ministério da Educacgdo, 2018). A BNCC serve como referéncia obrigatéria na elaboracao de
curriculos e propostas pedagdgicas no Brasil. As competéncias e habilidades para o ensino
fundamental sdao: (EF01MA10) Descrever os elementos ausentes em sequéncias recursivas de
nimeros naturais, objetos ou figuras, apds o reconhecimento e a explicitacdo de um padrao
ou regularidade; (EF02MA09) Construir sequéncias de nimeros naturais em ordem crescente
ou decrescente a partir de um nimero qualquer, utilizando uma regularidade estabelecida;
(EF02MA11) Descrever os elementos ausentes em sequéncias repetitivas e em sequéncias
recursivas de nimeros naturais, objetos ou figuras; (EF04MA11) Identificar regularidades em
sequéncias numéricas compostas por multiplos de um nimero natural. Para o ensino médio,
destacam-se as seguintes competéncias e habilidades: (EM13MATS07) Identificar e associar
progressoes aritméticas (PA) a funcdes afins de dominios discretos, para andlise de propriedades,
deducdo de algumas férmulas e resolucdo de problemas; (EM13MATS08) Identificar e associar
progressoes geométricas (PG) a fungOes exponenciais de dominios discretos, para andlise de
propriedades, deducdo de algumas férmulas e resolucio de problemas.

O pensamento recursivo permeia diversas areas das ciéncias, sendo uma abordagem
essencial em fendmenos naturais e processos complexos. Além da matematica, o pensamento
recursivo é fundamental em campos como fisica, biologia, engenharia, economia e ciéncia da
computacdo. Essa abordagem revela-se como uma ferramenta poderosa na resolug¢ao de problemas
complexos e € uma caracteristica comum em diversas disciplinas cientificas. Segundo Pereira
(2014, p. 35), “as relagdes de recorréncia permitem modelar diversos fendmenos matemdticos e
computacionais de forma sistemdtica” (PEREIRA, 2014). Da mesma forma, Graham, Knuth e
Patashnik (1994, p. 2) afirmam que “a matemadtica concreta combina ferramentas da matemadtica
continua e discreta para fornecer uma base sélida para a andlise de algoritmos” (GRAHAM
RONALD L.; KNUTH, 1994).

A aplicagdo da abordagem recursiva possibilita a modelagem de problemas envolvendo
sequéncias numéricas. Nosso objetivo € encontrar solugdes para essas formulas recursivas,
determinando uma expressao fechada que represente o termo geral da sequéncia, isto €, uma
expressao que nao dependa dos termos anteriores. Isso permitird calcular qualquer termo da
sequéncia de forma direta, proporcionando uma compreensao mais abrangente e eficiente das

propriedades inerentes.
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1.1 Motivagdo

A motivagdo que fundamenta este trabalho reside na constatacdo de que, no ensino
fundamental e médio, ndo ha uma abordagem sistematica sobre o tema das recursoes; quando
existe, sao apenas breves sugestdes ou mengoes. O conceito frequentemente nao recebe a atengao
adequada, representando uma lacuna prejudicial para o desenvolvimento do raciocinio recursivo
nos alunos, um conhecimento essencial para o aprimoramento do pensamento critico-matemaético.

A auséncia de uma abordagem apropriada nesse nivel educacional dificulta a compreensao
profunda das recorréncias, limitando a capacidade dos estudantes de explorar plenamente o
potencial do raciocinio recursivo. Esta lacuna educacional torna-se ainda mais significativa ao
considerar que o conceito em questdo possui aplicacdes amplas, podendo ser utilizado em dreas
aparentemente ndo relacionadas, como geometria plana, matemadtica financeira e combinatdria.

Este trabalho visa, desse modo, motivar a revisdo e o aprimoramento do ensino das
recorréncias lineares de primeira ordem no ensino médio e, com as devidas adaptacdes, no ensino
fundamental. Ao proporcionar uma compreensao clara do processo de obteng¢ao de férmulas
recursivas e de como elas levam a férmulas fechadas, busca-se preencher essa lacuna educacional.
A abordagem formal e as aplicag¢Oes praticas apresentadas pretendem equipar os estudantes com
as ferramentas necessdrias para compreender e aplicar efetivamente esses conceitos, contribuindo

para um ensino mais sélido e abrangente.

1.2 Organizagdo do Trabalho

O Capitulo 2 introduz os conceitos que fundamentam o desenvolvimento deste trabalho,
proporcionando a base tedrica necessdria para a sua compreensao.

No Capitulo 3 abordamos trés aplicac¢des ludicas, que colocam em prética os conceitos
previamente discutidos.

O Capitulo 4 investiga a metodologia adotada, integrada a andlise dos questiondrios pré e
pos-teste, oferecendo uma compreensao mais aprofundada do impacto e implementacao deste
trabalho em sala de aula, visando resolver ou minimizar lacunas de conhecimento relacionadas
ao tema.

O Capitulo 5 dedica-se a discussdo dos resultados alcangados, contextualizando as
descobertas e examinando suas implicagdes.

Finalmente, no Capitulo 6, sdo apresentadas as conclusdes deste trabalho, consolidando

as descobertas e delineando possiveis dire¢des para pesquisas futuras.
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2 Fundamentacao Teorica

Neste capitulo, discutiremos conceitos fundamentais que sao essenciais para uma com-
preensao fluida do desenvolvimento deste trabalho. Comegaremos com a defini¢cao de sequéncia
numérica, incluindo exemplos que ilustram tanto sequéncias com leis de formacao explicitas
quanto aquelas sem uma lei definida. Em seguida, abordaremos as relacdes de recorréncia e as
sequéncias definidas recursivamente. Por fim, exploraremos diversas técnicas de solu¢cdo e um
teorema que simplifica algumas solucdes mais complexas, que ndo se enquadram nas técnicas
resolutivas usuais.

Toda a nossa base tedrica encontra respaldo nas obras das colecdes do ProfMat (CARVA-
LHO; MORGADO, 2013), somadas a contribui¢des valiosas apresentadas por (IEZZI; HAZZAN,
2006) e (HUNTER, 2011). Muitas das questdes abordadas foram extraidas dessas fontes ou foram
inspiradas por elas. Vale destacar também a presencga de questdes particularmente interessantes
provenientes do banco de questdes da OBMEP'. Essas referéncias ndo apenas enriquecem, mas
também complementam nosso conhecimento, proporcionando uma perspectiva mais abrangente

sobre as sequéncias e recorréncias lineares.

2.1 Sequéncias Numéricas

Nesta sec¢do, introduziremos a defini¢do formal de sequéncia numérica, seguida de
exemplos ilustrativos.

De forma simples, uma sequéncia numérica € uma lista ordenada de nimeros, onde cada
elemento € chamado de termo da sequéncia. Cada termo ocupa uma posi¢do especifica na lista, e
ao alterar a ordem dos elementos, obtém-se uma sequéncia distinta. E importante destacar que as
sequéncias numéricas podem ser finitas ou infinitas e podem ou nao possuir uma lei de formagao
definida.

Definicao 1: Uma sequéncia numérica € uma funcdo x : N — R, que associa a cada
ndmero natural n» um nimero real x(n), denominado n-ésimo termo da sequéncia, denotado por
Xn-

E importante ter clareza do significado de cada letra na defini¢do formal de sequéncia
quando interpretada como lista ordenada de nimeros. Para tal, salientamos que n € N descreve
a posi¢cao do nimero x, € R na lista. A sequéncia pode ser representada de diferentes formas:

(X1,Xx2,X3, ..., Xn), (Xn)nen, Ou simplesmente (x,,).

Exemplo 2.1: A sequéncia definida por x,, = 2n possui o primeiro termox; =2-1=2,0

segundo termo x; = 2 - 2 = 4, e assim por diante. Esta sequéncia corresponde a lista ordenada

I <https://www.obmep.org.br/banco.htm>
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dos niimeros pares:

(2,4,6,8,...)

Esse exemplo demonstra como, a partir de uma expressao formal, podemos determinar

uma sequéncia numérica especifica. Isso nos leva as seguintes perguntas:

1. Toda lista ordenada pode ser gerada a partir de uma expressao formal?

2. E possivel determinar a expressao formal de uma sequéncia conhecendo uma quantidade

suficientemente grande de seus termos?

Antes de responder a essas questdes, vamos analisar alguns exemplos:

Exemplo 2.2: A sequéncia
(2,6,10,14,18,22, ...)
pode ser gerada pela lei de formacgao dada por
X, =2 +4n.
Exemplo 2.3: A sequéncia dos nimeros impares
(1,3,5,7,9,11,...)
pode ser gerada pela lei de formacao dada por
X, =2n-—1.
Exemplo 2.4: A sequéncia dos nimeros primos
(2,3,5,7,11,13,...)

Com isso, podemos concluir que nem toda lista ordenada possui uma lei explicita de
formagdo, como observado no exemplo 2.4. A sequéncia dos nimeros primos, por exemplo,
estd intimamente ligada a um dos célebres ’sete problemas do milénio’. O Instituto Clay de
Matematica oferece um prémio de um milhdo de ddlares para quem resolver esse enigma, ou
seja, para quem encontrar uma ’férmula’ que descreva de maneira precisa o comportamento
desses numeros. Segundo o Instituto Clay (Clay Mathematics Institute, 2000), os sete problemas
do milénio representam desafios matemaéticos ainda em aberto, com excecao da Conjectura de
Poincaré, que foi resolvida por Grigori Perelman entre 2002 e 2003, tendo sua prova verificada e

confirmada pela comunidade matemaética em 2006.
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2.2 Relacgoes de Recorréncias

Nesta secao, apresentaremos formalmente a definicao das relagdes de recorréncia, deta-
lhando suas principais caracteristicas e propriedades. Além disso, serdo discutidos exemplos
ilustrativos que demonstram a aplicacao dessas relacdes em diferentes contextos, permitindo

uma compreensao mais profunda de sua utilidade na modelagem de problemas.

De acordo com (CARVALHO; MORGADO, 2013), podemos definir uma relacdo de
recorréncia da seguinte forma:

Definicdo 2: Uma relacdo de recorréncia € uma regra que define cada termo de uma
sequéncia a partir dos termos anteriores. Em outras palavras, ela expressa como cada novo termo

pode ser calculado como uma fung¢ao dos termos ja conhecidos da sequéncia.
O nome, relacao de recorréncia, manifesta a necessidade de recorrer a termos anteriores.

Exemplo 2.5: Nimeros de Primos Menores que n
(0,0,1,2,2,3,3,4,4,4,4)

Note que, para determinar o niimero de primos menores que n, € suficiente saber se n — 1 € primo
€ quantos primos menores que n — 1 existem. Por outro lado, o fato de ainda ndo termos um
entendimento completo sobre a distribui¢cdo dos nimeros primos nos permite concluir que nao

existe uma relacao de recorréncia explicita e algébrica que descreva essa sequéncia.

Exemplo 2.6: Sequéncia de Fibonacci
(1,1,2,3,5,8,13,21,...)

Note que, a partir do terceiro termo, todos os termos apresentados sao dados pela soma dos dois

anteriores. Isso nos induz a concluir que os termos dessa sequéncia obedecem a seguinte relacio:
Xp =Xp_1 +Xp—2, com x;=1exy=1.

Exemplo 2.7: Desconto Percentual e Preco com Desconto
Supondo que fizemos uma compra parcelada em n pagamentos de valor fixo x a uma taxa p de
juros compostos, a sequéncia (xi, ..., x,) de valores atualizados, més a més, de cada parcela

obedece a relacao:

— Xn-1
I=p
Se x = 900 e desejarmos antecipar o pagamento da segunda parcela, obtendo o desconto

Xn

dos juros, ou estender o prazo de quitacdo, os valores a serem pagos, considerando a taxa
p = 10%, serdo:
(729, 810, 900, 1000, . . .).
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Caso a taxa p nao seja fornecida, mas apenas os termos da sequéncia, podemos calculd-la

como segue:

Xn-1

P = I - »

Xn
ou, equivalentemente,

_ Xp — Xn—-1

p=——"7—.
Xn

Basta observar a diferenca entre os valores consecutivos x, € x,—; € dividir pelo valor

atualizado x,, para determinar a taxa de juros compostos.

Exemplo 2.8: Modelo de Crescimento Populacional Simples
P, = (1+r)-P,_;, com Py sendo o quantitativo inicial da populagdo e r a taxa de crescimento.
Se Py =100 e r = 0,05 (5% de crescimento), a sequéncia gerada sera:

(100, 105, 110,25, 115,76, 121,55, . . .)

Observacao: A equacao de recorréncia sozinha nao define uma sequéncia numérica,
sendo necessario um ponto de partida. Por exemplo, na Sequéncia de Fibonacci, além da férmula
de recorréncia

Xp = Xp—1 +Xy—2 paran > 2,

€ necessario definir os valores iniciais x; = 1 e x» = 1.

2.2.1 Sequéncias Numéricas Definidas Recursivamente

Sequéncias numéricas definidas recursivamente sdo aquelas em que cada termo € deter-
minado a partir de uma igualdade que o relaciona com um ou mais termos anteriores, denominada
equacao de recorréncia. No decorrer do texto, usaremos as expressoes "lei de formacdo", "equagdo
de recorréncia"e "férmula de recorréncia"como sindnimos, exceto em casos especificos que

exigem disting¢ao.

Por exemplo, sdo sequéncias definida recursivamente as descritas nos exemplos 2.6, 2.7 e
2.8.

Por conveniéncia adotaremos como notacdo geral para uma relacdo de recorréncia a

seguinte forma:

Xn = f(xn—l,xn—Z, . ,xn—k)

onde:

1. x, € o termo n-ésimo na sequéncia;
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2. féumafuncio que define como o termo x,, depende dos termos anteriores x,,—1, X,—2, - - . , Xn—k;

3. k € o nimero de termos anteriores que influenciam o termo x;,.

Sequéncias definidas por recorréncia sdo amplamente utilizadas na matematica e em dreas
afins para modelar padrdes naturais, algoritmos iterativos e processos dinadmicos que dependem
dos estados anteriores para determinar o préximo estado. Essa abordagem € fundamental para
compreender e prever o comportamento de sistemas que evoluem ao longo do tempo de acordo
com regras estabelecidas. Dentre os exemplos mais presentes em diversos contextos matematicos
e cientificos, destacam-se as renomadas sequéncias de Fibonacci, as progressoes aritméticas e
as progressoes geométricas. Estas duas dltimas, que definiremos a seguir, além de modelarem
uma ampla variedade de processos e fendmenos, também sdo de grande utilidade no estudo das
“recorréncias lineares de primeira ordem”, as quais constituem o objeto de estudo da Secdo 2.4

deste texto.

Definicao 3: Uma Progressdo Aritmética (P.A.) € uma sequéncia de niimeros em que a
diferenca entre dois termos consecutivos € sempre constante, chamada de razdo (r) da P.A.

A definicao recursiva de uma progressao aritmética (P.A.) é dada por:

Onde:
1. x; € o primeiro termo da sequéncia.
2. r é arazao da P.A., que € a constante somada a cada termo para obter o préximo termo.

Ou seja, paratodo n € N, x,,41 — x,, = r. Em outras palavras, uma P.A. € uma sequéncia
em que cada termo, a partir do segundo, € a soma do termo imediatamente anterior com uma
constante r dada. Neste caso, se dois termos forem iguais, digamos x; = xy.,, entdo € possivel

provar que a razao € nula e, portanto, todos os termos serdo iguais. De fato, temos que:
Xk+p = Xk+p-1 =17,

Xk+p—1 — Xk+p-2 =T,

Xkl —Xp =T

Somando membro a membro, obtém-se x4, — xx = pr. Logo, pr =0, donde r = 0.

Exemplo 2.9: Progressao aritmética de razdo 3

Xpnel =X, +3
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A seguinte questdo, adaptada do livro do Professor Elon Lages Lima (LIMA; AL., 2000),

exemplifica de forma clara uma aplicacio de progressao aritmética.

Exemplo 2.10 O preco de um carro novo é de R$140.000,00 e diminui de R$ 1.000,00 a

cada ano de uso. Qual serd o preco com 4 anos de uso?

Vamos resolver recursivamente o problema para determinar o preco do carro apds 4 anos
de uso, onde o prego inicial do carro é de R$ 140.000,00 e diminui R$ 1.000,00 a cada ano.

O preco do carro ap6s 4 anos de uso é dado recursivamente por:

Py =140000 (preco inicial)
Py =P,—-1000 VneN, n>1

Calculando:

P> = P; — 1000 = 140000 — 1000 = 139000
P3 = P> — 1000 = 139000 — 1000 = 138000
P4 = P53 — 1000 = 138000 — 1000 = 137000
Ps = P, — 1000 = 138000 — 1000 = 136000

Portanto, o prego do carro apds 4 anos de uso é de R$ 137.000,00.

Definicdo 4: Uma Progressao Geométrica (P.G.) € uma sequéncia de nimeros em que
cada termo € obtido multiplicando o termo anterior por uma constante fixa, chamada razdo. A

definicao recursiva de uma Progressao Geométrica € dada por:

X1=b

Xnt1 =¢q - Xn, VYREN, n>1
Onde:

1. x; € o primeiro termo da sequéncia.

2. g é arazdo da P.G., que € a constante pela qual cada termo € multiplicado para obter o

préximo termo.

Exemplo 2.11: Progressao geométrica de razdo 3

Xps1 = 3xp
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Nesse exemplo, se o primeiro termo xj € 2 e a razdo g € 3, entdo os termos da P.G. serdo:
(2,6,18,54,...)

Outra questao relevante pode ser destacada no livro do Professor Elon Lages Lima, onde
sdo abordados topicos significativos relacionados a geometria métrica espacial e a porcentagem
(LIMA; AL., 2000).

Exemplo 2.12: Aumentando de 20% o raio da base de um cilindro de base circular e

diminuindo de 30% sua altura, de quanto variaré seu volume?

Para resolver a questdo de como varia o volume de um cilindro de base circular quando
o raio da base € aumentado em 20% e a altura € diminuida em 30%, vamos usar a férmula do
volume do cilindro e aplicar as mudancas percentuais. A formula do volume de um cilindro €

V = nr?h, onde r é o raio da base e £ € a altura.

Passo 1: férmulas iniciais
Vamos definir as variaveis iniciais:
* ro: raio inicial
e hy: altura inicial
* Vp: volume inicial
O volume inicial é dado por:

Vo = ﬂr(z)ho

Passo 2: aplicacdo das varia¢Oes percentuais

Vamos aplicar as variagdes percentuais ao raio e a altura:

¢ Novo raio r1 aumentado em 20%:
ry =ro+ 0,2}’0 = 1,21‘0
e Nova altura /; diminuida em 30%:

hy =ho—0,3hy =0,7h9

Passo 3: novo volume do cilindro

O novo volume do cilindro V; é dado por:

V1 = ﬂr%hl



Capitulo 2. Fundamentagdo Tedrica 21

Substituindo 7 e ~1 na férmula do volume:
Vi = m(1,2r0)*(0,7hg)
Vi = m(1,44r3)(0,7ho)

Vi = (1,44 -0,7)rgho

Vi = m(1,008)r2ho

Passo 4: variagdo do volume

A variacdo do volume € a razao entre o novo volume e o volume inicial:

v, 7(1,008)r2hg

Vo o ﬂr(z)h()
V;
11,008
Vo

Donde V| — V = 0,008V}, ou seja, o volume aumenta em 0,8%.

2.3 Solucao Geral de uma Recorréncia

Nesta secdo, definiremos a solucdo geral de uma relacdo de recorréncia e daremos dois

exemplos.

Quando se tem uma relacao de recorréncia, um desafio importante € encontrar uma
férmula fechada para o termo geral da sequéncia. Em outras palavras, busca-se uma expressao
que permita calcular qualquer termo da sequéncia diretamente, sem a necessidade de utilizar os

termos anteriores.

De acordo com (CARVALHO; MORGADO, 2013), podemos definir a solugdo geral para
uma relagdo de recorréncia da seguinte forma:
Definicao 5: A solucgdo geral de uma recorréncia € uma igualdade (ou férmula fechada)

que descreve x, em fun¢do de n e da(s) condi¢ao(des) inicial(is).

Dessa maneira, a féormula fechada permite calcular qualquer termo da sequéncia direta-
mente, sem a necessidade de recorrer aos termos anteriores. Enquanto que a férmula recursiva
descreve a lei de formagdo de maneira iterativa, fornecendo uma regra para calcular cada termo
com base nos termos anteriores. Embora as férmulas recursivas sejam préticas para calcular

termos consecutivos, elas podem ser ineficientes para termos distantes.
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Por exemplo, considerando a sequéncia (x,) definida de forma recursiva por
Xpel = 2x,+4, com x1 =0,
pode ser verificado que seus termos serdo
(0,4,12,28,60,...).

Mas qual seria o valor de x100?

Ja no caso da sequéncia (x,) definida pela forma fechada:
xp =197 —n+ (=",
pode ser verificado que os seus termos serao
(17,75,167,301,...)

€ que
x100 = 19 - 1002 = 100 + (-1)'% = 190.000 — 100 + 1 = 189.901.

Na préxima secdo, exploraremos de forma sistemética o processo de encontrar solugdes

para as recorréncias lineares de primeira ordem.

2.4 Recorréncia Linear de Primeira Ordem

Na secdo anterior, abordamos as relagdes de recorréncia, discutindo tanto suas formas
recursiva quanto fechada. Neste trabalho, focaremos exclusivamente nas recorréncias lineares; as
recorréncias nao lineares sao conhecidas, mas nao serao abordadas.

Esta secdo é dedicada a determinagdo das solucdes das recorréncias lineares de primeira

ordem.

Definicao 6: Dizemos que uma recorréncia € linear de primeira ordem se ela for definida
por:
Xne1 = f(n)xn + g(n)

onde f(n) e g(n) sdo fungdes reais definidas nos nimeros naturais. Se g(n) = 0, dizemos
que a recorréncia € homogénea, caso contrério, ela € ndo-homogénea.
Segue das defini¢des que toda P.A. € uma recorréncia linear de primeira ordem e que toda P.G. é
uma recorréncia linear de primeira ordem homogénea. A seguir, listamos outros exemplos de

recorréncias lineares de primeira ordem.

Exemplo 2.13: x,;; = nx, (linear de primeira ordem homogénea)
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Exemplo 2.14: x,,; = 2x, — 5 (linear de primeira ordem nao-homogénea)

Exemplo 2.15: Dada a recorréncia x,.; = nx, com x| = 1, vamos resolver essa equacgao,

isto €, obter sua forma fechada ou explicita.

Vamos comecgar escrevendo as relacdes até o n-ésimo caso:

Xzzl'xl
x3=2-x2
X4=3-X3

xp=(m-1) x,-1

Dai, multiplicando membro a membro as igualdades acima, obtem-se:

X1 X2 x3 ... Xp=1-x1-2-x2-...-(n—=1) x5,

E importante destacar que essa multiplica¢ao s6 € possivel porque nenhum dos termos é

nulo.
Organizando, temos

X1 X2 X3:X4 ... X, =1-2-3-...-(n=1)-x1-x2... Xpn_q

Dessa forma, chegamos a

xp=(Mm-1)"! x|

E como x| =1, logo

X, =(n-1)!

Esta € a forma fechada para a recorréncia x,+; = n - x,, com x; = 1. Ou seja, dizemos que

Xxp = (n—1)! € uma solugdo para a recorréncia dada.

O fatorial de um ndmero inteiro positivo n, denotado por "n!", € o produto de todos os

nimeros inteiros positivos de 1 até n. Por exemplo, o fatorialde 5é 5! =5-4-3-2-1 = 120.

Exemplo 2.16: Dada a sequéncia (2, 6, 10, 14, ...) iremos achar sua equacgdo de recorréncia
e em seguida sua forma fechada. Observe que o termo inicial € igual a dois e cada termo posterior

€ obtido somando-se sempre quatro. Logo podemos escrever
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Xpel =X, +4 com x; =2

O que fizemos foi modelar a sequéncia de forma recursiva. Agora vamos resolvé-la.

xy=x1+4
X3 =xy+4
X4 =x3+4

Xp =Xp—1 +4

Dai, somando membro a membro as igualdades acima, chegamos a:
Xo+X3+x4+...+x, =x1+x2+x3+...+x,1+4+4+4+...+4

Como cada termo de x, a x,_; aparece em cada lado da igualdade, podemos somar e
subtrair de forma a anular cada termo, ou seja, cancelamos os termos iguais. Além disso, temos

(n — 1) termos de 4. Logo,

Xp=x1+(n-1)-4

Como x; = 2, entdo

x,=2+(mn-1)-4, com n>1.

Esta € a formula fechada que expressa o n-ésimo termo x,, desta progressao aritmética em
funcdo do primeiro termo x; e da razdo r. Agora podemos facilmente determinar qualquer termo
da P.A. sem a necessidade de conhecer os termos anteriores. Por exemplo, o célculo do 150°
termo pode ser feito da seguinte maneira: xj50 =2+ (150 - 1) -4 =2+ 149 -4 =2 + 596 = 598.
Portanto, o 150° termo € igual a 598.

De modo geral, podemos determinar o termo geral de uma progressao aritmética (P.A.)

definida recursivamente, aplicando a mesmas estratégia usada no exemplo 2.16.

Seja (x1,x2,x3,...,X,-1,X,) Uma sequéncia que representa uma P.A. de razdo r. A

relac@o entre os termos consecutivos pode ser expressa pela equacdo de recorréncia:

Xn+l = Xp +r
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Sabemos que:

X2 =X1+7r
X3 =Xp+r
X4 =X3+7r

Xn=Xp-1t+r
Generalizando, para o n-ésimo termo, temos:
Xp=x1+(n-1)-r.
Essa € a formula fechada que permite calcular diretamente qualquer termo da P.A., sem
a necessidade de conhecer os anteriores.

Seguindo a mesma estratégia deste exemplo, podemos provar a seguinte proposi¢ao:

Proposicao 1: Uma solugdo para a recorréncia
Xn+1 = Xp + g(n)

¢ dada por
xp=x1+g(1)+g2)+---+gn-1).
Demonstracao:
Se xp+1 = x, + g(n) para todo n € N, entio:

xy=x1+g(1)

x3=x2+g(2)

Xn+l = Xp—1 + g(” - 2)
Xp=Xp—1+g(n—1)
Somando membro a membro as igualdades acima, obtemos:
X2+ X3+ -+ X, =X x4+ X1 +g()+---+g(n—1)
Donde:
xp=x1+g(1)+---+gn-1)

Exemplo 2.17: Soma dos angulos internos de um poligono convexo
Comegamos com o caso mais simples, que € um tridngulo. Um triangulo tem trés lados e

trés angulos internos, portanto denotaremos por S3.
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S3 =180°

Para um poligono de n lados, entdo S, € a soma dos seus angulos internos. Se o poligono convexo

tem n + 1, entdo a soma dos seus angulos internos €:

Spe1 =S, + 180°

Vamos achar a solugdo fechada, entdo escrevemos da seguinte forma:

S3 =180°

S4 =83+ 180°
S5 =84+ 180°
Se¢ = S5+ 180°

Snc1 =80+ 180°
Sp=Sp-1 +180°

Somando ambos os lados da equagdo, chegamos a:

S3+84+S5+S¢+...+85,=S3+S4+S5+S¢+...+8,_1+180°+180° +...+180°

Como temos n — 2 termos de 180°, logo chegamos na seguinte solu¢do fechada:

S, =(n—2)-180°

Exemplo 2.18: Problema adaptado da Obmep - sequéncia de bolinhas

Figura 1 — Sequéncia de bolinhas

®
® o0
o o0 000
o 00 000 0000
1 3 6 10

Fonte: Banco de questdes OBMEP
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Licia notou que cada nimero da sequéncia
(1,3,6,10,...)

pode ser modelado por meio de um conjunto de bolinhas que, dispostas convenientemente,

formam um triangulo, conforme ilustra a figura 1.

Seguindo o mesmo padrdo, quantas bolinhas terd o tridngulo associado ao décimo termo

dessa sequéncia numérica?

Vamos modelar o problema recursivamente e em seguida achar a solugdo fechada.

Note que podemos €SCrever seus termos como:

x1 =1
x2=3
x3=06
x4 =10

Note que a sequéncia € dada pela quantidade anterior € o nimero da posicao atual, logo:

xy =1,

Xy =Xx1+2,
X3 =X + 3,
X4 =x3+4,

Xp = Xp—1 + 1.
O que fizemos foi modelar o problema de forma recursiva. Agora, a Proposi¢@o 1 garante

a seguinte solucao:

X, =1+2+3+4+...+n.

Isto €, a solucdo corresponde a soma de todos os numeros naturais de 1 até n. No caso

especifico em questdao, como n = 10, a soma resulta em 55 bolinhas.

Para o caso geral, ou seja, a somade 1 até n, apresentaremos a solug@o no exemplo seguinte.

Exemplo 2.19: Soma dos n primeiros nimeros naturais

Considere a sequéncia (1,2, 3,4,5, ..., n), portanto uma sequéncia finita de nimeros naturais em
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que o primeiro termo € 1 e o n-ésimo termo € n. Vamos achar a forma fechada para soma de 1 até

n (a soma dos n primeiros termos de uma P.A. de razdo 1), isto é, 1 +2+3 +... + n.

Vamos dar o resultado para 1 +2 + 3 + ... + n sem ir somando termo a termo, o que seria
muito cansativo e nada produtivo.

Chamamos de S, o resultado da soma. Podemos escrever S,, de duas maneiras.

Sp=1+24+3+---+n
Sp=n+(n-1D)+n-2)+---+1

Se somarmos essas duas expressdes, obtemos:

28, =1+2+3+---+n+n+(n-1)+n-2)+---+1

logo,
2S5, =(1+n)+2+(n-1)+B+m-2)+---+((n—-1D+2)+(n+1)
Podemos reorganizar os termos desta expressao, obtendo:
285, =(1+n)+Q2+n-1)+B+n-2)+---+((n=-1)+2)+(n+1)
Como hd n termos iguais a (1 + n) nesta expressao, logo,
2S5, =n(n+1)
dividindo ambos os lados por 2, obtemos:

S n(n+1)
= —"
2
Esta € a formula para a soma dos n primeiros nimeros naturais. Podemos usé-la para

calcular a soma de qualquer sequéncia de nimeros naturais.

O resultado mencionado € atribuido ao matematico alemao Johann Carl

Friedrich Gauss (1777-1855). Acredita-se que o problema tenha sido proposto por
seu professor quando Gauss tinha apenas 10 anos de idade. O desafio consistia em
calcular a soma de todos os nimeros naturais de 1 a 100. Utilizando o método
descrito anteriormente, Gauss prontamente encontrou a resposta, que € 5050. Sua
habilidade em resolver o problema com eficiéncia e precisao demonstrou seu

notdvel talento matemadtico desde uma idade tao jovem.

Exemplo 2.20: Soma dos n termos de uma P.A. de razdo r

Dada uma progressado aritmética (P.A.) de razdo r, temos os termos:
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X)=Xx1+r, x3=x1+2r, x4=x1+3r, ..., xp=x1+n-1)r.
A soma dos primeiros n termos da P.A., denotada por §,,, pode ser expressa como:
Sp=x1+x2+x3+--+Xx,.
Pela Proposicao 1, obtemos a seguinte igualdade:
Sn+1 =X+ F Xy X = Sn + Xp+1-
Além disso, podemos expressar S, em termos do primeiro termo x; e da razdo r:
Sp=S1+ @i +r)+(xi+2r)+---+ (x;+ (n— Dr).

Simplificando, temos:

(n—1)n
— .

S,=8S1+(n—-1x; + 7

Finalmente, como S| = x1, a expressao se reduz a:

(n—1n
——r.

S, =nxy + 5

Outra forma de expressar esta soma é:

n[2x;+(n—=1Dr] n(xy+x,)

Exemplo 2.21: Termo geral de uma P.G.

Vamos achar o termo geral da P.G. aplicando a mesma estratégia adotada no exemplo 15..

X2 = gqXy
X3 =(d4Xx3
X4 = gX3
Xn = 4Xn-1

logo,

X2 X3 X4 ... Xp=q-q-¢q-... ¢ X1°X2"°..."Xp—1
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Portanto,

Xp =xp - gD

Exemplo 2.22: Dada a sequéncia (1,2,4,8,16,32,...), vamos achar a equagao de
recorréncia e em seguida sua forma fechada.
Note que o primeiro termo € dado por x; = 1. Além disso, a razdo entre dois termos

consecutivos é:
Xn

=2,

Xn—-1

0 que nos permite escrever a relacao recursiva:
Xy = 2X,-1.

O termo geral dessa P.G. pode ser expresso pela férmula:

n—1
xn:xl'q )

Substituindo os valores dados x; = 1 e g = 2, obtemos:
x, =201

Exemplo 2.23: Soma dos n termos de uma P.G. finita
Consideremos uma progressio geométrica (P.G.) (x,) de razio g e definamos

Sp=x1+x204 - +Xx,.
Entao,
n
Snt1 = Sp+xp41 =Sy +x19".

Logo, pela Proposicao 1, temos que

S, =81+ [x1q+x1q2+~--+x1q"_l]
=X] +X] [q+q2+---+q”_1]
=X [1+q+q2+---+qn_1]

q" -1

q-1

Exemplo 2.24: Recorréncia linear de primeira ordem nao-homogénea
Considere a recorréncia x,,+1 = 2x, — 5.
Note que a recorréncia é ndo-homogénea e tem uma constante diferente de 1 multiplicando o

termo x,,.
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szle—S
X3:2)C2—5
)C4=2)C3—5

Xp2=2Xp3—35
Xp—1 =2Xp-2—5

Xp=2Xp_1—5

Aqui hd um desafio adicional: além de termos uma constante multiplicando os termos x1, X2, ..., X;—1,
também temos a soma de (n — 1) termos iguais a 5. No entanto, podemos resolver isso com uma

abordagem cuidadosa.

Para simplificar o processo, multiplicamos por 2 o termo x,_; do lado esquerdo da
igualdade. Isso nos permite cancelar o termo x,_; do lado direito, enquanto o termo 2x,_, se
transforma em 2 - 2x,,_» ou 2%x,_». Procedemos de baixo para cima, garantindo que cancelamos
os termos de ambos os lados da equagio até que reste apenas x,, no lado esquerdo. E importante
notar que nao hd prejuizo em realizar essas operagdes, pois cada lado da igualdade € multiplicado

por um valor ndo nulo constante. Dessa maneira, chegamos a:

2n—2x2 — 2n_1X1 _ 211—2 .5

2n—3x3 — 211—2)62 _ 2n—3 .5

2%x,0 =2%x,.3-2%-5
2x%p-1 =222 —2-5

Xp=2Xp-1-5

Portanto,

xy, =2y =22 5-0"3.5-  —22.5-2.5-5
=2l = (272542354 422.542-5+5)

=27l =5 (2" 42" 2242+ ])

Colocamos 0 5 em evidéncia e notamos que a soma dentro dos parénteses € uma progressao

geométrica. Aplicamos a férmula da soma de uma P.G finita. Como o primeiro termo € 1, a razdo
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¢ 2 e o nimero de termos é (n — 1), temos:

_ 2n—1 -1
xn:2" 1X1—5' (ﬁ)

=2y 5.2 =)
=21y, —5.2"1 45

=21y, —2"+5

Note que o termo x; ndo foi dado, mas pode ser escolhido livremente para definir a

sequéncia.

A seguir, demonstraremos um teorema que permite reduzir ou transformar uma recorrén-

cia linear de primeira ordem nao homogénea para a forma x,+; = x, + f(n).
De acordo com (CARVALHO; MORGADO, 2013), temos o seguinte teorema:

Teorema 1: Se a, € uma solugdo ndo-nula da recorréncia x,+; = f(n)x,, entdo a

substitui¢do x, = a,y, transforma a recorréncia x,4; = f(n)x, + g(n) em

g(n)
f(may,

Yn+l = Yn t+

Demonstracao:

A substitui¢do x, = a,y, transforma a equacao

Xni1 = f(n)xy +g(n)
em
Ap+1Yn+l = f(n)anyn + g(n)
Como a, é uma solu¢do ndo-nula da equacdo homogénea associada, isto €,

apy] = f(n)an,
podemos reescrever a equacio como
f(mayyne1 = f(n)ayy, +g(n).

Dividindo ambos os lados por f(n)a, (supondo f(n)a, # 0), obtemos

g(n)
f(ma,

Yn+l = Yn +
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O teorema fornece uma solucao particular para a recorréncia, desconsiderando inicial-
mente a parte ndo homogénea. Em seguida, estabelece uma relacdo entre essa solucao particular
e a solugdo geral da recorréncia completa. No entanto, o teorema ndo garante a existéncia de
uma solucdo para a parte homogénea. Caso ela exista, podemos utilizar essa abordagem para

simplificar o célculo da solucdo geral.

Solucio para a Recorréncia x| = f(n)x,

Encontrar uma solugdo explicita para uma recorréncia da forma x,.; = f(n)x, nem
sempre € vidvel, pois isso depende da forma da funcdo f(n) e da estrutura da equacdo. O Teorema
1 oferece um método para abordar recorréncias ndo-homogéneas do tipo x,,+1 = f(n)x, + g(n),
usando a substituicio x, = a,y, para transformar a equacao original em uma forma mais simples.
Contudo, a aplicabilidade desse método depende de certas condigdes, € nem sempre € possivel

encontrar uma solugdo explicita.

Se x,+1 = f(n)x, paratodon € N, entdo
x2 = f(1)xy,
x3 = f(2)x2,

Xp-1 = f(n—2)x,-2,
Xp = f(n—1Dxp1.
Tomando a multiplicacdo dos termos em ambos 0s membros, temos:
x0x3 - xp = X1 f(Dx1 f(2)x2 - -+ f(n = Dxpy.
Donde:
xp=x1f(DfQ2)--- fln=1).

Em particular, se f(n) = g, entdo:

n—1
Xp =X1q9 .

Exemplo 2.25: Achar a solugdo para a recorréncia x,4+; = 5x, — 1, com x| = 3.

Observe que sem a aplicacdo do Teorema 1 teriamos algumas dificuldades. Vamos achar
a solucdo a, para x,+1 = Sx,.

Segue do Exemplo 2.21 que x, = 5"~! é uma solucio.

Substituindo x,, = 5"y, segue do Teorema 1 que:

Yn+l = Yn — 57
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Agora, pela Proposicdo 1, temos que

Yn=Y1— (5—1 +5—2+5—3+___+5—(n—1)) )

Como temos a soma dos termos de uma progressao geométrica finita, podemos usar a

férmula para a soma de uma P.G. finita. A soma da progressao geométrica S, € dada por:

Sn:xl'(qn—l).
q-1
ondex;=5leg=5"

Assim, a soma dos termos da progressao geométrica até o (n — 1)-€ésimo termo é:

5—1 ((S—I)n—l _ 1)

Yn=Y1— 5-1_ 1
Agora, simplificando o denominador 57! — 1 = —%, obtemos:
n—1
-1((1
()
Yn=Y1~— 4 .
5

Multiplicando o numerador e o denominador por —5 para eliminar o denominador

negativo:

Yn=Y1+

Portanto, a solucdo de y, é dada por:

Yn=y1+
Como x| = 3, substituimos na expressao x; = 51_1y1, o que resulta em y; = 3. Logo,
n—1
1
5) -1
) .

Finalmente, substituimos y, na expressio de x,, = 5"y, resultando na solucdo geral

Yn =3+

para x,:

=513+
* A

Exemplo 2.26: Determinar a solucao da recorréncia x,+1 = 3x, + 3", com x| = 2.
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Para resolver a recorréncia, aplicaremos o Teorema 1. Inicialmente, determinamos a
solucdo da parte homogénea, ou seja, x,4+1 = 3xj,.

A solugdo da parte homogénea € dada por:
x, =31

Esta solucdo € caracteristica de uma progressao geométrica de razdo 3, conforme
apresentado no Exemplo 2.21.

Agora, aplicamos a substitui¢do x, = 3"~'y, na recorréncia original:
3"yne1 = 3"y + 3",
Dividindo ambos os lados por 3", temos:

Yn+l = Yn + 1.

A relacdo y,4+1 = y, + 1 descreve uma progressao aritmética de razdo 1. A solucao geral
para y, é:

yn:yl+(n_1)-

Sabendo que x; = 2, substituimos na expressdo x; = 31-1 Y1, 0 que resulta em y; = 2.
Logo,
ypn=2+mn-1)=n+1.

Substituimos y, na expressdo x, = 3"~!y, para obter a solucdo geral:
xp =3 n+1).
A solugdo geral da recorréncia é:
Xp=(n+1)-3"1

Exemplo 2.27: Modelagem de Populacao de Bactérias
Suponha que a populacdo inicial de bactérias seja de 100 individuos, € a cada hora, a populagdo
dobra devido a alta taxa de reproducao das bactérias.

A recorréncia que modela o crescimento da populacdo de bactérias é:

bp1=2-b,

com a condicdo inicial:

bo =100

Esta recorréncia descreve que a cada hora, o nlimero de bactérias € multiplicado por 2,

refletindo um crescimento exponencial da populacao.



Capitulo 2. Fundamentagdo Tedrica 36

Para encontrar a solucao fechada, observamos o padrao de crescimento:

bo = 100

by =2-byp=2-100 =200
by =2-by =2-200 =400
bz =2-by=2-400 =800

by=2-b,

Aplicando as técnicas anteriores, chegamos a:

b, =100 -2"

Neste ponto, estabelecemos uma sélida base para avangarmos em dire¢ao a aplicagdes
que envolvem sequéncias numéricas, progressoes aritméticas e geométricas, problemas de
geometria, matemaética financeira e as Recorréncias Lineares de Primeira Ordem. No entanto,
€ importante ressaltar que este é apenas o comeco de uma jornada mais abrangente no estudo
das recorréncias lineares. Existem ainda muitos aspectos a serem explorados e aprofundados
nesse campo fascinante da matematica, que continuard a enriquecer nosso entendimento e nossa
capacidade de resolver uma variedade de problemas.

No préximo capitulo, exploraremos trés aplicagdes praticas das recorréncias lineares de
primeira ordem: a Torre de Handi, com estratégias recursivas para mover discos; a formagao
de hexdgonos regulares com moedas; e o jogo das garrafas coloridas, inspirado no Water Sort
Puzzle, que organiza liquidos de cores diferentes com o minimo de movimentos. Este tltimo serd

proposto como uma atividade lidica para introduzir ou reforcar o conceito de recorréncias.
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3 Aplicacoes

Neste capitulo, discutiremos trés aplicagcdes das recorréncias lineares de primeira ordem.
Na primeira se¢do, analisaremos o problema da Torre de Hanéi, um problema cléssico que €
frequentemente usado para ilustrar conceitos de recursdo. Na segunda se¢@o, consideraremos um
problema com moedas que, quando justapostas, formam um hexdgono. E um problema muito
interessante que também pode ser resolvido usando recorréncias lineares de primeira ordem.
Finalmente, na terceira sec¢do, analisaremos um problema inspirado em tendéncias recentes de
jogos eletronicos, que envolve a mistura de cores em garrafas. O objetivo € determinar o nimero

minimo de movimentos necessdrios para que cada garrafa contenha apenas uma cor.

3.1 Problema da Torre de Handi

A lenda da torre de Han6i (SILVA, 2015) conta a histéria de um templo hindu, localizado
no centro do mundo. Nesse templo, havia trés hastes de diamante, e em uma delas havia 64
discos de ouro, dispostos em ordem decrescente, do maior para 0 menor.

Segundo a lenda, o deus Brahma encarregou os monges do templo de transferir os discos
para outra haste, seguindo as seguintes regras:

* apenas um disco pode ser movido de cada vez

* um disco maior nunca pode ser colocado sobre um disco menor

Os monges foram informados de que, quando todos os discos fossem transferidos para a

haste correta, o templo desmoronaria e o mundo acabaria.

Figura 2 — Torre de Hanéi

Fonte: Dados do autor
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Solucgao recursiva

Inicialmente observe que ndo importa em qual haste (torre ou pino) vamos colocar todos
os discos. Lembre-se também que nenhum disco menor poderd ficar por baixo de um maior
(didmetro maior), além disso s6 podemos movimentar um disco por vez e estaremos buscando o
nimero minimo de movimentos. O que vamos fazer € modelar o problema recursivamente, isto €,

achar uma relacdo de recorréncia e em seguida achar sua forma fechada.

Casos Iniciais

1. Com um disco fazemos apenas um movimento, observe:

Figura 3 — Movimento com 1 disco

Fonte: Dados do autor

2. Com dois discos fazemos trés movimentos, observe:

Figura 4 — Movimentos com 2 discos
Fonte: Dados do autor

3. Com trés discos fazemos sete movimentos, observe:

Figura 5 — Movimentos com 3 discos

Fonte: Dados do autor

E importante, a partir desse momento, construirmos uma tabela para cada caso.
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Tabela 1 — Tabela de movimentos minimos para casos de 1 a 3 discos

Quantidade de discos (pecas) | Quantidade minimas de movimentos
1 1
3
3 7

Fonte: Dados do autor

Vamos agora imaginar o caso em que se tem quatro discos. Observe que com trés
pecas fazemos no minimo sete movimentos, mas como ainda temos mais um disco falta agora
movimentar esse disco para outra haste. Logo que fizermos esse movimentos com o quarto disco
ainda precisaremos de mais sete movimentos. Logo o total de movimentos serd de 7 + 1 + 7,

totalizando quinze movimentos, no minimo. Preenchendo a tabela 2, temos:

Tabela 2 — Tabela de movimentos minimos para casos de 1 a 4 discos

Quantidade de discos (pecas) | Quantidade minimas de movimentos
1 1
2 3
3 7
4 15

Fonte: Dados do autor

Agora vamos analisar o caso em que haja cinco discos. Utilizando a ideia de recorréncia,
perceba que para movimentar quatro discos precisamos de quinze movimentos, pelo menos.
Como temos mais um disco, logo vamos precisar de 15 + 1 + 15 movimentos. Portanto, nossa

tabela 3 fica assim:

Tabela 3 — Tabela de movimentos minimos para casos de 1 a 5 discos

Quantidade de discos | Quantidade minimas de movimentos
1 1
2 3
3 7
4 15
5 31

Fonte: Dados do autor

Analisando o caso em que temos n discos:
Observe que com n — 1 discos fazemos no minimo x,_; movimentos. Como sobrou um disco
ainda precisaremos de mais um movimento e em seguida precisamos movimentar os n — 1 discos,
que representamos por X,_i.

Modelando o problema, concluimos que para movimentar n discos a equagao de recor-

réncia fica:
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X, =2x,1+1, com x;=1.

Usando a formula recursiva

Vamos fazer os calculos utilizando a equacao de recorréncia x, = 2x,-1 + 1,x; = 1:

x1=1
Xo0=2x1+1=2-1+1=3
x3=2x+1=2-3+1=7
X4=2x3+1=2-7+1=15
xs=2x4+1=2-15+1=31
X6 =2x5+1=2-31+1=063

Observe que x,_; representa o termo anterior € também uma quantidade minima para

movimentar n — 1 discos. Construindo a tabela com a férmula recursiva, temos:

Tabela 4 — Tabela de movimentos minimos calculados com a férmula recursiva

Férmula recursiva (x;,, = 2x,_; + 1) | Quantidade minimas de movimentos
X1 1
X2 3
X3 7
X4 15
X5 31
X6 63

Fonte: Dados do autor

Solugdo fechada

Agora, aplicando a Proposicao 1 e o Teorema 1, podemos transformar a recorréncia

original x,+1 = 2x, + 1 com a substituicdo x, = a,y,, onde a, = 2=l Substituimos na férmula

do teorema:
et = Y + g(n)
T fman
Nesse caso, f(n) =2, g(n) =1,ea, =2""!, entdo:
1 1
Yn+l :yn"'m:yn‘*'i-
Pela Proposicao 1, temos que:
1 1 1 1
y”:yl+§+?+§+.”+ﬁ.

Essa expressdo corresponde a soma dos n primeiros termos de uma progressao geométrica.
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Utilizando o resultado do Exemplo 2.23, a soma S, dos n primeiros termos dessa

progressao € dada por:

1 -1
71 2

Adicionando o termo inicial y; a soma S,, obtemos:

1
n-1 '

Yn=y1+Sp=y1+1-

Substituindo y,, na expressao para x,, temos:

=2y 2 - 1L

_ 1 B B n—1
xn:anynzzn l'(yl"'l_ﬁ):zn 1y1+2n 1_2n—1

Para determinar o valor de y1, utilizamos a condi¢do inicial x| = 1:

xp=ay=2"-y1=1 = y = 1.

Substituindo y; = 1 na expressao para x,, obtemos:

x, =212l o1 =22 1.

Portanto, a solu¢do da recorréncia é:

x, =2"-1.
Construindo a tabela com a férmula fechada, obtemos os seguintes resultados:

Tabela 5 — Tabela de movimentos minimos calculados com a férmula fechada

Férmula fechada (2" — 1) | Quantidade minimas de movimentos
211 1
221 3
231 7
24 -1 15
2604 1 18.446.744.073.709.551.615

Fonte: Dados do autor

Jogo On-line da Torre de Handi
H4 uma possibilidade de jogar online a Torre de Handi através do site somatema-
tica.com.br'. E uma brincadeira bastante divertida em que qualquer um pode testar na pratica

tudo que fizemos até agora a respeito da Torre de Handi.

I <https://www.somatematica.com.br/jogos/hanoi/>


https://www.somatematica.com.br/jogos/hanoi/
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3.2 Problema das Moedas em Hexdgonos Regulares

Imagine um conjunto de moedas com didmetros iguais, pode ser moedas de um real, por
exemplo. O problema em questao envolve dispor essas moedas em um tabuleiro de maneira a criar
hexdgonos. A primeira moeda € posicionada no centro do tabuleiro, e as moedas subsequentes
sdo dispostas ao seu redor, configurando assim a geometria de um hexdgono. Essa aplicacdo pode
ser encontrada na obra de (HUNTER, 2011).

Figura 6 — Hexdgono regular

E D

A B8

Fonte: Dados do autor

Um hexdgono € uma figura plana composta por seis lados. Quando ¢ regular, todos os
seus lados possuem a mesma medida, ou seja, sdo congruentes. Assim, um hexagono regular é

uma figura plana com seis lados de igual comprimento.

Solucao recursiva

Observe a figura abaixo:

Figura 7 — Hexdgono regular formado por 7 moedas

Fonte: Dados do autor
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Nesse caso, temos um hexdgono formado por sete moedas e que tem duas moedas em

cada lado. Observe a figura 8:

Figura 8 — Hexdgono regular formado por 19 moedas

Fonte: Dados do autor

Note que temos agora um hexdgono cujo lado tem trés moedas e que é formado por

dezenove moedas.

E importante, como nos exemplos anteriores, fazermos uma tabela para organizarmos os
dados.

Tabela 6 — Tabela da formagdo do hexdgono regular com 19 moedas

Moedas em cada lado | Total de moedas
2 7
3 19

Fonte: Dados do autor

Agora, podemos tentar formar um hexdgono regular usando quatro moedas de lado.

Note que usamos trinta e sete moedas.

Preenchendo a tabela, temos:

Podemos, convenientemente, considerar que uma dnica moeda forma um hexdgono.

Para construir o préximo hexdgono, de lado dois, necessitamos de 7 moedas; ja para o hexa-
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Figura 9 — Hexdgono regular formado por 37 moedas

Fonte: Dados do autor

Tabela 7 — Tabela da formacdo do hexdgono regular com 37 moedas

Moedas em cada lado | Total de moedas

2 7
3 19
4 37

Fonte: Dados do autor

gono de lado trés, sdo requeridas 19 moedas e, por fim, para o hexdgono de lado quatro, 37 moedas.

Considerando a sequéncia:
(1,7,19,37,...)

Assim, note que a sequéncia pode ser dada por:

x; =1
Xo=x1+6-1=1+6=7
X3=x2+6-2=7+12=19
X4=x3+6-3=19+18 =37

Dessa forma, podemos escrever a relagdo de recorréncia da forma:

Xp=X,—-1+6-(n—1), com x;=1. Sendon onimerode moedasem cada lado.
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Solucao fechada

Dada a recorréncia:

Xp=Xp_1+6-(n—1),

ou ainda,

Xpt] =X, +6 -1,

com a condi¢do inicial x; = 1, aplicamos a Proposicao 1, que nos fornece a solucao na

forma:
Xn=Xx1+8(1)+g(2)+gB) +---+gn-1).
Substituindo g(k) = 6 - k, obtemos:
X, =146-1+6-24+6-3+---+6-(n-1).
Colocando o fator 6 em evidéncia:
Xp=14+6-(14+2+3+---+(n—-1)).
Sabemos que a soma dos primeiros n — 1 termos da progressao aritmética de razdo 1 é
dada por:
-1)-
1+2+3+---+(n—-1) :%.
Substituindo essa expressao:
-1
xn:1+6-%:1+3n.(n—1).

Sendo x, o nimero total de moedas e n a quantidade de moedas em cada lado.

Tabela 8 — Tabela da quantidade de moedas com a férmula fechada

Férmula fechada (1 + 3n - (n — 1)) | Quantidade total de moedas

1+3-1-(1-1) 1
143-2-(2-1) 7
1+3-3-(3-1) 19
143-4-(4-1) 37
1+43-5-(5-1) 61
1+3-6-(6-1) 91

Fonte: Dados do autor
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3.3 Desafio das Garrafas Coloridas

Nesta secdo, propomos uma aplicacdo didatica de mais um problema que pode ser
explorado por meio de recorréncias, utilizando um jogo com garrafas contendo liquidos coloridos.
O desafio consiste em realizar o menor nimero possivel de transferéncias de liquidos para que
cada garrafa fique completamente preenchida com liquido de apenas uma cor. Essa proposta
conecta conceitos matemadticos abstratos a uma atividade pratica, inspirada em jogos populares
disponiveis em smartphones, tablets e computadores. Trata-se de uma excelente oportunidade
para estimular o espirito investigativo dos alunos, tornando o aprendizado da matemadtica mais

Iadico e interativo.

Aplicacdo Pedagogica em Sala de Aula

A proposta consiste em utilizar este jogo como uma atividade lddica para introduzir ou
refor¢ar o conceito de recorréncia entre os alunos. O jogo, inspirado no quebra-cabeca conhecido
como Water Sort Puzzle encontrado no Google Play, em que o objetivo € organizar os liquidos
de modo que cada garrafa contenha apenas uma cor, utilizando o minimo de transferéncias ou

movimentos possiveis.

Figura 10 — Water Sort Puzzle

' Google Play Q Water Sort Puzzle

Appsejogos ~ Dispositivo ~

[+ (& Water Sort - Color Puzzle Game

H[ER orinite oy Lia
%) 47%

M Water Sort Puzzle: Jogo de Cor
EasyFun Puzzle Game Studio
19%

”  Water Sort

J > Puzzle

Color Sorting Game

(R oo e R oo o B
UEE) - 38 w88 :

Fonte: Google Play

Para garantir que o problema seja bem definido e ndo aleatério, vamos comecar estabele-

cendo as seguintes condicoes:

1. Numero de Garrafas e Cores:

* O nuimero de garrafas € igual ao nimero de cores mais duas unidades.

G=C+2
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2. Conteudo das Garrafas:

* Inicia-se com duas garrafas vazias e as restantes com exatamente 4 blocos liquidos

coloridos.
3. Limitacao de Blocos por Cor:

* Cada garrafa pode conter até 3 blocos de uma mesma cor, mas em uma ordem

especifica.
4. Condicao de Término do Jogo:

* O jogo termina quando duas garrafas estdo vazias e todas as demais estdo completa-

mente preenchidas com liquidos de uma mesma cor.

Antes de comecarmos a jogar, vamos analisar as diferentes maneiras de organizar as
cores dentro de cada garrafa e investigar se a disposicao inicial das cores influencia no nimero
total de transferéncias necessarios para atingir o objetivo do jogo. Para facilitar a comunicacao,
vamos nomear as cores por Cp, Ca, ..., C, e as garrafas por G1, G, .. ., G,42. Convencionamos
também que a ordem esquerda-direita na descri¢do simbdlica das cores corresponde a leitura de
cima para baixo no preenchimento das garrafas. Por fim, admitimos que blocos agrupados de
mesma cor podem ser transferidos em uma tnica agao.

Caso: Duas Cores

Iniciaremos organizando as cores nas garrafas G| e G, da seguinte forma:

® Gli C1C1C2C2
d Gzi C] C] C2C2

e (G3: vazia

e (G4:vazia

Transferéncias Considerando Agrupamento

1. Transferir os dois blocos C{Cy da G| para a G3 (1 transferéncia, pois os blocos estao

agrupados).

2. Transferir os dois blocos C{Cy da G, para a G3 (1 transferéncia, pois os blocos estdao
agrupados).

3. Transferir o bloco C, restante da G, para a G (1 transferéncia).

ou

4. Transferir o bloco C; restante da G| para a G, (1 transferéncia).
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Portanto, com essa disposi¢do inicial descrita acima, sdo necessdrios 3 transferéncias

para finalizar o jogo.

Caso: Duas Cores

Iniciaremos organizando as cores nas garrafas da seguinte forma:

G]I C]C]C2C2

Gz: C2C2C1 C]
e (G3:vazia

e Gy4: vazia

Transferéncias Considerando Agrupamento

1. Transferir os dois blocos C;C; da G| para a G3 (1 transferéncia).
2. Transferir os dois blocos C,C;, da G, para a G (1 transferéncia).

3. Transferir o bloco C; restante da G, para a G3 (1 transferéncia).

ou

4. Transferir o bloco C, restante da G3 para a G (1 transferéncia).

Verifica-se entdo que iniciando com as duas cores distribuidas em dois blocos, ainda que

numa disposicao inicial diferente, sdo necessarios 3 transferéncias para para finalizar o jogo.

Caso: Duas Cores Alternadas

Iniciaremos organizando as cores nas garrafas da seguinte forma:

Gll C1C2C1C2

G22 C1C2C1C2
e (Gj3: vazia

e Gy4: vazia

Transferéncias Considerando Agrupamento

1. Transferir o bloco C; da G| para a G3 (1 transferéncia).
2. Transferir o bloco C| da G, para a G3 (1 transferéncia).

3. Transferir o bloco C, da G para a G4 (1 transferéncia).
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4. Transferir o bloco C; da G, para a G4 (1 transferéncia).
5. Transferir o bloco C| da G| para a G3 (1 transferéncia).
6. Transferir o bloco C| da G, para a Gz (1 transferéncia).
7. Transferir o bloco C; da G| para a G4 (1 transferéncia).
8. Transferir o bloco C; da G, para a G4 (1 transferéncia).

Com essa disposic¢ao inicial, s3o necessdrios 8 transferéncias para finalizar o jogo. E

possivel provar que esse nimero de acdes € minimo para este caso.

Caso: Duas Cores com Blocos Alternados numa Garrafa e Agrupados em Outra

Iniciaremos organizando as cores nas garrafas da seguinte forma:

G1: C1C2C1C2

GQZ C] C] C2C2
e Gj3: vazia

e Gy4: vazia

Transferéncias Considerando Agrupamento

1. Transferir o bloco C; da G| para a G3 (1 transferéncia).

2. Transferir os blocos C| da G, para a G3 (1 transferéncia).

3. Transferir o bloco C, da G para a G; (1 transferéncia).

4. Transferir o bloco C; da G| para a Gz (1 transferéncia).

5. Transferir o bloco C, da G para a G, (1 transferéncia).

Com essa disposi¢do inicial, sao necessdrios S transferéncias para agrupar cada cor

numa Unica garrafa, sendo este o nimero minimo de acdes para este caso.
Caso: Duas Cores Alternadas

Iniciaremos organizando as cores nas garrafas da seguinte forma:

G1: C1C2C1C2

GQI C2C1 C2C1
e (G3: vazia

e Gy4: vazia
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Transferéncias Considerando Agrupamento

1. Transferir o bloco C; da G| para a G3 (1 transferéncia).
2. Transferir o bloco C, da G, para a G4 (1 transferéncia).
3. Transferir o bloco C, da G para a G4 (1 transferéncia).
4. Transferir o bloco C; da G, para a G3 (1 transferéncia).
5. Transferir o bloco C| da G| para a G3 (1 transferéncia).
6. Transferir o bloco C, da G, para a G4 (1 transferéncia).
7. Transferir o bloco C, da G| para a G4 (1 transferéncia).

8. Transferir o bloco Cy da G, para a G3 (1 transferéncia).

Com essa disposi¢do inicial, novamente sdo necessdrios 8 transferéncias para agrupar

cada cor numa unica garrafa, minimizando o ndmero de agdes.

Conclusao

Em resumo, o niimero minimo de transferéncias varia conforme a disposi¢do inicial das
cores nas garrafas. Diante disso, propomos fixar um padrdo para a disposicao das cores, de modo

que o nimero minimo de transferéncias como funcdo do nimero de cores esteja bem definido.

Numero Minimo de Transferéncias

Atendendo a orientag@o da conclusdao imediatamente anterior € com base nos resultados
obtidos nos casos com duas cores, faremos uma primeira discussao sobre o nimero minimo de

transferéncias (x,) no jogo, fixando a seguinte condi¢ao:

1. Todas as cores sdo distribuidas em 2 blocos em garrafas distintas

Aplicagdo para o Caso de 2 Cores

* G1: C1C1C2C, (2 blocos de C e 2 blocos de C; agrupados).
* G,: CL,C,CCq (2 blocos de Cy e 2 blocos de C, agrupados).
e (G3: vazia.

e Gy: vazia.



Capitulo 3. Aplicacoes 51

Transferéncias Considerando Agrupamento

1. Transferir os 2 blocos de C| da G para a G3 (1 transferéncia).
2. Transferir os 2 blocos de C; da G, para a G (1 transferéncia).

3. Transferir os 2 blocos de Cj restante da G, para a Gz (1 transferéncia).

ou

4. Transferir os 2 blocos de C; restante da Gz para a G, (1 transferéncia).

Temos aqui 3 transferéncias.

Aplicacdo para o Caso de 3 Cores

® Glt C1C1C2C2.

Gz: C2C2C3C3.

G3I C3C3C1C1.
e Gy4: vazia.

* (Gs: vazia.

Transferéncias Considerando Agrupamento

1. Transferir os 2 blocos de C; da G| para a G4 (1 transferéncia).
2. Transferir os 2 blocos de C; da G, para a G (1 transferéncia).
3. Transferir os 2 blocos de C3 da Gz para a G, (1 transferéncia).

4. Transferir os 2 blocos de C| da G3 para a G4 (1 transferéncia).

ou

5. Transferir os 2 blocos de Cy da G4 para a G3 (1 transferéncia).

Nesse caso, temos 4 transferéncias para organizar todas as cores.

Aplicagdo para o Caso de 4 Cores
* G1: C1C1GLC.
* Gy: (LG C3Cs.
* G3: C3C3C4Cy.

o G42 C4C4C1C1.
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G5: vazia.

Gg: vazia.

Transferéncias Considerando Agrupamento

1.

2.

Transferir os 2 blocos de C| da G| para a G5 (1 transferéncia).

Transferir os 2 blocos de C; da G, para a G (1 transferéncia).

. Transferir os 2 blocos de C3 da G3 para a G; (1 transferéncia).

Transferir os 2 blocos de C4 da G4 para a G3 (1 transferéncia).

. Transferir os 2 blocos de C; da G5 para a G4 (1 transferéncia).

ou

. Transferir os 2 blocos de Cy da G4 para a G5 (1 transferéncia).

Nesse caso, temos 5 transferéncias para organizar todas as cores.

Aplicagdo para o Caso de 5 Cores

G1:Ci1C1G
Go: CCrC3C3
G3: C3C3C4Cy
Gy4: C4C4C5Cs
Gs: C5CsCCy
G¢: vazia.

G7: vazia.

Transferéncias Considerando Agrupamento

1.

2.

Transferir os 2 blocos de C; da G| para a G¢ (1 transferéncia).
Transferir os 2 blocos de C; da G, para a G (1 transferéncia).
Transferir os 2 blocos de C3 da G3 para a G (1 transferéncia).

Transferir os 2 blocos de C4 da G4 para a G3 (1 transferéncia).

. Transferir os blocos de C5 da G5 para a G4 (1 transferéncia).

Transferir os bloco de C; da G¢ para a Gs (1 transferéncia).
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Com essa disposi¢do inicial, sdo necessarios 6 transferéncias para organizar todas as cores.

Os exemplos anteriores sugerem que a condicao 1 estabelece uma relagdo biunivoca entre
o nimero de cores e o nimero de transferéncias necessarias para finalizar o jogo, (n + 1). No

entanto, o exemplo a seguir demonstra que essa condicao, por si s6, nao € suficiente.

Aplicacdo para o Caso de 5 Cores
* G1: C1C1CL (G
* Gr: CLGCLC1Cy
* G3: C3C3C4Cy
* Gy: C4C4C5C5
* G5: C5CsC3C3
e Gg: vazia.

e (G7: vazia.

Transferéncias Considerando Agrupamento
1. Transferir os 2 blocos de C| da G| para a G (1 transferéncia).
2. Transferir os 2 blocos de C; da G; para a G (1 transferéncia).
3. Transferir os 2 blocos de Cy da G¢ para a G, (1 transferéncia).
4. Transferir os 2 blocos de C3 da G3 para a G (1 transferéncia).
5. Transferir os 2 blocos de C4 da G4 para a G3 (1 transferéncia).
6. Transferir os blocos de Cs da G5 para a G4 (1 transferéncia).

7. Transferir os 2 bloco de C3 da G¢ para a G5 (1 transferéncia).

Com essa disposi¢do inicial, sdo necessdrios 7 transferéncias para organizar todas as cores.

Quando as cores C; e C; estdo dispostas nas garrafas G| e G, 0 jogo se comporta de
forma independente em relacdo as demais cores nas demais garrafas. Nesse caso, para as 2
cores presentes nas garrafas G| e G, ocorrem 3 transferéncias, calculadas como 2 (nimero de
cores) + 1. Para as demais cores (C3, C4 € Cs), o total de transferéncias € 4, também equivalente
ao numero de cores mais 1. No cendrio geral, o nimero total de transferéncias é 7, resultado
exclusivamente da altera¢do na disposi¢do inicial. Esse comportamento evidencia a necessidade

de uma regra adicional.
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Com base na regularidade observada nos resultados dos casos analisados acima, propomos

a seguinte generalizacao:

Generalizacoes

De modo geral, iniciando com n cores distintas Cy, ..., C,, estando cada uma delas
distribuida em dois blocos e denotando por x, 0 nimero minimo de a¢des para concluir o jogo,

entdo temos a seguinte:

Proposicao 2: Supondo que k < n, entdo k cores ocupam, no minimo, k + 1 garrafas.
Sob a condicdo 1, em que o jogo inicia com um bloco de cada cor na parte superior de uma tinica

garrafa, temos x, = n + 1.

Demonstracao:

Sem perda de generalidade, podemos supor a seguinte distribui¢do inicial:

G] . C] C] C2C2
G2 . C2C2C3C3
G3 . C3C3C4C4

Gn—l . Cn—lcn—lcncn
Gn . C,,C,,C1C1

Neste caso, transferimos o bloco C|C| para a garrafa G,. Em seguida, transferimos
C>(C, de G, para G, depois transferimos C3C3 de G3 para G, e assim sucessivamente, até
chegarmos a transferir o bloco C,,C,, de G,, para G,,—. Por fim, transferimos o bloco C;C; de G,

para G 1. Desta maneira, totalizamos exatamente n + 1 acoes.

Para provar que este nimero de a¢des € minimo, basta notar que, pelo menos um bloco de
cada cor deve ser transferido, garantindo n a¢des. Por outro lado, a cor com a qual iniciam-se as
transferéncias deverd ter um bloco transferido para uma garrafa vazia, logo serdo necessarias

duas agdes para juntar seus dois blocos. Isto garante pelo menos n + 1 agdes.

Na inten¢do de mostrar um tipo de recorréncia neste jogo, apresentamos o seguinte

teorema:

Teorema 2: Seja k < n — 1. Na condicdo 1 e, supondo que k cores ocupam exatamente k

garrafas, entdo o nimero minimo de transferéncias para separar as cores €

Xnk = Xpn—k + Xk
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Demonstracao:
Basta notar que sob esta condi¢do, na verdade temos dois jogos independentes ambos

regidos pelas condi¢des da Proposicao 2, um envolvendo & cores e outro envolvendo n — k cores.

Observacao: Aplicando a Proposicao 2 e o Teorema 2 temos que

Xnk =Xnk+Xpg=m—k+1D)+(k+1)=n+2=n—-1)+2+1=x,_1 4 +1

Conclusao

Podemos concluir que, ao adotar a regra de que cores — o miximo possivel dentro de
uma garrafa — o nimero minimo de transferéncias para organizar todas as cores serd igual ao
ndmero de garrafas menos 1, ou, de maneira andloga, ao nimero de cores mais 1. Essa abordagem
otimiza o processo, permitindo que grandes blocos de cores sejam movidos de uma s6 vez, o que
reduz o ndmero total de transferéncias. Assim, a regra do agrupamento se mostra uma solugao
eficiente e generalizavel para diversos cendrios, garantindo um célculo mais 4gil e preciso do
nimero minimo de transferéncias necessdrias no jogo. Vale ressaltar que, nesta configuragao,
nao utilizamos todas as garrafas disponiveis.

Ao explorar esse jogo em sala de aula, os alunos poderdo perceber como pequenas
mudancas no problema, como a adicdo de uma cor, impactam diretamente o nimero de
transferéncias necessdrias. No entanto, ao fixarmos a forma de disposi¢do das cores, concluimos
que o nimero minimo de transferéncias € exatamente igual ao nimero de cores mais um. Sem
essa regra, especialmente a que agrupa as cores em blocos, as solugdes seriam muito mais
diversificadas e complexas. Essa atividade nio apenas refor¢a o entendimento das recorréncias
matematicas, mas também estimula o raciocinio 16gico e a habilidade de planejar estrategicamente.

Além disso, ao explorar o contexto histérico das recorréncias, podemos mostrar aos
alunos como esse conceito tem sido aplicado ao longo dos séculos em diversas dreas da ci€ncia
e tecnologia. Essa abordagem integrada e contextualizada promove uma aprendizagem mais
significativa, revelando a relevancia e a beleza da matematica na compreensao e resolucao de

problemas do mundo real.

Sugestao de Implementacao

Os professores podem implementar essa atividade em sala de aula utilizando materiais
simples, como copos plasticos coloridos ou software educativo que simule o jogo. Uma discussao
posterior sobre as estratégias utilizadas e a matematica envolvida pode ajudar a solidificar o
aprendizado, tornando o conceito de recorréncia mais acessivel e interessante para os alunos.
Dessa forma, ao transformar um conceito abstrato em uma experiéncia pratica e contextualizada,
os professores podem ndo apenas ensinar recorréncias, mas também inspirar seus alunos a

apreciar e explorar o mundo matemaético ao seu redor.
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4 Metodologia

Neste capitulo, vamos detalhar a metodologia usada nesta dissertagdo de mestrado: as
relacdes de recorréncias lineares de primeira ordem, apresentadas como uma proposta para
modelar problemas no ensino médio por meio de férmulas recursivas, dentro do contexto da sala
de aula. Inicialmente, os alunos foram submetidos a um questiondrio elaborado com o objetivo
de avaliar o grau de familiaridade com sequéncias numéricas, férmulas dadas recursivamente e
recorréncias lineares de primeira ordem. O questiondrio foi aplicado em duas etapas: antes da
implementacdo da proposta e em uma data subsequente as aulas. Vale ressaltar que a pesquisa
envolveu exclusivamente turmas do 1° ano do ensino médio, embora as turmas do 82 ano do
ensino fundamental tenham participado da proposta, adaptada para aprimorar a compreensao dos
conceitos matemadticos relacionados a sequéncias numéricas e relagdes de recorréncias lineares

de primeira ordem.

4.1 Introdugao

Partindo sempre de situacdes problemaéticas especificas, analisando padrdes e generalizando-
os por meio de métodos recursivos, nossa proposta teve sua base em uma revisao meticulosa da
literatura, explorando conceitos essenciais como sequéncias numéricas, relacdes de recorréncias
lineares, técnicas de resolugdo e a distin¢ao entre abordagens recursivas e formas fechadas.
Durante a aplicacdo pratica desta metodologia, dois desafios se destacaram: a resolu¢do do
problema da Torre de Handi e a abordagem de um problema menos conhecido que envolve a
disposicao de moedas para formar hexdgonos regulares. Os resultados obtidos ressaltaram a
eficdcia da abordagem, evidenciando melhorias substanciais no envolvimento e desempenho dos
alunos no desenvolvimento do raciocinio recursivo para a solu¢dao de problemas matematicos.

As aulas foram realizadas na Escola Estadual Miran Marroquim, onde sou docente efetivo
desde 12 de abril de 2022, lecionando em turmas do ensino fundamental, médio e Educacdo de
Jovens e Adultos (EJA). A institui¢do estd localizada no bairro do Jacintinho, em Maceid, Estado
de Alagoas. Segundo os dados do Censo Escolar 2022 do INEP, a escola conta com 1467 alunos
matriculados e 84 professores nos trés turnos, abrangendo as etapas do ensino fundamental,
médio e Educacado de Jovens e Adultos (EJA).

4.2 Coleta e Tratamento de Dados

O questiondrio, composto por perguntas de 1 a 10 e alternativas de a a d, aplicado
antes do inicio das aulas, desempenhou a fun¢io de um pré-teste, possibilitando a identificacao

de algumas dificuldades em conceitos fundamentais que, por si s6, evidenciaram lacunas de
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conhecimento entre os alunos. Vale ressaltar que o questiondrio foi exclusivamente destinado
as turmas do 1° ano do ensino médio, especificamente nas turmas 1TO1 e 1T02, no dia 18 de
setembro de 2023. A segunda aplicacdo do mesmo questiondrio ocorreu em 04 de dezembro de
2023, servindo como pds-teste com o objetivo de avaliar a eficdcia da proposta e verificar se esta
foi capaz de minimizar ou resolver as lacunas de conhecimento sobre o tema, além de mensurar a

contribui¢c@o da proposta para tal progresso.

O questiondrio foi formatado em orientagcdo paisagem (horizontal), sendo impresso em

uma folha A4, conforme ilustrado na figura abaixo:

Figura 11 - Folha impressa do questiondrio

Fonte: Dados do autor

Para uma andlise mais fécil e mais rdpida dos dados as respostas foram transferidas para
um formulério do Google Forms® e nomeados como 1TO1 - pré-teste; 1T02 - pré-teste; 1TO1 -

pos-teste e 1TO2 - pés-teste, conforme ilustra a figura 12:
Figura 12 — Formuldrio do Google

1t02 - pré-teste - Questionario: Nivel de Conhecimento so...
1t02 - pos-teste - Questionario: Nivel de Conhecimento so...

1t01 - pds-teste - Questionario: Nivel de Conhecimento so...

1t01 - pré-teste - Questionario: Nivel de Conhecimento so...

Fonte: Dados do autor
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4.2.1 Analise dos Dados

No pré-teste tivemos 25 alunos participantes na turma 1TO1 e 22 alunos na turma 1T02,
J& no pos-teste tivemos também 25 alunos participantes na turma 1TO1, mas apenas 17 alunos na
turma 1TO02.

Vamos analisar as questdes com maior percentual de erros para ambas as turmas.

Observe as figuras 13 e 14:

Figura 13 - Perguntas erradas com frequéncia - 1TO1

a 1t01 - pré-teste - Questionario: Nivel de Conhe [ vy ® © o9 @

Perguntas  Respostas @)  Configuracdes Total de pont
Pergunta Respostas corretas

3. 0 que é uma recorréncia em matematica? 9/25

4.0 que é uma recorréncia linear de primeira ordem? 4/25

5.0 que é uma progresséo aritmética (PA)? 3/25

6. 0 que é uma progress&o geométrica (PG)? 2/25

7. A Torre de Handi é frequentemente usada para ilustrar qual conceito matematico? 0/25

8. Qual a férmula matemética que descreve o nimero minimo de movimentos para resolver a

" i 3/25
Torre de Handi com n discos?
9. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao aritmética? 2/25
10. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao geométrica? 0/25

Fonte: Dados do autor

Figura 14 — Perguntas erradas com frequéncia - 1T02

a 1t02 - pré-teste - Questionario: Nivel de Conhe [ vy @ ® o c

Perguntas  Respostas @) Configuragdes Total de pon
Pergunta Respostas corretas

3. 0 que é uma recorréncia em matemética? 9/22

4. 0 que é uma recorréncia linear de primeira ordem? 7722

5.0 que é uma progressao aritmética (PA)? 4/22

6. 0 que é uma progressdo geométrica (PG)? 4/22

7. ATorre de Hanéi é frequentemente usada para ilustrar qual conceito matematico? 1/22

8. Qual a férmula matematica que descreve o nimero minimo de movimentos para resolver a

. 0 2/22
Torre de Handi com n discos?
9. Qual a férmula geral para encontrar o n-ésimo termo de uma progresséo aritmética? 4/22
10. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao geométrica? 2/22

Fonte: Dados do autor

Observa-se que as questdes 7, 9 e 10 registraram o menor indice de acertos entre os
alunos da turma 1TO1. Por outro lado, na turma 1T02, as questdes 7, 8 e 10 foram as menos
respondidas corretamente. O baixo desempenho nessas questdes pode ser atribuido a trés fatores
principais: a falta de familiaridade com os conceitos de recursdo e progressdes, que muitas vezes
sao confundidos com outros tépicos; a dificuldade em manipular férmulas, especialmente as
de progressoes aritméticas (P.A.) e geométricas (P.G.), que envolvem operagdes matematicas
desafiadoras; e a insuficiéncia de prética na aplicacdo desses conceitos, o que dificulta a resolugao

de problemas.
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4.2.1.1

Observe as figuras abaixo com as 10 questdes de ambas as turmas:

Andlise dos Dados das Turmas 1TO1 e 1T02 - pré-teste

Figura 15 — Questdes 1 a 10 - 1TO1 - pré-teste

D copiar

1. 0 que é uma sequéncia numérica?

23/ 25 respostas corretas

Nao seif—0 (0%)

1 (a%)

Uma lista de numeros aleatorios

+ Uma lista ordenada de|
nimeros que geralmente possui
uma lel de formagzo|

23 (92%)

Uma lista de nimeros em ordem

decrescente| [ @

IO copiar

3. 0 que é uma recorréncia em matematica?

9/ 25 respostas corretas

Nzo sei 11 (44%)

Uma sequéncia que nao segue
nenhum padrao

L2 (16%)

 Uma equagéo ou formula que
expressa um termo em fungo de|
outros termos na sequéncia

9 (36%)

Uma sequéncia de numeros
Impares|

10 copiar

5. 0 que é uma progress3o aritmética (PA)?

3/ 25 respostas corretas

Nao sei 18 (72%)

Uma sequéncia em que cadal
termo & o produto do termo|0 (0%)
anterior por uma constante|
+/ Uma sequéncia em que cadal
termo é a soma do termo anterior| 3 (12%)
por uma constante

Uma sequéncia em que cada

; 3 4 (16%)
termo & um nimero primo

0 5 10 15 20

1D copiar

7. A Torre de Hanéi é frequentemente usada para ilustrar qual conceito matematico?

025 respostas corretas

Nao sei 15 (60%)
Probabilidade (8 (32%)
{2 (8%)

Combinatéria

/ Recursao [0 (0%)

1O copiar

9. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao
aritmética?
2/ 25 respostas corretas

N&o sei 20 (80%)

Van=at+(@-1r 2 (8%)

a_tram-1) [0 (0%)

an=a (1) +a_(n2) 3 (12%)

2. Qual é o préximo termo na sequéncia: 2,4, 8, 16, .

23 / 25 respostas corretas

Naosel |0 (0%)

24 12 (8%)

4.0 que é uma recorréncia linear de primeira ordem?

4/ 25 respostas corretas

Néo self

Uma sequéncia que nunca |4 (16%)

termina

Uma equagao ou formula que

envolve a soma de termos

anteriores na sequéncia

/ Uma equagao ou formula que|

envolve cada termo subsequente | 4 (16%)
em uma fungao linear do termo...

3(12%)

6. 0 que é uma progress&o geométrica (PG)?

2/ 25 respostas corretas

Nao sei

Uma sequéncia em que cadal
termo é a soma do termo anterior|
por uma constante
+ Uma sequéncia em que cada|
termo é a multiplicagao do termo 2 (8%)
anterior por uma constante|

4 (16%)

Uma sequéncia de nimeros|

" L5 (20%)
impares|

0 5 10

8. Qual a férmula matematica que descreve o nimero minimo de movimentos para

resolver a Torre de Handi com n discos?

3/ 25 respostas corretas

Nao sei
v X_n=2%n-1 3(12%)
Xn=nm2-1 3 (12%)
Xn=n+1 L2 (8%)
0 5 10 15

10. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao
geométrica?

0/25 respostas corretas

Nao sei
an=a_t+(n-1r 2 (8%)
van=a_tmn1) |-0(0%)

an=a(n-1)+a_(n2) 4 (16%)

Fonte: Dados do autor

D copiar

23 (92%)

1O copiar

14 (56%)

IO copiar

{14 (56%)

D copiar

17 (68%)

1O copiar

19 (76%)
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Figura 16 — Questdes 1 a 10 - 1T02 - pré-teste

1. 0 que é uma sequéncia numeérica?
14 / 22 respostas corretas
Néo sei

—1(4.5%)

Uma lista de numeros aleatorios|

2(9,1%)

V Uma lista ordenada de|
nimeros que geralmente possui
uma lei de formagéo

Uma lista de numeros em ordem|

decrescente 5 (22.1%)
0 5
3. 0 que é uma recorréncia em matematica?
9/ 22 respostas corretas
Nzo sei
Uma sequencia que ndo segue | 3 13.6%)

nenhum padréo

+/ Uma equagéo ou férmula que
expressa um termo em fungzo de
outros termos na sequéncia

Uma sequéncia de nimeros
impares|

L2 (9,1%)

5. 0 que é uma progresséo aritmética (PA)?

4 /22 respostas corretas

Néo seif

Uma sequéncia em que cada|
termo ¢ o produto do termo|
anterior por uma constante|

+ Uma sequéncia em que cada)

L2 (9,1%)

termo é a soma do termo anterior 4(18,2%)
por uma constante
Uma sequéncia em que cada | .20
termo & um ndmero primo|
00 25 50

7. A Torre de Hanoi é frequentemente usada para ilustrar qual conceito matematico?

1/ 22 respostas corretas

Nao sei

Probabilidade

Combinatéria

13 (13,6%)

V Recursao 1(4,5%)

9. Qual a férmula geral para encontrar o n-ésimo termo de uma progresséo

aritmética?

4/22 respostas corretas

Nao sei

van=al+(n-1r 4(18,2%)

a_n=a_1(n-1) 3 (13,6%)

) (n-1) +a_(n-2)

1 (4,5%)

5 (22,7%)

1D copiar

2. Qual é o préximo termo na sequéncia: 2, 4, 8, 16, .

16/ 22 respostas corretas

Nao sei 1(4,5%)

24 —4(18,2%)

14 (63,6%)

D copiar

7 /22 respostas corretas

8 (36,4%) Nao seil

Uma sequéncia que nunca

—2(9,1%)
terminal

Uma equagéo ou férmula que,

envolve a soma de termos|

anteriores na sequéncia

 Uma equag#o ou férmula que

envolve cada termo subsequente
e uma fungo linear do termo.

9 (40,9%)

D copiar

6. 0 que é uma progress&do geométrica (PG)?

4722 respostas corretas

2 (54,5%) Néo sei
Uma sequéncia em que cadal
termo é a soma do termo anterior
por uma constante

 Uma sequéncia em que cada
termo ¢ a multiplicagdo do termo
anterior por uma constante|

Uma sequéncia de numeros

. L2 (9,1%)
impares|

75 10,0 125 0 2 4

8. Qual a férmula matematica que descreve o nimero minimo de movimentos para

IO copiar

resolver a Torre de Hanéi com n discos?

2/ 22 respostas corretas

—13 (59,1%) Nzo sei

v X_n=2tn-1 2(9,1%)

X_n=nt2-1

4. 0 que é uma recorréncia linear de primeira ordem?

5 (22,7%)

L6 (27,3%)

4(18,2%)

4(18,2%)

Xn=n+1 —4(18,2%)

10 15 00 25 5,0

1O copiar

10. Qual a férmula geral para encontrar o n-ésimo termo de uma progresséo

geométrica?

2/ 22 respostas corretas

(14 (63,6%)
Néo sei

an=a_t+(n-1r
van=a_tmn)

2(9.1%)

an=a_(n1)+a_(n2) 3 (13,6%)

Fonte: Dados do autor

4.2.1.2 Analise dos Dados das Turmas 1TO1 e 1T02 - pos-teste

6 (27,3%)

Observe as figuras abaixo com as 10 questdes de ambas as turmas:

10 copiar

16 (72,7%)

D copiar

8(36,4%)

7(31,8%)

IO copiar

10 (45,5%)

1O copiar

12 (54,5%)

1O copiar

11 (50%)
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Figura 17 — Questdes 1 a 10 - 1TO1 - pds-teste

IO copiar

1. 0 que é uma sequéncia numérica?

22 / 25 respostas corretas

Néo seif—0 (0%)

Uma lista de numeros aleatérios| 1 (4%)

+ Uma lista ordenada de
ntmeros que geralmente possui
uma lei de formagao|

22 (88%)

Uma lista de nimeros em ordem|
decrescente

3. 0 que é uma recorréncia em matematica?

25/ 25 respostas corretas

Néo seil—0 (0%)

Uma sequéncia que ndo segue| o,
nenhum padrao|
+/ Uma equagao ou formula que
expressa um termo em fungao de|
outros termos na sequéncia

25 (100%)

Uma sequéncia de nimeros|
impares|

0(0%)

IO copiar

5.0 que é uma progress&o aritmética (PA)?

19/ 25 respostas corretas

Naoseil 1 (4%)

Uma sequéncia em que cada|
termo € o produto do termo) 2 (8%)
anterior por uma constante|

+/ Uma sequéncia em que cadal
termo é a soma do termo anterior|
por uma constante

19 (76%)

Uma sequéncia em que cada
termo & um namero primo|

—3 (12%)

7. A Torre de Handi é frequentemente usada para ilustrar qual conceito matematico? ID Copiar

19 / 25 respostas corretas

Naosel [0 (0%)
Probabilidade 4 (16%)
Combinatria —2 (8%)

+/ Recursao

9. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao
aritmética?

20 / 25 respostas corretas

Nzo sei L2 (8%)

20 (80%)

1) |1 (4%)

an=a (1)+an2) 2 (8%)

1D copiar

2. Qual é o préximo termo na sequéncia: 2, 4, 8, 16, .

24/ 25 respostas corretas

Néosei |0 (0%)

24 | —1(4%)

24 (96%)
64 |-0(0%)
0 5 10 15 20 25
4. 0 que é uma recorréncia linear de primeira ordem? ||_:| Copiar

20/ 25 respostas corretas

Uma sequéncia que nunca
termina

Uma equagao ou formula que
envolve a soma de termos 3 (12%)

20 (80%)

em uma fungao linear do termo..

6. 0 que é uma progressdo geométrica (PG)?

18/ 25 respostas corretas

Nao sei| 1 (4%)

Uma sequéncia em que cadal
termo & a soma do termo anterior 3 (12%)
por uma constante

+ Uma sequéncia em que cada
termo é a multiplicagao do termo)
anterior por uma constante

8 (72%)

Uma sequéncia de nimeros
impares|

3 (12%)

8. Qual a formula matematica que descreve o nimero minimo de movimentos para ID Copiar
resolver a Torre de Hanéi com n discos?

16 / 25 respostas corretas
Nzo sei 1 (4%)

v X_n=2%n-1 16 (64%)

X_n=nr2-1 5 (20%)

Xn=n+1 {3 (12%)

1O copiar

10. Qual a férmula geral para encontrar o n-ésimo termo de uma progressdo
geométrica?

22/ 25 respostas corretas
Nao sei 2 (8%)
an=al+(n-Nr [~0(0%)

van=a_imnd) 22 (88%)

an=a(n)ran2) | —1 (4%

Fonte: Dados do autor
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Figura 18 — Questdes 1 a 10 - 1T02 - pds-teste

1. 0 que é uma sequéncia numérica?

17 /17 respostas corretas

Uma lista de nmeros aleatdrios|—0 (0'

+/ Uma lista ordenada de|
ntimeros que geralmente possui
uma lei de formagao

Uma lista de numeros em ordem|
decrescente|

3. 0 que é uma recorréncia em matematica?

13 /17 respostas corretas

Uma sequéncia que ndo segue|
nenhum padrao

(3 (17,6%)

+/ Uma equag#o ou fermula que
expressa um termo em fungéo de
outros termos na sequéncia

Uma sequéncia de nimeros

h —1(59%)
impares|

5. 0 que é uma progressé&o aritmética (PA)?

15/ 17 respostas corretas

Uma sequéncia em que cadal
termo & o produto do termo 2 (11,8%)
anterior por uma constante|

 Uma sequéncia em que cada)
termo & a soma do termo anterior,
por uma constante

Uma sequéncia em que cadal
termo & um ndmero primo

7. A Torre de Hanoi é frequentemente usada para ilustrar qual conceito matematico?

17 /17 respostas corretas

Naosei [0 (0%)

Probabilidade [0 (0%)

Combinateria |0 (0%)

17

 Recursio

9. Qual a formula geral para encontrar o n-ésimo termo de uma progresséo
aritmética?

15/ 17 respostas corretas

Naosel |0 (0%)

Van=al+(m-1r

a_n=a_tr(n-1) L2 (11,8%)

an=a_(n-1)+a_(n2) [-0(0%)

D copiar

7 (100%)

1O copiar

3 (76,5%)

IO copiar

16 (88,2%)

1O copiar

(100%)

1O copiar

15 (88,2%)

2. Qual é o préximo termo

1717 respostas corretas

Nao sei

24

64

4. 0 que é uma recorréncia linear de primeira ordem?

13/ 17 respostas corretas

Uma equagéo ou férmula que

envolve a soma de termos|

anteriores na sequéncia

+ Uma equagao ou formula que

envolve cada termo subsequente|
em uma fungso linear do termo.

na sequéncia: 2, 4, 8, 16,

0(0%)

0 (0%)

3 (17,6%)

6. 0 que é uma progressdo geomeétrica (PG)?

1717 respostas corretas

Uma sequéncia em que cadal
termo é a soma do termo anterior|
por uma constante

+ Uma sequéncia em que cada
termo é a multiplicag@o do termo
anterior por uma constante|

0 (0%)

IO copiar

7 (100%)

3 (76.5%)

7 (100%)

8. Qual a férmula matematica que descreve o nimero minimo de movimentos para

resolver a Torre de Handi com n discos?

16 /17 respostas corretas

Nao sei
v X_n=2n-1
Xn=nt2-1

Xn=n+1

10. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao

geométrica?

14717 respostas corretas

Nzo sei

an=a1+(n-1r

van=a_tmn-1)

an=a_(n1)+a(n2)

Fonte: Dados do autor

0 (0%)

0 (0%)

—1(5.9%)

0(0%)

2 (11,8%)

1(5,9%)

16 (94,1%)

20

IO copiar

20

1O copiar

4.(82,4%)
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5 Resultados

Este capitulo visa apresentar e analisar os resultados provenientes das aulas ministradas.
Ap6s a aplicag@o do questiondrio e a implementacdo da proposta, este segmento constitui a fase
de divulgacao das descobertas. Aqui, serdo minuciosamente detalhadas as principais constatacoes
e padrdes identificados no conjunto de dados, proporcionando uma visao aprofundada sobre
os aspectos abordados no escopo do trabalho. Especial atencdo serd dedicada ao exame do
quantitativo de acertos e erros tanto no pré-teste quanto no pds-teste, oferecendo uma andlise

substancial das mudancgas observadas ap6s a intervengao proposta.

5.1 Discussao

Inicialmente, cabe ressaltar que as turmas com as quais interagi - ou seja, o 8° ano do ensino
fundamental (turmas 1, 2 € 3) e 0 1° ano do ensino médio (turmas 1 e 2) - estavam plenamente
cientes de que as atividades propostas integravam um projeto vinculado a minha dissertacao de
mestrado. Contudo, a extensao na qual essa informacao influenciou o comportamento dos alunos
nao foi objeto de avaliacao sistematica.

A auséncia de uma avaliacdo objetiva para mensurar tal influéncia nao € considerada
uma limitacao metodoldgica nesta pesquisa. Pelo contrdrio, sugere que o escopo deste trabalho
nao incluia essa andlise especifica. No entanto, essa lacuna ressalta a oportunidade para futuras
investigacdes, que poderiam explorar o uso de instrumentos de avaliagdo apropriados para
discernir o impacto do contexto académico no comportamento dos alunos.

E relevante notar que, embora nio tenha sido aplicado nenhum questionario as turmas
do 8° ano do ensino fundamental, os depoimentos escritos a mao fornecidos pelos alunos
ofereceram valiosas perspectivas sobre a relevancia das aulas propostas, suas dificuldades
percebidas e, naturalmente, como essas atividades contribuiram para o entendimento de temas
como sequéncias numéricas, relacdes de recorréncias lineares e o problema da Torre de Handi.
Essa abordagem qualitativa enriquece a compreensao do impacto pedagdgico da proposta,
destacando a importancia de considerar tanto os resultados quantitativos quanto os relatos
subjetivos dos alunos em futuras pesquisas educacionais.

Ao analisar os gréficos ilustrados nas Figuras 14 a 17, apresentadas no Capitulo 4, nota-se
que, embora a meta de precisao de 100% nao tenha sido universalmente alcancada em todas
as questoes, registra-se um aumento expressivo na porcentagem de respostas corretas para a
grande maioria delas. Tal fendmeno indica que, mesmo nao tendo eliminado por completo as
deficiéncias de conhecimento, a estratégia metodoldgica adotada teve um impacto substancial
em mitigar essas lacunas entre os alunos. Essa observagdo aponta para um aprofundamento na
compreensao dos contetdos abordados durante o estudo, evidenciando que a abordagem utilizada

foi bem-sucedida na sua aplicagdo.
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No pré-teste, destaca-se que as questdes 7, 9 e 10 para a turma 1TO1 apresentaram baixos
indices de acertos, registrando respectivamente 0%, 8% e 0%. Entretanto, apos a intervengao
proposta, observou-se uma notdvel melhoria, com essas mesmas questoes alcangando indices de
acertos de 76%, 80% e 88% para a mesma turma. Este contraste destaca o impacto positivo das
aulas na assimilacdo do conteudo pelos alunos, evidenciando uma significativa evolugdo nos
resultados.

Na turma 1T02, no pré-teste, identificaram-se as questdes com as taxas de acertos mais
baixas, concentrando-se nas questdes 7, 8 e 10, com percentuais de acerto de 4,5%, 9,1% e 9,1%,
respectivamente. Contudo, apds a aplicacdo das aulas, notou-se uma transformacao notdvel nesse
conjunto especifico de perguntas, alcangando indices de 100%, 94% e 82,4%, respectivamente.
Essa significativa melhoria evidencia o impacto positivo das aulas na compreensdo e desempenho

dos alunos, representando um avanco substancial em relagdo ao estagio inicial do pré-teste.
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6 Conclusao

Ao longo do desenvolvimento deste trabalho, enfatizamos a necessidade crucial de
estabelecer um método cientifico-matematico sistematico para a modelagem de problemas. O
ponto de partida reside na formulagao recursiva do problema, destacando a essencialidade do
entendimento de sequéncias para a organizacdo dos dados e deducdo de férmulas fechadas.
Tornou-se evidente que a compreensao do processo de organizagcdo de informacdes, aliada
a adesdo a etapas estruturadas, sdo elementos indispensdveis para o sucesso na resolugdo de
problemas. Assim, a modelagem de qualquer problema em um contexto cientifico-matematico
exige, primordialmente, uma abordagem meticulosa e a sistematizacio criteriosa das etapas
envolvidas.

E fundamental ressaltar que nio h4 uma tnica abordagem universal para a resolugio
de problemas, independentemente de sua natureza intrinseca. No entanto, existem métodos
mais adequados para lidar com distintas categorias de problemas. A aplica¢do que trata da
disposicao de moedas formando hexidgonos regulares inovou ao introduzir um palpite para a
concepcio da equacdo recursiva. E relevante destacar que todas as férmulas fechadas, em futuras
investigacoes, devem passar por verificacio pelo principio da inducao finita, consolidando, assim,
a validade das proposic¢des. Este processo de validacdo, por meio de raciocinio l6gico e técnicas
de demonstra¢do, € uma pratica comum, especialmente no ambito da matemadtica, embora sua
aplicabilidade ndo se restrinja exclusivamente a essa disciplina.

Diante de qualquer afirmacao, seja ela uma formula ou um teorema, a necessidade de sua
demonstragdo impera, utilizando todos os recursos disponiveis, contribuindo para a robustez e
credibilidade da soluc¢do apresentada.

Adicionalmente, a aplicac@o do jogo ‘Desafio das Garrafas Coloridas’, inspirado no
jogo Water Sort Puzzle encontrado no Google Play, foi uma porta aberta e uma contribuicao
muito rica para a exploracdo de diversos problemas semelhantes e sua resolucao através das
recorréncias lineares de primeira ordem. Tal abordagem proporciona um ambiente pratico para
a construcgdo e validacao de modelos matemadticos, destacando-se como um recurso didético
inovador e interdisciplinar. A riqueza dessa aplicacdo transcende o aspecto lidico, promovendo

um campo fértil para novas descobertas e investigagdes matematicas.
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APENDICE A - Questionario

Por favor, responda as seguintes perguntas de acordo com o seu nivel de conhecimento
sobre sequéncias e recorréncias. Isso nos ajudard a entender o seu nivel de compreensao sobre o

topico. Nao se preocupe se voc€ ndo souber a resposta para alguma pergunta.

1. O que é uma sequéncia numérica?

a) Nio sei
b) Uma lista de nimeros aleatorios
¢) Uma lista ordenada de nimeros que geralmente possui uma lei de formagao

d) Uma lista de nimeros em ordem decrescente
2. Qual é o proximo termo na sequéncia: 2, 4, 8, 16, ...?

a) Nio sei
b) 24
c) 32
d) 64

3. O que é uma recorréncia em matematica?

a) Naio sei
b) Uma sequéncia que ndo segue nenhum padrao

¢) Uma equagdo ou féormula que expressa um termo em fungdo de outros termos na

sequéncia

d) Uma sequéncia de nimeros impares
4. O que é uma recorréncia linear de primeira ordem?

a) Nao sei

b) Uma sequéncia que nunca termina

¢) Uma equagdo ou formula que envolve a soma de termos anteriores na sequéncia

d) Uma equagdo ou férmula que envolve cada termo subsequente em uma func¢ao linear

do termo anterior

5. O que é uma progressao aritmética (PA)?
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a) Nao sei
b) Uma sequéncia em que cada termo € o produto do termo anterior por uma constante
¢) Uma sequéncia em que cada termo € a soma do termo anterior por uma constante

d) Uma sequéncia em que cada termo € um ndmero primo

6. O que é uma progressao geométrica (PG)?

a) Nio sei
b) Uma sequéncia em que cada termo € a soma do termo anterior por uma constante

¢) Uma sequéncia em que cada termo € a multiplicagdo do termo anterior por uma

constante

d) Uma sequéncia de nimeros impares
7. A Torre de Handi é frequentemente usada para ilustrar qual conceito mateméatico?
a) Nio sei
b) Probabilidade
¢) Combinatéria
d) Recursao
8. Qual a formula matematica que descreve o niimero minimo de movimentos para
resolver a Torre de Hanéi com n discos?
a) Nao sei
b) M(n)=2"-1
¢) M(n) =n®*-1
d) M(n)=n+1
9. Qual a féormula geral para encontrar o n-ésimo termo de uma progressao aritmética?

a) Nao sei

b) a,

ai+ (n-1)r
¢) a, =a; xrb

d) ay=ap-1+a,-
10. Qual a férmula geral para encontrar o n-ésimo termo de uma progressao geométrica?

a) Nao sei

b) a,=a;+(n-1r

C) a,=a; X r(n=1)

d) an =aup-1 +an-2
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APENDICE B - Aulas Teéricas e Priticas
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Figura 19 — Aulas Tedricas e Praticas - 82 ano fundamental
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Figura 20 — Aulas Teéricas e Praticas - 1TO1 e 1T02
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Fonte: Dados do autor
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