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Resumo

O cancer de pulmao tem a maior taxa de mortalidade entre todos os tipos de cancer,
tanto para homens quanto para mulheres. Estima-se que o cancer de pulmao seja re-
sponséavel por 21% das mortes por cancer em cada género no mundo. Essa estatistica
alarmante destaca o impacto significativo do cancer de pulmao na mortalidade geral por
cancer, sublinhando a necessidade urgente de estratégias eficazes de prevencao, deteccao
precoce e tratamento para combater essa doenca. O rastreamento do cancer de pulmao
é um processo projetado para detectar o cancer de pulmao em individuos em risco, par-
ticularmente aqueles com histérico de tabagismo. Envolve tomografias computadorizadas
de baixa dose anuais, interpretacao cuidadosa dos resultados e acompanhamento opor-
tuno para garantir a deteccao e o tratamento precoces. Varias sociedades profissionais,
incluindo a American College of Radiology e a Sociedade Fleischner, publicaram diretrizes
para o manejo de pacientes com nédulos pulmonares detectados durante o rastreamento
de cancer de pulmao. As diretrizes sao uma ferramenta importante em programas de ras-
treamento que visam reduzir a incidéncia de exames de acompanhamento desnecessarios
e orientar o manejo ideal do paciente. Lung Computed Tomography Screening Reporting
€ Data System (Lung-RADS) é um sistema de classificacao padronizado para nédulos
pulmonares detectados em exames de imagem, como tomografias computadorizadas. O
Lung-RADS avalia o risco de malignidade (cancer) nesses nédulos e orienta as decisoes de
manejo subsequentes. Neste contexto, este trabalho visa analisar a eficacia de modelos de
aprendizado profundo e Large Language Model na extragao de caracteristicas de nédulos
pulmonares de laudos de Tomografia Computadorizada em portugués para permitir a
classificagao automatizada do Lung-RADS. Este trabalho avaliou a eficacia de BiILSTM-
CRF, BioBERTpt, Gemini 1.5 Flash, GPT-40 e Llama 3 70B. Os resultados sugerem que
o Gemini 1.5 Flash se destaca como o modelo com maior eficicia, superando os demais
em quatro das cinco classificagdes Lung-RADS no conjunto de teste, com um F1-score
ponderado de 0,95, destacando sua eficacia na avaliacao precisa de nédulos pulmonares

em varios cenarios de classificacao.

Palavras-chave: Cancer de Pulmao; Lung-RADS; NLP; Extracao de In-
formacao; LLM.



Abstract

Lung cancer has the highest mortality rate among all cancer types, affecting both men
and women. It is estimated that lung cancer accounts for 21% of cancer deaths in each
gender worldwide. This alarming statistic highlights the significant impact of lung can-
cer on overall cancer mortality, underscoring the urgent need for effective prevention,
early detection, and treatment strategies to combat this disease. Lung cancer screening
is a process designed to detect lung cancer in at-risk individuals, particularly those with
a history of smoking. It involves annual low-dose computed tomography (CT) scans,
careful interpretation of results, and timely follow-up to ensure early detection and treat-
ment. Several professional societies, including the American College of Radiology and the
Fleischner Society, have published guidelines for the management of patients with pul-
monary nodules detected during lung cancer screening. The guidelines are an important
tool in screening programs aimed at reducing the incidence of unnecessary follow-up ex-
aminations and guiding optimal patient management. The Lung Computed Tomography
Screening Reporting & Data System (Lung-RADS) is a standardized classification system
for pulmonary nodules detected on imaging examinations, such as CT scans. Lung-RADS
assesses the risk of malignancy (cancer) in these nodules and guides subsequent manage-
ment decisions. In this context, this work aims to analyze the effectiveness of deep learning
and large language models in extracting features of pulmonary nodules from Portuguese
CT reports to enable automated classification of Lung-RADS. This work evaluated the ef-
fectiveness of BiLSTM-CRF, BioBERTpt, Gemini 1.5 Flash, GPT-40, and Llama 3 70B.
The results suggest that the Gemini 1.5 Flash stands out as the most effective model,
outperforming the others in four of the five Lung-RADS classifications in the test set,
with a weighted Fl-score of 0.95, highlighting its effectiveness in accurately assessing

lung nodules in various classification scenarios.

Keywords: Lung Cancer; Lung-RADS; NLP; Information Extraction; LLM.
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Chapter 1
Introduction

Lung cancer ranks as the second most frequently diagnosed cancer among both men and
women, following only breast cancer in prevalence. Despite advancements in early detec-
tion and treatment, it remains the leading cause of cancer-related mortality, responsible
for more deaths in 2020 than breast and prostate cancers combined [Sung et al., 2021].
In that year, approximately 2,206,771 individuals received a lung cancer diagnosis, with
1,796,144 succumbing to the disease [Sung et al., 2021]. In Brazil, lung cancer is the
third most common type of cancer among men and the fourth most common among
women. Estimates from 2018 show that there were 18,740 new cases of lung cancer in
men and 12,530 in women [Mathias et al., 2020]. This statistic emphasizes lung can-
cer’s substantial contribution to overall cancer mortality, highlighting the need for robust
strategies in prevention, early detection, and treatment to address this disease effectively
[Siegel et al., 2023].

Lung cancer screening (LCS) is a process designed to detect lung cancer in in-
dividuals at risk, particularly those with a history of smoking [Ahmad et al., 2025].
It involves annual low-dose computed tomography (LDCT) scans, careful interpreta-
tion of the results, and timely follow-up care to ensure early detection and treatment
[Deffebach and Humphrey, 2015] [Ahmad et al., 2025]. The national lung screening trial
(NLST) demonstrated that individuals undergoing annual LDCT scans experienced a
consistent reduction in lung cancer mortality. The extended follow-up from the NLST
confirmed a lung cancer mortality reduction of 8-11%, emphasizing the long-term benefits
of LCS in high-risk populations |[National Lung Screening Trial Research Team, 2019].

Multiple professional societies, including the American College of Radiology
(ACR) and the Fleischner Society, have published guidelines for managing pa-
tients with pulmonary nodules detected on computed tomography (CT) exams
[ACR, 2022][MacMahon et al., 2017]. The guidelines are an important tool aimed at re-
ducing the incidence of unnecessary follow-up exams and guiding optimal patient manage-
ment. In addition, the guidelines offer more flexibility in follow-up intervals and provide

tailored recommendations based on individual risk factors, thus enhancing the ability of ra-



diologists, clinicians, and patients to make well-informed decisions [Polanco et al., 2024].

One of these guidelines is the Lung CT Screening Reporting & Data System (Lung-
RADS®)) published by the ACR, the Lung-RADS is a standardized classification system
for lung nodules detected in imaging exams such as LDCT scans [ACR, 2022]. Lung-
RADS assesses the risk of malignancy (cancer) in these nodules and guides subsequent
management decisions. The Lung-RADS index is based on some characteristics of pul-
monary nodules, including the size, shape, growth rate, and other nodule characteristics.
The greater the risk of malignancy, the higher the Lung-RADS index. The follow-up exam-
ination for a nodule with a lower Lung-RADS index (1-3) is an LDCT in 12 months, while
for a nodule with a higher Lung-RADS index (4-5), a Positron Emission Tomography-
Computed Tomograph (PET CT) or biopsy is recommended [ACR, 2022].

Determining follow-up examinations according to the Lung-RADS guideline for lung
cancer screening CT is a straightforward process for individuals enrolled in a lung cancer
screening program. However, extracting and organizing relevant clinical information in a
structured format, as required by Lung-RADS criteria, presents considerable challenges.
Analyzing medical data in Portuguese is a complex and time-consuming task, due to the
fact that clinical data is often recorded in a free text format. There are the presence of
acronyms, negation adverbs, and grammatical errors. Furthermore, cultural differences
and variations in descriptive style can lead to inconsistencies in the data. Finally, human
error in data entry is also a possibility |[da Rocha et al., 2023].

Natural language processing (NLP) is a branch of artificial intelligence that enables
machines to understand, interpret, and generate human language. In the healthcare sec-
tor, NLP has greatly improved our capacity to manage and analyze large volumes of tex-
tual data, such as medical records and clinical notes [Pandey et al., 2020]. Named entity
recognition (NER) is a subfield of NLP that identifies and classifies named entities in text
and involves detecting and categorizing named entities (NEs) in text into specified entity
classes. These entities can include names of people, organizations, locations, and more
|ILi et al., 2022]. Several works leverage NER to systematically extract structured infor-
mation from clinical texts and radiology reports, such as identifying clinical conditions,
symptoms, diagnoses, medications, exams, treatment, and pulmonary nodules descrip-
tions [Lopes et al., 2019 [da Rocha et al., 2023] |Fei et al., 2022]. In [Beyer et al., 2017],
the authors showed how NLP can assist radiologists by recommending the appropriate
Lung-RADS category and identifying reports that lack sufficient information for accurate
Lung-RADS classification. Recent study have shown that advancements in NLP provide
a promising approach for automatically extracting Lung-RADS malignancy index data
from the unstructured text found in radiology reports [Gandomi et al., 2024].

However, previous research on information extraction (IE) has primarily focused on
Chinese and English idioms to identify clinical entities, lung nodules, tumors, and their
associated characteristics [Zheng et al., 2021] [Hu et al., 2024a] [Hu et al., 2024b], leaving
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a gap in understanding this phenomenon in other languages. Additionally, the absence
of publicly available datasets containing pulmonary nodule reports further limits the de-
velopment and evaluation of information extraction methods in this domain, particularly

for radiology reports in diverse languages.

1.1 Objective

In this context, this work aims to analyze the effectiveness of strategies for extracting lung
nodule characteristics from Portuguese chest CT reports to enable automated Lung-RADS
classification. It compares deep learning models and large language models (LLMs),
employing natural language processing techniques such as named entity recognition and

question answering.

1.2 Work Structure

This work is organized as follows.

e Chapter [2]literature review examining related works that contextualize and support

the research;
e Chapter |3 provides the theoretical background;
e Chapter 4| outlines the research methodology;

e Chapter |o| is dedicated to the presentation of experiments conducted and results

obtained;

e Chapter [6] summarizes the study’s conclusions, highlighting key findings, limitations

encountered during the research, future works, and scientific contributions.



Chapter 2

Related Works

2.1 Rule-Based NLP Systems in Medical Applica-

tions

Rule-based natural language processing systems rely on manually defined linguistic rules
to extract or process information from text. These systems typically use dictionary-based
methods and pattern matching to identify and categorize information. Several works
have demonstrated the effectiveness of these techniques. For example, Gershanik et al.
|Gershanik et al., 2011] introduced iISCOUT, an NLP application to retrieve documents
and assess discrepancies between the "findings” and ”impressions” sections of radiology
reports, discovering inconsistencies more than one-third of the cases. Although achiev-
ing a precision of 96.0% and a recall of 80.00% in identifying pulmonary nodules, the
NLP application (iISCOUT) remains constrained by the variability and inconsistency of
terminology present in the reports. Moreover, variations in language or reporting style
can lead to missed findings, despite advanced NLP tools. Nobel et al. [Nobel et al., 2020]
developed a rule-based NLP model to classify lung nodule T-stages in Dutch radiology re-
ports, achieving significant accuracy (87.0%) in its evaluation. However, the study faced
limitations due to its relatively small dataset, which affects the generalizability of the
findings, suggesting the need for a larger dataset for more robust training and validation,
especially for machine learning-based approaches. In a study using more than 350,000
CT transcripts, Zheng et al. [Zheng et al., 2021] developed a rule-based algorithm to ex-
tract a range of nodule characteristics, achieving high sensitivity (98.6%) and specificity
(100.0%) to identify lung nodules.

Although rule-based NLP systems have show significant success in specific med-
ical applications, as evidenced by [Gershanik et al., 2011], [Nobel et al., 2020], and
[Zheng et al., 2021], they consistently face limitations related to linguistic variability and
the need for manual rule creation. These challenges, particularly in handling the complex

and often inconsistent terminology found in medical texts, have motivated the exploration
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of more flexible and robust approaches to NLP. A paradigm shift has subsequently oc-
curred in the field, with a strong emphasis on deep learning solutions, particularly those

that utilize transformer architectures.

2.2 Machine Learning Approachs

As an intermediary between rule-based NLP systems and deep learning approaches, ma-
chine learning methods have been widely explored in radiology-related NLP tasks. Ma-
chine learning techniques, such as support vector machines (SVM), logistic regression, and
random forests, have been successfully applied to extract structured information from ra-
diology reports. For example, Carrodeguas et al. demonstrated that machine learning
models could identify follow-up recommendations in radiology reports, with SVM achiev-
ing an F1-score of 0.85, exceeding both a rule-based NLP system and deep learning models
in this specific task [Carrodeguas et al., 2019]. Similarly, Zech et al. used natural lan-
guage processing and machine learning to annotate clinical radiology reports, highlighting
the potential of automated methods in structuring large-scale radiological data for down-
stream applications [Zech et al., 201§].

These approaches demonstrate the effectiveness of machine learning to process medi-
cal text while mitigating some of the limitations associated with rigid rule-based systems.
However, despite their advantages, machine learning models often require extensive fea-
ture engineering and large annotated datasets to achieve high performance, thereby mo-
tivating the transition toward deep learning-based methods for more flexible and scalable

solutions.

2.3 Deep Learning Approachs

Deep learning methods have emerged as an important pillar in natural language process-
ing, revolutionizing how we analyze and interpret medical texts. The evolution toward
deep learning has been driven by the inherent limitations of rule-based systems, partic-
ularly their inability to effectively handle the complex, nuanced, and often inconsistent
terminology found in medical documentation [Hu et al., 2024b]. For example, Fei et al.
[Fei et al., 2022] proposed a Bidirectional Long Short-Term Memory with Conditional
Random Fields (BiLSTM-CRF), a model for named entity extraction from Chinese ra-
diology reports. Their approach demonstrated outstanding performance, achieving high
accuracy (94.22%), precision (94.56%), recall (93.96%), and F1-score (94.26%). These re-
sults highlight the model’s effectiveness in handling complex medical text data. However,
reliance on unstructured data poses significant challenges for automating data analysis

and ensuring standardization.
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Naila et al. |da Rocha et al., 2023] proposed a Convolutional Neural Network (CNN)
model that uses unstructured data from Portuguese medical records to identify seven
entities, including symptoms, diagnoses, medications, conditions, exams, and treatment.
They constructed a corpus using 1,200 of 30,000 records. The CNN model for named
entity recognition achieved an average precision of 72.72%, an average recall of 56.93%,

and an average F1-score of 63.87%.

2.4 BERT and Domain-Specific Transformer Models

Current state-of-the-art NLP systems have predominantly utilized transformer-based ar-
chitectures, such as Bidirecional Encoder Representations from Transformers (BERT),
achieving remarkable performance across a wide range of tasks, including natural lan-
guage understanding, text classification, question answering, and text generation. These
architectures leverage self-attention mechanisms to capture complex relationships within
textual data, allowing their dominance in general-purpose and domain-specific applica-
tions [Vaswani et al., 2023] [Devlin et al., 2019]. Despite the fact that BERT has set new
benchmarks in many NLP tasks, [Sugimoto et al., 2021] demonstrated that BILSTM-CRF
was more effective than BERT and BERT-CRF in extracting relevant information from
chest CT reports. In their study, they used BiLSTM-CRF, BERT, and BERT-CRF mod-
els. This highlights that despite the general superiority of transformers, certain tasks
may benefit from architectures better tailored to structured outputs or sequence tag-
ging. For instance, Fei et al. [Fei et al., 2022] proposed a BiLSTM-CRF model for entity
extraction from Chinese radiology reports. Their approach demonstrated outstanding
performance, achieving high accuracy (94.22%), precision (94.56%), recall (93.96%), and
Fl-score (94.26%). These results highlight the model’s effectiveness in handling complex
medical text data.

Futhermore, based on the BERT architecture, domain-specific models were de-
veloped for clinical applications, such as BioBERT [Lee et al., 2019], ClinicalBERT
[Alsentzer et al., 2019], and PubMedBERT [Gu et al., 2021]. These models were pre-
trained on large biomedical and clinical text datasets. When these domain-specific models
were applied to various clinical NLP tasks such as biomedical named entity recognition,
biomedical relation extraction, and biomedical question answering, they demonstrated
superior performance to the original BERT or BERT models pre-trained on more general
text corpora. Building upon the advancements of domain-specific BERT-based models in
clinical NLP tasks, recent developments in transformer-based large language models have

further expanded the boundaries of language understanding and application.
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2.5 Large Language Models in Medical Applications

Recent advances in Large Language Models (LLMs) such as Generative Pre-trained
Transformer 4 (GPT-4) [OpenAlT et al., 2024], LLaMA [Grattafiori et al., 2024], Gemini
[Team et al., 2024b], and Pathways Language Model (PaLM) [Chowdhery et al., 2022],
contain millions to billions of parameters; they are pre-trained on vast amounts of
text data, demonstrate superior capability on a variety of natural language processing
tasks [Minaee et al., 2024]. Motivated by these capabilities, several works were devel-
oped to adapt general LLMs for question answering for medical use [Singhal et al., 2022]
[Singhal et al., 2023]. The LLMs, PaLM, GPT-4, MedPalLM-2 [Singhal et al., 2023], and
MedPrompt [Nori et al., 2023] have achieved an accuracy of 86.5% and 90.2%, respec-
tively, against 87.0% when compared to human experts in the United States Medical
Licensing Examination [Wu et al., 2023]. As a result, the application of medical LLMs
has gained increasing research interest in helping medical professionals due to their abil-
ity to process and comprehend complex medical language and their potential to improve

efficiency, accuracy, and patient care within the healthcare industry [Bedi et al., 2024].



Chapter 3

Theoretical Background

3.1 Lung Nodules in Medical Images

A pulmonary nodule is defined as a rounded or irregular opacity, well or poorly defined,
with a diameter of 3 ¢m or less. Nodules are classified as small if their largest diameter
is 10 mm or less, while micronodules measure under 3 mm. Most nodules smaller than

1 cm are not detectable on chest radiographs and can only be observed on CT scans

ISanchez et al., 2018]. Pulmonary nodules are categorized based on their density into

three main types, as shown in Figure [3.1} solid nodules, non-solid nodules, and part-solid
nodules. Solid nodules , which are the most common type, have a soft-tissue density
that obscures the contours of adjacent vessels and airways. Non-solid nodules , also
known as pure ground-glass nodules , are focal areas of increased lung attenuation
that do not obscure the underlying parenchymal structures, including airways and vessels.

Part-solid nodules, or semi-solid nodules, exhibit both ground-glass and solid soft-tissue

components |[Hansell et al., 2008].

(a) Solid nodule. (b) Part-solid nodule. (¢) Ground-glass nodule.

Figure 3.1: Different lung nodules types in a Chest CT [Bankier et al., 2024].
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3.2 Computed Tomography

Computed tomography is a computerized X-ray imaging technique where a narrow x-ray
beam is directed at the patient and rapidly rotates around the body. The CT scanner’s
computer processes these signals to create cross-sectional ”slices” known as tomographic
images, which provide more detailed insights than standard x-rays. When multiple slices
are captured, they can be digitally combined to form a three-dimensional (3D) image,
helping clinicians identify structures and potential tumors or abnormalities. Unlike con-
ventional x-rays that use a fixed x-ray source, a CT scanner employs a motorized x-ray
tube that revolves around a circular opening called a gantry. During a scan, the pa-
tient lies on a bed that slowly advances through the gantry as the x-ray tube rotates
around, projecting narrow x-ray beams through the body. Instead of film, CT scanners
use specialized digital detectors positioned directly opposite the x-ray source. As the
X-rays pass through the patient, the detectors capture them and transmit data to a com-
puter [of Biomedical Imaging and (NIBIB), 2024]. Figure |3.2{shows an overview of a CT

scanner operation.

With each full rotation of the x-ray source, the CT computer uses advanced mathemat-
ical methods to create a two-dimensional image slice of the body. The thickness of each
slice can vary, typically between 1-10 millimeters depending on the machine. Once a slice
is complete, the image is stored, and the bed moves slightly forward, allowing the process
to repeat until the desired number of slices is obtained. These image slices can be viewed
individually or stacked by the computer to form a 3D representation of the patient, reveal-
ing bones, organs, and tissues along with any abnormalities. This approach offers signifi-

cant advantages, including the ability to rotate the 3D model or view slices sequentially,

making it easier to pinpoint specific issues [of Biomedical Imaging and (NIBIB), 2024].

CT x-ray beam

moves to position patient and
also translates during scanning

centering is important

Figure 3.2: CT Schematics [Bushberg et al., 2012].
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3.3 Natural Language Processing

Natural language processing is a branch of Artificial Intelligence that is devoted to making
computers understand, interpret, and generate human language [Khurana et al., 2022]. In
the healthcare sector, NLP has greatly improved our capacity to manage and analyze large
volumes of textual data, such as medical records and clinical notes [Pandey et al., 2020].
In radiology, NLP has been used for information retrieval, classification, text extrac-
tion, text summarization, question answering, text generation, and named entity recogni-
tion [Ewoud et al., 2016 [Luo and Chong, 2020] |Arlene et al., 2021] [Zheng et al., 2021].
Natural language processing employs a range of techniques, broadly categorized as rule-
based and machine learning approaches. Rule-based methods rely on predefined rules,
often using regular expressions, word matching, and annotation, to select or retrieve
text or synonyms. In contrast, machine learning approaches require substantial text
datasets for training, validation, and testing. Machine learning methods often use clas-
sifiers, such as random forest or statistical techniques that utilize vectorization, such as
TF-IDF [Linna and Kahn, 2022].

Deep learning techniques have revolutionized natural language processing with a more
effective way to handle NLP problems. With the introduction of word embeddings, words
are treated as vectors capturing semantic relationships based on context. This allows
documents to be represented as matrices of these vectors, suitable for deep learning archi-
tectures like CNN and Long Short-Term Memory (LSTM) networks, including the bidi-
rectional variant (BiLSTM) which captures contextual information from both directions
in a text. Further advancements like sequence-to-sequence architectures and attention
mechanisms, culminating in the development of pre-trained language models like Trans-
former, BERT, and GPT, have significantly boosted NLP performance across various
tasks, establishing a new standard for the field [Tho, 2022].

Information extraction is the process of automatically identifying and encoding rel-
evant clinical information from unstructured free-text data, such as electronic health
records. This task is essential for leveraging free-text data in electronic health records to
support clinical decision-making, quality improvement, and research. In NLP, informa-
tion extraction specifically refers to extracting key concepts, entities, events, and their
relationships and attributes from text, enabling the transformation of unstructured data
into a structured format that can be more easily analyzed and used for various healthcare
applications [Wang et al., 201§]. An information extraction system typically includes one
or more of the following components: named entity recognition, relation extraction, and

post-processing [Hu et al., 2024a].
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3.3.1 Named Entity Recognition

The term ”Named Entity” was first recognized as essential for information extraction in
the sixth message understanding conference evaluation [Grishman and Sundheim, 1996].
A named entity refers to a word or phrase that identifies elements with shared properties
within a dataset. It serves as a rigid designator, or atomic element, representing a member
of a semantic class, which can vary depending on the domain of interest. In general
domain, person, location, organization, number, date, time, etc. are important entities
|Goyal et al., 201§].

Named entity recognition aims to identify mentions of rigid designators within text,
associating them with predefined semantic types. NER involves detecting and categorizing
named entities in text into specified entity classes. Formally, given a sequence of tokens
(small units that can be words, character, punctuation) s = (wq,ws, - ,wy) , NER
outputs a list of tuples (I, I, t), each of wich is a named entity mentioned in s. Here,
I, € [1,N] and I. € [1, N] are the start and end indexes of a named entity mention; ¢
is the entity type from a predefined category set [Li et al., 2022]. Figure shows an
example where NER system recognizes three named entities from the sentence ”Michael
Jeffrey Jordan was born in Brooklyn, New York.”. The tokens w; = Michal and ws =
Jordan were recognized as the named entity ”Person”. The token w; = Brooklyn was
recognized as the named entity ”Location”. The tokens w9 = New and w;q = York were

recognized as the named entity ”Location”.

< wi, ws, Person > Michael Jeffrey Jordan
< wy, wy, Location > Brooklyn
< 1y, Whp, Location = New York

/L\«..:f,.r,.r.a

Named Entity Recognition

{\ 5 =< U, Wy, L, Wy =

Michael Jeffrey Jordan was born in Brooklyn . New York
uh wa wy wy Wy Ws wy g Wg Wi Wiy

Figure 3.3: Example of NER task [Li et al., 2022].

3.3.2 Question Answering

Question answering (QA) is one of the most important natural language processing
tasks, focused on developing systems that can automatically answer questions posed by
users in natural language. This involves creating models and algorithms that can un-
derstand the intent behind a user’s question, retrieve relevant information from various
sources such as (databases, documents, or web pages), and formulate a coherent response
[Hirschman and Gaizauskas, 2001]. Figure shows an example of an QA task in wich
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given a text about precipitation, the QA system answers three questions asked by the

user.

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers".

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud

Figure 3.4: Example of Question-answer pairs for a sample passage in the SQuAD dataset
[Rajpurkar et al., 2016].

3.4 Bidirectional Long Short-Term Memory with
Conditional Random Fields

Recurrent neural networks were designed with the primary objective of capturing and
modeling long-term dependencies or patterns in sequential data, such as text. How-
ever, these networks have faced challenges such as the problems of exploding and van-
ishing gradient, which have hindered their effectiveness in capturing such dependencies
|Quinta de Castro et al., 2018§]. To deal with these limitations, the LSTM, a recurrent
network architecture was employed [Zhang et al., 201§]. The key feature of an LSTM is
its memory cell, which stores and propagates information over time. LSTMs utilize a
gating mechanism consisting of three main gates: the input, forget, and output. These
gates control the flow of information into, out of, and within the memory cell, allowing
the LSTM to retain or discard information at different time steps selectively. Figure [3.5
ilustrated the structure of LSTM unit.

At each time step, the cell receives an input z; along with the previous hidden state
hi_1. The forget gate determines how much of the past information from the cell state

should be retained or discarded, using a sigmoid activation function to produce values
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between 0 and 1. Simultaneously, the input gate regulates how much new information
from the current input should be added to the cell state, ensuring that only relevant
updates are incorporated. These mechanisms modify the cell state, which serves as the
long-term memory of the network.

Once the cell state is updated, the output gate decides how much of this information
should contribute to the new hidden state. This process ensures that only essential in-
formation is propagated forward while preserving past knowledge in a controlled manner.
The final hidden state is obtained by applying a non-linear activation function to the cell
state and modulating it through the output gate.

The input at time step t, denoted as z;, is processed within the LSTM cell and
influences different gates that regulate the flow of information.

The forget gate decides how much of the information from the previous cell state, Cy_1,
should be retained or discarded. It receives x; and the previous hidden state h;_1, applies
a sigmoid activation function (¢), and outputs values between 0 (completely forget) and

1 (fully retain). The corresponding equation is:

fi = U(Wf hir, @] + bf) (3.1)

where Wy and by are the learned weights and biases of the network.

The input gate (i;) controls how much new information from z; should be added to the
cell state. It also uses a sigmoid activation function to determine which values should be
updated. Additionally, a new candidate cell state, C, is created using a tanh activation

function. The equations are:

it = O'(Wz : [ht_l,xt] + bz) (32)

C, = tanh(W - [hy_1, x] + be) (3.3)

The cell state (C;), which acts as long-term memory, is updated by combining the
forget gate and input gate information. The cell state is updated according to the following

equation where ® represent the element-wise product:

Ci=f0C1+10 é’t (3.4)

This enables the preservation of relevant information over time.
The output gate (o) regulates how much of the stored information in the cell state
will be used to generate the new hidden state h;. The final output is obtained by applying

a sigmoid activation function and a tanh function to the cell state:

o, = (W, - [hu1, ] + Do) (3.5)
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ht = O¢ @ tanh(ct) (36)

The hidden state h; represents the output of the LSTM unit at time step ¢ and is used
as an input for the next time step. It stores short-term information and interacts with
the cell state to maintain temporal dependencies.

In LSTM cell, several multiplication operations regulate the information flow:

e The output of the forget gate f; multiplies the previous cell state C;_; to decide

what should be retained.

e The output of the input gate i, multiplies the candidate cell state C, to regulate
the update of the cell state.

e The output of the output gate o, multiplies the transformed version of C; to

determine the new hidden state.
The activation functions used in the LSTM cell are:

e Sigmoid (0): used in all three gates (forget, input, and output) to restrict values

between 0 and 1, controlling the passage of information.

e Tanh: used to transform the candidate cell state and regulate the final cell output,

keeping values between -1 and 1, ensuring stability in state updates.

t

@ |

input gate( output gale?
> &

ht

forget gate

|

Xt

Figure 3.5: Example of LSTM cell [Huang et al., 2015].

Bidirectional recurrent neural networks (BRNNs) can process the input sequence in
two passes: one in the forward direction and another in the backward direction. This
architecture does this with two separated hidden layers that capture information from
their respective directions and subsequently feed it forward to the same output layer.
This allows the network to capture information from both past and future contexts,

enabling a richer understanding of the sequential data. A bidirectional LSTM is a neural
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network comprising LSTM units that function in both forward and reverse directions
[Jang et al., 2020].

Figure [3.6] represents a Bidirectional Long Short-Term Memory model applied to a
Named Entity Recognition task. This model processes a sentence to identify named
entities such as organizations, people, or locations.

In the input layer at the bottom, we see a sequence of words:
e EU, rejects, German, call.

Each of these words is first converted into a numerical representation (word embed-
dings) before being processed by the LSTM layers. The model consists of two LSTM

layers:

e A forward LSTM (arrows pointing left to right) that reads the sentence in normal

order;

e A backward LSTM (arrows pointing right to left) that reads the sentence in reverse

order.

Each word’s representation is thus influenced by both its preceding and following
words. This is important in NER, where context from both directions helps determine an

entity’s classification. In the output layer at the top, each word is assigned an NER label:
e EU — B-ORG (Beginning of an Organization);
e rejects — O (Outside any entity);
e German — B-MISC (Beginning of a Miscellaneous entity);
e call - O (Outside any entity).
These labels indicate which words belong to named entities and their types.

B-0ORG 8] B-MISC (0]

forward j
S £ oy
backward y

EU rejects German call

Figure 3.6: Example of BiLSTM Architecture [Huang et al., 2015].
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The conditional random field (CRF) is a statistical modeling method that is used to
predict sequences of labels based on a given set of observed features. CRF's are particularly
useful for structured prediction tasks, where each label in the sequence is not independent
but depends on neighboring labels, which makes it possible to capture contextual infor-
mation. Unlike traditional classifiers that make independent predictions, CRFs consider
the correlations between labels, allowing them to predict the optimal label sequence for
a given input. This characteristic makes CRFs highly effective in tasks such as NER,
Part-of-Speech (POS) tagging, and other sequence labeling applications, as they allow
the model to account for label dependencies within the sequence [Zheng et al., 2015].

Figure demonstrates how a CRF models sequences for NER by considering both
individual word features and the dependencies between labels. The goal of a CRF in this
context is to predict the most likely sequence of entity labels for a given input sentence.

The sequence of words: "EU rejects German call” represents a sentence or phrase
being processed. The labels at the top are entity labels based on the BIO (Beginning,
Inside, Outside) tagging scheme.

The squares connected by horizontal lines at the top represent CRF model. Each
square corresponds to a word in the sentence an the connections between them indicate

dependencies between neighboring labels, which is a key feature of CRFs.

B-MISC O

T

EU rejects German call

B-ORG

Figure 3.7: Example of CRF Network [Huang et al., 2015].

The BiLSTM model, as shown in the Figure 3.8, leverages the strengths of both a
BiLSTM and a CRF.

The input layer (bottom row) contains the input tokens: "EU,” "rejects,” ” German,”
and ”call.” Each word is processed individually and mapped to an embedding before being
passed to the BiLSTM.

The BiLSTM (middle layer with hatched nodes) consists of two LSTMs: a forward
LSTM that processes the sequence from left to right, and a backward LSTM that processes
the sequence from right to left. These two LSTMs capture contextual information from
both directions.

The outputs of the BiLSTM are then passed to a CRF layer (top row of squares).
The CRF makes the final label predictions, such as B-ORG, O, B-MISC, and O. These

labels correspond to named entity classes (e.g., organizations, miscellaneous entities, or
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non-entity words). The CRF ensures that predictions are made considering dependencies

between labels, resulting in valid entity tag sequences.

B-ORG B-MISC (0]

O
—
forward 5
backward \I ?f y

Figure 3.8: BiLSTM-CRF architecture [Huang et al., 2015].

rejects German call

3.5 Transformers

Transformers is a model architecture proposed by [Vaswani et al., 2023], designed to avoid
recurrence and instead uses the attention mechanism to capture global dependencies be-
tween input and output. The transformer architecture employs stacked self-attention and
point-wise, fully conected layer for both the encoder and decoder. Figure provides an
overview of this architecture, at the bottom there is the input & output embeddings and
the positional encode. The encoder is shown in the left half of the figure and the decoder
in the right half.

In the Input & Output Embeddings the words are first converted into numerical vec-
tors using an embedding layer. The Positional encoding is added to retain word order
information since the Transformer lacks recurrence (like in RNNs).

The encoder in the Transformer architecture consists of N = 6 identical layers. Each
layer includes two sub-layers: a multihead self-attention mechanism and a position-wise
fully connected feedforward network. A residual connection is applied around each of the
two sub-layers, followed by layer normalization.

Similarly, the decoder is composed of a stack of N = 6 identical layers. However, in
addition to the two sublayers in each encoder layer, the decoder includes a third sub-
layer that performs multi-head attention over the encoder’s output. As in the encoder,
residual connections are applied around each sub-layer in the decoder, followed by layer
normalization.

The self-attention sublayer in the decoder is modified to prevent positions from at-
tending to subsequent positions. This masking, combined with the fact that output
embeddings are offset by one position, ensures that predictions for position ¢ depend only

on known outputs at positions less than i.
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Figure 3.9: The Transformer - model architecture [Vaswani et al., 2023].

The BERT and GPT models are both based on the Transformer architecture, but they
use different parts of it: BERT is based solely on the encoder part of the Transformer, on
the other hand, GPT is based on the decoder part of the Transformer.

3.6 Large Language Models

Large Language Models are designed to understand, generate, and interact using human
language. These models are built using deep learning, specifically through neural network
architectures such as transformers, and are trained on vast datasets of text from sources
such as books, websites, and other publicly available materials. The large in LLMs typ-
ically refers to the substantial number of parameters (billions or even trillions) used in
these models. LLMs have a wide range of applications, including chatbots, language

translation, content generation, and even programming assistance [Minaee et al., 2024].

3.6.1 Bidirectional Encoder Representations for Transformers

BERT is a language representation model introduced by [Devlin et al., 2019] designed to
pre-train deep bidirectional representations from unlabeled text by jointly both left and

right contexts in all layers. The model architecture consists of three main modules: (1)
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an embedding module that transforms input text into a sequence of embedding vectors,
(2) a stack of Transformer encoders that processes these embedding vectors to generate
contextual representation vectors, and (3) a fully connected layer that maps the final-layer
representations into one-hot vectors.

The pre-training and fine-tuning of the BERT model is shown in Figure|3.10, BERT’s
pre-training relies on two primary objectives: masked language modeling (MLM) and next
sentence prediction (NSP). The MLM objective involves randomly masking certain tokens
in the input sequence, requiring the model to predict the original token based solely on
the surrounding context. This approach allows BERT to fuse both left and right contexts,
enabling the pre-training of a deeply bidirectional Transformer—a key distinction from
traditional left-to-right language models. In addition to MLM, BERT employs a next
sentence prediction task, designed to jointly pre-train text-pair representations. This task
involves predicting whether a given sentence logically follows another, further enhancing
the model’s capacity to understand relationships between sentences [Devlin et al., 2019].

Fine-tuning involves plugging task-specific inputs and outputs into BERT and train-
ing all parameters end-to-end. During this process, sentence A and sentence B from
pre-training are analogous to (1) sentence pairs in paraphrasing, (2) hypothesis-premise
pairs in entailment, (3) question-passage pairs in question answering, and (4) a degener-
ate text-null pair in text classification or sequence tagging. At the output stage, token
representations are used for token-level tasks, such as sequence tagging or question an-
swering, while the [CLS] token’s (the first token of every sequence) representation is used
for classification tasks, like entailment or sentiment analysis. Fine-tuning BERT is rel-
atively computationally inexpensive compared to pre-training, making it accessible for
many language understanding applications [Devlin et al., 2019].

The input representation of BERT is shown in Figure and consists of three main
embedding types:

e Token Embeddings (Yellow Boxes): Each word or subword token in the input is
converted into a vector representation using a pre-trained embedding matrix. For

example, the input consists of two sentences:

”[CLS] my dog is cute [SEP]”
"he likes play #+#ing [SEP]”

[SEP] is a separator token used to distinguish segments in tasks like question an-

swering or sentence-pair classification.

e Segment Embeddings (Green Boxes): These embeddings indicate which sentence a
token belongs to. ”A” represents the first sentence, and ”B” represents the second.
This helps BERT differentiate between multiple sentences in tasks like next-sentence

prediction.
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e Position Embeddings (Black Boxes): These embeddings provide information about
the position of each token within the input sequence. Since transformers don’t
inherently understand word order, position embeddings enable the model to learn

and utilize this information.
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Figure 3.10: Overall pre-training and fine-tuning procedures for BERT
|Devlin et al., 2019].
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Figure 3.11: BERT input representation [Devlin et al., 2019].

3.6.2 BioBERTpt

BioBERTpt is a language model developed specifically for Portuguese clinical and biomed-
ical text, designed to improve performance on tasks such as named entity recogni-

tion in clinical narrative [Schneider et al., 2020[s. It is based on BERT and fine-tuned

on Portuguese-language medical texts, including clinical notes from Brazilian hospitals
and biomedical scientific papers published in Pubmed and Scielo. BioBERTpt was
created to address the limited availability of high-performing NLP tools for clinical
data in Portuguese. Three BERT-based models were fine-tuned on these Portuguese-

language medical texts and the models were initialized with multilingual BERT weights.
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The BioBERTpt achieved better performance than general BERT models in recogniz-
ing specific medical entities on the two Portuguese corpora: SemClinBr and CLINpt

[Schneider et al., 2020].

3.6.3 Gemini

Gemini is a family of highly capable multimodal models developed by Google. These mod-
els are designed to process and understand data in multiple modalities, including text,
images, audio, and video, and exhibit advanced reasoning and understanding capabili-

ties. The Gemini 1.0 models are built on an enhanced Transformer decoder architecture

[Vaswani et al., 2023] designed to support multimodal inputs and outputs, including text,

images, audio, and video. These models are natively multimodal, allowing seamless in-
tegration of various data types within a single context. They are capable of processing
interleaved sequences of inputs, such as text with accompanying images or audio, while
supporting a large context length of 32,768 tokens. To enable efficient handling of such
extensive data, the architecture incorporates advanced attention mechanisms, such as
multi-query attention, which improve scalability and performance during training and
inference [Team et al., 2024a].

Figure [3.12] shows an overview of Gemini 1.0 model. The input sequence consists of

text, audio, an image, and video. Each input modality is processed to create feature
embeddings, which are then combined into a single sequence. This combined sequence is
fed into a transformer, the core of the model. The transformer processes this combined
information and generates outputs through two decoders: an image decoder, producing
an image, and a text decoder, generating text.

Input
Sequence

-~ s -
Image +
Decoder E;J w
A J
Text *
Decoder A d ‘

Figure 3.12: Gemini model overview|leam et al., 2024a].

Continuing the development of these models, Google launched Gemini 1.5, which is a

family of multimodal large language models designed to advance capabilities in reasoning,
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efficiency, and long-context understanding. This model supports mixed-modality inputs,
allowing it to process and analyze text, audio, video, and code within a single context
seamlessly. A defining feature of Gemini 1.5 is its ability to handle extremely long input
sequences, supporting context lengths of up to 10 million tokens, enabling it to work with
massive datasets, extended documents, hours of video, or lengthy audio recordings. The
family includes two variants: Gemini 1.5 Pro, optimized for peak performance across vari-
ous benchmarks, and Gemini 1.5 Flash, a lighter, efficiency-focused model that maintains
high quality with reduced computational demands. Built on a sparse mixture-of-experts
Transformer [Fedus et al., 2022] that builds on Gemini 1.0’s [Team et al., 2024a], Gemini
1.5 employs advanced routing mechanisms to efficiently scale its parameter count while
keeping computational requirements manageable. It has achieved significant improve-
ments over its predecessors, outperforming state-of-the-art models such as Gemini 1.0
Ultra on benchmarks in areas such as reasoning, multilinguality, and multimodal under-
standing [Team et al., 2024b].

3.64 GPT 4

GPT-4 is a large-scale, multimodal model capable of processing both text and im-
age inputs to produce text outputs. It is based on a Transformer architecture
[Vaswani et al., 2023] and was pre-trained to predict the next token in a sequence us-
ing vast amounts of publicly available and licensed data. After pre-training, the model
underwent fine-tuning with techniques such as Reinforcement Learning from Human Feed-
back to enhance its alignment with user intents and improve its factuality. However,
specific details about its architecture, such as model size, exact hardware, training com-
pute, and dataset construction—have not been disclosed due to competitive consideration
[OpenAT et al., 2024].

3.6.5 Llama 3

Llama 3 is a herd of language models developed by Meta Al, designed to natively support
multilinguality, coding, reasoning, and tool usage. The largest model in the series is a
dense Transformer with 405 billion parameters, capable of processing up to 128,000 to-
kens in a single context window. The Llama 3 family includes models of varying sizes—8B
(Billions of parameters ), 70B, and 405B parameters—all trained on a massive and di-
verse dataset. The 405B model was pre-trained on a corpus of 15 trillion tokens, which
significantly surpasses the scale of its predecessors, Llama and Llama 2. The flagship
model demonstrate state-of-the-art performance on various benchmarks, rivaling leading
language models like GPT-4 [OpenAlT et al., 2024] in many tasks. In addition to language
capabilities, Llama 3 incorporates safety-focused designs, such as the Llama Guard 3 vari-

ant, to ensure secure handling of inputs and outputs. Meta has also conducted promising
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multimodal experiments with image, video, and speech processing, though these exten-

sions remain under development |Grattafiori et al., 2024].

The Figure [3.13|shows an overview of the overall architecture and training of Llama 3.
The process begins with input text tokens. These are the individual words or sub-word
units that form the input sequence. These tokens are then fed as input to the model.
Each input token is converted into a vector representation called an embedding. This
maps each token to a point in a high-dimensional space, capturing semantic information
about the token. The core of the transformer model is formed by stacked layers of identical
blocks. The input embeddings are processed through the first layer’s Self-Attention and
Feedforward Network. The output of this layer is then passed to the next layer. The
final layer of the transformer produces a probability distribution over the vocabulary.
The token with the highest probability (or sampled from the distribution) is selected as
the output text token. This token is then appended to the generated sequence, and the

process repeats to generate the next token until a complete sequence is reached.

Token | Self- Feedforward | | Self- Feedforward | ouTPuT
Text tokens embeddings 1 attention network ! attention network ! Text token

AUTOREGRESSIVE DECODING

Figure 3.13: Llama 3 model overview |Grattafiori et al., 2024].

The architecture of Llama 3 is based on a standard dense Transformer model

[Vaswani et al., 2023], similar to its predecessors, Llama [Touvron et al., 2023a] and

Llama 2 |[Touvron et al., 2023b], but with key enhancements that drive significant per-

formance improvements. Some small modifications were made compared to LLama 2. In
Llama 3, Grouped Query Attention (GQA) E| was used with 8 key-value heads, as pro-

posed by |Ainslie et al., 2023], to improve inference speed and reduce the size of key-value

caches during decoding. Additionally, they employed an attention mask that prevents
self-attention between different documents within the same sequence. Although this ad-
justment had minimal impact during standard pre-training, it proved to be crucial when
continuing pre-training on very long sequences. A vocabulary with 128K tokens was used,
combining 100K tokens from the tiktoken tokenizer with 28K additional tokens to better
support non-English languages. To better support longer contexts, they increased the
Rotary Position Embedding (RoPE) ﬂbase frequency hyperparameter to 500,000, a value
shown by |Xiong et al., 2023] to be effective for context lengths up to 32,768. The archi-

tecture of Llama 3 405B includes 126 layers, a token representation dimension of 16,384,

!GQA emerges as an innovative extension of traditional attention mechanisms, aiming to address
several challenges associated with processing long sequences efficiently.

2This technique is used to improve the ability of LLMs to handle longer sequences of text than those
seen during training by modifying the base value used in the RoPE calculations.
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and 128 attention heads.

3.7 Prompt Engineering

Prompt engineering is a technique used to enhance the capabilities of large language
models by creating specific instructions or queries known as prompts. These prompts
guide the model in producing desired outputs without the need to retrain or modify the
underlying model parameters [Chen et al., 2024]. The process involves designing task-
specific prompts that can take various forms, ranging from natural language instructions
to structured vector representations that help to activate the relevant knowledge within
the model. This strategic use of prompts allows the models to perform a variety of
tasks, such as question answering, reasoning, and text generation, effectively utilizing their
pretrained knowledge base. In addition, prompt engineering facilitates the integration of
these models into different applications, enhancing their usability in various domains

[Sahoo et al., 2024].

3.7.1 Zero-Shot Learning

In the context of language models, zero-shot learning means that these models can un-
derstand and generate responses to tasks they haven’t been specifically fine-tuned for,
based only on their training on a wide variety of text data. This method takes advantage
of the large textual data on which the model was trained to eliminate the need for large
task-specific datasets. Instead, carefully designed prompts guide the model to perform
these novel tasks |[Radford et al., 2019].

Figure shows an example of a prompt using zero-shot learning for the task of
sentiment analysis to determine whether a text expresses a positive, negative, or neutral
sentiment. The instruction given is: ”Classify the text as neutral, negative, or positive.”
This tells the model what it needs to do. The input text is: "I think the vacation is
good.” This is the text to be analyzed. The expected output format is: ”Sentiment:”

This indicates the type of answer expected.

3.7.2 Few-Shot Learning

Few-shot learning, refers to a setting where a large language model is given a few input-
output examples of task at inference times as conditioning, but no weight updates or fine-
tuning are performed. The model learns the task purely from these examples presented
in the input context. The model is presented with a small number of examples (typically
between 10 to 100) within its context window, which helps it infer the correct pattern

and generate the appropriate outputs [Brown et al., 2020].
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Prompt:

Classify the text as neutral, negative or positive.
Text: | think the vacation is good.
Sentiment:

Output

Positive

Figure 3.14: Prompt with zero-shot learning.

Figure shows an example of a prompt using zero-shot learning to the sentiment
analysis. However, in this case, the model is provided with a few examples before being
asked to classify a new sentence. The prompt with few-shot learning a few examples,
such as: "This is amazing! // Positive,” "This is bad! // Negative,” and ”Wow, that
movie was awesome! // Positive.” These examples illustrate the relationship between the
text and its sentiment, allowing the model to learn which types of phrases correspond to
positive or negative sentiment. The new input text is ”What a terrible show! //”, which
is the sentence the model needs to classify. The expected output format is implicit, as the

7/ /" followed by a blank space indicates that the model should generate the appropriate
sentiment label.

Prompt:

This is amazing! // Positive

This is bad! // Negative

Wow, that movie was awesome! // Positive
What a terrible show! //

Output

Negative

Figure 3.15: Prompt with few-shot learning.



Chapter 4

Materials and Methods

4.1 Lung-RADS

The Lung Imaging Reporting and Data System, established by the American College
of Radiology, serves as a standardized reporting framework aimed at optimizing the as-
sessment and management of pulmonary nodules identified via low-dose computed to-
mography screenings. By systematically categorizing findings from lung cancer screen-
ings, the Lung-RADS classification system enhances diagnostic accuracy, reduces in-
terpretative variability, and facilitates consistent decision-making in clinical practice
[Beyer et al., 2017] [Christensen et al., 2024]. HThe following is a summary of each cate-
gory from the Lung-RADS 2022

1. Category 0: Incomplete

e Findings: Chest CT is incomplete, part or all of lungs cannot be evaluated, or

previous CT is needed for comparison.

e Management: Additional CT needed; follow-up CT within 1-3 months for

suspected inflammatory or infectious processes.
2. Category 1: Negative

e Findings: No nodules or nodules with benign features (complete, central, pop-

corn, or concentric ring calcifications or fat-containing).

e Management: Follow-up in 12 months.
3. Category 2: Benign Appearance or Behavior

e Findings: Likely benign features; includes specific size and shape nodules.

e Management: 12-month follow-up.

4. Category 3: Probably Benign

26
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e Findings: Low risk of malignancy; solid or part-solid nodules within specific

size ranges.

e Management: 6-month follow-up.
5. Category 4A: Suspicious

e Findings: Increased suspicion for malignancy; larger nodules or growth seen.

e Management: 3-month follow-up; PET/CT or additional imaging may be rec-

ommended for solid nodule or solid component > 8 mm.
6. Category 4B: Very Suspicious

e Findings: Highly suspicious; larger nodules or solid components.

e Management: Diagnostic CT with/without contrast, PET/CT imaging may
be considered for solid nodule or solid component > 8 mm, possible biopsy, or

clinical evaluation.
7. Category 4X: Highest Suspicion

e Findings: Nodules with additional suspicious features (e.g., spiculation or

metastasis).

e Management: Tailored to specific findings, with thorough evaluation and man-

agement per clinical guidelines.

The complete Lung-RADS description and the patient management for each
Lung-RADS indexis is available at the following url: https://edge.sitecorecloud.
io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/RADS/
Lung-RADS/Lung-RADS-2022.pdf.

4.2 Dataset Annotation

The 963 chest high-dose CT reports in Portuguese were collected from January 1, 2022,
to April 3, 2023, at the University Hospital of Alagoas. The research was approved by
the ethics and research committee of the Federal University of Alagoas with the number:
74747817.4.0000.5013. After obtaining patient consent, all chest CT reports, irrespective
of the clinical indication were included. It is important to highlight that all patient data
was anonymized. Data cleaning was applied to all reports, which included removing spe-
cial characters, adding spaces between words, and removing emojis in the text. Next, each
report was uploaded to the Doccano annotation tool [Nakayama et al., 2018]. The text
was labeled with six named entities in Portuguese, corresponding to the characteristics of

pulmonary nodules. The data annotation was performed by the author, and the results
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were reviewed by a radiologist. The NEs used were ” Atenuac¢ao” (Attenuation), ”Cal-
cificagao” (Calcification), ”"Bordas” (Edges), ” Achado” (Finding), ”Localiza¢ao” (Local-
ization) and ” Tamanho” (Size). These characteristics were chosen based on Lung-RADS
guidelines [ACR, 2022]. Figure[4.1]shows an example of report annotated in Doccano tool.
In this repot 5 NEs were identifed: ”Finding”, ”Edges”, ” Calcification”, ”Location”, and

7 Size”.

X Y =1 @ B # @

TOMOGRAFIA COMPUTADORIZADA DO TORAX Exame realizado em caréter de urgéncia Os cortes tomograficos
computadorizados foram obtidos sem a inje¢do intravenosa de contraste iodado, sequido de reconstrugdes
multiplanares . Artefatos de movimento limitam a avaliagdo do estudo . Indicag&o : controle de pneumonia .

Seguintes aspectos observados em andlise comparativa com estudo tomogréfico de 15/ 11/ 2022 : Nédulo
ACHADO

pulmonar localizado no segmento posterior do lobo superior direito, medindo 1,3 x 1, 1 cm, nédo calcificado , com
*LOCALIZAGAO TAMANHO *CALCIFICAGAO

contornos irrequlares , limites definidos , ndo caracterizado em estudo prévio provavelmente devido aos artefatos
BORDAS

de movimento . Persiste infonodomegalia hilar a direita , medindo 11 mm . Persistem as opacidades em vidro fosco
esparsas por ambos os pulmdes , com predominio peribroncovascular , mais evidente nos lobos superiores ,
inespecificas , comprometendo menos de 25 - 50 % do parénquima pulmonar . Persiste ectasia do tronco pulmonar
, medindo até 32 mm , achado que pode estar relacionado a algum grau de hipertenséo pulmonar . Volumosa hérnia
gastrica hiatal . Demais achados : Ateromatose adrtica e coronariana . Ndo ha evidéncias de derrame pleural .
Camaras cardiacas com dimensdes preservadas . Traquéia , carina e bronquios principais de calibre reduzido em

fungdo da fase expiratéria . Espondilose torécica .

1of1

Progress

Total 1

Complete 0

Label Types A

ACHADO ATENUAGAQ BORDAS
—

Key Value

Figure 4.1: Example of a chest CT Report annotated in Doccano [Nakayama et al., 2018].

There are multiple annotation schemes for named entity recognition, such as:

e 10: Each token from the dataset is assigned one of two tags: an inside tag (I) and

an outside tag (O). The I tag is for named entities, whereas the O tag is for normal

words;

e [OB: IOB is also called BIO scheme. It’s famous due to adoption by Conference on

Computational Natural Language Learning (CoNLL) . It assigns one of these three

tags to a token: the beginning of a known named entity (B), an inside tag (I) and

an outside tag (O);

e [OE: This scheme is similar to IOB, but instead of indicating the beginning of named

entity (B), it indicates the end (E);

e IOBES: The IOBE in IOBES scheme is a combination of IOB scheme and IOE

scheme. It increases the amount of information related to the boundaries of named

entities. (S) is a new tag, created for single token named entity.

For the annotation scheme, we adopted the IOB format. This format was adopt be-

cause the different values assessed for annotation scheme did not have a considerable im-
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Report Token Tag
06 Existem O
06 pequenos B-Tamanho
06 nodulos B-Achado
06 calcificados  B-Calcificacao
06 no B-Localizacao
06 segmento  I-Localizacao
06 basal I-Localizacao
06 posterior I-Localizacao
06 esquerdo I-Localizacao
06 , O
06 0 O
06 maior O
06 deles O
06 medindo B-Tamanho
06 cerca [-Tamanho
06 de [-Tamanho
06 0,23 [-Tamanho
06 X [-Tamanho
06 0,18 [-Tamanho
06 cm [-Tamanho

Table 4.1: Example of a report annotated with the IOB scheme.

pact in the results of Portuguese NER using LSTM-CRF [Quinta de Castro et al., 2018].
Note that each token is individually annotated, thus resulting in a sequence of tags.

Table shows an example of a report and its IOB tags. For the sentence ”... There
are small calcified nodules in the left posterior basal segment, the largest measuring
about 0.23 x 0.18 c¢m ...”, the IOB tags are: 7O, B-Finding, B-Finding, B-Calcification,
B-Localization, I-Localization, I-Localization, I-Localization, I-Localization, O, O, O, O,
B-Size, I-Size, I-Size, I-Size, I-Size, 1-Size, 1-Size”.

As a result, the annotation tool generated a JSON file containing the labeling in-
formation for all reports. Next, we split each report and its labeling information into
sentences and tokenize them using the BERT tokenizer. Finally, we padded each se-
quence of integers representing a report and its labeling information to a fixed size. This
step was necessary because models like BERT require a specific input sequence length.
From the set of 963 reports, the report with the highest number of tokens contained
497 tokens. However, the BERT model requires an input of 512 tokens. Therefore, all
texts were padded with zeros at the end of the list to ensure that their input had 512
tokens. This specific token quantity was employed because it aligns with the token limit
of the BioBERTpt model [Schneider et al., 2020]. Padding tokens were designated with
a distinctive tag: "-PADDING-".

The 963 texts from the CT reports were divided into two proportions: 70% for training
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and 30% for testing in the Named Entity Recognition task. This data split was chosen
based on the study by [Lopes et al., 2019]. For the IE task, a total of 100 CT reports
were utilized to perform the Question-answering procedure. This data split was chosen
based on the study by[Hu et al., 2024a].

Based on the Lung-RADS guidelines [ACR, 2022], the author defined eight questions
related to pulmonary nodules for the QA task. A thoracic radiologist with 15+ years
of experience provided the answers to the questions used for QA. Table presents the
questions and their corresponding statistics. The analysis of the 100 reports used to
perform the QA procedure identified pulmonary nodules in all reports, with Lung-RADS
categorization as follows: Category 0 (0 cases), Category 1 (61 cases), Category 2 (25
cases), Category 3 (2 cases), Category 4A (7 cases), Category 4B (0 cases), and Category
4X (5 cases).

Table 4.2: Pulmonary nodules Questions and the statistics of the annotated answers.

No. Question Answer type Answer statistic
1 Report ID Numerical -
2 Is the nodule solid Boolean 10 (Positive)
3 Is the nodule soft tissue, semisolid or subsolid Boolean 7 (Positive)
4 Is the nodule ground glass Boolean 2 (Positive)
5  Is the nodule spiculated or irregular Boolean 4 (Positive)
6  Is the nodule calcified Boolean 61 (Positive)
7 Nodule location Categorical 21 (RUL)
10 (RML)
28 (RLL)
18 (LUL)
17 (LLL)
7 (Others)
8  Nodule size Numerical 5.41 mm =+ 3,27

RUL - Right upper lobe RML - Right middle lobe RLL - Right
lower lobe LUL - Left upper lobe LLL - Left lower lobe

4.3 Models for Named Entity Recognition

For the named entity recognition task, the effectiveness of the BiLSTM-CRF and
BioBERTpt models was compared. To choose the best hyperparameters for BiLSTM-

CRF, a grid search was carried out with the following values:
e BiLSTM-CRF;
e Word embedding size = [50, 100, 200];

e LSTM units = [25, 50, 100];
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Batch size = [4, 8, 16];

e Epochs = 10;
e Dropout = 0.1;
e Learning Rate = 0.01.

From all the possible values for each of these parameters for the BiLSTM-CRF
model, there are 27 different combinations to evaluate. Following the approach used by
[Quinta de Castro et al., 2018] to choose the best set of hyperpameters for the BiLSTM-
CRF models, each of these combinations was run 10 times in different data splits and only
3 ephocs were used for this training step. To determine if there are statistical differences
between the 27 models, Friedman test [Rainio et al., 2024]E| was perfomed. After that, the
Nemenyi [Demsar, 2000] [] test was done to determine which ones are significantly differ-
ent. Based on this analysis, a single model was chosen from the 27 potential models. This
selected model was trained for 10 epochs using the 10 data splits and was subsequently
evaluated for its performance in the named entity recognition task.

The BERT model was fine-tunned using BioBERTpt [Schneider et al., 2020]. The
model weights were initialized using the Transformers library, available on Hugging-
Face [Wolf et al., 2020], and the model’s PyTorch (version 2.0.1) implementation was
used. The model was fine-tuned using the following hyperparameter values based in
[Schneider et al., 2020]: AdamW optimizer, with a weight decay as 0.01, batch size 4,
maximum length as 256, learning rate as 3e-5, maximum epoch as 10, and the linear
schedule that decreases the learning rate throughout the epochs with warmup as 0.1.

When the text of the report texts was tokenized by the BERT tokenizer, the resulting
number of tokens was greater than 512 tokens, which is the BioBERTpt input limit. To
deal with this problem, the reports were divided into 4 parts to ensure that when they
were tokenized, each part of the report did not exceed the limit of 512 tokens. Therefore,
the value of the maximum length hyperparameter was changed to 512. The GPU utilized
in the fine-tuning procedure was an RTX3060 12GB.

The BILSTM-CRF and BioBERTpt models aim to predict entity tags in IOB format
for each token in the input sequence. Each input sequence corresponded to a chest CT
report, with entity tags representing one of six named entities related to nodule charac-
teristics.

Figure shows an overview of the Lung-RADS classification process using the
BiLSTM-CRF and BioBERTpt models with the NER technique. The process begins

IThe Friedman test is a non-parametric statistical test used to detect differences in treatments across
multiple test attempts. In machine learning, the Friedman test is commonly used to compare the perfor-
mance of multiple models or algorithms across different datasets or tasks

2The Nemenyi test is a post-hoc test used after the Friedman test to determine which specific models
differ significantly when multiple comparisons are made.



Post-processing Named Entity Recognition Extraction 32

with a CT report and this report undergoes data preprocessing, which includes data
cleaning to remove noise, annotation using Doccano to manually label relevant entities,
tokenization to break the text into units, and splitting the data into train and test sets.
In the NER step, the models learn to identify and classify entities. This involves fine-
tuning a pre-trained model (BioBERTpt) and training a BiLSTM-CRF model. Both
models, BioBERTpt and BiLSTM-CRF, are used in conjunction for the NER task. Fol-
lowing NER is post-processing, where the extracted information is used for Lung-RADS

classification. Finally, the entire process undergoes evaluation to assess its performance.

CT Report Data Preprocessing

Computed Tomography of the Chest Without Contrast
Technique: The exam was performed through P
volumetric image acquisition using a multislice _|—> Data Cleaning —>| (BreEe=n) —> Tokenize —> Train | Test
computed tomography scanner, with multiplanar

reformations and high-resolution reconstructions.
Analysis: Discrete residual fibroatelectatic strands
scattered in both lungs. A small, non-calcified solid
nodule of nonspecific nature in the lateral segment of
the middle lobe, measuring about 4 mm in its greatest
dimension. Remaining lungs are clear, with preserved NER
broncho-vascular distribution. Trachea and main
bronchi are patent, with normal course and caliber. No . i .
pleural or pericardial fluid collections. No mediastinal, Fine-tuning Training
hilar, or infraclavicular lymphadenopathy. Cardiac “:_

image of normal morphology, without appreciable ti,

).

volumetric changes. Elongated aorta with scattered {'\
calcified atheromatous plaques at its origin, arch, and ﬁ BioBERTpt BiLSTM-CRF

descending segment. Soft tissue structures of the
chest wall without evidence of abnormalities.
Degenerative vertebral changes. Right convexity
dorsal axis deviation.

Post-Processing —>» Lung-RADS —> Evaluation

Figure 4.2: Methodology scheme applied in NER task for Lung-RADS classification.

4.4 Post-processing Named Entity Recognition Ex-

traction

Building upon our named entity recognition process, we implemented a systematic post-
processing approach to transform the raw entity recognition results into a structured and
meaningful representation. Specifically, after the BILSTM-CRF and BioBERTpt models
identified the named entities, a method was developed to populate the question table
(Table . The process involved carefully parsing the outputs from both AI models,
cross-referencing the identified entities, and systematically populating the predefined table

structure.
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4.5 Models for Question Answering

For the LLMs models, we used the specific versions: GPT-40 (gpt-40-mini-2024-07-18)
[OpenAT et al., 2024], Gemini 1.5 Flash (gemini-1.5-flash) [Team et al., 2024Db], and the
Llama 3 70B [Grattafiori et al., 2024]. In the context of LLMs, the temperature param-
eter regulates the uncertainty or randomness in the generation process. This parameter
typically ranges from 0 (completely deterministic) to 1 or higher (resulting in increasingly
random and diverse outputs) [Hu et al., 2024b]. For the GPT-40, Gemini 1.5 Flash, and
Llama 3 models, the temperature was set to 0 to minimize randomness in response gener-
ation. Using a lower temperature, we limited the model’s tendency to take creative leaps,
ensuring more predictable and consistent outputs. This is important in IE tasks, where
the accuracy of the information extracted is crucial.

Requests for the three LLM models were made via the API. We used the OpenAl
API for GPT-40, the Together AT API for Llama 3 70B, and the Google Al API for the
Gemini 1.5 Flash model. During the tests conducted in this study, the cost of GPT-40
was US$0.075 per 1 million tokens for input and US$0.60 per 1 million tokens for output.
For Llama 3 70B, the cost was approximately US$0.88 per 1 million tokens for both input
and output. Gemini 1.5 Flash model has no cost for processing incoming and outgoing
tokens. Depending on the volume of text processed, the cost of these paid models may
hinder their use in real-world systems.

To evaluate the consistency of the responses of these LLMs, the approach of
[Hu et al., 2024a] [Saxena et al., 2024] was used. This approach consist in repeatedly
presenting the same query to the models and observing variations in their responses. The
same query was presented three times for each LLM, and the consistency and inconsis-
tency percentage was calculated for each question in the Question table.

The consistency percentage is given by:

O, = €. 100 (4.1)
i

The inconsistency percentage is given by:

- Z—t -100 (4.2)

were, C), is the consistency percentage, C,, is the inconsistency percentage, n. is the

n

total number of consistent responses, n;c is the total number of inconsistent responses,

and n; is the total number of question in the data.
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4.6 Prompt Engineering

Based on the work of Danqging Hu et al. [Hu et al., 2024a], we designed the prompts
used for QA. Danqging Hu et al. employed zero-shot learning in their input prompts.
In adittion to zero-shot learning, we also employed few-shot learning technique. The
Prompt templates consist of three parts: (1) Original CT report; (2) IE instructions and
an unfilled Question table; and (3) Additional requirements for the IE task. In this work,
the LLMs were instructed to respond with “No” as the default answer for questions that
do not have corresponding information in the given CT report. To improve LLM task
comprehension, annotated reports with completed tables were provided. Two prompt
templates, detailed in the appendices were used for zero-shot and few-shot learning.

To calculate the similarity of the test reports with the training reports, the cosine
similarity was used, which is given by the following equation.

A-B v AB;
cosine similarity(A, B) = = i1 (4.3)

IAlIBI />, A2 /S, B

where:

e A - B is the dot product of A and B.
e ||[A|| and ||B|| are the magnitudes (or Euclidean norms) of A and B, respectively.
e 1 is the number of dimensions of the vectors.

e A, and B; are the i-th components of vectors A and B.

From our database of 963 reports, only those that contained answers to all the ques-
tions in Table were selected. After the filtering process, the dataset was narrowed
down to 300 reports. One hundred reports were used for testing, while the remaining
200 were used as examples for few-shot learning. The testing framework utilized two
prompts for zero-shot learning. For few-shot learning, it leveraged two prompt templates,
each instantiated with five and ten examples, resulting in four few-shot prompts (Tem-
plate 1 with 5 examples, Template 1 with 10 examples, Template 2 with 5 examples, and
Template 2 with 10 examples).

The CT reports were combined with prompt templates to generate answers to ques-
tions. This combined prompt is submitted via API to the LLMs, and their responses
are obtained. A new request is made for each CT report, preventing previous requests
from influencing the IE results. Additionally, the LLMs’ responses are requested in JSON
format to facilitate post-processing of the results. The responses from these language
models do not always consist solely of the completed Question table. Therefore, any ad-
ditional text is disregarded, as it is irrelevant to the analysis. The focus is exclusively on

extracting the content in the form of the Question table.
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Figure details the methodology used for a QA task for Lung-RADS classification,
focusing on extracting structured data from CT scan reports. The process begins with the
original CT report. This report is combined with a specific prompt, a question designed
to guide the LLM in extracting relevant information about lung nodule to Lung-RADS
classification. The prompt can be zero-shot or few-shot. The LLM processes the combined
report and prompt, generating a free-text response. This response is then converted
through post-processing into a structured format, typically a JSON table. This table
contains key-value pairs representing specific Lung-RADS criteria (e.g., ”Is the nodule
solid?”) and their corresponding values (e.g., ”Yes”). The final output is a structured
response, the JSON table ready for analysis and use. The structured data are then
evaluated against a gold standard to evaluate the

RADS classification.

effectiveness of LLMs for the Lung-

CT Report CT Report + Prompt
Computed Tomography of the Chest Without Gi_ven this report: Comp_uted Tomography of the Chest
Contrast Technique: The exam was performed ithout Contrast Technique: The exam was performed > LLM
through volumetric image acquisition using a through volumetric image acquisition using a multislice
multislice computed tomography scanner, with computed tomography scanner, with multiplanar
multiplanar reformations and high-resolution reformations and high-resolution reconstructions.
reconstructions. Analysis: .. (Analysis: ...
Response

Prompt Template

Return the table below from the report filled in JSON

Here is the table filled with the report information:

(Zero-shot or

Few-shot) format.

Please extract relevant structured information from the
report above:

'Report ID" : "540",

I'ls the nodule solid?" : "Yes",

'ls the nodule in soft tissue, semi-solid or subsolid?" :
'No",

Is the nodule ground-glass?" : "No",

ls the nodule spiculated, irregular or ill-defined?" : "No",
I'ls the nodule calcified?" : "No",

'Nodule location" : "at the right lung apex",

I'Nodule size" : "4 mm"

Please extract relevant structured information
from the report above:

"Question” : "Answer" 'Question" : "Answer"

<

"Report ID" : ",

"Is the nodule solid?" : ™,

"Is the nodule in soft tissue, semi-solid or
subsolid?" : ",

"Is the nodule ground-glass?" : ",

"Is the nodule spiculated, irregular or ill-
defined?" : ™",

'Report ID" : ™,
'ls the nodule solid?" : ", —
'ls the nodule in soft tissue, semi-solid or subsolid?" : ™",
'ls the nodule ground-glass?" : ",

'ls the nodule spiculated, irregular or ill-defined?" : ",
I'ls the nodule calcified?" : ",

"'Nodule location” : ™", IComments:

"Is the nodule calcified?" : ™, "Nodule size" : ™

"Nodule location” : ™"

"Nodule size" :

i If the report does not contain relevant information related

fto a specific question, please fill in the answer with "No".
[The question about the size of the nodule should be
lanswered only with numbers and unit of measurement.

If the report does not contain relevant
information related to a specific question,
please fill in the answer with "No". The

Post-Processing

iquestion about the size of the nodule should Ex1: ...
be answered only with numbers and unit of Ex2: ...
measurement. Ex3: ... Structured Response
'Report ID" : "540",
'ls the nodule solid?" : "True",
'ls the nodule in soft tissue, semi-solid or subsolid?" :
I'False”,
'ls the nodule ground-glass?" : "False",
Evaluation Lung-RADS I”Eatlggunodule spiculated, irregular or ill-defined?" :
I'ls the nodule calcified?" : "False",
I'Nodule location" : "RUL",
'Nodule size" : "4"

Figure 4.3: Methodology scheme applied in QA task for Lung-RADS classification.

4.7 Post-processing for Question Answering

The LLMs were instructed to extract only the answers from the provided table in the
Prompts. However, the responses were only sometimes structured. Post-processing was
applied to convert unstructured responses into a structured format to address this issue.

This post-processing involved removing all text except the Questions and answers table.
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Besides, when the LLM did not provide an answer in the table, leaving the space blank,
or responded with 'Not informed,” the answer was considered 'No.” For Questions 2 to 6
(Table [4.2)), the answers "Yes’ and 'No’ were converted into Boolean values.

Regular expressions were used to identify the number and unit of measurement to ex-
tract the nodule size, which was then converted to millimeters. For the location Question,
keywords such as 'right,” ’left,” 'middle,” "upper,” and 'lower’ were employed to categorize
the answer into six formats: 'right upper lobe,” 'right middle lobe,” ’left lower lobe,” left
upper lobe,” ’left lower lobe,” and "others.” The answer 'others’ was used when the specific

location of the pulmonary nodule was unclear.

4.8 Lung-RADS Classification: Radiologist Analysis

After information on lung nodules was obtained during the QA and NER tasks, a rule-
based algorithm was used to assign the Lung-RADS index to lung nodules described in
chest CT reports. To validate the effectiveness of this approach, a rigorous evaluation
process was implemented, which included the random selection of 30 test reports for

independent review by a radiologist. During this review, the radiologist was asked to:

e Assess the Lung-RADS index assigned by the ruled-based algorithm and indicate

whether he agreed or disagreed with the generated classification;

e Provide a detailed justification for his evaluation;

This methodological approach allows for a comprehensive assessment of the Al tool’s
performance by comparing machine-generated classifications against expert human inter-
pretations. By soliciting specific rationales for agreement or disagreement, we can identify
potential systematic biases or limitations in the Al's Lung-RADS index attribution pro-
cess. Analyzing discrepancies between Al classifications and radiologist interpretations
reveals specific areas where the algorithm’s decision-making can be improved.

This iterative refinement process involved:

e Examining the specific cases of misclassification
¢ Identifying potential sources of algorithmic bias

e Modifying the existing rule set to improve diagnostic accuracy

4.9 Evaluation

To evaluate the effectiveness of the BILSTM-CRF and BioBERTpt models for NER, and

to assess the effectiveness of LLMs in the QA task using zero-shot and few-shot learning,
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precision (P), recall (R), and the Fl-score (F1) were used. These same metrics were also
employed to evaluate the effectiveness of combining the result of these models with a

rule-based algorithm for Lung-RADS classification.

e Precision for each Lung-RADS category evaluates the model’s ability to avoid mis-
classifying exams into a particular category, indicating how well the model prevents

erroneous positive classifications.

e Recall, also known as the true positive rate or sensitivity, measures the model’s abil-
ity to correctly identify exams that genuinely belong to each Lung-RADS category.

It captures how effectively the model retrieves relevant cases.

e Fl-score balances these two metrics by combining precision and recall into a single
score, representing the model’s overall effectiveness for each Lung-RADS category.
Calculated as the harmonic mean of precision and recall, the Fl-score provides
a robust measure of the model’s performance in correctly classifying Lung-RADS

categories while minimizing false positives and false negatives.



Chapter 5
Experimental Results and Discussion

Table [5.13] shows F1-scores of 27 BILSTM-CRF models for the named entity task trained
for 3 epochs in 10 data splits. The analysis of the table reveals a discrepancy in the
models’ Fl-scores across different data splits. Specifically, models 19 (batch size = 16,
word embedding size = 50, LSTM units = 50) and 24 (batch size = 16, word embedding
size = 100, LSTM units = 200) achieved the lowest F1-scores, both scoring 0.74 in data
split 6. In contrast, model 15 (batch size = 8, word embedding size = 100, LSTM units
= 200) achieved the highest F1-score, recorded in data split 2.

The Friedman test performed shows that there is a difference between some models.
The Nemenyi test was used to determine which specific groups are different from each
other. Figure shows a heat map that contains significant differences (P value < 0.05)
between the models. Figure [5.2] shows a box plot with the Fl-scores of these 27 mod-
els. Analysis of Figures reveals that model 1 has statistically higher results on
Fl-score compared to models 19 (P value = 0.000617) and 20 (P value = 0.028268).
In particular, model 1 exhibits low dispersion in its F1-score values. Given its simplicity
(Word Embedding Size = 50, LSTM units = 50), its high average F1-score (0.86, within
the top 5), its consistent Fl-score across the 10 data splits, and the absence of statisti-
cally significant differences from other models, model 1 was selected for the Lung-RADS
classification task.

Table presents the results of the BILSTM-CRF model (Model 1) trained for the
named entity recognition task over 10 epochs across 10 data splits. This model achieved
a macro Fl-score of 0.86. This result is consistent with the performance observed after
only 3 training epochs, which yielded the same F1-score. Table displays the results
of BioBERTpt fine-tuned for the same named entity recognition task. This model, fine-
tuned for 10 epochs, achieved an impressive macro Fl-score of 0.99 across the 10 data
splits.

The proportion of consistent responses concerning lung nodule questions for Gemini

1.5 Flash, GPT-40, and Llama 3 70B is detailed in Tables [5.3] 5.5 and [5.§

The extraction of nodule attenuation, calcification, edges, location, and size demonstrated

38
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greater consistency across the six prompt templates for Gemini 1.5 Flash and Llama 3 70B.
In contrast, GPT-40 showed reduced consistency for Question 1 (lung nodule attenuation)
with zero-shot prompt 1 (0.87), Question 6 (lung nodule location) with zero-shot prompt
1 (0.79), and Question 6 with zero-shot prompt 2 (0.86). The possible reason for this
happening is that the GPT-40 returns the size and attenuation of other findings described
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Table 5.1: Evaluation BILSTM-CRF Model in 10 Data Splits

Macro

Batch | Embedding | LSTM F1-Score

Model Size Dim Units | EPOchs | Dropout |0 oiny g
Splits
BiLSTM-CRF 4 50 50 10 0.1 0.86

Table 5.2: Evaluation of the BioBERTpt Model in 10 Data Splits

Macro
Batch | Maximum Learning | F1-Score
Model Size Length Epochs Rate in 10 Data
Splits
BioBERTpt 4 512 10 3e-5 0.99

in the chest CT report.

Table 5.3: Evaluation Consistency of Response LLMs Zero-shot Prompt Template 1

LLM QL | Q2 Q3 [ Q4] Q51 Q6 [ Q7
Gemini 1.5 Flash | 0.98 | 0.99 | 0.99 | 1.00 | 1.00 | 0.98 | 0.99

GPT-4o 0.87 | 1.00 | 0.98 | 0.96 | 0.98 | 0.79 | 0.92
Llama 3 70B | 0.99 | 0.08 | 1.00 | 0.99 | 1.00 | 0.97 | 1.00

Q1 - Is the nodule solid or soft tissue?

Q2 - Is the nodule semisolid or subsolid?

Q3 - Is the nodule ground-glass?

Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?

Q6 - Nodule Location

Q7 - Nodule Size

Table 5.4: Evaluation Consistency of Response LLMs Zero-shot Prompt Template 2

LLM QL | Q2 Q3 [ Q4] Q51 Q6 [ Q7
Gemini 1.5 Flash | 0.95 | 1.00 | 0.99 | 1.00 | 1.00 | 0.97 | 1.00

GPT-4o 0.97 | 0.97 [ 0.99 | 0.98 | 0.91 | 0.86 | 0.94
Llama 3 70B | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99

Q1 - Is the nodule solid or soft tissue?

Q2 - Is the nodule semisolid or subsolid?

Q3 - Is the nodule ground-glass?

Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?

Q6 - Nodule Location

Q7 - Nodule Size

Table [5.9| shows the precision, recal and F1-score metrics for Gemini 1.5 Flash, GPT-
40 and Llama 3 70B in QA task using zero-shot prompt templates 1 and 2. The F1-score
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Table 5.5: Evaluation Consistency of Response LLMs Few-shot with 5 Examples Prompt
Template 1

LLM QL | Q2 1 Q3 [ Q4] Q51 Q6 [ Q7
Gemini 1.5 Flash | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 0.99 | 1.00

GPT-4o 0.98 | 0.99 [ 0.98 | 1.00 | 0.96 | 0.97 | 0.97
Llama 3 70B | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.98

Q1 - Is the nodule solid or soft tissue?

Q2 - Is the nodule semisolid or subsolid?

Q3 - Is the nodule ground-glass?

Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?

Q6 - Nodule Location

Q7 - Nodule Size

Table 5.6: Evaluation Consistency of Response LLMs Few-shot with 10 Examples Prompt
Template 1

LLM QL | Q2 1 Q3 [ Q4] Q51 Q6 [ Q7
Gemini 1.5 Flash | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 0.95 | 0.99

GPT-4o 0.97 | 1.00 | 0.98 | 0.99 | 0.95 | 0.96 | 0.96
Llama 3 70B | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.98

Q1 - Is the nodule solid or soft tissue?

Q2 - Is the nodule semisolid or subsolid?

Q3 - Is the nodule ground-glass?

Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?

Q6 - Nodule Location

Q7 - Nodule Size

Table 5.7: Evaluation Consistency of Response LLMs Few-shot with 5 Examples Prompt
Template 2

LLM QLT Q2 Q3 [ Q4 Q5] Q6] Q7
Gemini 1.5 Flash | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.99

GPT-40 1.00 | 1.00 | 0.98 [ 1.00 | 0.98 [ 0.99 | 0.99
Llama 3 70B | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98

Q1 - Is the nodule solid or soft tissue?

Q2 - Is the nodule semisolid or subsolid?

Q3 - Is the nodule ground-glass?

Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?

Q6 - Nodule Location

Q7 - Nodule Size

for question 2 was zero for all models and for the 6 prompts used because examples with
true answers in the 100 test reports were not provided.

Analyzing Table [5.9] with zero-shot prompt template 1 reveals a low Fl-score for
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Table 5.8: Evaluation Consistency of Response LLMs Few-shot with 10 Examples Prompt
Template 2

LLM QL | Q2 1 Q3 [ Q4] Q51 Q6 [ Q7
Gemini 1.5 Flash | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00
GPT-4o 0.99 | 1.00 | 1.00 | 0.99 | 0.96 | 0.98 | 0.99
Llama 3 70B | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.98 | 0.98

Q1 - Is the nodule solid or soft tissue?

Q2 - Is the nodule semisolid or subsolid?

Q3 - Is the nodule ground-glass?

Q4 - Is the nodule spiculated, irregular, or poorly defined?
Q5 - Is the nodule calcified?

Q6 - Nodule Location

Q7 - Nodule Size

Gemini 1.5 Flash on questions 3 and 5. GPT-40 has a low F1-score on questions 1, 3, 4,
and 5. Llama 3 70B also presents a low F1l-score on Questions 1, 3, 4, and 5. The same
analysis in Table with zero-shot prompt template 2 indicates a low F1l-score for Gemini
1.5 Flash on Questions 1 and 3. GPT-40 demonstrates a low Fl-score on questions 1, 3,
and 4. Llama 3 70B shows a low F'l-score on questions 3 and 4.

Examination of the responses from Gemini 1.5 Flash and GPT-40 to Question 1 shows
that the presence of a ”calcified nodule” in the report results in a ”solid soft tissue atten-
uation nodule” being marked as true, regardless of clearly described nodule attenuation.

Reviewing the responses from Gemini 1.5 Flash, GPT-40, and Llama 3 70B to question

% M

3 reveals that the occurrence of terms like ” ground-glass opacities,” ” centrilobular ground-

bRAb

glass micronodules,” ”opacities with ground-glass attenuation,” or ”ground-glass lesions”
leads to ”is the nodule ground-glass” being marked as true, regardless of unambiguous
nodule attenuation.

Inspection of the responses from Gemini 1.5 Flash, GPT-40, and Llama 3 70B to
Question 4 demonstrates that the presence of terms such as ”microlobulated contours,”

» o

"expansive formation with soft tissue density,” ”ill-defined hypoattenuating parenchy-

NN

mal images,” ”areas of focal and irregular pleural thickening,” ”lobulated contours,” or

)

"roughly triangular morphology” results in ”is the nodule spiculated or irregular” being
marked as true, irrespective of clear nodule border information.

Analysis of the responses from Gemini 1.5 Flash, GPT-40, and Llama 3 70B to ques-
tion 5 indicates that the occurrence of a "hyperdense oval image” does not result in ”is
the nodule calcified” being marked as true, thus failing to capture nodule calcification
information.

Analyzing Table [5.10] with few-shot prompt template 1 with 5 examples reveals a low
F1l-score for Gemini 1.5 Flash on Questions 3 and 5. GPT-40 exhibits a low Fl-score

on Questions 1, 3, 4. Llama 3 70B also presents a low Fl-score on questions 3, 4. The
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Table 5.9: LLMs Effectiveness using Zero-shot Prompt 1 and Prompt 2

No. Question Gemini 1.5 Flash - P1 GPT-40 - P1 Llama 3 70B - P1
P R F1 P R F1 P R F1
1 Is the nodule solid or soft tissue 0.68 1.00 0.81 0.23 1.00 0.37 0.57 1.00 0.72
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.11 1,00 0.21 0.10 1.00 0.19 0.05 1.00 0.10
4 Is the nodule spiculated or irregular 0.80 0.80 0.80 0.42 1.00 0.59 0.42 1.00 0.59
5 Is the nodule calcified 0.94 0.57 0.71 094 058 0.72 093 0.63 0.75
6 Nodule location 0.89 1.00 0.94 0.92 1.00 0.96 0.89 1.00 0.94
7  Nodule size 0.88 1.00 0.93 0.91 1.00 0.95 0.89 1.00 0.94
No. Question Gemini 1.5 Flash - P2 GPT-40 - P2 Llama 3 70B - P2
P R F1 P R F1 P R F1
1 Is the nodule solid or soft tissue 0.50 1.00 0.66 0.68 0.76 0.72 0.85 1.00 0.92
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.25 1.00 0.40 0.40 1.00 0.57 0.11 1.00 0.20
4 Is the nodule spiculated or irregular 0.83 1.00 0.91 0.57 0.80 0.67 042 1.00 0.59
5 Is the nodule calcified 0.96 0.97 0.97 0.76 098 0.85 0.95 1.00 0.97
6 Nodule location 0.90 1.00 0.95 0.93 1.00 0.96 0.92 1.00 0.96
7 Nodule size 0.90 1.00 0.95 0.90 1.00 095 0.93 1.00 0.96

same analysis in Table with few-shot prompt template 2 with 5 examples indicates a low
F1-score for Gemini 1.5 Flash on Questions 1 and 3. GPT-40 demonstrates a low F1-score
on Questions 3 and 4. Llama 3 70B shows a low F1-score on Question 3.

A potential explanation for these outcomes aligns with the explanations provided for
zero-shot learning prompt results. Specifically, the occurrence of certain terms seems to

hinder the LLMs’ accurate retrieval of pulmonary nodule information.

Table 5.10: LLMs Effectiveness using Few-shot with 5 Examples Prompt 1 and Prompt 2

No. Question Gemini 1.5 Flash - P1 GPT-40 - P1 Llama 3 70B - P1
P R F1 P R F1 P R F1
1 Is the nodule solid or soft tissue 0.43 1.00 0.61 0.00 0.00 0.00 0.81 1.00 0.89
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.12 1,00 0.22 0.15 1.00 0.27 0.20 1.00 0.33
4 Is the nodule spiculated or irregular 0.83 1.00 0.91 0.45 1.00 0.62 0.62 1.00 0.77
5 Is the nodule calcified 0.98 0.75 0.85 095 0.68 0.80 0.96 0.90 0.93
6 Nodule location 0.90 1.00 0.95 0.91 1.00 095 0.94 1.00 0.97
7 Nodule size 0.92 1.00 0.96 0.89 1.00 094 0.92 1.00 0.96
No. Question Gemini 1.5 Flash - P2 GPT-40 - P2 Llama 3 70B - P2
P R F1 P R F1 P R F1
1 Is the nodule solid or soft tissue 0.57 1.00 0.72 0.80 094 0.86 0.77 1.00 0.87
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.28 1.00 0.44 0.40 1.00 0.57 0.66 1.00 0.80
4 Is the nodule spiculated or irregular 1.00 1.00 1.00 0.67 080 0.73 0.57 0.80 0.67
5 Is the nodule calcified 0.98 0.97 0.97 096 0.82 0.88 0.97 0.98 0.97
6 Nodule location 0.92 1.00 0.96 0.98 1.00 0.99 0.96 1.00 0.98
7 Nodule size 0.92 1.00 0.96 0.93 1.00 096 094 1.00 0.97

Analyzing the Table with few-shot prompt template 1 with 10 examples reveals a
low F1-score for Gemini 1.5 Flash on Questions 1 and 3. GPT-40 exhibits a low F1-score
on questions 3 and 4. Llama 3 70B also presents a low Fl-score on Question 3. The
same analysis in Table with few-shot prompt template 2 with 10 examples indicates a

low Fl-score for Gemini 1.5 Flash on Questions 1 and 3. GPT-40 demonstrates a low
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F1-score on Question 3. Llama 3 70B shows a low F1l-score on Question 3 and 4.

Table 5.11: LLMs Effectiveness using Few-shot with 10 Examples Prompt 1 and Prompt
2

No. Question Gemini 1.5 Flash - P1 GPT-40 - P1 Llama 3 70B - P1
P R F1 P R F1 P R F1
1 Is the nodule solid or soft tissue 0.48 1.00 0.65 0.72 094 082 0.77 1.00 0.87
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.13 1,00 0.23 0.18 1.00 0.31 0.33 1.00 0.50
4  Is the nodule spiculated or irregular 1.00 1.00 1.00 0.33 0.80 047 0.71 1.00 0.83
5  Is the nodule calcified 0.98 0.82 0.89 0.95 0.70 0.81 0.97 0.95 0.96
6  Nodule location 0.90 1.00 0.95 0.92 1.00 0.96 096 1.00 0.98
7 Nodule size 0.92 1.00 0.96 0.90 1.00 0.95 092 1.00 0.96
No. Question Gemini 1.5 Flash - P2 GPT-40 - P2 Llama 3 70B - P2
P R F1 P R F1 P R F1
1 Is the nodule solid or soft tissue 0.53 1.00 0.69 0.79 0.88 0.83 0.81 1.00 0.89
2 Is the nodule semisolid or subsolid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 Is the nodule ground glass 0.28 1.00 0.44 0.67 1.00 0.80 0.62 1.00 0.77
4 Is the nodule spiculated or irregular 1.00 1.00 1.00 0.57 0.80 0.67 0.62 1.00 0.77
5  Is the nodule calcified 0.98 0.95 0.97 0.96 0.80 0.87 0.97 0.98 0.97
6  Nodule location 0.90 1.00 0.95 0.96 1.00 0.98 098 1.00 0.99
7  Nodule size 0.92 1.00 0.96 0.93 1.00 096 095 1.00 0.97

Using few-shot learning with prompt 2 and 10 examples, Gemini 1.5 Flash, GPT-
40, and Llama 3 70B achieved a high consistency of 0.99 in their answers to the table
questions. These models also demonstrated the highest F1-scores, with Gemini 1.5 Flash
scoring 0.83, GPT-40 scoring 0.85, and Llama 3 70B scoring 0.89. The answers of these
models, generated using the specified few-shot learning approach, were then used to assign
the Lung-RADS index.

Table shows precision, recall, and Fl-score for five evaluated models BiLSTM-
CRF, BioBERTpt, Gemini 1.5 Flash, Llama 3 70B, and GPT-40 for Lung-RADS classi-

fication.

Table 5.12: Lung-RADS Classification Result

Lung-RADS BiLSTM-CRF BioBERTpt Gemini 1.5 Flash GPT-40 Llama 3 70B N° Ex.
Category P R F1 P R F1 P R F1 P R F1 P R F1
1 1.00 0.93 0.97 | 1.00 095 0.97 | 1.00 0.95 0.97 | 0.98 0.80 0.88|0.98 0.98 0.98 61
2 0.85 092 0.88|0.85 0.88 0.86 |0.96 0.88 0.92|0.70 0.84 0.76 | 1.00 0.80 0.89 25
3 0.33 0.50 0.40 | 0.50 1.00 0.67 | 0.50 1.00 0.67 | 0.40 1.00 0.57 | 0.33 0.50 0.40 2
4A 0.78 1.00 0.88|0.78 1.00 0.88|0.78 1.00 0.88|0.83 0.71 0.77 | 0.86 0.86 0.86 7
4X 1.00 0.80 0.89 |1.00 0.40 0.57 | 1.00 1.00 1.00 | 0.57 0.80 0.67 | 0.57 0.80 0.67 5
weighted avg | 0.93 092 092 | 0.94 091 091 [096 094 0.95|0.87 081 0.83|095 091 0.92

All models demonstrated high effectiveness in classifying Lung-RADS 1 nodules.
This likely stems from the prevalence of this classification in the training data and the
clear textual descriptions of these nodules in the reports. Additionally, the absence of
similar characteristics, such as ”calcification,” which are associated with other findings,
may have contributed to this effectiveness.

Of the twenty five Lung-RADS 2 cases, the BILSTM-CRF model incorrectly clas-
sified one case as Lung-RADS 3 because it failed to identify the pulmonary nodule as
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subpleural. It also misclassified two other cases as Lung-RADS 2. In one case, the model
missed the nodule’s calcification, which should have resulted in a Lung-RADS 1 classi-
fication. In the other, the model misidentified the nodule’s size, leading to an incorrect
Lung-RADS 2 assignment.

The BioBERTpt model misclassified two cases: one as Lung-RADS 3 due to a missed
subpleural nodule and another as Lung-RADS 4B due to incorrect size extraction. Addi-
tionally, this model misclassified three cases as Lung-RADS 2. Two of these should have
been Lung-RADS 4X because the model failed to identify irregular nodule borders, and
one should have been Lung-RADS 1 due to a missed calcification. These errors likely
occurred because the models, during the named entity recognition task, were unable to
correctly identify the characteristics of the pulmonary nodules, and the rule-based algo-
rithm misconverted the extracted information into a structured format.

Analyzing Gemini 1.5 Flash, GPT-40, and Llama 3 70B revealed the following errors:

e Gemini 1.5 Flash made mistakes in two cases. In the first, the model incor-
rectly extracted the nodule size information, leading to an incorrect Lung-RADS
4B classification. In the second, it failed to identify that the pulmonary nodule was
subpleural, assigning a Lung-RADS 3 classification. Additionally, the model mis-
classified one case as Lung-RADS 2 because it failed to extract the “calcification”

characteristic of the pulmonary nodule.

e GPT-40 made mistakes in three cases. In one, it failed to identify the pulmonary
nodule as subpleural, resulting in a Lung-RADS 3 classification. In the second, it
incorrectly extracted the irregular border characteristic, leading to a Lung-RADS
4X classification. In the third, it did not extract any relevant information, leading to
a Lung-RADS 0 classification. Additionally, this model misclassified eight cases as
Lung-RADS 2. In all eight cases, it failed to extract the calcification characteristic,
which should have led to a Lung-RADS 1 classification.

e Llama 3 70B made mistakes in four cases. In the first, it incorrectly extracted the
nodule size, leading to a Lung-RADS 4B classification. In the second, it did not
extract any information from the nodule, leading to a Lung-RADS 0 classification.
In the third, it failed to identify the nodule as subpleural, assigning a Lung-RADS
3 classification. In the fourth, it incorrectly extracted the irregular border charac-

teristic, leading to a Lung-RADS 4X classification.

Regarding the Lung-RADS 3 classification , three models achieved an F1l-score
below 0.60, with BioBERTpt and Gemini 1.5 Flash achieving the highest Fl-score of
0.67. This was the Lung-RADS category where the models performed the worst. Due
to the small number of test examples (only two), the evaluation of the models in this

category was limited.
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Of the two Lung-RADS 3 cases:

e The BiLSTM-CRF model correctly classified only one. In the second case, it
failed to extract the nodule’s characteristics, resulting in a Lung-RADS 2 classifi-
cation. Additionally, it incorrectly classified one case as Lung-RADS 3 because it

failed to extract the calcification information, whereas the nodule should have been
classified as Lung-RADS 1.

e The BioBERTpt model correctly classified both test cases but incorrectly clas-
sified one additional case as Lung-RADS 3. In this case, the nodule was calcified,

but the model failed to extract this information, meaning the correct classification

should have been Lung-RADS 1.

e The Gemini 1.5 Flash model also correctly classified both test cases as Lung-
RADS 3 but misclassified one additional case as Lung-RADS 3 due to failure to
extract calcification information, when the correct classification should have been
Lung-RADS 1.

e The GPT-40 model correctly classified both test cases as Lung-RADS 3 but
incorrectly classified two additional cases as Lung-RADS 3. In these instances, it
failed to extract the calcification information, resulting in misclassifications when

the nodules should have been categorized as Lung-RADS 1.

e The Llama 3 70B model correctly classified one of the two Lung-RADS 3 cases. In
the second case, it incorrectly extracted irregular border characteristics, leading to a
Lung-RADS 4X classification. Additionally, it misclassified one case as Lung-RADS

3 due to failure to extract calcification information, when the correct classification
should have been Lung-RADS 1.

For Lung-RADS 4A classification, four models achieved an F1-score above 0.85,
while GPT-40 had the lowest Fl-score 0.77. Among the seven test cases:

e The BiLSTM-CRF, BioBERTpt, and Gemini 1.5 Flash models correctly
classified all cases as Lung-RADS 4A.

e The GPT-40 model correctly classified five cases but misclassified two. In both
cases, the model incorrectly extracted the irregular border characteristic, leading to
a Lung-RADS 4X classification. Furthermore, it mistakenly assigned a Lung-RADS
4X classification to one case where the nodule was subpleural, failing to correctly

identify this characteristic and leading to an incorrect Lung-RADS 4A classification.

e The Llama 3 70B model correctly classified six out of seven test cases as Lung-

RADS 4A. The misclassification occurred due to incorrect extraction of the irregular
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border characteristic, leading to a Lung-RADS 4X classification. Furthermore, it
incorrectly assigned a Lung-RADS 4A classification to a case where the nodule was

subpleural, failing to identify this characteristic.

For the Lung-RADS 4X classification Gemini 1.5 Flash model achieved an excel-
lent Fl-score of 1.00, while the BILSTM-CRF model obtained an F1-score of 0.89. The
GPT-40 and Llama 3 70B models achieved an F1-score of 0.67, and the BioBERT pt model
had the lowest F'1-score at 0.57.

e Of the five cases classified as Lung-RADS 4X, the BioBERTpt model correctly
identified only two. In the other three cases, the model failed to identify the irregular
border characteristic and thus classified the nodule as Lung-RADS 4A. Additionally,
in two cases, the rule-based algorithm failed to correctly convert the model’s results

into a structured format, leading to information loss and the incorrect classification
of the nodules as Lung-RADS 2.

e The BiLSTM-CRF model correctly classified four out of the five Lung-RADS 4X
cases. In the only misclassified case, the model failed to extract the irregular border

characteristic, leading to a Lung-RADS 4A classification.

e The GPT-40 model correctly classified four out of five Lung-RADS 4X cases. The
single misclassification occurred because the model failed to extract the calcification
characteristic, resulting in a Lung-RADS 1 classification. However, this model also
incorrectly assigned a Lung-RADS 4X classification in three cases. In the first two
cases, the model incorrectly extracted the irregular border characteristic, and these
nodules should have been classified as Lung-RADS 4A. In the last case, the model
also incorrectly extracted the irregular border characteristic, and the nodule should
have been classified as Lung-RADS 2.

e The Llama 3 70B model correctly classified four out of five Lung-RADS 4X cases.
The single misclassification occurred because the model failed to extract the cal-
cification characteristic, leading to a Lung-RADS 1 classification. However, this
model also incorrectly assigned a Lung-RADS 4X classification in three cases. In
the first case, the model incorrectly extracted the irregular border characteristic,
and this nodule should have been classified as Lung-RADS 4A. In the second case,
the model incorrectly extracted the irregular border characteristic, and this nodule
should have been classified as Lung-RADS 3. In the third case, the model also in-
correctly extracted the irregular border characteristic, and the nodule should have
been classified as Lung-RADS 2.

Therefore, the results demonstrated that all 5 models were effective in classifying lung
nodules in Portuguese chest CT reports to assist radiologists with Lung-RADS index-
ing. The findings highlight an pathway for developing more adaptable NLP system by
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leveraging deep learning and LLMs, which has significant implications for Lung-RADS
classification tasks.

Typically, developing a machine learning-based NER system tailored to specific clinical
entities requires creating a highly annotated corpus, a resource-intensive process demand-
ing time and expert input from the medical domain. In our cases only 100 reports were
annoted with the Lung-RADS category.

Our study wasn’t the first that utilizes NLP to assign the Lung-RADS index from CT
reports. Beyer et al. [Beyer et al., 2017] previously developed a rule-based algorithm to
assign the Lung-RADS classification of lung nodules identified within structured, clini-
cal reports of consecutive CT lung screening examinations in English idiom. Their NLP
algorithm achieved an overall sensitivity of 0.75 and an overall specificity of 0.98 in iden-
tifying nodules with the Lung-RADS 3 and Lung-RADS 4 index. Our approach differs
slightly from that of Beyer et al. [Beyer et al., 2017] in that they utilized a database with
1501 structured reports, whereas we employed a database with 963 unstructured reports.
Their method relied on a rule-based algorithm to extract nodule characteristics, while our
approach leverages deep learning models and LLMs for characteristics extraction of lung
nodules using NER and QA tasks.

Gandomi et al. [Gandomi et al., 2024] further explored NLP for Lung-RADS index
extraction from CT reports. They developed a rule-based algorithm for extract the Lung-
RADS categories described in the report and compared its performance to that of both
radiologists and LCS specialists. Across four ground truth sets of CT reports, their ap-
proach demonstrated high precision (0.99) and recall (0.99). Our approach differed from
that of Gandomi et al. in several key aspects. Firstly, they utilized a significantly larger
database comprising 24,060 reports, whereas our database consisted of 963 reports, and
the findings in our study may not generalize well to a broader population, as the dataset
might not capture the full variability present in real-world clinical reports. Secondly, Gan-
domi’s database already included the Lung-RADS index within the reports themselves.
In contrast, our study assigned the Lung-RADS index based on the characteristics of pul-
monary nodules as described within the reports. They compared the algorithm’s assigned
Lung-RADS with those assigned by both radiologists and LCS members.

To our knowledge, our study is the first to use LLMs to assign Lung-RADS scores
from chest CT reports in Portuguese. The Portuguese language presents challenges due
to its regional variations, intricate medical terminology, nuanced sentence structures, and
comparatively limited data resources. Additionally, most LLMs have been pretrained
on English data, necessitating careful consideration to ensure accurate effectiveness in
this medical context. Previous studies in Portuguese have focused on extracting named
entities from electronic health records [Schneider et al., 2020] |da Rocha et al., 2023]
[Oliveira et al., 2022]. Our work contribute with the state-of-the-art by demonstrating

the successful assignment of Lung-RADS classifications from chest CT reports in Por-
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tuguese, utilizing deep learning models and LLMs to extract the lung nodule characteris-
tics necessary for calculating the Lung-RADS index.

Despite the encouraging results this work have some limitation:

e A significant limitation of this work stems from the author’s lack of medical ex-
pertise. The data annotations, crucial for the analysis, were validated by a single
radiologist. While this review provides a degree of medical oversight, it is acknowl-
edged that a more robust validation process involving multiple radiologists would
have been preferable. The single-reviewer approach may not capture the full spec-
trum of radiological interpretations, potentially impacting the generalizability of the

findings;

e [t is also essential to acknowledge that the data utilized in this study was collected
solely from one hospital. It restricts the demographic and clinical variability of
the dataset. Consequently, the results may not be representative of diverse patient

populations or healthcare practices found in other institutions;

e The composition of the test dataset for Lung-RADS classification presents a fur-
ther limitation. With only 100 reports, the distribution of Lung-RADS categories
is notably skewed. The absence of Lung-RADS 0 and 4B cases, coupled with the
dominance of Lung-RADS 1 and the limited representation of Lung-RADS 3, 4A,
and 4X, creates an imbalanced dataset. This imbalance may disproportionately
influence the model’s effectiveness, potentially leading to biased evaluations and
hindering its ability to accurately classify less frequent, but clinically significant,
categories. Consequently, the model’s observed performance may not accurately
reflect its real-world effectiveness across a more balanced and diverse patient popu-

lation;

e Additionally, considerations around API costs, LLM usage, and data sensitivity are
critical when deploying such models in clinical settings. A more comprehensive anal-
ysis of the resources and expenses associated with traditional NLP, word embedding
models, and LLM-based systems will be valuable for future research, helping clarify
the feasibility and practical implications of LLLMs in clinical NER tasks, particularly

in Lung-RADS classification for Portuguese-language radiology reports.
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Table 5.13: Evaluation 27 BiLSTM-CRF Models in 10 Data Splits
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Chapter 6
Conclusion

In this study, we used deep learning models and LLMs to extract lung nodule character-
istics from chest CT reports written in Portuguese to automate the Lung-RADS classifi-
cation. We found that all five evaluated models(BiLSTM-CRF, BioBERTpt, Gemini 1.5
Flash, GPT-40 and Llama 3 70B were effective for classifying lung nodules in Portuguese
chest CT reports to assist radiologists with Lung-RADS indexing. Our findings highlight
apathway for developing a more adaptable NLP system by leveraging deep learning and
LLMs models, which has significant implications for Lung-RADS classification tasks. To
our knowledge, our study is the first to use LLMs to assign Lung-RADS scores from chest
CT reports in the Portuguese idiom.

Our findings underscore the potential of Deep Learning and LLMs models to support
radiologists in accurately categorizing lung nodules according to Lung-RADS criteria,
thereby simplifying the diagnostic process. By automating and improving the information
extraction, these models are anticipated to reduce radiologists’ workload and enhance the
consistency of follow-up recommendations. Ultimately, we hope this will benefit patients

by facilitating more timely and accurate detection and management of lung cancer.

6.1 Future Work

In order to improve the Lung-RADS classification system of pulmonary nodules described

in chest CT reports, future plans are as follows:

e We aim to incorporate datasets from multiple institutions representing diverse clin-

ical practices and patient populations;

e We aim to expand this scope to include newer models, such as Llama 3.3, Gemini

2.0 Pro, Claude 3.5, and Deep Seek to gain deeper insights into their effectiveness;

e Use different prompt techniques such as chain-of-thought and retrieval augmented

generation to improve information extraction from pulmonary nodules described in
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chest CT reports.

6.2 Scientific Contributions
The scientific works published with Qualis CAPES were:

e Results accepted in: 2023 IEEE 23rd International Conference on Bioinformatics
and Bioengineering (BIBE), 2023, Dayton. 2023 IEEE 23rd International Con-
ference on Bioinformatics and Bioengineering (BIBE), Qualis A3, with the title:
"Lung-RADS + AL A Tool for Quantifying the Risk of Lung Cancer in Computed
Tomography Reports”.

e Results accepted in: 24° SIMPOSIO BRASILEIRO DE COMPUTACAO APLI-
CADA A SAUDE, 2024, Goiania. 2024: Anais do XXIV Simposio Brasileiro de
Computacao Aplicada a Saude, 2024. Qualis A4, with the title: ”LungRads+AlI:
Automatizacao do Indice Lung-RADS em Laudos de TC de Térax”.

e Results accepted in: 2024 IEEE 24th International Conference on Bioinformatics
and Bioengineering (BIBE), 2024, Kragujevac. 2024 IEEE 24th International Con-
ference on Bioinformatics and Bioengineering (BIBE), 2024. Qualis A3, with the
title: ” Comparative Study of Large Language Models for Lung-RADS Classification
in Portuguese CT Reports”.



Appendices

Zero-shot Prompt Templates

Zero-Shot Prompt Template 1

Please extract relevant structured information from the above report:
"Question" : "Answer"

"Is the nodule solid or soft tissue?" : "
"Is the nodule semisolid or subsolid?"
"Is the nodule ground-glass?" : ",

"Is the nodule spiculated, irregular or poorly defined?"

"Is the nodule calcified?" : ",
"Nodule location" : ™",

"Nodule size" :

}

If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question
should be answered with numbers and unit of measure only.

Figure 6.1: Zero-shot Prompt 1 Template.

Zero-Shot Prompt Template 2

Please extract relevant structured information from the report above:
"Question" : "Answer"

"Is the nodule solid or soft tissue?" : "
"Is the nodule semisolid or subsolid?"
"Is the nodule ground-glass?" : "',
"Is the nodule spiculated, irregular or poorly defined?" :
"|s the nodule calcified?" : ",

"Nodule location" : ™",

"Nodule size" : "

}

The following are some requirements for extraction:

1. Please extract structured information for the pulmonary nodule mentioned in the report to fill in the table. In this process, you must disregard all findings described in the report]
except for: nodules, hyperdense oval image or hyperattenuating oval image.

2. If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question should be
answered with numbers and unit of measure only.

Here are some points of prior medical knowledge for your reference

1. Hyperdense oval image should be considered as a calcified pulmonary nodule.

2. Solid, soft parts and ground glass are mutually exclusive. Only one of the three questions can be "Yes", and the mixed ground glass opacity means that the tumor has
components of solid and ground glass opacity.

3. Micronodule is a nodule in the lung less than 3 millimeters (mm) in diameter. In this context due to its small size we are not interested in extracting its characteristics.
Therefore, its characteristics should not be extracted.

Figure 6.2: Zero-shot Prompt 2 Template.
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Few-shot Prompt Templates

Few-Shot Prompt Template 1

Please extract relevant structured information from the above report:
"Question" : "Answer"

"Is the nodule solid or soft tissue?" :
"Is the nodule semisolid or subsolid?" : ",

"Is the nodule ground-glass?" : "',

"Is the nodule spiculated, irregular or poorly defined?" : ™",
"Is the nodule calcified?" : ",

"Nodule location" : ",

"Nodule size" : "™

}

If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question
should be answered with numbers and unit of measure only.

The example report: ...

The example report with the table filled in: ...

Figure 6.3: Few-shot Prompt 1 Template.

Few-Shot Prompt Template 2

Please extract relevant structured information from the report above:
"Question" : "Answer"

"Is the nodule solid or soft tissue?" : "
"Is the nodule semisolid or subsolid?"
"Is the nodule ground-glass?" : "',

"Is the nodule spiculated, irregular or poorly defined?" :
"Is the nodule calcified?" : ™"

"Nodule location" : ",

"Nodule size" : ""

}

The following are some requirements for extraction:

1. Please extract structured information for the pulmonary nodule mentioned in the report to fill in the table. In this process, you must disregard all findings described in the report
except for: nodules, hyperdense oval image or hyperattenuating oval image.

2. If the report does not contain relevant information related to a specific question, please fill in the answer to that question with "No". The nodule size question should be
answered with numbers and unit of measure only.

Here are some points of prior medical knowledge for your reference

1. Hyperdense oval image should be considered as a calcified pulmonary nodule.

2. Solid, soft parts and ground glass are mutually exclusive. Only one of the three questions can be "Yes", and the mixed ground glass opacity means that the tumor has
components of solid and ground glass opacity.

3. Micronodule is a nodule in the lung less than 3 millimeters (mm) in diameter. In this context due to its small size we are not interested in extracting its characteristics.
Therefore, its characteristics should not be extracted.

'The example report: ...

'The example report with the table filled in: ...

Figure 6.4: Few-shot Prompt 2 Template.

All the code used in this work is available in the Github repository: https://github.
com/tarcisiolf/Lung_RADS_Automation.git


https://github.com/tarcisiolf/Lung_RADS_Automation.git
https://github.com/tarcisiolf/Lung_RADS_Automation.git
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