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Resumo

Este trabalho concentra-se no estudo de sequências numéricas, com uma ênfase particular nas
relações de recorrências lineares de primeira ordem. Exploramos como essas relações podem
ser aplicadas em diversas áreas da matemática, incluindo a geometria. O principal objetivo é
capacitar os alunos a estabelecer conexões significativas entre conceitos matemáticos distintos,
promovendo um entendimento mais profundo da teoria das sequências.
A eficácia da nossa abordagem é avaliada através da aplicação de dois testes, um antes e outro após
a intervenção. Esses testes evidenciam uma melhoria no desempenho dos alunos na compreensão
das sequências numéricas. As aplicações discutidas abrangem tanto o ensino fundamental quanto
o ensino médio, com adaptações específicas para cada nível escolar. O foco primordial é o
desenvolvimento do raciocínio recursivo e a transição de fórmulas recursivas para fórmulas
fechadas, permitindo o cálculo preciso e eficiente de qualquer termo subsequente na sequência.
Iniciamos nossa investigação modelando um problema específico, partindo de informações
iniciais previamente estabelecidas como pontos de partida. A partir disso, adotamos uma
abordagem formal, fundamentada em métodos rigorosos, para demonstrar propriedades relevantes
e construir as devidas formalizações e provas. Para evidenciar a aplicação prática do conhecimento
desenvolvido, exploramos a resolução de três problemas distintos: a Torre de Hanói, o problema
das moedas dispostas em hexágonos regulares e um desafio envolvendo líquidos coloridos
organizados em garrafas. Cada um desses exemplos ilustra, de forma concreta, a versatilidade e a
profundidade das técnicas abordadas.
É importante notar que a literatura existente frequentemente apresenta apenas esboços superficiais
na dedução de fórmulas recursivas, especialmente no contexto de sequências numéricas e outros
tipos de sequências. Muitas vezes, o foco está apenas no resultado final, sem aprofundar nos
passos e fundamentos subjacentes. Este estudo visa oferecer uma compreensão abrangente do
processo de derivação de fórmulas recursivas e como, a partir delas, é possível obter fórmulas
fechadas. Ao longo do trabalho, demonstramos como transitar de problemas específicos para
sequências numéricas e fórmulas fechadas, fornecendo uma visão detalhada e sistemática desse
percurso.

Palavras-chave: Recorrências. Recorrências lineares. Recorrências lineares de primeira ordem.
Modelagem. Fórmulas recursivas.



Abstract

This work focuses on the study of numerical sequences, with particular emphasis on first-order
linear recurrence relations. We explore how these relations can be applied in various mathematical
areas, including geometry. The main goal is to enable students to make meaningful connections
between distinct mathematical concepts, fostering a deeper understanding of sequence theory.
The effectiveness of this approach is evaluated through two tests, one administered before and
one after the intervention. These tests demonstrate an improvement in students’ performance
regarding their understanding of numerical sequences. The applications discussed cover both
elementary and secondary education, with specific adaptations for each educational level. The
primary focus is on developing recursive reasoning and transitioning from recursive formulas to
closed formulas, allowing for the precise and efficient calculation of any subsequent term in the
sequence.
We began our investigation by modeling a specific problem, starting from initial information
established as the foundation. Subsequently, we adopted a formal approach grounded in rigorous
methods to demonstrate relevant properties and construct the necessary formalizations and proofs.
To illustrate the practical application of the developed knowledge, we explored the resolution of
three distinct problems: the Tower of Hanoi, the problem of coins arranged in regular hexagons,
and a challenge involving colored liquids organized in bottles. Each of these examples concretely
demonstrates the versatility and depth of the techniques addressed.
It is important to note that existing literature often presents only superficial outlines for deriving
recursive formulas, especially in the context of numerical and non-numerical sequences. The
focus is frequently on the final result without delving into the underlying steps and fundamental
ideas. This study aims to offer a comprehensive understanding of the process of deriving recursive
formulas and how to obtain closed formulas from them. Throughout the work, we demonstrate
how to transition from specific problems to numerical sequences and closed formulas, providing
a detailed and systematic view of this process.

Keywords: Recurrences. Linear recurrences. First-order linear recurrences. Modeling. Recursive
formulas.
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1 Introdução

Neste trabalho, abordaremos as relações de recorrência lineares de primeira ordem,
descrevendo sequências numéricas e estabelecendo, sempre que possível, uma lei de formação
recursiva. Isto é, apresentaremos uma expressão que descreva todos os elementos da sequência a
partir dos elementos anteriores. Esse tema está alinhado com a Base Nacional Comum Curricular
(BNCC), um documento normativo essencial para as redes de ensino públicas e privadas (Brasil.
Ministério da Educação, 2018). A BNCC serve como referência obrigatória na elaboração de
currículos e propostas pedagógicas no Brasil. As competências e habilidades para o ensino
fundamental são: (EF01MA10) Descrever os elementos ausentes em sequências recursivas de
números naturais, objetos ou figuras, após o reconhecimento e a explicitação de um padrão
ou regularidade; (EF02MA09) Construir sequências de números naturais em ordem crescente
ou decrescente a partir de um número qualquer, utilizando uma regularidade estabelecida;
(EF02MA11) Descrever os elementos ausentes em sequências repetitivas e em sequências
recursivas de números naturais, objetos ou figuras; (EF04MA11) Identificar regularidades em
sequências numéricas compostas por múltiplos de um número natural. Para o ensino médio,
destacam-se as seguintes competências e habilidades: (EM13MAT507) Identificar e associar
progressões aritméticas (PA) a funções afins de domínios discretos, para análise de propriedades,
dedução de algumas fórmulas e resolução de problemas; (EM13MAT508) Identificar e associar
progressões geométricas (PG) a funções exponenciais de domínios discretos, para análise de
propriedades, dedução de algumas fórmulas e resolução de problemas.

O pensamento recursivo permeia diversas áreas das ciências, sendo uma abordagem
essencial em fenômenos naturais e processos complexos. Além da matemática, o pensamento
recursivo é fundamental em campos como física, biologia, engenharia, economia e ciência da
computação. Essa abordagem revela-se como uma ferramenta poderosa na resolução de problemas
complexos e é uma característica comum em diversas disciplinas científicas. Segundo Pereira
(2014, p. 35), “as relações de recorrência permitem modelar diversos fenômenos matemáticos e
computacionais de forma sistemática” (PEREIRA, 2014). Da mesma forma, Graham, Knuth e
Patashnik (1994, p. 2) afirmam que “a matemática concreta combina ferramentas da matemática
contínua e discreta para fornecer uma base sólida para a análise de algoritmos” (GRAHAM
RONALD L.; KNUTH, 1994).

A aplicação da abordagem recursiva possibilita a modelagem de problemas envolvendo
sequências numéricas. Nosso objetivo é encontrar soluções para essas fórmulas recursivas,
determinando uma expressão fechada que represente o termo geral da sequência, isto é, uma
expressão que não dependa dos termos anteriores. Isso permitirá calcular qualquer termo da
sequência de forma direta, proporcionando uma compreensão mais abrangente e eficiente das
propriedades inerentes.
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1.1 Motivação

A motivação que fundamenta este trabalho reside na constatação de que, no ensino
fundamental e médio, não há uma abordagem sistemática sobre o tema das recursões; quando
existe, são apenas breves sugestões ou menções. O conceito frequentemente não recebe a atenção
adequada, representando uma lacuna prejudicial para o desenvolvimento do raciocínio recursivo
nos alunos, um conhecimento essencial para o aprimoramento do pensamento crítico-matemático.

A ausência de uma abordagem apropriada nesse nível educacional dificulta a compreensão
profunda das recorrências, limitando a capacidade dos estudantes de explorar plenamente o
potencial do raciocínio recursivo. Esta lacuna educacional torna-se ainda mais significativa ao
considerar que o conceito em questão possui aplicações amplas, podendo ser utilizado em áreas
aparentemente não relacionadas, como geometria plana, matemática financeira e combinatória.

Este trabalho visa, desse modo, motivar a revisão e o aprimoramento do ensino das
recorrências lineares de primeira ordem no ensino médio e, com as devidas adaptações, no ensino
fundamental. Ao proporcionar uma compreensão clara do processo de obtenção de fórmulas
recursivas e de como elas levam a fórmulas fechadas, busca-se preencher essa lacuna educacional.
A abordagem formal e as aplicações práticas apresentadas pretendem equipar os estudantes com
as ferramentas necessárias para compreender e aplicar efetivamente esses conceitos, contribuindo
para um ensino mais sólido e abrangente.

1.2 Organização do Trabalho

O Capítulo 2 introduz os conceitos que fundamentam o desenvolvimento deste trabalho,
proporcionando a base teórica necessária para a sua compreensão.

No Capítulo 3 abordamos três aplicações lúdicas, que colocam em prática os conceitos
previamente discutidos.

O Capítulo 4 investiga a metodologia adotada, integrada à análise dos questionários pré e
pós-teste, oferecendo uma compreensão mais aprofundada do impacto e implementação deste
trabalho em sala de aula, visando resolver ou minimizar lacunas de conhecimento relacionadas
ao tema.

O Capítulo 5 dedica-se à discussão dos resultados alcançados, contextualizando as
descobertas e examinando suas implicações.

Finalmente, no Capítulo 6, são apresentadas as conclusões deste trabalho, consolidando
as descobertas e delineando possíveis direções para pesquisas futuras.
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2 Fundamentação Teórica

Neste capítulo, discutiremos conceitos fundamentais que são essenciais para uma com-
preensão fluida do desenvolvimento deste trabalho. Começaremos com a definição de sequência
numérica, incluindo exemplos que ilustram tanto sequências com leis de formação explícitas
quanto aquelas sem uma lei definida. Em seguida, abordaremos as relações de recorrência e as
sequências definidas recursivamente. Por fim, exploraremos diversas técnicas de solução e um
teorema que simplifica algumas soluções mais complexas, que não se enquadram nas técnicas
resolutivas usuais.

Toda a nossa base teórica encontra respaldo nas obras das coleções do ProfMat (CARVA-
LHO; MORGADO, 2013), somadas a contribuições valiosas apresentadas por (IEZZI; HAZZAN,
2006) e (HUNTER, 2011). Muitas das questões abordadas foram extraídas dessas fontes ou foram
inspiradas por elas. Vale destacar também a presença de questões particularmente interessantes
provenientes do banco de questões da OBMEP1. Essas referências não apenas enriquecem, mas
também complementam nosso conhecimento, proporcionando uma perspectiva mais abrangente
sobre as sequências e recorrências lineares.

2.1 Sequências Numéricas

Nesta seção, introduziremos a definição formal de sequência numérica, seguida de
exemplos ilustrativos.

De forma simples, uma sequência numérica é uma lista ordenada de números, onde cada
elemento é chamado de termo da sequência. Cada termo ocupa uma posição específica na lista, e
ao alterar a ordem dos elementos, obtém-se uma sequência distinta. É importante destacar que as
sequências numéricas podem ser finitas ou infinitas e podem ou não possuir uma lei de formação
definida.

Definição 1: Uma sequência numérica é uma função 𝑥 : N → R, que associa a cada
número natural 𝑛 um número real 𝑥(𝑛), denominado 𝑛-ésimo termo da sequência, denotado por
𝑥𝑛.

É importante ter clareza do significado de cada letra na definição formal de sequência
quando interpretada como lista ordenada de números. Para tal, salientamos que 𝑛 ∈ N descreve
a posição do número 𝑥𝑛 ∈ R na lista. A sequência pode ser representada de diferentes formas:
(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛), (𝑥𝑛)𝑛∈N, ou simplesmente (𝑥𝑛).

Exemplo 2.1: A sequência definida por 𝑥𝑛 = 2𝑛 possui o primeiro termo 𝑥1 = 2 · 1 = 2, o
segundo termo 𝑥2 = 2 · 2 = 4, e assim por diante. Esta sequência corresponde à lista ordenada

1 <https://www.obmep.org.br/banco.htm>

https://www.obmep.org.br/banco.htm
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dos números pares:

(2, 4, 6, 8, . . .)

Esse exemplo demonstra como, a partir de uma expressão formal, podemos determinar
uma sequência numérica específica. Isso nos leva às seguintes perguntas:

1. Toda lista ordenada pode ser gerada a partir de uma expressão formal?

2. É possível determinar a expressão formal de uma sequência conhecendo uma quantidade
suficientemente grande de seus termos?

Antes de responder a essas questões, vamos analisar alguns exemplos:
Exemplo 2.2: A sequência

(2,6,10,14,18,22, . . . )

pode ser gerada pela lei de formação dada por

𝑥𝑛 = 2 + 4𝑛.

Exemplo 2.3: A sequência dos números ímpares

(1, 3, 5, 7, 9, 11, . . . )

pode ser gerada pela lei de formação dada por

𝑥𝑛 = 2𝑛 − 1.

Exemplo 2.4: A sequência dos números primos

(2, 3, 5, 7, 11, 13, . . .)

Com isso, podemos concluir que nem toda lista ordenada possui uma lei explícita de
formação, como observado no exemplo 2.4. A sequência dos números primos, por exemplo,
está intimamente ligada a um dos célebres ’sete problemas do milênio’. O Instituto Clay de
Matemática oferece um prêmio de um milhão de dólares para quem resolver esse enigma, ou
seja, para quem encontrar uma ’fórmula’ que descreva de maneira precisa o comportamento
desses números. Segundo o Instituto Clay (Clay Mathematics Institute, 2000), os sete problemas
do milênio representam desafios matemáticos ainda em aberto, com exceção da Conjectura de
Poincaré, que foi resolvida por Grigori Perelman entre 2002 e 2003, tendo sua prova verificada e
confirmada pela comunidade matemática em 2006.
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2.2 Relações de Recorrências

Nesta seção, apresentaremos formalmente a definição das relações de recorrência, deta-
lhando suas principais características e propriedades. Além disso, serão discutidos exemplos
ilustrativos que demonstram a aplicação dessas relações em diferentes contextos, permitindo
uma compreensão mais profunda de sua utilidade na modelagem de problemas.

De acordo com (CARVALHO; MORGADO, 2013), podemos definir uma relação de
recorrência da seguinte forma:

Definição 2: Uma relação de recorrência é uma regra que define cada termo de uma
sequência a partir dos termos anteriores. Em outras palavras, ela expressa como cada novo termo
pode ser calculado como uma função dos termos já conhecidos da sequência.

O nome, relação de recorrência, manifesta a necessidade de recorrer a termos anteriores.

Exemplo 2.5: Números de Primos Menores que 𝑛

(0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4)

Note que, para determinar o número de primos menores que 𝑛, é suficiente saber se 𝑛− 1 é primo
e quantos primos menores que 𝑛 − 1 existem. Por outro lado, o fato de ainda não termos um
entendimento completo sobre a distribuição dos números primos nos permite concluir que não
existe uma relação de recorrência explícita e algébrica que descreva essa sequência.

Exemplo 2.6: Sequência de Fibonacci

(1, 1, 2, 3, 5, 8, 13, 21, . . .)

Note que, a partir do terceiro termo, todos os termos apresentados são dados pela soma dos dois
anteriores. Isso nos induz a concluir que os termos dessa sequência obedecem à seguinte relação:

𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−2, com 𝑥1 = 1 e 𝑥2 = 1.

Exemplo 2.7: Desconto Percentual e Preço com Desconto
Supondo que fizemos uma compra parcelada em 𝑛 pagamentos de valor fixo 𝑥 a uma taxa 𝑝 de
juros compostos, a sequência (𝑥1, . . . , 𝑥𝑛) de valores atualizados, mês a mês, de cada parcela
obedece à relação:

𝑥𝑛 =
𝑥𝑛−1
1 − 𝑝

.

Se 𝑥 = 900 e desejarmos antecipar o pagamento da segunda parcela, obtendo o desconto
dos juros, ou estender o prazo de quitação, os valores a serem pagos, considerando a taxa
𝑝 = 10%, serão:

(729, 810, 900, 1000, . . . ).
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Caso a taxa 𝑝 não seja fornecida, mas apenas os termos da sequência, podemos calculá-la
como segue:

𝑝 = 1 − 𝑥𝑛−1
𝑥𝑛

,

ou, equivalentemente,

𝑝 =
𝑥𝑛 − 𝑥𝑛−1

𝑥𝑛
.

Basta observar a diferença entre os valores consecutivos 𝑥𝑛 e 𝑥𝑛−1 e dividir pelo valor
atualizado 𝑥𝑛 para determinar a taxa de juros compostos.

Exemplo 2.8: Modelo de Crescimento Populacional Simples

𝑃𝑛 = (1+𝑟)·𝑃𝑛−1, com 𝑃0 sendo o quantitativo inicial da população e 𝑟 a taxa de crescimento.

Se 𝑃0 = 100 e 𝑟 = 0,05 (5% de crescimento), a sequência gerada será:

(100, 105, 110,25, 115,76, 121,55, . . . )

Observação: A equação de recorrência sozinha não define uma sequência numérica,
sendo necessário um ponto de partida. Por exemplo, na Sequência de Fibonacci, além da fórmula
de recorrência

𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−2 para 𝑛 ≥ 2,

é necessário definir os valores iniciais 𝑥1 = 1 e 𝑥2 = 1.

2.2.1 Sequências Numéricas Definidas Recursivamente

Sequências numéricas definidas recursivamente são aquelas em que cada termo é deter-
minado a partir de uma igualdade que o relaciona com um ou mais termos anteriores, denominada
equação de recorrência. No decorrer do texto, usaremos as expressões "lei de formação", "equação
de recorrência"e "fórmula de recorrência"como sinônimos, exceto em casos específicos que
exigem distinção.

Por exemplo, são sequências definida recursivamente as descritas nos exemplos 2.6, 2.7 e
2.8.

Por conveniência adotaremos como notação geral para uma relação de recorrência a
seguinte forma:

𝑥𝑛 = 𝑓 (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥𝑛−𝑘 )

onde:

1. 𝑥𝑛 é o termo 𝑛-ésimo na sequência;
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2. 𝑓 é uma função que define como o termo 𝑥𝑛 depende dos termos anteriores 𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥𝑛−𝑘 ;

3. 𝑘 é o número de termos anteriores que influenciam o termo 𝑥𝑛.

Sequências definidas por recorrência são amplamente utilizadas na matemática e em áreas
afins para modelar padrões naturais, algoritmos iterativos e processos dinâmicos que dependem
dos estados anteriores para determinar o próximo estado. Essa abordagem é fundamental para
compreender e prever o comportamento de sistemas que evoluem ao longo do tempo de acordo
com regras estabelecidas. Dentre os exemplos mais presentes em diversos contextos matemáticos
e científicos, destacam-se as renomadas sequências de Fibonacci, as progressões aritméticas e
as progressões geométricas. Estas duas últimas, que definiremos a seguir, além de modelarem
uma ampla variedade de processos e fenômenos, também são de grande utilidade no estudo das
“recorrências lineares de primeira ordem”, as quais constituem o objeto de estudo da Seção 2.4
deste texto.

Definição 3: Uma Progressão Aritmética (P.A.) é uma sequência de números em que a
diferença entre dois termos consecutivos é sempre constante, chamada de razão (𝑟) da P.A.

A definição recursiva de uma progressão aritmética (P.A.) é dada por:

𝑥1 = 𝑎

𝑥𝑛+1 = 𝑥𝑛 + 𝑟, ∀𝑛 ∈ N, 𝑛 ≥ 1

Onde:

1. 𝑥1 é o primeiro termo da sequência.

2. 𝑟 é a razão da P.A., que é a constante somada a cada termo para obter o próximo termo.

Ou seja, para todo 𝑛 ∈ N, 𝑥𝑛+1 − 𝑥𝑛 = 𝑟. Em outras palavras, uma P.A. é uma sequência
em que cada termo, a partir do segundo, é a soma do termo imediatamente anterior com uma
constante 𝑟 dada. Neste caso, se dois termos forem iguais, digamos 𝑥𝑘 = 𝑥𝑘+𝑝, então é possível
provar que a razão é nula e, portanto, todos os termos serão iguais. De fato, temos que:

𝑥𝑘+𝑝 − 𝑥𝑘+𝑝−1 = 𝑟,

𝑥𝑘+𝑝−1 − 𝑥𝑘+𝑝−2 = 𝑟,

...

𝑥𝑘+1 − 𝑥𝑘 = 𝑟.

Somando membro a membro, obtém-se 𝑥𝑘+𝑝 − 𝑥𝑘 = 𝑝𝑟 . Logo, 𝑝𝑟 = 0, donde 𝑟 = 0.

Exemplo 2.9: Progressão aritmética de razão 3

𝑥𝑛+1 = 𝑥𝑛 + 3
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A seguinte questão, adaptada do livro do Professor Elon Lages Lima (LIMA; AL., 2000),
exemplifica de forma clara uma aplicação de progressão aritmética.

Exemplo 2.10 O preço de um carro novo é de 𝑅$140.000,00 e diminui de 𝑅$ 1.000,00 a
cada ano de uso. Qual será o preço com 4 anos de uso?

Vamos resolver recursivamente o problema para determinar o preço do carro após 4 anos
de uso, onde o preço inicial do carro é de R$ 140.000,00 e diminui R$ 1.000,00 a cada ano.

O preço do carro após 4 anos de uso é dado recursivamente por:

𝑃1 = 140000 (preço inicial)

𝑃𝑛+1 = 𝑃𝑛 − 1000 ∀𝑛 ∈ N, 𝑛 ≥ 1

Calculando:

𝑃2 = 𝑃1 − 1000 = 140000 − 1000 = 139000

𝑃3 = 𝑃2 − 1000 = 139000 − 1000 = 138000

𝑃4 = 𝑃3 − 1000 = 138000 − 1000 = 137000

𝑃5 = 𝑃4 − 1000 = 138000 − 1000 = 136000

Portanto, o preço do carro após 4 anos de uso é de 𝑅$ 137.000,00.

Definição 4: Uma Progressão Geométrica (P.G.) é uma sequência de números em que
cada termo é obtido multiplicando o termo anterior por uma constante fixa, chamada razão. A
definição recursiva de uma Progressão Geométrica é dada por:

𝑥1 = 𝑏

𝑥𝑛+1 = 𝑞 · 𝑥𝑛, ∀𝑛 ∈ N, 𝑛 ≥ 1

Onde:

1. 𝑥1 é o primeiro termo da sequência.

2. 𝑞 é a razão da P.G., que é a constante pela qual cada termo é multiplicado para obter o
próximo termo.

Exemplo 2.11: Progressão geométrica de razão 3

𝑥𝑛+1 = 3𝑥𝑛
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Nesse exemplo, se o primeiro termo 𝑥1 é 2 e a razão 𝑞 é 3, então os termos da P.G. serão:

(2, 6, 18, 54, . . .)

Outra questão relevante pode ser destacada no livro do Professor Elon Lages Lima, onde
são abordados tópicos significativos relacionados à geometria métrica espacial e à porcentagem
(LIMA; AL., 2000).

Exemplo 2.12: Aumentando de 20% o raio da base de um cilindro de base circular e
diminuindo de 30% sua altura, de quanto variará seu volume?

Para resolver a questão de como varia o volume de um cilindro de base circular quando
o raio da base é aumentado em 20% e a altura é diminuída em 30%, vamos usar a fórmula do
volume do cilindro e aplicar as mudanças percentuais. A fórmula do volume de um cilindro é
𝑉 = 𝜋𝑟2ℎ, onde 𝑟 é o raio da base e ℎ é a altura.

Passo 1: fórmulas iniciais

Vamos definir as variáveis iniciais:

• 𝑟0: raio inicial

• ℎ0: altura inicial

• 𝑉0: volume inicial

O volume inicial é dado por:
𝑉0 = 𝜋𝑟2

0ℎ0

Passo 2: aplicação das variações percentuais

Vamos aplicar as variações percentuais ao raio e à altura:

• Novo raio 𝑟1 aumentado em 20%:

𝑟1 = 𝑟0 + 0,2𝑟0 = 1,2𝑟0

• Nova altura ℎ1 diminuída em 30%:

ℎ1 = ℎ0 − 0,3ℎ0 = 0,7ℎ0

Passo 3: novo volume do cilindro

O novo volume do cilindro 𝑉1 é dado por:

𝑉1 = 𝜋𝑟2
1ℎ1
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Substituindo 𝑟1 e ℎ1 na fórmula do volume:

𝑉1 = 𝜋(1,2𝑟0)2(0,7ℎ0)

𝑉1 = 𝜋(1,44𝑟2
0) (0,7ℎ0)

𝑉1 = 𝜋(1,44 · 0,7)𝑟2
0ℎ0

𝑉1 = 𝜋(1,008)𝑟2
0ℎ0

Passo 4: variação do volume

A variação do volume é a razão entre o novo volume e o volume inicial:

𝑉1
𝑉0

=
𝜋(1,008)𝑟2

0ℎ0

𝜋𝑟2
0ℎ0

𝑉1
𝑉0

= 1,008

Donde 𝑉1 −𝑉0 = 0,008𝑉0, ou seja, o volume aumenta em 0,8%.

2.3 Solução Geral de uma Recorrência

Nesta seção, definiremos a solução geral de uma relação de recorrência e daremos dois
exemplos.

Quando se tem uma relação de recorrência, um desafio importante é encontrar uma
fórmula fechada para o termo geral da sequência. Em outras palavras, busca-se uma expressão
que permita calcular qualquer termo da sequência diretamente, sem a necessidade de utilizar os
termos anteriores.

De acordo com (CARVALHO; MORGADO, 2013), podemos definir a solução geral para
uma relação de recorrência da seguinte forma:

Definição 5: A solução geral de uma recorrência é uma igualdade (ou fórmula fechada)
que descreve 𝑥𝑛 em função de 𝑛 e da(s) condição(ões) inicial(is).

Dessa maneira, a fórmula fechada permite calcular qualquer termo da sequência direta-
mente, sem a necessidade de recorrer aos termos anteriores. Enquanto que a fórmula recursiva
descreve a lei de formação de maneira iterativa, fornecendo uma regra para calcular cada termo
com base nos termos anteriores. Embora as fórmulas recursivas sejam práticas para calcular
termos consecutivos, elas podem ser ineficientes para termos distantes.
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Por exemplo, considerando a sequência (𝑥𝑛) definida de forma recursiva por

𝑥𝑛+1 = 2𝑥𝑛 + 4, com 𝑥1 = 0,

pode ser verificado que seus termos serão

(0, 4, 12, 28, 60, . . . ).

Mas qual seria o valor de 𝑥100?
Já no caso da sequência (𝑥𝑛) definida pela forma fechada:

𝑥𝑛 = 19𝑛2 − 𝑛 + (−1)𝑛,

pode ser verificado que os seus termos serão

(17, 75, 167, 301, . . . )

e que
𝑥100 = 19 · 1002 − 100 + (−1)100 = 190.000 − 100 + 1 = 189.901.

Na próxima seção, exploraremos de forma sistemática o processo de encontrar soluções
para as recorrências lineares de primeira ordem.

2.4 Recorrência Linear de Primeira Ordem

Na seção anterior, abordamos as relações de recorrência, discutindo tanto suas formas
recursiva quanto fechada. Neste trabalho, focaremos exclusivamente nas recorrências lineares; as
recorrências não lineares são conhecidas, mas não serão abordadas.

Esta seção é dedicada à determinação das soluções das recorrências lineares de primeira
ordem.

Definição 6: Dizemos que uma recorrência é linear de primeira ordem se ela for definida
por:

𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛 + 𝑔(𝑛)

onde 𝑓 (𝑛) e 𝑔(𝑛) são funções reais definidas nos números naturais. Se 𝑔(𝑛) = 0, dizemos
que a recorrência é homogênea, caso contrário, ela é não-homogênea.
Segue das definições que toda P.A. é uma recorrência linear de primeira ordem e que toda P.G. é
uma recorrência linear de primeira ordem homogênea. A seguir, listamos outros exemplos de
recorrências lineares de primeira ordem.

Exemplo 2.13: 𝑥𝑛+1 = 𝑛𝑥𝑛 (linear de primeira ordem homogênea)
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Exemplo 2.14: 𝑥𝑛+1 = 2𝑥𝑛 − 5 (linear de primeira ordem não-homogênea)

Exemplo 2.15: Dada a recorrência 𝑥𝑛+1 = 𝑛𝑥𝑛 com 𝑥1 = 1, vamos resolver essa equação,
isto é, obter sua forma fechada ou explicita.

Vamos começar escrevendo as relações até o n-ésimo caso:

𝑥2 = 1 · 𝑥1

𝑥3 = 2 · 𝑥2

𝑥4 = 3 · 𝑥3

...

𝑥𝑛 = (𝑛 − 1) · 𝑥𝑛−1

Daí, multiplicando membro a membro as igualdades acima, obtem-se:

𝑥1 · 𝑥2 · 𝑥3 · . . . · 𝑥𝑛 = 1 · 𝑥1 · 2 · 𝑥2 · . . . · (𝑛 − 1) · 𝑥𝑛−1

É importante destacar que essa multiplicação só é possível porque nenhum dos termos é
nulo.

Organizando, temos

𝑥1 · 𝑥2 · 𝑥3 · 𝑥4 · . . . · 𝑥𝑛 = 1 · 2 · 3 · . . . · (𝑛 − 1) · 𝑥1 · 𝑥2 · . . . · 𝑥𝑛−1

Dessa forma, chegamos a

𝑥𝑛 = (𝑛 − 1)! · 𝑥1

E como 𝑥1 = 1, logo

𝑥𝑛 = (𝑛 − 1)!

Esta é a forma fechada para a recorrência 𝑥𝑛+1 = 𝑛 · 𝑥𝑛 com 𝑥1 = 1. Ou seja, dizemos que
𝑥𝑛 = (𝑛 − 1)! é uma solução para a recorrência dada.

O fatorial de um número inteiro positivo 𝑛, denotado por "n!", é o produto de todos os
números inteiros positivos de 1 até 𝑛. Por exemplo, o fatorial de 5 é 5! = 5 · 4 · 3 · 2 · 1 = 120.

Exemplo 2.16: Dada a sequência (2, 6, 10, 14, ...) iremos achar sua equação de recorrência
e em seguida sua forma fechada. Observe que o termo inicial é igual a dois e cada termo posterior
é obtido somando-se sempre quatro. Logo podemos escrever
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𝑥𝑛+1 = 𝑥𝑛 + 4 com 𝑥1 = 2

O que fizemos foi modelar a sequência de forma recursiva. Agora vamos resolvê-la.

𝑥2 = 𝑥1 + 4

𝑥3 = 𝑥2 + 4

𝑥4 = 𝑥3 + 4
...

𝑥𝑛 = 𝑥𝑛−1 + 4

Daí, somando membro a membro as igualdades acima, chegamos a:

𝑥2 + 𝑥3 + 𝑥4 + . . . + 𝑥𝑛 = 𝑥1 + 𝑥2 + 𝑥3 + . . . + 𝑥𝑛−1 + 4 + 4 + 4 + . . . + 4

Como cada termo de 𝑥2 a 𝑥𝑛−1 aparece em cada lado da igualdade, podemos somar e
subtrair de forma a anular cada termo, ou seja, cancelamos os termos iguais. Além disso, temos
(𝑛 − 1) termos de 4. Logo,

𝑥𝑛 = 𝑥1 + (𝑛 − 1) · 4

Como 𝑥1 = 2, então

𝑥𝑛 = 2 + (𝑛 − 1) · 4, com 𝑛 ≥ 1.

Esta é a fórmula fechada que expressa o 𝑛-ésimo termo 𝑥𝑛 desta progressão aritmética em
função do primeiro termo 𝑥1 e da razão 𝑟 . Agora podemos facilmente determinar qualquer termo
da P.A. sem a necessidade de conhecer os termos anteriores. Por exemplo, o cálculo do 150º
termo pode ser feito da seguinte maneira: 𝑥150 = 2 + (150 − 1) · 4 = 2 + 149 · 4 = 2 + 596 = 598.
Portanto, o 150º termo é igual a 598.

De modo geral, podemos determinar o termo geral de uma progressão aritmética (P.A.)
definida recursivamente, aplicando a mesmas estratégia usada no exemplo 2.16.

Seja (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑥𝑛) uma sequência que representa uma P.A. de razão 𝑟. A
relação entre os termos consecutivos pode ser expressa pela equação de recorrência:

𝑥𝑛+1 = 𝑥𝑛 + 𝑟
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Sabemos que:
𝑥2 = 𝑥1 + 𝑟

𝑥3 = 𝑥2 + 𝑟

𝑥4 = 𝑥3 + 𝑟

...

𝑥𝑛 = 𝑥𝑛−1 + 𝑟

Generalizando, para o 𝑛-ésimo termo, temos:

𝑥𝑛 = 𝑥1 + (𝑛 − 1) · 𝑟.

Essa é a fórmula fechada que permite calcular diretamente qualquer termo da P.A., sem
a necessidade de conhecer os anteriores.

Seguindo a mesma estratégia deste exemplo, podemos provar a seguinte proposição:

Proposição 1: Uma solução para a recorrência

𝑥𝑛+1 = 𝑥𝑛 + 𝑔(𝑛)

é dada por
𝑥𝑛 = 𝑥1 + 𝑔(1) + 𝑔(2) + · · · + 𝑔(𝑛 − 1).

Demonstração:
Se 𝑥𝑛+1 = 𝑥𝑛 + 𝑔(𝑛) para todo 𝑛 ∈ N, então:

𝑥2 = 𝑥1 + 𝑔(1)

𝑥3 = 𝑥2 + 𝑔(2)
...

𝑥𝑛+1 = 𝑥𝑛−1 + 𝑔(𝑛 − 2)

𝑥𝑛 = 𝑥𝑛−1 + 𝑔(𝑛 − 1)

Somando membro a membro as igualdades acima, obtemos:

𝑥2 + 𝑥3 + · · · + 𝑥𝑛 = 𝑥1 + 𝑥2 + · · · + 𝑥𝑛−1 + 𝑔(1) + · · · + 𝑔(𝑛 − 1)

Donde:
𝑥𝑛 = 𝑥1 + 𝑔(1) + · · · + 𝑔(𝑛 − 1)

Exemplo 2.17: Soma dos ângulos internos de um polígono convexo
Começamos com o caso mais simples, que é um triângulo. Um triângulo tem três lados e

três ângulos internos, portanto denotaremos por 𝑆3.
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𝑆3 = 180◦

Para um polígono de 𝑛 lados, então 𝑆𝑛 é a soma dos seus ângulos internos. Se o polígono convexo
tem 𝑛 + 1, então a soma dos seus ângulos internos é:

𝑆𝑛+1 = 𝑆𝑛 + 180◦

Vamos achar a solução fechada, então escrevemos da seguinte forma:

𝑆3 = 180◦

𝑆4 = 𝑆3 + 180◦

𝑆5 = 𝑆4 + 180◦

𝑆6 = 𝑆5 + 180◦

...

𝑆𝑛−1 = 𝑆𝑛−2 + 180◦

𝑆𝑛 = 𝑆𝑛−1 + 180◦

Somando ambos os lados da equação, chegamos a:

𝑆3 + 𝑆4 + 𝑆5 + 𝑆6 + . . . + 𝑆𝑛 = 𝑆3 + 𝑆4 + 𝑆5 + 𝑆6 + . . . + 𝑆𝑛−1 + 180◦ + 180◦ + . . . + 180◦

Como temos 𝑛 − 2 termos de 180◦, logo chegamos na seguinte solução fechada:

𝑆𝑛 = (𝑛 − 2) · 180◦

Exemplo 2.18: Problema adaptado da Obmep - sequência de bolinhas

Figura 1 – Sequência de bolinhas

Fonte: Banco de questões OBMEP
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Lúcia notou que cada número da sequência

(1, 3, 6, 10, . . .)

pode ser modelado por meio de um conjunto de bolinhas que, dispostas convenientemente,
formam um triângulo, conforme ilustra a figura 1.

Seguindo o mesmo padrão, quantas bolinhas terá o triângulo associado ao décimo termo
dessa sequência numérica?

Vamos modelar o problema recursivamente e em seguida achar a solução fechada.
Note que podemos escrever seus termos como:

𝑥1 = 1

𝑥2 = 3

𝑥3 = 6

𝑥4 = 10
...

Note que a sequência é dada pela quantidade anterior e o número da posição atual, logo:

𝑥1 = 1,

𝑥2 = 𝑥1 + 2,

𝑥3 = 𝑥2 + 3,

𝑥4 = 𝑥3 + 4,
...

𝑥𝑛 = 𝑥𝑛−1 + 𝑛.

O que fizemos foi modelar o problema de forma recursiva. Agora, a Proposição 1 garante
a seguinte solução:

𝑥𝑛 = 1 + 2 + 3 + 4 + . . . + 𝑛.

Isto é, a solução corresponde à soma de todos os números naturais de 1 até 𝑛. No caso
específico em questão, como 𝑛 = 10, a soma resulta em 55 bolinhas.

Para o caso geral, ou seja, a soma de 1 até 𝑛, apresentaremos a solução no exemplo seguinte.

Exemplo 2.19: Soma dos n primeiros números naturais
Considere a sequência (1, 2, 3, 4, 5, ..., 𝑛), portanto uma sequência finita de números naturais em
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que o primeiro termo é 1 e o n-ésimo termo é n. Vamos achar a forma fechada para soma de 1 até
n (a soma dos n primeiros termos de uma P.A. de razão 1), isto é, 1 + 2 + 3 + ... + 𝑛.

Vamos dar o resultado para 1 + 2 + 3 + ... + 𝑛 sem ir somando termo a termo, o que seria
muito cansativo e nada produtivo.

Chamamos de 𝑆𝑛 o resultado da soma. Podemos escrever 𝑆𝑛 de duas maneiras.

𝑆𝑛 = 1 + 2 + 3 + · · · + 𝑛

𝑆𝑛 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + · · · + 1

Se somarmos essas duas expressões, obtemos:

2𝑆𝑛 = 1 + 2 + 3 + · · · + 𝑛 + 𝑛 + (𝑛 − 1) + (𝑛 − 2) + · · · + 1

logo,

2𝑆𝑛 = (1 + 𝑛) + (2 + (𝑛 − 1)) + (3 + (𝑛 − 2)) + · · · + ((𝑛 − 1) + 2) + (𝑛 + 1)

Podemos reorganizar os termos desta expressão, obtendo:

2𝑆𝑛 = (1 + 𝑛) + (2 + (𝑛 − 1)) + (3 + (𝑛 − 2)) + · · · + ((𝑛 − 1) + 2) + (𝑛 + 1)

Como há 𝑛 termos iguais a (1 + 𝑛) nesta expressão, logo,

2𝑆𝑛 = 𝑛(𝑛 + 1)

dividindo ambos os lados por 2, obtemos:

𝑆𝑛 =
𝑛(𝑛 + 1)

2
Esta é a fórmula para a soma dos 𝑛 primeiros números naturais. Podemos usá-la para

calcular a soma de qualquer sequência de números naturais.

O resultado mencionado é atribuído ao matemático alemão Johann Carl
Friedrich Gauss (1777–1855). Acredita-se que o problema tenha sido proposto por
seu professor quando Gauss tinha apenas 10 anos de idade. O desafio consistia em

calcular a soma de todos os números naturais de 1 a 100. Utilizando o método
descrito anteriormente, Gauss prontamente encontrou a resposta, que é 5050. Sua

habilidade em resolver o problema com eficiência e precisão demonstrou seu
notável talento matemático desde uma idade tão jovem.

Exemplo 2.20: Soma dos 𝑛 termos de uma P.A. de razão 𝑟

Dada uma progressão aritmética (P.A.) de razão 𝑟, temos os termos:
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𝑥2 = 𝑥1 + 𝑟, 𝑥3 = 𝑥1 + 2𝑟, 𝑥4 = 𝑥1 + 3𝑟, . . . , 𝑥𝑛 = 𝑥1 + (𝑛 − 1)𝑟.

A soma dos primeiros 𝑛 termos da P.A., denotada por 𝑆𝑛, pode ser expressa como:

𝑆𝑛 = 𝑥1 + 𝑥2 + 𝑥3 + · · · + 𝑥𝑛.

Pela Proposição 1, obtemos a seguinte igualdade:

𝑆𝑛+1 = 𝑥1 + · · · + 𝑥𝑛 + 𝑥𝑛+1 = 𝑆𝑛 + 𝑥𝑛+1.

Além disso, podemos expressar 𝑆𝑛 em termos do primeiro termo 𝑥1 e da razão 𝑟:

𝑆𝑛 = 𝑆1 + (𝑥1 + 𝑟) + (𝑥1 + 2𝑟) + · · · +
(
𝑥1 + (𝑛 − 1)𝑟

)
.

Simplificando, temos:

𝑆𝑛 = 𝑆1 + (𝑛 − 1)𝑥1 +
(𝑛 − 1)𝑛

2
𝑟.

Finalmente, como 𝑆1 = 𝑥1, a expressão se reduz a:

𝑆𝑛 = 𝑛𝑥1 +
(𝑛 − 1)𝑛

2
𝑟.

Outra forma de expressar esta soma é:

𝑆𝑛 =
𝑛[2𝑥1 + (𝑛 − 1)𝑟]

2
=
𝑛(𝑥1 + 𝑥𝑛)

2
.

Exemplo 2.21: Termo geral de uma P.G.
Vamos achar o termo geral da P.G. aplicando a mesma estratégia adotada no exemplo 15..

𝑥2 = 𝑞𝑥1

𝑥3 = 𝑞𝑥2

𝑥4 = 𝑞𝑥3

...

𝑥𝑛 = 𝑞𝑥𝑛−1

logo,
𝑥2 · 𝑥3 · 𝑥4 · . . . · 𝑥𝑛 = 𝑞 · 𝑞 · 𝑞 · . . . · 𝑞 · 𝑥1 · 𝑥2 · . . . · 𝑥𝑛−1
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Portanto,
𝑥𝑛 = 𝑥1 · 𝑞 (𝑛−1)

Exemplo 2.22: Dada a sequência (1, 2, 4, 8, 16, 32, ...), vamos achar a equação de
recorrência e em seguida sua forma fechada.

Note que o primeiro termo é dado por 𝑥1 = 1. Além disso, a razão entre dois termos
consecutivos é:

𝑥𝑛

𝑥𝑛−1
= 2,

o que nos permite escrever a relação recursiva:

𝑥𝑛 = 2𝑥𝑛−1.

O termo geral dessa P.G. pode ser expresso pela fórmula:

𝑥𝑛 = 𝑥1 · 𝑞𝑛−1,

Substituindo os valores dados 𝑥1 = 1 e 𝑞 = 2, obtemos:

𝑥𝑛 = 2𝑛−1.

Exemplo 2.23: Soma dos 𝑛 termos de uma P.G. finita
Consideremos uma progressão geométrica (P.G.) (𝑥𝑛) de razão 𝑞 e definamos

𝑆𝑛 = 𝑥1 + 𝑥2 + · · · + 𝑥𝑛.

Então,
𝑆𝑛+1 = 𝑆𝑛 + 𝑥𝑛+1 = 𝑆𝑛 + 𝑥1𝑞

𝑛.

Logo, pela Proposição 1, temos que

𝑆𝑛 = 𝑆1 +
[
𝑥1𝑞 + 𝑥1𝑞

2 + · · · + 𝑥1𝑞
𝑛−1]

= 𝑥1 + 𝑥1
[
𝑞 + 𝑞2 + · · · + 𝑞𝑛−1]

= 𝑥1
[
1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑛−1]

= 𝑥1
𝑞𝑛 − 1
𝑞 − 1

.

Exemplo 2.24: Recorrência linear de primeira ordem não-homogênea
Considere a recorrência 𝑥𝑛+1 = 2𝑥𝑛 − 5.

Note que a recorrência é não-homogênea e tem uma constante diferente de 1 multiplicando o
termo 𝑥𝑛.
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𝑥2 = 2𝑥1 − 5

𝑥3 = 2𝑥2 − 5

𝑥4 = 2𝑥3 − 5
...

𝑥𝑛−2 = 2𝑥𝑛−3 − 5

𝑥𝑛−1 = 2𝑥𝑛−2 − 5

𝑥𝑛 = 2𝑥𝑛−1 − 5

Aqui há um desafio adicional: além de termos uma constante multiplicando os termos 𝑥1, 𝑥2, ..., 𝑥𝑛−1,
também temos a soma de (𝑛 − 1) termos iguais a 5. No entanto, podemos resolver isso com uma
abordagem cuidadosa.

Para simplificar o processo, multiplicamos por 2 o termo 𝑥𝑛−1 do lado esquerdo da
igualdade. Isso nos permite cancelar o termo 𝑥𝑛−1 do lado direito, enquanto o termo 2𝑥𝑛−2 se
transforma em 2 · 2𝑥𝑛−2 ou 22𝑥𝑛−2. Procedemos de baixo para cima, garantindo que cancelamos
os termos de ambos os lados da equação até que reste apenas 𝑥𝑛 no lado esquerdo. É importante
notar que não há prejuízo em realizar essas operações, pois cada lado da igualdade é multiplicado
por um valor não nulo constante. Dessa maneira, chegamos a:

2𝑛−2𝑥2 = 2𝑛−1𝑥1 − 2𝑛−2 · 5

2𝑛−3𝑥3 = 2𝑛−2𝑥2 − 2𝑛−3 · 5
...

22𝑥𝑛−2 = 23𝑥𝑛−3 − 22 · 5

2𝑥𝑛−1 = 22𝑥𝑛−2 − 2 · 5

𝑥𝑛 = 2𝑥𝑛−1 − 5

Portanto,

𝑥𝑛 = 2𝑛−1𝑥1 − 2𝑛−2 · 5 − 2𝑛−3 · 5 − . . . − 22 · 5 − 2 · 5 − 5

= 2𝑛−1𝑥1 − (2𝑛−2 · 5 + 2𝑛−3 · 5 + . . . + 22 · 5 + 2 · 5 + 5)
= 2𝑛−1𝑥1 − 5 · (2𝑛−2 + 2𝑛−3 + . . . + 22 + 2 + 1)

Colocamos o 5 em evidência e notamos que a soma dentro dos parênteses é uma progressão
geométrica. Aplicamos a fórmula da soma de uma P.G finita. Como o primeiro termo é 1, a razão
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é 2 e o número de termos é (𝑛 − 1), temos:

𝑥𝑛 = 2𝑛−1𝑥1 − 5 ·
(
2𝑛−1 − 1

2 − 1

)
= 2𝑛−1𝑥1 − 5 · (2𝑛−1 − 1)
= 2𝑛−1𝑥1 − 5 · 2𝑛−1 + 5

= 2𝑛−1𝑥1 − 2𝑛 + 5

Note que o termo 𝑥1 não foi dado, mas pode ser escolhido livremente para definir a
sequência.

A seguir, demonstraremos um teorema que permite reduzir ou transformar uma recorrên-
cia linear de primeira ordem não homogênea para a forma 𝑥𝑛+1 = 𝑥𝑛 + 𝑓 (𝑛).

De acordo com (CARVALHO; MORGADO, 2013), temos o seguinte teorema:

Teorema 1: Se 𝑎𝑛 é uma solução não-nula da recorrência 𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛, então a
substituição 𝑥𝑛 = 𝑎𝑛𝑦𝑛 transforma a recorrência 𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛 + 𝑔(𝑛) em

𝑦𝑛+1 = 𝑦𝑛 +
𝑔(𝑛)
𝑓 (𝑛)𝑎𝑛

Demonstração:
A substituição 𝑥𝑛 = 𝑎𝑛𝑦𝑛 transforma a equação

𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛 + 𝑔(𝑛)

em
𝑎𝑛+1𝑦𝑛+1 = 𝑓 (𝑛)𝑎𝑛𝑦𝑛 + 𝑔(𝑛).

Como 𝑎𝑛 é uma solução não-nula da equação homogênea associada, isto é,

𝑎𝑛+1 = 𝑓 (𝑛)𝑎𝑛,

podemos reescrever a equação como

𝑓 (𝑛)𝑎𝑛𝑦𝑛+1 = 𝑓 (𝑛)𝑎𝑛𝑦𝑛 + 𝑔(𝑛).

Dividindo ambos os lados por 𝑓 (𝑛)𝑎𝑛 (supondo 𝑓 (𝑛)𝑎𝑛 ≠ 0), obtemos

𝑦𝑛+1 = 𝑦𝑛 +
𝑔(𝑛)
𝑓 (𝑛)𝑎𝑛

.
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O teorema fornece uma solução particular para a recorrência, desconsiderando inicial-
mente a parte não homogênea. Em seguida, estabelece uma relação entre essa solução particular
e a solução geral da recorrência completa. No entanto, o teorema não garante a existência de
uma solução para a parte homogênea. Caso ela exista, podemos utilizar essa abordagem para
simplificar o cálculo da solução geral.

Solução para a Recorrência 𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛
Encontrar uma solução explícita para uma recorrência da forma 𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛 nem

sempre é viável, pois isso depende da forma da função 𝑓 (𝑛) e da estrutura da equação. O Teorema
1 oferece um método para abordar recorrências não-homogêneas do tipo 𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛 + 𝑔(𝑛),
usando a substituição 𝑥𝑛 = 𝑎𝑛𝑦𝑛 para transformar a equação original em uma forma mais simples.
Contudo, a aplicabilidade desse método depende de certas condições, e nem sempre é possível
encontrar uma solução explícita.

Se 𝑥𝑛+1 = 𝑓 (𝑛)𝑥𝑛 para todo 𝑛 ∈ N, então

𝑥2 = 𝑓 (1)𝑥1,

𝑥3 = 𝑓 (2)𝑥2,

...

𝑥𝑛−1 = 𝑓 (𝑛 − 2)𝑥𝑛−2,

𝑥𝑛 = 𝑓 (𝑛 − 1)𝑥𝑛−1.

Tomando a multiplicação dos termos em ambos os membros, temos:

𝑥2𝑥3 · · · 𝑥𝑛 = 𝑥1 𝑓 (1)𝑥1 𝑓 (2)𝑥2 · · · 𝑓 (𝑛 − 1)𝑥𝑛−1.

Donde:
𝑥𝑛 = 𝑥1 𝑓 (1) 𝑓 (2) · · · 𝑓 (𝑛 − 1).

Em particular, se 𝑓 (𝑛) = 𝑞, então:

𝑥𝑛 = 𝑥1𝑞
𝑛−1.

Exemplo 2.25: Achar a solução para a recorrência 𝑥𝑛+1 = 5𝑥𝑛 − 1, com 𝑥1 = 3.
Observe que sem a aplicação do Teorema 1 teríamos algumas dificuldades. Vamos achar

a solução 𝑎𝑛 para 𝑥𝑛+1 = 5𝑥𝑛.
Segue do Exemplo 2.21 que 𝑥𝑛 = 5𝑛−1 é uma solução.
Substituindo 𝑥𝑛 = 5𝑛−1𝑦𝑛, segue do Teorema 1 que:

𝑦𝑛+1 = 𝑦𝑛 − 5−𝑛.
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Agora, pela Proposição 1, temos que

𝑦𝑛 = 𝑦1 −
(
5−1 + 5−2 + 5−3 + · · · + 5−(𝑛−1)

)
.

Como temos a soma dos termos de uma progressão geométrica finita, podemos usar a
fórmula para a soma de uma P.G. finita. A soma da progressão geométrica 𝑆𝑛 é dada por:

𝑆𝑛 =
𝑥1 · (𝑞𝑛 − 1)

𝑞 − 1
.

onde 𝑥1 = 5−1 e 𝑞 = 5−1.
Assim, a soma dos termos da progressão geométrica até o (𝑛 − 1)-ésimo termo é:

𝑦𝑛 = 𝑦1 −
5−1 ((5−1)𝑛−1 − 1

)
5−1 − 1

.

Agora, simplificando o denominador 5−1 − 1 = −4
5 , obtemos:

𝑦𝑛 = 𝑦1 −
5−1

((
1
5

)𝑛−1
− 1

)
−4

5
.

Multiplicando o numerador e o denominador por −5 para eliminar o denominador
negativo:

𝑦𝑛 = 𝑦1 +

(
1
5

)𝑛−1
− 1

4
.

Portanto, a solução de 𝑦𝑛 é dada por:

𝑦𝑛 = 𝑦1 +

(
1
5

)𝑛−1
− 1

4
.

Como 𝑥1 = 3, substituímos na expressão 𝑥1 = 51−1𝑦1, o que resulta em 𝑦1 = 3. Logo,

𝑦𝑛 = 3 +

(
1
5

)𝑛−1
− 1

4
.

Finalmente, substituímos 𝑦𝑛 na expressão de 𝑥𝑛 = 5𝑛−1𝑦𝑛, resultando na solução geral
para 𝑥𝑛:

𝑥𝑛 = 5𝑛−1 ©­­«3 +

(
1
5

)𝑛−1
− 1

4
ª®®¬ .

Exemplo 2.26: Determinar a solução da recorrência 𝑥𝑛+1 = 3𝑥𝑛 + 3𝑛, com 𝑥1 = 2.
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Para resolver a recorrência, aplicaremos o Teorema 1. Inicialmente, determinamos a
solução da parte homogênea, ou seja, 𝑥𝑛+1 = 3𝑥𝑛.

A solução da parte homogênea é dada por:

𝑥𝑛 = 3𝑛−1.

Esta solução é característica de uma progressão geométrica de razão 3, conforme
apresentado no Exemplo 2.21.

Agora, aplicamos a substituição 𝑥𝑛 = 3𝑛−1𝑦𝑛 na recorrência original:

3𝑛𝑦𝑛+1 = 3𝑛𝑦𝑛 + 3𝑛.

Dividindo ambos os lados por 3𝑛, temos:

𝑦𝑛+1 = 𝑦𝑛 + 1.

A relação 𝑦𝑛+1 = 𝑦𝑛 + 1 descreve uma progressão aritmética de razão 1. A solução geral
para 𝑦𝑛 é:

𝑦𝑛 = 𝑦1 + (𝑛 − 1).

Sabendo que 𝑥1 = 2, substituímos na expressão 𝑥1 = 31−1𝑦1, o que resulta em 𝑦1 = 2.
Logo,

𝑦𝑛 = 2 + (𝑛 − 1) = 𝑛 + 1.

Substituímos 𝑦𝑛 na expressão 𝑥𝑛 = 3𝑛−1𝑦𝑛 para obter a solução geral:

𝑥𝑛 = 3𝑛−1(𝑛 + 1).

A solução geral da recorrência é:

𝑥𝑛 = (𝑛 + 1) · 3𝑛−1.

Exemplo 2.27: Modelagem de População de Bactérias
Suponha que a população inicial de bactérias seja de 100 indivíduos, e a cada hora, a população
dobra devido à alta taxa de reprodução das bactérias.

A recorrência que modela o crescimento da população de bactérias é:

𝑏𝑛+1 = 2 · 𝑏𝑛

com a condição inicial:

𝑏0 = 100

Esta recorrência descreve que a cada hora, o número de bactérias é multiplicado por 2,
refletindo um crescimento exponencial da população.
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Para encontrar a solução fechada, observamos o padrão de crescimento:

𝑏0 = 100

𝑏1 = 2 · 𝑏0 = 2 · 100 = 200

𝑏2 = 2 · 𝑏1 = 2 · 200 = 400

𝑏3 = 2 · 𝑏2 = 2 · 400 = 800
...

𝑏𝑛 = 2 · 𝑏𝑛−1

Aplicando as técnicas anteriores, chegamos a:

𝑏𝑛 = 100 · 2𝑛

Neste ponto, estabelecemos uma sólida base para avançarmos em direção a aplicações
que envolvem sequências numéricas, progressões aritméticas e geométricas, problemas de
geometria, matemática financeira e as Recorrências Lineares de Primeira Ordem. No entanto,
é importante ressaltar que este é apenas o começo de uma jornada mais abrangente no estudo
das recorrências lineares. Existem ainda muitos aspectos a serem explorados e aprofundados
nesse campo fascinante da matemática, que continuará a enriquecer nosso entendimento e nossa
capacidade de resolver uma variedade de problemas.

No próximo capítulo, exploraremos três aplicações práticas das recorrências lineares de
primeira ordem: a Torre de Hanói, com estratégias recursivas para mover discos; a formação
de hexágonos regulares com moedas; e o jogo das garrafas coloridas, inspirado no Water Sort
Puzzle, que organiza líquidos de cores diferentes com o mínimo de movimentos. Este último será
proposto como uma atividade lúdica para introduzir ou reforçar o conceito de recorrências.
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3 Aplicações

Neste capítulo, discutiremos três aplicações das recorrências lineares de primeira ordem.
Na primeira seção, analisaremos o problema da Torre de Hanói, um problema clássico que é
frequentemente usado para ilustrar conceitos de recursão. Na segunda seção, consideraremos um
problema com moedas que, quando justapostas, formam um hexágono. É um problema muito
interessante que também pode ser resolvido usando recorrências lineares de primeira ordem.
Finalmente, na terceira seção, analisaremos um problema inspirado em tendências recentes de
jogos eletrônicos, que envolve a mistura de cores em garrafas. O objetivo é determinar o número
mínimo de movimentos necessários para que cada garrafa contenha apenas uma cor.

3.1 Problema da Torre de Hanói

A lenda da torre de Hanói (SILVA, 2015) conta a história de um templo hindu, localizado
no centro do mundo. Nesse templo, havia três hastes de diamante, e em uma delas havia 64
discos de ouro, dispostos em ordem decrescente, do maior para o menor.

Segundo a lenda, o deus Brahma encarregou os monges do templo de transferir os discos
para outra haste, seguindo as seguintes regras:

• apenas um disco pode ser movido de cada vez

• um disco maior nunca pode ser colocado sobre um disco menor

Os monges foram informados de que, quando todos os discos fossem transferidos para a
haste correta, o templo desmoronaria e o mundo acabaria.

Figura 2 – Torre de Hanói

Fonte: Dados do autor
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Solução recursiva

Inicialmente observe que não importa em qual haste (torre ou pino) vamos colocar todos
os discos. Lembre-se também que nenhum disco menor poderá ficar por baixo de um maior
(diâmetro maior), além disso só podemos movimentar um disco por vez e estaremos buscando o
número mínimo de movimentos. O que vamos fazer é modelar o problema recursivamente, isto é,
achar uma relação de recorrência e em seguida achar sua forma fechada.

Casos Iniciais

1. Com um disco fazemos apenas um movimento, observe:

Figura 3 – Movimento com 1 disco

Fonte: Dados do autor

2. Com dois discos fazemos três movimentos, observe:

Figura 4 – Movimentos com 2 discos

Fonte: Dados do autor

3. Com três discos fazemos sete movimentos, observe:

Figura 5 – Movimentos com 3 discos

Fonte: Dados do autor

É importante, a partir desse momento, construirmos uma tabela para cada caso.
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Tabela 1 – Tabela de movimentos mínimos para casos de 1 a 3 discos

Quantidade de discos (peças) Quantidade mínimas de movimentos
1 1
2 3
3 7

Fonte: Dados do autor

Vamos agora imaginar o caso em que se tem quatro discos. Observe que com três
peças fazemos no mínimo sete movimentos, mas como ainda temos mais um disco falta agora
movimentar esse disco para outra haste. Logo que fizermos esse movimentos com o quarto disco
ainda precisaremos de mais sete movimentos. Logo o total de movimentos será de 7 + 1 + 7,
totalizando quinze movimentos, no mínimo. Preenchendo a tabela 2, temos:

Tabela 2 – Tabela de movimentos mínimos para casos de 1 a 4 discos

Quantidade de discos (peças) Quantidade mínimas de movimentos
1 1
2 3
3 7
4 15

Fonte: Dados do autor

Agora vamos analisar o caso em que haja cinco discos. Utilizando a ideia de recorrência,
perceba que para movimentar quatro discos precisamos de quinze movimentos, pelo menos.
Como temos mais um disco, logo vamos precisar de 15 + 1 + 15 movimentos. Portanto, nossa
tabela 3 fica assim:

Tabela 3 – Tabela de movimentos mínimos para casos de 1 a 5 discos

Quantidade de discos Quantidade mínimas de movimentos
1 1
2 3
3 7
4 15
5 31

Fonte: Dados do autor

Analisando o caso em que temos 𝑛 discos:
Observe que com 𝑛 − 1 discos fazemos no mínimo 𝑥𝑛−1 movimentos. Como sobrou um disco
ainda precisaremos de mais um movimento e em seguida precisamos movimentar os 𝑛− 1 discos,
que representamos por 𝑥𝑛−1.

Modelando o problema, concluímos que para movimentar 𝑛 discos a equação de recor-
rência fica:
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𝑥𝑛 = 2𝑥𝑛−1 + 1, com 𝑥1 = 1.

Usando a fórmula recursiva
Vamos fazer os cálculos utilizando a equação de recorrência 𝑥𝑛 = 2𝑥𝑛−1 + 1, 𝑥1 = 1:

𝑥1 = 1

𝑥2 = 2𝑥1 + 1 = 2 · 1 + 1 = 3

𝑥3 = 2𝑥2 + 1 = 2 · 3 + 1 = 7

𝑥4 = 2𝑥3 + 1 = 2 · 7 + 1 = 15

𝑥5 = 2𝑥4 + 1 = 2 · 15 + 1 = 31

𝑥6 = 2𝑥5 + 1 = 2 · 31 + 1 = 63

Observe que 𝑥𝑛−1 representa o termo anterior e também uma quantidade mínima para
movimentar 𝑛 − 1 discos. Construindo a tabela com a fórmula recursiva, temos:

Tabela 4 – Tabela de movimentos mínimos calculados com a fórmula recursiva

Fórmula recursiva (𝑥𝑛 = 2𝑥𝑛−1 + 1) Quantidade mínimas de movimentos
𝑥1 1
𝑥2 3
𝑥3 7
𝑥4 15
𝑥5 31
𝑥6 63

Fonte: Dados do autor

Solução fechada

Agora, aplicando a Proposição 1 e o Teorema 1, podemos transformar a recorrência
original 𝑥𝑛+1 = 2𝑥𝑛 + 1 com a substituição 𝑥𝑛 = 𝑎𝑛𝑦𝑛, onde 𝑎𝑛 = 2𝑛−1. Substituímos na fórmula
do teorema:

𝑦𝑛+1 = 𝑦𝑛 +
𝑔(𝑛)
𝑓 (𝑛)𝑎𝑛

.

Nesse caso, 𝑓 (𝑛) = 2, 𝑔(𝑛) = 1, e 𝑎𝑛 = 2𝑛−1, então:

𝑦𝑛+1 = 𝑦𝑛 +
1

2 · 2𝑛−1 = 𝑦𝑛 +
1
2𝑛

.

Pela Proposição 1, temos que:

𝑦𝑛 = 𝑦1 +
1
21 + 1

22 + 1
23 + · · · + 1

2𝑛−1 .

Essa expressão corresponde à soma dos 𝑛 primeiros termos de uma progressão geométrica.
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Utilizando o resultado do Exemplo 2.23, a soma 𝑆𝑛 dos 𝑛 primeiros termos dessa
progressão é dada por:

𝑆𝑛 =

1
2 ·

((
1
2

)𝑛−1
− 1

)
1
2 − 1

= 1 − 1
2𝑛−1 .

Adicionando o termo inicial 𝑦1 à soma 𝑆𝑛, obtemos:

𝑦𝑛 = 𝑦1 + 𝑆𝑛 = 𝑦1 + 1 − 1
2𝑛−1 .

Substituindo 𝑦𝑛 na expressão para 𝑥𝑛, temos:

𝑥𝑛 = 𝑎𝑛𝑦𝑛 = 2𝑛−1 ·
(
𝑦1 + 1 − 1

2𝑛−1

)
= 2𝑛−1𝑦1 + 2𝑛−1 − 2𝑛−1

2𝑛−1 = 2𝑛−1𝑦1 + 2𝑛−1 − 1.

Para determinar o valor de 𝑦1, utilizamos a condição inicial 𝑥1 = 1:

𝑥1 = 𝑎1𝑦1 = 20 · 𝑦1 = 1 =⇒ 𝑦1 = 1.

Substituindo 𝑦1 = 1 na expressão para 𝑥𝑛, obtemos:

𝑥𝑛 = 2𝑛−1 · 1 + 2𝑛−1 − 1 = 2𝑛 − 1.

Portanto, a solução da recorrência é:

𝑥𝑛 = 2𝑛 − 1.

Construindo a tabela com a fórmula fechada, obtemos os seguintes resultados:

Tabela 5 – Tabela de movimentos mínimos calculados com a fórmula fechada

Fórmula fechada (2𝑛 − 1) Quantidade mínimas de movimentos
21 − 1 1
22 − 1 3
23 − 1 7
24 − 1 15

. .

. .

. .
264 − 1 18.446.744.073.709.551.615

Fonte: Dados do autor

Jogo On-line da Torre de Hanói
Há uma possibilidade de jogar online a Torre de Hanói através do site somatema-

tica.com.br1. É uma brincadeira bastante divertida em que qualquer um pode testar na prática
tudo que fizemos até agora a respeito da Torre de Hanói.
1 <https://www.somatematica.com.br/jogos/hanoi/>

https://www.somatematica.com.br/jogos/hanoi/


Capítulo 3. Aplicações 42

3.2 Problema das Moedas em Hexágonos Regulares

Imagine um conjunto de moedas com diâmetros iguais, pode ser moedas de um real, por
exemplo. O problema em questão envolve dispor essas moedas em um tabuleiro de maneira a criar
hexágonos. A primeira moeda é posicionada no centro do tabuleiro, e as moedas subsequentes
são dispostas ao seu redor, configurando assim a geometria de um hexágono. Essa aplicação pode
ser encontrada na obra de (HUNTER, 2011).

Figura 6 – Hexágono regular

Fonte: Dados do autor

Um hexágono é uma figura plana composta por seis lados. Quando é regular, todos os
seus lados possuem a mesma medida, ou seja, são congruentes. Assim, um hexágono regular é
uma figura plana com seis lados de igual comprimento.

Solução recursiva

Observe a figura abaixo:

Figura 7 – Hexágono regular formado por 7 moedas

Fonte: Dados do autor
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Nesse caso, temos um hexágono formado por sete moedas e que tem duas moedas em
cada lado. Observe a figura 8:

Figura 8 – Hexágono regular formado por 19 moedas

Fonte: Dados do autor

Note que temos agora um hexágono cujo lado tem três moedas e que é formado por
dezenove moedas.

É importante, como nos exemplos anteriores, fazermos uma tabela para organizarmos os
dados.

Tabela 6 – Tabela da formação do hexágono regular com 19 moedas

Moedas em cada lado Total de moedas
2 7
3 19
Fonte: Dados do autor

Agora, podemos tentar formar um hexágono regular usando quatro moedas de lado.

Note que usamos trinta e sete moedas.

Preenchendo a tabela, temos:

Podemos, convenientemente, considerar que uma única moeda forma um hexágono.
Para construir o próximo hexágono, de lado dois, necessitamos de 7 moedas; já para o hexá-
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Figura 9 – Hexágono regular formado por 37 moedas

Fonte: Dados do autor

Tabela 7 – Tabela da formação do hexágono regular com 37 moedas

Moedas em cada lado Total de moedas
2 7
3 19
4 37
. .
. .
. .
Fonte: Dados do autor

gono de lado três, são requeridas 19 moedas e, por fim, para o hexágono de lado quatro, 37 moedas.

Considerando a sequência:
(1, 7, 19, 37, ...)

Assim, note que a sequência pode ser dada por:

𝑥1 = 1

𝑥2 = 𝑥1 + 6 · 1 = 1 + 6 = 7

𝑥3 = 𝑥2 + 6 · 2 = 7 + 12 = 19

𝑥4 = 𝑥3 + 6 · 3 = 19 + 18 = 37

Dessa forma, podemos escrever a relação de recorrência da forma:

𝑥𝑛 = 𝑥𝑛−1 + 6 · (𝑛 − 1), com 𝑥1 = 1. Sendo 𝑛 o número de moedas em cada lado.
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Solução fechada

Dada a recorrência:

𝑥𝑛 = 𝑥𝑛−1 + 6 · (𝑛 − 1),

ou ainda,
𝑥𝑛+1 = 𝑥𝑛 + 6 · 𝑛,

com a condição inicial 𝑥1 = 1, aplicamos a Proposição 1, que nos fornece a solução na
forma:

𝑥𝑛 = 𝑥1 + 𝑔(1) + 𝑔(2) + 𝑔(3) + · · · + 𝑔(𝑛 − 1).

Substituindo 𝑔(𝑘) = 6 · 𝑘 , obtemos:

𝑥𝑛 = 1 + 6 · 1 + 6 · 2 + 6 · 3 + · · · + 6 · (𝑛 − 1).

Colocando o fator 6 em evidência:

𝑥𝑛 = 1 + 6 · (1 + 2 + 3 + · · · + (𝑛 − 1)).

Sabemos que a soma dos primeiros 𝑛 − 1 termos da progressão aritmética de razão 1 é
dada por:

1 + 2 + 3 + · · · + (𝑛 − 1) = (𝑛 − 1) · 𝑛
2

.

Substituindo essa expressão:

𝑥𝑛 = 1 + 6 · (𝑛 − 1) · 𝑛
2

= 1 + 3𝑛 · (𝑛 − 1).

Sendo 𝑥𝑛 o número total de moedas e 𝑛 a quantidade de moedas em cada lado.

Tabela 8 – Tabela da quantidade de moedas com a fórmula fechada

Fórmula fechada (1 + 3𝑛 · (𝑛 − 1)) Quantidade total de moedas
1 + 3 · 1 · (1 − 1) 1
1 + 3 · 2 · (2 − 1) 7
1 + 3 · 3 · (3 − 1) 19
1 + 3 · 4 · (4 − 1) 37
1 + 3 · 5 · (5 − 1) 61
1 + 3 · 6 · (6 − 1) 91

. .

. .

. .
Fonte: Dados do autor
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3.3 Desafio das Garrafas Coloridas

Nesta seção, propomos uma aplicação didática de mais um problema que pode ser
explorado por meio de recorrências, utilizando um jogo com garrafas contendo líquidos coloridos.
O desafio consiste em realizar o menor número possível de transferências de líquidos para que
cada garrafa fique completamente preenchida com líquido de apenas uma cor. Essa proposta
conecta conceitos matemáticos abstratos a uma atividade prática, inspirada em jogos populares
disponíveis em smartphones, tablets e computadores. Trata-se de uma excelente oportunidade
para estimular o espírito investigativo dos alunos, tornando o aprendizado da matemática mais
lúdico e interativo.

Aplicação Pedagógica em Sala de Aula

A proposta consiste em utilizar este jogo como uma atividade lúdica para introduzir ou
reforçar o conceito de recorrência entre os alunos. O jogo, inspirado no quebra-cabeça conhecido
como Water Sort Puzzle encontrado no Google Play, em que o objetivo é organizar os líquidos
de modo que cada garrafa contenha apenas uma cor, utilizando o mínimo de transferências ou
𝑚𝑜𝑣𝑖𝑚𝑒𝑛𝑡𝑜𝑠 possíveis.

Figura 10 – Water Sort Puzzle

Fonte: Google Play

Para garantir que o problema seja bem definido e não aleatório, vamos começar estabele-
cendo as seguintes condições:

1. Número de Garrafas e Cores:

• O número de garrafas é igual ao número de cores mais duas unidades.

𝐺 = 𝐶 + 2
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2. Conteúdo das Garrafas:

• Inicia-se com duas garrafas vazias e as restantes com exatamente 4 blocos líquidos
coloridos.

3. Limitação de Blocos por Cor:

• Cada garrafa pode conter até 3 blocos de uma mesma cor, mas em uma ordem
específica.

4. Condição de Término do Jogo:

• O jogo termina quando duas garrafas estão vazias e todas as demais estão completa-
mente preenchidas com líquidos de uma mesma cor.

Antes de começarmos a jogar, vamos analisar as diferentes maneiras de organizar as
cores dentro de cada garrafa e investigar se a disposição inicial das cores influencia no número
total de transferências necessários para atingir o objetivo do jogo. Para facilitar a comunicação,
vamos nomear as cores por 𝐶1, 𝐶2, . . . , 𝐶𝑛 e as garrafas por 𝐺1, 𝐺2, . . . , 𝐺𝑛+2. Convencionamos
também que a ordem esquerda-direita na descrição simbólica das cores corresponde à leitura de
cima para baixo no preenchimento das garrafas. Por fim, admitimos que blocos agrupados de
mesma cor podem ser transferidos em uma única ação.

Caso: Duas Cores

Iniciaremos organizando as cores nas garrafas 𝐺1 e 𝐺2 da seguinte forma:

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2

• 𝐺2: 𝐶1𝐶1𝐶2𝐶2

• 𝐺3: vazia

• 𝐺4: vazia

Transferências Considerando Agrupamento

1. Transferir os dois blocos 𝐶1𝐶1 da 𝐺1 para a 𝐺3 (1 transferência, pois os blocos estão
agrupados).

2. Transferir os dois blocos 𝐶1𝐶1 da 𝐺2 para a 𝐺3 (1 transferência, pois os blocos estão
agrupados).

3. Transferir o bloco 𝐶2 restante da 𝐺2 para a 𝐺1 (1 transferência).
ou

4. Transferir o bloco 𝐶2 restante da 𝐺1 para a 𝐺2 (1 transferência).
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Portanto, com essa disposição inicial descrita acima, são necessários 3 transferências
para finalizar o jogo.

Caso: Duas Cores

Iniciaremos organizando as cores nas garrafas da seguinte forma:

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2

• 𝐺2: 𝐶2𝐶2𝐶1𝐶1

• 𝐺3: vazia

• 𝐺4: vazia

Transferências Considerando Agrupamento

1. Transferir os dois blocos 𝐶1𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

2. Transferir os dois blocos 𝐶2𝐶2 da 𝐺2 para a 𝐺1 (1 transferência).

3. Transferir o bloco 𝐶1 restante da 𝐺2 para a 𝐺3 (1 transferência).
ou

4. Transferir o bloco 𝐶2 restante da 𝐺3 para a 𝐺2 (1 transferência).

Verifica-se então que iniciando com as duas cores distribuídas em dois blocos, ainda que
numa disposição inicial diferente, são necessários 3 transferências para para finalizar o jogo.

Caso: Duas Cores Alternadas

Iniciaremos organizando as cores nas garrafas da seguinte forma:

• 𝐺1: 𝐶1𝐶2𝐶1𝐶2

• 𝐺2: 𝐶1𝐶2𝐶1𝐶2

• 𝐺3: vazia

• 𝐺4: vazia

Transferências Considerando Agrupamento

1. Transferir o bloco 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

2. Transferir o bloco 𝐶1 da 𝐺2 para a 𝐺3 (1 transferência).

3. Transferir o bloco 𝐶2 da 𝐺1 para a 𝐺4 (1 transferência).
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4. Transferir o bloco 𝐶2 da 𝐺2 para a 𝐺4 (1 transferência).

5. Transferir o bloco 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

6. Transferir o bloco 𝐶1 da 𝐺2 para a 𝐺3 (1 transferência).

7. Transferir o bloco 𝐶2 da 𝐺1 para a 𝐺4 (1 transferência).

8. Transferir o bloco 𝐶2 da 𝐺2 para a 𝐺4 (1 transferência).

Com essa disposição inicial, são necessários 8 transferências para finalizar o jogo. É
possível provar que esse número de ações é mínimo para este caso.

Caso: Duas Cores com Blocos Alternados numa Garrafa e Agrupados em Outra

Iniciaremos organizando as cores nas garrafas da seguinte forma:

• 𝐺1: 𝐶1𝐶2𝐶1𝐶2

• 𝐺2: 𝐶1𝐶1𝐶2𝐶2

• 𝐺3: vazia

• 𝐺4: vazia

Transferências Considerando Agrupamento

1. Transferir o bloco 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

2. Transferir os blocos 𝐶1 da 𝐺2 para a 𝐺3 (1 transferência).

3. Transferir o bloco 𝐶2 da 𝐺1 para a 𝐺2 (1 transferência).

4. Transferir o bloco 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

5. Transferir o bloco 𝐶2 da 𝐺1 para a 𝐺2 (1 transferência).

Com essa disposição inicial, são necessários 5 transferências para agrupar cada cor
numa única garrafa, sendo este o número mínimo de ações para este caso.

Caso: Duas Cores Alternadas

Iniciaremos organizando as cores nas garrafas da seguinte forma:

• 𝐺1: 𝐶1𝐶2𝐶1𝐶2

• 𝐺2: 𝐶2𝐶1𝐶2𝐶1

• 𝐺3: vazia

• 𝐺4: vazia
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Transferências Considerando Agrupamento

1. Transferir o bloco 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

2. Transferir o bloco 𝐶2 da 𝐺2 para a 𝐺4 (1 transferência).

3. Transferir o bloco 𝐶2 da 𝐺1 para a 𝐺4 (1 transferência).

4. Transferir o bloco 𝐶1 da 𝐺2 para a 𝐺3 (1 transferência).

5. Transferir o bloco 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

6. Transferir o bloco 𝐶2 da 𝐺2 para a 𝐺4 (1 transferência).

7. Transferir o bloco 𝐶2 da 𝐺1 para a 𝐺4 (1 transferência).

8. Transferir o bloco 𝐶1 da 𝐺2 para a 𝐺3 (1 transferência).

Com essa disposição inicial, novamente são necessários 8 transferências para agrupar
cada cor numa única garrafa, minimizando o número de ações.

Conclusão

Em resumo, o número mínimo de transferências varia conforme a disposição inicial das
cores nas garrafas. Diante disso, propomos fixar um padrão para a disposição das cores, de modo
que o número mínimo de transferências como função do número de cores esteja bem definido.

Número Mínimo de Transferências

Atendendo à orientação da conclusão imediatamente anterior e com base nos resultados
obtidos nos casos com duas cores, faremos uma primeira discussão sobre o número mínimo de
transferências (𝑥𝑛) no jogo, fixando a seguinte condição:

1. Todas as cores são distribuídas em 2 blocos em garrafas distintas

Aplicação para o Caso de 2 Cores

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2 (2 blocos de 𝐶1 e 2 blocos de 𝐶2 agrupados).

• 𝐺2: 𝐶2𝐶2𝐶1𝐶1 (2 blocos de 𝐶1 e 2 blocos de 𝐶2 agrupados).

• 𝐺3: vazia.

• 𝐺4: vazia.
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Transferências Considerando Agrupamento

1. Transferir os 2 blocos de 𝐶1 da 𝐺1 para a 𝐺3 (1 transferência).

2. Transferir os 2 blocos de 𝐶2 da 𝐺2 para a 𝐺1 (1 transferência).

3. Transferir os 2 blocos de 𝐶1 restante da 𝐺2 para a 𝐺3 (1 transferência).
ou

4. Transferir os 2 blocos de 𝐶1 restante da 𝐺3 para a 𝐺2 (1 transferência).

Temos aqui 3 transferências.

Aplicação para o Caso de 3 Cores

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2.

• 𝐺2: 𝐶2𝐶2𝐶3𝐶3.

• 𝐺3: 𝐶3𝐶3𝐶1𝐶1.

• 𝐺4: vazia.

• 𝐺5: vazia.

Transferências Considerando Agrupamento

1. Transferir os 2 blocos de 𝐶1 da 𝐺1 para a 𝐺4 (1 transferência).

2. Transferir os 2 blocos de 𝐶2 da 𝐺2 para a 𝐺1 (1 transferência).

3. Transferir os 2 blocos de 𝐶3 da 𝐺3 para a 𝐺2 (1 transferência).

4. Transferir os 2 blocos de 𝐶1 da 𝐺3 para a 𝐺4 (1 transferência).
ou

5. Transferir os 2 blocos de 𝐶1 da 𝐺4 para a 𝐺3 (1 transferência).

Nesse caso, temos 4 transferências para organizar todas as cores.

Aplicação para o Caso de 4 Cores

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2.

• 𝐺2: 𝐶2𝐶2𝐶3𝐶3.

• 𝐺3: 𝐶3𝐶3𝐶4𝐶4.

• 𝐺4: 𝐶4𝐶4𝐶1𝐶1.
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• 𝐺5: vazia.

• 𝐺6: vazia.

Transferências Considerando Agrupamento

1. Transferir os 2 blocos de 𝐶1 da 𝐺1 para a 𝐺5 (1 transferência).

2. Transferir os 2 blocos de 𝐶2 da 𝐺2 para a 𝐺1 (1 transferência).

3. Transferir os 2 blocos de 𝐶3 da 𝐺3 para a 𝐺2 (1 transferência).

4. Transferir os 2 blocos de 𝐶4 da 𝐺4 para a 𝐺3 (1 transferência).

5. Transferir os 2 blocos de 𝐶1 da 𝐺5 para a 𝐺4 (1 transferência).
ou

6. Transferir os 2 blocos de 𝐶1 da 𝐺4 para a 𝐺5 (1 transferência).

Nesse caso, temos 5 transferências para organizar todas as cores.

Aplicação para o Caso de 5 Cores

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2

• 𝐺2: 𝐶2𝐶2𝐶3𝐶3

• 𝐺3: 𝐶3𝐶3𝐶4𝐶4

• 𝐺4: 𝐶4𝐶4𝐶5𝐶5

• 𝐺5: 𝐶5𝐶5𝐶1𝐶1

• 𝐺6: vazia.

• 𝐺7: vazia.

Transferências Considerando Agrupamento

1. Transferir os 2 blocos de 𝐶1 da 𝐺1 para a 𝐺6 (1 transferência).

2. Transferir os 2 blocos de 𝐶2 da 𝐺2 para a 𝐺1 (1 transferência).

3. Transferir os 2 blocos de 𝐶3 da 𝐺3 para a 𝐺1 (1 transferência).

4. Transferir os 2 blocos de 𝐶4 da 𝐺4 para a 𝐺3 (1 transferência).

5. Transferir os blocos de 𝐶5 da 𝐺5 para a 𝐺4 (1 transferência).

6. Transferir os bloco de 𝐶1 da 𝐺6 para a 𝐺5 (1 transferência).
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Com essa disposição inicial, são necessários 6 transferências para organizar todas as cores.

Os exemplos anteriores sugerem que a condição 1 estabelece uma relação biunívoca entre
o número de cores e o número de transferências necessárias para finalizar o jogo, (𝑛 + 1). No
entanto, o exemplo a seguir demonstra que essa condição, por si só, não é suficiente.

Aplicação para o Caso de 5 Cores

• 𝐺1: 𝐶1𝐶1𝐶2𝐶2

• 𝐺2: 𝐶2𝐶2𝐶1𝐶1

• 𝐺3: 𝐶3𝐶3𝐶4𝐶4

• 𝐺4: 𝐶4𝐶4𝐶5𝐶5

• 𝐺5: 𝐶5𝐶5𝐶3𝐶3

• 𝐺6: vazia.

• 𝐺7: vazia.

Transferências Considerando Agrupamento

1. Transferir os 2 blocos de 𝐶1 da 𝐺1 para a 𝐺6 (1 transferência).

2. Transferir os 2 blocos de 𝐶2 da 𝐺2 para a 𝐺1 (1 transferência).

3. Transferir os 2 blocos de 𝐶1 da 𝐺6 para a 𝐺2 (1 transferência).

4. Transferir os 2 blocos de 𝐶3 da 𝐺3 para a 𝐺6 (1 transferência).

5. Transferir os 2 blocos de 𝐶4 da 𝐺4 para a 𝐺3 (1 transferência).

6. Transferir os blocos de 𝐶5 da 𝐺5 para a 𝐺4 (1 transferência).

7. Transferir os 2 bloco de 𝐶3 da 𝐺6 para a 𝐺5 (1 transferência).

Com essa disposição inicial, são necessários 7 transferências para organizar todas as cores.

Quando as cores 𝐶1 e 𝐶2 estão dispostas nas garrafas 𝐺1 e 𝐺2, o jogo se comporta de
forma independente em relação às demais cores nas demais garrafas. Nesse caso, para as 2
cores presentes nas garrafas 𝐺1 e 𝐺2, ocorrem 3 transferências, calculadas como 2 (número de
cores) + 1. Para as demais cores (𝐶3, 𝐶4 e 𝐶5), o total de transferências é 4, também equivalente
ao número de cores mais 1. No cenário geral, o número total de transferências é 7, resultado
exclusivamente da alteração na disposição inicial. Esse comportamento evidencia a necessidade
de uma regra adicional.
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Com base na regularidade observada nos resultados dos casos analisados acima, propomos
a seguinte generalização:

Generalizações

De modo geral, iniciando com 𝑛 cores distintas 𝐶1, . . . , 𝐶𝑛, estando cada uma delas
distribuída em dois blocos e denotando por 𝑥𝑛 o número mínimo de ações para concluir o jogo,
então temos a seguinte:

Proposição 2: Supondo que 𝑘 < 𝑛, então 𝑘 cores ocupam, no mínimo, 𝑘 + 1 garrafas.
Sob a condição 1, em que o jogo inicia com um bloco de cada cor na parte superior de uma única
garrafa, temos 𝑥𝑛 = 𝑛 + 1.

Demonstração:
Sem perda de generalidade, podemos supor a seguinte distribuição inicial:

𝐺1 : 𝐶1𝐶1𝐶2𝐶2

𝐺2 : 𝐶2𝐶2𝐶3𝐶3

𝐺3 : 𝐶3𝐶3𝐶4𝐶4

...

𝐺𝑛−1 : 𝐶𝑛−1𝐶𝑛−1𝐶𝑛𝐶𝑛

𝐺𝑛 : 𝐶𝑛𝐶𝑛𝐶1𝐶1

Neste caso, transferimos o bloco 𝐶1𝐶1 para a garrafa 𝐺𝑛+1. Em seguida, transferimos
𝐶2𝐶2 de 𝐺2 para 𝐺1, depois transferimos 𝐶3𝐶3 de 𝐺3 para 𝐺2, e assim sucessivamente, até
chegarmos a transferir o bloco 𝐶𝑛𝐶𝑛 de 𝐺𝑛 para 𝐺𝑛−1. Por fim, transferimos o bloco 𝐶1𝐶1 de 𝐺𝑛

para 𝐺𝑛+1. Desta maneira, totalizamos exatamente 𝑛 + 1 ações.

Para provar que este número de ações é mínimo, basta notar que, pelo menos um bloco de
cada cor deve ser transferido, garantindo 𝑛 ações. Por outro lado, a cor com a qual iniciam-se as
transferências deverá ter um bloco transferido para uma garrafa vazia, logo serão necessárias
duas ações para juntar seus dois blocos. Isto garante pelo menos 𝑛 + 1 ações.

Na intenção de mostrar um tipo de recorrência neste jogo, apresentamos o seguinte
teorema:

Teorema 2: Seja 𝑘 < 𝑛 − 1. Na condição 1 e, supondo que 𝑘 cores ocupam exatamente 𝑘

garrafas, então o número mínimo de transferências para separar as cores é

𝑥𝑛,𝑘 = 𝑥𝑛−𝑘 + 𝑥𝑘
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Demonstração:
Basta notar que sob esta condição, na verdade temos dois jogos independentes ambos

regidos pelas condições da Proposição 2, um envolvendo 𝑘 cores e outro envolvendo 𝑛− 𝑘 cores.

Observação: Aplicando a Proposição 2 e o Teorema 2 temos que

𝑥𝑛,𝑘 = 𝑥𝑛−𝑘 + 𝑥𝑘 = (𝑛 − 𝑘 + 1) + (𝑘 + 1) = 𝑛 + 2 = (𝑛 − 1) + 2 + 1 = 𝑥𝑛−1,𝑘 + 1

Conclusão

Podemos concluir que, ao adotar a regra de que cores — o máximo possível dentro de
uma garrafa — o número mínimo de transferências para organizar todas as cores será igual ao
número de garrafas menos 1, ou, de maneira análoga, ao número de cores mais 1. Essa abordagem
otimiza o processo, permitindo que grandes blocos de cores sejam movidos de uma só vez, o que
reduz o número total de transferências. Assim, a regra do agrupamento se mostra uma solução
eficiente e generalizável para diversos cenários, garantindo um cálculo mais ágil e preciso do
número mínimo de transferências necessárias no jogo. Vale ressaltar que, nesta configuração,
não utilizamos todas as garrafas disponíveis.

Ao explorar esse jogo em sala de aula, os alunos poderão perceber como pequenas
mudanças no problema, como a adição de uma cor, impactam diretamente o número de
transferências necessárias. No entanto, ao fixarmos a forma de disposição das cores, concluímos
que o número mínimo de transferências é exatamente igual ao número de cores mais um. Sem
essa regra, especialmente a que agrupa as cores em blocos, as soluções seriam muito mais
diversificadas e complexas. Essa atividade não apenas reforça o entendimento das recorrências
matemáticas, mas também estimula o raciocínio lógico e a habilidade de planejar estrategicamente.

Além disso, ao explorar o contexto histórico das recorrências, podemos mostrar aos
alunos como esse conceito tem sido aplicado ao longo dos séculos em diversas áreas da ciência
e tecnologia. Essa abordagem integrada e contextualizada promove uma aprendizagem mais
significativa, revelando a relevância e a beleza da matemática na compreensão e resolução de
problemas do mundo real.

Sugestão de Implementação

Os professores podem implementar essa atividade em sala de aula utilizando materiais
simples, como copos plásticos coloridos ou software educativo que simule o jogo. Uma discussão
posterior sobre as estratégias utilizadas e a matemática envolvida pode ajudar a solidificar o
aprendizado, tornando o conceito de recorrência mais acessível e interessante para os alunos.
Dessa forma, ao transformar um conceito abstrato em uma experiência prática e contextualizada,
os professores podem não apenas ensinar recorrências, mas também inspirar seus alunos a
apreciar e explorar o mundo matemático ao seu redor.
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4 Metodologia

Neste capítulo, vamos detalhar a metodologia usada nesta dissertação de mestrado: as
relações de recorrências lineares de primeira ordem, apresentadas como uma proposta para
modelar problemas no ensino médio por meio de fórmulas recursivas, dentro do contexto da sala
de aula. Inicialmente, os alunos foram submetidos a um questionário elaborado com o objetivo
de avaliar o grau de familiaridade com sequências numéricas, fórmulas dadas recursivamente e
recorrências lineares de primeira ordem. O questionário foi aplicado em duas etapas: antes da
implementação da proposta e em uma data subsequente às aulas. Vale ressaltar que a pesquisa
envolveu exclusivamente turmas do 1º ano do ensino médio, embora as turmas do 8º ano do
ensino fundamental tenham participado da proposta, adaptada para aprimorar a compreensão dos
conceitos matemáticos relacionados a sequências numéricas e relações de recorrências lineares
de primeira ordem.

4.1 Introdução

Partindo sempre de situações problemáticas específicas, analisando padrões e generalizando-
os por meio de métodos recursivos, nossa proposta teve sua base em uma revisão meticulosa da
literatura, explorando conceitos essenciais como sequências numéricas, relações de recorrências
lineares, técnicas de resolução e a distinção entre abordagens recursivas e formas fechadas.
Durante a aplicação prática desta metodologia, dois desafios se destacaram: a resolução do
problema da Torre de Hanói e a abordagem de um problema menos conhecido que envolve a
disposição de moedas para formar hexágonos regulares. Os resultados obtidos ressaltaram a
eficácia da abordagem, evidenciando melhorias substanciais no envolvimento e desempenho dos
alunos no desenvolvimento do raciocínio recursivo para a solução de problemas matemáticos.

As aulas foram realizadas na Escola Estadual Miran Marroquim, onde sou docente efetivo
desde 12 de abril de 2022, lecionando em turmas do ensino fundamental, médio e Educação de
Jovens e Adultos (EJA). A instituição está localizada no bairro do Jacintinho, em Maceió, Estado
de Alagoas. Segundo os dados do Censo Escolar 2022 do INEP, a escola conta com 1467 alunos
matriculados e 84 professores nos três turnos, abrangendo as etapas do ensino fundamental,
médio e Educação de Jovens e Adultos (EJA).

4.2 Coleta e Tratamento de Dados

O questionário, composto por perguntas de 1 a 10 e alternativas de 𝑎 a 𝑑, aplicado
antes do início das aulas, desempenhou a função de um pré-teste, possibilitando a identificação
de algumas dificuldades em conceitos fundamentais que, por si só, evidenciaram lacunas de
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conhecimento entre os alunos. Vale ressaltar que o questionário foi exclusivamente destinado
às turmas do 1º ano do ensino médio, especificamente nas turmas 1T01 e 1T02, no dia 18 de
setembro de 2023. A segunda aplicação do mesmo questionário ocorreu em 04 de dezembro de
2023, servindo como pós-teste com o objetivo de avaliar a eficácia da proposta e verificar se esta
foi capaz de minimizar ou resolver as lacunas de conhecimento sobre o tema, além de mensurar a
contribuição da proposta para tal progresso.

O questionário foi formatado em orientação paisagem (horizontal), sendo impresso em
uma folha A4, conforme ilustrado na figura abaixo:

Figura 11 – Folha impressa do questionário

Fonte: Dados do autor

Para uma análise mais fácil e mais rápida dos dados as respostas foram transferidas para
um formulário do Google Forms® e nomeados como 1T01 - pré-teste; 1T02 - pré-teste; 1T01 -
pós-teste e 1T02 - pós-teste, conforme ilustra a figura 12:

Figura 12 – Formulário do Google

Fonte: Dados do autor
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4.2.1 Análise dos Dados

No pré-teste tivemos 25 alunos participantes na turma 1T01 e 22 alunos na turma 1T02,
já no pós-teste tivemos também 25 alunos participantes na turma 1T01, mas apenas 17 alunos na
turma 1T02.

Vamos analisar as questões com maior percentual de erros para ambas as turmas.
Observe as figuras 13 e 14:

Figura 13 – Perguntas erradas com frequência - 1T01

Fonte: Dados do autor

Figura 14 – Perguntas erradas com frequência - 1T02

Fonte: Dados do autor

Observa-se que as questões 7, 9 e 10 registraram o menor índice de acertos entre os
alunos da turma 1T01. Por outro lado, na turma 1T02, as questões 7, 8 e 10 foram as menos
respondidas corretamente. O baixo desempenho nessas questões pode ser atribuído a três fatores
principais: a falta de familiaridade com os conceitos de recursão e progressões, que muitas vezes
são confundidos com outros tópicos; a dificuldade em manipular fórmulas, especialmente as
de progressões aritméticas (P.A.) e geométricas (P.G.), que envolvem operações matemáticas
desafiadoras; e a insuficiência de prática na aplicação desses conceitos, o que dificulta a resolução
de problemas.
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4.2.1.1 Análise dos Dados das Turmas 1T01 e 1T02 - pré-teste

Observe as figuras abaixo com as 10 questões de ambas as turmas:

Figura 15 – Questões 1 a 10 - 1T01 - pré-teste

Fonte: Dados do autor
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Figura 16 – Questões 1 a 10 - 1T02 - pré-teste

Fonte: Dados do autor

4.2.1.2 Análise dos Dados das Turmas 1T01 e 1T02 - pós-teste

Observe as figuras abaixo com as 10 questões de ambas as turmas:
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Figura 17 – Questões 1 a 10 - 1T01 - pós-teste

Fonte: Dados do autor
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Figura 18 – Questões 1 a 10 - 1T02 - pós-teste

Fonte: Dados do autor
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5 Resultados

Este capítulo visa apresentar e analisar os resultados provenientes das aulas ministradas.
Após a aplicação do questionário e a implementação da proposta, este segmento constitui a fase
de divulgação das descobertas. Aqui, serão minuciosamente detalhadas as principais constatações
e padrões identificados no conjunto de dados, proporcionando uma visão aprofundada sobre
os aspectos abordados no escopo do trabalho. Especial atenção será dedicada ao exame do
quantitativo de acertos e erros tanto no pré-teste quanto no pós-teste, oferecendo uma análise
substancial das mudanças observadas após a intervenção proposta.

5.1 Discussão

Inicialmente, cabe ressaltar que as turmas com as quais interagi - ou seja, o 8º ano do ensino
fundamental (turmas 1, 2 e 3) e o 1º ano do ensino médio (turmas 1 e 2) - estavam plenamente
cientes de que as atividades propostas integravam um projeto vinculado à minha dissertação de
mestrado. Contudo, a extensão na qual essa informação influenciou o comportamento dos alunos
não foi objeto de avaliação sistemática.

A ausência de uma avaliação objetiva para mensurar tal influência não é considerada
uma limitação metodológica nesta pesquisa. Pelo contrário, sugere que o escopo deste trabalho
não incluía essa análise específica. No entanto, essa lacuna ressalta a oportunidade para futuras
investigações, que poderiam explorar o uso de instrumentos de avaliação apropriados para
discernir o impacto do contexto acadêmico no comportamento dos alunos.

É relevante notar que, embora não tenha sido aplicado nenhum questionário às turmas
do 8º ano do ensino fundamental, os depoimentos escritos à mão fornecidos pelos alunos
ofereceram valiosas perspectivas sobre a relevância das aulas propostas, suas dificuldades
percebidas e, naturalmente, como essas atividades contribuíram para o entendimento de temas
como sequências numéricas, relações de recorrências lineares e o problema da Torre de Hanói.
Essa abordagem qualitativa enriquece a compreensão do impacto pedagógico da proposta,
destacando a importância de considerar tanto os resultados quantitativos quanto os relatos
subjetivos dos alunos em futuras pesquisas educacionais.

Ao analisar os gráficos ilustrados nas Figuras 14 a 17, apresentadas no Capítulo 4, nota-se
que, embora a meta de precisão de 100% não tenha sido universalmente alcançada em todas
as questões, registra-se um aumento expressivo na porcentagem de respostas corretas para a
grande maioria delas. Tal fenômeno indica que, mesmo não tendo eliminado por completo as
deficiências de conhecimento, a estratégia metodológica adotada teve um impacto substancial
em mitigar essas lacunas entre os alunos. Essa observação aponta para um aprofundamento na
compreensão dos conteúdos abordados durante o estudo, evidenciando que a abordagem utilizada
foi bem-sucedida na sua aplicação.
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No pré-teste, destaca-se que as questões 7, 9 e 10 para a turma 1T01 apresentaram baixos
índices de acertos, registrando respectivamente 0%, 8% e 0%. Entretanto, após a intervenção
proposta, observou-se uma notável melhoria, com essas mesmas questões alcançando índices de
acertos de 76%, 80% e 88% para a mesma turma. Este contraste destaca o impacto positivo das
aulas na assimilação do conteúdo pelos alunos, evidenciando uma significativa evolução nos
resultados.

Na turma 1T02, no pré-teste, identificaram-se as questões com as taxas de acertos mais
baixas, concentrando-se nas questões 7, 8 e 10, com percentuais de acerto de 4,5%, 9,1% e 9,1%,
respectivamente. Contudo, após a aplicação das aulas, notou-se uma transformação notável nesse
conjunto específico de perguntas, alcançando índices de 100%, 94% e 82,4%, respectivamente.
Essa significativa melhoria evidencia o impacto positivo das aulas na compreensão e desempenho
dos alunos, representando um avanço substancial em relação ao estágio inicial do pré-teste.
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6 Conclusão

Ao longo do desenvolvimento deste trabalho, enfatizamos a necessidade crucial de
estabelecer um método científico-matemático sistemático para a modelagem de problemas. O
ponto de partida reside na formulação recursiva do problema, destacando a essencialidade do
entendimento de sequências para a organização dos dados e dedução de fórmulas fechadas.
Tornou-se evidente que a compreensão do processo de organização de informações, aliada
à adesão a etapas estruturadas, são elementos indispensáveis para o sucesso na resolução de
problemas. Assim, a modelagem de qualquer problema em um contexto científico-matemático
exige, primordialmente, uma abordagem meticulosa e a sistematização criteriosa das etapas
envolvidas.

É fundamental ressaltar que não há uma única abordagem universal para a resolução
de problemas, independentemente de sua natureza intrínseca. No entanto, existem métodos
mais adequados para lidar com distintas categorias de problemas. A aplicação que trata da
disposição de moedas formando hexágonos regulares inovou ao introduzir um palpite para a
concepção da equação recursiva. É relevante destacar que todas as fórmulas fechadas, em futuras
investigações, devem passar por verificação pelo princípio da indução finita, consolidando, assim,
a validade das proposições. Este processo de validação, por meio de raciocínio lógico e técnicas
de demonstração, é uma prática comum, especialmente no âmbito da matemática, embora sua
aplicabilidade não se restrinja exclusivamente a essa disciplina.

Diante de qualquer afirmação, seja ela uma fórmula ou um teorema, a necessidade de sua
demonstração impera, utilizando todos os recursos disponíveis, contribuindo para a robustez e
credibilidade da solução apresentada.

Adicionalmente, a aplicação do jogo ‘Desafio das Garrafas Coloridas’, inspirado no
jogo Water Sort Puzzle encontrado no Google Play, foi uma porta aberta e uma contribuição
muito rica para a exploração de diversos problemas semelhantes e sua resolução através das
recorrências lineares de primeira ordem. Tal abordagem proporciona um ambiente prático para
a construção e validação de modelos matemáticos, destacando-se como um recurso didático
inovador e interdisciplinar. A riqueza dessa aplicação transcende o aspecto lúdico, promovendo
um campo fértil para novas descobertas e investigações matemáticas.
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APÊNDICE A – Questionário

Por favor, responda às seguintes perguntas de acordo com o seu nível de conhecimento
sobre sequências e recorrências. Isso nos ajudará a entender o seu nível de compreensão sobre o
tópico. Não se preocupe se você não souber a resposta para alguma pergunta.

1. O que é uma sequência numérica?

a) Não sei

b) Uma lista de números aleatórios

c) Uma lista ordenada de números que geralmente possui uma lei de formação

d) Uma lista de números em ordem decrescente

2. Qual é o próximo termo na sequência: 2, 4, 8, 16, ...?

a) Não sei

b) 24

c) 32

d) 64

3. O que é uma recorrência em matemática?

a) Não sei

b) Uma sequência que não segue nenhum padrão

c) Uma equação ou fórmula que expressa um termo em função de outros termos na
sequência

d) Uma sequência de números ímpares

4. O que é uma recorrência linear de primeira ordem?

a) Não sei

b) Uma sequência que nunca termina

c) Uma equação ou fórmula que envolve a soma de termos anteriores na sequência

d) Uma equação ou fórmula que envolve cada termo subsequente em uma função linear
do termo anterior

5. O que é uma progressão aritmética (PA)?
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a) Não sei

b) Uma sequência em que cada termo é o produto do termo anterior por uma constante

c) Uma sequência em que cada termo é a soma do termo anterior por uma constante

d) Uma sequência em que cada termo é um número primo

6. O que é uma progressão geométrica (PG)?

a) Não sei

b) Uma sequência em que cada termo é a soma do termo anterior por uma constante

c) Uma sequência em que cada termo é a multiplicação do termo anterior por uma
constante

d) Uma sequência de números ímpares

7. A Torre de Hanói é frequentemente usada para ilustrar qual conceito matemático?

a) Não sei

b) Probabilidade

c) Combinatória

d) Recursão

8. Qual a fórmula matemática que descreve o número mínimo de movimentos para
resolver a Torre de Hanói com n discos?

a) Não sei

b) 𝑀 (𝑛) = 2𝑛 − 1

c) 𝑀 (𝑛) = 𝑛2 − 1

d) 𝑀 (𝑛) = 𝑛 + 1

9. Qual a fórmula geral para encontrar o n-ésimo termo de uma progressão aritmética?

a) Não sei

b) 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑟
c) 𝑎𝑛 = 𝑎1 × 𝑟 (𝑛−1)

d) 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2

10. Qual a fórmula geral para encontrar o n-ésimo termo de uma progressão geométrica?

a) Não sei

b) 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑟
c) 𝑎𝑛 = 𝑎1 × 𝑟 (𝑛−1)

d) 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2
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APÊNDICE B – Aulas Teóricas e Práticas
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Figura 19 – Aulas Teóricas e Práticas - 8º ano fundamental

Fonte: Dados do autor
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Figura 20 – Aulas Teóricas e Práticas - 1T01 e 1T02

Fonte: Dados do autor
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