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Maceió, Alagoas
13 de Fevereiro de 2025



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Catalogação na Fonte 
Universidade Federal de Alagoas 

Biblioteca Central 
Divisão de Tratamento Técnico 

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767 
 
                     F383t       Ferreira, Tarcísio Lima. 

      Towards automating lung-rads classification in clinical routine : 
insights from portuguese radiology reports / Tarcísio Lima Ferreira. – 
2025. 

                                           63 f. : il. 
 
                                           Orientador: Marcelo Costa Oliveira. 
                                           Co-orientador: Thales Miranda de Almeida Vieira. 
                                           Dissertação (mestrado em informática) - Universidade Federal de 

Alagoas. Instituto de Computação. Maceió, 2025. 
 
                                           Bibliografia: f. 55-63. 
 
                                          1. Neoplasias pulmonares. 2. Lung-RADS. 3. Processamento de 

linguagem natural (Computação). 4. Armazenamento e recuperação da 
informação. 5. Large language models.  I. Título.                             

                                                                              
                                                                                          CDU: 004:616.24-006.6 

 
 



​​  

 
   MINISTÉRIO DA EDUCAÇÃO 

UNIVERSIDADE FEDERAL DE ALAGOAS 
INSTITUTO DE COMPUTAÇÃO 

Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió - AL, 57.072-970 
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO (PROPEP) 

                PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA 
​  

Folha de Aprovação 
 

TARCÍSIO LIMA FERREIRA 
 
 

TOWARDS AUTOMATING LUNG-RADS CLASSIFICATION IN CLINICAL 
ROUTINE: INSIGHTS FROM PORTUGUESE RADIOLOGY REPORTS 

 
AUTOMATIZAÇÃO DA CLASSIFICAÇÃO DE LUNG-RADS NA ROTINA 

CLÍNICA: INSIGHTS DOS RELATÓRIOS DE RADIOLOGIA PORTUGUESA 
 
 
 
Dissertação submetida ao corpo docente do 
Programa de Pós-Graduação em Informática da 
Universidade Federal de Alagoas e aprovada em 
13 de fevereiro de 2025. 

Banca Examinadora: 

 
 
 

 
 
 

________________________________________ 
Prof. Dr. MARCELO COSTA OLIVEIRA 

UFAL – PPGI- Instituto de Computação 
Orientador 

 

 

 

 

 

 

________________________________________ 
Prof. Dr. THALES MIRANDA DE ALMEIDA 

VIEIRA 
UFAL – PPGI- Instituto de Computação 

Coorientador 
 

 

 

 

 

________________________________________ 
Prof. Dr. ALVARO ALVARES DE CARVALHO 

CESAR SOBRINHO 
Universidade Federal do Agreste de Pernambuco, 
UFAPE e membro permanente- PPGI- IC/UFAL 

Examinador Interno 
 
 
 
 
 
 
 

________________________________________ 
Prof. Dr. PAULO MAZZONCINI DE AZEVEDO 

MARQUES 
USP– Universidade de São Paulo. 

Examinador Externo 
 



Acknowledgments

First, to God for illuminating my entire journey and granting me strength in difficult

times.

To my wife, Heloyza Helena, for her love, patience, and support of my studies.

To my advisors throughout the course, Thales and Marcelo. And a special thanks to my

advisor Marcelo for the opportunity given, for the patience in teaching and dedication to

my progress in studies. To the professors who accepted the invitation to be part of my
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Resumo

O câncer de pulmão tem a maior taxa de mortalidade entre todos os tipos de câncer,

tanto para homens quanto para mulheres. Estima-se que o câncer de pulmão seja re-

sponsável por 21% das mortes por câncer em cada gênero no mundo. Essa estat́ıstica

alarmante destaca o impacto significativo do câncer de pulmão na mortalidade geral por

câncer, sublinhando a necessidade urgente de estratégias eficazes de prevenção, detecção

precoce e tratamento para combater essa doença. O rastreamento do câncer de pulmão

é um processo projetado para detectar o câncer de pulmão em indiv́ıduos em risco, par-

ticularmente aqueles com histórico de tabagismo. Envolve tomografias computadorizadas

de baixa dose anuais, interpretação cuidadosa dos resultados e acompanhamento opor-

tuno para garantir a detecção e o tratamento precoces. Várias sociedades profissionais,

incluindo a American College of Radiology e a Sociedade Fleischner, publicaram diretrizes

para o manejo de pacientes com nódulos pulmonares detectados durante o rastreamento

de câncer de pulmão. As diretrizes são uma ferramenta importante em programas de ras-

treamento que visam reduzir a incidência de exames de acompanhamento desnecessários

e orientar o manejo ideal do paciente. Lung Computed Tomography Screening Reporting

& Data System (Lung-RADS) é um sistema de classificação padronizado para nódulos

pulmonares detectados em exames de imagem, como tomografias computadorizadas. O

Lung-RADS avalia o risco de malignidade (câncer) nesses nódulos e orienta as decisões de

manejo subsequentes. Neste contexto, este trabalho visa analisar a eficácia de modelos de

aprendizado profundo e Large Language Model na extração de caracteŕısticas de nódulos

pulmonares de laudos de Tomografia Computadorizada em português para permitir a

classificação automatizada do Lung-RADS. Este trabalho avaliou a eficácia de BiLSTM-

CRF, BioBERTpt, Gemini 1.5 Flash, GPT-4o e Llama 3 70B. Os resultados sugerem que

o Gemini 1.5 Flash se destaca como o modelo com maior eficácia, superando os demais

em quatro das cinco classificações Lung-RADS no conjunto de teste, com um F1-score

ponderado de 0,95, destacando sua eficácia na avaliação precisa de nódulos pulmonares

em vários cenários de classificação.

Palavras-chave: Câncer de Pulmão; Lung-RADS ; NLP ; Extração de In-

formação; LLM.
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Abstract

Lung cancer has the highest mortality rate among all cancer types, affecting both men

and women. It is estimated that lung cancer accounts for 21% of cancer deaths in each

gender worldwide. This alarming statistic highlights the significant impact of lung can-

cer on overall cancer mortality, underscoring the urgent need for effective prevention,

early detection, and treatment strategies to combat this disease. Lung cancer screening

is a process designed to detect lung cancer in at-risk individuals, particularly those with

a history of smoking. It involves annual low-dose computed tomography (CT) scans,

careful interpretation of results, and timely follow-up to ensure early detection and treat-

ment. Several professional societies, including the American College of Radiology and the

Fleischner Society, have published guidelines for the management of patients with pul-

monary nodules detected during lung cancer screening. The guidelines are an important

tool in screening programs aimed at reducing the incidence of unnecessary follow-up ex-

aminations and guiding optimal patient management. The Lung Computed Tomography

Screening Reporting & Data System (Lung-RADS) is a standardized classification system

for pulmonary nodules detected on imaging examinations, such as CT scans. Lung-RADS

assesses the risk of malignancy (cancer) in these nodules and guides subsequent manage-

ment decisions. In this context, this work aims to analyze the effectiveness of deep learning

and large language models in extracting features of pulmonary nodules from Portuguese

CT reports to enable automated classification of Lung-RADS. This work evaluated the ef-

fectiveness of BiLSTM-CRF, BioBERTpt, Gemini 1.5 Flash, GPT-4o, and Llama 3 70B.

The results suggest that the Gemini 1.5 Flash stands out as the most effective model,

outperforming the others in four of the five Lung-RADS classifications in the test set,

with a weighted F1-score of 0.95, highlighting its effectiveness in accurately assessing

lung nodules in various classification scenarios.

Keywords: Lung Cancer ; Lung-RADS ; NLP ; Information Extraction ; LLM.
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Chapter 1

Introduction

Lung cancer ranks as the second most frequently diagnosed cancer among both men and

women, following only breast cancer in prevalence. Despite advancements in early detec-

tion and treatment, it remains the leading cause of cancer-related mortality, responsible

for more deaths in 2020 than breast and prostate cancers combined [Sung et al., 2021].

In that year, approximately 2,206,771 individuals received a lung cancer diagnosis, with

1,796,144 succumbing to the disease [Sung et al., 2021]. In Brazil, lung cancer is the

third most common type of cancer among men and the fourth most common among

women. Estimates from 2018 show that there were 18,740 new cases of lung cancer in

men and 12,530 in women [Mathias et al., 2020]. This statistic emphasizes lung can-

cer’s substantial contribution to overall cancer mortality, highlighting the need for robust

strategies in prevention, early detection, and treatment to address this disease effectively

[Siegel et al., 2023].

Lung cancer screening (LCS) is a process designed to detect lung cancer in in-

dividuals at risk, particularly those with a history of smoking [Ahmad et al., 2025].

It involves annual low-dose computed tomography (LDCT) scans, careful interpreta-

tion of the results, and timely follow-up care to ensure early detection and treatment

[Deffebach and Humphrey, 2015] [Ahmad et al., 2025]. The national lung screening trial

(NLST) demonstrated that individuals undergoing annual LDCT scans experienced a

consistent reduction in lung cancer mortality. The extended follow-up from the NLST

confirmed a lung cancer mortality reduction of 8-11%, emphasizing the long-term benefits

of LCS in high-risk populations [National Lung Screening Trial Research Team, 2019].

Multiple professional societies, including the American College of Radiology

(ACR) and the Fleischner Society, have published guidelines for managing pa-

tients with pulmonary nodules detected on computed tomography (CT) exams

[ACR, 2022][MacMahon et al., 2017]. The guidelines are an important tool aimed at re-

ducing the incidence of unnecessary follow-up exams and guiding optimal patient manage-

ment. In addition, the guidelines offer more flexibility in follow-up intervals and provide

tailored recommendations based on individual risk factors, thus enhancing the ability of ra-

1
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diologists, clinicians, and patients to make well-informed decisions [Polanco et al., 2024].

One of these guidelines is the Lung CT Screening Reporting & Data System (Lung-

RADS®) published by the ACR, the Lung-RADS is a standardized classification system

for lung nodules detected in imaging exams such as LDCT scans [ACR, 2022]. Lung-

RADS assesses the risk of malignancy (cancer) in these nodules and guides subsequent

management decisions. The Lung-RADS index is based on some characteristics of pul-

monary nodules, including the size, shape, growth rate, and other nodule characteristics.

The greater the risk of malignancy, the higher the Lung-RADS index. The follow-up exam-

ination for a nodule with a lower Lung-RADS index (1-3) is an LDCT in 12 months, while

for a nodule with a higher Lung-RADS index (4-5), a Positron Emission Tomography-

Computed Tomograph (PET CT) or biopsy is recommended [ACR, 2022].

Determining follow-up examinations according to the Lung-RADS guideline for lung

cancer screening CT is a straightforward process for individuals enrolled in a lung cancer

screening program. However, extracting and organizing relevant clinical information in a

structured format, as required by Lung-RADS criteria, presents considerable challenges.

Analyzing medical data in Portuguese is a complex and time-consuming task, due to the

fact that clinical data is often recorded in a free text format. There are the presence of

acronyms, negation adverbs, and grammatical errors. Furthermore, cultural differences

and variations in descriptive style can lead to inconsistencies in the data. Finally, human

error in data entry is also a possibility [da Rocha et al., 2023].

Natural language processing (NLP) is a branch of artificial intelligence that enables

machines to understand, interpret, and generate human language. In the healthcare sec-

tor, NLP has greatly improved our capacity to manage and analyze large volumes of tex-

tual data, such as medical records and clinical notes [Pandey et al., 2020]. Named entity

recognition (NER) is a subfield of NLP that identifies and classifies named entities in text

and involves detecting and categorizing named entities (NEs) in text into specified entity

classes. These entities can include names of people, organizations, locations, and more

[Li et al., 2022]. Several works leverage NER to systematically extract structured infor-

mation from clinical texts and radiology reports, such as identifying clinical conditions,

symptoms, diagnoses, medications, exams, treatment, and pulmonary nodules descrip-

tions [Lopes et al., 2019] [da Rocha et al., 2023] [Fei et al., 2022]. In [Beyer et al., 2017],

the authors showed how NLP can assist radiologists by recommending the appropriate

Lung-RADS category and identifying reports that lack sufficient information for accurate

Lung-RADS classification. Recent study have shown that advancements in NLP provide

a promising approach for automatically extracting Lung-RADS malignancy index data

from the unstructured text found in radiology reports [Gandomi et al., 2024].

However, previous research on information extraction (IE) has primarily focused on

Chinese and English idioms to identify clinical entities, lung nodules, tumors, and their

associated characteristics [Zheng et al., 2021] [Hu et al., 2024a] [Hu et al., 2024b], leaving
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a gap in understanding this phenomenon in other languages. Additionally, the absence

of publicly available datasets containing pulmonary nodule reports further limits the de-

velopment and evaluation of information extraction methods in this domain, particularly

for radiology reports in diverse languages.

1.1 Objective

In this context, this work aims to analyze the effectiveness of strategies for extracting lung

nodule characteristics from Portuguese chest CT reports to enable automated Lung-RADS

classification. It compares deep learning models and large language models (LLMs),

employing natural language processing techniques such as named entity recognition and

question answering.

1.2 Work Structure

This work is organized as follows.

• Chapter 2 literature review examining related works that contextualize and support

the research;

• Chapter 3 provides the theoretical background;

• Chapter 4 outlines the research methodology;

• Chapter 5 is dedicated to the presentation of experiments conducted and results

obtained;

• Chapter 6 summarizes the study’s conclusions, highlighting key findings, limitations

encountered during the research, future works, and scientific contributions.



Chapter 2

Related Works

2.1 Rule-Based NLP Systems in Medical Applica-

tions

Rule-based natural language processing systems rely on manually defined linguistic rules

to extract or process information from text. These systems typically use dictionary-based

methods and pattern matching to identify and categorize information. Several works

have demonstrated the effectiveness of these techniques. For example, Gershanik et al.

[Gershanik et al., 2011] introduced iSCOUT, an NLP application to retrieve documents

and assess discrepancies between the ”findings” and ”impressions” sections of radiology

reports, discovering inconsistencies more than one-third of the cases. Although achiev-

ing a precision of 96.0% and a recall of 80.00% in identifying pulmonary nodules, the

NLP application (iSCOUT) remains constrained by the variability and inconsistency of

terminology present in the reports. Moreover, variations in language or reporting style

can lead to missed findings, despite advanced NLP tools. Nobel et al. [Nobel et al., 2020]

developed a rule-based NLP model to classify lung nodule T-stages in Dutch radiology re-

ports, achieving significant accuracy (87.0%) in its evaluation. However, the study faced

limitations due to its relatively small dataset, which affects the generalizability of the

findings, suggesting the need for a larger dataset for more robust training and validation,

especially for machine learning-based approaches. In a study using more than 350,000

CT transcripts, Zheng et al. [Zheng et al., 2021] developed a rule-based algorithm to ex-

tract a range of nodule characteristics, achieving high sensitivity (98.6%) and specificity

(100.0%) to identify lung nodules.

Although rule-based NLP systems have show significant success in specific med-

ical applications, as evidenced by [Gershanik et al., 2011], [Nobel et al., 2020], and

[Zheng et al., 2021], they consistently face limitations related to linguistic variability and

the need for manual rule creation. These challenges, particularly in handling the complex

and often inconsistent terminology found in medical texts, have motivated the exploration

4
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of more flexible and robust approaches to NLP. A paradigm shift has subsequently oc-

curred in the field, with a strong emphasis on deep learning solutions, particularly those

that utilize transformer architectures.

2.2 Machine Learning Approachs

As an intermediary between rule-based NLP systems and deep learning approaches, ma-

chine learning methods have been widely explored in radiology-related NLP tasks. Ma-

chine learning techniques, such as support vector machines (SVM), logistic regression, and

random forests, have been successfully applied to extract structured information from ra-

diology reports. For example, Carrodeguas et al. demonstrated that machine learning

models could identify follow-up recommendations in radiology reports, with SVM achiev-

ing an F1-score of 0.85, exceeding both a rule-based NLP system and deep learning models

in this specific task [Carrodeguas et al., 2019]. Similarly, Zech et al. used natural lan-

guage processing and machine learning to annotate clinical radiology reports, highlighting

the potential of automated methods in structuring large-scale radiological data for down-

stream applications [Zech et al., 2018].

These approaches demonstrate the effectiveness of machine learning to process medi-

cal text while mitigating some of the limitations associated with rigid rule-based systems.

However, despite their advantages, machine learning models often require extensive fea-

ture engineering and large annotated datasets to achieve high performance, thereby mo-

tivating the transition toward deep learning-based methods for more flexible and scalable

solutions.

2.3 Deep Learning Approachs

Deep learning methods have emerged as an important pillar in natural language process-

ing, revolutionizing how we analyze and interpret medical texts. The evolution toward

deep learning has been driven by the inherent limitations of rule-based systems, partic-

ularly their inability to effectively handle the complex, nuanced, and often inconsistent

terminology found in medical documentation [Hu et al., 2024b]. For example, Fei et al.

[Fei et al., 2022] proposed a Bidirectional Long Short-Term Memory with Conditional

Random Fields (BiLSTM-CRF), a model for named entity extraction from Chinese ra-

diology reports. Their approach demonstrated outstanding performance, achieving high

accuracy (94.22%), precision (94.56%), recall (93.96%), and F1-score (94.26%). These re-

sults highlight the model’s effectiveness in handling complex medical text data. However,

reliance on unstructured data poses significant challenges for automating data analysis

and ensuring standardization.
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Naila et al. [da Rocha et al., 2023] proposed a Convolutional Neural Network (CNN)

model that uses unstructured data from Portuguese medical records to identify seven

entities, including symptoms, diagnoses, medications, conditions, exams, and treatment.

They constructed a corpus using 1,200 of 30,000 records. The CNN model for named

entity recognition achieved an average precision of 72.72%, an average recall of 56.93%,

and an average F1-score of 63.87%.

2.4 BERT and Domain-Specific Transformer Models

Current state-of-the-art NLP systems have predominantly utilized transformer-based ar-

chitectures, such as Bidirecional Encoder Representations from Transformers (BERT),

achieving remarkable performance across a wide range of tasks, including natural lan-

guage understanding, text classification, question answering, and text generation. These

architectures leverage self-attention mechanisms to capture complex relationships within

textual data, allowing their dominance in general-purpose and domain-specific applica-

tions [Vaswani et al., 2023] [Devlin et al., 2019]. Despite the fact that BERT has set new

benchmarks in many NLP tasks, [Sugimoto et al., 2021] demonstrated that BiLSTM-CRF

was more effective than BERT and BERT-CRF in extracting relevant information from

chest CT reports. In their study, they used BiLSTM-CRF, BERT, and BERT-CRF mod-

els. This highlights that despite the general superiority of transformers, certain tasks

may benefit from architectures better tailored to structured outputs or sequence tag-

ging. For instance, Fei et al. [Fei et al., 2022] proposed a BiLSTM-CRF model for entity

extraction from Chinese radiology reports. Their approach demonstrated outstanding

performance, achieving high accuracy (94.22%), precision (94.56%), recall (93.96%), and

F1-score (94.26%). These results highlight the model’s effectiveness in handling complex

medical text data.

Futhermore, based on the BERT architecture, domain-specific models were de-

veloped for clinical applications, such as BioBERT [Lee et al., 2019], ClinicalBERT

[Alsentzer et al., 2019], and PubMedBERT [Gu et al., 2021]. These models were pre-

trained on large biomedical and clinical text datasets. When these domain-specific models

were applied to various clinical NLP tasks such as biomedical named entity recognition,

biomedical relation extraction, and biomedical question answering, they demonstrated

superior performance to the original BERT or BERT models pre-trained on more general

text corpora. Building upon the advancements of domain-specific BERT-based models in

clinical NLP tasks, recent developments in transformer-based large language models have

further expanded the boundaries of language understanding and application.
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2.5 Large Language Models in Medical Applications

Recent advances in Large Language Models (LLMs) such as Generative Pre-trained

Transformer 4 (GPT-4) [OpenAI et al., 2024], LLaMA [Grattafiori et al., 2024], Gemini

[Team et al., 2024b], and Pathways Language Model (PaLM) [Chowdhery et al., 2022],

contain millions to billions of parameters; they are pre-trained on vast amounts of

text data, demonstrate superior capability on a variety of natural language processing

tasks [Minaee et al., 2024]. Motivated by these capabilities, several works were devel-

oped to adapt general LLMs for question answering for medical use [Singhal et al., 2022]

[Singhal et al., 2023]. The LLMs, PaLM, GPT-4, MedPaLM-2 [Singhal et al., 2023], and

MedPrompt [Nori et al., 2023] have achieved an accuracy of 86.5% and 90.2%, respec-

tively, against 87.0% when compared to human experts in the United States Medical

Licensing Examination [Wu et al., 2023]. As a result, the application of medical LLMs

has gained increasing research interest in helping medical professionals due to their abil-

ity to process and comprehend complex medical language and their potential to improve

efficiency, accuracy, and patient care within the healthcare industry [Bedi et al., 2024].



Chapter 3

Theoretical Background

3.1 Lung Nodules in Medical Images

A pulmonary nodule is defined as a rounded or irregular opacity, well or poorly defined,

with a diameter of 3 cm or less. Nodules are classified as small if their largest diameter

is 10 mm or less, while micronodules measure under 3 mm. Most nodules smaller than

1 cm are not detectable on chest radiographs and can only be observed on CT scans

[Sánchez et al., 2018]. Pulmonary nodules are categorized based on their density into

three main types, as shown in Figure 3.1: solid nodules, non-solid nodules, and part-solid

nodules. Solid nodules (3.1a), which are the most common type, have a soft-tissue density

that obscures the contours of adjacent vessels and airways. Non-solid nodules (3.1b), also

known as pure ground-glass nodules (3.1c), are focal areas of increased lung attenuation

that do not obscure the underlying parenchymal structures, including airways and vessels.

Part-solid nodules, or semi-solid nodules, exhibit both ground-glass and solid soft-tissue

components [Hansell et al., 2008].

(a) Solid nodule. (b) Part-solid nodule. (c) Ground-glass nodule.

Figure 3.1: Different lung nodules types in a Chest CT [Bankier et al., 2024].

8
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3.2 Computed Tomography

Computed tomography is a computerized X-ray imaging technique where a narrow x-ray

beam is directed at the patient and rapidly rotates around the body. The CT scanner’s

computer processes these signals to create cross-sectional ”slices” known as tomographic

images, which provide more detailed insights than standard x-rays. When multiple slices

are captured, they can be digitally combined to form a three-dimensional (3D) image,

helping clinicians identify structures and potential tumors or abnormalities. Unlike con-

ventional x-rays that use a fixed x-ray source, a CT scanner employs a motorized x-ray

tube that revolves around a circular opening called a gantry. During a scan, the pa-

tient lies on a bed that slowly advances through the gantry as the x-ray tube rotates

around, projecting narrow x-ray beams through the body. Instead of film, CT scanners

use specialized digital detectors positioned directly opposite the x-ray source. As the

X-rays pass through the patient, the detectors capture them and transmit data to a com-

puter [of Biomedical Imaging and (NIBIB), 2024]. Figure 3.2 shows an overview of a CT

scanner operation.

With each full rotation of the x-ray source, the CT computer uses advanced mathemat-

ical methods to create a two-dimensional image slice of the body. The thickness of each

slice can vary, typically between 1-10 millimeters depending on the machine. Once a slice

is complete, the image is stored, and the bed moves slightly forward, allowing the process

to repeat until the desired number of slices is obtained. These image slices can be viewed

individually or stacked by the computer to form a 3D representation of the patient, reveal-

ing bones, organs, and tissues along with any abnormalities. This approach offers signifi-

cant advantages, including the ability to rotate the 3D model or view slices sequentially,

making it easier to pinpoint specific issues [of Biomedical Imaging and (NIBIB), 2024].

Figure 3.2: CT Schematics [Bushberg et al., 2012].
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3.3 Natural Language Processing

Natural language processing is a branch of Artificial Intelligence that is devoted to making

computers understand, interpret, and generate human language [Khurana et al., 2022]. In

the healthcare sector, NLP has greatly improved our capacity to manage and analyze large

volumes of textual data, such as medical records and clinical notes [Pandey et al., 2020].

In radiology, NLP has been used for information retrieval, classification, text extrac-

tion, text summarization, question answering, text generation, and named entity recogni-

tion [Ewoud et al., 2016] [Luo and Chong, 2020] [Arlene et al., 2021] [Zheng et al., 2021].

Natural language processing employs a range of techniques, broadly categorized as rule-

based and machine learning approaches. Rule-based methods rely on predefined rules,

often using regular expressions, word matching, and annotation, to select or retrieve

text or synonyms. In contrast, machine learning approaches require substantial text

datasets for training, validation, and testing. Machine learning methods often use clas-

sifiers, such as random forest or statistical techniques that utilize vectorization, such as

TF-IDF [Linna and Kahn, 2022].

Deep learning techniques have revolutionized natural language processing with a more

effective way to handle NLP problems. With the introduction of word embeddings, words

are treated as vectors capturing semantic relationships based on context. This allows

documents to be represented as matrices of these vectors, suitable for deep learning archi-

tectures like CNN and Long Short-Term Memory (LSTM) networks, including the bidi-

rectional variant (BiLSTM) which captures contextual information from both directions

in a text. Further advancements like sequence-to-sequence architectures and attention

mechanisms, culminating in the development of pre-trained language models like Trans-

former, BERT, and GPT, have significantly boosted NLP performance across various

tasks, establishing a new standard for the field [Tho, 2022].

Information extraction is the process of automatically identifying and encoding rel-

evant clinical information from unstructured free-text data, such as electronic health

records. This task is essential for leveraging free-text data in electronic health records to

support clinical decision-making, quality improvement, and research. In NLP, informa-

tion extraction specifically refers to extracting key concepts, entities, events, and their

relationships and attributes from text, enabling the transformation of unstructured data

into a structured format that can be more easily analyzed and used for various healthcare

applications [Wang et al., 2018]. An information extraction system typically includes one

or more of the following components: named entity recognition, relation extraction, and

post-processing [Hu et al., 2024a].
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3.3.1 Named Entity Recognition

The term ”Named Entity” was first recognized as essential for information extraction in

the sixth message understanding conference evaluation [Grishman and Sundheim, 1996].

A named entity refers to a word or phrase that identifies elements with shared properties

within a dataset. It serves as a rigid designator, or atomic element, representing a member

of a semantic class, which can vary depending on the domain of interest. In general

domain, person, location, organization, number, date, time, etc. are important entities

[Goyal et al., 2018].

Named entity recognition aims to identify mentions of rigid designators within text,

associating them with predefined semantic types. NER involves detecting and categorizing

named entities in text into specified entity classes. Formally, given a sequence of tokens

(small units that can be words, character, punctuation) s = ⟨w1, w2, · · · , wN⟩ , NER

outputs a list of tuples ⟨Is, Ie, t⟩, each of wich is a named entity mentioned in s. Here,

Is ∈ [1, N ] and Ie ∈ [1, N ] are the start and end indexes of a named entity mention; t

is the entity type from a predefined category set [Li et al., 2022]. Figure 3.3 shows an

example where NER system recognizes three named entities from the sentence ”Michael

Jeffrey Jordan was born in Brooklyn, New York.”. The tokens w1 = Michal and w3 =

Jordan were recognized as the named entity ”Person”. The token w7 = Brooklyn was

recognized as the named entity ”Location”. The tokens w9 = New and w10 = York were

recognized as the named entity ”Location”.

Figure 3.3: Example of NER task [Li et al., 2022].

3.3.2 Question Answering

Question answering (QA) is one of the most important natural language processing

tasks, focused on developing systems that can automatically answer questions posed by

users in natural language. This involves creating models and algorithms that can un-

derstand the intent behind a user’s question, retrieve relevant information from various

sources such as (databases, documents, or web pages), and formulate a coherent response

[Hirschman and Gaizauskas, 2001]. Figure 3.4 shows an example of an QA task in wich
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given a text about precipitation, the QA system answers three questions asked by the

user.

Figure 3.4: Example of Question-answer pairs for a sample passage in the SQuAD dataset
[Rajpurkar et al., 2016].

3.4 Bidirectional Long Short-Term Memory with

Conditional Random Fields

Recurrent neural networks were designed with the primary objective of capturing and

modeling long-term dependencies or patterns in sequential data, such as text. How-

ever, these networks have faced challenges such as the problems of exploding and van-

ishing gradient, which have hindered their effectiveness in capturing such dependencies

[Quinta de Castro et al., 2018]. To deal with these limitations, the LSTM, a recurrent

network architecture was employed [Zhang et al., 2018]. The key feature of an LSTM is

its memory cell, which stores and propagates information over time. LSTMs utilize a

gating mechanism consisting of three main gates: the input, forget, and output. These

gates control the flow of information into, out of, and within the memory cell, allowing

the LSTM to retain or discard information at different time steps selectively. Figure 3.5

ilustrated the structure of LSTM unit.

At each time step, the cell receives an input xt along with the previous hidden state

ht−1. The forget gate determines how much of the past information from the cell state

should be retained or discarded, using a sigmoid activation function to produce values
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between 0 and 1. Simultaneously, the input gate regulates how much new information

from the current input should be added to the cell state, ensuring that only relevant

updates are incorporated. These mechanisms modify the cell state, which serves as the

long-term memory of the network.

Once the cell state is updated, the output gate decides how much of this information

should contribute to the new hidden state. This process ensures that only essential in-

formation is propagated forward while preserving past knowledge in a controlled manner.

The final hidden state is obtained by applying a non-linear activation function to the cell

state and modulating it through the output gate.

The input at time step t, denoted as xt, is processed within the LSTM cell and

influences different gates that regulate the flow of information.

The forget gate decides how much of the information from the previous cell state, Ct−1,

should be retained or discarded. It receives xt and the previous hidden state ht−1, applies

a sigmoid activation function (σ), and outputs values between 0 (completely forget) and

1 (fully retain). The corresponding equation is:

ft = σ(Wf · [ht−1, xt] + bf ) (3.1)

where Wf and bf are the learned weights and biases of the network.

The input gate (it) controls how much new information from xt should be added to the

cell state. It also uses a sigmoid activation function to determine which values should be

updated. Additionally, a new candidate cell state, C̃t, is created using a tanh activation

function. The equations are:

it = σ(Wi · [ht−1, xt] + bi) (3.2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.3)

The cell state (Ct), which acts as long-term memory, is updated by combining the

forget gate and input gate information. The cell state is updated according to the following

equation where ⊙ represent the element-wise product:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (3.4)

This enables the preservation of relevant information over time.

The output gate (ot) regulates how much of the stored information in the cell state

will be used to generate the new hidden state ht. The final output is obtained by applying

a sigmoid activation function and a tanh function to the cell state:

ot = σ(Wo · [ht−1, xt] + bo) (3.5)
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ht = ot ⊙ tanh(Ct) (3.6)

The hidden state ht represents the output of the LSTM unit at time step t and is used

as an input for the next time step. It stores short-term information and interacts with

the cell state to maintain temporal dependencies.

In LSTM cell, several multiplication operations regulate the information flow:

• The output of the forget gate ft multiplies the previous cell state Ct−1 to decide

what should be retained.

• The output of the input gate it multiplies the candidate cell state C̃t to regulate

the update of the cell state.

• The output of the output gate ot multiplies the transformed version of Ct to

determine the new hidden state.

The activation functions used in the LSTM cell are:

• Sigmoid (σ): used in all three gates (forget, input, and output) to restrict values

between 0 and 1, controlling the passage of information.

• Tanh: used to transform the candidate cell state and regulate the final cell output,

keeping values between -1 and 1, ensuring stability in state updates.

Figure 3.5: Example of LSTM cell [Huang et al., 2015].

Bidirectional recurrent neural networks (BRNNs) can process the input sequence in

two passes: one in the forward direction and another in the backward direction. This

architecture does this with two separated hidden layers that capture information from

their respective directions and subsequently feed it forward to the same output layer.

This allows the network to capture information from both past and future contexts,

enabling a richer understanding of the sequential data. A bidirectional LSTM is a neural
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network comprising LSTM units that function in both forward and reverse directions

[Jang et al., 2020].

Figure 3.6 represents a Bidirectional Long Short-Term Memory model applied to a

Named Entity Recognition task. This model processes a sentence to identify named

entities such as organizations, people, or locations.

In the input layer at the bottom, we see a sequence of words:

• EU, rejects, German, call.

Each of these words is first converted into a numerical representation (word embed-

dings) before being processed by the LSTM layers. The model consists of two LSTM

layers:

• A forward LSTM (arrows pointing left to right) that reads the sentence in normal

order;

• A backward LSTM (arrows pointing right to left) that reads the sentence in reverse

order.

Each word’s representation is thus influenced by both its preceding and following

words. This is important in NER, where context from both directions helps determine an

entity’s classification. In the output layer at the top, each word is assigned an NER label:

• EU → B-ORG (Beginning of an Organization);

• rejects → O (Outside any entity);

• German → B-MISC (Beginning of a Miscellaneous entity);

• call → O (Outside any entity).

These labels indicate which words belong to named entities and their types.

Figure 3.6: Example of BiLSTM Architecture [Huang et al., 2015].
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The conditional random field (CRF) is a statistical modeling method that is used to

predict sequences of labels based on a given set of observed features. CRFs are particularly

useful for structured prediction tasks, where each label in the sequence is not independent

but depends on neighboring labels, which makes it possible to capture contextual infor-

mation. Unlike traditional classifiers that make independent predictions, CRFs consider

the correlations between labels, allowing them to predict the optimal label sequence for

a given input. This characteristic makes CRFs highly effective in tasks such as NER,

Part-of-Speech (POS) tagging, and other sequence labeling applications, as they allow

the model to account for label dependencies within the sequence [Zheng et al., 2015].

Figure 3.7 demonstrates how a CRF models sequences for NER by considering both

individual word features and the dependencies between labels. The goal of a CRF in this

context is to predict the most likely sequence of entity labels for a given input sentence.

The sequence of words: ”EU rejects German call” represents a sentence or phrase

being processed. The labels at the top are entity labels based on the BIO (Beginning,

Inside, Outside) tagging scheme.

The squares connected by horizontal lines at the top represent CRF model. Each

square corresponds to a word in the sentence an the connections between them indicate

dependencies between neighboring labels, which is a key feature of CRFs.

Figure 3.7: Example of CRF Network [Huang et al., 2015].

The BiLSTM model, as shown in the Figure 3.8, leverages the strengths of both a

BiLSTM and a CRF.

The input layer (bottom row) contains the input tokens: ”EU,” ”rejects,” ”German,”

and ”call.” Each word is processed individually and mapped to an embedding before being

passed to the BiLSTM.

The BiLSTM (middle layer with hatched nodes) consists of two LSTMs: a forward

LSTM that processes the sequence from left to right, and a backward LSTM that processes

the sequence from right to left. These two LSTMs capture contextual information from

both directions.

The outputs of the BiLSTM are then passed to a CRF layer (top row of squares).

The CRF makes the final label predictions, such as B-ORG, O, B-MISC, and O. These

labels correspond to named entity classes (e.g., organizations, miscellaneous entities, or
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non-entity words). The CRF ensures that predictions are made considering dependencies

between labels, resulting in valid entity tag sequences.

Figure 3.8: BiLSTM-CRF architecture [Huang et al., 2015].

3.5 Transformers

Transformers is a model architecture proposed by [Vaswani et al., 2023], designed to avoid

recurrence and instead uses the attention mechanism to capture global dependencies be-

tween input and output. The transformer architecture employs stacked self-attention and

point-wise, fully conected layer for both the encoder and decoder. Figure 3.9 provides an

overview of this architecture, at the bottom there is the input & output embeddings and

the positional encode. The encoder is shown in the left half of the figure and the decoder

in the right half.

In the Input & Output Embeddings the words are first converted into numerical vec-

tors using an embedding layer. The Positional encoding is added to retain word order

information since the Transformer lacks recurrence (like in RNNs).

The encoder in the Transformer architecture consists of N = 6 identical layers. Each

layer includes two sub-layers: a multihead self-attention mechanism and a position-wise

fully connected feedforward network. A residual connection is applied around each of the

two sub-layers, followed by layer normalization.

Similarly, the decoder is composed of a stack of N = 6 identical layers. However, in

addition to the two sublayers in each encoder layer, the decoder includes a third sub-

layer that performs multi-head attention over the encoder’s output. As in the encoder,

residual connections are applied around each sub-layer in the decoder, followed by layer

normalization.

The self-attention sublayer in the decoder is modified to prevent positions from at-

tending to subsequent positions. This masking, combined with the fact that output

embeddings are offset by one position, ensures that predictions for position i depend only

on known outputs at positions less than i.



Large Language Models 18

Figure 3.9: The Transformer - model architecture [Vaswani et al., 2023].

The BERT and GPT models are both based on the Transformer architecture, but they

use different parts of it: BERT is based solely on the encoder part of the Transformer, on

the other hand, GPT is based on the decoder part of the Transformer.

3.6 Large Language Models

Large Language Models are designed to understand, generate, and interact using human

language. These models are built using deep learning, specifically through neural network

architectures such as transformers, and are trained on vast datasets of text from sources

such as books, websites, and other publicly available materials. The large in LLMs typ-

ically refers to the substantial number of parameters (billions or even trillions) used in

these models. LLMs have a wide range of applications, including chatbots, language

translation, content generation, and even programming assistance [Minaee et al., 2024].

3.6.1 Bidirectional Encoder Representations for Transformers

BERT is a language representation model introduced by [Devlin et al., 2019] designed to

pre-train deep bidirectional representations from unlabeled text by jointly both left and

right contexts in all layers. The model architecture consists of three main modules: (1)
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an embedding module that transforms input text into a sequence of embedding vectors,

(2) a stack of Transformer encoders that processes these embedding vectors to generate

contextual representation vectors, and (3) a fully connected layer that maps the final-layer

representations into one-hot vectors.

The pre-training and fine-tuning of the BERT model is shown in Figure 3.10. BERT’s

pre-training relies on two primary objectives: masked language modeling (MLM) and next

sentence prediction (NSP). The MLM objective involves randomly masking certain tokens

in the input sequence, requiring the model to predict the original token based solely on

the surrounding context. This approach allows BERT to fuse both left and right contexts,

enabling the pre-training of a deeply bidirectional Transformer—a key distinction from

traditional left-to-right language models. In addition to MLM, BERT employs a next

sentence prediction task, designed to jointly pre-train text-pair representations. This task

involves predicting whether a given sentence logically follows another, further enhancing

the model’s capacity to understand relationships between sentences [Devlin et al., 2019].

Fine-tuning involves plugging task-specific inputs and outputs into BERT and train-

ing all parameters end-to-end. During this process, sentence A and sentence B from

pre-training are analogous to (1) sentence pairs in paraphrasing, (2) hypothesis-premise

pairs in entailment, (3) question-passage pairs in question answering, and (4) a degener-

ate text-null pair in text classification or sequence tagging. At the output stage, token

representations are used for token-level tasks, such as sequence tagging or question an-

swering, while the [CLS] token’s (the first token of every sequence) representation is used

for classification tasks, like entailment or sentiment analysis. Fine-tuning BERT is rel-

atively computationally inexpensive compared to pre-training, making it accessible for

many language understanding applications [Devlin et al., 2019].

The input representation of BERT is shown in Figure 3.11 and consists of three main

embedding types:

• Token Embeddings (Yellow Boxes): Each word or subword token in the input is

converted into a vector representation using a pre-trained embedding matrix. For

example, the input consists of two sentences:

”[CLS] my dog is cute [SEP]”

”he likes play ##ing [SEP]”

[SEP] is a separator token used to distinguish segments in tasks like question an-

swering or sentence-pair classification.

• Segment Embeddings (Green Boxes): These embeddings indicate which sentence a

token belongs to. ”A” represents the first sentence, and ”B” represents the second.

This helps BERT differentiate between multiple sentences in tasks like next-sentence

prediction.
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• Position Embeddings (Black Boxes): These embeddings provide information about

the position of each token within the input sequence. Since transformers don’t

inherently understand word order, position embeddings enable the model to learn

and utilize this information.

Figure 3.10: Overall pre-training and fine-tuning procedures for BERT
[Devlin et al., 2019].

Figure 3.11: BERT input representation [Devlin et al., 2019].

3.6.2 BioBERTpt

BioBERTpt is a language model developed specifically for Portuguese clinical and biomed-

ical text, designed to improve performance on tasks such as named entity recogni-

tion in clinical narrative [Schneider et al., 2020]s. It is based on BERT and fine-tuned

on Portuguese-language medical texts, including clinical notes from Brazilian hospitals

and biomedical scientific papers published in Pubmed and Scielo. BioBERTpt was

created to address the limited availability of high-performing NLP tools for clinical

data in Portuguese. Three BERT-based models were fine-tuned on these Portuguese-

language medical texts and the models were initialized with multilingual BERT weights.
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The BioBERTpt achieved better performance than general BERT models in recogniz-

ing specific medical entities on the two Portuguese corpora: SemClinBr and CLINpt

[Schneider et al., 2020].

3.6.3 Gemini

Gemini is a family of highly capable multimodal models developed by Google. These mod-

els are designed to process and understand data in multiple modalities, including text,

images, audio, and video, and exhibit advanced reasoning and understanding capabili-

ties. The Gemini 1.0 models are built on an enhanced Transformer decoder architecture

[Vaswani et al., 2023] designed to support multimodal inputs and outputs, including text,

images, audio, and video. These models are natively multimodal, allowing seamless in-

tegration of various data types within a single context. They are capable of processing

interleaved sequences of inputs, such as text with accompanying images or audio, while

supporting a large context length of 32,768 tokens. To enable efficient handling of such

extensive data, the architecture incorporates advanced attention mechanisms, such as

multi-query attention, which improve scalability and performance during training and

inference [Team et al., 2024a].

Figure 3.12 shows an overview of Gemini 1.0 model. The input sequence consists of

text, audio, an image, and video. Each input modality is processed to create feature

embeddings, which are then combined into a single sequence. This combined sequence is

fed into a transformer, the core of the model. The transformer processes this combined

information and generates outputs through two decoders: an image decoder, producing

an image, and a text decoder, generating text.

Figure 3.12: Gemini model overview[Team et al., 2024a].

Continuing the development of these models, Google launched Gemini 1.5, which is a

family of multimodal large language models designed to advance capabilities in reasoning,
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efficiency, and long-context understanding. This model supports mixed-modality inputs,

allowing it to process and analyze text, audio, video, and code within a single context

seamlessly. A defining feature of Gemini 1.5 is its ability to handle extremely long input

sequences, supporting context lengths of up to 10 million tokens, enabling it to work with

massive datasets, extended documents, hours of video, or lengthy audio recordings. The

family includes two variants: Gemini 1.5 Pro, optimized for peak performance across vari-

ous benchmarks, and Gemini 1.5 Flash, a lighter, efficiency-focused model that maintains

high quality with reduced computational demands. Built on a sparse mixture-of-experts

Transformer [Fedus et al., 2022] that builds on Gemini 1.0’s [Team et al., 2024a], Gemini

1.5 employs advanced routing mechanisms to efficiently scale its parameter count while

keeping computational requirements manageable. It has achieved significant improve-

ments over its predecessors, outperforming state-of-the-art models such as Gemini 1.0

Ultra on benchmarks in areas such as reasoning, multilinguality, and multimodal under-

standing [Team et al., 2024b].

3.6.4 GPT 4

GPT-4 is a large-scale, multimodal model capable of processing both text and im-

age inputs to produce text outputs. It is based on a Transformer architecture

[Vaswani et al., 2023] and was pre-trained to predict the next token in a sequence us-

ing vast amounts of publicly available and licensed data. After pre-training, the model

underwent fine-tuning with techniques such as Reinforcement Learning from Human Feed-

back to enhance its alignment with user intents and improve its factuality. However,

specific details about its architecture, such as model size, exact hardware, training com-

pute, and dataset construction—have not been disclosed due to competitive consideration

[OpenAI et al., 2024].

3.6.5 Llama 3

Llama 3 is a herd of language models developed by Meta AI, designed to natively support

multilinguality, coding, reasoning, and tool usage. The largest model in the series is a

dense Transformer with 405 billion parameters, capable of processing up to 128,000 to-

kens in a single context window. The Llama 3 family includes models of varying sizes—8B

(Billions of parameters ), 70B, and 405B parameters—all trained on a massive and di-

verse dataset. The 405B model was pre-trained on a corpus of 15 trillion tokens, which

significantly surpasses the scale of its predecessors, Llama and Llama 2. The flagship

model demonstrate state-of-the-art performance on various benchmarks, rivaling leading

language models like GPT-4 [OpenAI et al., 2024] in many tasks. In addition to language

capabilities, Llama 3 incorporates safety-focused designs, such as the Llama Guard 3 vari-

ant, to ensure secure handling of inputs and outputs. Meta has also conducted promising
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multimodal experiments with image, video, and speech processing, though these exten-

sions remain under development [Grattafiori et al., 2024].

The Figure 3.13 shows an overview of the overall architecture and training of Llama 3.

The process begins with input text tokens. These are the individual words or sub-word

units that form the input sequence. These tokens are then fed as input to the model.

Each input token is converted into a vector representation called an embedding. This

maps each token to a point in a high-dimensional space, capturing semantic information

about the token. The core of the transformer model is formed by stacked layers of identical

blocks. The input embeddings are processed through the first layer’s Self-Attention and

Feedforward Network. The output of this layer is then passed to the next layer. The

final layer of the transformer produces a probability distribution over the vocabulary.

The token with the highest probability (or sampled from the distribution) is selected as

the output text token. This token is then appended to the generated sequence, and the

process repeats to generate the next token until a complete sequence is reached.

Figure 3.13: Llama 3 model overview [Grattafiori et al., 2024].

The architecture of Llama 3 is based on a standard dense Transformer model

[Vaswani et al., 2023], similar to its predecessors, Llama [Touvron et al., 2023a] and

Llama 2 [Touvron et al., 2023b], but with key enhancements that drive significant per-

formance improvements. Some small modifications were made compared to LLama 2. In

Llama 3, Grouped Query Attention (GQA) 1 was used with 8 key-value heads, as pro-

posed by [Ainslie et al., 2023], to improve inference speed and reduce the size of key-value

caches during decoding. Additionally, they employed an attention mask that prevents

self-attention between different documents within the same sequence. Although this ad-

justment had minimal impact during standard pre-training, it proved to be crucial when

continuing pre-training on very long sequences. A vocabulary with 128K tokens was used,

combining 100K tokens from the tiktoken tokenizer with 28K additional tokens to better

support non-English languages. To better support longer contexts, they increased the

Rotary Position Embedding (RoPE) 2 base frequency hyperparameter to 500,000, a value

shown by [Xiong et al., 2023] to be effective for context lengths up to 32,768. The archi-

tecture of Llama 3 405B includes 126 layers, a token representation dimension of 16,384,

1GQA emerges as an innovative extension of traditional attention mechanisms, aiming to address
several challenges associated with processing long sequences efficiently.

2This technique is used to improve the ability of LLMs to handle longer sequences of text than those
seen during training by modifying the base value used in the RoPE calculations.
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and 128 attention heads.

3.7 Prompt Engineering

Prompt engineering is a technique used to enhance the capabilities of large language

models by creating specific instructions or queries known as prompts. These prompts

guide the model in producing desired outputs without the need to retrain or modify the

underlying model parameters [Chen et al., 2024]. The process involves designing task-

specific prompts that can take various forms, ranging from natural language instructions

to structured vector representations that help to activate the relevant knowledge within

the model. This strategic use of prompts allows the models to perform a variety of

tasks, such as question answering, reasoning, and text generation, effectively utilizing their

pretrained knowledge base. In addition, prompt engineering facilitates the integration of

these models into different applications, enhancing their usability in various domains

[Sahoo et al., 2024].

3.7.1 Zero-Shot Learning

In the context of language models, zero-shot learning means that these models can un-

derstand and generate responses to tasks they haven’t been specifically fine-tuned for,

based only on their training on a wide variety of text data. This method takes advantage

of the large textual data on which the model was trained to eliminate the need for large

task-specific datasets. Instead, carefully designed prompts guide the model to perform

these novel tasks [Radford et al., 2019].

Figure 3.14 shows an example of a prompt using zero-shot learning for the task of

sentiment analysis to determine whether a text expresses a positive, negative, or neutral

sentiment. The instruction given is: ”Classify the text as neutral, negative, or positive.”

This tells the model what it needs to do. The input text is: ”I think the vacation is

good.” This is the text to be analyzed. The expected output format is: ”Sentiment:”

This indicates the type of answer expected.

3.7.2 Few-Shot Learning

Few-shot learning, refers to a setting where a large language model is given a few input-

output examples of task at inference times as conditioning, but no weight updates or fine-

tuning are performed. The model learns the task purely from these examples presented

in the input context. The model is presented with a small number of examples (typically

between 10 to 100) within its context window, which helps it infer the correct pattern

and generate the appropriate outputs [Brown et al., 2020].
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Prompt:
Classify the text as neutral, negative or positive.
Text: I think the vacation is good.
Sentiment:

Output

Positive

Figure 3.14: Prompt with zero-shot learning.

Figure 3.15 shows an example of a prompt using zero-shot learning to the sentiment

analysis. However, in this case, the model is provided with a few examples before being

asked to classify a new sentence. The prompt with few-shot learning a few examples,

such as: ”This is amazing! // Positive,” ”This is bad! // Negative,” and ”Wow, that

movie was awesome! // Positive.” These examples illustrate the relationship between the

text and its sentiment, allowing the model to learn which types of phrases correspond to

positive or negative sentiment. The new input text is ”What a terrible show! //”, which

is the sentence the model needs to classify. The expected output format is implicit, as the

”//” followed by a blank space indicates that the model should generate the appropriate

sentiment label.

Prompt:
This is amazing! // Positive
This is bad! // Negative
Wow, that movie was awesome! // Positive
What a terrible show! //
Output

Negative

Figure 3.15: Prompt with few-shot learning.



Chapter 4

Materials and Methods

4.1 Lung-RADS

The Lung Imaging Reporting and Data System, established by the American College

of Radiology, serves as a standardized reporting framework aimed at optimizing the as-

sessment and management of pulmonary nodules identified via low-dose computed to-

mography screenings. By systematically categorizing findings from lung cancer screen-

ings, the Lung-RADS classification system enhances diagnostic accuracy, reduces in-

terpretative variability, and facilitates consistent decision-making in clinical practice

[Beyer et al., 2017] [Christensen et al., 2024]. HThe following is a summary of each cate-

gory from the Lung-RADS 2022

1. Category 0: Incomplete

• Findings: Chest CT is incomplete, part or all of lungs cannot be evaluated, or

previous CT is needed for comparison.

• Management: Additional CT needed; follow-up CT within 1-3 months for

suspected inflammatory or infectious processes.

2. Category 1: Negative

• Findings: No nodules or nodules with benign features (complete, central, pop-

corn, or concentric ring calcifications or fat-containing).

• Management: Follow-up in 12 months.

3. Category 2: Benign Appearance or Behavior

• Findings: Likely benign features; includes specific size and shape nodules.

• Management: 12-month follow-up.

4. Category 3: Probably Benign

26



Dataset Annotation 27

• Findings: Low risk of malignancy; solid or part-solid nodules within specific

size ranges.

• Management: 6-month follow-up.

5. Category 4A: Suspicious

• Findings: Increased suspicion for malignancy; larger nodules or growth seen.

• Management: 3-month follow-up; PET/CT or additional imaging may be rec-

ommended for solid nodule or solid component ≥ 8 mm.

6. Category 4B: Very Suspicious

• Findings: Highly suspicious; larger nodules or solid components.

• Management: Diagnostic CT with/without contrast, PET/CT imaging may

be considered for solid nodule or solid component ≥ 8 mm, possible biopsy, or

clinical evaluation.

7. Category 4X: Highest Suspicion

• Findings: Nodules with additional suspicious features (e.g., spiculation or

metastasis).

• Management: Tailored to specific findings, with thorough evaluation and man-

agement per clinical guidelines.

The complete Lung-RADS description and the patient management for each

Lung-RADS indexis is available at the following url: https://edge.sitecorecloud.

io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/RADS/

Lung-RADS/Lung-RADS-2022.pdf.

4.2 Dataset Annotation

The 963 chest high-dose CT reports in Portuguese were collected from January 1, 2022,

to April 3, 2023, at the University Hospital of Alagoas. The research was approved by

the ethics and research committee of the Federal University of Alagoas with the number:

74747817.4.0000.5013. After obtaining patient consent, all chest CT reports, irrespective

of the clinical indication were included. It is important to highlight that all patient data

was anonymized. Data cleaning was applied to all reports, which included removing spe-

cial characters, adding spaces between words, and removing emojis in the text. Next, each

report was uploaded to the Doccano annotation tool [Nakayama et al., 2018]. The text

was labeled with six named entities in Portuguese, corresponding to the characteristics of

pulmonary nodules. The data annotation was performed by the author, and the results

https://edge.sitecorecloud.io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf
https://edge.sitecorecloud.io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf
https://edge.sitecorecloud.io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf
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were reviewed by a radiologist. The NEs used were ”Atenuação” (Attenuation), ”Cal-

cificação” (Calcification), ”Bordas” (Edges), ”Achado” (Finding), ”Localização” (Local-

ization) and ”Tamanho” (Size). These characteristics were chosen based on Lung-RADS

guidelines [ACR, 2022]. Figure 4.1 shows an example of report annotated in Doccano tool.

In this repot 5 NEs were identifed: ”Finding”, ”Edges”, ”Calcification”, ”Location”, and

”Size”.

Figure 4.1: Example of a chest CT Report annotated in Doccano [Nakayama et al., 2018].

There are multiple annotation schemes for named entity recognition, such as:

• IO: Each token from the dataset is assigned one of two tags: an inside tag (I) and

an outside tag (O). The I tag is for named entities, whereas the O tag is for normal

words;

• IOB: IOB is also called BIO scheme. It’s famous due to adoption by Conference on

Computational Natural Language Learning (CoNLL) . It assigns one of these three

tags to a token: the beginning of a known named entity (B), an inside tag (I) and

an outside tag (O);

• IOE: This scheme is similar to IOB, but instead of indicating the beginning of named

entity (B), it indicates the end (E);

• IOBES: The IOBE in IOBES scheme is a combination of IOB scheme and IOE

scheme. It increases the amount of information related to the boundaries of named

entities. (S) is a new tag, created for single token named entity.

For the annotation scheme, we adopted the IOB format. This format was adopt be-

cause the different values assessed for annotation scheme did not have a considerable im-
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Report Token Tag
06 Existem O
06 pequenos B-Tamanho
06 nódulos B-Achado
06 calcificados B-Calcificação
06 no B-Localização
06 segmento I-Localização
06 basal I-Localização
06 posterior I-Localização
06 esquerdo I-Localização
06 , O
06 o O
06 maior O
06 deles O
06 medindo B-Tamanho
06 cerca I-Tamanho
06 de I-Tamanho
06 0,23 I-Tamanho
06 x I-Tamanho
06 0,18 I-Tamanho
06 cm I-Tamanho

Table 4.1: Example of a report annotated with the IOB scheme.

pact in the results of Portuguese NER using LSTM-CRF [Quinta de Castro et al., 2018].

Note that each token is individually annotated, thus resulting in a sequence of tags.

Table 4.1 shows an example of a report and its IOB tags. For the sentence ”... There

are small calcified nodules in the left posterior basal segment, the largest measuring

about 0.23 x 0.18 cm ...”, the IOB tags are: ”O, B-Finding, B-Finding, B-Calcification,

B-Localization, I-Localization, I-Localization, I-Localization, I-Localization, O, O, O, O,

B-Size, I-Size, I-Size, I-Size, I-Size, I-Size, I-Size”.

As a result, the annotation tool generated a JSON file containing the labeling in-

formation for all reports. Next, we split each report and its labeling information into

sentences and tokenize them using the BERT tokenizer. Finally, we padded each se-

quence of integers representing a report and its labeling information to a fixed size. This

step was necessary because models like BERT require a specific input sequence length.

From the set of 963 reports, the report with the highest number of tokens contained

497 tokens. However, the BERT model requires an input of 512 tokens. Therefore, all

texts were padded with zeros at the end of the list to ensure that their input had 512

tokens. This specific token quantity was employed because it aligns with the token limit

of the BioBERTpt model [Schneider et al., 2020]. Padding tokens were designated with

a distinctive tag: ”–PADDING–”.

The 963 texts from the CT reports were divided into two proportions: 70% for training
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and 30% for testing in the Named Entity Recognition task. This data split was chosen

based on the study by [Lopes et al., 2019]. For the IE task, a total of 100 CT reports

were utilized to perform the Question-answering procedure. This data split was chosen

based on the study by[Hu et al., 2024a].

Based on the Lung-RADS guidelines [ACR, 2022], the author defined eight questions

related to pulmonary nodules for the QA task. A thoracic radiologist with 15+ years

of experience provided the answers to the questions used for QA. Table 4.2 presents the

questions and their corresponding statistics. The analysis of the 100 reports used to

perform the QA procedure identified pulmonary nodules in all reports, with Lung-RADS

categorization as follows: Category 0 (0 cases), Category 1 (61 cases), Category 2 (25

cases), Category 3 (2 cases), Category 4A (7 cases), Category 4B (0 cases), and Category

4X (5 cases).

Table 4.2: Pulmonary nodules Questions and the statistics of the annotated answers.

No. Question Answer type Answer statistic
1 Report ID Numerical -
2 Is the nodule solid Boolean 10 (Positive)
3 Is the nodule soft tissue, semisolid or subsolid Boolean 7 (Positive)
4 Is the nodule ground glass Boolean 2 (Positive)
5 Is the nodule spiculated or irregular Boolean 4 (Positive)
6 Is the nodule calcified Boolean 61 (Positive)
7 Nodule location Categorical 21 (RUL)

10 (RML)
28 (RLL)
18 (LUL)
17 (LLL)
7 (Others)

8 Nodule size Numerical 5.41 mm ± 3,27

RUL - Right upper lobe RML - Right middle lobe RLL - Right
lower lobe LUL - Left upper lobe LLL - Left lower lobe

4.3 Models for Named Entity Recognition

For the named entity recognition task, the effectiveness of the BiLSTM-CRF and

BioBERTpt models was compared. To choose the best hyperparameters for BiLSTM-

CRF, a grid search was carried out with the following values:

• BiLSTM-CRF;

• Word embedding size = [50, 100, 200];

• LSTM units = [25, 50, 100];
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• Batch size = [4, 8, 16];

• Epochs = 10;

• Dropout = 0.1;

• Learning Rate = 0.01.

From all the possible values for each of these parameters for the BiLSTM-CRF

model, there are 27 different combinations to evaluate. Following the approach used by

[Quinta de Castro et al., 2018] to choose the best set of hyperpameters for the BiLSTM-

CRF models, each of these combinations was run 10 times in different data splits and only

3 ephocs were used for this training step. To determine if there are statistical differences

between the 27 models, Friedman test [Rainio et al., 2024]1 was perfomed. After that, the

Nemenyi [Demšar, 2006] 2 test was done to determine which ones are significantly differ-

ent. Based on this analysis, a single model was chosen from the 27 potential models. This

selected model was trained for 10 epochs using the 10 data splits and was subsequently

evaluated for its performance in the named entity recognition task.

The BERT model was fine-tunned using BioBERTpt [Schneider et al., 2020]. The

model weights were initialized using the Transformers library, available on Hugging-

Face [Wolf et al., 2020], and the model’s PyTorch (version 2.0.1) implementation was

used. The model was fine-tuned using the following hyperparameter values based in

[Schneider et al., 2020]: AdamW optimizer, with a weight decay as 0.01, batch size 4,

maximum length as 256, learning rate as 3e-5, maximum epoch as 10, and the linear

schedule that decreases the learning rate throughout the epochs with warmup as 0.1.

When the text of the report texts was tokenized by the BERT tokenizer, the resulting

number of tokens was greater than 512 tokens, which is the BioBERTpt input limit. To

deal with this problem, the reports were divided into 4 parts to ensure that when they

were tokenized, each part of the report did not exceed the limit of 512 tokens. Therefore,

the value of the maximum length hyperparameter was changed to 512. The GPU utilized

in the fine-tuning procedure was an RTX3060 12GB.

The BiLSTM-CRF and BioBERTpt models aim to predict entity tags in IOB format

for each token in the input sequence. Each input sequence corresponded to a chest CT

report, with entity tags representing one of six named entities related to nodule charac-

teristics.

Figure 4.2 shows an overview of the Lung-RADS classification process using the

BiLSTM-CRF and BioBERTpt models with the NER technique. The process begins

1The Friedman test is a non-parametric statistical test used to detect differences in treatments across
multiple test attempts. In machine learning, the Friedman test is commonly used to compare the perfor-
mance of multiple models or algorithms across different datasets or tasks

2The Nemenyi test is a post-hoc test used after the Friedman test to determine which specific models
differ significantly when multiple comparisons are made.
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with a CT report and this report undergoes data preprocessing, which includes data

cleaning to remove noise, annotation using Doccano to manually label relevant entities,

tokenization to break the text into units, and splitting the data into train and test sets.

In the NER step, the models learn to identify and classify entities. This involves fine-

tuning a pre-trained model (BioBERTpt) and training a BiLSTM-CRF model. Both

models, BioBERTpt and BiLSTM-CRF, are used in conjunction for the NER task. Fol-

lowing NER is post-processing, where the extracted information is used for Lung-RADS

classification. Finally, the entire process undergoes evaluation to assess its performance.

CT Report

Computed Tomography of the Chest Without Contrast
Technique: The exam was performed through
volumetric image acquisition using a multislice
computed tomography scanner, with multiplanar
reformations and high-resolution reconstructions.
Analysis: Discrete residual fibroatelectatic strands
scattered in both lungs. A small, non-calcified solid
nodule of nonspecific nature in the lateral segment of
the middle lobe, measuring about 4 mm in its greatest
dimension. Remaining lungs are clear, with preserved
broncho-vascular distribution. Trachea and main
bronchi are patent, with normal course and caliber. No
pleural or pericardial fluid collections. No mediastinal,
hilar, or infraclavicular lymphadenopathy. Cardiac
image of normal morphology, without appreciable
volumetric changes. Elongated aorta with scattered
calcified atheromatous plaques at its origin, arch, and
descending segment. Soft tissue structures of the
chest wall without evidence of abnormalities.
Degenerative vertebral changes. Right convexity
dorsal axis deviation.

Data Cleaning Annotation
(Doccano) Tokenize

BioBERTpt

Train | Test

Evaluation

Fine-tuning

BiLSTM-CRF

Training

Data Preprocessing

NER

Lung-RADSPost-Processing

Figure 4.2: Methodology scheme applied in NER task for Lung-RADS classification.

4.4 Post-processing Named Entity Recognition Ex-

traction

Building upon our named entity recognition process, we implemented a systematic post-

processing approach to transform the raw entity recognition results into a structured and

meaningful representation. Specifically, after the BiLSTM-CRF and BioBERTpt models

identified the named entities, a method was developed to populate the question table

(Table 4.2). The process involved carefully parsing the outputs from both AI models,

cross-referencing the identified entities, and systematically populating the predefined table

structure.
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4.5 Models for Question Answering

For the LLMs models, we used the specific versions: GPT-4o (gpt-4o-mini-2024-07-18)

[OpenAI et al., 2024], Gemini 1.5 Flash (gemini-1.5-flash) [Team et al., 2024b], and the

Llama 3 70B [Grattafiori et al., 2024]. In the context of LLMs, the temperature param-

eter regulates the uncertainty or randomness in the generation process. This parameter

typically ranges from 0 (completely deterministic) to 1 or higher (resulting in increasingly

random and diverse outputs) [Hu et al., 2024b]. For the GPT-4o, Gemini 1.5 Flash, and

Llama 3 models, the temperature was set to 0 to minimize randomness in response gener-

ation. Using a lower temperature, we limited the model’s tendency to take creative leaps,

ensuring more predictable and consistent outputs. This is important in IE tasks, where

the accuracy of the information extracted is crucial.

Requests for the three LLM models were made via the API. We used the OpenAI

API for GPT-4o, the Together AI API for Llama 3 70B, and the Google AI API for the

Gemini 1.5 Flash model. During the tests conducted in this study, the cost of GPT-4o

was US$0.075 per 1 million tokens for input and US$0.60 per 1 million tokens for output.

For Llama 3 70B, the cost was approximately US$0.88 per 1 million tokens for both input

and output. Gemini 1.5 Flash model has no cost for processing incoming and outgoing

tokens. Depending on the volume of text processed, the cost of these paid models may

hinder their use in real-world systems.

To evaluate the consistency of the responses of these LLMs, the approach of

[Hu et al., 2024a] [Saxena et al., 2024] was used. This approach consist in repeatedly

presenting the same query to the models and observing variations in their responses. The

same query was presented three times for each LLM, and the consistency and inconsis-

tency percentage was calculated for each question in the Question table.

The consistency percentage is given by:

Cp =
nc

nt

· 100 (4.1)

The inconsistency percentage is given by:

Cn =
nic

nt
· 100 (4.2)

were, Cp is the consistency percentage, Cn is the inconsistency percentage, nc is the

total number of consistent responses, nic is the total number of inconsistent responses,

and nt is the total number of question in the data.
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4.6 Prompt Engineering

Based on the work of Danqing Hu et al. [Hu et al., 2024a], we designed the prompts

used for QA. Danqing Hu et al. employed zero-shot learning in their input prompts.

In adittion to zero-shot learning, we also employed few-shot learning technique. The

Prompt templates consist of three parts: (1) Original CT report; (2) IE instructions and

an unfilled Question table; and (3) Additional requirements for the IE task. In this work,

the LLMs were instructed to respond with “No” as the default answer for questions that

do not have corresponding information in the given CT report. To improve LLM task

comprehension, annotated reports with completed tables were provided. Two prompt

templates, detailed in the appendices 6.2, were used for zero-shot and few-shot learning.

To calculate the similarity of the test reports with the training reports, the cosine

similarity was used, which is given by the following equation.

cosine similarity(A,B) =
A ·B

∥A∥∥B∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(4.3)

where:

• A ·B is the dot product of A and B.

• ∥A∥ and ∥B∥ are the magnitudes (or Euclidean norms) of A and B, respectively.

• n is the number of dimensions of the vectors.

• Ai and Bi are the i-th components of vectors A and B.

From our database of 963 reports, only those that contained answers to all the ques-

tions in Table 4.2 were selected. After the filtering process, the dataset was narrowed

down to 300 reports. One hundred reports were used for testing, while the remaining

200 were used as examples for few-shot learning. The testing framework utilized two

prompts for zero-shot learning. For few-shot learning, it leveraged two prompt templates,

each instantiated with five and ten examples, resulting in four few-shot prompts (Tem-

plate 1 with 5 examples, Template 1 with 10 examples, Template 2 with 5 examples, and

Template 2 with 10 examples).

The CT reports were combined with prompt templates to generate answers to ques-

tions. This combined prompt is submitted via API to the LLMs, and their responses

are obtained. A new request is made for each CT report, preventing previous requests

from influencing the IE results. Additionally, the LLMs’ responses are requested in JSON

format to facilitate post-processing of the results. The responses from these language

models do not always consist solely of the completed Question table. Therefore, any ad-

ditional text is disregarded, as it is irrelevant to the analysis. The focus is exclusively on

extracting the content in the form of the Question table.
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Figure 4.3 details the methodology used for a QA task for Lung-RADS classification,

focusing on extracting structured data from CT scan reports. The process begins with the

original CT report. This report is combined with a specific prompt, a question designed

to guide the LLM in extracting relevant information about lung nodule to Lung-RADS

classification. The prompt can be zero-shot or few-shot. The LLM processes the combined

report and prompt, generating a free-text response. This response is then converted

through post-processing into a structured format, typically a JSON table. This table

contains key-value pairs representing specific Lung-RADS criteria (e.g., ”Is the nodule

solid?”) and their corresponding values (e.g., ”Yes”). The final output is a structured

response, the JSON table ready for analysis and use. The structured data are then

evaluated against a gold standard to evaluate the effectiveness of LLMs for the Lung-

RADS classification.

CT Report
Computed Tomography of the Chest Without
Contrast Technique: The exam was performed
through volumetric image acquisition using a
multislice computed tomography scanner, with
multiplanar reformations and high-resolution
reconstructions. Analysis: ...

Please extract relevant structured information
from the report above:
"Question" : "Answer"
{
"Report ID" : "",
"Is the nodule solid?" : "",
"Is the nodule in soft tissue, semi-solid or
subsolid?" : "",
"Is the nodule ground-glass?" : "",
"Is the nodule spiculated, irregular or ill-
defined?" : "",
"Is the nodule calcified?" : "",
"Nodule location" : "",
"Nodule size" : ""
}

If the report does not contain relevant
information related to a specific question,
please fill in the answer with "No". The
question about the size of the nodule should
be answered only with numbers and unit of
measurement. 

Prompt Template
(Zero-shot or

Few-shot) 

Given this report: Computed Tomography of the Chest
Without Contrast Technique: The exam was performed
through volumetric image acquisition using a multislice
computed tomography scanner, with multiplanar
reformations and high-resolution reconstructions.
Analysis: ...

Return the table below from the report filled in JSON
format.

Please extract relevant structured information from the
report above:

"Question" : "Answer"
{
"Report ID" : "",
"Is the nodule solid?" : "",
"Is the nodule in soft tissue, semi-solid or subsolid?" : "",
"Is the nodule ground-glass?" : "",
"Is the nodule spiculated, irregular or ill-defined?" : "",
"Is the nodule calcified?" : "",
"Nodule location" : "",
"Nodule size" : ""
}

If the report does not contain relevant information related
to a specific question, please fill in the answer with "No".
The question about the size of the nodule should be
answered only with numbers and unit of measurement. 

Ex 1: ...
Ex 2: ...
Ex 3: ...

CT Report + Prompt

Here is the table filled with the report information:
```
{
"Report ID" : "540",
"Is the nodule solid?" : "Yes",
"Is the nodule in soft tissue, semi-solid or subsolid?" :
"No",
"Is the nodule ground-glass?" : "No",
"Is the nodule spiculated, irregular or ill-defined?" : "No",
"Is the nodule calcified?" : "No",
"Nodule location" : "at the right lung apex",
"Nodule size" : "4 mm"
}
```
Comments:
...

LLM

Response

{
"Report ID" : "540",
"Is the nodule solid?" : "True",
"Is the nodule in soft tissue, semi-solid or subsolid?" :
"False",
"Is the nodule ground-glass?" : "False",
"Is the nodule spiculated, irregular or ill-defined?" :
"False",
"Is the nodule calcified?" : "False",
"Nodule location" : "RUL",
"Nodule size" : "4"
}

Post-Processing

Structured Response

Lung-RADSEvaluation

Figure 4.3: Methodology scheme applied in QA task for Lung-RADS classification.

4.7 Post-processing for Question Answering

The LLMs were instructed to extract only the answers from the provided table in the

Prompts. However, the responses were only sometimes structured. Post-processing was

applied to convert unstructured responses into a structured format to address this issue.

This post-processing involved removing all text except the Questions and answers table.
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Besides, when the LLM did not provide an answer in the table, leaving the space blank,

or responded with ’Not informed,’ the answer was considered ’No.’ For Questions 2 to 6

(Table 4.2), the answers ’Yes’ and ’No’ were converted into Boolean values.

Regular expressions were used to identify the number and unit of measurement to ex-

tract the nodule size, which was then converted to millimeters. For the location Question,

keywords such as ’right,’ ’left,’ ’middle,’ ’upper,’ and ’lower’ were employed to categorize

the answer into six formats: ’right upper lobe,’ ’right middle lobe,’ ’left lower lobe,’ ’left

upper lobe,’ ’left lower lobe,’ and ’others.’ The answer ’others’ was used when the specific

location of the pulmonary nodule was unclear.

4.8 Lung-RADS Classification: Radiologist Analysis

After information on lung nodules was obtained during the QA and NER tasks, a rule-

based algorithm was used to assign the Lung-RADS index to lung nodules described in

chest CT reports. To validate the effectiveness of this approach, a rigorous evaluation

process was implemented, which included the random selection of 30 test reports for

independent review by a radiologist. During this review, the radiologist was asked to:

• Assess the Lung-RADS index assigned by the ruled-based algorithm and indicate

whether he agreed or disagreed with the generated classification;

• Provide a detailed justification for his evaluation;

This methodological approach allows for a comprehensive assessment of the AI tool’s

performance by comparing machine-generated classifications against expert human inter-

pretations. By soliciting specific rationales for agreement or disagreement, we can identify

potential systematic biases or limitations in the AI’s Lung-RADS index attribution pro-

cess. Analyzing discrepancies between AI classifications and radiologist interpretations

reveals specific areas where the algorithm’s decision-making can be improved.

This iterative refinement process involved:

• Examining the specific cases of misclassification

• Identifying potential sources of algorithmic bias

• Modifying the existing rule set to improve diagnostic accuracy

4.9 Evaluation

To evaluate the effectiveness of the BiLSTM-CRF and BioBERTpt models for NER, and

to assess the effectiveness of LLMs in the QA task using zero-shot and few-shot learning,
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precision (P), recall (R), and the F1-score (F1) were used. These same metrics were also

employed to evaluate the effectiveness of combining the result of these models with a

rule-based algorithm for Lung-RADS classification.

• Precision for each Lung-RADS category evaluates the model’s ability to avoid mis-

classifying exams into a particular category, indicating how well the model prevents

erroneous positive classifications.

• Recall, also known as the true positive rate or sensitivity, measures the model’s abil-

ity to correctly identify exams that genuinely belong to each Lung-RADS category.

It captures how effectively the model retrieves relevant cases.

• F1-score balances these two metrics by combining precision and recall into a single

score, representing the model’s overall effectiveness for each Lung-RADS category.

Calculated as the harmonic mean of precision and recall, the F1-score provides

a robust measure of the model’s performance in correctly classifying Lung-RADS

categories while minimizing false positives and false negatives.
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Experimental Results and Discussion

Table 5.13 shows F1-scores of 27 BiLSTM-CRF models for the named entity task trained

for 3 epochs in 10 data splits. The analysis of the table reveals a discrepancy in the

models’ F1-scores across different data splits. Specifically, models 19 (batch size = 16,

word embedding size = 50, LSTM units = 50) and 24 (batch size = 16, word embedding

size = 100, LSTM units = 200) achieved the lowest F1-scores, both scoring 0.74 in data

split 6. In contrast, model 15 (batch size = 8, word embedding size = 100, LSTM units

= 200) achieved the highest F1-score, recorded in data split 2.

The Friedman test performed shows that there is a difference between some models.

The Nemenyi test was used to determine which specific groups are different from each

other. Figure 5.1 shows a heat map that contains significant differences (P value < 0.05)

between the models. Figure 5.2 shows a box plot with the F1-scores of these 27 mod-

els. Analysis of Figures 5.1 5.2 reveals that model 1 has statistically higher results on

F1-score compared to models 19 (P value = 0.000617) and 20 (P value = 0.028268).

In particular, model 1 exhibits low dispersion in its F1-score values. Given its simplicity

(Word Embedding Size = 50, LSTM units = 50), its high average F1-score (0.86, within

the top 5), its consistent F1-score across the 10 data splits, and the absence of statisti-

cally significant differences from other models, model 1 was selected for the Lung-RADS

classification task.

Table 5.1 presents the results of the BiLSTM-CRF model (Model 1) trained for the

named entity recognition task over 10 epochs across 10 data splits. This model achieved

a macro F1-score of 0.86. This result is consistent with the performance observed after

only 3 training epochs, which yielded the same F1-score. Table 5.2 displays the results

of BioBERTpt fine-tuned for the same named entity recognition task. This model, fine-

tuned for 10 epochs, achieved an impressive macro F1-score of 0.99 across the 10 data

splits.

The proportion of consistent responses concerning lung nodule questions for Gemini

1.5 Flash, GPT-4o, and Llama 3 70B is detailed in Tables 5.3, 5.4, 5.5, 5.7, 5.6, and 5.8.

The extraction of nodule attenuation, calcification, edges, location, and size demonstrated

38
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Figure 5.1: Nemenyi post-test 27 BiLSTM-CRF models

Figure 5.2: F1-scores of all entities evaluation of the 27 BiLSTM-CRF models

greater consistency across the six prompt templates for Gemini 1.5 Flash and Llama 3 70B.

In contrast, GPT-4o showed reduced consistency for Question 1 (lung nodule attenuation)

with zero-shot prompt 1 (0.87), Question 6 (lung nodule location) with zero-shot prompt

1 (0.79), and Question 6 with zero-shot prompt 2 (0.86). The possible reason for this

happening is that the GPT-4o returns the size and attenuation of other findings described
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Table 5.1: Evaluation BiLSTM-CRF Model in 10 Data Splits

Model
Batch
Size

Embedding
Dim

LSTM
Units

Epochs Dropout

Macro
F1-Score
in 10 Data

Splits
BiLSTM-CRF 4 50 50 10 0.1 0.86

Table 5.2: Evaluation of the BioBERTpt Model in 10 Data Splits

Model
Batch
Size

Maximum
Length

Epochs
Learning
Rate

Macro
F1-Score
in 10 Data

Splits
BioBERTpt 4 512 10 3e-5 0.99

in the chest CT report.

Table 5.3: Evaluation Consistency of Response LLMs Zero-shot Prompt Template 1

LLM Q1 Q2 Q3 Q4 Q5 Q6 Q7
Gemini 1.5 Flash 0.98 0.99 0.99 1.00 1.00 0.98 0.99

GPT-4o 0.87 1.00 0.98 0.96 0.98 0.79 0.92
Llama 3 70B 0.99 0.98 1.00 0.99 1.00 0.97 1.00

Q1 - Is the nodule solid or soft tissue?
Q2 - Is the nodule semisolid or subsolid?
Q3 - Is the nodule ground-glass?
Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?
Q6 - Nodule Location
Q7 - Nodule Size

Table 5.4: Evaluation Consistency of Response LLMs Zero-shot Prompt Template 2

LLM Q1 Q2 Q3 Q4 Q5 Q6 Q7
Gemini 1.5 Flash 0.95 1.00 0.99 1.00 1.00 0.97 1.00

GPT-4o 0.97 0.97 0.99 0.98 0.91 0.86 0.94
Llama 3 70B 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Q1 - Is the nodule solid or soft tissue?
Q2 - Is the nodule semisolid or subsolid?
Q3 - Is the nodule ground-glass?
Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?
Q6 - Nodule Location
Q7 - Nodule Size

Table 5.9 shows the precision, recal and F1-score metrics for Gemini 1.5 Flash, GPT-

4o and Llama 3 70B in QA task using zero-shot prompt templates 1 and 2. The F1-score
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Table 5.5: Evaluation Consistency of Response LLMs Few-shot with 5 Examples Prompt
Template 1

LLM Q1 Q2 Q3 Q4 Q5 Q6 Q7
Gemini 1.5 Flash 0.99 1.00 1.00 1.00 0.98 0.99 1.00

GPT-4o 0.98 0.99 0.98 1.00 0.96 0.97 0.97
Llama 3 70B 1.00 1.00 1.00 1.00 1.00 0.98 0.98

Q1 - Is the nodule solid or soft tissue?
Q2 - Is the nodule semisolid or subsolid?
Q3 - Is the nodule ground-glass?
Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?
Q6 - Nodule Location
Q7 - Nodule Size

Table 5.6: Evaluation Consistency of Response LLMs Few-shot with 10 Examples Prompt
Template 1

LLM Q1 Q2 Q3 Q4 Q5 Q6 Q7
Gemini 1.5 Flash 0.99 1.00 0.99 1.00 0.99 0.95 0.99

GPT-4o 0.97 1.00 0.98 0.99 0.95 0.96 0.96
Llama 3 70B 0.99 1.00 1.00 1.00 1.00 0.97 0.98

Q1 - Is the nodule solid or soft tissue?
Q2 - Is the nodule semisolid or subsolid?
Q3 - Is the nodule ground-glass?
Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?
Q6 - Nodule Location
Q7 - Nodule Size

Table 5.7: Evaluation Consistency of Response LLMs Few-shot with 5 Examples Prompt
Template 2

LLM Q1 Q2 Q3 Q4 Q5 Q6 Q7
Gemini 1.5 Flash 1.00 1.00 1.00 1.00 1.00 0.98 0.99

GPT-4o 1.00 1.00 0.98 1.00 0.98 0.99 0.99
Llama 3 70B 1.00 1.00 1.00 1.00 1.00 0.99 0.98

Q1 - Is the nodule solid or soft tissue?
Q2 - Is the nodule semisolid or subsolid?
Q3 - Is the nodule ground-glass?
Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?
Q6 - Nodule Location
Q7 - Nodule Size

for question 2 was zero for all models and for the 6 prompts used because examples with

true answers in the 100 test reports were not provided.

Analyzing Table 5.9 with zero-shot prompt template 1 reveals a low F1-score for
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Table 5.8: Evaluation Consistency of Response LLMs Few-shot with 10 Examples Prompt
Template 2

LLM Q1 Q2 Q3 Q4 Q5 Q6 Q7
Gemini 1.5 Flash 0.99 1.00 1.00 0.99 1.00 0.99 1.00

GPT-4o 0.99 1.00 1.00 0.99 0.96 0.98 0.99
Llama 3 70B 1.00 1.00 1.00 0.99 1.00 0.98 0.98

Q1 - Is the nodule solid or soft tissue?
Q2 - Is the nodule semisolid or subsolid?
Q3 - Is the nodule ground-glass?
Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?
Q6 - Nodule Location
Q7 - Nodule Size

Gemini 1.5 Flash on questions 3 and 5. GPT-4o has a low F1-score on questions 1, 3, 4,

and 5. Llama 3 70B also presents a low F1-score on Questions 1, 3, 4, and 5. The same

analysis in Table with zero-shot prompt template 2 indicates a low F1-score for Gemini

1.5 Flash on Questions 1 and 3. GPT-4o demonstrates a low F1-score on questions 1, 3,

and 4. Llama 3 70B shows a low F1-score on questions 3 and 4.

Examination of the responses from Gemini 1.5 Flash and GPT-4o to Question 1 shows

that the presence of a ”calcified nodule” in the report results in a ”solid soft tissue atten-

uation nodule” being marked as true, regardless of clearly described nodule attenuation.

Reviewing the responses from Gemini 1.5 Flash, GPT-4o, and Llama 3 70B to question

3 reveals that the occurrence of terms like ”ground-glass opacities,” ”centrilobular ground-

glass micronodules,” ”opacities with ground-glass attenuation,” or ”ground-glass lesions”

leads to ”is the nodule ground-glass” being marked as true, regardless of unambiguous

nodule attenuation.

Inspection of the responses from Gemini 1.5 Flash, GPT-4o, and Llama 3 70B to

Question 4 demonstrates that the presence of terms such as ”microlobulated contours,”

”expansive formation with soft tissue density,” ”ill-defined hypoattenuating parenchy-

mal images,” ”areas of focal and irregular pleural thickening,” ”lobulated contours,” or

”roughly triangular morphology” results in ”is the nodule spiculated or irregular” being

marked as true, irrespective of clear nodule border information.

Analysis of the responses from Gemini 1.5 Flash, GPT-4o, and Llama 3 70B to ques-

tion 5 indicates that the occurrence of a ”hyperdense oval image” does not result in ”is

the nodule calcified” being marked as true, thus failing to capture nodule calcification

information.

Analyzing Table 5.10 with few-shot prompt template 1 with 5 examples reveals a low

F1-score for Gemini 1.5 Flash on Questions 3 and 5. GPT-4o exhibits a low F1-score

on Questions 1, 3, 4. Llama 3 70B also presents a low F1-score on questions 3, 4. The
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Table 5.9: LLMs Effectiveness using Zero-shot Prompt 1 and Prompt 2

No. Question Gemini 1.5 Flash - P1 GPT-4o - P1 Llama 3 70B - P1
P R F1 P R F1 P R F1

1 Is the nodule solid or soft tissue 0.68 1.00 0.81 0.23 1.00 0.37 0.57 1.00 0.72
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.11 1,00 0.21 0.10 1.00 0.19 0.05 1.00 0.10
4 Is the nodule spiculated or irregular 0.80 0.80 0.80 0.42 1.00 0.59 0.42 1.00 0.59
5 Is the nodule calcified 0.94 0.57 0.71 0.94 0.58 0.72 0.93 0.63 0.75
6 Nodule location 0.89 1.00 0.94 0.92 1.00 0.96 0.89 1.00 0.94
7 Nodule size 0.88 1.00 0.93 0.91 1.00 0.95 0.89 1.00 0.94

No. Question Gemini 1.5 Flash - P2 GPT-4o - P2 Llama 3 70B - P2
P R F1 P R F1 P R F1

1 Is the nodule solid or soft tissue 0.50 1.00 0.66 0.68 0.76 0.72 0.85 1.00 0.92
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.25 1.00 0.40 0.40 1.00 0.57 0.11 1.00 0.20
4 Is the nodule spiculated or irregular 0.83 1.00 0.91 0.57 0.80 0.67 0.42 1.00 0.59
5 Is the nodule calcified 0.96 0.97 0.97 0.76 0.98 0.85 0.95 1.00 0.97
6 Nodule location 0.90 1.00 0.95 0.93 1.00 0.96 0.92 1.00 0.96
7 Nodule size 0.90 1.00 0.95 0.90 1.00 0.95 0.93 1.00 0.96

same analysis in Table with few-shot prompt template 2 with 5 examples indicates a low

F1-score for Gemini 1.5 Flash on Questions 1 and 3. GPT-4o demonstrates a low F1-score

on Questions 3 and 4. Llama 3 70B shows a low F1-score on Question 3.

A potential explanation for these outcomes aligns with the explanations provided for

zero-shot learning prompt results. Specifically, the occurrence of certain terms seems to

hinder the LLMs’ accurate retrieval of pulmonary nodule information.

Table 5.10: LLMs Effectiveness using Few-shot with 5 Examples Prompt 1 and Prompt 2

No. Question Gemini 1.5 Flash - P1 GPT-4o - P1 Llama 3 70B - P1
P R F1 P R F1 P R F1

1 Is the nodule solid or soft tissue 0.43 1.00 0.61 0.00 0.00 0.00 0.81 1.00 0.89
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.12 1,00 0.22 0.15 1.00 0.27 0.20 1.00 0.33
4 Is the nodule spiculated or irregular 0.83 1.00 0.91 0.45 1.00 0.62 0.62 1.00 0.77
5 Is the nodule calcified 0.98 0.75 0.85 0.95 0.68 0.80 0.96 0.90 0.93
6 Nodule location 0.90 1.00 0.95 0.91 1.00 0.95 0.94 1.00 0.97
7 Nodule size 0.92 1.00 0.96 0.89 1.00 0.94 0.92 1.00 0.96

No. Question Gemini 1.5 Flash - P2 GPT-4o - P2 Llama 3 70B - P2
P R F1 P R F1 P R F1

1 Is the nodule solid or soft tissue 0.57 1.00 0.72 0.80 0.94 0.86 0.77 1.00 0.87
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.28 1.00 0.44 0.40 1.00 0.57 0.66 1.00 0.80
4 Is the nodule spiculated or irregular 1.00 1.00 1.00 0.67 0.80 0.73 0.57 0.80 0.67
5 Is the nodule calcified 0.98 0.97 0.97 0.96 0.82 0.88 0.97 0.98 0.97
6 Nodule location 0.92 1.00 0.96 0.98 1.00 0.99 0.96 1.00 0.98
7 Nodule size 0.92 1.00 0.96 0.93 1.00 0.96 0.94 1.00 0.97

Analyzing the Table 5.11 with few-shot prompt template 1 with 10 examples reveals a

low F1-score for Gemini 1.5 Flash on Questions 1 and 3. GPT-4o exhibits a low F1-score

on questions 3 and 4. Llama 3 70B also presents a low F1-score on Question 3. The

same analysis in Table with few-shot prompt template 2 with 10 examples indicates a

low F1-score for Gemini 1.5 Flash on Questions 1 and 3. GPT-4o demonstrates a low
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F1-score on Question 3. Llama 3 70B shows a low F1-score on Question 3 and 4.

Table 5.11: LLMs Effectiveness using Few-shot with 10 Examples Prompt 1 and Prompt
2

No. Question Gemini 1.5 Flash - P1 GPT-4o - P1 Llama 3 70B - P1
P R F1 P R F1 P R F1

1 Is the nodule solid or soft tissue 0.48 1.00 0.65 0.72 0.94 0.82 0.77 1.00 0.87
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.13 1,00 0.23 0.18 1.00 0.31 0.33 1.00 0.50
4 Is the nodule spiculated or irregular 1.00 1.00 1.00 0.33 0.80 0.47 0.71 1.00 0.83
5 Is the nodule calcified 0.98 0.82 0.89 0.95 0.70 0.81 0.97 0.95 0.96
6 Nodule location 0.90 1.00 0.95 0.92 1.00 0.96 0.96 1.00 0.98
7 Nodule size 0.92 1.00 0.96 0.90 1.00 0.95 0.92 1.00 0.96

No. Question Gemini 1.5 Flash - P2 GPT-4o - P2 Llama 3 70B - P2
P R F1 P R F1 P R F1

1 Is the nodule solid or soft tissue 0.53 1.00 0.69 0.79 0.88 0.83 0.81 1.00 0.89
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.28 1.00 0.44 0.67 1.00 0.80 0.62 1.00 0.77
4 Is the nodule spiculated or irregular 1.00 1.00 1.00 0.57 0.80 0.67 0.62 1.00 0.77
5 Is the nodule calcified 0.98 0.95 0.97 0.96 0.80 0.87 0.97 0.98 0.97
6 Nodule location 0.90 1.00 0.95 0.96 1.00 0.98 0.98 1.00 0.99
7 Nodule size 0.92 1.00 0.96 0.93 1.00 0.96 0.95 1.00 0.97

Using few-shot learning with prompt 2 and 10 examples, Gemini 1.5 Flash, GPT-

4o, and Llama 3 70B achieved a high consistency of 0.99 in their answers to the table

questions. These models also demonstrated the highest F1-scores, with Gemini 1.5 Flash

scoring 0.83, GPT-4o scoring 0.85, and Llama 3 70B scoring 0.89. The answers of these

models, generated using the specified few-shot learning approach, were then used to assign

the Lung-RADS index.

Table 5.12 shows precision, recall, and F1-score for five evaluated models BiLSTM-

CRF, BioBERTpt, Gemini 1.5 Flash, Llama 3 70B, and GPT-4o for Lung-RADS classi-

fication.

Table 5.12: Lung-RADS Classification Result

Lung-RADS
Category

BiLSTM-CRF BioBERTpt Gemini 1.5 Flash GPT-4o Llama 3 70B Nº Ex.
P R F1 P R F1 P R F1 P R F1 P R F1

1 1.00 0.93 0.97 1.00 0.95 0.97 1.00 0.95 0.97 0.98 0.80 0.88 0.98 0.98 0.98 61
2 0.85 0.92 0.88 0.85 0.88 0.86 0.96 0.88 0.92 0.70 0.84 0.76 1.00 0.80 0.89 25
3 0.33 0.50 0.40 0.50 1.00 0.67 0.50 1.00 0.67 0.40 1.00 0.57 0.33 0.50 0.40 2
4A 0.78 1.00 0.88 0.78 1.00 0.88 0.78 1.00 0.88 0.83 0.71 0.77 0.86 0.86 0.86 7
4X 1.00 0.80 0.89 1.00 0.40 0.57 1.00 1.00 1.00 0.57 0.80 0.67 0.57 0.80 0.67 5

weighted avg 0.93 0.92 0.92 0.94 0.91 0.91 0.96 0.94 0.95 0.87 0.81 0.83 0.95 0.91 0.92

All models demonstrated high effectiveness in classifying Lung-RADS 1 nodules.

This likely stems from the prevalence of this classification in the training data and the

clear textual descriptions of these nodules in the reports. Additionally, the absence of

similar characteristics, such as ”calcification,” which are associated with other findings,

may have contributed to this effectiveness.

Of the twenty five Lung-RADS 2 cases, the BiLSTM-CRF model incorrectly clas-

sified one case as Lung-RADS 3 because it failed to identify the pulmonary nodule as
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subpleural. It also misclassified two other cases as Lung-RADS 2. In one case, the model

missed the nodule’s calcification, which should have resulted in a Lung-RADS 1 classi-

fication. In the other, the model misidentified the nodule’s size, leading to an incorrect

Lung-RADS 2 assignment.

The BioBERTpt model misclassified two cases: one as Lung-RADS 3 due to a missed

subpleural nodule and another as Lung-RADS 4B due to incorrect size extraction. Addi-

tionally, this model misclassified three cases as Lung-RADS 2. Two of these should have

been Lung-RADS 4X because the model failed to identify irregular nodule borders, and

one should have been Lung-RADS 1 due to a missed calcification. These errors likely

occurred because the models, during the named entity recognition task, were unable to

correctly identify the characteristics of the pulmonary nodules, and the rule-based algo-

rithm misconverted the extracted information into a structured format.

Analyzing Gemini 1.5 Flash, GPT-4o, and Llama 3 70B revealed the following errors:

• Gemini 1.5 Flash made mistakes in two cases. In the first, the model incor-

rectly extracted the nodule size information, leading to an incorrect Lung-RADS

4B classification. In the second, it failed to identify that the pulmonary nodule was

subpleural, assigning a Lung-RADS 3 classification. Additionally, the model mis-

classified one case as Lung-RADS 2 because it failed to extract the “calcification”

characteristic of the pulmonary nodule.

• GPT-4o made mistakes in three cases. In one, it failed to identify the pulmonary

nodule as subpleural, resulting in a Lung-RADS 3 classification. In the second, it

incorrectly extracted the irregular border characteristic, leading to a Lung-RADS

4X classification. In the third, it did not extract any relevant information, leading to

a Lung-RADS 0 classification. Additionally, this model misclassified eight cases as

Lung-RADS 2. In all eight cases, it failed to extract the calcification characteristic,

which should have led to a Lung-RADS 1 classification.

• Llama 3 70B made mistakes in four cases. In the first, it incorrectly extracted the

nodule size, leading to a Lung-RADS 4B classification. In the second, it did not

extract any information from the nodule, leading to a Lung-RADS 0 classification.

In the third, it failed to identify the nodule as subpleural, assigning a Lung-RADS

3 classification. In the fourth, it incorrectly extracted the irregular border charac-

teristic, leading to a Lung-RADS 4X classification.

Regarding the Lung-RADS 3 classification , three models achieved an F1-score

below 0.60, with BioBERTpt and Gemini 1.5 Flash achieving the highest F1-score of

0.67. This was the Lung-RADS category where the models performed the worst. Due

to the small number of test examples (only two), the evaluation of the models in this

category was limited.
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Of the two Lung-RADS 3 cases:

• The BiLSTM-CRF model correctly classified only one. In the second case, it

failed to extract the nodule’s characteristics, resulting in a Lung-RADS 2 classifi-

cation. Additionally, it incorrectly classified one case as Lung-RADS 3 because it

failed to extract the calcification information, whereas the nodule should have been

classified as Lung-RADS 1.

• The BioBERTpt model correctly classified both test cases but incorrectly clas-

sified one additional case as Lung-RADS 3. In this case, the nodule was calcified,

but the model failed to extract this information, meaning the correct classification

should have been Lung-RADS 1.

• The Gemini 1.5 Flash model also correctly classified both test cases as Lung-

RADS 3 but misclassified one additional case as Lung-RADS 3 due to failure to

extract calcification information, when the correct classification should have been

Lung-RADS 1.

• The GPT-4o model correctly classified both test cases as Lung-RADS 3 but

incorrectly classified two additional cases as Lung-RADS 3. In these instances, it

failed to extract the calcification information, resulting in misclassifications when

the nodules should have been categorized as Lung-RADS 1.

• The Llama 3 70B model correctly classified one of the two Lung-RADS 3 cases. In

the second case, it incorrectly extracted irregular border characteristics, leading to a

Lung-RADS 4X classification. Additionally, it misclassified one case as Lung-RADS

3 due to failure to extract calcification information, when the correct classification

should have been Lung-RADS 1.

For Lung-RADS 4A classification, four models achieved an F1-score above 0.85,

while GPT-4o had the lowest F1-score 0.77. Among the seven test cases:

• The BiLSTM-CRF, BioBERTpt, and Gemini 1.5 Flash models correctly

classified all cases as Lung-RADS 4A.

• The GPT-4o model correctly classified five cases but misclassified two. In both

cases, the model incorrectly extracted the irregular border characteristic, leading to

a Lung-RADS 4X classification. Furthermore, it mistakenly assigned a Lung-RADS

4X classification to one case where the nodule was subpleural, failing to correctly

identify this characteristic and leading to an incorrect Lung-RADS 4A classification.

• The Llama 3 70B model correctly classified six out of seven test cases as Lung-

RADS 4A. The misclassification occurred due to incorrect extraction of the irregular
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border characteristic, leading to a Lung-RADS 4X classification. Furthermore, it

incorrectly assigned a Lung-RADS 4A classification to a case where the nodule was

subpleural, failing to identify this characteristic.

For the Lung-RADS 4X classification Gemini 1.5 Flash model achieved an excel-

lent F1-score of 1.00, while the BiLSTM-CRF model obtained an F1-score of 0.89. The

GPT-4o and Llama 3 70B models achieved an F1-score of 0.67, and the BioBERTpt model

had the lowest F1-score at 0.57.

• Of the five cases classified as Lung-RADS 4X, the BioBERTpt model correctly

identified only two. In the other three cases, the model failed to identify the irregular

border characteristic and thus classified the nodule as Lung-RADS 4A. Additionally,

in two cases, the rule-based algorithm failed to correctly convert the model’s results

into a structured format, leading to information loss and the incorrect classification

of the nodules as Lung-RADS 2.

• The BiLSTM-CRF model correctly classified four out of the five Lung-RADS 4X

cases. In the only misclassified case, the model failed to extract the irregular border

characteristic, leading to a Lung-RADS 4A classification.

• The GPT-4o model correctly classified four out of five Lung-RADS 4X cases. The

single misclassification occurred because the model failed to extract the calcification

characteristic, resulting in a Lung-RADS 1 classification. However, this model also

incorrectly assigned a Lung-RADS 4X classification in three cases. In the first two

cases, the model incorrectly extracted the irregular border characteristic, and these

nodules should have been classified as Lung-RADS 4A. In the last case, the model

also incorrectly extracted the irregular border characteristic, and the nodule should

have been classified as Lung-RADS 2.

• The Llama 3 70B model correctly classified four out of five Lung-RADS 4X cases.

The single misclassification occurred because the model failed to extract the cal-

cification characteristic, leading to a Lung-RADS 1 classification. However, this

model also incorrectly assigned a Lung-RADS 4X classification in three cases. In

the first case, the model incorrectly extracted the irregular border characteristic,

and this nodule should have been classified as Lung-RADS 4A. In the second case,

the model incorrectly extracted the irregular border characteristic, and this nodule

should have been classified as Lung-RADS 3. In the third case, the model also in-

correctly extracted the irregular border characteristic, and the nodule should have

been classified as Lung-RADS 2.

Therefore, the results demonstrated that all 5 models were effective in classifying lung

nodules in Portuguese chest CT reports to assist radiologists with Lung-RADS index-

ing. The findings highlight an pathway for developing more adaptable NLP system by
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leveraging deep learning and LLMs, which has significant implications for Lung-RADS

classification tasks.

Typically, developing a machine learning-based NER system tailored to specific clinical

entities requires creating a highly annotated corpus, a resource-intensive process demand-

ing time and expert input from the medical domain. In our cases only 100 reports were

annoted with the Lung-RADS category.

Our study wasn’t the first that utilizes NLP to assign the Lung-RADS index from CT

reports. Beyer et al. [Beyer et al., 2017] previously developed a rule-based algorithm to

assign the Lung-RADS classification of lung nodules identified within structured, clini-

cal reports of consecutive CT lung screening examinations in English idiom. Their NLP

algorithm achieved an overall sensitivity of 0.75 and an overall specificity of 0.98 in iden-

tifying nodules with the Lung-RADS 3 and Lung-RADS 4 index. Our approach differs

slightly from that of Beyer et al. [Beyer et al., 2017] in that they utilized a database with

1501 structured reports, whereas we employed a database with 963 unstructured reports.

Their method relied on a rule-based algorithm to extract nodule characteristics, while our

approach leverages deep learning models and LLMs for characteristics extraction of lung

nodules using NER and QA tasks.

Gandomi et al. [Gandomi et al., 2024] further explored NLP for Lung-RADS index

extraction from CT reports. They developed a rule-based algorithm for extract the Lung-

RADS categories described in the report and compared its performance to that of both

radiologists and LCS specialists. Across four ground truth sets of CT reports, their ap-

proach demonstrated high precision (0.99) and recall (0.99). Our approach differed from

that of Gandomi et al. in several key aspects. Firstly, they utilized a significantly larger

database comprising 24,060 reports, whereas our database consisted of 963 reports, and

the findings in our study may not generalize well to a broader population, as the dataset

might not capture the full variability present in real-world clinical reports. Secondly, Gan-

domi’s database already included the Lung-RADS index within the reports themselves.

In contrast, our study assigned the Lung-RADS index based on the characteristics of pul-

monary nodules as described within the reports. They compared the algorithm’s assigned

Lung-RADS with those assigned by both radiologists and LCS members.

To our knowledge, our study is the first to use LLMs to assign Lung-RADS scores

from chest CT reports in Portuguese. The Portuguese language presents challenges due

to its regional variations, intricate medical terminology, nuanced sentence structures, and

comparatively limited data resources. Additionally, most LLMs have been pretrained

on English data, necessitating careful consideration to ensure accurate effectiveness in

this medical context. Previous studies in Portuguese have focused on extracting named

entities from electronic health records [Schneider et al., 2020] [da Rocha et al., 2023]

[Oliveira et al., 2022]. Our work contribute with the state-of-the-art by demonstrating

the successful assignment of Lung-RADS classifications from chest CT reports in Por-
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tuguese, utilizing deep learning models and LLMs to extract the lung nodule characteris-

tics necessary for calculating the Lung-RADS index.

Despite the encouraging results this work have some limitation:

• A significant limitation of this work stems from the author’s lack of medical ex-

pertise. The data annotations, crucial for the analysis, were validated by a single

radiologist. While this review provides a degree of medical oversight, it is acknowl-

edged that a more robust validation process involving multiple radiologists would

have been preferable. The single-reviewer approach may not capture the full spec-

trum of radiological interpretations, potentially impacting the generalizability of the

findings;

• It is also essential to acknowledge that the data utilized in this study was collected

solely from one hospital. It restricts the demographic and clinical variability of

the dataset. Consequently, the results may not be representative of diverse patient

populations or healthcare practices found in other institutions;

• The composition of the test dataset for Lung-RADS classification presents a fur-

ther limitation. With only 100 reports, the distribution of Lung-RADS categories

is notably skewed. The absence of Lung-RADS 0 and 4B cases, coupled with the

dominance of Lung-RADS 1 and the limited representation of Lung-RADS 3, 4A,

and 4X, creates an imbalanced dataset. This imbalance may disproportionately

influence the model’s effectiveness, potentially leading to biased evaluations and

hindering its ability to accurately classify less frequent, but clinically significant,

categories. Consequently, the model’s observed performance may not accurately

reflect its real-world effectiveness across a more balanced and diverse patient popu-

lation;

• Additionally, considerations around API costs, LLM usage, and data sensitivity are

critical when deploying such models in clinical settings. A more comprehensive anal-

ysis of the resources and expenses associated with traditional NLP, word embedding

models, and LLM-based systems will be valuable for future research, helping clarify

the feasibility and practical implications of LLMs in clinical NER tasks, particularly

in Lung-RADS classification for Portuguese-language radiology reports.
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Table 5.13: Evaluation 27 BiLSTM-CRF Models in 10 Data Splits
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Chapter 6

Conclusion

In this study, we used deep learning models and LLMs to extract lung nodule character-

istics from chest CT reports written in Portuguese to automate the Lung-RADS classifi-

cation. We found that all five evaluated models(BiLSTM-CRF, BioBERTpt, Gemini 1.5

Flash, GPT-4o and Llama 3 70B were effective for classifying lung nodules in Portuguese

chest CT reports to assist radiologists with Lung-RADS indexing. Our findings highlight

apathway for developing a more adaptable NLP system by leveraging deep learning and

LLMs models, which has significant implications for Lung-RADS classification tasks. To

our knowledge, our study is the first to use LLMs to assign Lung-RADS scores from chest

CT reports in the Portuguese idiom.

Our findings underscore the potential of Deep Learning and LLMs models to support

radiologists in accurately categorizing lung nodules according to Lung-RADS criteria,

thereby simplifying the diagnostic process. By automating and improving the information

extraction, these models are anticipated to reduce radiologists’ workload and enhance the

consistency of follow-up recommendations. Ultimately, we hope this will benefit patients

by facilitating more timely and accurate detection and management of lung cancer.

6.1 Future Work

In order to improve the Lung-RADS classification system of pulmonary nodules described

in chest CT reports, future plans are as follows:

• We aim to incorporate datasets from multiple institutions representing diverse clin-

ical practices and patient populations;

• We aim to expand this scope to include newer models, such as Llama 3.3, Gemini

2.0 Pro, Claude 3.5, and Deep Seek to gain deeper insights into their effectiveness;

• Use different prompt techniques such as chain-of-thought and retrieval augmented

generation to improve information extraction from pulmonary nodules described in
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chest CT reports.

6.2 Scientific Contributions

The scientific works published with Qualis CAPES were:

• Results accepted in: 2023 IEEE 23rd International Conference on Bioinformatics

and Bioengineering (BIBE), 2023, Dayton. 2023 IEEE 23rd International Con-

ference on Bioinformatics and Bioengineering (BIBE), Qualis A3, with the title:

”Lung-RADS + AI: A Tool for Quantifying the Risk of Lung Cancer in Computed

Tomography Reports”.

• Results accepted in: 24º SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLI-

CADA À SAÚDE, 2024, Goiânia. 2024: Anais do XXIV Simpósio Brasileiro de

Computação Aplicada à Saúde, 2024. Qualis A4, with the title: ”LungRads+AI:

Automatização do Índice Lung-RADS em Laudos de TC de Tórax”.

• Results accepted in: 2024 IEEE 24th International Conference on Bioinformatics

and Bioengineering (BIBE), 2024, Kragujevac. 2024 IEEE 24th International Con-

ference on Bioinformatics and Bioengineering (BIBE), 2024. Qualis A3, with the

title: ”Comparative Study of Large Language Models for Lung-RADS Classification

in Portuguese CT Reports”.



Appendices

Zero-shot Prompt Templates

Please extract relevant structured information from the above report:
"Question" : "Answer"
{
"Is the nodule solid or soft tissue?" : "",
"Is the nodule semisolid or subsolid?" : "",
"Is the nodule ground-glass?" : "",
"Is the nodule spiculated, irregular or poorly defined?" : "",
"Is the nodule calcified?" : "",
"Nodule location" : "",
"Nodule size" : ""
}

If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question
should be answered with numbers and unit of measure only.

Zero-Shot Prompt Template 1

Figure 6.1: Zero-shot Prompt 1 Template.

Please extract relevant structured information from the report above:
"Question" : "Answer"
{
"Is the nodule solid or soft tissue?" : "",
"Is the nodule semisolid or subsolid?" : "",
"Is the nodule ground-glass?" : "",
"Is the nodule spiculated, irregular or poorly defined?" : "",
"Is the nodule calcified?" : "",
"Nodule location" : "",
"Nodule size" : ""
}

The following are some requirements for extraction:

1. Please extract structured information for the pulmonary nodule mentioned in the report to fill in the table. In this process, you must disregard all findings described in the report
except for: nodules, hyperdense oval image or hyperattenuating oval image.

2. If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question should be
answered with numbers and unit of measure only.

Here are some points of prior medical knowledge for your reference

1. Hyperdense oval image should be considered as a calcified pulmonary nodule.

2. Solid, soft parts and ground glass are mutually exclusive. Only one of the three questions can be "Yes", and the mixed ground glass opacity means that the tumor has
components of solid and ground glass opacity.

3. Micronodule is a nodule in the lung less than 3 millimeters (mm) in diameter. In this context due to its small size we are not interested in extracting its characteristics.
Therefore, its characteristics should not be extracted.

Zero-Shot Prompt Template 2

Figure 6.2: Zero-shot Prompt 2 Template.
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Few-shot Prompt Templates

Please extract relevant structured information from the above report:
"Question" : "Answer"
{
"Is the nodule solid or soft tissue?" : "",
"Is the nodule semisolid or subsolid?" : "",
"Is the nodule ground-glass?" : "",
"Is the nodule spiculated, irregular or poorly defined?" : "",
"Is the nodule calcified?" : "",
"Nodule location" : "",
"Nodule size" : ""
}

If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question
should be answered with numbers and unit of measure only.

The example report: ...

The example report with the table filled in: ...

Few-Shot Prompt Template 1

Figure 6.3: Few-shot Prompt 1 Template.

Please extract relevant structured information from the report above:
"Question" : "Answer"
{
"Is the nodule solid or soft tissue?" : "",
"Is the nodule semisolid or subsolid?" : "",
"Is the nodule ground-glass?" : "",
"Is the nodule spiculated, irregular or poorly defined?" : "",
"Is the nodule calcified?" : "",
"Nodule location" : "",
"Nodule size" : ""
}

The following are some requirements for extraction:

1. Please extract structured information for the pulmonary nodule mentioned in the report to fill in the table. In this process, you must disregard all findings described in the report
except for: nodules, hyperdense oval image or hyperattenuating oval image.

2. If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question should be
answered with numbers and unit of measure only.

Here are some points of prior medical knowledge for your reference

1. Hyperdense oval image should be considered as a calcified pulmonary nodule.

2. Solid, soft parts and ground glass are mutually exclusive. Only one of the three questions can be "Yes", and the mixed ground glass opacity means that the tumor has
components of solid and ground glass opacity.

3. Micronodule is a nodule in the lung less than 3 millimeters (mm) in diameter. In this context due to its small size we are not interested in extracting its characteristics.
Therefore, its characteristics should not be extracted.

The example report: ...

The example report with the table filled in: ...

Few-Shot Prompt Template 2

Figure 6.4: Few-shot Prompt 2 Template.

All the code used in this work is available in the Github repository: https://github.

com/tarcisiolf/Lung_RADS_Automation.git

https://github.com/tarcisiolf/Lung_RADS_Automation.git
https://github.com/tarcisiolf/Lung_RADS_Automation.git
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