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RESUMO  

 

As Unidades Cloro-Soda produzem hipoclorito de sódio (NaClO) por meio de um processo em 

batelada, utilizando análises titulométricas periódicas para controle de qualidade, com foco nas 

concentrações de hipoclorito de sódio e soda cáustica (NaOH). Tais análises demandam tempo 

significativo, esforço operacional e grande consumo de reagentes e materiais, sendo 

intensificadas próximo ao fim da batelada para garantir a estabilidade do produto. Como 

alternativa mais eficiente, este trabalho explora métodos potenciométricos baseados em 

medições do Potencial de Oxidação e Redução (ORP), que permitem o controle indireto das 

concentrações de NaClO. O uso de medições inferenciais via ORP pode proporcionar maior 

eficiência operacional, redução de custos e segurança, minimizando a exposição dos operadores 

aos riscos do processo. Os objetivos principais deste estudo foram estabelecer um plano de 

amostragem baseado em instruções técnicas padronizadas e construir modelos de regressão, 

lineares ou não, utilizando redes neurais artificiais. Foram utilizados dados experimentais de 

um processo real, aplicando técnicas estatísticas para descrever com precisão a relação entre a 

concentração de cloro e o Potencial de Oxirredução. Os resultados indicaram uma relação 

exponencial inversa entre o ORP e a concentração de cloro ativo, com um coeficiente de 

determinação (R² = 0,985) no modelo ajustado via Excel. Adicionalmente, modelos de redes 

neurais artificiais (RNA), com configurações de 20 e 36 neurônios, apresentaram alto 

desempenho, com valores de acurácia acima de 96% e erros quadráticos médios (MSE) 

reduzidos em comparação ao modelo exponencial. O teste estatístico confirmou a significância 

da relação entre as variáveis, com valor-p < 0,05, validando a robustez dos modelos 

desenvolvidos. 

 

Palavras chaves: Hipoclorito de Sódio, Analisadores ORP, Potencial de Oxirredução, 

Regressão Linear e Não Linear.  

 

 

 

 

 

 

 



 

ABSTRACT 

 

The Chlorine-Soda Units produce sodium hypochlorite (NaClO) through a batch process, 

employing periodic titrimetric analyses for quality control, with a focus on sodium hypochlorite 

and caustic soda (NaOH) concentrations. These analyses demand significant time, operational 

effort, and extensive consumption of reagents and materials, becoming more frequent toward 

the end of the batch to ensure product stability. As a more efficient alternative, this study 

explores potentiometric methods based on Oxidation-Reduction Potential (ORP) 

measurements, allowing for the indirect control of NaClO and Cl₂ concentrations. Inferential 

ORP measurements can provide greater operational efficiency, cost reduction, and safety, 

minimizing operators' exposure to process-related risks. The primary objective of this study is 

to establish a sampling plan based on standardized technical instructions and construct 

regression models, both linear and non-linear, using Artificial Neural Networks (ANN). 

Experimental process data were utilized, applying statistical techniques to accurately describe 

the relationship between chlorine concentration and Oxidation-Reduction Potential (ORP). The 

results indicated an inverse exponential relationship between ORP and active chlorine 

concentration, with a coefficient of determination (R² = 0.985) in the model adjusted via Excel. 

Additionally, Artificial Neural Network models with configurations of 20 and 36 neurons 

demonstrated high performance, with accuracy values above 96% and reduced mean absolute 

errors (MSE) compared to the Excel model. Statistical testing confirmed the significance of the 

relationship between the variables, with p-value < 0.05, validating the robustness of the 

developed models. 

 

Keywords: Sodium Hypochlorite, ORP Analyzers, Oxidation-Reduction Potential, Linear and 

Non-Linear Regression. 
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1 INTRODUÇÃO 

A importância da indústria de cloro e soda no mundo é indiscutível, estes estão entre os 

dez produtos químicos mais produzidos no mundo e estão ligados à maioria da produção de 

outros produtos que são utilizados no dia-a-dia da sociedade (O’BRIEN et al. 2005).  

As aplicações do cloro são diversas e variam desde a produção do gás lacrimogênio até 

o tratamento de água e produção de hipoclorito de sódio e outros diversos produtos. Os 

principais segmentos do mercado mundial que consomem cloro são vinílicos (33%) e produtos 

orgânicos (19%). Já o mercado de soda está dividido principalmente entre produtos orgânicos 

(18%), papel e celulose (16%) e produtos inorgânicos (15%) (JUNIOR, 2006). 

Nas indústrias que produzem cloro liquefeito, a área de liquefação frequentemente 

apresenta a presença de gases inertes, como oxigênio, dióxido de carbono, nitrogênio e 

hidrogênio. Esses inertes dificultam a completa liquefação do cloro produzido. Antes de serem 

liberados para a atmosfera, esses gases não condensáveis devem passar por um processo de 

remoção de resíduos de cloro gasoso, conhecido como abatimento (WANJIH, 2024). 

Durante esse procedimento, o cloro gasoso não liquefeito da etapa de liquefação é 

utilizado para produzir hipoclorito de sódio, transformando o resíduo em um coproduto de alto 

valor comercial e evitando a liberação de cloro na atmosfera (LOPES, 2006). Esse processo 

ocorre por meio da absorção do cloro em contracorrente em uma solução de soda cáustica 

(NaOH), que deve alcançar uma concentração adequada para manter ao menos 12% de cloro 

ativo. 

O controle das concentrações de soda cáustica e cloro na reação para produzir 

hipoclorito de sódio é realizado por meio de titulação de amostras coletadas periodicamente. À 

medida que o ponto final da reação se aproxima, intensifica-se o monitoramento para garantir 

um excesso de soda cáustica entre 8 e 12 g.L-1 e manter o cloro livre em 12%, assegurando a 

estabilidade e conformidade do produto (LUCCA, 2006). 

O aumento intensivo de análises para manter a especificação do produto, eleva 

significativamente o consumo de reagentes além de maior tempo exposição por parte dos 

operadores de área. 

Assim, demonstra-se a necessidade do desenvolvimento de técnicas que contribuam no 
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aprimoramento do controle das concentrações de hipoclorito de sódio. A implementação de um 

método de controle apropriado, resultará em um produto de maior estabilidade, um uso eficiente 

dos reagentes, além de maior confiabilidade ao processo de produção. 
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2 OBJETIVOS  

2.1 Geral  

Este trabalho tem como objetivo principal desenvolver modelos de regressão linear ou 

não linear que possibilitem a medição de concentração de hipoclorito de sódio (NaClO) e cloro 

ativo em solução (Cl2), a partir do potencial Oxirredução através de analisadores inferenciais 

de ORP (Oxidation Reduction Potencial).  

 

2.2 Específico  

• Estabelecer o plano de amostragem e análise do hipoclorito, em tanques de produção, 

a partir de dados reais de processo. 

• Utilizar modelos inferenciais baseados na estatística e em redes neurais artificiais que 

sejam capazes de descrever efetivamente as concentrações de hipoclorito de sódio 

durante sua produção;  

• Analisar e comparar os diferentes modelos baseados em regressão linear e redes 

neurais artificiais; 

• Avaliar a confiabilidade dos dados por meio de validação estatística.  
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3 REVISÃO BIBLIOGRÁFICA  

3.1 Obtenção do Cloro por Processo de Eletrolise 

O desenvolvimento do cloro remonta ao século XIII, quando experimentos com a 

chamada "água régia" revelaram a presença de uma fumaça densa, amarelada e irritante, que 

chamava atenção pela sua natureza corrosiva. Em 1774, o químico Carl Wilhelm Scheele foi o 

primeiro a notar uma aplicação potencial para o cloro: seu poder de branqueamento em 

materiais vegetais. Esse feito marcou o início de várias descobertas sobre o elemento, incluindo 

a produção de dicloroetano em 1795 e a síntese do clorofórmio em 1831. 

Em 1800, o cientista Cruikshank realizou a primeira produção de cloro via eletrólise de 

salmoura. Esse método se tornou a base de produção industrial e foi amplamente adotado ao 

longo das décadas seguintes, consolidando-se como um processo eficiente e seguro (O’Brien et 

al. 2005). 

Atualmente, três principais tecnologias de produção de cloro e soda cáustica são usadas 

globalmente: o método de diafragma (46% de participação), o de membrana (32%) e o de 

mercúrio (22%) (JUNIOR, 2006). Segundo Hine (1985), o processo de produção industrial 

utilizando células eletrolíticas com diafragmas envolve etapas de tratamento da salmoura, 

eletrólise, evaporação da soda e processamento do cloro, hidrogênio e ainda a produção de 

subprodutos como hipoclorito de sódio. Em unidades industriais, o processo inclui também a 

produção de outros produtos para confecção final de policloreto de vinila (PVC), conforme 

ilustrado na Figura 1. 

Figura 1 - Esquema simplificado do processo de uma indústria cloro e soda através da Eletrolise. 

 

Fonte: Apresentação Industrial, Unipar, 2019. 
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A solução aquosa de salmoura é preparada através da mistura de sal e água até uma 

concentração máxima de até 320 g.L-1 de NaCl, normalmente essa salmoura passa por etapas 

de pré-tratamento, para remoção de impurezas e posteriormente é enviada até as células 

eletrolíticas. 

Esta salmoura tratada é injetada na célula onde ocorre a eletrólise, segundo a reação: 

2𝑁𝑎𝐶𝑙(𝑙) + 2𝐻2𝑂(𝑙)      ↔     2𝑁𝑎𝑂𝐻(𝑙) +  2𝐶𝑙2(𝑔) + 𝐻2(𝑔) (1) 

Gerando os principais produtos: Cloro, Hidrogênio e Hidróxido de sódio. 

Após esta etapa o cloro (Cl2) segue para a área de processamento com o objetivo de 

retirar a água e as impurezas, através do resfriamento, compressão e liquefação, para posterior 

envio para a área de produção de (PVC), e o cloro residual não liquefeito é utilizado para 

produção de coprodutos como ácido clorídrico e hipoclorito de sódio.  

O hidrogênio é distribuído para as caldeiras e para a área de produção de ácido clorídrico 

e aquecimento da salmoura. A solução aquosa composta por NaOH (12% em massa) e NaCl 

(17% em massa), também conhecida como licor de células, flui por gravidade para o tanque de 

licor e posterior envio para a evaporação até a concentração da soda em 50%, e é utilizada para 

obtenção de subprodutos. 

 

3.2 Produção de Hipoclorito de Sódio 

O hipoclorito de sódio é um composto líquido de coloração amarelada e aspecto turvo 

à temperatura ambiente, conhecido por sua alta degradabilidade e instabilidade, especialmente 

em soluções sem a presença de agentes estabilizadores.  

Segundo (LOPES, 2006), o processo químico envolvendo a produção de Hipoclorito de 

sódio em unidades industriais, ocorre a partir da cloração direta em hidróxido de sódio, a 

temperatura controlada em no máximo 35ºC, via reação, conforme Equação 2. 

2𝑁𝑎𝑂𝐻(𝑙) + 𝐶𝑙2(𝑔) ↔     𝑁𝑎𝐶𝑙𝑂(𝑙) +  𝑁𝑎𝐶𝑙(𝑠) + 𝐻2𝑂(𝑙) (2) 

 A reação ocorre em meio aquoso em pH entre 12-13, nessas condições há formação do 

íon Hipólito, conforme Equação 3. 

𝑁𝑎𝐶𝑙𝑂 → 𝑁𝑎+ + 𝑂𝐶𝑙− (3) 
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As reações envolvidas no processo possuem características altamente exotérmicas, 

sendo necessário assim o sistema de resfriamento muito bem controlado, utilizando-se de 

trocadores de calor (SHREVE, 1980). A Figura 2 demonstra a configuração do sistema de 

produção industrial de hipoclorito de sódio. 

Figura 2 - Fluxograma simplificado do processo de produção de Hipoclorito de Sódio. 

 

Fonte: Autor, 2024.  

 

Tabela 1 - Identificação dos Equipamentos 

 

 

 

 

 

 

Fonte: Autor, 2024.  

O processo de produção de NaClO em batelada inicia-se com a adição de uma solução 

de soda cáustica, inicialmente a 150 g.L-1, no tanque de operação. Esta solução circula para uma 

coluna de absorção, onde ocorre o processo de absorção em contracorrente com cloro gasoso, 

que é injetado na base da coluna. O hipoclorito de sódio formado é então bombeado do tanque 

para um trocador de calor. Após a troca térmica, a solução é retornada ao topo da coluna, 

TAG Equipamento 

C-01 Coluna de Absorção 

B-01 Bomba 

T-01 Tanque de produção  

T-02 Tanque de produção 

TR-01 Trocador de calor 
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permitindo que a concentração de NaClO aumente progressivamente até o final da batelada 

(SHREVE, 1980). 

O hipoclorito de sódio permanece em circuito fechado até que a reação de formação se 

complete e o produto alcance a concentração desejada, com 12 g.L-1 de soda cáustica e 12% de 

cloro livre em reação, (LUCCA, 2006). 

 

3.2.1 Controle Reacional 

A injeção de ar ou nitrogênio no topo da coluna é necessária para que se dilua o 

hidrogênio presente no cloro, e que não é absorvido no processo. Assim, o hidrogênio pode ser 

controlado em um nível de concentração abaixo do risco de explosividade e encaminhado com 

segurança para abatimento.  

De acordo com o Pamphlet 089 publicado pelo Chlorine Institute em 2008, o controle 

das concentrações de soda cáustica (NaOH) e cloro (Cl₂) na solução que circula na coluna é 

essencial para evitar a supercloração. Quando a solução se torna saturada com cloro, ela se torna 

mais ácida, pois o excesso de cloro diminui o pH da reação. À medida que o pH cai abaixo de 

11, ocorre a formação de ácido clorídrico (HCl). Com a redução progressiva do pH para valores 

abaixo de 5, o ácido hipocloroso (HClO) se decompõe em ácido clorídrico. Uma vez acumulada 

uma quantidade significativa de HCl, a formação de Cl₂ pode ocorrer em pH ácido, o que pode 

comprometer a estabilidade da solução e a eficiência do processo. 

 

3.2.2 Especificação do Hipoclorito de Sódio 

Dependendo do tipo de indústria, e da aplicabilidade do hipoclorito de sódio, ele possui 

uma especificação pré-determinada para suas características comerciais. Segundo a ABICLOR 

(2020), a média dessas características podem ser visualizadas na Tabela 2 abaixo: 
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Tabela 2 - Parâmetros comerciais do Hipoclorito de Sódio 

 

Fonte: ABICLOR, 2024.  

Os parâmetros acima são determinados exclusivamente para um lote recém-produzido 

de hipoclorito de sódio, pois, devido à sua alta instabilidade, suas características químicas se 

alteram com o tempo. Essa degradação ocorre naturalmente por meio de vários tipos de 

mecanismos. 

3.3 Métodos Potenciométricos  

3.3.1 Potenciometria 

A potenciometria ou método potenciométrico de análise química se baseia na medida 

da diferença de potencial entre dois eletrodos que estarão em contato com a solução do analito, 

isto é, baseia-se na medida da diferença de potencial entre um eletrodo indicador e um eletrodo 

de referência expostos à solução do analito. O potencial do eletrodo indicador varia com a 

concentração da espécie química de interesse, enquanto o potencial do eletrodo de referência 

permanece constante. O eletrodo de referência é um eletrodo cujo potencial é fixo e constante 

durante a análise, ou seja, o potencial desse eletrodo não varia com a concentração da espécie 

química a ser determinada. O eletrodo indicador é sensível à variação da espécie de interesse, 

que, por sua vez, influencia o potencial (SKOOG et al, 2006). 

 

3.3.2 Potencial de Oxirredução na Produção de NaClO  

A natureza das reações envolvidas na produção do hipoclorito de sódio é do tipo 

oxidação-redução. Nesse tipo de reação tem-se a transferência de elétrons de um reagente para 

o outro (SKOOG et al, 2006), onde a partir deste transporte, ocorre a geração de voltagem (em 

Aspecto  Unidade  Quantidade  

Cloro Ativo % em Peso 12,0 

Densidade (20 °C) kg.L-1 1,2 

Cloro Como Cloreto  g.kg-1 13,0 

Cloro Como Clorato g.kg-1 2,5 

Hidróxido De Sódio  g.kg-1 5,0 

Carbonato De Sódio  g.kg-1 8,0 

Ferro  mg.kg-1 5,0 
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mV) na solução que pode ser medida a partir de medidores de potencial de oxirredução (ORP) 

(PYE et al, 1950). 

O potencial de um eletrodo de platina em uma solução cloro-álcali é representado 

segundo a Equação de Nest (SKOOG et al, 2006): 

 

E =  E° −  
0,0591

2
log

(ClO −) (H +)2

(Cl −)
   (4) 

 

Onde E° é o potencial padrão da reação. Como a medição do potencial é dependente da 

concentração do íon hidrônio, a neutralização da solução de soda cáustica pela adição de cloro 

gasoso exibe um ponto de inflexão próximo ao ponto final da reação, sendo também possível 

haver o controle do processo a partir da medida do pH da solução durante a produção de 

hipoclorito de sódio (PYE et al, 1950). 

3.4 Métodos Estatísticos 

3.4.1 Regressão Linear Simples 

A Regressão é uma técnica estatística utilizada para investigar a relação entre variáveis. 

Um modelo de Regressão Matemática descreve a relação entre uma variável dependente (ou 

resposta) e uma ou mais variáveis independentes (ou explicativas), permitindo fazer previsões 

ou inferências sobre o comportamento da variável resposta com base nos valores das variáveis 

explicativas. Quando o estudo sobre duas variáveis quantitativas e a relação entre elas pode ser 

bem representada por uma linha reta, tem-se o caso da Regressão Linear Simples (MARTINS, 

2019). 

Nesse modelo, assume-se que existe uma relação linear entre a variável dependente e a 

variável independente, o que significa que a variação em uma está associada a uma variação 

proporcional na outra. A Equação da reta é expressa como: 

𝑌 = 𝑎 + 𝑏𝑖𝑥𝑖 (5) 

Onde “Y” é a variável dependente, “xi” é a variável independente, “a” representa a 

interceptação da reta e “b” o coeficiente angular, indicando a inclinação da reta (MARTINS, 

2019). 
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3.4.2 Regressão Linear Múltipla  

Modelos multivariados de pesquisa analisam o relacionamento entre múltiplas variáveis 

explicativas e, em alguns casos, múltiplas variáveis dependentes. A Regressão Múltipla é uma 

técnica estatística amplamente utilizada, que avalia a relação entre uma variável dependente e 

várias independentes.  

Tabachnick e Fidell (1996), definem a regressão linear múltipla como um conjunto de 

técnicas úteis, já que as variáveis independentes costumam ser correlacionadas. Destacam 

estudos dessa área, que, a correlação entre preditores pode levar à exclusão de variáveis 

importantes, e a regressão linear múltipla é uma abordagem apropriada para lidar com essa 

redundância (DUNLAP, LANDIS, 1998). 

Regressões lineares múltiplas resultam em uma equação que melhor prediz a variável 

dependente a partir das variáveis independentes, representando um modelo aditivo. A Equação 

é dada por:  

𝑌 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝜀 (6) 

Onde “y” é a variável dependente, “a” é a constante, “bn” são os coeficientes de 

regressão, “xn” são as variáveis independentes, e “ε” é o erro associado a equação (DUNLAP, 

LANDIS, 1998). 

A Regressão Linear Múltipla é uma abordagem estatística para descrever associações 

simultâneas entre várias variáveis. Um item essencial nessa modelagem inclui a estimativa, a 

inferência e a seleção das variáveis que constroem o modelo, bem como, a avaliação do ajuste 

do modelo (HAHS-VAUGHN et al, 2020).  

 

3.4.3 Teste de Hipótese 

Os testes de hipóteses são ferramentas estatísticas amplamente utilizadas para avaliar a 

igualdade ou desigualdade entre duas ou mais medidas, comparar valores esperados ou 

previstos com valores observados, ou ainda verificar a consistência entre estatísticas de 

diferentes conjuntos de dados separados no tempo e no espaço. Essas técnicas são essenciais 

para a validação científica, permitindo avaliar a relação entre variáveis e sustentar decisões 

baseadas em evidências. Por exemplo, no campo da saúde, pode-se empregar um teste de 
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hipótese para verificar a eficácia de uma vacina na cura da gripe aviária em galinhas poedeiras, 

com suporte do cálculo de probabilidades (ASSIS et al., 2020). 

O processo de um teste de hipótese envolve a formulação de uma hipótese nula (H0), 

que representa a ausência de efeito ou diferença, e uma hipótese alternativa (H1), que sugere a 

existência de um efeito ou diferença. A partir dos dados amostrais, calcula-se um valor 

estatístico que é comparado a um nível de significância pré-estabelecido (geralmente 0,05), para 

determinar se há evidências suficientes para rejeitar (H0) em favor de (H1) (ASSIS et al., 2020). 

Segundo (ASSIS et al, 2020) em um conjunto de dados com tamanho amostral definido 

seguindo uma distribuição normal, conhecendo-se o desvio padrão, o teste de hipótese pode ser 

aplicado, de acordo com a Equação.  

𝑡 =  
𝑥 −  𝜇0 

𝑠√𝑛
 (7) 

Onde: 

• n – Tamanho da amostra; 

• s – Desvio padrão da amostra; 

• x – Média da amostra; 

• μ0 – Média populacional. 

Com o valor obtido a partir da Equação 7, e definido o nível de significância (α), pode-

se buscar pelo valor associado “tcrítico”, de acordo com a Tabela “t-student”, referenciada na 

Figura 3.  
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Figura 3 - Distribuição T 

 

Fonte: BARBETTA, 2010  

Se o valor obtido do teste estatístico (t) for menor, em valor absoluto, do que o valor 

crítico (tcrítico), então não há evidências estatisticamente significativas para rejeitar a hipótese 

nula (H0). Isso indica que os dados amostrais são consistentes com H0, dentro do nível de 

significância estabelecido. 

Uma abordagem alternativa para avaliar a hipótese nula baseia-se no valor-p, que 

representa a probabilidade de observar um valor do teste estatístico tão extremo quanto (ou mais 

extremo que) o valor observado, sob a suposição de que H0 é verdadeira. 

A região crítica para rejeição de H0 é definida em função do nível de significância (α) e 

do tipo de teste conduzido: 

• Teste unilateral (esquerda ou direita): A região crítica está em uma única 

extremidade da curva de distribuição. 
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• Teste bilateral: A região crítica está em ambas as extremidades da curva, 

considerando desvios significativos tanto para valores maiores quanto menores que 

o esperado sob H0 

 

Para se calcular o valor-p, seguimos a seguinte equação: 

 

𝑉𝑎𝑙𝑜𝑟 𝐴𝑙𝑝ℎ𝑎 =  2 ∗ 𝑣𝑎𝑙𝑜𝑟 − 𝑝 |𝑡 >  𝑇𝑎𝑏𝑒𝑙𝑎 𝐸𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎 "𝑡"| (8) 

A decisão de rejeitar ou não H0 é baseada na comparação entre o valor-p e o nível de 

significância estabelecido (α): 

• Se valor-p < α: Há evidências estatisticamente significativas para rejeitar H0. 

• Se valor-p ≥ α: Não há evidências suficientes para rejeitar H0. 

3.5 Ferramentas Computacionais 

3.5.1 Redes Neurais 

A aplicação de redes neurais na análise de dados é um campo vasto e em constante 

evolução, integrando conceitos de inteligência artificial com métodos estatísticos para resolver 

problemas complexos. Redes neurais são modelos computacionais inspirados no 

funcionamento do cérebro humano, compostos por unidades de processamento (neurônios) que 

se conectam e ajustam seus pesos sinápticos através de processos de aprendizado, (FERNEDA, 

2006). 

Redes Neurais possuem funções iterativas que permitem a elas serem “treinadas” para 

resolver determinados tipos de problemas. As primeiras funções de treinamento foram 

idealizadas por cientistas associados a biólogos, na Figura 4 é possível visualizar uma 

representação de Rede neural com 4 entradas e 3 saídas (COELHO, 2024). 
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Figura 4 - Exemplo de Rede Neural Artificial 

 

Fonte: COELHO, 2024.  

As (RNAs) possuem como unidade fundamental o neurônio artificial, uma estrutura 

inspirada no neurônio biológico. Esses neurônios artificiais recebem um conjunto de entradas, 

comparáveis aos "axônios" dos neurônios biológicos, e produzem uma saída, equivalente ao 

"dendrito". Assim como os neurônios presentes em sistemas biológicos, os neurônios artificiais 

também possuem a capacidade de aprender, ajustando seus parâmetros durante um processo de 

treinamento para resolver problemas específicos. No contexto computacional, o aprendizado 

dos neurônios artificiais é realizado com base em dados de entrada e saída. Durante o 

treinamento, os parâmetros dos neurônios são ajustados para minimizar erros e melhorar a 

precisão nas previsões. Em aplicações modernas, utiliza-se uma abordagem conhecida como 

Deep Learning, que treina redes neurais profundas compostas por várias camadas de neurônios 

interligados (COELHO, 2024). 

 Os neurônios artificiais são estruturados com base em uma arquitetura inspirada nos 

biológicos, mas adaptada para atender às demandas computacionais. As entradas de um 

neurônio são ponderadas por pesos, que determinam a importância de cada entrada, e 

combinadas de acordo com uma função de ativação. Essa função é responsável por processar 

os valores ponderados das entradas, realizando uma combinação linear (que pode incluir um 

valor adicional chamados bias) e produzindo um valor de saída ativado. O funcionamento 

básico de um neurônio genérico está representado na Figura 5, destacando suas principais 

componentes (COELHO, 2024). 
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Figura 5 - Representação de um Neurônio artificial 

 

Fonte: COELHO, 2024. 

Tais estruturas formam a base de todas as redes neurais artificiais, sendo amplamente 

utilizadas em aplicações que envolvem aprendizado supervisionado, não supervisionado ou por 

reforço. 

Uma das vantagens das redes neurais é a capacidade de aprender e melhorar seu 

desempenho à medida que são expostas a novos dados. Elas podem identificar padrões ocultos 

e realizar inferências baseadas em dados passados, o que as torna ideais para análises preditivas. 

(FERNEDA, 2006). 

 

3.6 Fatores de Interferência  

3.6.1 Potencial Hidrogeniônico (pH) 

O potencial de oxirredução, é uma medida completa, que varia a depender da 

concentração dos componentes em solução. A interferência do pH na medição do potencial 

(ORP), se dá ao aumento da concentração de cloro livre em solução, diminuindo o pH que 

favorece a formação de ácidos, que por sua vez, interferem diretamente na medição (ORP), 

tendo em vista a relação logarítmica linear entre concentração e tensão da solução (GONGORA 

et al, 2024).  
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4 METODOLOGIA  

 

A metodologia deste trabalho baseou-se em dados reais de processo, utilizando uma 

solução concentrada de hipoclorito de sódio. Para a análise dos dados, foram empregadas 

ferramentas computacionais como Google Colaboratory e Microsoft Excel, que auxiliaram na 

organização, tratamento e interpretação dos resultados experimentais. 

 

4.1 Coleta de Dados  

Em dezembro de 2023, foram realizadas a coleta de amostras de hipoclorito de sódio e 

realizados o experimento em laboratório, para obtenção do potencial de oxirredução e 

concentração de cloro ativo em solução. Essa coleta ocorreu com o NaClO estável e 

especificado para venda.  

 

4.2 Amostragem  

4.2.1 Plano de Amostragem 

Inicialmente, foi desenvolvido um plano de amostragem para coleta dos dados, no qual 

foi definido a volumetria da amostra inicial e de todos os pontos de diluição, incluindo 

concentração de cloro esperada a cada ponto, com o objetivo de orientar o experimento, 

conforme referenciado na Tabela 3.  

O volume inicial da amostra utilizada foi de 50 mL, com um incremento fixo de diluição 

de 5 mL, dessa forma foram estabelecidos 30 pontos de diluição, incluindo a previsão das 

concentrações de cloro esperadas, baseando-se na concentração da amostra inicial conforme a 

Equação 9. 

𝐶1𝑉1 =  𝐶2𝑉2 (9) 

Onde “C1 e V1” é a concentração e o volume inicial da amostra, “V2” é o volume final 

e “C2” é concentração desconhecida. A Equação 9, dessa forma poder ser manipulada com 

objetivo de ser determinar “C2”.  

𝐶1𝑉1

𝑉2
=  𝐶2 (10) 
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Tabela 3 - Plano de Amostragem 

Pontos Volume da Amostra (mL) Concentração de cloro (g.L-1) 

1 50,0 165,0 

2 55,0 150,0 

3 60,0 137,5 

4 65,0 126,9 

5 70,0 117,9 

6 75,0 110,0 

7 80,0 103,1 

8 85,0 97,1 

9 90,0 91,7 

10 95,0 86,8 

11 100,0 82,5 

12 105,0 78,6 

13 110,0 75,0 

14 115,0 71,7 

15 120,0 68,8 

16 125,0 66,0 

17 130,0 63,5 

18 135,0 61,1 

19 140,0 58,9 

20 145,0 56,9 

21 150,0 55,0 

22 155,0 53,2 
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23 160,0 51,6 

24 165,0 50,0 

25 170,0 48,5 

26 175,0 47,1 

27 180,0 45,8 

28 185,0 44,6 

29 190,0 43,4 

30 195,0 42,3 

Fonte: Autor, 2024.  

 

4.2.2 Volumetria do Cl2 e Medição ORP  

Os reagentes e equipamentos usados para a prática da análise do teor de cloro ativo e 

tensão da solução estão descritos encontrados na Tabela 4. 

 

Tabela 4 - Reagentes e vidrarias utilizados 

Reagentes  Vidrarias 

Solução de iodeto de potássio (Kl) a 5% (m/m) Pipetas volumétricas (1 mL) 

Solução de ácido acético 1:3 (v/v) Proveta graduada (50 mL) 

Solução de tiossulfato de sódio 0,1 N padronizada Bureta de (50 mL) 

Indicador de solução de amido em frasco conta gotas  Frasco de Erlenmeyer (250 mL)  

Água destilada 

Solução de calibração  

Analisador ORP 

 

Fonte: Autor, 2024.  

 

Para determinação do cloro ativo, foram realizados os seguintes procedimentos:  

 

1. Pipetou-se 1 mL de amostra para um Erlenmeyer de 250 mL, a completar o volume 

com 30 mL de água destilada e homogeneizou-se a solução;  

2. Pipetou-se 10 mL de solução de iodeto de potássio a 5% (m/m) para um frasco de 

Erlenmeyer de 250 mL;   

3. Adicionou-se 10 mL da solução de ácido acético a 33% e titulou-se, rapidamente, 

com a solução de tiossulfato de sódio 0,1 N contida na bureta até atingir a cor 
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amarelo claro;  

4. Colocou-se 3 gotas de indicador de amido e prosseguiu-se a titulação até que 

desapareça a cor azul.  

5. Foi anotado o volume gasto de solução de tiossulfato de sódio. 

 

Este procedimento foi realizado para cada ponto de diluição. A ordem dos reagentes no 

frasco Erlenmeyer não altera o resultado das análises desde que a amostra seja inserida por 

último. Para determinar o teor de cloro ativo em solução a cada ponto de diluição, utilizou-se 

da Equação 11.  

𝑇𝑒𝑜𝑟 𝑑𝑒 𝑐𝑙𝑜𝑟𝑜 𝑎𝑡𝑖𝑣𝑜 (𝑔. 𝐿−1) = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑒 𝑇𝑖𝑜𝑠𝑠𝑢𝑙𝑓𝑎𝑡𝑜 𝑑𝑒 𝑠ó𝑑𝑖𝑜 ∗ 3,546 (11)  

Para determinação da tensão em solução (potencial de oxirredução), seguiu-se o 

procedimento conforme descrito abaixo: 

1. Conectou-se o eletrodo de ORP ao medidor HI9126 e ligou-se o dispositivo. 

2. Configurou-se o medidor no modo "mV", pressionando a tecla “RANGE”. 

3. Após a configuração, o eletrodo de ORP foi imerso na amostra até uma profundidade 

de 4 centímetros. 

4. Com o eletrodo estabilizado na solução, registrou-se o valor correspondente ao 

potencial de oxirredução (em mV) para cada ponto de diluição preparado. 

 

Esse processo foi repetido para todas as amostras, garantindo a precisão e a 

reprodutibilidade das medições. 
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4.3 Redes neural 

Para o desenvolvimento do código utilizado na análise e construção do modelo 

preditivo, foram adotadas ferramentas computacionais utilizadas no processamento de dados e 

aprendizado de máquina. O código foi implementado em Python, uma linguagem de 

programação versátil e aplicada em contextos científicos e acadêmicos, utilizando-se dos dados 

obtidos experimentalmente.  

Para garantir a eficiência e a precisão das análises, as seguintes bibliotecas foram 

utilizadas: 

• NumPy: Manipulação de arrays e operações matemáticas. 

• Matplotlib: Visualização gráfica dos dados e resultados. 

• scikit-learn: Redimensionamento de dados, divisão em conjuntos de treinamento e 

teste, e cálculo do coeficiente de determinação R². 

• TensorFlow: Construção e treinamento da rede neural. 

• Joblib: Persistência dos escaladores de normalização para futura reutilização. 

 

A estruturação do código foi realizada em partes, afim de garantir que estejam 

adequados para serem utilizados. 

 

1. Carregamento de Dados; os dados de entrada são carregados diretamente em formato 

de array NumPy, contendo dois atributos: 

• ORP (mV): Variável independente. 

• Concentração de Cloro (g.L-1): Variável dependente. 

2. Pré-Processamento dos Dados 

• Escalamento: Utilizou-se a classe MinMaxScaler da biblioteca scikit-learn 

para normalizar os valores entre 0 e 1, melhorando o desempenho da rede 

neural. 

• Divisão em Conjuntos de Treinamento e Teste: O conjunto foi dividido em 

50% para treinamento e 50% para teste, garantindo validação cruzada. 

3. Construção da Rede Neural 

• Foi utilizada uma rede sequencial da biblioteca TensorFlow/Keras, que 

permite a inserção de camada por camada de neurônios na RNA. 
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• Camada de entrada: 1 neurônio (correspondente ao ORP). 

• Duas camadas ocultas: Cada camada com um número de neurônios a serem 

definidos e função de ativação ReLU. 

• Camada de saída: 1 neurônio com função de ativação linear, para prever a 

concentração de cloro. 

 

Para compilação do modelo, utilizou-se um otimizador “Adam”, com taxa de 

aprendizado de 0,001 e uma função de perda, Mean Squared Error (Erro Quadrático Médio). 

Durante o treinamento do modelo, foi definido o úmero de épocas em 500, com 

possibilidade de parada antecipada, à medida que o erro médio dos dados de treinamento fosse 

menor que 0,01 em comparação com os dados amostrais reais, para cada ciclo de treinamento, 

o tamanho do lote (batch) a ser testado foi de 8 amostras por vez, incluindo uma validação 

cruzada de dados para monitorar o desempenho do modelo a cada época testada.  

No modelo desenvolvido, a função de ativação ReLU (Rectified Linear Unit) foi 

utilizada devido à sua eficiência em redes profundas, pois ajuda a mitigar problemas associados 

ao gradiente desaparecido, proporcionando uma convergência mais rápida e estável durante o 

treinamento.  

Além disso, a normalização dos dados foi um passo para garantir que todas as variáveis 

estivessem na mesma escala. Isso não apenas melhora a estabilidade numérica do modelo, mas 

também acelera o processo de convergência ao facilitar a otimização do algoritmo de 

aprendizado. 
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4.4 Métricas  

Para avaliação da RNA foi incluindo métricas, já que o modelo é avaliado no conjunto 

de teste utilizando a função de perda. O cálculo de métricas em RNAs é fundamental para 

avaliar o desempenho e orientá-lo durante o treinamento. As métricas de erro medem a 

discrepância entre as previsões feitas pela rede e os valores reais, ajudando a entender como o 

modelo está se saindo em relação aos dados de treinamento e validação. 

 

4.4.1 Acurácia  

A Acurácia é uma métrica simples e comum para avaliar o desempenho de modelos de 

classificação. Ela calcula a proporção de previsões corretas sobre o total de previsões feitas. 

Seguindo uma equação simples.  

 

𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 =
𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑝𝑟𝑒𝑣𝑖𝑠õ𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑡𝑎𝑠

𝑁ú𝑚𝑒𝑟𝑜 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑒𝑥𝑒𝑚𝑝𝑙𝑜𝑠
 (12) 

 

 Além da acurácia, a métrica de “Loss”, foi implementada no modelo, onde determina a 

perda da rede neural artificial em comparação com os dados reais que estão sendo avaliados  

 

4.4.2 Coeficiente de determinação R2 

O R², também conhecido como “coeficiente de determinação'” é uma métrica que indica 

o quão bem o modelo se ajusta aos dados. Ele mede a proporção da variação nos dados de saída 

que é explicada pelo modelo, que é determinado pela Equação.  

 

𝑅2 = 1 −
∑ (𝛾𝐼 − 𝛾𝐼2)2𝑁

𝑖=1

∑ (𝛾𝐼 − 𝛾𝐼2)2𝑁
𝑖=1

 (13) 

 

Onde: 

• 𝛾𝐼 é o valor da real da amostra;  

• 𝛾𝐼2 é o valor previsto pela rede neural; 

• N é o tamanho da amostra.  
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4.4.3 Erro Quadrático Médio   

O Erro Quadrático Médio (MSE) é uma das métricas de erro mais comuns, 

especialmente em problemas de regressão. Ele calcula a média dos quadrados das diferenças 

entre os valores previstos e os valores reais, que pode ser calculado seguindo a Equação.  

 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝛾𝐼 − 𝛾𝐼2)2

𝑁

𝐼=1

 (14) 

 

4.4.4 Raiz do Erro Quadrático Médio  

O RMSE é simplesmente a raiz quadrada do MSE, e seu valor tem as mesmas unidades 

dos dados originais, o que pode facilitar a interpretação dos resultados. Calculado pela Equação.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝛾𝐼 − 𝛾𝐼2)2

𝑁

𝐼=1

 (15) 

 

 

4.5 Teste de hipótese  

 

Para realizar a análise de significância da relação entre a concentração de cloro e o 

potencial de oxidação e redução (ORP), uma metodologia estatística foi adotada com o objetivo 

de validar a existência de uma possível dependência entre essas variáveis. A validação dos 

dados tem como objetivo determinar se a concentração de cloro pode ser considerada um fator 

preditivo confiável para o comportamento do ORP, com implicações práticas para processos 

químicos e industriais que dependem do equilíbrio redox. Onde as hipóteses estabelecidas 

foram. 

• Hipótese nula H0: Não há relação significativa entre a concentração de cloro e o 

potencial de oxidação e redução, onde seu coeficiente de regressão é próximo de 0; 

• Hipótese alternativa H1: Existe uma relação significativa entre a concentração de cloro 

e o potencial de oxidação (ORP). Ou seja, o coeficiente de regressão é diferente de zero.  

 

Para testar as hipóteses formuladas, foi empregada uma análise de regressão linear 

simples, considerando a concentração de cloro como variável independente e o ORP como 



36 

 

variável dependente.  

 

O coeficiente de regressão foi submetido a um teste “t”, avaliando a probabilidade de 

que ele seja diferente de zero. A hipótese nula foi rejeitada se o valor-p obtido fosse menor que 

o nível de significância adotado (α = 0,05). 

A proporção da variabilidade total do ORP explicada pela concentração de cloro foi 

avaliada através do R2 elevado reforça a existência de uma relação linear significativa. Os 

resultados da análise foram interpretados considerando a magnitude e a significância estatística 

do coeficiente de regressão, o valor-p correspondente ao modelo. 
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5 RESULTADOS E DISCUSSÕES  

Nesta seção são apresentados os resultados obtidos através da aplicação de redes neurais 

artificiais e modelos de regressão lineares no excel, utilizado como estudo, bem como a 

validação estatística dos dados amostrais. Além disso, é discutido a comparação entre modelos 

de regressão, justamente com as métricas associadas a cada modelo de estudo.  

 

5.1 Dados amostrais  

Os dados obtidos na volumetria das amostras são apresentados nesta seção, com eles é 

possível calcular a concentração de cloro em cada ponto de diluição utilizando-se da Equação 

11, bem como mensurar o potencial de oxirredução utilizando o analisador mencionado na 

Tabela 4, os dados estão apresentados na Tabela 5.  

Tabela 5  - Dados amostrais NaClO 

Volume de Titulante Cloro Livre (g.L-1) ORP (mV) 

46,59 165,20 499,90 

45,09 159,90 500,20 

41,99 148,90 502,70 

40,47 143,50 503,30 

39,00 138,30 504,50 

38,24 135,60 504,90 

37,17 131,80 505,30 

35,50 125,90 506,90 

33,36 118,30 507,10 

32,01 113,50 508,70 

30,01 106,40 511,50 

28,37 100,60 512,30 

27,44 97,30 513,50 
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26,51 94,00 514,30 

24,00 85,10 518,00 

21,49 76,20 518,80 

21,01 74,50 518,90 

19,49 69,10 520,80 

18,30 64,90 521,90 

17,96 63,70 522,80 

17,51 62,10 523,40 

15,31 54,30 524,10 

14,30 50,70 525,90 

13,00 46,10 526,30 

12,30 43,60 530,00 

10,80 38,30 531,50 

9,50 33,70 533,70 

8,71 30,90 535,70 

7,81 27,70 536,60 

6,71 23,80 539,10 

5,61 19,90 542,20 

4,09 14,50 543,70 

3,19 11,30 548,70 

2,79 9,90 550,70 

0,20 0,70 615,00 

0,08 0,30 620,00 

Fonte: Autor, 2024.  
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5.2 Modelos de Regressão  

5.2.1 Modelo Exponencial 

Com base nos dados apresentados na tabela 5, é possível então estabelecer um modelo 

de regressão simples, linear ou não, utilizando o software Excel, conforme Figura 6.  

 

Figura 6 - Modelo de Regressão (Excel) 

 

Fonte: Autor, 2024.  

 

Na Figura 6, pode-se observar que o melhor ajuste pra o conjunto de dados é do tipo 

exponencial, representado pela Equação 14. 

 

𝑦 = 3 ∙ 1013𝑒−0,052𝑥 (14) 

 

O coeficiente de determinação (R2 = 0,985), indica que o modelo exponencial ajusta os 

dados com alta precisão mesmo utilizando-se de uma ferramenta menos robusta, explicando 

98,55% da variabilidade observada no cloro ativo em função do ORP. O comportamento do 

gráfico sugere uma relação inversa entre o ORP e a concentração de cloro ativo (g.L-1). À 

medida que o ORP aumenta, a quantidade de cloro ativo diminui de maneira exponencial, 

indicando que em condições de maior potencial oxidativo, há uma redução mais acentuada na 

concentração de cloro ativo. 
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5.2.2 Rede Neural 

O modelo de regressão foi testado utilizando redes neurais artificiais em quatro 

condições distintas, com o objetivo de avaliar o impacto do número de neurônios na camada 

oculta no desempenho do modelo. Para determinar os parâmetros do modelo, considerou-se o 

tamanho do conjunto de dados disponível, que possui 36 amostras, sendo este o número máximo 

de neurônios recomendado para evitar o sobreajuste e manter a generalização do modelo. 

As condições testadas consistiram em variar o número de neurônios na camada oculta 

entre 10, 20 e 36, além de uma quarta condição que visava simular um cenário de sobreajuste. 

Nesta última condição, o número de neurônios foi ampliado significativamente, utilizando 64 

neurônios em ambas as camadas ocultas. Esse cenário foi implementado para investigar como 

o modelo se comporta em situações de complexidade excessiva, onde o número de parâmetros 

excede significativamente o tamanho do conjunto de dados, o que pode levar ao sobreajuste e 

à perda de capacidade preditiva em dados não vistos. 

A escolha dos números de neurônios testados foi baseada em boas práticas de 

modelagem de redes neurais, que sugerem manter a complexidade do modelo alinhada ao 

tamanho do conjunto de dados e à natureza do problema (ICMC, 2024).  

 Os resultados obtidos em cada modelo estão apresentados nas figuras a seguir.  
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Figura 7 – Curva de regressão (10 neurônios) 

 

Fonte: Autor, 2024.  

 

Figura 8 – Loss (10 neurônios) 

 

Fonte: Autor, 2024. 
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Figura 9 - Curva de regressão (20 neurônios) 

 

Fonte: Autor, 2024. 

 

Figura 10 - Loss (20 neurônios) 

 

Fonte: Autor, 2024. 
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Figura 11 - Curva de regressão (36 neurônios) 

 

Fonte: Autor, 2024. 

 

Figura 12 - Loss (36 neurônios) 

 

Fonte: Autor, 2024. 
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Figura 13 - Curva de regressão (64 neurônios) 

 

Fonte: Autor, 2024. 

 

Figura 14 - Loss (64 neurônios) 

 

Fonte: Autor, 2024. 
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Entre o conjunto de figuras, alinhadas com os resultados exposto no Anexo I, é possível 

afirmar que o aumento progressivo de neurônios na camada oculta aumentam a precisão de 

previsão da RNA. As Figuras 13 e 14, que possuem os resultados na configuração de 64 

Neurônios, quando comparada com as demais Figuras (7 a 12), apresentam nitidamente uma 

menor perda em validação com os dados reais.  

 

5.3 Comparação Entre Modelos de Regressão  

Nesta análise, são avaliadas métricas como acurácia, coeficiente de determinação (R²), 

erro médio absoluto (MSE) e erro quadrático médio (RMSE) para determinar o desempenho 

dos modelos de regressão, apresentados na Tabela 6.  

 
Tabela 6 - Métricas dos modelos de regressão 

Métricas  
Modelo 

Exponencial 
RNA 10 Neurônios   RNA 20 Neurônios   RNA 36 Neurônios   RNA 64 Neurônios   

ACURÁCIA 97,22% 94,74% 95,12% 96,35% 99,99% 

R2 0,985 0,981 0,982 0,985 0,998 

MSE 0,073 0,020 0,019 0,018 0,016 

RMSE 0,071 0,034 0,033 0,032 0,027 

Fonte: Autor, 2024. 

 

Os resultados expostos na Tabela 6, indicam que a capacidade preditiva não cresce 

linearmente com o número de neurônios, mas sim atinge um equilíbrio ideal, nesse caso por 

exemplo o ajuste no Excel é não linear, por se tratar de uma curva exponencial, demonstra uma 

boa acurácia de 97,22%.   

O Anexo I, demostra os dados de concentração de Cl2 gerados por todos os modelos e 

ORP associado, nas Figura 15 e 16 pode-se visualizar a distribuição de todos os modelos em 

comparação com a referência.   
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Figura 15 - Modelos de Regressão 

 

Fonte: Autor, 2024.  

 

 
Figura 16 - Erro absoluto entre modelos 

 
Fonte: Autor, 2024  

 

 

Nas Figura 15 e 16 observa-se que as previsões geradas pelos modelos de redes neurais 

apresentam menores variações em relação aos valores de referência. 
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Com 10, 20 e 36 neurônios o modelo apresenta um desempenho relativamente 

consistente com os valores de referência, mas sua capacidade de capturar padrões mais 

complexos pode ser limitada, como evidenciado um erro maior nos pontos em que se tem 

concentrações mais baixas de Cl₂, porém 20 e 36 neurônios, percebe-se previsões 

razoavelmente próximas da referência no geral.  

À medida que o número de neurônios aumenta, o modelo captura menos variações nos 

dados, mas também há indícios de que ele começa a ajustar padrões específicos dos dados de 

treinamento, reduzindo sua capacidade de generalização. Utilizando 64 neurônios, existe 

desvios mais pronunciados nos pontos finais (30 a 35) quando se observa o erro associado na 

curva em azul exposta ta Figura 16. Isso é um reflexo do sobreajuste, onde o excesso de 

parâmetros compromete a performance em dados fora do conjunto de treinamento. 

Os resultados obtidos pelo ajuste realizado Excel fornecem um ponto de referência 

simples e direto, menos sofisticado e apresenta um erro significativamente maior. Os modelos 

de redes neurais, especialmente nas configurações intermediárias 20 e 36 neurônios, 

demonstram um potencial significativo para superar as previsões não-lineares do Excel, mas 

com a vantagem de capturar relações não lineares entre as variáveis. As maiores discrepâncias 

entre os valores previstos e os de referência ocorrem em regiões de baixas concentrações de 

Cl₂, como evidenciado pelas últimas linhas da tabela 7. Essa discrepância pode estar associada 

à dificuldade dos modelos em aprender adequadamente em regiões de menor densidade de 

dados. Técnicas como a ponderação de amostras ou a adição de dados específicos nessas regiões 

poderiam melhorar o desempenho do modelo. 

 

5.4 Validação Estatística 

A análise estatística da relação entre a concentração de cloro e o potencial de oxidação 

e redução (ORP) foi conduzida com o objetivo de validar a existência de uma dependência 

significativa entre essas variáveis, permitindo avaliar se o cloro pode ser considerada um fator 

preditivo confiável para o comportamento d o potencial de redox. Dessa forma, foram 

formuladas as seguintes hipóteses: 

• Hipótese nula (H₀): Não há relação significativa entre a concentração de cloro e o ORP, 

ou seja, o coeficiente de regressão é próximo de zero; 

• Hipótese alternativa (H₁): Existe uma relação significativa entre a concentração de cloro 
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e o ORP, com coeficiente de regressão diferente de zero. 

Para testar essas hipóteses, foi aplicada uma análise de regressão linear simples, em que 

a concentração de cloro foi considerada a variável independente e o ORP a variável dependente. 

O coeficiente de regressão foi submetido ao teste t, que avalia a probabilidade de o 

coeficiente ser significativamente diferente de zero, adotando-se um nível de significância (α = 

0,05.), os resultados estatísticos, estão expostos na Tabela 7.  

Tabela 7 - Valores estatísticos 

Estatística  Valor 

Coeficiente de Regressão -0,434 

Erro Padrão 0,060 

Valor “t” -7,010 

Valor-p 0,001 

Coeficiente de determinação  0,975 

Fonte: Autor, 2024.  

Os resultados obtidos, incluindo a magnitude e a significância estatística do coeficiente 

de regressão e o valor-p associado ao modelo, foram analisados para determinar a influência 

direta da concentração de cloro sobre o comportamento do ORP. 

Na Tabela 7, o valor-p observado foi inferior ao nível de significância adotado (valor-p 

< α = 0,05). Dessa forma, a hipótese nula (H₀) é rejeitada, e a hipótese alternativa (H₁) é aceita, 

indicando a existência de uma relação estatisticamente significativa entre a concentração de 

cloro e o potencial de oxidação e redução (ORP). 

Esse resultado sugere que o pH da solução exerce uma influência relevante no 

comportamento do potencial de oxirredução, conforme discutido por Góngora em 2024. De 

acordo com suas abordagens, a relação entre essas variáveis apresenta um comportamento 

logarítmico, o que reforça a complexidade e a interdependência entre a concentração de cloro, 

o pH e o ORP em soluções aquosas. 

 



49 

 

6 CONCLUSÃO   

O presente estudo abordou a relação entre a concentração de cloro ativo e o potencial 

de oxidação e redução (ORP), utilizando técnicas de regressão disponíveis no Excel, redes 

neurais artificiais (RNA) e validação estatística. Os resultados obtidos confirmaram a existência 

de uma relação significativa entre as variáveis, reforçando que a concentração de cloro pode ser 

considerada um fator preditivo relevante para o comportamento do ORP. 

A partir dos modelos desenvolvidos, verificou-se que o modelo de regressão 

exponencial com Excel apresentou um coeficiente de determinação (R² = 0,985), explicando 

98,55% da variabilidade nos dados. Demonstrando ser uma solução simples e eficaz, mas 

limitada ao capturar relações precisas entre ORP e concentração de cloro. 

Para os Modelos de Redes Neurais Artificiais, a performance dos modelos com 20 e 36 

neurônios mostrou-se superior em capturar as relações não lineares entre as variáveis, apesar 

da alta acurácia (até 99,99% com 64 neurônios), observou-se sobreajuste em cenários mais 

complexos, comprometendo a generalização do modelo em regiões de baixa concentração de 

cloro, o equilíbrio ideal entre precisão e generalização foi observado com 20 e 36 neurônios, 

com menor erro quadrático médio (MSE = 0,018). 

Os resultados estatísticos validaram a significância da relação entre as variáveis: o teste 

t do coeficiente de regressão apresentou valor-p = 0,001, inferior ao nível de significância 

adotado (α = 0,05), levando à rejeição da hipótese nula (H₀). Esse resultado corrobora a 

existência de uma dependência significativa entre a concentração de cloro e o ORP. Além disso, 

a análise reforçou o impacto do pH da solução sobre a estabilidade do ORP, conforme apontado 

por Góngora em 2024, evidenciando um comportamento logarítmico entre essas variáveis. 

Por fim, os modelos propostos mostraram-se promissores como alternativas viáveis e 

econômicas para substituir métodos tradicionais de análise titulométrica, especialmente em 

processos industriais que exigem controle rigoroso e tempo-resposta ágil. A implementação de 

técnicas baseadas em RNAs, aliada ao controle preciso do pH e ao uso de equipamentos 

calibrados, pode elevar significativamente a confiabilidade e a qualidade na produção de 

hipoclorito de sódio. 
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8 ANEXOS 

ANEXO I - Resultados dos modelos de regressão para concentração de cloro 

 

ORP (mV) 

Referência  

Cloro Livre (g.L-1)  

Referência 

Cl2 (g.L-1)  

Modelo 

Exponencial 

Cl2 (g.L-1)  

10 

neurônios  

Cl2 (g.L-1)  

20 

neurônios 

Cl2 (g.L-1)  

36 

neurônios 

Cl2 (g.L-1)  

64 

neurônios 

499,90 165,20 154,07 161,28 165,37 164,03 164,82 

500,20 159,90 151,69 159,93 164,08 162,61 163,20 

502,70 148,90 133,20 148,52 152,14 150,21 149,66 

503,30 143,50 129,10 145,76 149,21 147,23 146,41 

504,50 138,30 121,29 140,23 143,35 141,27 139,91 

504,90 135,60 118,80 138,39 141,40 139,29 137,74 

505,30 131,80 116,35 136,54 139,45 137,30 135,58 

506,90 125,90 107,06 129,17 131,63 129,36 126,91 

507,10 118,30 105,96 128,25 130,66 128,37 125,83 

508,70 113,50 97,50 120,88 122,85 120,61 117,17 

511,50 106,40 84,29 107,98 109,18 107,17 103,24 

512,30 100,60 80,85 104,29 105,27 103,78 99,61 

513,50 97,30 75,96 98,76 99,41 98,69 94,43 

514,30 94,00 72,87 95,07 95,51 95,30 91,07 

518,00 85,10 60,11 78,78 78,34 79,63 77,14 

518,80 76,20 57,66 75,89 75,41 76,24 74,50 

518,90 74,50 57,36 75,53 75,06 75,81 74,17 

520,80 69,10 51,97 68,67 68,43 67,76 68,04 

521,90 64,90 49,08 64,69 64,60 63,20 64,64 



53 

 

522,80 63,70 46,83 61,44 61,46 59,88 61,94 

523,40 62,10 45,40 59,27 59,36 57,97 60,14 

524,10 54,30 43,77 56,73 56,92 55,73 58,05 

525,90 50,70 39,86 50,35 50,64 50,00 52,97 

526,30 46,10 39,04 49,39 49,29 48,72 51,85 

530,00 43,60 32,21 40,51 38,33 38,64 41,58 

531,50 38,30 29,79 37,03 36,12 36,28 37,59 

533,70 33,70 26,57 34,02 33,35 32,81 32,11 

535,70 30,90 23,95 31,29 30,82 29,65 28,60 

536,60 27,70 22,85 30,06 29,68 28,23 27,24 

539,10 23,80 20,07 26,64 26,53 24,44 23,86 

542,20 19,90 17,08 22,40 22,80 21,64 21,14 

543,70 14,50 15,80 20,35 21,27 20,53 20,42 

548,70 11,30 12,18 13,51 18,47 18,78 18,71 

550,70 9,90 10,98 11,67 17,98 18,07 18,15 

615,00 0,70 0,39 3,38 2,01 0,52 0,73 

620,00 0,30 0,30 2,72 0,75 -0,25 -0,61 

Fonte: Autor, 2024.  


