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RESUMO 

 
Este trabalho aborda a relevância dos processos diagramáticos no incentivo ao 
raciocínio hipotético e sua exploração como metodologia para a didática da 
matemática. Para o desenvolvimento do trabalho, segue a exposição de uma pesquisa 
sobre o conceito de abdução, termo este que tem como aproximação o sentido de - 
raciocínio hipotético. Esse tipo de raciocínio é fundamental para a obra e a 
metodologia científica proposta por Charles Sanders Peirce e outras pesquisas com 
base nesse teórico, e, portanto, um conceito fundamental para o desenvolvimento 
deste trabalho. Na sequência da construção do argumento aqui presente, destacamos 
a importância da visualização nos métodos para compreensão de conceitos 
matemáticos e propomos atividades em aulas de matemática por investigação com 
problemas abertos, utilizando processos em diagramas. Por fim, apresentaremos 
exemplos encontrados na bibliografia da área da didática da matemática que exploram 
visualização por diagramas que são problemas abertos e percebemos possibilidades 
desta abordagem favorecer o desenvolvimento de conceitos iniciados por uma 
abdução. 
 
Palavras-chave: Diagramas. Didática da Matemática. Filosofia da Educação 
Matemática. Problemas abertos. Raciocínio abdutivo. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

ABSTRACT 

 
This work addresses the relevance of diagrammatic processes in fostering hypothetical 
reasoning and their exploration as a methodology for mathematics education. To 
develop this study, a discussion on the concept of abduction is presented, a term 
closely associated with the idea of hypothetical reasoning. This type of reasoning is 
fundamental to the work and scientific methodology proposed by Charles Sanders 
Peirce and other research based on this theorist, making it a key concept for the 
development of this work. Following the construction of the argument presented here, 
we highlight the importance of visualization in methods for understanding mathematical 
concepts and propose activities for mathematics lessons through investigation with 
open problems, utilizing diagrammatic processes. Finally, we will present examples 
from the literature in the field of mathematics education that explore visualization 
through diagrams as open problems, identifying how this approach can foster the 
development of concepts initiated by abduction. 
 
Keywords: Abductive reasoning. Diagrams. Mathematics Didactics. Open problems. 
Philosophy of Mathematics Education. 
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1. INTRODUÇÃO 

 

Em busca de alternativa aos métodos tradicionais para o ensino da matemática, 

que exploram apenas memorização para manipular propriedades de suas estruturas 

matemáticas formalizadas, este trabalho objetiva explorar a relevância dos raciocínios 

para a didática da matemática. 

O problema central investigado nesta pesquisa é: como os diagramas podem 

ser incorporados de maneira eficaz na didática da matemática para melhorar a 

compreensão e estimular o desenvolvimento dos raciocínios em diferentes contextos 

matemáticos pelos alunos? 

Para tentar responder essa pergunta, apresentamos conceitos da filosofia das 

ciências que envolvem o tema e buscamos exemplificar com fatos encontrados na 

história da matemática e na didática da matemática. Destacamos a importância dos 

diagramas para a matemática e a concepção de diagrama na obra de Peirce para o 

desenvolvimento dos raciocínios em matemática, com destaque para o raciocínio 

abdutivo.  

Para esse enfoque buscaremos apresentar uma proposta metodológica para a 

didática da matemática que incorpora processos diagramáticos e raciocínio abdutivo, 

buscando melhorar a compreensão e o desenvolvimento de raciocínios pelos alunos. 

Os objetivos específicos incluem: trazer o conceito de abdução e sua importância no 

método científico de Peirce; expor a relevância da visualização e dos diagramas no 

desenvolvimento do raciocínio abdutivo; analisar a presença e o uso de diagramas na 

história da Matemática; e propor, por meio de atividades investigativas e problemas 

abertos, como os processos envolvendo visualização e diagramas podem favorecer o 

desenvolvimento do raciocínio abdutivo. 

Para a construção de uma proposta para a didática da matemática, 

destacaremos a visualização de diagramas como um caminho para a formulação de 

problemas abertos e a promoção de raciocínios matemáticos. Neste contexto, 

introduzimos a noção de processos em diagramas, os quais possuem uma relação 

direta com os problemas abertos. Ressaltamos, porém, que o conceito de problema 

aberto será devidamente definido ao longo do trabalho, de modo a esclarecer sua 

conexão com a utilização de diagramas e as possibilidades que oferecem para a 

manifestação de raciocínios intrínsecos ao pensamento matemático. 
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A metodologia empregada nesta pesquisa inicia-se com um levantamento 

bibliográfico, abrangendo trabalhos sobre diagramas, raciocínio abdutivo e didática da 

matemática, com foco na teoria de Charles Sanders Peirce e suas conexões com 

conceitos matemáticos. As fontes foram selecionadas principalmente por meio das 

plataformas Google Acadêmico e Scielo. 

A partir do estudo detalhado das obras selecionadas, realizamos uma análise 

crítica e interpretativa para contextualizar as abordagens propostas na didática da 

matemática. Com base nesse embasamento, identificamos exemplos práticos e 

elaboramos propostas que buscam responder à questão investigativa, chegando a 

algumas conclusões e resultados apresentados ao final do trabalho. 

Para o desenvolvimento deste trabalho, organizamos os seguintes temas: no 

capítulo dois, apresentamos a matemática como ciência heurística e abordamos o 

método científico de Peirce. No capítulo três, discutimos o conceito de abdução, 

destacando sua conexão com o raciocínio criativo e processos heurísticos. O capítulo 

quatro enfatiza a relevância da visualização no raciocínio abdutivo, analisando como 

os diagramas estão diretamente envolvidos nesse processo. Os capítulos cinco e seis 

tratam de investigar a presença e a evolução dos diagramas ao longo da história da 

matemática, desde a Grécia Antiga até sua aplicação contemporânea, com foco em 

problemas abertos e seu papel no favorecimento do raciocínio abdutivo e na didática 

da matemática. Por fim, no capítulo sete, apresentamos as considerações finais, 

sintetizando os principais pontos discutidos na pesquisa e trazendo reflexões sobre a 

preparação docente necessária para incorporar os diagramas no ensino da 

matemática de forma efetiva. 

 

 

 

 

 

 

 

 

 

 



11 

 

 

 

2. MATEMÁTICA É CIÊNCIA HEURÍSTICA, CIÊNCIA DA DESCOBERTA 

 

Charles Sanders Peirce entende a ciência como uma atividade realizada por 

pessoas vivas, que está sempre sujeita a modificações e transformações ao longo do 

tempo. Essa visão evita definições abstratas e fixas e leva Peirce a dividir a ciência 

em dois tipos: as “Ciências Teóricas” e as “Ciências Práticas”. As “Ciências Teóricas” 

ainda se subdividem em Heurísticas, ou ciências da descoberta, e Sistemáticas, ou 

ciências da revisão. 

Peirce (2008) considera a matemática como ciência Heurística ou da 

descoberta em que envolve a investigação e entende a lógica como o método dos 

métodos, de modo que Peirce a partir das explicitações e do trabalho que associava 

as ideias do silogismo de Aristóteles reconhece a lógica não apenas em sistemas 

fechados de pensamento, mas também nas investigações humanas em aberto. 

Nesse movimento, ao buscarmos compreender os conceitos e características 

dos diagramas e entender a relação entre os procedimentos diagramáticos e a 

abdução, nosso objetivo é favorecer a didática e apoiar a produção de conhecimento 

matemático, encontrando assim um ponto de conexão entre os diagramas e a 

matemática para Peirce.  

Em sua obra principal Collected Papers, Peirce traz essa classificação sobre 

as ciências e o método científico, em que da mesma forma que entende o pensamento 

diagramático como uma ferramenta heurística com base no que observamos na 

pesquisa de Montaner (2017), também percebe a matemática como uma ciência de 

natureza heurística, ou seja, uma ciência da descoberta e que consequentemente 

envolve investigação. Então, nada nos impede de relacionar uma ferramenta 

heurística, nesse caso os diagramas, a uma ciência heurística que é a matemática 

para Peirce. 

 

2.1  O método científico de Peirce  

 

O método científico para Peirce é a forma de entender algo e é constituído da 

inter-relação entre os raciocínios indutivo, dedutivo e abdutivo, um procedimento que 

é base para novas descobertas e que, segundo Bacha (1997, p.5), na concepção de 

Peirce “pode nos levar à verdade, em um longo prazo, um longo percurso, que 
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constitui o processo dinâmico da investigação”. Essa investigação para Peirce é 

essencial para o método científico, já que se investiga com o foco em tentar colocar 

um fim à dúvida. 

 

2.2  Um método científico para a Didática da Matemática 

 

No entendimento geral, método científico é um processo que direciona por meio 

de passos, caminhos para novas descobertas e interpretações, como um meio que 

permite a evolução contínua da ciência para a construção do conhecimento. 

Para nos comunicarmos, podemos usar diferentes linguagens como, por 

exemplo, a oral, a escrita, a visual ou até a visual táctil, linguagem essa em que os 

diagramas se encaixam sendo compreendidos como um tipo de representação visual 

que podem sintetizar conhecimentos partindo da observação para a percepção de 

relações, como gráficos, mapas conceituais, podendo auxiliar numa compreensão 

mais rápida acerca do conhecimento a qual o diagrama está relacionado. No entanto, 

o filósofo e estudioso americano Charles Sanders Peirce, considerado o pai da 

semiótica, traz uma ideia de diagrama que vai além apenas da sintetização de 

informações, podemos perceber isso na colocação de Montaner (2017) ao analisar as 

obras de Peirce: 

[...] Em seus textos, Peirce elaborou uma complexa teoria sobre os signos, segundo 
a qual todo pensamento é expresso por meio de um grafo ou signo, que pode ser 

de três tipos: ícone, índice ou símbolo. Em seguida, Peirce subdividiu os ícones em 
imagens, diagramas e metáforas, definindo o diagrama como “um ícone que torna 
inteligível as relações sobretudo espaciais, entre as partes que constituem um 
objeto”. O raciocínio imaginativo é exercido por meio de diagramas, enquanto o 
experimental acontece por meio de experimentos (Montaner, 2017, p.8-9, tradução 
de Lima Paz). 

 

Podemos entender, de acordo com a colocação de Montaner (2017), que 

Peirce tinha entendimento dos diagramas como representações visuais que facilitam 

a aprendizagem na compreensão das relações entre diferentes partes de um objeto 

de estudo. Entretanto, um ponto chama a atenção nesse trecho da obra de Montaner 

(2017), é a compreensão de Peirce de que o raciocínio imaginativo, exercido por meio 

de diagramas, está diretamente relacionado ao raciocínio hipotético. 

Peirce entende os diagramas em seu funcionamento como representações 

visuais e com grande relevância em sua teoria semiótica, essa que pode ser entendida 

como “o estudo ou doutrina dos signos” (Colapietro, 1993, p.178), com o signo como 

“algo que representa outra coisa” (Colapietro, 1993, p.179), incluindo nesse contexto 
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os diagramas como representações que auxiliam no raciocínio, tornando-o mais 

visual, criativo e intuitivo. Esses elementos estão inseridos por completo em uma 

abordagem semiótica, como nos explicita Machado (2008), ao destacar o diagrama 

como um conceito de grande valor à teoria semiótica, valorizando as relações de 

ideias no fluxo que configura o movimento dos raciocínios. 
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3. O CONCEITO DE ABDUÇÃO 

 

Souza (2014) consegue identificar ideias nucleares na obra Collected Papers 

de Peirce a fim de compreender o sentido de abdução em sua obra. A partir da leitura 

das asserções articuladas e das ideias nucleares apresentadas no quadro1, Souza 

(2014) identifica três categorias às quais essas ideias estão relacionadas. Essas 

categorias abrangem a definição, que esclarece o que é a abdução, as características, 

que explicitam aspectos específicos da abdução e os procedimentos, que mostram o 

que a abdução desencadeia, levando à seguinte conclusão:    

Para Peirce (1992), a abdução é, tal como pudemos interpretar, o 
encadeamento de atividade mental proveniente de uma conexão dos 

elementos da consciência ou de ideias derivadas de fatos observados (I.N. 
37), sendo portando um raciocínio, uma inferência lógica (I.N.  24), de modo 
que tudo acontecerá segundo um procedimento organizado (I.N. 7) (Souza, 
2014, p.81).     
 

Souza (2014) interpreta, segundo a sua análise à obra de Peirce e de acordo 

com o que foi estudado, que para Peirce a abdução é um ato inferencial, uma hipótese 

provisória que tem origem na pergunta, trata-se de um tipo de raciocínio 

completamente diferente dos outros, pois abre novas possibilidades acerca do que 

pode ser entendido e observado. 

Essa concepção de Souza (2014) sobre o que é abdução, segundo Peirce, abre 

margem para compreendermos a abdução, por ser um tipo de raciocínio que tem 

origem na pergunta, com capacidade de estar associada a um processo de heurística 

ou descoberta. 

 

3.1  Abdução e heurística, descoberta 

 

A abdução em Peirce tem como fator as peculiaridades que permitem e a fazem 

ser um tipo de raciocínio completamente diferente dos outros e é como compreende 

Souza (2014), nesse sentido, ao analisar as obras de Peirce: 

Assim, inferimos que, para Peirce, a abdução traz características peculiares. 
Sua particularidade é a de se constituir da interrogação que busca o 
levantamento de hipóteses, a partir de articulações que quando se revelam 
em conjecturas o faz de maneira rápida e inesperada como fruto da 
observação e da experiência que revelam a força do que é percebido (Souza, 

2014, p.80).     
 

 
1 Quadro elaborado por Souza (2014) para a compreensão do conceito de abdução presente na obra 
de Peirce, pode ser visto na obra de Souza (2014) entre as páginas 53 e 75. 
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Souza (2014) interpreta com isso e em todo seu estudo que a abdução é como 

uma inferência na lógica não clássica, relacionada à lógica crítica, nessa avaliação de 

argumentos que podem conduzir a verdade, e pertencente a lógica trivalente pelo fato 

de a lógica trivalente considerar três valores de verdade: o verdadeiro, o falso e o que 

não é verdadeiro nem falso, por ser algo desconhecido ou incerto. Souza (2014) 

percebe então a incerteza como uma característica da abdução, numa forma de 

raciocínio que provém da observação de fatos e da experiência daquele que se propõe 

a investigar, capaz de apresentar ideias e levantar hipóteses admitindo um valor lógico 

intermediário válido para a investigação, que não pode ser definido nem como 

verdadeiro, nem como falso, sendo então a abdução uma tarefa investigativa 

organizada, objetiva e criativa que valoriza o processo de produção do conhecimento. 

No tangente à produção de conhecimento, Souza (2014) cita Bicudo (2008) na 

ideia de que a produção de conhecimento é dinâmica e perspectiva, o que pode trazer 

essa ideia de incerteza. Como podemos perceber na colocação abaixo: 

A produção do conhecimento, como apresentado por Bicudo (2008, p. 146-
147), é uma atividade, é algo dinâmico e perspéctico. Logo, o processo de 
sua produção tem uma realidade que também é dinâmica e que valoriza o ato 
criador.  
Esse ato criador pode trazer à tona a ideia da incerteza da qual Peirce nos 

fala. Na produção do conhecimento matemático, por exemplo, a incerteza é 
importante porque não se têm de início o verdadeiro ou o falso. Há 
conjecturas ou hipóteses que, mediante a investigação, levam à construção 
de argumentos e à validação do feito. Essa validação não oferece uma 
verdade universal, mas contingente. Ou seja, em um determinado contexto, 
uma hipótese pode ser verdadeira e em outro contexto ela poderá ser falsa 

(Souza, 2014, p.87).      

 
  Com base nisso, compreendemos que na produção de conhecimento 

matemático a incerteza é vista como um elemento importante, que a ausência inicial 

da confirmação de algo como verdadeiro ou falso, permite a formulação de 

conjecturas e hipóteses, que sendo investigadas ajudam nas construções de 

argumentos e possíveis validações contingentes do objeto de estudo. 

Nessa perspectiva, Souza (2014), a partir da análise do trabalho de Peirce, 

apresenta a abdução como um tipo de raciocínio hipotético que, motivado pela 

incerteza, produz conjecturas a partir da observação, de maneira semelhante, Bicudo 

(2008) destaca que a incerteza é uma parte essencial do processo de produção de 

conhecimento e de novas descobertas. O raciocínio abdutivo, nesse contexto criativo 

de gerar hipóteses, é o ponto de partida para a heurística, ainda que essas hipóteses, 

mesmo testadas, possam ou não resultar em fatos concretos.  
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4. A IMPORTÂNCIA DA VISUALIZAÇÃO PARA O RACIOCÍNIO ABDUTIVO 

 

Nessa linha em que a abdução pode ser compreendida como uma hipótese 

provisória com origem na pergunta, percebemos sua completa relação com o 

raciocínio hipotético, tendo como base a formulação de hipóteses e conjecturas na 

busca por explicações pela incerteza ou falta de informações do fenômeno estudado. 

O que nos falta entender agora é a relevância da visualização nesse processo 

envolvendo o raciocínio hipotético, ou seja, como esse elemento auxilia no raciocínio 

para elaborar hipóteses, partindo então de uma noção geral do que grandes 

estudiosos compreendem sobre visualização como colocam Vale e Pimentel (2013): 

[...] De acordo com Arcavi (2003), a visualização envolve o produto e o 
processo de criação, interpretação e reflexão sobre imagens. Para 
Zimmerman e Cunningham (1991), a visualização é o processo de formar 
imagens (mentalmente, com papel e lápis ou com apoio da tecnologia) e usar 
tais imagens eficazmente na descoberta e compreensão matemática. 

Gutiérrez (1996) caracteriza a visualização como o tipo de atividade que tem 
por base o recurso a elementos visuais ou espaciais, sejam mentais ou 
físicos, utilizados na resolução de problemas ou na demonstração de 
propriedades. A visualização, para Eisenberg e Dreyfus (1989) está 
associada a representações visuais, isto é, à construção de modelos visuais  
que refletem a estrutura matemática subjacente, considerando que qualquer 

conceito matemático pode ser traduzido por um gráfico ou um diagrama 
(Vale; Pimentel, 2013, p.207-208). 
 

Percebemos então, com base na concepção de diversos autores, a 

visualização como elemento para criação, interpretação, reflexão, descoberta e 

compreensão, servindo como ferramenta para a resolução de problemas ou 

demonstração de propriedades a partir de imagens e representações visuais, com seu 

uso muito presente em matemática e em diversas áreas relacionadas.  

O que nos desperta atenção aqui é a visualização como ferramenta criativa e 

capaz de influenciar na descoberta e compreensão do que é estudado ou analisado. 

A conexão com o raciocínio hipotético vem nesse sentido, com ideias que podem vir 

à tona pela visualização, com a criação de suposições e provas sendo facilitada pela 

visualização, conforme explicado por Vale e Pimentel (2013). Nessa linha, as autoras 

detalham como a visualização, junto com seus meios de representação, pode auxiliar 

o raciocínio, especialmente na área da matemática: 

[...] Digamos que a visualização explica dum modo muito mais claro a 
generalização feita, que de outro modo, ou não poderia simplesmente ser 
efetuada por falta de ferramentas matemáticas, ou, efetuada apenas 
numericamente, converter-se-ia num mero exercício de tentativa e erro e de 

manipulação simbólica com pouco significado. Esta nossa posição vai de 
encontro ao que é referido recentemente por Dreyfus, Nardi e Leiken (2012). 
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Para estes autores a importância da contribuição das representações visuais 
na prova em matemática tem vindo a crescer.  
Contudo, tem sido questão central em debate é se uma representação visual 
pode ser considerada como um adjunto para a prova, como parte integrante 
da prova ou como prova. Esta questão tem, ao nível da educação, muito a 

ver com as concepções/perspectivas do professor sobre o papel que a 
visualização pode desempenhar no raciocínio matemático. Na verdade, os 
puristas não consideram prova matemática algo que assente completamente 
na visualização, mas, ainda que não possa ser considerada prova, não deixa 
de fornecer uma explicação clara da veracidade de uma afirmação, 
estimulando o pensamento matemático, e ajudando a ver por onde começar 

para fazer uma prova formal (Vale; Pimentel, 2013, p.209). 
 

Temos com essa citação a ideia de que a visualização facilita a generalização 

e entendimento de conceitos matemáticos, com capacidade de transmitir de maneira 

mais clara e intuitiva casos e situações que muitas vezes são considerados complexos 

em matemática, isso permite o uso da visualização como elemento relevante para 

provas matemáticas. No entanto, ainda existe uma considerável resistência por parte 

de alguns matemáticos em aceitar algum tipo de visualização de formas geométricas 

em meio a uma prova matemática. Muitos entendem é necessária uma formalização 

baseada no princípio do terceiro excluído, este, que é um princípio da lógica pura que 

afirma que se uma proposição é falsa, não pode ser verdadeira, e vice-versa. 

Entendemos que esse tipo de prova é uma interpretação importante para validação 

de objetos matemáticos, quando colocado sob a perspectiva de uma estrutura 

matemática rígida. Esse crivo, baseado na prova que utiliza, o princípio do terceiro 

excluído, tornou-se importante para a matemática formal, porém, entendemos que 

para os processos de ensino, aprendizagem e avaliação da educação básica, a 

construção de um pensamento formal é o objetivo final e não o caminho, o método. 

Mesmo assim, fica compreendido aqui que o que a visualização faz é um processo 

que pode auxiliar, desenvolver raciocínios para se chegar a uma prova formal, na 

forma como começar, estimulando o pensamento na geração de ideias e conjecturas.  

Na leitura do texto de Vale e Pimentel (2013) fica perceptível a diferença de 

concepções que vários estudiosos e autores matemáticos tem na ideia de prova, seja 

no que faz uma prova ser mais formal, com o uso maior do raciocínio dedutivo, ou 

menos formal, pelo uso maior do raciocínio indutivo, e quais os elementos necessários 

para ser concebido como tal. No entanto, um dos autores em específico nos faz 

atentar em sua concepção sobre prova como explicita Vale e Pimentel (2013): 

Dreyfus et al. (2012) consideram que provar inclui uma variedade de aspectos 
que influenciam o aparecimento da prova e a maneira como esta pode ser 
concebida por alunos e professores. Estes aspectos abrangem: diferentes 
representações, incluindo a visual, a verbal e a dinâmica, que podem ser 
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utilizadas no decurso da produção de prova; diferentes formas de argumentar 
matematicamente, tais como argumentos indutivos baseados em exemplos, 
argumentos genéricos, bem como argumentos produzidos individualmente 
versus socialmente; diferentes graus de rigor e de detalhe; provas múltiplas, 
ou seja, provas diferentes para o mesmo enunciado matemático, que podem 

ser usadas em paralelo ou sequencialmente, por uma única pessoa ou um 
grupo (Vale; Pimentel, 2013, p.213). 
 

Observamos, com base nessa percepção de Dreyfus et al. (2012), que a prova 

é um processo que engloba diferentes aspectos, dentre eles a visualização, que pode 

aparecer de diversas maneiras ou jeitos, sendo algo dinâmico, que concebe vários 

tipos de argumentos e que pode ser composto da união de vários desses aspectos, 

numa combinação que pode incluir desde representações visuais até verbais. No 

entanto, devemos saber que antes de provar qualquer caso ou situação, focado 

essencialmente na matemática, se passa por elaborar uma hipótese ou conjectura 

que em seguida se é testada através da prova, um matemático por si só não chega 

sempre em uma tese que imediatamente ao ser testada é comprovada como 

verdadeira. 

Nesse contexto, “de acordo com Harel e Sowder (1998), grande parte do 

trabalho do matemático é despendido a explorar e a conjeturar, e não a procurar 

provas” (Vale; Pimentel, 2013, p.212), com isso no entendimento de que conjecturas 

nada mais são do que hipóteses ou ideias cujo ainda não se sabe a veracidade de tal, 

lembramos que o raciocínio hipotético, alinhado à abdução, forma a base que estimula 

o pensamento na geração de hipóteses e conjecturas, tornando-se um alicerce 

essencial no trabalho do matemático. Vale e Pimentel (2013), com base nessa 

perspectiva, também relatam que: 

Para além dos dois tipos clássicos de raciocínio, há vários autores (e.g. 
Radford, 2008; Rivera, 2008) que consideram um outro tipo: o raciocínio 
abdutivo. A abdução é uma inferência não necessária, uma hipótese 

explicativa prévia. Apesar de este ser o modo de inferência menos seguro, 
pois o seu sucesso depende da intuição e do conhecimento prévio, é um tipo 
de raciocínio com forte referência à descoberta de padrões, pois ele é a porta 
de entrada no raciocínio indutivo, correspondendo à fase de procura da 
hipótese preliminar sobre o que têm em comum os dados analisados, 
assumindo assim uma importância fulcral no avanço duma exploração 

matemática. De facto, as hipóteses formuladas são apenas plausíveis uma 
vez que não é utilizado o raciocínio dedutivo, mas é nesta fase abdutiva que 
intervém fortemente a criatividade na elaboração de novas ideias (Rivera, 
2008). Pólya (1954) chama a esta fase inicial da criação matemática 
raciocínio plausível, defendendo que, antes de se atingir a certeza absoluta, 
há que passar por uma conjetura plausível, precisando-se do provisório antes 
de atingir o definitivo, tal como precisamos de andaimes para construir um 

edifício.  Enquanto que a abdução consiste na escolha da hipótese, a indução 
já envolve a sua testagem. A abdução é o processo que introduz uma nova 
ideia, a formulação de uma conjetura; a indução corresponde à etapa 
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seguinte, a de testar a conjetura em mais dados. Este processo pode ser 
cíclico até ser construída uma generalização.  
De acordo com Rivera e Becker (2007) o processo de generalização ocorre 
quando há aceitação de uma forma geral obtida por um processo cíclico de 
abdução e indução. A indução necessita inicialmente da afirmação abdutiva 

que é depois sujeita ao teste repetido de confirmação para verificar a sua 
resistência. Em sintonia com estes autores, Yu (2006) resume de forma clara 
e concisa as ideias principais destes três tipos de raciocínio, afirmando que a 
abdução cria, a indução verifica e a dedução explica (Vale; Pimentel, 2013, 
p.213-214). 
 

Temos visto nessa linha de pensamento a abdução como a porta de entrada 

para a indução, à medida que a abdução trabalha no processo de criação, formulando 

hipóteses e conjecturas, a indução aparece como processo seguinte no teste dessas 

conjecturas em mais casos, até ser construída uma generalização que depende de 

uma aceitação de maneira geral, obtida por um processo cíclico de abdução e 

indução, que em seguida tem sua explicação colocada por meio da dedução, como 

resume Yu (2006) no trecho acima, esses três raciocínios estão conectados, pois, 

como propõe a síntese acima, a abdução cria, a indução verifica e a dedução explica.  

Compreendido esse juízo geral da relação entre esses diferentes tipos de 

raciocínio, voltamos a questão principal nesse capítulo, no sentido de entender qual a 

relação da visualização envolvendo esse tipo de raciocínio hipotético e abdutivo e no 

contexto matemático de aprendizagem. Dado que já vimos que o raciocínio indutivo e 

dedutivo tem suas presenças constantes em provas e demonstrações matemáticas, 

com a visualização sendo elemento que pode estar constantemente nesse processo, 

e que a abdução, por meio da atividade criativa na geração de novas hipóteses e 

ideias, é grande parte do trabalho matemático e serve como base para o raciocínio 

indutivo, podemos, de acordo com Vale e Pimentel (2013), ressaltar que: 

O NCTM (2000) recomenda que os alunos devem usar o raciocínio indutivo 
para procurar relações matemáticas, através do estudo de padrões. Vários 
investigadores preconizam o estudo de padrões figurativos de crescimento 

(e.g. Barbosa, 2011; Orton, Orton & Roper, 1999; Vale & Pimentel, 2010; 
Pimentel, 2011) como uma das possíveis abordagens para ajudar os 
estudantes a generalizar e a representar relações. De facto, e de acordo com 
Lannin et al. (2011) a generalização envolve identificar aspectos comuns 
entre os casos ou ampliar o raciocínio para além do domínio no qual foi 
originado, fazendo assim a ponte entre a saída de um mundo de objetos 

particulares e o tipo de raciocínio que designamos por abdutivo.  
As tarefas com padrões de crescimento em contextos figurativos têm 
recentemente sido utilizadas nas aulas de matemática, mas nem sempre 
exploradas de modo a desenvolver um raciocínio adequado, em particular o 
raciocínio funcional. O nosso objetivo fundamental é que a generalização 
possa ser feita partindo da análise das figuras, envolvendo raciocínio visual 
que analisa as características espaciais do padrão. A partir desta constatação  

desenvolve-se um conjunto de relações numéricas que permitem efetuar uma 
generalização através do raciocínio funcional. Este processo de 
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generalização, embora possa aplicar-se a toda a produção de conhecimento 
matemático, está em forte ligação com as tarefas de exploração de padrões 
usadas como veículo para o pensamento algébrico [...] (Vale; Pimentel, 2013, 
p.214-215). 
 

Nesse sentido, percebemos como a visualização desempenha um papel 

essencial no desenvolvimento do raciocínio matemático, especialmente ao lidar com 

padrões figurativos. Essas representações visuais ajudam os estudantes a identificar 

relações matemáticas e generalizar essas observações. Ao explorar atividades que 

focam no crescimento de padrões figurativos, é possível incentivar a percepção e a 

observação de regularidades nos objetos estudados, facilitando o processo de 

abdução e o raciocínio hipotético. Esse ambiente de descoberta torna-se propício para 

a formulação de conjecturas, a partir das observações feitas. 

Ao observar os padrões e regularidades, os estudantes são levados a fazer 

generalizações, movendo-se de um raciocínio mais específico para outro mais amplo, 

estabelecendo conexões entre diferentes formas de pensar. Dessa maneira, a 

visualização torna-se uma ferramenta poderosa para a aprendizagem significativa. 

Nesse contexto, a hermenêutica, conforme discutida nos estudos de Souza 

(2014), complementa esse processo de interpretação no estudo matemático. Silva 

(1987) define a hermenêutica como a arte de interpretar e restaurar o pensamento 

fundamental, destacando a necessidade de distanciamento ao analisar o objeto de 

estudo para que a interpretação seja imparcial e precisa. Já Garnica (1992), enxerga 

a hermenêutica como um processo que envolve dizer, explicar e compreender, 

fundamental na interpretação de símbolos matemáticos, ajudando a revelar seus 

sentidos ocultos.  

Desse modo, assim como a visualização facilita a compreensão de padrões e 

conceitos, a hermenêutica promove uma interpretação mais profunda dos textos e 

representações matemáticas, permitindo que, por meio da leitura, reelaboração e 

representação, se chegue a uma verdadeira compreensão dos significados presentes 

na matemática. 

 

4.1 A importância da visualização por diagramas para estimular o raciocínio 

hipotético 

 

Para formular uma proposta para a didática da matemática apresentamos a 

visualização por diagramas para iniciar o desenvolvimento de raciocínio abdutivo, para 
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investigar conceitos matemáticos utilizando a metodologia científica de Peirce para 

produzir conhecimento matemático, trazendo questões e exemplos que envolvem 

como os diagramas podem auxiliar na formulação de hipóteses e novos argumentos 

em situações matemáticas específicas. 

Relembrando um pouco do que foi colocado no presente trabalho, Peirce 

também foi considerado o pai da semiótica e classificou os signos em sua teoria em 

ícones, índices e símbolos, com os diagramas classificados como ícones, no sentido 

de representações que se assemelham visualmente ao objeto. 

Com essa classificação dos diagramas, Peirce compreendia que esses 

elementos tinham a capacidade de mostrar algo através da visualização, mesmo que 

estivesse escondido, de modo que como vimos com Montaner (2017), o próprio Peirce 

entende o raciocínio imaginativo sendo exercido por meio de diagramas, destacando 

a importância da representação visual neste tipo de raciocínio, que nesse caso é o 

mesmo que o abdutivo, facilitando e instigando a mente para a formulação de 

hipóteses e novas ideias. Percebemos isso na seguinte colocação de Franco e Borges 

(2017) em relação à abdução de Peirce: 

A abdução, de acordo com Peirce, é mais proximamente relacionada à 
iconicidade (Peirce CP 2.96, c.1902).  Dessa forma, o raciocínio abdutivo 
seria o único que origina ideias novas (CP 5.171, 1903).  Nesse caso, o 
raciocínio constrói um diagrama que apenas “sugere” uma conclusão 
(Franco; Borges, 2017, p.48). 

 

Vemos então a possiblidade da abdução com a iconicidade conforme Peirce e 

consequentemente aos diagramas, o que nos resta entender é como essa ferramenta 

heurística, junto com a abdução, pode auxiliar na produção de conhecimento 

matemático. Para isso, nos voltamos a uma colocação de Souza (2014) em seu 

trabalho, acerca do ensino da matemática, explicitando o que entendeu na forma 

como a abdução pode contribuir na produção de conhecimento matemático: 

Tais apontamentos permite-nos compreender que a produção do 
conhecimento - entendida como trazer à luz o conhecimento - pode ser fruto 
do método investigativo, iniciando com o raciocínio abdutivo como um ato 
inferencial, uma hipótese provisória que tem origem na pergunta (ou no ato 
de questionar), uma maneira de se iniciar esse processo de produção, tal qual 

compreendemos em Peirce. Isso nos leva à ideia da abdução como um 
raciocínio que abre possibilidades de uma nova inteligibilidade daquilo que se 
vê e do que se pode expressar quando elaboramos uma explicação acerca 
do que é visto. Pelo modo como é definida, são princípios importantes para o 
desdobramento do processo de conhecimento que a abdução pode 
possibilitar (Souza, 2014, p.83).    
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Dessa maneira, Souza (2014) explica o papel que a abdução pode empenhar 

na construção do conhecimento matemático, podendo orientar o estudo dedutivo ou 

indutivo que predominam nos conteúdos de matemática, o que possibilita a 

formalização e a abstração, numa construção do conhecimento motivada pela 

incerteza, devendo ser incentivada pela abdução, num tipo de raciocínio que valoriza 

a criatividade e abre as possibilidades na produção de conhecimento. 

Desse modo, os docentes podem associar os diagramas como ferramenta 

heurística aliadas a uma ciência heurística, como é a matemática segundo Peirce, 

com um processo investigativo permeado pela abdução através da incerteza, num 

meio que valoriza a formulação de conjecturas através da visualização e permite o 

surgimento de novas possibilidades, hipóteses e argumentos. Essa incerteza que está 

associada a dúvida, a pergunta, é um meio de fazer os estudantes construírem seu 

próprio conhecimento. Incentivar e instigar os alunos por meio da dúvida os faz 

buscarem respostas para aquilo que estão estudando, o que muitas vezes não resulta 

numa solução imediata, mas frequentemente a outras perguntas que surgem nesse 

processo para entender o fenômeno estudado. Bicudo, Esposito e Martins (1997) 

explicam um pouco essa questão interrogativa na busca por respostas:   

[...] “ter uma interrogação e andar em torno dela, em todos os sentidos, 
sempre buscando todas as suas dimensões e, andar outra vez e outra ainda, 

buscando mais sentido, mais dimensões e outra vez”. A interrogação se 
mantém viva porque a compreensão do fenômeno não se esgota nunca 
(Bicudo; Esposito; Martins, 1997, p.24). 
 

Essa concepção de Bicudo, Esposito e Martins (1997) nos ajuda a entender 

que mesmo quando acreditamos achar a resposta daquilo que estudamos ou 

analisamos sempre se abrem novas possibilidades, novas perguntas, novos casos 

sobre aquilo que acabamos de descobrir ou entender, de forma que num processo 

contínuo sempre haverá mais elementos a se compreender. À medida que vamos 

avançando e relacionando isso ao que estamos tentando entender sobre diagramas 

e a abdução, no processo de produção de conhecimento matemático, essa forma de 

pensar, no andar pela incerteza, pela dúvida, como coloca Bicudo, Esposito e Martins 

(1997), nos auxilia a perceber os diagramas como problemas abertos. A definição de 

Araujo, Oliveira e Veit (2017) nos ajuda a entender o que são problemas abertos: 

Problemas abertos, por definição, não possuem soluções pré-estabelecidas; 
apresentam estado inicial só parcialmente conhecido; referem-se a um 
evento do mundo real, com resultados consistentes com a realidade e exigem 

que os alunos façam julgamentos e elaborem argumentação para defender 
suas soluções (Araujo; Oliveira; Veit, 2017, p.1). 
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Nessa linha os problemas abertos, ao serem analisados com o suporte de 

diagramas, tornam-se catalisadores para o levantamento de conjecturas, com 

investigações e interpretações variadas, no sentido de encontrarmos diversas 

possibilidades ou maneiras de se chegar a uma resposta, podendo ser ela igual ou 

diferente, dependendo da maneira como o estudante interpreta e analisa o objeto de 

estudo, o que permite a formulação de novas hipóteses e argumentos de acordo com 

sua observação. 

Como já vimos, o processo para entender algo, segundo Peirce, é chamado de 

método científico, sendo constituído da inter-relação da dedução, da indução e da 

abdução, com a abdução no entendimento de Peirce como um juízo antecipado e 

provisório, motivada pela interrogação e que busca o levantamento de hipóteses, 

revelando conjecturas de maneira rápida e inesperada através da observação e 

experiência, o que inclui a visualização como também instigadora no raciocínio 

abdutivo, num processo dinâmico e intuitivo que permite ao indivíduo reinterpretar o 

mundo, como indica Souza (2014), na análise feita em seu trabalho. 

Na docência, podemos perceber que a abdução pode ser compreendida como 

uma “certeza” que surge da dúvida, como um processo que gera ideias e conjecturas 

e à medida que o aluno entende como certo em sua investigação, ele pode usar a 

conjectura ou ideia que acredita ser verídica para realizar testes sobre o que é incerto, 

a fim de definir se aquilo que pensou faz sentido ou não para o caso em questão. 

Segundo Souza (2014), apesar de ser um processo falho, a abdução permite essa 

produção de conhecimento justamente por admitir um valor lógico intermediário válido 

para investigação, que não pode ser definido nem como verdadeiro, nem como falso, 

algo incerto, daí vem esse trabalhar com a dúvida ou incerteza no raciocínio abdutivo. 

Um exemplo de como a abdução, com o auxílio dos diagramas e da 

visualização, foi base para produzir uma das teorias mais usadas em diversas áreas, 

principalmente nas relacionadas a tecnologia, é o problema das pontes de 

Königsberg, resolvido por Leonard Euler. Contextualizando a situação temos que: 

No século XVIII a população de Königsberg perguntava se era possível 
atravessar as sete pontes sem passar duas vezes por qualquer uma delas. 
Nos dias ensolarados de domingo os habitantes tentavam encontrar uma 
maneira de atravessar as sete pontes sem passar duas vezes pelo mesmo 
lugar, e as tentativas eram sempre em vão. Apesar de que, muitos deles, 

acreditavam ser possível encontrar tal caminho. Em 1736, na Academia de 
Ciências Russa de São Petersburgo, Leonard Euler provou que não era 
possível fazer tal caminho (Pontes, 2019, p.23). 
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Nesse caso, Euler utilizou da visualização para resolver esse problema a partir 

da ideia que teve, de uma maneira a qual representou os lugares conectados pelas 

pontes como vértices e as pontes que ligavam estes terrenos como arestas, a partir 

daí analisou sua hipótese e explicou através desse caso, com um diagrama de vértices 

e arestas, que não era possível realizar esse caminho de passar por todos os lugares 

atravessando cada ponte apenas uma vez. As imagens abaixo representam a 

localização das pontes e o diagrama que Euler utilizou para resolver o problema, que 

após esse caso passaria a ser conhecido como um tipo de diagrama específico, 

identificado como grafo. 

 

Figura 1: As sete pontes de Königsberg. 

 

Fonte: https://www.mat.uc.pt/~alma/escolas/pontes/ 

 

 Figura 2: Diagrama utilizado por Euler na resolução do problema das pontes 

de Königsberg.  

 

Fonte: https://matematicasimplificada.com/pontes-de-konigsberg-leonhard-euler-grafo-solucao/ 

 

https://www.mat.uc.pt/~alma/escolas/pontes/
https://matematicasimplificada.com/pontes-de-konigsberg-leonhard-euler-grafo-solucao/
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A solução de Euler foi baseada ao visualizar e perceber que Königsberg, pelo 

fato de ter quatro ilhas, cada uma com um número ímpar de pontes, o faz tomar isso 

como base para demonstrar que não existia um caminho que cobrisse todas as pontes 

apenas uma vez, independentemente de onde o indivíduo estivesse, indicando ser 

necessário um número par de pontes, ao chegar ou sair de cada ilha, para que fosse 

possível passar uma única vez por cada uma delas, atravessando por todos os locais 

ou ilhas da cidade. A maneira como Euler resolveu esse problema foi justamente a 

base para o surgimento de uma das grandes teorias matemáticas, a Teoria dos 

Grafos, que como já colocamos aqui, podem ser compreendidos como um tipo 

específico de diagrama, como colocado por Scheinerman (2003): 

A palavra Grafo tem vários significados. Em linguagem não matemática, 
refere-se a um método de representação de uma ideia ou conceito, por meio 
de uma ilustração ou por escrito. Tanto em matemática como na linguagem 
corrente, costuma referir-se a um diagrama usado para exibir o 
relacionamento entre duas grandezas (Scheinerman, 2003, p.381). 

 

O interessante a ser percebido nesse caso é justamente compreender o como 

Euler utiliza abdução no processo de observação da situação, usando diagramas para 

tentar provar sua hipótese. Relembramos aqui, que o raciocínio abdutivo surge de 

forma antecipada e provisória, motivado pela interrogação ou incerteza na busca por 

levantamento de hipóteses, Euler utiliza um caso incerto, em que ninguém havia 

conseguido provar ainda que aquela situação era verdadeira ou falsa, faz testes, 

formula hipóteses, realiza inferências, para depois conseguir provar sua teoria 

utilizando o diagrama como elemento, servindo-o como base para o exercício do 

raciocínio abdutivo. 

Voltando a questão da docência e a produção de conhecimento matemático, é 

possível entender com esse caso de Euler, como esse meio de pensar motivado pela 

dúvida auxilia na busca por respostas, casos que envolvem diretamente a 

investigação e um processo de descobertas, isso é um exemplo de caso a ser 

abordado, no intuito de atrair e chamar a atenção dos estudantes, voltando a 

matemática por meio de situações investigativas como colocado por Pontes (2018): 

As pesquisas nas áreas de Educação Matemática, com destaque no 
processo de ensino e aprendizagem de matemática, demonstram que o 
indivíduo aprendiz quando envolvido em situações que atiçam sua 

curiosidade, ele aprende na ação, pois se sente atraído e motivado para 
novas descobertas (Pontes, 2018, p.164). 
 

Uma das maneiras de trabalhar estes tipos de situações, com o intuito de 

motivar os estudantes a produzirem por si só seu próprio conhecimento, com casos 
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que atiçam essa curiosidade, é justamente através dos diagramas, as representações 

visuais que os diagramas apresentam podem auxiliar na forma de tornar conceitos 

abstratos mais tangíveis e acessíveis, incentivando dessa forma uma exploração ativa 

e o pensamento criativo, esse tipo de pensamento, que também está associado 

diretamente a abdução, está presente em ambientes motivados pela curiosidade e 

investigação, com os estudantes sendo incentivados a trabalhar a matemática de 

forma mais ativa e com um maior protagonismo.  

O docente também pode utilizar dos diagramas para trabalhar as relações 

presentes em álgebra e geometria, por exemplo, uma das frases que mais ouvimos 

falar é “uma imagem vale mais do que mil palavras”, essa frase se encaixa 

perfeitamente no contexto a qual estamos abordando com os diagramas, muitas vezes 

as dificuldades que os alunos apresentam para compreender uma relação ou fórmula 

matemática quando apresentada apenas de forma algébrica é bem maior do que 

quando o docente utiliza exemplos que permitem a visualização da relação pela 

imagem e observação, o que permite ao estudante compreender melhor o que está 

sendo mostrado, como um facilitador nesse processo. Um dos autores que 

fundamenta o que explicitamos aqui é Fischbein (1987), quando coloca que: 

Representações visuais não somente auxiliam na organização da informação 
em representações como constituem um importante fator de globalização. 

Por outro lado, a concretude de imagens visuais é um fator essencial para a 
criação de um sentimento de auto evidência e imediatez. Uma imagem visual 
não somente organiza os dados em estruturas significativas, mas é também 
um fator importante para orientar o desenvolvimento de uma solução 
analítica; representações visuais são essenciais dispositivos antecipatórios 
(Fischbein, 1987, p.104, tradução nossa). 

 

Essa colocação de Fischbein endossa nossos argumentos anteriores ao 

explicitar a conexão entre o visual e consequentemente os diagramas e a abdução, 

quando temos as representações visuais como um fator fundamental para a criação 

de um sentimento de auto evidência, sendo essenciais dispositivos antecipatórios. 

Como a abdução é um juízo antecipado e provisório, que possibilita a formulação de 

hipóteses e ideias que surgem de forma imprevisível, fica perceptível que os 

diagramas permitem e facilitam a abdução, como um processo, que através dessa 

visualização, ajuda e agiliza a formação do entendimento e a geração de hipóteses, 

característica essa essencial do raciocínio abdutivo.  
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4.2 Complementaridade entre a geometria e a aritmética na Didática da 

Matemática 

 

Visto a ideia central de como a abdução e a visualização estão relacionadas, 

numa situação que propicia benefícios na produção de conhecimento matemático e 

no processo de ensino-aprendizagem, pretendemos seguir numa mesma linhagem, 

com o foco em como a visualização contribui na construção de conexões que 

abrangem a aritmética e a geometria numa relação de complementaridade. 

Iniciamos lembrando que a aritmética é uma área da matemática que lida com 

os números e as operações entre eles, sendo considerada a “ciência dos números” e 

a geometria é o ramo da matemática centrado no estudo das figuras e sólidos 

presentes na natureza, com diferentes formas, tamanhos e constituído de elementos 

para sua comunicação, como pontos, vértices e retas, nesse seguimento, quando 

abordamos a geometria, quase que imediatamente associamos esse ramo da 

matemática a visualização, mas por que isso? Como já colocado a geometria estuda 

as formas presentes na natureza, no nosso mundo ou meio, consequentemente a 

geometria está em tudo ao nosso redor, é um processo de constante visualização que 

ao ser abordado no ensino de matemática explicita uma grande diversidade de formas 

de ser apresentado, podendo ser relacionado ao contexto visual e observável de cada 

indivíduo. Os Parâmetros Curriculares Nacionais (PCNs) auxiliam nesse 

entendimento sobre a geometria como colocado abaixo:  

A Geometria é um campo fértil para se trabalhar com situações-problema /.../ 
O trabalho com noções geométricas contribui para a aprendizagem de 

números e medidas, pois estimula o aluno a observar, perceber semelhanças 
e diferenças, identificar regularidades, etc. (Brasil, 1998, p.51). 
 

Desse modo, fica claro com o exposto que a geometria além de poder ser 

trabalhada de diferentes formas também está conectada diretamente aos números e 

medidas, afinal formas e figuras geométricas apresentam relações numéricas de 

diversas maneiras, seja através de área, perímetro, tamanho, com comprimento e 

largura, em casos de figuras com duas dimensões, entre outras situações. É dessa 

forma que fica perceptível a conexão da aritmética com a geometria, com os números 

e o que os envolve estando embutidos, direta ou indiretamente, na geometria. Cabe, 

então, a nós compreendermos como e de quais maneiras essa complementaridade 

entre esses dois ramos, através da visualização, pode trazer pontos positivos no 

processo de ensino-aprendizagem e na descoberta de relações matemáticas 
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Essa complementaridade podemos entender como um princípio que, segundo 

Simas Junior (2019, p.25), “refere-se originalmente a conceitos que, aparentemente 

distintos e contraditórios, se complementam para identificar e descrever determinados 

fenômenos ou situações”, ou seja, no envolvente a matemática ramos e áreas de 

estudo, mesmo que diferentes, apresentam ligações que permitem identificar e 

desenvolver o estudo de distintos casos e situações em contextos matemáticos. Um 

dos primeiros e principais pesquisadores a estudar esse fenômeno da 

complementaridade, voltado à matemática em geral, foi Michael Friedrich Otte, com 

uma visão profunda sobre como a complementaridade é necessária na prática 

matemática. Nesse sentido, Monteiro (2019) nos auxilia a entender como Otte 

compreendia a complementaridade e sua relação nos ramos da matemática: 

Otte (2003) resume o conceito de complementaridade como perseguir e 
explicar um fenômeno universal ou geral em suas manifestações particulares, 

e cita a complementaridade entre aritmética e geometria (OTTE, 1990) como 
uma primeira visualização da ideia de complementaridade na Matemática 
(Monteiro, 2019, p.693). 
 

Essa percepção de Otte, na relação entre aritmética e geometria como primeira 

visualização da complementaridade na matemática, muito provavelmente tenha sido 

levada justamente pela presença de conceitos e elementos que estão embutidos de 

uma área em outra, mesmo que distintas, conforme já discutido anteriormente a 

aritmética pode estar presente, por exemplo, nos cálculos de operações numéricas 

que envolvem a geometria como medidas de altura, comprimento e largura, cálculo 

de áreas e volumes, já numa situação contrária, a geometria por meio da visualização 

pode permitir e facilitar a compreensão de conceitos que envolvem a aritmética.  

De modo geral, fica claro a complementaridade que Otte destaca, nessa busca 

de explicar fenômenos universais em suas manifestações particulares e como a 

aritmética e a geometria se encaixam nessa abordagem, com uma diversidade e 

versatilidade considerável de relações e conexões que podem ser estabelecidas entre 

essas áreas. 
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5. A PROVA DE DIOFANTO (-) X (-) = (+) 

 

A Prova de Diofanto é um dos casos em que encontramos diretamente essa 

ligação entre aritmética e geometria. Segundo Hillesheim e Moretti (2016), esta prova 

é um exemplo claro da geometria como apoio da aritmética, provando uma das 

propriedades aritméticas no envolvente ao produto entre números negativos. Esse 

contexto, no que tange à educação matemática, é um dos que gera grande dúvida 

nos alunos em geral, pois, como é possível que o produto entre dois números 

negativos resulte em um número positivo? Pois bem, o grande matemático grego 

Diofanto de Alexandria menciona em seu livro Aritmética que “menos multiplicado com 

menos é mais” (Diofanto, 2007, p.22) e a Prova de Diofanto demonstra isso de uma 

forma bem interessante, utilizando a geometria como meio. 

 

Figura 3: O diagrama geométrico com o retângulo como polígono base para a 

Prova de Diofanto. 

 

Fonte: Garbi (2010, p.124). 

 

O diagrama geométrico acima exposto é base para a demonstração dessa 

propriedade aritmética. A maneira como a Prova de Diofanto utiliza da geometria, com 

a visualização do retângulo maior, nesse caso, o de lados a e c, e subdivide esse 

retângulo em quatro retângulos menores, usando a aritmética através dos conceitos 

de medidas, representando as letras na situação como se fossem valores numéricos, 

para a partir disso usar do conceito de área, que é essencial nessa demonstração, na 
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medida em que a área do retângulo maior, de valor ac, nada mais é do que a soma 

das áreas dos quatro retângulos menores contidos no retângulo maior. 

A ideia central no uso da área de um retângulo maior, formado pela composição 

de áreas de retângulos menores, aparece de forma a gerar segmentos de menor 

tamanho que representam os lados desses retângulos, com medidas indicadas pela 

subtração do lado a por segmentos menores e, respectivamente, do lado c. Isso faz 

surgir o sinal negativo para calcular a área desses retângulos de menor tamanho e, a 

partir da propriedade distributiva da multiplicação, que está presente para o cálculo da 

área de três dos quatro retângulos menores, é possível isolar o produto entre os dois 

valores negativos e assim provar a propriedade, como explicitamos abaixo: 

 

(a – b)(c – d) + b(c – d) + d(a – b) + bd = ac            (1) 

(a – b)(c – d) + bc – bd + ad – bd + bd = ac            (2) 

(a – b)(c – d) + bc – bd + ad = ac             (3) 

ac – ad – bc + (-b)(-d) + bc – bd + ad = ac            (4) 

ac – ad – bc + bc + (-b)(-d) + ad – ac = bd           (5) 

(-b)(-d) = bd                (6) 

 

Entendemos, no primeiro membro da igualdade, que a área de cada um dos 4 

retângulos somadas resultará na área do retângulo maior, que tem valor ac, de modo 

que podemos constatar no segundo membro da linha 1 da igualdade. Em seguida, na 

linha 2, trabalhamos a propriedade distributiva da multiplicação nos termos b (c – d) e 

d (a – b), a qual, segundo Garbi (2010), Euclides já havia conseguido provar que o 

resultado dessa relação era bc – bd e da – db, respectivamente. Avançando na linha 

3, excluímos os termos – bd e + bd por serem termos de mesmo valor absoluto, mas 

com sinais opostos, o que resulta numa anulação desses termos. Por conseguinte, na 

linha 4, é realizada a propriedade distributiva da multiplicação entre os termos (a – b) 

(c – d) presentes no primeiro membro. Em seguida, na linha 5, isola-se o termo – bd, 

passando-o para o segundo membro como bd, e traz-se o termo ac para o primeiro 

membro, que, com a mudança de sinal, passa a ser – ac. Por fim, na linha 6, anulam-

se todos os termos com valores absolutos iguais, mas com sinais opostos, de forma 

a ficar apenas, no primeiro membro, o produto (-b) (-d) e, no segundo membro da 

igualdade, o termo bd, o que prova assim que o produto entre dois números negativos 
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de fato resulta num valor positivo, destacando que b e d são ambos valores positivos 

por representarem medidas de lados dos retângulos. Garbi (2010) atenta sobre como 

todas essas regras de sinais, na Prova de Diofanto, são tratados em alguns livros de 

matemática: 

Alguns livros de Matemática dizem que a regra dos sinais é uma convenção, 
não um teorema. Isso precisa ser recebido com cuidado e bem entendido: 
trata-se de uma convenção que somos obrigados a estabelecer se quisermos 
a propriedade distributiva do produto em relação à soma valha também para 
números negativos e essa é a essência da prova de Diofanto (Garbi, 2010, 

p.125). 
 

Garbi (2010), a partir dessa observação, ressalta que, mais do que uma simples 

imposição arbitrária, a regra dos sinais é uma base necessária para manter a 

consistência lógica e estrutural das operações matemáticas, especialmente no âmbito 

da aritmética. Essa essência, explorada na Prova de Diofanto, evidencia como a 

matemática se organiza em torno de relações e propriedades que devem ser 

coerentes em seus diversos ramos. 

Nesse sentido, o interessante a se perceber na Prova de Diofanto é como a 

representação visual tem a capacidade de facilitar a compreensão e aprendizagem da 

relação dos conceitos aritméticos com a intuição geométrica, que no caso específico, 

lida com a intuição da conservação da área total, mesmo quando decomposta em 

áreas menores, com a geometria, a aritmética e a álgebra presentes, numa relação 

de três ramos diferentes da matemática para provar uma propriedade aritmética.  

Utilizando uma linguagem semiótica, a partir do uso de símbolos e 

representações para transmitir uma ideia, ao decorrer do processo é possível transitar 

de uma representação matemática a outra, com a geometria inicialmente para 

observar e perceber a relação, a aritmética na forma de representação das medidas 

e, numa transformação final, para uma representação algébrica, com as letras como 

incógnitas para exprimir uma relação de igualdade através de uma equação. De 

maneira que o uso dessas diversas representações, num processo de inter-relação 

entre o visual pela geometria e as linguagens aritmética e algébrica, demonstra como 

esse tipo de relação pode ser eficaz na comunicação de ideias consideradas 

complexas e abstratas na matemática. 
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5.1  Diagramas pitagóricos: a visualização em uma prova oculta do “Teorema 

de Pitágoras” 

 

Antes de discutirmos o tópico central deste capítulo, é importante nos 

atentarmos ao que será abordado sobre o “Teorema de Pitágoras”. Para isso, faremos 

uma contextualização desse teorema com base na história da matemática, 

considerando a colocação de Roque (2012) sobre sua real origem: 

O enunciado mais famoso associado ao nome de Pitágoras é o teorema que 
estabelece uma relação entre as medidas dos lados de um triângulo 

retângulo: “O quadrado da hipotenusa é igual à soma dos quadrados dos 
catetos”. Hoje se sabe que essa relação era conhecida por diversos povos 
mais antigos do que os gregos e pode ter sido um saber comum na época de 
Pitágoras. No entanto, não é nosso objetivo mostrar que os pitagóricos não 
foram os primeiros na história a estabelecer tal relação. O objetivo é investigar 
de que modo esse resultado podia intervir na matemática praticada pelos 

pitagóricos, com as características anteriormente descritas. A demonstração 
desse teorema, encontrada nos Elementos de Euclides, faz uso de resultados 
que eram desconhecidos na época da escola pitagórica (ver Capítulo 3). Não 
se conhece nenhuma prova do teorema geométrico que tenha sido fornecida 
por um pitagórico e parece pouco provável que ela exista (Roque, 2012, 
p.122). 

 

A exposição de Roque (2012) nos mostra que, embora o teorema seja 

amplamente associado a Pitágoras, ou aos pitagóricos, sua origem remonta a 

civilizações mais antigas. Isso não tira a relevância dos pitagóricos, que contribuíram 

para a difusão e o aprofundamento de ideias matemáticas, especialmente com uma 

abordagem mais filosófica e com foco na aritmética. Nesse sentido, Roque (2012) 

destaca que os pitagóricos estavam mais preocupados com as relações harmônicas 

e os fundamentos filosóficos da matemática do que com demonstrações formais, 

como as presentes na obra de Euclides. Roque (2012) discute, com base na visão de 

outros autores, como esse teorema era tratado pelos pitagóricos: 

Burkert afirma que o teorema “de Pitágoras” era um resultado mais aritmético 
que geométrico. Quando falamos de aritmética nos referimos ao estudo de 

padrões numéricos que estavam no cerne da matemática pitagórica e que 
dizem respeito aos números figurados. Não deve ter havido um teorema 
geométrico sobre o triângulo retângulo demonstrado pelos pitagóricos, e sim 
um estudo das chamadas triplas pitagóricas. O problema das triplas 
pitagóricas é fornecer triplas constando de dois números quadrados e um 
terceiro número quadrado que seja a soma dos dois primeiros. Essas triplas 
são constituídas por números inteiros que podem ser associados às medidas 

dos lados de um triângulo retângulo (Roque, 2012, p.122). 
 

Com isso, percebemos que o chamado "Teorema de Pitágoras" era tratado 

pelos pitagóricos de maneira mais aritmética do que geométrica, focando no estudo 

das triplas pitagóricas e nos padrões numéricos que caracterizavam a matemática 
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trabalhada por eles. Esse enfoque reforça a ideia de que os pitagóricos não estavam 

interessados em uma demonstração formal do teorema, mas sim em explorar as 

relações numéricas associadas aos números figurados.  

Para fins de simplicidade e contextualização histórica, nos referiremos ao 

teorema de Pitágoras como “Teorema do Triângulo Retângulo”, enfatizando seu foco 

principal na relação entre os lados desse tipo específico de figura geométrica. 

Nessa abordagem sobre visualização e a complementaridade entre aritmética 

e geometria, percebemos o quanto a união e ligação entre elementos e linguagens 

diferentes pode auxiliar na compreensão de diversas relações matemáticas, é como 

nos explica Monteiro (2021, p.163), “modificar e combinar com outras ideias são 

caminhos com muitas possibilidades para a apreensão daquilo que se pretende 

compreender”. Ligando isso à educação matemática, entendemos que não existe uma 

única forma de se abordar um conteúdo ou apresentar um teorema ou relação 

matemática ao estudante, as diferentes maneiras de se conectar a matemática a 

contextos, situações e o uso de diferentes linguagens para apresentá-la é o que a 

permite a matemática ser tão versátil e flexível em sua forma de perceber e 

representar conceitos.  

Os diagramas pitagóricos são uma dessas formas interessantes de apresentar 

um dos teoremas mais conhecidos da matemática, usando da visualização com 

diferentes formas de representação, com a capacidade de enriquecer e facilitar a 

compreensão em um tipo de prova que passa primeiro pela observação e consegue 

apresentar essa importante relação geométrica de maneira intuitiva. Monteiro (2021) 

nos detalha a relevância desses diagramas no processo de ensino-aprendizagem:  

[...] Sugerimos, pois, explorar processos em diagramas pitagóricos para 
promover interpretações da recíproca dessa igualdade. Essa preocupação 

aqui merece destaque, pois em avaliações diagnósticas durante formações 
de professores de Matemática é comum deparar com estudantes que não 
têm consistência conceitual nem formal para afirmar a recíproca do Teorema 
de Pitágoras. Acreditamos que um dos motivos para a presença dessa lacuna 
está na abordagem tradicional, muitas vezes sem diagrama, sem triângulos 
retângulos, sem atribuição de significados, sem a história dos conceitos 

intrínsecos ao tema, ou seja, o ato de apresentar sentido sem referência ou 
referência sem sentido deixa vácuo (Monteiro, 2021, p.169-170). 
 

Essa colocação de Monteiro (2021) nos deixa claro que a abordagem do 

conteúdo sem referências, conexões ou estabelecimento de significados com o que 

está sendo apresentado apenas gera um vazio ou uma lacuna no processo de 

aprendizagem. O “Teorema de Pitágoras” é muitas vezes apresentado em uma 



34 

 

 

 

metodologia tradicional, que foca no verbal e nas representações algébricas, sem 

relacioná-lo ao visual ou ao diagramático, esquecendo-se, frequentemente, que o 

teorema em questão está diretamente ligado à geometria, e que a geometria está 

intrinsicamente conectada à observação e à visualização. 

É difícil se abordar geometria sem associar a visualização em um dos, se não 

o principal teorema geométrico, a qual tratamos nesse item. Representá-lo apenas em 

um contexto expositivo, dialogado ou escrito, como uma relação de medidas em “o 

quadrado da hipotenusa é igual à soma dos quadrados dos catetos”, ou, “𝑎2 = 𝑏2 +

 𝑐2”, é empobrecer e restringir a vastidão de contextos, significados e representações 

que são possíveis de apresentar com esse teorema.  

Nessa linha, o grande matemático Euclides traz, em sua obra Os Elementos, 

várias provas formais para diversos teoremas. Na proposição I-47 de seu livro, 

encontramos que “nos triângulos retângulos, o quadrado sobre o lado que se estende 

sob o ângulo reto é igual aos quadrados sobre os lados que contêm o ângulo reto” 

(Roque, 2012, p.174). Essa proposição trata justamente do suposto teorema “de 

Pitágoras”, ou Teorema do Triângulo Retângulo, com o diagrama geométrico presente 

no trabalho de Euclides para demonstrar a relação, em que usa do contexto de áreas 

de quadrados dispostos adjacentes a cada um dos lados do triângulo retângulo, com 

lados de medidas equivalentes a cada um dos lados do triângulo, numa relação de 

“ver para perceber”, em que a representação visual auxilia na compreensão do 

teorema. 
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Figura 4: O diagrama pitagórico presente na obra de Euclides na 

demonstração do Teorema do Triângulo Retângulo. 

 

Fonte: Euclides (2009, p.133). 

 

Este exemplo é um dentre vários outros, de como este teorema pode ser 

percebido pela visualização através de diagramas, mostrando como a 

complementaridade está presente nesse processo, num meio de transição de uma 

linguagem ou meio de comunicação para outro, que se inicia com a visualização pelo 

diagrama geométrico, transita pelos conceitos numéricos da aritmética para a 

representação de medidas e chega, por fim, à linguagem algébrica como meio de 

generalização da aritmética. Euclides percorre todos esses processos na prova do 

Teorema do Triângulo Retângulo, mesmo que não esteja explícito todo esse percurso, 

pois o foco neste tópico está em mostrar como a visualização é tangente a tantos 

casos diferentes em provas e demonstrações matemáticas, sendo o Teorema do 

Triângulo Retângulo um deles.  

Podemos observar abaixo, com outro diagrama, diferente do utilizado por 

Euclides, que também busca provar esse teorema. 
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Figura 5: Adaptação de diagrama chinês da prova do Teorema do Triângulo 

Retângulo 

 

Fonte: Inácio (2012, p.2). 

 

Esse caso, com o diagrama pitagórico visualizado acima, passa por entender, 

quando observamos os elementos na cor cinza primeiramente, que o lado de medida 

c do quadrado cinza é também medida da hipotenusa dos 4 triângulos retângulos 

congruentes presentes no interior desse quadrado com catetos com medidas a e b. A 

prova do teorema, nessa situação, está relacionada à compreensão de que a área do 

quadrado cinza pode ser representada também como a composição das áreas de 

todos os polígonos presentes em seu interior. Desse modo, temos:  

 

𝑐2 = 4 ∗ 𝑎𝑏 2⁄ + (𝑏 − 𝑎)2                               (1)                  

𝑐2 = 4 ∗ 𝑎𝑏 2⁄ + 𝑏2 − 2𝑎𝑏 + 𝑎2            (2) 

𝑐2 = 2𝑎𝑏 + 𝑏2 − 2𝑎𝑏 + 𝑎2                                         (3) 

 𝑐2 =  𝑏2 + 𝑎2                                                                          (4) 

 𝑐2  =  𝑎2 +  𝑏2                       (5) 

 

Como podemos perceber, ao procedermos para uma representação algébrica 

e usarmos o conceito de área para apresentar essa relação através de uma igualdade,  

fica explicito no processo que, ao anularmos os termos com os valores absolutos 

iguais, porém com sinais diferentes o que resta é justamente a conclusão do Teorema 

do Triângulo Retângulo, representado algebricamente pela igualdade na linha 5, com 

c como medida da hipotenusa do triângulo retângulo e os lados a e b representando 
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os catetos desse triângulo. De maneira muito semelhante, seria feito caso 

tomássemos o quadrado maior de interior branco como base, com a mudança de que 

teríamos agora um quadrado de lado a + b, sendo composto pelo quadrado cinza e 

por mais triângulos retângulos, com uma divisão maior de elementos para o cálculo 

das áreas que compõem o quadrado maior, mas que chegaria a mesma conclusão do 

caso anterior.  

Todos esses procedimentos indicam a presença de uma construção de um 

diagrama com base em outro, em um processo de criação, o que nos faz pensar que, 

da mesma forma que podemos partir da visualização, passar pela aritmética e 

entender a forma algébrica, conhecendo e compreendendo todo o processo, podemos 

também iniciar com a generalização algébrica para construir a representação visual 

transitando pela representação aritmética. 

De fato, existem diversas formas de construir e trabalhar com diagramas 

pitagóricos, com a possibilidade de encontrar maneiras de utilizar essas ferramentas 

e motivar diferentes tipos de raciocínios. Os exemplos a seguir, presentes na obra de 

Otte (2012), nos indicam essas relações: 

 

Figura 5.1: Diagrama pitagórico com a capacidade de instigar raciocínio 

indutivo. 

 

Fonte: Otte (2012, p. 34). 

 

 

 

 



38 

 

 

 

 

Figura 5.2: Diagrama pitagórico com a capacidade de instigar raciocínio 

dedutivo. 

 

Fonte: Otte (2012, p. 34). 

 

Figura 5.3: Diagrama pitagórico com a capacidade de instigar raciocínio 

abdutivo. 

 

Fonte: Otte (2012, p. 35). 

 

As representações dos diagramas pitagóricos das figuras 5.1, 5.2 e 5.3 nos 

mostram uma outra forma de perceber o “Teorema de Pitágoras”. No que se refere à 

figura 5.1, o diagrama pitagórico presente na obra de Otte (2012) traz uma prova que 

envolve a indução como uma forma de teste ou verificação, sendo um pouco mais 

complexa que os outros diagramas pitagóricos já expostos no trabalho. Esse diagrama 
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exige uma compreensão mais profunda do conceito de “área”, indo além de uma 

simples observação e passando pela necessidade de entender como essas diferentes 

partes, com áreas delimitadas por curvas, se relacionam com o triângulo retângulo.  

A distinção com a figura 5.2 vem do fato de o diagrama exposto ser o mesmo 

presente na obra de Euclides e, consequentemente, o mais conhecido dos diagramas 

pitagóricos, utilizado como base diversas vezes para explicar e provar o teorema do 

Triângulo Retângulo, ele une segmentos dos vértices do triângulo base com os 

vértices dos quadrados adjacentes aos lados do triângulo retângulo, usando os 

ângulos como elementos-base para a prova, em tipo de diagrama que permite 

perceber a relação geométrica presente no triângulo retângulo de forma mais simples, 

ou seja, um diagrama com foco no raciocínio dedutivo, fundamentado na explicação. 

Sequencialmente, temos a figura 5.3, com um diagrama pitagórico semelhante 

a um quebra-cabeça geométrico, apresentando peças compostas por triângulos 

retângulos de diversos tamanhos. Esse diagrama é um bom exemplo de uma 

categoria de diagramas que podem e devem ser explorados como quebra-cabeças, 

com um tipo de prova mais manipulativa para representar a relação do teorema, com 

combinações interessantes e baseadas na disposição dessas peças, em uma 

abordagem que fomenta justamente o raciocínio abdutivo, favorecendo a formulação 

de hipóteses, ideias e a criatividade. 

Essa diversidade de casos e situações, com formas de pensar diferentes 

motivadas por meio de figuras, é justamente o que Monteiro (2021) destaca na 

abordagem com os diagramas, mostrando como esses elementos auxiliam na busca 

da complementaridade entre diferentes tipos de raciocínio, estimulando o pensar de 

forma diferente, dando espaço para compreender e interpretar os processos 

matemáticos de maneiras distintas. 

Nessa linha, o interessante a se perceber em todos esses casos, é como nos 

explica Monteiro (2021, p.169), “os diagramas pitagóricos, quando percebidos em um 

processo, mostram-se muito fluentes, ou seja, representam um caminho para a 

abordagem semiótica na Didática da Matemática”. Essa passagem, colocada por 

Monteiro (2021), nos traz a ideia de como os diagramas pitagóricos facilitam a 

compreensão do “Teorema de Pitágoras” e, quando bem utilizados em um 

procedimento para a aprendizagem matemática, constata-se a importância da sua 

percepção em um processo que vai além de uma simples visualização, envolvendo a 
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interpretação de diversos símbolos e conceitos matemáticos aliados as relações 

geométricas embutidas e, muitas vezes, veladas que estão sendo representadas. É 

nesse sentido, que os diagramas podem ser vistos como um caminho para a 

abordagem semiótica na didática da matemática, permitindo uma compreensão mais 

profunda dos conceitos e elementos matemáticos permeados por sua utilização.  

Nesse movimento, envolvido nessa ideia de raciocínio diagramático e seu uso 

no processo de ensino, com base na compreensão de Peirce, Farias (2008, p.7) 

coloca que  esse tipo de raciocínio teria “portanto, como principais vantagens, a 

possibilidade de revelar verdades ‘novas’, não-aparentes em uma simples listagem 

das relações apresentadas por um problema, e a capacidade de conduzir a 

conclusões testáveis, corretas e necessárias”, ou seja, como podemos perceber nos 

exemplos aqui colocados, conseguimos observar formas diferentes de se chegar a 

conclusões, com os diagramas envolvidos em uma abordagem criativa no teste de 

relações matemáticas. Esse é um dos pontos essenciais que é necessário 

compreender, a fim de levar aos estudantes uma abordagem diagramática que 

favoreça a aprendizagem. 

Finalizamos esse tópico no entendimento de como os diagramas pitagóricos 

são ferramentas valiosas para uma abordagem semiótica na matemática, visando 

favorecer o processo de ensino-aprendizagem quando aplicados de maneira 

adequada, com esse método a partir de representações visuais, facilitando a 

compreensão de conceitos matemáticos abstratos e com a capacidade de promover 

uma aprendizagem mais significativa aos estudantes.  
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6. DIAGRAMAS NA HISTÓRIA DA MATEMÁTICA 

 

Os diagramas estiveram presentes na evolução e construção dos conceitos e 

estudos matemáticos ao longo de toda a história, desempenhando um papel 

significativo e contribuindo através da visualização para a compreensão dos 

processos complexos da matemática. 

A presença dos diagramas pode ser perceptível desde o início dos tempos, mas 

sua utilização com foco em facilitar a compreensão de conceitos matemáticos vem 

muito presente a partir da Grécia Antiga, através de matemáticos como Euclides, 

Tales e Platão, que usavam esses elementos como auxílio para demonstrar teoremas 

e ilustrar teses. Em consequência, o uso dos diagramas passa de geração em 

geração, desde estudiosos do Renascimento e Idade Moderna até os tempos atuais, 

como um elemento essencial nos estudos em diversas áreas matemáticas. Nessa 

linha, a colocação de Barbosa (2023) exemplifica, utilizando a geometria na Grécia 

Antiga, como a visualização e, consequentemente, os diagramas já eram elementos 

presentes na matemática praticada pelos estudiosos gregos:    

Em tempo, a geometria praticada pelos gregos era uma técnica híbrida que 
relacionava a visão ao pensamento discursivo. Basta verificar no Mênon a 
presença dos pronomes demonstrativos na passagem em questão: “estas 
linhas”, “este lado”, “linhas iguais como esta”, “cada linha dessa superfície”, 
etc. (Platão, 2009, p. 55). O texto de Platão descreve uma atividade dinâmica 

em que as figuras estão sendo desenhadas no decorrer do diálogo. A mesma 
tradição, porém, sem a espontaneidade dialógica, encontra-se também nos 
Elementos, de Euclides (2009), em que cada uma das proposições é 
acompanhada por um diagrama (Barbosa, 2023, p.10). 
 

Nesse sentido, apresentaremos nesse trabalho um interessante exemplo 

exposto nos Diálogos de Platão, na Grécia Antiga, com o uso dos diagramas e que 

faz surgir naquela época uma grande descoberta para a história da matemática. 

Usamos da pesquisa de Barros e De Sá (2021) para contextualizar o caso:  

Na época da escola de Platão, como já foi citado, houve um tratamento mais 

direto quanto ao uso dos números irracionais, os trabalhos de Eudoxo e 
Teodoro, citados anteriormente, comprovam este fato. Em um trecho dos 
Diálogos de Platão é descrito uma situação que também evidencia este 
entendimento, onde Sócrates desenhou um quadrado de “dois pés” de lado, 
conforme a figura a seguir, e pede a um escravo de Menon que lhe mostre 
um quadrado com o dobro da área (Barros; De Sá, 2021, p.145). 
 

A discussão exposta nesse caso, entre Sócrates e o escravo de Menon, para 

descobrir como encontrar o lado de um quadrado cuja área seja o dobro da área do 

quadrado inicial, se inicia de imediato com um diagrama desenhado por Sócrates para 
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representar um quadrado de lado “dois pés”. O interessante, nesse caso, é que a cada 

passo na resolução dessa questão, os diagramas estão presentes, com a obra de 

Platão expondo uma figura após a outra como forma de auxílio para a visualização da 

situação e o melhor entendimento do caso. O primeiro dos diagramas desenhados por 

Sócrates para introduzir o problema é semelhante ao exposto abaixo. 

 

Figura 6: Diagrama para exemplificação de um quadrado de lado 2 pés. 

 

Fonte: Pommer (2012, p.19). 

 

Como segue no trabalho de Barros e De Sá (2021), a conversa entre Sócrates 

e o escravo continua, de modo que o escravo toma como primeira hipótese que, 

simplesmente duplicando o lado do quadrado, também se teria o dobro da área do 

quadrado inicial, ou seja, de um quadrado de lado 2 pés passaria para um quadrado 

de lado 4 pés. Entretanto, ficou perceptível no diálogo com Sócrates que a área do 

novo quadrado, comparado ao quadrado inicial, havia quadruplicado, chegando à 

conclusão que a área havia aumentado bem mais do que foi solicitado, como fica 

explícito na figura abaixo. 

 

Figura 6.1: Diagrama exemplificando o quadrado de área quadruplicada resultado 

da primeira hipótese do escravo de Menon. 

 

Fonte: Pommer (2012, p.19). 
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Em sequência, o escravo sugeriu a Sócrates que o quadrado deveria ter lado 

medindo 3 pés, o que, no final, novamente não resolvia o problema. Nesse sentido, 

Sócrates, ao perceber a dificuldade do escravo, o conduz na compreensão da solução 

do problema, com as figuras tangentes a todo esse processo. 

 

Figura 6.2: Diagrama expondo o quadrado medindo 3 pés sugerido pelo escravo de 

Menon para resolver o problema. 

 

Fonte: Pommer (2012, p.19). 

 

Figura 6.3: Diagrama representando a solução induzida por Sócrates ao escravo 

para o problema de encontrar o lado do quadrado de área duplicada. 

 

Fonte: Pommer (2012, p.19). 

 

A figura 6.3 mostra, através de um diagrama, como Sócrates usa a diagonal do 

quadrado inicial, com lado medindo 2 pés, para construir o quadrado de área 

duplicada, como explica Pommer (2012) na colocação abaixo: 

A narrativa de Sócrates, presente nos Diálogos de Platão, ilustra a cultura 
típica dos gregos clássicos. Ao ser traçada a diagonal do quadrado inicial, o 
triângulo ADO resultante, retângulo e isósceles, possui metade da área do 
quadrado original. A construção proposta é composta de quatro triângulos 
retângulo e isósceles, equivalentes entre si. Então, a área do quadrado é 

equivalente ao quádruplo do triângulo ADO (Pommer, 2012, p.20). 
 

 O diagrama representado na figura 6.3 mostra que o triângulo formado pelos 

vértices A, D e O é um triângulo retângulo isósceles, que representa metade da área 
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do quadrado inicial. Nessa linha, Sócrates usa do fato que, se a diagonal divide o 

quadrado em duas partes iguais e de áreas com a mesma medida, exemplificando, 

tomando como base que a área do quadrado mede um valor x, quando se divide ele 

em 2 por meio de uma de suas diagonais, cada triângulo retângulo formado passará 

a ter como valor de sua área x/2. Logo, se o objetivo é formar um quadrado de área 

duplicada, comparado ao quadrado de origem, queremos encontrar então um 

quadrado de área medindo 2x, temos que esse valor é o mesmo que quatro vezes a 

área do triângulo retângulo isósceles de valor x/2, ou seja, se unirmos 4 triângulos 

retângulos desse tipo, sem sobreposição de um triângulo em relação ao outro, 

formamos um quadrado com a área duplicada em relação ao quadrado de origem, e 

esse novo quadrado terá como lado a diagonal do primeiro quadrado.  

Essa visão intuitiva, com base nessa abordagem diagramática, permitiu a 

Sócrates não só mostrar como solucionar o problema, mas também contribuir no 

sentido de facilitar a compreensão através das construções geométricas e sua relação 

com a aritmética. As discussões geradas nesse contexto foram primordiais, na época, 

para algo que não se tinha uma noção ou ideia de sua existência, especificamente os 

números irracionais, como explicam Barros e De Sá (2021): 

O diálogo apresentado mostra um dos primeiros indícios da manipulação dos 
números irracionais pelos gregos, por meio de uma articulação entre a 

Aritmética e a Geometria, representando, com isso, uma superação 
superficial da tensão que estes números causaram na época dos pitagóricos 
com a descoberta da existência dos segmentos incomensuráveis pelos 
pitagóricos (Barros; De Sá, 2021, p.146).  
 

Barros e De Sá (2021) também trazem que não se sabe, de fato, o que os 

pitagóricos realizaram a partir disso para mostrar que a medida obtida da diagonal do 

quadrado não era uma razão de dois inteiros, ou seja, um número racional. Entretanto, 

Lorin e Rezende (2013) explicam que, a partir dos fragmentos deixados pelos 

pitagóricos, é possível pressupor algumas formas de como esses antigos matemáticos 

conseguiram demonstrar tal feito. Por nosso foco não ser nesse tópico, não iremos, 

nesse sentido, adentrar detalhadamente em uma abordagem sobre as possibilidades 

de como os gregos antigos conseguiram mostrar essa relação para provar que o lado 

do quadrado era um número irracional. 

O que nos interessa, neste trabalho, é como os diagramas foram essenciais 

para observar relações através das construções geométricas e como, através da 

visualização, de modo semelhante ao presente na obra de Platão, desenhando cada 

passo do diálogo entre Sócrates e o escravo até chegar à solução, é possível 
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compreender melhor a natureza das figuras geométricas e a relação entre suas 

medidas. A figura abaixo exemplifica essa relação geométrica do dobro da área do 

quadrado de forma sequencial e como o lado de cada quadrado tem, como medida, a 

diagonal do quadrado anterior. 

 

Figura 7: Diagrama como experimento mental para mostrar como dobrar a área de 

um quadrado sequencialmente. 

 

Fonte: Monteiro (2019, p.701). 

 

Finalizamos este tópico concluindo que os diagramas representam elementos 

importantes na história da matemática, não só facilitando a resolução de problemas 

complexos, como o aqui exposto sobre o dobro da área do quadrado, mas também 

servindo como base para o surgimento de novas teorias e concepções, fazendo parte, 

a partir de uma visualização geométrica, do surgimento da ideia dos números 

irracionais, conectando áreas diferentes da matemática e permitindo, por meio da 

observação, a visualização de relações abstratas de maneira concreta, contribuindo 

assim, através de seu uso, para a progressão do conhecimento matemático e sua 

aplicação em diversas áreas do saber humano. 

 

6.1  Diagramas como problemas abertos em Matemática  

 

Abordaremos, neste tópico, exemplos de como os diagramas podem ser 

aplicados em contextos ou situações envolvendo problemas abertos, esses, 

importantes para a didática da matemática, principalmente nos tempos atuais. 

Segundo Araújo, Oliveira e Veit (2017), problemas abertos são aqueles sem 

soluções pré-definidas, baseados em eventos reais, que exigem julgamentos e 

argumentação por parte dos alunos, permitindo envolver a realidade na matemática, 
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como um tipo de problema que não apenas ajuda a encontrar respostas iguais usando 

estratégias diferentes, mas também possibilita chegar em soluções diversas a partir 

de seu uso.  

Nessa linha, se faz necessário compreender como o uso dos problemas 

abertos podem ser um caminho interessante na produção de conhecimento 

matemático e como os diagramas podem estar associados e presentes através 

desses problemas. Com isso, iniciamos com a colocação de Allevato e Vieira (2016), 

que nos explicam o quanto os problemas abertos vêm ganhando cada vez mais 

espaço no processo de ensino e como seu uso motiva a um trabalho mais explorativo 

e investigativo por parte do aluno: 

Atualmente, tem sido fortemente recomendado o trabalho com problemas 
abertos, que correspondem a situações em que o aluno necessita elaborar 
diversas formas de resolução, podendo empregar diferentes mecanismos 
(Bustamante, Ribeiro & Navarro, 2015). Contrapondo-se aos chamados 
problemas fechados — em que tanto a situação inicial, como o processo de 

resolução, como o objetivo final (resposta) do problema é pré-determinado —
, nos problemas abertos, o processo de resolução é aberto ou o final é aberto 
ou a formulação de novos problemas é aberta. São problemas que partem de 
enunciados menos estruturados, permitem a formulação de diversos tipos de 
questões e possibilitam a realização de explorações em diferentes direções. 
Assim, os problemas abertos podem ser propostos como desencadeadores 

de processos de investigação matemática pelos alunos (Allevato; Vieira, 
2016, p.121-122). 
 

A colocação de Allevato e Vieira (2016) expõe, de maneira direta, como o 

trabalho com os problemas abertos possibilita uma diversificação e criatividade maior 

na busca por respostas, como um estilo de problema que não delimita o estudante a 

apenas uma forma de pensar e encontrar a solução e é justamente isso que permite 

aos problemas abertos estarem associados a procedimentos investigativos e criativos 

em busca de respostas. George Pólya (1945), sendo um dos principais estudiosos 

matemáticos nessa área de resolução de problemas, afirma que a criatividade é uma 

característica inata dos indivíduos, mas os professores têm a responsabilidade de 

estimular o pensamento criativo matemático dos alunos, e os problemas abertos, 

nesse contexto, aparecem como um dessas formas de estimular o pensamento 

criativo nos estudantes. 

O ponto de presença dos diagramas, nesse sentido, está no fato de serem 

elementos que, segundo Montaner (2017), na concepção e compreensão de Peirce, 

são elementos-base para o exercício do raciocínio imaginativo. Assim, considerando 

que os docentes devem estimular a criatividade, investigação e exploração nas 

atividades dos estudantes, unir os problemas abertos aos diagramas pode ser uma 
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estratégia eficaz para promover o desenvolvimento do pensamento criativo e 

investigativo dos alunos, ao mesmo tempo em que proporciona um ambiente de 

aprendizagem mais dinâmico e estimulante. 

Nesse sentido, apresentaremos dois contextos diferentes de aplicação dos 

diagramas em problemas abertos, um desses casos envolve as diferentes 

representações para se chegar a uma mesma resposta, enquanto o outro explora 

diferentes maneiras de ver o problema, chegando a respostas também distintas. Em 

ambos os casos, os processos diagramáticos tangem os passos e auxiliam no melhor 

entendimento de cada problema, sendo os dois casos apresentados em um problema 

envolvendo a questão de sequência numérica, que será melhor detalhado a seguir. 

 

Figura 8: Imagem explicando através de diagrama o problema a ser explorado pelos 

estudantes. 

 

Fonte: Fernandes (2004, p.235). 

 

A tarefa exposta no trabalho de pesquisa de Fernandes (2004), baseia-se em 

uma atividade em grupo feita em sala de aula com os estudantes, na qual, observando 

a imagem acima, representando um diagrama de sequência numérica, cada grupo 

identificava, à sua maneira, os próximos termos da sequência e estabelecia uma regra 
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para encontrar termos muito adiante, como o 100º termo, por exemplo. Além disso, os 

grupos redigiam a forma como pensaram para encontrar os termos seguintes, 

incluindo desenhos de diagramas que demonstravam visualmente as ideias que 

tiveram para representar a sequência, sendo que o diagrama mais frequente, usado 

pela maioria dos grupos, foi o seguinte: 

 

Figura 8.1: Diagrama mais desenhado pelos grupos para representar a sequência 

numérica. 

 

Fonte: Fernandes (2004, p.236). 

 

Nessa primeira situação, Fernandes (2004) percebeu que, apesar de a maioria 

dos grupos utilizar o mesmo diagrama para representar essa sequência numérica, a 

forma com que cada grupo redigiu e explicou o pensamento para a elaboração do 

diagrama na identificação da sequência foi bem distinta. Isso já nos traz a 

compreensão do problema aberto na maneira em que, mesmo encontrando a mesma 

resposta ou diagrama para a representação da sequência, os grupos verbalizaram o 

que entenderam e encontraram no caso de maneiras diferentes. Fernandes (2004) 

ainda coloca mais alguns exemplos interessantes em seu trabalho, expostos por 

outros grupos, como vemos abaixo: 

 

Figura 8.2: Diagrama desenhado por um dos grupos para representar a sequência 

numérica. 

 

Fonte: Fernandes (2004, p.236). 
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Figura 8.3: Diagrama desenhado pelos autores do trabalho de pesquisa para 

demonstrar o raciocínio do grupo que desenhou o diagrama 8.2. 

 

Fonte: Fernandes (2004, p.237). 

 

Temos na figura 8.2, retirada do trabalho de Fernandes (2004), uma ideia bem 

distinta apresentada por um dos grupos para uma representação numérica da 

sequência de diagramas, o diagrama que a figura 8.2 representa, desenhado por esse 

grupo, tem através dos triângulos dispostos com as bolinhas a quantidade de 

elementos de acordo com a posição da figura em si. A distinção está no fato de não 

ser uma progressão aritmética, como a sequência elaborada pela maioria dos outros 

grupos, de modo que, se observarmos bem, a cada posição da sequência numérica, 

o triângulo desenhado apresenta nos seus três lados uma mesma quantidade de 

bolinhas. Um exemplo é o triângulo que representa o quarto termo da sequência, ele 

apresenta quatro bolinhas nos dois lados laterais do triângulo e quatro bolinhas 

também em sua base, destacando que na conexão dos lados dois a dois de cada um 

dos triângulos, o que seria o vértice, vai existir uma bolinha em comum, o que faz com 

que no momento da contagem de bolinhas, por exemplo, não se possa simplesmente 

multiplicar o termo referente a sequência por três, que é o número de lados do 

triângulo. 

No tangente à contagem da sequência montada por esse grupo, representada 

na figura 8.3 elaborada por Fernandes (2004) e pelos coautores de seu trabalho como 

conjectura, tentando interpretar a regra “diminuir os números” proposta por esse grupo 

de estudantes. Na elaboração desse diagrama, é possível observar na figura 8.3 que, 

a partir do terceiro termo dessa sequência, a contagem de bolinhas no diagrama passa 

pela soma do número que representa sua posição na sequência com seus dois 
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antecessores. Como exemplo, o 3º termo tem como total de bolinhas a soma “3 + 2 + 

1”, formando um total de 6 bolinhas, já o 4º termo é representado pela soma “4 + 3 + 

2”, totalizando 9 bolinhas, e assim por diante. Dessa forma, seria possível identificar 

quantas bolinhas haveriam no 100º termo da sequência, bastando somar 100 com 

seus dois antecessores. 

Fernandes (2004) conclui que, embora fosse um grupo de estudantes com 

dificuldades na disciplina, o que de fato o surpreendeu foi que eles conseguiram, 

mesmo de maneira incompleta, construir uma forma generalizada para calcular o 

número de bolinhas em uma posição qualquer da sequência elaborada. 

Este exemplo nos mostra um caso em que as respostas para o centésimo termo 

da sequência e a quantidade de bolinhas por termo divergem entre os grupos, 

demonstrando que não há uma resposta definitiva na sequência montada através dos 

diagramas. Isso evidencia a natureza do problema aberto, em que as respostas 

podem ser diversas e igualmente válidas, pois os diagramas e sequências são 

construídos de maneiras diferentes por cada grupo. É essa diversidade de 

abordagens que estimula a criatividade, como visto em outro grupo que elaborou uma 

sequência criativa, conforme observado no trabalho de Fernandes (2004). 

 

Figura 8.4: Diagrama desenhado por um dos grupos para representar a sequência 

numérica solicitada. 

 

Fonte: Fernandes (2004, p.237). 

 

A figura 8.4 representa uma sequência muito semelhante à do grupo que 

desenhou a figura 8.2, e ambos os diagramas, apesar de terem uma composição 

diferente nas bolinhas usadas para representar cada sequência, permitem perceber 
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que a quantidade de bolinhas representadas é a mesma em cada termo da sequência 

desenhada. Fernandes (2004) explica que a diferença entre as sequências elaboradas 

por esses grupos está na forma como desenharam e na representação algébrica que 

cada grupo utiliza para expressar um termo qualquer da sequência numérica. No caso 

do grupo do diagrama 8.4, os estudantes indicam que, para descobrir o centésimo 

termo da sequência, basta subtrair uma unidade referente à localização do termo e, 

em seguida, multiplicar por três, ou seja, subtrair cem por um e multiplicar por três, o 

que resultaria em 99 vezes 3, totalizando 297 bolinhas no centésimo termo da 

sequência, com o diagrama abaixo permitindo observar essa relação. 

 

Figura 8.5: Diagrama representando o cálculo usado pelo grupo para contar a 

quantidade de bolinhas por termo da sequência. 

 

Fonte: Fernandes (2004, p.238). 

 

Em resumo, o que a figura 8.5 nos apresenta é como a contagem foi feita e 

percebida pelo grupo referido, no entanto, a maneira com que esse grupo conclui isso 

é representada por uma expressão algébrica, em que se fosse necessário calcular a 

quantidade de bolinhas de um termo x da sequência, bastaria multiplicar x-1 por 3, 

obtendo assim uma quantidade 3(x-1), que, aplicando a distributividade, resultaria em 

3x-3 bolinhas. A conclusão que Fernandes (2004) nos faz perceber em seu trabalho 

é que essa expressão algébrica final, 3x-3, é a mesma que o grupo do diagrama 8.2 

obtém para calcular a quantidade total de bolinhas de um termo x qualquer da 

sequência, entretanto o que muda é a forma como esse grupo chega a essa ideia, já 

que o grupo da figura 8.2 toma como base para calcular a quantidade total de bolinhas 

a soma de um certo termo da sequência pelos seus dois antecessores. Desse modo, 

calcular a quantidade total de bolinhas de um termo x da sequência seria somar x aos 
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seus dois antecessores, nesse caso x-1 e x-2, o que também resultaria em 3x-3 como 

a quantidade total de bolinhas para um certo termo x na sequência referida. 

Para concluirmos esse capítulo, percebemos, ao observar os diferentes 

diagramas e propostas apresentadas no trabalho de Fernandes (2004), que a 

matemática é um campo de trabalho fértil para o professor que deseja desenvolver o 

raciocínio abdutivo e estimular a criatividade em sala de aula. Os problemas abertos, 

como expostos por meio das diferentes leituras de sequência numérica e construção 

dos respectivos diagramas, possibilitam ao estudante refletir e ir além das respostas 

prontas, pois existem várias possibilidades de resposta que podem ser validadas. 

Além disso a composição, permeada pelo uso de distintos elementos, permite a 

utilização de diferentes linguagens e maneiras de se expressar, com o exemplo dos 

próprios diagramas.  

Dessa forma, os problemas abertos, além de desenvolver as habilidades 

matemáticas, incentivam a criticidade, para que haja o “pensar e o construir”, 

formulando hipóteses e buscando soluções originais, estimulando diferentes formas 

de pensar. Com isso, o uso dos diagramas, em conjunto com os problemas abertos 

não só enriquece o ensino de matemática, mas também promove uma mentalidade 

investigativa e inovadora nos estudantes, preparando-os para enfrentar problemas 

complexos de forma criativa e eficaz. 

 

6.2  Área equivalente ao quadrado e perímetro indo para o infinito 

 

Na linha que Souza (2014) traz em seu trabalho, de como a abdução pode estar 

implícita em processos matemáticos de maneira criativa e dinâmica no incentivo para 

o surgimento de novas conjecturas e ideias, a diversidade de abordagens para 

desenvolver esse tipo de raciocínio, focando na produção de conhecimento 

matemático, é de fato ampla, especialmente ao considerar a complementaridade, que 

aqui já explicamos, entre a aritmética e a geometria, com os diagramas 

desempenhando um papel crucial nesse processo, conectando conceitos e 

possibilitando a visualização de relações matemáticas. 

Uma proposta que apresenta abdução para estimular raciocínio abdutivo 

utilizando diagramas com foco em enriquecer o aprendizado em matemática é 

trabalhar com figuras que possuem áreas equivalentes, mas, os perímetros podem 
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ser modificados e se apresentarem com medidas diferentes. Essa abordagem permite 

explorar como os perímetros podem aumentar tendendo ao infinito, mesmo mantendo 

a mesma área, com uma análise que não apenas fortalece a compreensão da relação 

entre aritmética e geometria, mas também estimula a criatividade e o pensamento 

investigativo dos alunos na construção de conhecimento matemático. Monteiro (2019) 

exemplifica como esse tipo de problema aberto, ao trabalhar com noções e tendências 

ao infinito, pode ser favorável a geração de novas ideias e favorecer a produção de 

conhecimento. 

Para Otte (1993) a criatividade requer a combinação de um pensamento 
formal e um pensamento livre. Para Monteiro (2015), provocar movimento 
entre um pensamento formal da matemática e um pensamento livre com 
significado e mediado por paradoxos e metáforas do infinito, parece ter 
grande potencial para produzir novos interpretantes e conceber matemática 

como atividade semiótica (Monteiro, 2019, p.702). 
 

Com base na colocação de Monteiro (2019), percebemos que, ao utilizar um 

pensamento formal fundamentado, como no caso da análise da área de uma figura 

geométrica, é possível explorar maneiras de combinar esse raciocínio estruturado a 

um pensamento mais livre, promovendo o surgimento da criatividade, conforme 

compreende Otte (1993). Essa abordagem busca dar significado ao pensamento 

matemático, e a noção de infinito, quando trabalhada aliada a essa interação entre 

diferentes formas de raciocínio, torna-se motivadora. Além de estimular a criatividade, 

essa combinação de diferentes representações e interpretações de uma mesma ideia, 

que chamamos semiose, ou seja, processo de um signo, permite uma compreensão 

mais profunda e abrangente dos conceitos matemáticos estudados, podendo ser 

fomentada por meio da manipulação física e visual de símbolos matemáticos, 

especialmente os geométricos. 

É nesse sentido que os diagramas surgem como elementos que auxiliam na 

compreensão mais profunda dos conceitos matemáticos estudados e no 

desenvolvimento de novas hipóteses e conjecturas. Conforme discutido por Montaner 

(2017), em relação às ideias de Peirce, os diagramas fazem parte de um processo 

que influencia o raciocínio abdutivo, estimulando a criatividade e o pensamento 

imaginativo. 

Para exemplificar, tomemos o tangram, um quebra-cabeça popular chinês, e 

suas subdivisões, que surgem como uma interessante ferramenta para os processos 

de ensino e aprendizagem, utilizando dos diagramas de forma implícita. Por meio do 

tangram, é possível explorar o caso da área equivalente ao quadrado e o perímetro 
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tendendo ao infinito, envolvendo processos de visualização e manipulação que, como 

destaca Monteiro (2019, p.701), “interpretar artefatos e modificá-los por metáforas do 

infinito pode ser motivador para didática da matemática”, o que ajuda a incorporar 

esses meios como propostas voltadas para o ensino da matemática. 

No caso específico do tangram, a manipulação das peças e suas subdivisões 

permitem observar as relações geométricas e aritméticas implícitas, como a área e o 

perímetro. Ao analisar as combinações das peças e suas modificações, é possível 

compreender a relação entre a área da figura original e seu perímetro, considerando 

as variações a partir das mudanças na disposição das peças. A utilização do tangram 

é versátil e pode ser aplicada a diversos conteúdos, como coloca Passos (2022, p.31), 

“por ser um jogo que desperta a curiosidade, trabalha a concentração e a ludicidade 

do aluno”, então como ferramenta educacional, o tangram pode proporcionar uma 

abordagem prática e visual para explorar esses conceitos matemáticos, como 

ilustrado na figura abaixo. 

 

Figura 9: Tangram como diagrama geométrico e suas subdivisões. 

 

Fonte: Monteiro (2019, p.699). 

 

Inicialmente, é necessário compreender que a figura que o tangram representa 

é um quadrado dividido em 7 peças, essas peças que variam entre cinco triângulos, 

um quadrado menor e um paralelogramo, como percebemos na parte à esquerda da 

figura 9. Já o procedimento realizado à direita, na mesma figura, é uma divisão de 

cada uma das 7 peças desse tangram em um conjunto de 7 peças menores, o que 

transforma o quadrado original do tangram, formado por um total de 7 peças, em um 

quadrado composto agora por 49 peças. Pelo fato de a figura original ser a mesma, a 
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subdivisão das peças originais em peças menores não altera a área da figura inicial, 

apenas influencia no aumento do número de peças do tangram.  

O interessante a se perceber está nas figuras 9.1 e 9.2, o como a manipulação 

e a nova disposição das peças do tangram vão formando novos desenhos, sem que 

haja sobreposição de uma peça sobre outra. A tendência do aumento do perímetro, 

de acordo com as novas divisões e composições, e as possibilidades de figuras a 

serem formadas é o que, de fato, leva à ideia de uma infinidade de possibilidades. 

Com um processo que regido por mais e mais subdivisões de cada peça do nosso 

quebra-cabeça, pode, de acordo com a sua disposição, possibilitar um perímetro cada 

vez maior, mesmo com a área original da figura sendo conservada, o que nos faz 

chegar a uma sensação de paradoxo. 

 

Figura 9.1: Figura com a área equivalente ao quadrado, montada a partir das 

peças do tangram, composta de uma primeira forma com as 7 peças originais do 

tangram e, na segunda forma, composta por 49 peças originadas das subdivisões 

das peças originais do tangram. 

 

Fonte: https://educmatematicaufal.blogspot.com/ 

 

 

 

 

 

 

 

 

https://educmatematicaufal.blogspot.com/
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Figura 9.2: Visualização de figura com a área equivalente à superfície de um 

quadrado, montada com 49 peças geradas a partir das subdivisões das peças do 

tangram, apresentando um perímetro maior em comparação ao próprio tangram e à 

figura 9.1. 

 

Fonte: https://educmatematicaufal.blogspot.com/ 

 

 Nos casos em questão, a criatividade é trabalhada a partir da montagem de 

desenhos com as peças disponíveis, é possível perceber que as figuras em evidência 

representam o desenho, nesse caso de um dragão, no entanto, a figura 9.1 é um 

dragão montado com as 7 peças originais do tangram e possuindo a mesma área da 

superfície do quadrado original, enquanto a figura 9.2 representa um dragão composto 

pelas 49 peças subdivididas das peças originais do tangram, o que permite um maior 

detalhamento do dragão e consequentemente também um alongamento em suas 

medidas. Isso possibilita, até visualmente, a percepção de um dragão com o tamanho 

maior do que o montado na figura 9.1 e é essa situação que permite discussões de 

como, mesmo com a área da superfície permanecendo a mesma, a disposição das 

novas peças proporciona um perímetro maior na comparação de uma figura com a 

outra. 

A quantidade de possibilidades para a disposição e criação de novas figuras 

com essas peças é imensurável. As oportunidades propostas pelo docente, nesse tipo 

de trabalho, passam por tentar levar os estudantes a chegarem às suas conclusões 

sobre o caso, num meio de exploração desse fenômeno, com o estudo sobre esse 

caso de conservação da área da figura e acréscimo ao perímetro podendo estar 

associado a diversos contextos, seja com a elaboração de histórias ou montagem para 

a criação de outros polígonos. 

https://educmatematicaufal.blogspot.com/
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 O que interessa é, que através desses processos, que podem ser diferentes 

para cada estudante, seja possível chegar a uma compreensão geral, como discorre 

Monteiro (2019), de que o perímetro pode continuar aumentando indefinidamente, se 

forem usadas infinitas replicações e movimentos das peças, ou seja, se houver uma 

continuação na subdivisão das peças e elas forem sendo rearranjadas de maneira a 

tender para o infinito, o perímetro total da figura resultante continuará aumentando 

sem limites, mesmo que a área permaneça a mesma. O trabalho com o tangram e a 

divisão de suas peças passa pela fluência deste tipo de diagrama/quebra-cabeça em 

si, de acordo com Monteiro (2019), justamente pela infinidade de decomposições e 

combinações de suas peças.    

Esse tipo de proposta é um exemplo, entre várias outras, de como essa ideia 

da conservação de área e aumento do perímetro pode ser trabalhada, destacando a 

semiose de um signo, no caso, interpretações possíveis a partir de um quebra-cabeça 

com 07 (sete) peças como um tangram original, em conexão com exploração de 

processos em diagramas objetivando desenvolver raciocínio abdutivo, em que através 

desses procedimentos criativos, como a montagem de figuras, proporcionam uma 

abordagem didática leve e prática aos estudantes na assimilação de conceitos muitas 

vezes desafiadores de serem compreendidos, por seu grau de abstração, no 

envolvente a essa relação entre aritmética e geometria.  
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7. CONSIDERAÇÕES FINAIS  

 

No tangente ao analisado e discutido neste trabalho, percebemos o quanto 

abordar conceitos matemáticos explorando diagramas para estimular raciocínio 

abdutivo pode influenciar positivamente, num meio de ensino favorecido pela 

interrogação e investigação em busca da formação de estudantes críticos e com 

diferentes formas de pensar, com uma produção de conhecimento matemático 

dinâmica e com outras perspectivas, como coloca Bicudo (2008). A incerteza presente 

nesse processo é um elemento importante para instigar e incentivar a formulação de 

conjecturas e hipóteses, que, por meio da observação e investigação, permitem a 

construção de argumentos acerca do que é estudado. 

Outro ponto de interesse a esta discussão, na percepção sobre o raciocínio 

abdutivo e os diagramas, é como o docente precisa estar preparado para saber lidar 

com a aplicação desses casos, identificando e elaborando situações didáticas para 

explorar diagramas e processos em diagramas. Para isto é importante que os 

docentes envolvidos concebam para a didática da matemática da Educação Básica 

uma visão de currículo em rede de conceitos, a serem explorados em consonância 

com a tradicional visão linear do currículo das estruturas matemáticas e suas 

operações, com o intuito de conseguir instigar os estudantes, de maneira a facilitar o 

raciocínio abdutivo. É também necessário, por parte dos professores, preparo para 

analisar e interpretar os argumentos dos estudantes, em suas diversas formas de 

pensar para chegar a uma conclusão, entendendo que cada indivíduo tem seu tempo 

de percepção e compreensão. Nessa linha, sobre papel professor na produção de 

conhecimento, Bicudo (2009) explica: 

Eu compreendo construção/produção da realidade e construção/ produção 
do conhecimento como faces de um mesmo movimento, de maneira que o 
professor/pesquisador, com atitude assumida de sempre dar-se conta do que 
faz, pergunte-se: “quais as características do que quero conhecer e trazer 
como conteúdo das atividades educadoras?”; “como proceder para avançar 

no conhecimento disso que me proponho a conhecer e nos modos de 
proceder  junto aos meus aprendizes, co-sujeitos desse processo de 
pesquisar/conhecer/organizar  o  produzido  em formas  possíveis?”.  Essas 
perguntas não se sustentam se o pensamento em processo for pautado em 
uma lógica linear, estruturada em termos de antes e depois, de causa e de 
consequência. Seguindo essa lógica, haveria necessidade de conhecermos 
as características do investigado para poder investigá-lo. Acabaríamos por 

penetrar em um círculo vicioso, em que o “quê” implicaria, necessariamente, 
o “como” e vice-versa. Não nos seria possível avançar em compreensões e 
interpretações.  Porém, essas perguntas mostram-se procedentes se 
assumirmos a complexidade do “ser sendo”. /.../ Essa concepção permite que 
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falemos em construção da realidade e construção do conhecimento dando-
se em um movimento de ser e de conhecer (Bicudo, 2009, p.232-33). 
 

De maneira geral, é necessário por parte do docente compreender que, para 

que esse processo funcione e seja realizado da melhor forma possível, é preciso 

entender os estudantes como sujeitos cognitivos, cada um com a capacidade de 

produzir seu próprio conhecimento a partir de suas bases cognitivas, dando um pouco 

mais de liberdade na construção de seus argumentos e hipóteses, mesmo que 

possam ser consideradas erradas. O docente, nesse caso, deve instigar o estudante 

a partir do que foi elaborado, valorizando sua construção nos pontos interessantes e 

relevantes que percebeu e destacando a forma com que o indivíduo chegou à solução 

ou resposta do problema, não se importando apenas com a resposta final e evitando 

o uso de processos mecanizados, como geralmente presenciamos, sendo flexível e 

avançando junto com os estudantes, respeitando o processo de investigação de cada 

sujeito, de forma a auxiliar e funcionar como um orientador, valorizando os raciocínios 

apresentados por seus estudantes. 

Considerando os aspectos levantados neste trabalho, concluímos que o uso de 

diagramas e o estímulo ao raciocínio abdutivo enriquecem o ensino da matemática, 

favorecendo uma prática pedagógica mais inclusiva e reflexiva, permitindo que os 

estudantes desenvolvam autonomia, criatividade e senso crítico, valorizando suas 

construções individuais e coletivas. Cabe ao docente, como mediador e orientador, 

criar um ambiente que incentive a curiosidade e a investigação por meio desses 

elementos, reconhecendo que o aprendizado é um processo contínuo e dinâmico, 

indo além da memorização de fórmulas e respostas prontas e promovendo uma 

educação matemática mais significativa e transformadora. 
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ANEXO A – Diagrama Pitagórico I 

 

 

Fonte: Nelsen (1993, p.3).  
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ANEXO B – Completar quadrado 

 

 

Fonte: Nelsen (1993, p.19). 
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