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RESUMO 

Neste estudo, foi aplicada a técnica de Machine Learning (ML) para prever a produção 

de carboidratos pela microalga Chlorella vulgaris em um cultivo contínuo, utilizando 

variáveis nutricionais (concentração de nitrogênio, 500-75 mg L-1, e fósforo, 200-50 

mg L-1, em meio), ambientais (intensidade luminosa entre 150-450 µmol m-2 s-1 e a 

densidade óptica entre 0,5-20) e operacionais (tempo de residência entre 2,9-4,4 dias 

e tempo normalizado entre 0-1) como entradas para os modelos preditivos dana 

produtividade de biomassa e carboidratos e a % de acúmulo de carboidratos em 

biomassa. A análise do coeficiente de Pearson permitiu identificar correlações 

significativas entre as variáveis independentes e dependentes, destacando a 

influência da concentração de nutrientes e da intensidade luminosa na produção de 

carboidratos. Foi observada alta correlação entre nitrogênio e fósforo, o que pode 

comprometer a qualidade das regressões devido à colinearidade; como alternativa, a 

razão N/P foi utilizada para contornar esse problema. O histograma das variáveis 

evidenciou padrões e tendências nos dados, impactando as predições. Diferentes 

técnicas de regressão foram implementadas e comparadas, incluindo modelos 

lineares (Regressão Linear Multivariada, Ridge e LASSO) e não lineares (Random 

Forest, Redes Neurais e Support Vector Regression – SVR). Os modelos não lineares 

apresentaram melhor desempenho na previsão de todas as variáveis de saída, 

especialmente Random Forest e Redes Neurais, que capturaram relações complexas 

entre as variáveis. O melhor desempenho foi obtido com Random Forest, alcançando 

R² de 0,9347 e RMSE de 0,2556 para a produtividade de carboidratos, e R² de 0,8962 

e RMSE de 0,3222 para a produtividade de biomassa. A otimização dos modelos foi 

realizada por meio da busca em grade (grid search), permitindo a definição dos 

melhores hiperparâmetros e melhorando significativamente a acurácia das previsões. 

Além disso, a validação cruzada foi empregada para evitar overfitting e garantir a 

generalização dos resultados, tornando os modelos mais robustos e confiáveis. Além 

da análise estatística dos modelos, foi realizada uma avaliação gráfica dos resíduos 

para verificar a adequação das predições. Observou-se que, apesar do bom 

desempenho numérico dos modelos não lineares, os resíduos indicaram um leve viés 

centralizado, sugerindo que melhorias podem ser alcançadas com a inclusão de novas 

variáveis de entrada ou ajustes nos pré-processamentos dos dados.  

 



Palavras-chave: Redes neurais artificiais, Chlorella vulgaris, microalga, produção de 

carboidratos, amido, regressão, Support vector regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

In this study, Machine Learning (ML) technique was applied to predict carbohydrate 

production by the microalgae Chlorella vulgaris in a continuous cultivation, using 

nutritional (nitrogen concentration, 500-75 mg L-1, and phosphorus, 200-50 mg L-1, in 

medium), environmental (light intensity between 150-450 µmol m-2 s-1 and optical 

density between 0.5-20) and operational (residence time between 2.9-4.4 days and 

normalized time between 0-1) variables as inputs for the predictive models on biomass 

and carbohydrate productivity and the % of carbohydrate accumulation in biomass. 

The analysis of Pearson's coefficient allowed to identify significant correlations 

between the independent and dependent variables, highlighting the influence of 

nutrient concentration and light on carbohydrate production. A high correlation was 

observed between nitrogen and phosphorus, which can compromise the quality of the 

regressions due to collinearity; as an alternative, the N/P ratio was used to circumvent 

this problem. The histogram of the variables showed patterns and trends in the data, 

impacting the predictions. Different regression techniques were implemented and 

compared, including linear models (Multivariate Linear Regression, Ridge and LASSO) 

and non-linear models (Random Forest, Artificial Neural Networks and Support Vector 

Regression – SVR). The non-linear models showed better performance in predicting 

all output variables, especially Random Forest and Neural Networks, which captured 

complex relationships between the variables. The best performance was obtained with 

Random Forest, reaching R² of 0.9347 and RMSE of 0.2556 for carbohydrate 

productivity, and R² of 0.8962 and RMSE of 0.3222 for biomass productivity. The 

optimization of the models was performed through grid search, allowing the definition 

of the best hyperparameters and significantly improving the accuracy of the 

predictions. Furthermore, cross-validation was used to avoid overfitting and ensure 

generalizability of the results, making the models more robust and reliable. In addition 

to the statistical analysis of the models, a graphical evaluation of the residuals was 

performed to verify the adequacy of the predictions. It was observed that, despite the 

good numerical performance of the nonlinear models, the residuals indicated a slight 

centralized bias, suggesting that improvements can be achieved with the inclusion of 

new input variables or adjustments in the data preprocessing. 

 



Keywords: artificial neural networks, microalgae, starch production, regression, 

support vector regression. 
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1. INTRODUÇÃO 

A inteligência artificial tem revolucionado diversas áreas científicas e 

industriais, sendo o Machine Learning um de seus principais pilares. Essa abordagem 

se destaca pela capacidade de identificar padrões complexos e modelar sistemas não 

lineares, especialmente em contextos em que os métodos tradicionais de regressão, 

como por exemplo, a regressão linear, polinomial e linear múltipla apresentam 

limitações na predição das variáveis de interesse (Goodfellow et al., 2016).  

No campo dos bioprocessos, a aplicação de Machine Learning tem mostrado 

potencial significativo na predição de carboidratos produzidos (David, et al., 2023; 

Ramandani, et al. 2025; Pääkkönen, et al. 2024; Sheik, et al. 2024.). Particularmente 

no cultivo de microalgas, como a Chlorella vulgaris, que é amplamente reconhecida 

por seu alto teor de carboidratos, proteínas e outros compostos bioativos (Safi et al., 

2014; Pääkkönen, et al. 2024; Ahmad Sobri, et al. 2023). 

As microalgas desempenham um papel crucial na biotecnologia devido à sua 

versatilidade em aplicações como produção de bioenergia, alimentos funcionais e 

tratamentos ambientais (Su et al., 2023). A Chlorella vulgaris, em particular, destaca-

se por sua capacidade de produzir elevadas concentrações de biomassa e de 

acumular alto teor de carboidratos (até 60%) em condições específicas de cultivo, que 

pode otimizar sua produtividade em modo contínuo (Abdel-Latif et al., 2022). No 

entanto, a otimização do cultivo dessa microalga exige uma compreensão detalhada 

da interação entre variáveis nutricionais, ambientais e operacionais, uma vez que o 

acúmulo de carboidrato intracelular depende da interação dessas variáveis. Além 

disso, esses carboidratos podem ser utilizados para os mais diversos fins, como a 

produção de etanol (De Farias Silva e Sforza, 2016). 

Ferramentas de aprendizado supervisionado, como regressão linear, Ridge, 

Lasso, Redes Neurais, Suport Vector Regression e Random Forest, são amplamente 

utilizadas para modelar sistemas complexos (Pedregosa et al., 2011). Essas 

metodologias permitem prever com precisão a produtividade e a composição 

bioquímica de culturas das microalgas, fornecendo insights valiosos para otimização 

de processos. Além disso, a normalização de variáveis e a aplicação de métricas como 

o coeficiente de Pearson garantem a robustez dos modelos preditivos (Fisher, et al. 

2022) 
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Dado o crescente interesse em tecnologias sustentáveis, este trabalho visa 

aplicar técnicas avançadas de Machine Learning para prever a produção de 

carboidratos pela Chlorella vulgaris em cultivo contínuo. A abordagem proposta incluiu 

uma análise comparativa de métodos de regressão e aprendizado supervisionado, 

com o objetivo de identificar o modelo mais eficaz para a predição de variáveis-chave, 

como produtividade da biomassa e de carboidratos e o percentual de carboidrato em 

biomassa. Ao explorar a relação entre condições de cultivo e produção de biomassa, 

espera-se contribuir para o avanço do uso de microalgas em processos industriais. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

2. OBJETIVOS 

2.1. Geral 

Prever a produção de carboidratos de Chlorella vulgaris em cultivo contínuo 

aplicando Machine learning a partir de variáveis nutricionais (concentração de fósforo 

e nitrogênio), ambientais (intensidade luminosa e, densidade óptica) e operacionais 

(tempo de residência e tempo normalizado). 

2.2. Específicos 

• Identificar relações entre variáveis independentes e dependentes usando 

métricas: o coeficiente de Pearson e histograma; 

• Implementar e comparar diferentes métodos de regressão: Técnicas 

lineares (regressão linear multivariada, Ridge e LASSO). Técnicas não 

lineares (Random Forest, Redes Neurais e Support Vector Regression - 

SVR); 

• Otimizar os modelos de Machine Learning ao definir os melhores 

hiperparâmetros para cada técnica; 

• Realizar validação cruzada para evitar overfitting e garantir a generalização 

dos resultados; 

• Validar os modelos preditivos, ao avaliar a precisão com métricas como R² 

e RMSE para cada variável de saída em dados de teste. 
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3. FUNDAMENTAÇÃO TEÓRICA 

Este capítulo tem como escopo apresentar um levantamento bibliográfico que 

serviu como base para o presente trabalho, sendo descritas algumas definições 

referentes os modelos de regressão, método Pearson e outras análises estatísticas 

sobre a organização e distribuição dos dados, assim como as ferramentas 

disponibilizadas pelo SK-Learn em conjunto com o Python.  

3.1. Python 

 

Python é uma linguagem de programação de alto nível, conhecida por sua 

sintaxe simples e legível, o que a torna ideal tanto para iniciantes quanto para 

profissionais experientes. Seu vasto ecossistema de bibliotecas, permite o 

desenvolvimento de soluções eficientes para uma ampla gama de aplicações, 

incluindo análise de dados, aprendizado de máquina, automação e desenvolvimento 

web. Além disso, sua comunidade ativa e crescente contribui constantemente com 

novos recursos e ferramentas, tornando o Python uma das linguagens mais populares 

e versáteis do mundo da programação (Ranganathan, et al. 2019). 

O Scikit-learn é uma biblioteca de aprendizado de máquina em Python, 

reconhecida por sua eficiência e facilidade de uso. Construída sobre NumPy, SciPy e 

Matplotlib, oferece algoritmos para regressão, classificação, clustering e redução de 

dimensionalidade, incluindo SVR, Random Forest e PCA. (Pedregosa et al., 2011). E 

é a biblioteca mais importante deste trabalho, pois, foi ela que todas as regressões 

foram construídas. Outras bibliotecas foram de grande importância, como Pandas e 

Seaborn que oferecem ferramentas de pré-processamento de dados e visualização. 

(Mckinney, 2025; Waskom, 2025). 

Além de ferramentas para pré-processamento, validação cruzada e ajuste de 

hiperparâmetros, permite a automação do fluxo de trabalho por meio de pipelines. Um 

desafio comum no aprendizado de máquina é o overfitting, que prejudica a 

generalização dos modelos. Para evitá-lo, é essencial separar corretamente os dados 

de treinamento e teste (Ying, 2019). 

O Scikit-learn é uma biblioteca amplamente adotada para aprendizado de 

máquina em Python, destacando-se pela sua facilidade de uso e eficiência. 

Construída sobre NumPy, SciPy e Matplotlib, ela fornece uma variedade de algoritmos 

para tarefas de regressão, classificação, clustering e redução de dimensionalidade. 
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Recursos como regressão linear, regressão Lasso, regressão Ridge, Redes Neurais, 

SVR (Support Vector Regressor), RF (Random Forest), e PCA (Principal Component 

Analysis) ajudam a resolver diferentes desafios de análise de dados. (Pedregosa et 

al., 2011) 

 

3.2. Machine learning 

 

Machine Learning (ML), ou aprendizado de máquina, é uma subárea da 

inteligência artificial que desenvolve algoritmos capazes de aprender com dados e 

tomar decisões ou realizar previsões sem serem explicitamente programados. Esses 

algoritmos identificam padrões em conjuntos de dados e usam esse conhecimento 

para generalizar e aplicar o aprendizado em situações novas. A abordagem baseia-

se em modelos matemáticos e estatísticos que, quanto mais expostos a dados, 

melhoram seu desempenho ao longo do tempo. Esse processo de aprendizado ocorre 

de forma iterativa, permitindo que os modelos se adaptem a contextos variados e 

complexos. (Sun et al. 2024; Smiti, 2020; Yüksel, et al. 2023) 

Existem três categorias principais de aprendizado: supervisionado 

(supervised), não supervisionado (unsupervised), por reforço (reinforcement) e o 

semi-supervisionado (Semi-supervised). No aprendizado supervisionado, o modelo 

aprende com dados rotulados, ou seja, entradas com as respostas corretas já 

conhecidas, como prever preços ou classificar imagens. No aprendizado não 

supervisionado, o objetivo é encontrar padrões ou estruturas ocultas em dados não 

rotulados, como segmentação de clientes. Já o aprendizado por reforço ocorre por 

tentativa e erro, onde o modelo é recompensado ou penalizado por suas ações.  E o 

aprendizado semi-supervisionado é um tipo de aprendizado de máquina que utiliza 

uma combinação de dados rotulados (com respostas conhecidas) e dados não 

rotulados (sem respostas) para treinar um modelo. (Sarker, 2021a, 2021b; Smiti, 

2020) 

Dentro das três principais categorias de Machine Learning, existe uma ampla 

variedade de algoritmos sendo desenvolvidos continuamente, cada um com 

características específicas e aplicações voltadas para diferentes desafios 

computacionais. De modo geral, esses algoritmos podem ser agrupados em grandes 

categorias, cada uma delas englobando técnicas distintas que visam solucionar 

problemas específicos. No entanto o mesmo algoritmo pode ser adaptado, para 
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desempenhar funções distintas como é o caso do SVM, que é utilizado comumente 

como classificador e seu conceito adaptado para a regressão temos o SVR. A imagem 

da Figura 1 apresenta uma classificação resumida das principais abordagens de ML, 

destacando suas categorias, técnicas e algoritmos aplicados em diferentes contextos. 

 

Figura 1 - Tipos de algoritmos que envolvem Machine Learning. 

 

Fonte: (Autor, 2025; El-Gawad et. al., 2021 – adaptado) 

 

O Aprendizado Supervisionado é caracterizado pela utilização de dados 

rotulados para treinar modelos preditivos, sendo dividido em classificação e 

regressão. Na classificação, os algoritmos mais utilizados incluem Support Vector 

Machines (SVM), Decision Tree, Random Forest (RF) e Naive Bayes, que são 

amplamente empregados para problemas que envolvem a predição de categorias 

discretas, como diagnóstico de doenças ou reconhecimento de padrões. Já na 

regressão, os principais métodos incluem Linear Regression, Ridge Regression, 

LASSO, Support Vector Regression (SVR) e Redes Neurais, voltados para a predição 

de valores contínuos, como previsão de preços ou tendências de mercado. (El-

Gawad, 2021; Shah, 2021; Sarker, 2021b); da mesma maneira que este trabalho que 

tem por objetivo prever continuamente a produção de carboidratos. 
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No Aprendizado Não Supervisionado, os dados utilizados não possuem 

rótulos, e o objetivo é identificar padrões ou estruturas ocultas nos dados. Essa 

abordagem é dividida em redução de dimensionalidade e clustering. Na redução de 

dimensionalidade, técnicas como Principal Component Analysis (PCA) e Linear 

Discriminant Analysis (LDA) são utilizadas para simplificar conjuntos de dados 

complexos, preservando as informações mais relevantes, o que facilita a análise e 

visualização. Já no clustering, ou seja, grupos de dados formados com base em 

características ou similaridades compartilhadas. Entre eles algoritmos como K-Means 

e Mean Shift são aplicados para agrupar os dados em clusters com base em 

similaridades, sendo amplamente usados em segmentação de clientes e agrupamento 

de imagens. (El-Gawad et. al., 2021; Vaish et. al., 2021; Zhou, 2022) 

O Aprendizado por Reforço é uma abordagem baseada em tomada de 

decisão em que um agente aprende interagindo com um ambiente dinâmico, 

recebendo recompensas ou penalidades conforme suas ações. Os algoritmos mais 

comuns nessa categoria são Q-Learning e R-Learning, que são utilizados em 

aplicações como controle de robôs, jogos, otimização de processos e navegação 

autônoma. (Vaish et. al., 2021; Nayeri et. al., 2021; Zhang et al., 2023; Schwartz, 1993; 

Watkins et al., 1992.) 

Por fim, o Aprendizado Semi-Supervisionado combina dados rotulados e não 

rotulados, sendo uma solução intermediária que aproveita o potencial dos dados não 

rotulados para melhorar o desempenho dos modelos. Essa abordagem é subdividida 

em classificação e clustering. Na classificação, destacam-se os algoritmos Semi-

Supervised SVM (S3VM) e Gaussian Mixture Models (GMM), que utilizam técnicas 

avançadas para explorar a estrutura dos dados não rotulados e aprimorar a predição 

em cenários com poucos dados rotulados disponíveis. Na área de clustering, métodos 

como COP-KMeans, PCK-Means e DBSCAN incorporam restrições e informações 

parciais para formar agrupamentos mais consistentes e precisos. (Piccialli et. al., 

2024; Zhao et al., 2025; Rao et al. 2023; Ikotun, 2023; Quinones-Grueiro et al. 2019; 

Hajihosseinlou et al., 2024) 

 

3.3. Vantagens e desvantagens do uso de machine learning 

 

A Tabela 1 apresenta uma visão equilibrada das vantagens e desvantagens 

do uso de machine learning (ML), destacando tanto o potencial transformador dessa 
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tecnologia quanto os desafios que precisam ser superados. Entre as vantagens, 

destaca-se a capacidade do ML de lidar com tarefas complexas e grandes volumes 

de dados, oferecendo alta precisão e automação de processos repetitivos. Além disso, 

a adaptabilidade dos modelos permite que eles sejam continuamente aprimorados 

com novos dados, o que é crucial em cenários dinâmicos. A tomada de decisão 

baseada em dados também é um ponto forte, pois reduz vieses humanos e aumenta 

a eficiência do resultado (DAHIYA et al., 2022). Esses benefícios são respaldados por 

estudos como os de Goodfellow et al. (2016) e LeCun et al. (2015), que destacam o 

poder do ML e do deep learning em resolver problemas antes considerados 

intratáveis.  

 

Tabela 1 - Desempenho e Características de Modelos de Regressão e Machine Learning. 

Algoritmo Característica Vantagem Desvantagem Referência 

Linear 
multivariada 

30 amostras, 4 
variáveis 

Simplicidade e facilidade 
de uso na previsão de 

toxicidade, 

Limitação em capturar a 
complexidade das interações, 

resultando em previsões 
imprecisas 

PRICE, et al. 
2023 

Ridge 
42 amostras, 2 

variáveis 

Precisão em predições 
com dados colineares; 

lida bem com pequenos 
conjuntos de dados 

Sensível à escolha de parâmetros 
e exige dados consistentes 

CHING, et al. 
2022 

Lasso 
129 amostras, 
12 variáveis 

Seleção automática de 
variáveis, reduzindo 

redundâncias 

O uso do LASSO não só melhorou 
a precisão da estimativa, mas 
também simplificou o modelo, 

tornando-o mais prático e eficiente 
para aplicações em tempo real 

NGUYEN, L. et 
al. 2023 

RNA 
1 milhão de 
amostras, 5 

variáveis 

Capacidade de modelar 
relações não-lineares 

complexas 

Requer maior número de dados 
para evitar overfitting 

IGOU et al. 
2023 

SVR 
149 amostras, 

3 variáveis 
Boa generalização em 

dados não-lineares 
Sensível à escolha de parâmetros 

como kernel 
CHEN, J. et al. 

2022 

Random 
Forest 

25 amostras, 6 
variáveis 

Robusto contra 
overfitting e útil para 

dados complexos 

Alta demanda computacional e 
menos interpretabilidade 

SONACHALAM, 
et al. 2024 

Fonte: Autor, 2025 

 

Por outro lado, as desvantagens revelam desafios significativos que precisam 

ser abordados para garantir o uso ético e eficaz do ML. A dependência de dados de 

qualidade é um dos maiores obstáculos, pois modelos treinados com dados 

incompletos ou enviesados podem gerar resultados imprecisos ou até prejudiciais. 

Além disso, o custo computacional elevado e a falta de interpretabilidade de modelos 
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complexos, como redes neurais, limitam sua aplicação em cenários onde a 

transparência é essencial (Ahmad Sobri et al., 2023; Kenge, 2020). Outro ponto crítico 

é o risco de viés e discriminação, já que modelos podem perpetuar desigualdades 

presentes nos dados de treinamento, como discutido por Mehrabi et al. (2021). Esses 

desafios exigem atenção contínua da comunidade científica e de desenvolvedores 

para garantir que o ML seja utilizado de forma responsável e justa. 

 

3.4. Aplicação de Machine learning no cultivo de microalgas 

 

A aplicação de aprendizado de máquina na fase de crescimento de microalgas 

tem se mostrado promissora para melhorar o rendimento e facilitar sua colheita, 

fatores que influenciam diretamente o custo de produção. O crescimento e a 

morfologia das microalgas são afetados por diversos fatores, e, embora muitos 

estudos tenham sido realizados para reduzir esses custos, abordagens tradicionais 

podem ser trabalhosas ou pouco precisas, dificultando a oferta de soluções eficientes 

para a produção real (Ning et al., 2022). Nesse contexto, técnicas de aprendizado de 

máquina têm sido cada vez mais exploradas para prever o crescimento e o rendimento 

final das microalgas. 

Os estudos analisam diferentes abordagens para modelagem do crescimento 

e produção de biomassa em microalgas. He et al. (2016), Wang et al. (2019) e 

Figueroa-Torres et al. (2017) desenvolveram modelos cinéticos para estimar a 

formação de biomassa e lipídios sob diferentes condições nutricionais, enquanto 

Kaplan et al. (2020) avaliaram os efeitos do NaCl e fontes de carbono no crescimento 

de Chlorella vulgaris. Murwanashyaka et al. (2020) e Gojkovic et al. (2020) 

empregaram modelos baseados em Monod e Droop para analisar a geração de 

biomassa e armazenamento de moléculas em culturas heterotróficas, e Packer et al. 

(2011) propuseram um modelo matemático para síntese de lipídios neutros. 

O aprendizado de máquina tem sido amplamente explorado. Supriyanto et al. 

(2019), Rodríguez-Rangel et al. (2022) e Hossain et al. (2022) aplicaram redes neurais 

artificiais (ANN) e algoritmos híbridos para prever a produtividade de microalgas. 

Lopez-Exposito et al. (2019), Yew et al. (2020) e Coşgun et al. (2021) utilizaram 

técnicas de visão computacional para prever propriedades fotossintéticas e biomassa. 

Liyanaarachchi et al. (2021) e Mohamed et al. (2013) otimizaram condições de cultivo 

com ANN e RSM. 
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Outros estudos abordaram modelagem estatística e aprendizado profundo. 

Ambat et al. (2019) aplicaram regressão linear para avaliar a produtividade de 

biomassa em águas residuais, enquanto Noguchi et al. (2019) e Susanna et al. (2019) 

usaram ANN para estimar o crescimento de culturas mistas e a produtividade de 

Spirulina platenses, respectivamente. Liu et al. (2020) desenvolveram uma rede neural 

para prever concentrações celulares a partir de espectros de fluorescência, e Garcia-

Camacho et al. (2016) aplicaram redes neurais feed-forward para prever a 

concentração celular de Karlodinium veneficum. 

A regressão linear multivariada foi utilizada por Price et al. (2023) para prever 

a toxicidade crônica do zinco para Chlorella sp., enquanto Ching et al. (2022) 

aplicaram regressão Ridge para estimar o rendimento final da biomassa de Spirulina 

platensis. Nguyen et al. (2023) utilizaram o modelo LASSO para prever a densidade 

de Chlorella vulgaris a partir de imagens. Elmalky e Araji (2024) e Igou et al. (2023) 

aplicaram redes neurais e Random forest para monitoramento de produtividade, 

enquanto Chen et al. (2022) usaram aprendizado de máquina para prever o poder 

calorífico de biochars. Sonachalam et al. (2024) demonstraram alto desempenho na 

predição de emissões e eficiência de motores dual-fuel. 

Além disso, Rogers et al. (2022) exploraram transfer learning para modelar 

bioprocessos, Del Rio-Chanona et al. (2019) revisaram modelos físicos e baseados 

em dados para simulação dinâmica de processos biológicos, e Bradford et al. (2018) 

usaram processos Gaussianos para otimizar a produção de algas sob incerteza. 

 Por fim, este estudo utilizou abordagens de aprendizado de máquina, como 

regressão multivariada, Ridge, LASSO, SVR e Random Forest, para modelar a 

produtividade de biomassa e carboidratos e concentração de Chlorella vulgaris, 

considerando tempo normalizado, intensidade luminosa e concentração de nutrientes. 

Um resumo das previsões é possível ser observado a seguir, na Tabela 2. 

 

 

 

 

 

  



25 

 

Tabela 2 - Resumo das previsões que envolvem microalgas usando abordagens baseadas em ML e não baseadas em ML. 

Modelo de cultura Modelo de Entrada Tipos de Modelos Saídas Ref. 

Isochrysis galbana Biomassa, Lipídios, NaNO₃ 
Equações de Baranyi-Roberts e 

Luedeking-Piret 
Produção de lipídios He et al. (2016) 

Dunaliella viridis 

Biomassa funcional, 

carboidratos, lipídios, clorofila a, 

nitrogênio extracelular e 

intracelular 

Modelo cinético 
Produção de lipídios, 

carboidratos e biomassa 
Wang et al. (2019) 

Chlamydomonas 

reinhardtii 

Nitrogênio, Acetato na 

biomassa, formação de amido e 

lipídios 

Modelo cinético 

Crescimento de 

biomassa, acúmulo de 

amido e lipídios 

Figueroa-Torres et al. 

(2017) 

Chlorella 

sorokiniana. 

Velocidade de agitação, 

concentração de biomassa, 

floculante 

Random Forest, CCA (Cluster-

Cluster Aggregation); CLD 

(Chord Length Distribution); 

CLSM, 

Concetração de biomassa 
Lopez-Exposito; Negro; 

Blanco, (2019). 

Chlorella kessleri 
temperatura, ciclo luz-escuro 

(LD) e razão N/P 

SVR, RSM (Response Surface 

methodology), Generalized 

Linear model, Crow Search, 

modelo de remoção 

Eficiência de remoçao de 

N/P 
Hossain et al. (2022). 

Cultura mista 

luz, temperatura, pH, oxigênio 

dissolvido (DO) e sólidos totais 

dissolvidos (TDS). 

CNN (Densenet121), AVM 
Produtividade de 

microalgas 
Igou et al. (2023) 

Chlorella sp. 
Médias da cores (RGB), 

intervalo das médias de valores 

LASSO, Processo Gaussiano, 

GS2 
Densidade de microalgas Nguyen et al. (2023) 
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de pixels, frequências espaciais, 

entropias 

Spirulina platensis pH, densidade óptica (OD) Ridge, Linear multivariada Rendimento de biomassa Ching et al. (2022) 

Chlorella sp. 
pH, dureza (CaCO3) e (demanda 

química de oxigênio DQO) 
Linear multivariado Toxicidade de Zinco Price et al. (2023) 

Chlorella vulgaris 

SAG 211–12 
NaCl, glicose, glicerol 

Modelo polinomial de baixa 

ordem 

Crescimento, lipídios e 

amido 
Kaplan et al. (2020) 

Chlorella sorokiniana 

FACHB-275 
Glicose, nitrogênio, fósforo 

Modelo cinético baseado em 

Monod e Luedeking-Piret 

Biomassa, carboidratos e 

lipídios 

Murwanashyaka et al. 

(2020) 

Coelastrella sp. 3-4, 

Scenedesmus sp. 

B2-2 e Scenedesmus 

obliquus RISE 

(UTEX 417) 

Lipídios, biomassa, nitrogênio, 

carboidratos 

Modelo cinético baseado no 

modelo matemático de Droop 
Crescimento de biomassa Gojkovic et al. (2020) 

Pseudochlorococcum 

sp. 

Concentração de biomassa 

excluindo lipídios neutros, 

Concentração de lipídios 

neutros, clorofila, concentração 

de nitrogênio extracelular 

Modelo cinético baseado no 

modelo matemático de Droop 

Crescimento de 

microalgas e lipídios 

neutros 

Packer et al. (2011) 

Cultura mista 

Concentração inicial de 

microalgas (base seca), Período 

de colheita, Tempo de retenção 

hidráulica, Adição de acetato de 

sódio, Irradiância solar média, 

temperatura média da água, pH 

médio, Concentração de nitrato 

Rede Neural Artificial (ANN) 
Concentração de 

microalgas 
Supriyanto et al. (2019) 
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Cultura mista 

Licor misto, produção de 

biomassa, carboidratos, 

população de cianobactérias, 

população de diatomáceas, 

população de algas verdes, 

população de protozoários, TIC, 

TOC, TIN 

ANNs, CNN, LSTMs, KNN, RF Conteúdo de carboidratos 
Rodríguez-Rangel et al. 

(2022) 

C. vulgaris 
Biomassa inicial, concentração 

de nitrogênio e valor de pH. 
KNN 

Imagens de microalgas 

para estimativa de 

propriedades 

fotossintéticas. 

Yew et al. (2020) 

Várias espécies de 

microalgas 

Temperatura, intensidade 

luminosa, fotoperíodo, conteúdo 

de CO₂, PO₄ e N. 

AR, DT 

Produtividade de 

biomassa e conteúdo 

lipídico. 

Coşgun et al. (2021) 

C. vulgaris pH e tempo de cultivo. MLP, RSM 

Biomassa, concentração 

de lipídios totais, lipídios 

insaturados e ácido 

oleico. 

Liyanaarachchi et al. (2021) 

Tetraselmis sp. 
Concentração de glicose, extrato 

de levedura e nitrato. 
MLP, RSM 

Concentração de 

biomassa e rendimento 

lipídico. 

Mohamed et al. (2013) 

Várias espécies de 

microalgas 

Concentração de nutrientes, 

produção de biomassa e 

produtividade lipídica. 

LR 
TN, TP, COD e produção 

de biomassa. 
Ambat et al. (2019) 
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Desmodesmus sp., 

Scenedesmus sp., 

Dictyosphaerium sp., 

Klebsormidium sp., 

Microctinium sp. 

Concentração inicial de 

microalgas, período de colheita, 

tempo de retenção hidráulica, 

adição de acetato de sódio, 

irradiância solar média, 

temperatura média da água, pH 

médio, concentração de nitrato. 

ANN 

Concentração de 

microalgas no período de 

cultivo. 

Noguchi et al. (2019) 

Spirulina platensis 

Temperatura da cultura, 

intensidade luminosa, pH, 

oxigênio dissolvido, taxa de 

produção de oxigênio, tempo 

após colheita, bicarbonato, 

fosfato, nitrato e biomassa 

inicial. 

MLP 

Concentração de 

tricomas, tamanho dos 

tricomas e densidade 

óptica. 

Susanna et al. (2019) 

C. reinhardtii 
Espectros de emissão de 

fluorescência. 
ANN, GA Concentração celular. Liu et al. (2020) 

Karlodinium 

veneficum 

Concentração inicial de células e 

nutrientes, e duração da cultura. 
FFBN Concentração celular. 

García-Camacho et al. 

(2016) 

Ácido succínico e 

salicílico 

Intensidade luminosa, taxa de 

influxo de nitrato, biomassa, 

nitrato e concentração de 

luteína, concentração de ácido 

salicílico. 

Transfer Learning: Comparado 

com modelos cinéticos e ANN 

Mudança na biomassa, 

nitrato e concentração de 

luteína. 

Rogers et al. (2022) 

C. vulgaris 
Concentração inicial de 

biomassa, fosfato, glicose e 
ANN 

Mudança na biomassa, 

fosfato, glicose e 

concentração de nitrato. 

Del Rio-Chanona et al. 

(2019) 
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nitrato, coeficientes de 

rendimento. 

Desmodesmus sp. 

F51 

Biomassa, concentração de 

nitrato e luteína, taxa de influxo, 

nitrato influente, intensidade 

luminosa. 

LR, SGD 

Biomassa, concentração 

de nitrato e produção de 

luteína. 

Bradford et al. (2018) 

Chlorella vulgaris 

Dados experimentais de pH, 

temperatura, COD de entrada e 

taxa de fluxo de ar 

ANN, correlações empíricas 
Eficiência de remoção de 

DQO e DQO residual 
Jerry et al. (2023) 

Chlorella vulgaris 

Tempo normalizado, 

concentração de fósforo, 

concentração de nitrogênio, 

tempo de residência, 

intensidade luminosa, densidade 

óptica 

Linear multivariada, Ridge, 

LASSO, SVR, RF 

Porcentagem de 

carboidratos em 

biomassa, Produtividade 

de carboidratos, 

Produtividade de 

biomassa 

Este estudo 
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3.5. Chlorella vulgaris 

 

Chlorella vulgaris é uma microalga verde unicelular amplamente estudada 

devido à sua versatilidade metabólica e à rica composição nutricional, o que a torna 

uma matéria-prima promissora para diversas aplicações industriais. Pertencente ao 

filo Chlorophyta, essa microalga destaca-se por sua elevada taxa de crescimento, alta 

eficiência fotossintética e resistência a condições ambientais adversas. Sua 

composição é rica em proteínas (cerca de 61,6%), lipídios (12,5%) e carboidratos 

(13,7%), além de vitaminas, minerais, pigmentos, polissacarídeos, fatores de 

crescimento e outros compostos bioativos. Isso confere à C. vulgaris um grande 

potencial para a produção de biocombustíveis, alimentos, ração animal e 

nutracêuticos, além de suas aplicações em biotecnologia e bioeconomia sustentável 

(Coronado-Reyes et al., 2022; Safi et al., 2014). 

O cultivo de C. vulgaris pode ser realizado de forma sustentável, utilizando 

fontes alternativas de nutrientes, como resíduos industriais e agroindustriais, o que 

não só reduz os custos de produção, mas também contribui para a mitigação dos 

impactos ambientais causados pelo descarte inadequado de resíduos. De fato, a 

capacidade de adaptação dessa microalga e seu alto teor de biomoléculas de 

interesse tornam-na uma excelente candidata para aplicações em larga escala, tanto 

na biotecnologia quanto na bioenergia (Peter, et al., 2022; Chu et al., 2022). 

Em resposta a condições de estresse, como a deficiência de nitrogênio e 

excesso de carbono como provimento de ar enriquecido com CO2 continuamente, C. 

vulgaris acumula amido, e se o estresse for prolongado, aumenta sua concentração 

de lipídios intracelular, principalmente triacilgliceróis – TAGs, como reservas 

energéticas. Esses compostos são armazenados nos plastídios, como os cloroplastos, 

e em gotículas lipídicas no citoplasma, que servem como fontes de energia quando 

as condições ambientais se tornam desfavoráveis (Chokshi et al., 2017; Sun, et al. 

2018; de Farias Silva e Sforza, 2016). 

O estresse salino (estresse osmótico) e mudanças de temperatura também 

podem induzir esse comportamento metabólico, promovendo a síntese de reservas 

energéticas. A combinação de salinidade e luz intensa aumenta a biomassa, lipídios 

e antioxidantes em C. vulgaris, otimizando a produção de biodiesel e compostos 

valiosos (El-Fayoumy et al., 2024; Mountourakis, et al. 2023). 
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Deficiências de fósforo ou enxofre interferem em processos essenciais, como 

a produção de ATP e proteínas, forçando a célula a acumular carboidratos e lipídios 

como mecanismos adaptativos. A limitação de fósforo tem um impacto significativo na 

composição bioquímica da microalga Chlorella vulgaris, aumentando o teor de lipídios 

e reduzindo a quantidade de proteínas (Javed et al., 2022; Fu, et al., 2019; Xing et al., 

2021). 

No entanto, provocar condições de estresse não quer dizer que 

necessariamente haverá aumento na produtividade de forma significativa como 

Marino (2018) demonstrou ao inibir a luz, é importante verificar a combinação de todos 

os fatores, ambientais. Nutricionais e operacionais. Ainda assim, estratégias como o 

cultivo mixotrófico, que combina fotossíntese e consumo de carbono orgânico, podem 

melhorar o crescimento celular e a produção de biomassa e lipídios. Ao utilizar a 

vinhaça e biochar (Ferreira, et al. 2021), glicose (Yun, et al., 2021), águas residuais 

(Chu et al. 2022), dejetos de frango (Tan et al., 2021), junto do fornecimento de luz, 

houve a produção de biomassa com teores de carboidratos e lipídios aumentados. 

Outro fator importante é que o comprimento de onda da luz também pode 

estimular o acúmulo de amido e lipídios, uma vez que o carbono fixado pela 

fotossíntese é redirecionado para o armazenamento desses compostos, quando as 

vias metabólicas de crescimento celular estão limitadas. Six et al. (2024a) revelou que 

a indução de amido pode ser realizada através de métodos abióticos, como a privação 

de nitrogênio ou exposição à luz vermelha, que promove uma produção estável e 

constante de amido, adequada para sistemas de cultivo contínuos.  

É destacada a potencialidade da C. vulgaris para a produção de bioplásticos, 

oriunda da extração do amido do seu crescimento para produção de amido 

termoplástico, que pode ser processado em escala industrial com altos rendimentos e 

purezas (Arora et al., 2023; Six et al. 2024b). A produção de Microalgas tem sido 

utilizada amplamente para diversos fins, desde a produção de ração para alimentação, 

suplementação de nutrientes, produtos farmacêuticos. (Su et al. 2023).  As microalgas 

possuem um grande potencial na aquicultura por seus compostos bioativos, como 

antioxidantes, ácidos graxos, proteínas e pigmentos, que melhoram a saúde dos 

organismos aquáticos, aumentando a resistência ao estresse e a imunidade (Abdel-

Latif et al. 2022).  

No campo da saúde humana, C. vulgaris pode ser eficaz na redução do 

colesterol total e LDL, com benefícios comprovados na prevenção de doenças 
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cardiovasculares. Uma meta-análise de ensaios clínicos randomizados revelou uma 

redução média de 7,47 mg/dL no colesterol total e 7,71 mg/dL no colesterol LDL, 

destacando seu potencial como suplemento alimentar para o controle lipídico 

(Sherafati, 2022). Sua composição rica em fibras, carotenoides e ácidos graxos 

insaturados também pode contribuir para a saúde cardiovascular, além de melhorar a 

absorção de lipídios no intestino (Barghchi et al., 2023; Bito et al., 2020)  

Além de suas aplicações industriais, C. vulgaris também tem demonstrado 

grande eficiência na adsorção e bioacumulação de metais pesados, como cádmio, 

chumbo, níquel, cromo, cobre e zinco, com eficiências de remoção superiores a 90% 

em alguns casos. A microalga utiliza mecanismos de detoxificação, como a produção 

de fitochelatinas e metalotioneínas, para mitigar os efeitos tóxicos desses metais, 

tornando-a uma excelente candidata para o tratamento de águas contaminadas 

(Faruque et al., 2024; Yadav, et al., 2022). No entanto, a exposição de C. vulgaris a 

nanopartículas (NP) de ZnO e Fe₂O₃ reduz a taxa de crescimento, o conteúdo de 

clorofila e a integridade celular. As NP induzem estresse oxidativo, aumentando ROS, 

peroxidação lipídica e a atividade de enzimas antioxidantes. Microscopia revelou 

danos estruturais, como lise celular e desintegração da membrana. Em comparação 

com suas formas particuladas maiores, as NP mostraram maior toxicidade devido à 

maior área superficial e interação celular. (Saxena et al., 2021) 

Quando associada a tratamento anaeróbico C. vulgaris também pode 

biodegradar poluentes, e a combinação do cultivo de microalgas com o tratamento 

anaeróbico melhora a qualidade do efluente, reduzindo a DQO de 16.000 mg/L para 

1.000 mg/L (Sidabutar, et al., 2024; Zhang et al., 2024). A produção de energia através 

da biomassa de C. vulgaris por carbonização hidrotérmica catalítica com ácido 

acético, vem destacando seu potencial como fonte renovável para energia de baixo 

carbono. O hidrocarvão resultante apresentou maior densidade energética, 

estabilidade e desempenho de combustão em relação à biomassa bruta. Além disso, 

C. vulgaris mostrou alto potencial de fixação de CO₂, reduzindo emissões em até -

1,54 kg CO₂,eq/kWh na combustão conjunta com carvão, reforçando sua viabilidade 

como recurso sustentável para energia limpa (Sztancs et al., 2021). 

Por fim, a produção de etanol a partir de C. vulgaris tem se mostrado 

promissora devido ao seu alto teor de carboidratos. Em estudos recentes, foi possível 

produzir etanol a partir da biomassa da microalga cultivada em águas residuais, com 

uma produtividade que sugere viabilidade econômica para grandes escalas de 
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produção. A otimização de fatores como iluminação, aeração enriquecida com CO₂ e 

teor de nutrientes pode ainda melhorar a eficiência desse processo, consolidando a 

C. vulgaris como uma opção viável para a produção de biocombustíveis e outros 

produtos sustentáveis (Honório et al., 2024; de Farias Silva e Bertucco, 2019). 

 

3.6. Cultivo contínuo com limitação de nutrientes 

 

O estudo de Farias Silva e Sforza (2016) que é a base para este trabalho, 

investigou a produtividade de carboidratos em Chlorella vulgaris cultivada em um 

fotobiorreator contínuo de 300 mL, sob diferentes intensidades luminosas (150, 300 e 

450 µmol fótons m⁻² s⁻¹), variações na concentração de nitrogênio e fósforo no cultivo, 

além do tempo de residência. O sistema operou continuamente após atingir uma 

concentração celular significativa, com o tempo de residência controlado por uma 

bomba peristáltica. A biomassa foi analisada diariamente para medir a concentração 

celular, o conteúdo de carboidratos e o consumo de nutrientes. 

Os resultados indicaram que a limitação de nitrogênio combinada com alta 

intensidade luminosa aumentou o acúmulo de carboidratos, atingindo 52% do peso 

seco em 450 µmol fótons m⁻²s⁻¹, embora a produtividade de biomassa tenha 

diminuído. A fotossaturação reduziu a eficiência fotossintética em intensidades mais 

altas, e o tempo de residência maior favoreceu o acúmulo de carboidratos. O fósforo 

teve um comportamento influenciado pela luz, acumulando-se mais em intensidades 

elevadas (de Farias Silva e Sforza, 2016). 

O estudo identificou condições ideais para maximizar a produção de 

carboidratos, equilibrando produtividade de biomassa e acúmulo de reservas 

energéticas, através da combinação das variáveis supracitadas. Os resultados 

demonstram a viabilidade do cultivo contínuo de Chlorella vulgaris em relação a 

batelada no aumento de sua produtividade e explicita que o motivo principal do 

trabalho para aplicações industriais visou a produção de bioetanol a partir dessa 

biomassa. 

 

3.7. Regressão linear multivariada 

 

A regressão linear multivariada é uma técnica estatística amplamente utilizada 

para modelar a relação entre uma variável dependente e múltiplas variáveis 
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independentes. Diferente da regressão linear simples, que lida com uma única variável 

preditora, a regressão multivariada permite que múltiplos fatores influenciem o 

comportamento da variável resposta. Essa abordagem é fundamental para entender 

relações complexas, onde muitos fatores podem contribuir simultaneamente para um 

determinado resultado. O objetivo principal é identificar como cada variável 

independente afeta a variável dependente, proporcionando uma previsão precisa e 

insights valiosos sobre as interações entre as variáveis. (Rencher; Christensen, 2012; 

Meyers, 2003) 

No entanto, para que os resultados da regressão linear multivariada sejam 

válidos e úteis, algumas suposições precisam ser atendidas, como linearidade, 

homoscedasticidade e ausência de multicolinearidade entre as variáveis 

independentes. Quando essas condições são cumpridas, o modelo pode fornecer 

estimativas robustas e interpretações confiáveis. Apesar de ser uma ferramenta 

poderosa, a regressão linear multivariada também apresenta limitações, como a 

sensibilidade a outliers e a complexidade no tratamento de multicolinearidade, o que 

pode comprometer a precisão dos coeficientes estimados. Portanto, é fundamental 

realizar diagnósticos adequados após o ajuste do modelo para garantir que os 

resultados sejam interpretáveis e relevantes para o contexto de análise. (CHEIN, 

2019; Rencher; Christensen, 2012)  

A regressão linear considera a seguinte relação entre um número de variáveis 

independentes de entrada (preditores) 𝑥1, . . . , 𝑥𝑘−1e uma variável dependente na 

saída, y (resposta) (Melkumova et al., 2017). Assim, o y é dado por: 

𝑦 = 𝑏0 + 𝑏1𝑥1 + . . . +𝑏𝑘−1𝑥𝑘−1 +  𝜀                               (1) 

As medições são realizadas 𝑛 vezes para que se tenha 𝑛 valores de 𝑦 para 𝑛 

conjuntos de 𝑥𝑗 

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + . . . +𝑏𝑘−1𝑥𝑖𝑘−1 + 𝜀𝑖     |       𝑖 =  1, 𝑛              (2) 

 Onde 𝑥𝑖𝑗 é a i-ésima observação de 𝑥𝑗. Os 𝜀𝑖 não são observados diretamente. 

As equações (2) podem ser expressas na forma matricial após adicionar os 

parâmetros: 

𝑥10 = 𝑥20 = . . . = 𝑥𝑛0 = 1                                        (3) 
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Então: 

𝒀 = 𝑿𝑩 +  𝝃                                                 (4) 

Onde:  

𝒀 = [𝒚𝒊]𝒏 ;   𝑿 = [𝒙𝒊𝒋]𝒏×𝒌 ;    𝑩 = [𝒃𝒋]𝒌 ;    𝝃 = [𝜺𝒊]𝒏                     (5) 

As coordenadas 𝑏0 + 𝑏1 + . . . +𝑏𝑘−1 do vetor 𝐵 são desconhecidas. O objetivo 

da análise de regressão é estimar o vetor 𝐵 com base nas observações multivariadas. 

[𝑿, 𝒀] = [

𝑥10 𝑥11 … 𝑥1𝑘−1 𝑦1

𝑥20 𝑥21 … 𝑥2𝑘−1 𝑦2

…   … …   …    …

𝑥𝑛0 𝑥𝑛1 … 𝑥𝑛𝑘−1 𝑦𝑛

]                                    (6) 

Uma abordagem tradicional para este problema é usar o estimador de mínimos 

quadrados (MQ) onde: 

∑ (𝑦𝑖 − ∑(𝑏𝑖𝑥𝑖𝑗)

𝑘−1

𝑖=1

)

2

→ 𝑚𝑖𝑛

𝑛

𝑖=1

 

                                  (7) 

As estimativas de MQ dos coeficientes desconhecidos: 𝑏0 + 𝑏1 + . . . +𝑏𝑘−1 

minimizam (7): 

𝑩̂ = [𝒃𝒋̂]𝒌                                                     (8) 

Como: det 𝑿𝒕𝑿 > 𝟎. O MQ pode ser calculado utilizando a seguinte equação: 

 

𝑩̂ = (𝑿𝒕𝑿)−𝟏 𝑿𝒕𝒀                                                 (9) 

 

Sendo 𝒀̂ =  𝑿𝑩̂. Pode-se reescrever esta equação na forma coordenada da 

seguinte forma: 

𝑦𝑖̂ = 𝑏0̂ + 𝑏1̂𝑥𝑖1 + . . . +𝑏̂𝑘−1𝑥𝑖𝑘−1     |       𝑖 =  1, 𝑛                       (10) 

 

Onde 𝑦𝑖̂ é o valor de resposta previsto que corresponde aos valores preditores 

𝑥1, . . . , 𝑥𝑘−1. A soma residual dos quadrados (SRQ) mede a discrepância entre os 

dados e o modelo de estimativa, assim: 
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𝑆𝑅𝑄 = ∑(𝑦𝑖̂ − 𝑦𝑖)
2

𝑛

𝑖=1

 

            (11) 

O coeficiente de determinação R²: 

 

𝑅2 = 1 − 
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1  

                                              (12) 

 

O valor de R² (12) também mede a qualidade do modelo de regressão: quanto 

mais próximo de 1, melhor o modelo de regressão (10) se ajusta aos dados (6). A 

padronização dos dados pela normalização é frequentemente usada na análise de 

regressão linear (Melkumova et al., 2017). Ou seja, denotando: 

 

𝑥̅𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

;   𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

;  𝑆𝑦
2 =

1

𝑛
∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

;   𝑆𝑗
2 = ∑(𝑥𝑖𝑗 − 𝑥̅𝑗)

2
𝑛

𝑖=1

;  𝑗 = 1, 𝑘 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

                                    (13) 

Obtemos variáveis centralizadas e normalizadas para a amostra inicial (6): 

 

𝑣𝑖 =
𝑦𝑖−𝑦̅

𝑆𝑦
;   𝑤𝑖𝑗 =

𝑥𝑖𝑗−𝑥̅𝑗

𝑆𝑗
;  𝑖 = 1, 𝑛̅̅ ̅̅ ̅;   𝑗 = 1, 𝑘 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅                         (14) 

 

Assim podemos denotar que: 

 

𝑽 = [𝒗𝒊]𝒏 ;   𝑾 = [𝑤𝑖𝑗]𝑛×𝑘−1                                    (15) 

 

Caso det 𝑾𝒕𝑾 > 𝟎., as estimativas de MQ para o modelo padronizado podem 

ser calculadas usando a fórmula: 

 

𝑩̂ = (𝑾𝒕𝑾)−𝟏 𝑾𝒕𝑽                                                (16) 

 

Existem várias vantagens em usar dados padronizados para regressão linear. 

Primeiro, com dados padronizados a solução não depende da escala de medição. Os 

preditores 𝑥𝑗 podem ser medidos em escalas diferentes, enquanto os preditores 

padronizados 𝑤𝑗 são reduzidos à mesma escala “neutra”. Segundo, a entrada do 
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preditor tem mais probabilidade de depender do valor relativo 𝑤𝑗 do que do valor 

absoluto 𝑥𝑗. (Melkumova et al., 2017) 

 

3.8. Regressão LASSO 

 

A regressão LASSO (Least Absolute Shrinkage and Selection Operator) foi 

introduzida por Tibshirani (1996) como uma abordagem inovadora que combina 

regularização e seleção de variáveis em modelos de regressão linear, destacando 

suas vantagens em cenários de alta dimensionalidade e multicolinearidade. O método 

rapidamente ganhou popularidade por sua eficácia e simplicidade, tornando-se uma 

ferramenta essencial em estatística e aprendizado de máquina (Varshini; Kumari, 

2020). 

A regressão LASSO. É um operador de mínima redução absoluta e seleção. 

Se destacando os dois aspectos principais do método: a redução (ou "encolhimento") 

dos coeficientes e a seleção automática de variáveis. É uma técnica amplamente 

utilizada na modelagem estatística e aprendizado de máquina para realizar seleção 

de variáveis e regularização de modelos lineares. Diferente da regressão linear 

comum, que minimiza o erro quadrático, o LASSO adiciona um termo de penalidade 

baseado na soma dos valores absolutos dos coeficientes. Essa penalidade força 

alguns coeficientes a se tornarem exatamente zero, permitindo a exclusão automática 

de variáveis irrelevantes ou redundantes. Como resultado, o LASSO é especialmente 

útil em cenários onde há muitas variáveis preditoras e o objetivo é identificar um 

subconjunto de variáveis que mais contribuem para a previsão do modelo. (Ranstam; 

Cook, 2018). 

Uma das principais vantagens do LASSO é sua capacidade de evitar o 

overfitting, proporcionando modelos mais simples e interpretáveis. No entanto, essa 

técnica também apresenta limitações, como a tendência de selecionar apenas uma 

variável entre aquelas altamente correlacionadas, o que pode levar à perda de 

informações importantes. Além disso, o desempenho do LASSO depende do ajuste 

cuidadoso de seu parâmetro de regularização, geralmente determinado por validação 

cruzada. (Saini, et al., 2023) 

A estimativa Lasso 𝐵𝜆 é a solução dos seguintes problemas de minimização 

equivalentes para observações padronizadas {W, V}. 
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‖𝑽 − 𝑾𝐵‖2 + 𝜆 ‖𝐵‖1  → 𝑚𝑖𝑛                                       (23) 

 Para todo 𝜆 >  0, existe um 𝑡(𝜆)  >  0 tal que: 

‖𝑽 − 𝑾𝐵‖2  → 𝑚𝑖𝑛                                              (24) 

Tal que: 

𝜆 ‖𝐵‖1  ≤  𝑡(𝜆)                                                 (25) 

Onde: 

 ‖𝐵‖1  ≤  ∑ | 𝛽𝑗|𝑘=1
𝑗=1                                                (26) 

A penalidade no vetor de coeficientes 𝛽𝑗, j = 1, k −  1 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  imposta pelo LASSO é 

ligeiramente diferente de Ridge. No caso do LASSO, o parâmetro λ é multiplicado pela 

norma ℓ1 do vetor (𝛽1, ..., 𝛽𝑘−1) enquanto Ridge usa a norma ℓ2. 

Um dos efeitos positivos desta mudança em termos de interpretação do modelo   

de Lasso, ao contrário da regressão de Ridge resulta em um modelo onde algumas 

estimativas de coeficiente são exatamente iguais a zero quando 𝜆 é grande. Em outras 

palavras, a regularização LASSO realiza adicionalmente a seleção de variáveis, o que 

facilita a interpretação do modelo. Como no caso de Ridge, diferentes valores de 𝜆 

produzem diferentes vetores 𝛽𝜆. É por isso que é importante selecionar um valor 

adequado de 𝜆 (Melkumova, et al. 2017). 

3.9. Regressão Ridge  

 

A Regressão Ridge é uma técnica amplamente utilizada em problemas de regressão 

para lidar com a multicolinearidade, que ocorre quando as variáveis independentes 

estão altamente correlacionadas entre si. Proposta inicialmente por Arthur Hoerl e 

Robert Kennard em 1970, essa abordagem é uma extensão da regressão linear 

tradicional, com a adição de um mecanismo de regularização que reduz a 

complexidade do modelo (Hoerl, 2020; Gruber, 1998; Hoerl, 1970). 

A regressão Ridge é uma variante da regressão linear que introduz uma 

penalização 𝐿2 aos coeficientes do modelo para reduzir a complexidade e evitar o 

overfitting. Ela funciona adicionando um termo de regularização à função de custo, 
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que é proporcional ao quadrado da magnitude dos coeficientes. O objetivo é minimizar 

o erro quadrático médio, enquanto restringe o tamanho dos coeficientes. A 

regularização ajuda a lidar com problemas de multicolinearidade, ou seja, quando as 

variáveis independentes são altamente correlacionadas e melhora a generalização do 

modelo (Theodoridis; Koutroumbas, 2009). 

Um aspecto importante da regressão Ridge é que, ao contrário da regressão 

LASSO, ela não força os coeficientes a zero, mas os reduz de forma suave, mantendo 

todos os preditores no modelo. Isso a torna útil quando se deseja manter todas as 

variáveis explicativas, mas sem permitir que algumas delas dominem as demais. O 

parâmetro de regularização, λ, controla o equilíbrio entre ajuste aos dados e 

complexidade do modelo: quanto maior o valor de λ, mais forte a penalização e, 

consequentemente, menores os coeficientes. (Shah, et al., 2021) 

A estimativa Ridge de um vetor desconhecido 𝐵,  para observações 

padronizadas {W, V} é dada por:  

𝑩̂𝜆 =  (𝑾𝒕𝑾 + 𝜆𝐼𝑛)−𝟏 𝑾𝒕𝑽                                    (17) 

 

Onde 𝐼𝑛 é a matriz identidade e 𝜆 >  0 é chamado de parâmetro de 

regularização. Denotaremos a forma coordenada do estimador de Ridge por: 

 

𝑩̂𝜆 = [𝜷̂𝑗(𝜆)]𝑘−1                                              (18) 

 

 Ao adicionar parâmetro 𝜆  (Ridge) aos elementos diagonais da matriz 𝑾𝒕𝑽, é 

possível transformar a matriz em (𝑾𝒕𝑾 + 𝜆𝐼𝑛) e não interferir significativamente no 

formato da matriz. Desta forma evitamos problemas habituais com a inversão de 

matriz mal condicionada. Contudo, vale a pena notar que, ao contrário do MQ, a 

estimativa de Ridge: 𝑩̂𝜆 é tendenciosa (Melkumova, et al. 2017). Pode ser mostrado 

que a estimativa de Ridge: 𝑩̂𝜆 é a solução dos seguintes problemas de minimização 

equivalentes: 

‖𝑽 − 𝑾𝐵‖2 + 𝜆‖𝐵‖2  → 𝑚𝑖𝑛                                         (19) 

 Para todo 𝜆 >  0, existe um 𝑡(𝜆)  >  0 tal que: 

‖𝑽 − 𝑾𝐵‖  → 𝑚𝑖𝑛 ‖𝑽 − 𝑾𝐵‖2 + 𝜆‖𝐵‖2  → 𝑚𝑖𝑛                      (20) 
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Tal que: 

𝜆 ‖𝐵‖2  ≤  𝑡(𝜆)                                                  (21) 

Onde: 

 ‖𝐵‖1  ≤  ∑ | 𝛽𝑗|𝑘=1
𝑗=1                                                (22) 

Portanto, a estimativa de Ridge pode ser vista como uma estimativa SRQ com 

uma penalidade adicional imposta ao vetor de coeficientes. 

 

3.10. Redes Neurais para Regressão 

 

Uma rede neural é um sistema computacional que opera de maneira distribuída 

e massivamente paralela, composto por unidades de processamento simples. Ela 

possui a capacidade de aprender com a experiência, armazenando esse 

conhecimento e utilizando-o conforme necessário. Assim como o cérebro humano, a 

rede neural adquire informações por meio de interações com o ambiente. O 

aprendizado ocorre ajustando as conexões entre as unidades de processamento, 

chamadas de pesos sinápticos, onde o conhecimento é efetivamente armazenado 

(Géron, 2019).  

Essas redes têm uma natureza de ‘‘caixa preta’’ e possuem a capacidade comum 

de construir modelos empíricos dos sistemas para os quais as dependências teóricas 

entre a entrada e a saída são extremamente complicadas ou mesmo desconhecidas. 

Esse processo permite à rede reconhecer padrões e realizar tarefas complexas de 

forma semelhante ao funcionamento dos neurônios biológicos. (Elyashberg; Williams; 

Martin, 2008; Haykin, 2001). 

Tais Tarefas de aprendizado de máquina geralmente são descritas em termos 

de como o sistema deve processar um exemplo. Um exemplo é uma coleção de 

características que foram medidas quantitativamente a partir de algum objeto ou 

evento que queremos que o sistema de aprendizado de máquina processe. 

Normalmente, representamos um exemplo como um vetor 𝑥 ∈ 𝑅𝑛, onde cada entrada 

𝑥𝑖 do vetor corresponde a uma característica. (Goodfellow et al., 2016).  
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O modelo neural ilustrado na Figura 2, possui um viés externo, representado por 

𝑏𝑘, que altera a entrada líquida da função de ativação. Esse viés 𝑏𝑘 pode aumentar 

ou reduzir a entrada, dependendo de ser positivo ou negativo, respectivamente.  

Figura 2  - Modelo rede neural não linear. 

 

Fonte:  HAYKIN, 2009. (adaptado) 

Onde 𝑥1, 𝑥2, . . . ,   𝑥𝑚 são os sinais de entrada; 𝑤𝑘1, 𝑤𝑘2, . . . ,   𝑤𝑘𝑚 são os 

respectivos pesos “sinápticos” do neurônio 𝑘; 𝑢𝑘 (não mostrado na Fig. 2) é a 

combinação linear devido aos sinais de entrada; 𝑏𝑘 é o viés; 𝜑(. ) é a função de 

ativação; e 𝑦𝑘 é o sinal de saída do neurônio. Matematicamente, o neurônio 𝑘 na Fig. 

5 pode ser descrito pelas equações a seguir: 

 

𝑢𝑘 = ∑ 𝑤𝑘𝑗
𝑚
=1 𝑥𝑗                                                  (27) 

E 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)                                                 (28) 

 

Existem diversos tipos de funções de ativação 𝜑 amplamente utilizadas, as 

funções disponíveis no Scikit-learn são a: ‘identity’, é uma função de ativação no-op, 

uma abreviação de "no operation", que em português significa "sem operação", ou 

seja, não há transformação aplicada à entrada, retorna f(x) =  x ; ‘logistic’, a função 

sigmoide logística, retorna f(x) =
1

1+e−x; ‘tanh’, a função tangente hiperbólica, retorna 

f(x) =  tanh(x); ‘relu’, a função unitária linear retificada, retorna 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). 

(Haykin, 2009) 
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O processo se repete para cada camada até a camada de saída, com cada 

camada fornecendo entradas ponderadas para a próxima como é possível observar 

na Figura 3 a seguir:  

 

Figura 3 - Fluxograma de funcionamento de uma Rede Neural MLP. 

 

Fonte: Autor, PRAMODITHA (2022), adaptado. 

 

3.11. Support Vector Regression 

 

O SVM (Support Vector Machine) foi inicialmente desenvolvido por Vapnik, 

1998. O SVM destaca-se em problemas de aproximação de funções com alta 

dimensionalidade, graças à técnica de kernel, que transforma os vetores de 

características em um espaço de maior dimensão. Este modelo é um dos mais 

versáteis e populares no aprendizado de máquina, sendo adequado tanto para tarefas 

de classificação quanto de regressão, especialmente em pequenos conjuntos de 

dados complexos. (Sui et al. 2021; Suykens; Vandewalle, 1998) A Suporte Vetorial 

para Regressão (SVR) é uma extensão do conceito de Máquinas de Vetores de 

Suporte (SVM) para tarefas de regressão. 

A Figura 4 ilustra o funcionamento SVR o modelo busca ajustar um hiperplano 

(representado pela linha vermelha) que descreve a relação entre as variáveis de 
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entrada e a variável de saída, mantendo os desvios dentro de uma margem de 

tolerância definida pelo parâmetro 𝝐. As linhas tracejadas paralelas delimitam essa 

margem de tolerância ϵ, dentro da qual os desvios dos valores reais (pontos pretos) 

em relação ao hiperplano são considerados aceitáveis e não contribuem para a 

penalização na função de custo (Vapnik, 2000; Awad; Khanna, 2015; Arshad et al., 

2021). 

Figura 4 - Regressão vetorial de suporte para modelagem de resposta. 

 

Fonte: Autor, 2025; Arshad et al., 2021 (adaptado) 

Contudo, pontos que ultrapassam essa margem geram desvios residuais, 

representados pelas variáveis 𝝃 (quando o desvio é positivo) e 𝝃𝒊
∗ (quando o desvio é 

negativo). Esses desvios são penalizados no processo de otimização, forçando o 

modelo a buscar um equilíbrio entre minimizar os erros e evitar um ajuste excessivo 

(overfitting). O SVR é, portanto, uma técnica robusta que permite flexibilidade ao lidar 

com ruídos nos dados, mantendo a capacidade de generalização. (COMITO, C.; 

PIZZUTI, C.; 2022)  

Dado um conjunto de dados com 𝑛 exemplos de treinamento {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  onde 

𝑥𝑖  ∈  ℝ𝑑 são as características de entrada e onde 𝑦𝑖  ∈  ℝ. O objetivo do SVR é 

encontrar uma função 𝑓(𝑥) que seja o mais "plana" possível e que se desvie dos 
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valores reais 𝑦𝑖 por no máximo uma certa margem 𝜖 Awad e Khanna (2015). No SVR, 

a função 𝑓(𝑥) é representada como: 

 

𝑓(𝑥) = 𝑦̂ = 𝑤𝑇𝜓(𝑥) + 𝑏 + 𝜖                                              (29) 

 

Na regressão por vetores de suporte (SVR), a função de perda desempenha 

um papel crucial, e o uso de 𝜓 para representar essa função de perda ajuda a explicar 

como o erro é tratado no modelo. onde 𝜓 é um mapeamento que cria um espaço de 

características lineares com dimensão ℝ𝑑 para os dados de entrada. Usando uma 

função de perda insensível a 𝜖, o modelo SVM difere de outros modelos de regressão 

linear. De acordo com Awad e Khanna (2015), um erro maior que ε é considerado 

indesejável. Ou seja, o objetivo do SVM básico é identificar os coeficientes ótimos w 

e b tais que a função, 𝑓, não contenha erros superiores a 𝜀. Por esse motivo, esse 

modelo também é conhecido como SVM de margem rígida. Assim podemos definir o 

modelo como: 

 

𝑚𝑖𝑛𝑤,𝑏   
1

2
𝑤𝑇𝑤                                              (30) 

 

{
𝑦𝑖 − 𝑤𝑇𝜓(𝑥𝑖) − 𝑏 ≤ 𝜖

𝑤𝑇𝜓(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≥ 𝜖
          ∀𝑖 ∈ {1, 2, … , 𝑁}                      (31) 

 

No entanto, nem sempre é viável encontrar um mínimo sob estas restrições. 

Portanto, a seguinte função de perda é introduzida: 

 

𝜉𝜖(𝑦̂𝑖 , 𝑦𝑖) = {
0, |𝑦𝑖 − 𝑦̂𝑖 |  < 𝜖

|𝑦𝑖 − 𝑦̂𝑖 | − 𝜖,   𝑠𝑒𝑛ã𝑜
          ∀𝑖 ∈ {1, 2, … , 𝑁}                      (32) 

 

Assim a solução primal deste problema torna-se: 

𝑚𝑖𝑛𝑤,𝑏,𝜉𝑖,𝜉𝑖
∗  

1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑖 + 𝜉𝑖

∗𝑛
𝑖=1                                (33) 

Sujeitada a: 

𝑦𝑖 − 𝑤𝑇𝑥𝑖 ≤ 𝜖 + 𝜉𝑖
∗       |      𝑖 = 1 … 𝑁 

𝑤𝑇𝑥𝑖 − 𝑦𝑖−≤ 𝜖 + 𝜉𝑖       |      𝑖 = 1 … 𝑁 

𝜉𝑖, 𝜉𝑖
∗  ≥ 0     |      𝑖 = 1 … 𝑁                                      (34) 
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O erro de regressão aumentará para amostras fora da banda ε, mas amostras 

aceitáveis são aquelas com erro previsto menor que 𝜀, conforme. Para tornar a 

otimização possível com limitações que de outra forma seriam impraticáveis, as 

variáveis da margem limite 𝜉𝑖 e  𝜉𝑖
∗ são introduzidas para fornecer uma margem suave 

e permitir erros de medição. (Awad; Khanna, 2015) 

O objetivo do SVR é minimizar a norma do vetor de pesos 𝑤 (que controla a 

"planicidade" da função) enquanto permite algum desvio 𝜖 dos valores alvo 𝑦𝑖. Para 

lidar com erros que excedem essa margem, são introduzidas variáveis de folga 𝜉𝑖 e 

𝜉𝑖
∗, que representam os erros de superestimação e subestimação, respectivamente. 

Assim, o problema de otimização primal (33) quando colocada na forma 

Lagrangiana, é introduzido os multiplicadores de Lagrange não-negativos para cada 

restrição (34). 𝛼𝑖 e 𝛼𝑖
∗ para as duas primeiras restrições de erro, e 𝜂𝑖  e 𝜂𝑖

∗  para a 

terceira. Assim a Lagrangiana do problema se torna: 

 

𝐿(𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝜂, 𝜂∗) =
1

2
 ||𝑤||

2
+ 𝐶 ∑ (𝜉 + 𝜉∗)𝑛

𝑖=1 + 𝛼𝑖 ∑ (𝜖 + 𝜉𝑖 − 𝑦𝑖 + 𝑤. 𝑥𝑖 + 𝑏)𝑛
𝑖=1 −

 𝛼𝑖
∗ ∑ (𝜖 + 𝜉𝑖

∗ + 𝑦𝑖 − 𝑤. 𝑥𝑖 − 𝑏)𝑛
𝑖=1 − ∑ (𝜂𝑖𝜉𝑖)

𝑛
𝑖=1 − ∑ (𝜂𝑖

∗𝜉𝑖
∗)𝑛

𝑖=1                      (35) 

 

Para encontrar o valor otimizado, ou seja, com o mínimo de erro basta derivar 

a equação anterior (35) em relação as variáveis primais 𝑤, 𝑏, 𝜉, 𝜉∗ para obter o valor 

mínimo. Isso requer definir as derivadas parciais de 𝐿 em relação a essas variáveis 

como zero. A minimização em relação a 𝑤. 

 

𝜕𝐿

𝜕𝑤
= 𝑤 − ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 𝑥𝑖 = 0                                  (36) 

Resultando em: 

𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 𝑥𝑖                                         (37) 

A minimização em relação a 𝑏. 

 

𝜕𝐿

𝜕𝑏
= ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 = 0                                        (38) 

Assim: 

∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 = 0                                             (39) 
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Minimização em relação a 𝜉 𝑒 𝜉∗: 

 

𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0                                              (40) 

𝜕𝐿

𝜕𝜉𝑖
∗ = 𝐶 − 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0                                        (41) 

 

Como 𝜂𝑖 , 𝜂𝑖
∗  ≥ 0, é possível chegar nas seguintes conclusões: 

 

0 ≤ 𝛼𝑖  ≤ 𝐶                                                (42) 

0 ≤ 𝛼𝑖
∗  ≤ 𝐶                                                (43) 

Substituindo: 

 

𝑚𝑖𝑛𝛼,𝛼∗
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 (𝛼𝑖 − 𝛼𝑖

∗)⟨𝑥𝑖, 𝑥𝑗⟩ + 𝜖 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 − ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1                                    

(44) 

No caso de ser necessário uma fronteira de decisão não-linear, podemos usar 

o truque do kernel para substituir o produto interno ⟨𝑥𝑖, 𝑥𝑗⟩ por uma função de kernel 

𝐾(𝑥𝑖, 𝑥𝑗) que mapeia os dados para um espaço de características de dimensão mais 

alta. Isso transforma o problema dual em: 

 

𝑚𝑖𝑛𝛼,𝛼∗
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 (𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝑥𝑖, 𝑥𝑗)  + 𝜖 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 − ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1                                    

(43) 

 

Sujeita às mesmas restrições anteriores obtidas pelas derivadas. Depois de 

resolvermos os valores ótimos de 𝛼𝑖 e 𝛼𝑖
∗, a função de predição para uma nova entrada 

x é: 

𝑓(𝑥) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏                                  (45) 

 

As funções kernel mais utilizadas são: Linear, polinomial, Radial Basis Function 

(RBF), Sigmoide. Segundo Schölkopf (2001), a função kernel linear que é definida 

como: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 . 𝑥𝑗 , este tipo de função é adequado quando os dados são 

aproximadamente linearmente separáveis, possui como vantagem ser simples e 

eficiente em problemas de alta dimensionalidade. A função kernel polinomial é 
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definida por: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾. 𝑥𝑖. 𝑥𝑗 + 𝑐)
𝑑
.  C, d e 𝛾 são parâmetros ajustáveis, d 

representa o grau do polinômio, 𝛾 controla a largura do kernel (geralmente ajustado 

entre 0 e 1, c representa o deslocamento do kernel. É bastante útil quando existe uma 

relação polinomial entre as características. Por outro lado, a função kernel RBF é 

definida por: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒
(−𝛾||𝑥𝑖−𝑥𝑗||

2
)
. 𝛾 é um parâmetro ajustável e assim como no 

kernel polinomial ele tem a função de controlar a largura do kernel. É adequado para 

dados complexos e não linearmente separáveis.  Por fim a função kernel sigmoide: 

𝐾(𝑥𝑖, 𝑥𝑗) = tan(𝛾. 𝑥𝑖 . 𝑥𝑗 + 𝑐), os parâmetros variáveis seguem o mesmo raciocínio do 

kernel polinomial. E pode funcionar bem em alguns tipos de dados não lineares. 

 

3.12. Random Forest 

 

O Random Forest é um método de aprendizado de máquina supervisionado 

amplamente utilizado para tarefas de classificação e regressão. Introduzido por Leo 

Breiman em 2001, o Random Forest pertence à categoria de algoritmos baseados em 

conjuntos (ensemble methods), que combinam múltiplos modelos fracos para formar 

um modelo robusto e preciso. A base do Random Forest está nas árvores de decisão 

individuais, cuja combinação permite melhorar a generalização do modelo e reduzir o 

risco de overfitting. 

O Random Forest constrói uma coleção de árvores de decisão a partir de 

subconjuntos aleatórios dos dados de treinamento e utiliza amostras aleatórias das 

características (variáveis preditoras) em cada divisão dos nós das árvores, como é 

possível observar na Figura 5. Esse processo de amostragem, conhecido como 

Bagging (ou Bootstrap Aggregating), promove a independência entre as árvores, 

aumentando a robustez e a precisão do modelo final. (Sarker et al., 2021) 
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Figura 5 - Árvore de decisão do modelo Random Forest. 

 

Fonte: Autor, 2025; Sarker 2021a (adaptado) 

 

Uma das principais vantagens do Random Forest é sua capacidade de lidar 

com grandes volumes de dados e com um número elevado de variáveis, mesmo na 

presença de ruído ou dados faltantes. Além disso, o algoritmo fornece métricas 

importantes, como a importância das variáveis (feature importance), facilitando a 

interpretação dos resultados (BREIMAN, 2001). 

Seja um conjunto de 𝑁 árvores de decisão, denotadas por ℎ𝑛(𝑥), onde 𝑛 =

1, … , 𝑁. A previsão final do modelo Random Forest para um dado ponto 𝑥 é dada por: 

 

𝑦̂(𝑥) =
1

𝑁
∑ ℎ𝑛(𝑥)𝑁

𝑛=1                                              (46) 

Onde: 

 

• ℎ𝑛(𝑥) representa a previsão da n-ésima árvore para 𝑥 . 

• N é o número total de árvores na floresta. 
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Cada árvore do Random Forest é construída usando Bootstrap Aggregating 

(Bagging) e seleção aleatória de variáveis. Para cada árvore ℎ𝑛, amostramos um 

subconjunto 𝐷𝑛 do conjunto de treinamento 𝑁 com reposição (técnica de bootstrap) 

(Hastie; Tibshirani; Friedman, 2009). Em cada nó da árvore, em vez de considerar 

todas as variáveis, escolhemos aleatoriamente um subconjunto de m variáveis:  

 

𝐷𝑛 =  {(𝑋𝑖, 𝑦𝑖)}𝒊=𝟏
𝒎𝒏                                        (46) 

 

Onde cada 𝐷𝑛 tem o mesmo tamanho de D (ou seja, 𝑚𝑛), mas pode incluir 

amostras duplicadas devido à reposição. Cada árvore de decisão 𝑓𝑛 na floresta é 

treinada em um conjunto de dados bootstrap: 𝐷𝑛. Em cada nó na árvore, seleciona-

se aleatoriamente um subconjunto de atributos 𝐹 ⊂ {1,2, … , 𝑛} ∣ 𝐹 ∣< 𝑛). O objetivo em 

cada nó é encontrar o atributo 𝑗 ∈ 𝐹  e o limiar 𝑡𝑗 que minimiza o erro, geralmente o 

Erro Quadrático Médio (EQM). (Hastie; Tibshirani; Friedman, 2009). Calculado como:  

 

𝐸𝑄𝑀 (𝑗, 𝑡𝑗) =
1

∣𝐿∣
∑ (𝑦𝑖 − 𝑦̅𝐿)2

𝑖∈𝐿 +  
1

∣𝐿∣
∑ (𝑦𝑖 − 𝑦̅𝑅)2

𝑖∈𝐿                 (47) 

Onde: 

 

• 𝐿 𝑒 𝑅 são os conjuntos de amostras divididos pelo limiar 𝑡𝑗 no atributo 𝑗, 

• 𝑦̅𝑅 𝑒 𝑦̅𝐿  são as médias dos valores-alvo 𝑦 para as amostras em 𝐿 𝑒 𝑅. 

 

Para entender a precisão do Random Forest, é útil analisar a decomposição 

de viés e variância do erro. Para uma única árvore, o erro pode ser decomposto como: 

 

𝔼[(𝑦 − 𝑦̂𝑖)
2] = 𝑉𝑖é𝑠2 + 𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎 + 𝐸𝑟𝑟𝑜 𝐼𝑟𝑟𝑒𝑑𝑢𝑡í𝑣𝑒𝑙                (51) 

 

Ao fazer a média de várias árvores, o Random Forest reduz a variância porque 

a média de 𝑁 árvores reduz a variância por um fator de N. conforme mostrado: 

 

𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎𝐹𝑙𝑜𝑟𝑒𝑠𝑡𝑎 =
𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎Á𝑟𝑣𝑜𝑟𝑒

𝑁
                              (52) 
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Essa redução na variância, combinada com o mínimo viés de árvores 

profundas, torna o Random Forest um modelo estável e preciso para tarefas de 

regressão. (Hastie; Tibshirani; Friedman, 2009) 

 

3.13. Grid Search 

 

O Grid Search é uma técnica sistemática de otimização de hiperparâmetros 

amplamente utilizada em aprendizado de máquina. Seu principal objetivo é encontrar 

a combinação de parâmetro de ajuste que maximize o desempenho de um modelo, 

com base em uma métrica de avaliação previamente definida. Essa abordagem 

consiste em testar exaustivamente todas as combinações possíveis de valores para 

os parâmetros de controle especificados dentro de um espaço definido, garantindo 

que o melhor conjunto seja identificado. (Ghate; Hemalatha, 2023)  

O Grid Search apresenta diversas vantagens. Por ser uma abordagem 

sistemática, ele garante que todas as combinações sejam testadas dentro do espaço 

definido. Além disso, sua facilidade de implementação e ampla adoção em bibliotecas 

como o Scikit-learn tornam-no acessível para muitos usuários. Por fim, os resultados 

confiáveis ajudam a identificar a melhor combinação de hiperparâmetros para o 

modelo. (Pedregosa et al., 2011) 

Entretanto, o custo computacional é uma limitação significativa. O número de 

combinações cresce exponencialmente com o número de hiperparâmetros e seus 

valores, tornando-o inviável para grades muito amplas. Além disso, pode ser 

ineficiente em espaços de busca grandes, especialmente quando muitas combinações 

geram desempenhos semelhantes. (Attar et al., 2024) 

O funcionamento do Grid Search envolve algumas etapas essenciais. 

Primeiro, o usuário deve definir o espaço de busca, especificando os parâmetros de 

ajuste do modelo a serem otimizados e os valores possíveis para cada um. Em 

seguida, todas as combinações de parâmetros de controle são geradas, formando 

uma "grade" de opções (Figura 6). Por exemplo, se dois parâmetros de controle 

possuem três valores cada, o total de combinações serão nove. (Pilario et al., 2021; 

Belete; Huchaiah, 2022) 
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Figura 6 - (a) busca em grade; e (b) busca aleatória. 

 

Fonte: (Pilario et al., 2021; Shim et al., 2023) adaptado. 

 

Na etapa seguinte, o modelo é treinado e avaliado para cada combinação de 

hiperparâmetros, utilizando validação cruzada ou um conjunto de validação separado. 

Por fim, a combinação de parâmetro de controle que obtiver o melhor desempenho 

em uma métrica especificada é selecionada como a melhor configuração. (Pilario et 

al., 2021) 

Grid Search e Random Search são métodos usados para otimizar 

hiperparâmetros em modelos de machine learning, mas diferem na abordagem e 

eficiência. O Grid Search testa todas as combinações possíveis de valores dentro de 

um espaço definido, garantindo uma busca exaustiva. Apesar disso, é 

computacionalmente caro e ineficiente para espaços de busca grandes, já que avalia 

combinações redundantes em regiões de baixa relevância. Por outro lado, o Random 

Search seleciona combinações de maneira aleatória, cobrindo o espaço de busca de 

forma mais ampla e eficiente (Figura 6), especialmente em cenários com muitos 

parâmetros ou valores possíveis (Sukamto; Hadiyanto; Kurnianingsih, 2023; Belete; 

Huchaiah, 2022). 

Enquanto o Grid Search é ideal para espaços pequenos e bem definidos, o 

Random Search se destaca em contextos em que poucos hiperparâmetros têm 

impacto significativo no desempenho do modelo. Shim et al. (2023) observaram que 

o Random Search frequentemente encontra boas soluções mais rapidamente, ao 
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passo que o Grid Search pode gastar tempo avaliando configurações menos 

relevantes. Assim, a escolha entre os dois métodos depende da dimensão do espaço 

de busca, do orçamento computacional disponível e da importância de explorar 

sistematicamente todas as combinações possíveis.  

A escolha da métrica de avaliação (ou scoring) é essencial para determinar a 

qualidade de um modelo. O Scikit-learn, uma das bibliotecas mais populares de 

aprendizado de máquina em Python, oferece uma ampla gama de opções de scoring, 

que variam de acordo com o tipo de problema. (Pedregosa et al., 2011) 

Para problemas de regressão, as métricas que avaliam a diferença entre os 

valores previstos e os valores reais: 

Coeficiente de determinação ('r2'), mede o quão bem o modelo explica a 

variância dos dados. A variância explicada é matematicamente similar ao R², pois 

ambos calculam a proporção da variação explicada. A principal diferença é que a 

variância explicada pode ser usada em outros contextos, incluindo modelos de 

classificação, PCA etc; enquanto o R² é comumente usado em regressão (Pedregosa 

et al., 2011; Figueiredo; Silva; Rocha, 2011). Ambos são calculados pela mesma 

equação a seguir: 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1  

∑ (𝑦𝑖−𝑦)2𝑛
𝑖=1

                                      (53) 

 

O Erro absoluto médio negativo ('neg_mean_absolute_error'): Diferença 

média absoluta entre as previsões e os valores reais. (Pedregosa et al., 2011). 

Também conhecido como  𝑀𝐴𝐸𝑛𝑒𝑔 (Negative Mean Absolute Error) é dado pela 

equação: 

 

𝑀𝐴𝐸𝑛𝑒𝑔 = −
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖 |

𝑛
𝑖=1                                     (54) 

 

Erro quadrático médio negativo ('neg_mean_squared_error'): Penaliza erros 

maiores de forma mais severa. O Scikit-learn usa o valor negativo do MSE para que 

a métrica funcione em algoritmos que maximizam a pontuação (como em validações 

cruzadas). Isso significa que para valores menos negativos (mais próximos de 0) 

indicam melhor desempenho do modelo, e valores mais negativos indicam pior 

desempenho. (Pedregosa et al., 2011) É dada pela equação: 
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−𝑀𝑆𝐸 = − ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1                                       (55) 

 

Raiz quadrada do erro quadrático médio ('neg_root_mean_squared_error') é 

a versão da raiz do MSE raiz do erro quadrático médio, também é conhecido como 

(RMSE – Root Mean Squared Error). O RMSE é expresso na mesma unidade da 

variável de saída, o que facilita a interpretação (Kiraga et al., 2024; Pedregosa et al., 

2011;). Por exemplo, se você está prevendo a produção de biomassa em gramas por 

litro (g/L), o RMSE também será expresso em g/L. É dada pela equação: 

 

−√𝑀𝑆𝐸 = −√∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1                                       (56) 

 

Métricas gerais, que podem ser aplicadas em diferentes contextos, incluem o 

Erro máximo ('max_error'), que mede o maior erro absoluto em uma predição, e o Log-

Loss ('log_loss'), que avalia a incerteza das previsões probabilísticas. Também há 

desvios específicos, como Poisson ou Gamma, para distribuições particulares 

(Pedregosa et al., 2011). 
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4. METODOLOGIA 

 

Este trabalho utilizou como referência os dados fornecidos por de Farias Silva 

e Sforza (2016), no total de 145 conjunto de dados foram inseridos, onde foi estudada 

a produtividade de biomassa e carboidratos em cultivo contínuo sob limitação de 

nitrogênio, efeito da intensidade luminosa e do tempo de residência na absorção de 

nutrientes em Chlorella vulgaris. A espécie de microalga foi mantida e cultivada em 

meio BG11 modificado (tamponado com 10 mM HEPES pH 8), esterilizado em 

autoclave por 20 min a 121◦C. Os teores de P e N do meio, na forma de K2HPO4 e 

NaNO3, foram otimizados para estudar a limitação de nutrientes. 

Experimentos contínuos foram realizados em fotobioreator de policarbonato de 

placa plana vertical operando como um CSTR (reator de tanque agitado 

continuamente), com um volume de trabalho de 300 mL, uma profundidade de 1,2 cm 

e uma superfície exposta à luz de 250 cm2. O excesso de CO2 foi fornecido por uma 

mistura de CO2-ar (5% v/v) borbulhando no fundo do reator (1 L h−1 da vazão total de 

gás), que também proporcionou mistura. Um agitador magnético também foi utilizado 

para evitar qualquer deposição de biomassa e assim garantir uma boa mistura do 

reator. O meio fresco foi alimentado a uma taxa constante por uma bomba peristáltica 

(Watson-Marlow sci400, faixa de vazão: 25–250 mL d−1, diretamente relacionada ao 

tempo de residência). A luz foi fornecida por uma lâmpada LED (Photon System 

Instruments, SN-SL 3500-22) para experimentos contínuos. A intensidade luminosa 

foi medida nos painéis frontal e traseiro do reator usando um fotorradiômetro (HD 

2101.1 da Delta OHM), que quantifica a radiação fotossinteticamente ativa (PAR). 

As variáveis estudadas foram na faixa de 150-450 µmol.m-2 s-1 de intensidade 

luminosa, tempos de residência entre 2,9-4,4 dias e concentrações na entrada para N 

e P entre 500-75 e 200-50 mg L-1, respectivamente. Importante mencionar que para 

considerar o estado estacionário, medias diárias durante pelo menos 3 dias, foram 

realizadas para mostrar a constância da concentração celular e porcentagem de 

carboidrato em biomassa. 

A concentração de biomassa foi monitorada diariamente por análise 

espectrofotométrica da densidade óptica (DO - 750nm) usando um espectrofotômetro 

UV-vis (UV 500, Spectronic Unicam, Reino Unido). A concentração de biomassa 

também foi medida gravimetricamente como peso seco (PS) em termos de g L−1 em 

células previamente coletadas com um filtro de 0,22 m e, em seguida, secas por 4 
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horas a 80◦C em um forno de laboratório. Os nutrientes analisados foram nitrato (N-

NO3) e fosfato (P-PO4), avaliados em pelo menos três momentos diferentes para cada 

estado estacionário. As amostras de cultura foram filtradas para medir apenas 

nutrientes dissolvidos (0,2 m): a concentração de N foi medida por um kit de teste 

analítico fornecido pela St. Carlo Erba Reagenti, Itália (código 0800.05482) e P foram 

medidos pelo método do ácido ascórbico descrito em APHA-AWWA-WEF, 1992. 

Para realizar as simulações, foi utilizado um notebook Acer® Aspire 5, 8gb de 

ram, processador 12º Geração Intel® CoreTM i5-12450H   2.00 GHz, utilizando 

Windows® 11. Os dados obtidos foram então organizados e colocados numa planilha 

no formato (.xlxs) esses dados foram separados em duas partes: as variáveis de 

entrada e variáveis de saída. Conforme é possível observar no esquema da Figura 7. 

Figura 7 – Esquema do processamento de arquivos. 

 

Fonte: Autor (2025) 

Para cada teste foram utilizadas uma das variáveis de saída. Na primeira 

bateria de testes foram utilizados os dados de acúmulo de carboidratos (%), na 

segunda bateria de testes foram utilizados os dados de produtividade de biomassa (g 

L-1 d-1), e na terceira bateria de testes foi utilizado produtividade de carboidratos (g L-

1 d-1). Esses dados foram analisados através de um algoritmo escrito em Python 

utilizando uma regressão predefinida. Após serem calculados o algoritmo retornou 
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duas saídas: A primeira em formato .txt que retornavam os valores de R² e do RMSE, 

e a segunda contendo o gráfico dos dados originais em relação ao que foi estimado 

pela regressão. A escolha de utilizar R² e RMSE para fazer a avaliação se dá pelo fato 

de serem métricas bem difundidas e utilizadas para esse tipo de tarefa, como é 

observado por (Kuhn; Johnson, 2013) 

No arquivo de entrada existem as variáveis independentes que foram utilizadas 

para estimar a variável de saída contida no arquivo de saída. As variáveis utilizadas 

foram o tempo normalizado, densidade óptica, concentração de fósforo, concentração 

de nitrogênio e intensidade luminosa. O principal critério para considerar o uso dessas 

variáveis de processo foi o fato de que elas pouco estão correlacionadas entre si, 

suportando a hipótese de que sejam variáveis independentes. O tempo normalizado 

se refere ao tempo que se passou desde o início da operação do reator, relacionado 

com o tempo máximo que ficou em funcionamento, definido pela equação: 

 

𝑡𝑛 =
𝑡−𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
                                                   (57) 

 

Para utilizar o tempo normalizado em análises de regressão, primeiramente, 

foram organizados os dados temporais de cada série, que podem ter magnitudes 

muito variáveis, o que afeta a precisão da regressão. A normalização transformou o 

tempo em uma escala de 0 a 1 ao dividir cada valor pelo valor máximo do conjunto, 

criando uma nova variável que permite comparar pontos ao longo do tempo de forma 

consistente. O restante das variáveis fora obtido integralmente do trabalho realizado 

por de Farias Silva e Sforza (2016). E estão descritas a seguir na Tabela 3. 

 

Tabela 3 - Variáveis de entrada 

Nome Sigla Unidade 

Tempo normalizado tn adimensional 

Fósforo P mg L−1 

Nitrogênio N mg L−1 

Tempo de residência τ dias 

Intensidade luminosa I µE/m²s 

Densidade óptica OD adimensional 

 

Os parâmetros analisados neste estudo são essenciais para o controle e a 

otimização do cultivo de microalgas. O tempo normalizado (𝑡𝑛) é uma variável 



57 

 

adimensional que permite a comparação direta entre diferentes escalas temporais de 

experimentos, facilitando a análise de processos com durações distintas. O fósforo (𝑃) 

e o nitrogênio (𝑁), ambos medidos em mg L⁻¹, são nutrientes cruciais para o 

metabolismo microalgal. O fósforo é indispensável para a formação de moléculas 

como ATP e ácidos nucleicos, enquanto o nitrogênio está associado à síntese de 

proteínas e outros compostos celulares. Concentrações insuficientes desses 

nutrientes podem limitar o crescimento das microalgas, ao passo que valores 

excessivos podem causar impactos ambientais, como a eutrofização de corpos d'água 

(Li et al., 2019). 

O tempo de residência (𝜏), em dias, indica o período médio em que a biomassa 

ou o fluido permanece no sistema, sendo um parâmetro que afeta diretamente a 

produtividade e a eficiência do processo. A intensidade luminosa (l), expressa em 

µE·m⁻²·s⁻¹, representa a quantidade de luz disponível para a fotossíntese, fator 

determinante para a taxa de crescimento das microalgas. Já a densidade óptica (OD 

ou DO) é uma medida adimensional usada para monitorar a turbidez do meio, 

funcionando como um indicador indireto da concentração celular (de Farias Silva e 

Sforza, 2016).  

Do mesmo modo as variáveis utilizadas isoladamente nas regressões para a 

saída (tabela 4) em cada teste, também foram retiradas integralmente do trabalho de 

Farias Silva e Sforza (2016). A tabela 4 apresentada resume parâmetros essenciais 

na análise de bioprocessos, especificamente aqueles relacionados à produção de 

biomassa e carboidratos. 

Tabela 4 - Variáveis de saída utilizadas nas regressões. 

Nome Sigla Unidade 

Acúmulo de Carboidratos em Biomassa % adimensional 

Produtividade da Biomassa PX mg  L−1 d−1 

Produtividade de Carboidratos PC mg  L−1  d−1 

 

A conversão em carboidratos (%), adimensional, reflete a eficiência do 

processo na transformação de substratos em carboidratos, fornecendo uma medida 

importante para a otimização de condições operacionais, como a taxa de consumo de 

nutrientes. Esse parâmetro é crucial para entender a conversão de recursos e avaliar 

a eficácia do processo em termos de utilização de substratos. Já a produtividade da 

biomassa (𝑃𝑋), expressa em mg L⁻¹ d⁻¹, quantifica o crescimento celular, sendo 



58 

 

fundamental para o monitoramento da eficiência do cultivo e para garantir que a 

produção de biomassa esteja em conformidade com os objetivos do processo 

biotecnológico. 

Por sua vez, a produtividade de carboidratos (𝑃𝐶), também medida em mg L⁻¹ 

d⁻¹, indica a taxa de produção de carboidratos desejada no sistema. Esse parâmetro 

é de particular importância em processos biotecnológicos que visam à produção de 

carboidratos como bioprodutos, como na fabricação de biocombustíveis ou alimentos. 

Juntos, esses parâmetros fornecem uma visão abrangente da eficiência de um 

bioprocesso, permitindo ajustes finos nas variáveis de operação para maximizar a 

produção de biomassa ou carboidratos.  

A conexão entre os parâmetros de bioprocessos, como produtividade de 

biomassa e carboidratos, e técnicas de aprendizado de máquina, como o train-test 

split, se dá pela necessidade de análise preditiva e otimização de processos. Modelos 

preditivos podem ser usados para antecipar o comportamento de sistemas 

biotecnológicos, baseando-se em dados históricos de produtividade. Para garantir a 

precisão dessas previsões e evitar ajustes excessivos aos dados de treinamento, a 

técnica de divisão do conjunto de dados em treinamento e teste se torna essencial. 

Isso permite que o modelo seja validado de maneira robusta e sua capacidade de 

generalização seja testada, possibilitando uma análise mais eficaz e controlada do 

desempenho dos bioprocessos. 

O train-test split é uma técnica usada em aprendizado de máquina para dividir 

um conjunto de dados (data set) em duas partes: uma para treinar o modelo (training 

set) e outra para testá-lo (test set), como é possível observar na Figura 8. A divisão é 

feita aleatoriamente, em proporção 80/20, para garantir que o modelo não seja 

tendencioso. É o padrão recomendado pela própria biblioteca do Sk-learn (Pedregosa 

et al., 2011). O conjunto de treinamento é usado para ajustar o modelo, enquanto o 

conjunto de teste avalia sua capacidade de generalização em dados não vistos, 

ajudando a evitar o overfitting e fornecendo métricas de desempenho para validar o 

modelo. 

 

 

 

 

 



59 

 

 

Figura 8 - Processo de regressão dos dados. 

 

 

Os testes foram conduzidos foram conduzidos utilizando a série de variação de 

parâmetros contidos na tabela 4 para cada tipo de modelo utilizado, e considerando 

50.000 de quantidade máxima de iterações para cada combinação e tolerância 

mínima de convergência de 10−8. 

Utilizou-se a técnica de grid search como abordagem principal para a 

otimização dos parâmetros dos modelos de aprendizado de máquina aplicados no 

estudo. Essa metodologia consiste em uma busca exaustiva no espaço de 

hiperparâmetros, avaliando sistematicamente diversas combinações predefinidas 

para identificar aquelas que maximizam o desempenho dos modelos. o critério de 

avaliação utilizado foi o negative mean squared error (neg MSE), que mede a 

qualidade do ajuste do modelo por meio do erro médio quadrático. Essa métrica, 

quando maximizada durante o processo de otimização, busca minimizar os erros de 

predição do modelo. 

A Tabela 5 apresenta uma lista de algoritmos de aprendizado de máquina 

(LASSO, Ridge, Redes Neurais Artificiais, SVR e Random Forest) juntamente com os 

parâmetros que podem ser ajustados para melhorar o desempenho de cada modelo. 

Esses parâmetros possuem valores variados, abrangendo tanto opções contínuas 

(como o coeficiente de regularização 'alpha' em LASSO e Ridge, que varia na escala 

logarítmica entre 10-4 a 104 quanto categorias discretas (como os kernels no SVR ou 

funções de ativação em Redes Neurais). 
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Tabela 5 – Relação de parâmetros que foram otimizados e faixa de variação. 

Modelo Parâmetros Variação 

Lasso 

 'alpha' np.logspace(-4,4,100) 

 'selection'   'Ciclic', 'Random' 

 'fit_intercept'  'True', 'False' 

 'positive'  'True', 'False' 

 'precompute'  'True', 'False' 

Ridge 

 'alpha' np.logspace(-4,4,100) 

 'solver'  'svd', 'cholesky', 'sparse_cg', 'lsqr', 'sag', 'lbfgs' 

 'fit_intercept'  'True', 'False' 

 'positive'  'True', 'False' 

RNA 

 'hidden_layer_sizes' 
(3,), (5,), (6,),(10,), (11,), (12,), (13,),(14,), (15,), (16),(3, 3,), (5, 

5,), (7, 7,), (3, 3, 3), (5, 5, 5), (6, 6, 6) 

  'activation'  'tanh', 'relu', 'logistic', 'identity' 

  'solver' sgd', 'adam', 'lbfgs' 

    'alpha' 0.0001, 0.05, 0.1, 0.5 

'learning_rate' constant', 'adaptive', 'invscaling' 

SVR 

 'kernel'  'linear', 'poly', 'rbf', 'sigmoid' 

    'degree' 1, 2, 3, 4, 5 

    'gamma'  'scale', 'auto' 

    'coef0' 0, 0.25, 0.75, 0.5, 1, 2 

    'C' 0.5, 0.75, 1, 1.5, 2 

    'epsilon' 0.1,0.01, 0.001, 0.5, 1 

    'shrinking'  'True', 'False' 

Random 
Forest 

 'n_estimators'   20, 50, 100, 150, 200 

    'max_depth' None, 5, 10, 20, 30 

    'min_samples_split'  2, 3, 4, 5, 6, 7, 10 

    'min_samples_leaf' 1, 2, 3, 4 

    'bootstrap'  'True', 'False' 

 

A Tabela 5 apresentada sintetiza os hiperparâmetros considerados durante o 

ajuste fino de modelos utilizados no estudo. Para os modelos de regressão LASSO e 

Ridge, o principal parâmetro de controle é alpha, que regula a intensidade da 

penalização imposta aos coeficientes, variando em uma escala logarítmica para 

explorar uma ampla faixa de valores. No caso do LASSO, os parâmetros adicionais 

“selection” e “positive” permitem customizar a estratégia de atualização dos 

coeficientes (como seleção cíclica ou aleatória) e impor restrições como coeficientes 

exclusivamente positivos. Essas configurações são importantes para equilibrar a 

capacidade de generalização e a interpretabilidade dos modelos. 
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No modelo de redes neurais (Multi-Layer Perceptron – MLP), foi explorada uma 

ampla diversidade de configurações estruturais por meio do hiperparâmetro 

“hidden_layer_sizes”, que define o número de neurônios e camadas ocultas. 

Combinações de tamanhos de camadas simples e múltiplas foram testadas, 

permitindo avaliar o impacto da complexidade estrutural sobre o desempenho. Além 

disso, funções de ativação, como “tanh” e “relu”, foram incluídas para capturar não 

linearidades dos dados. Diferentes otimizadores (“sgd”, “adam”, “lbfgs”) foram 

utilizados para comparar a eficiência na convergência, enquanto ajustes na taxa de 

aprendizado (“learning_rate”) permitiram testar o impacto de velocidades constantes, 

adaptativas e inversamente escalonadas no treinamento. 

Para o Support Vector Regression (SVR), os hiperparâmetros controlam 

aspectos centrais do modelo. O tipo de kernel (“linear”, “poly”, “rbf”, “sigmoid”) define 

a natureza da função de decisão, enquanto o grau (“degree”) é ajustado 

especificamente para kernels polinomiais, permitindo capturar diferentes níveis de 

complexidade. O parâmetro “gamma” regula a influência de cada ponto de suporte, e 

“épsilon” define a margem de tolerância ao erro na predição. 

No caso do modelo Random Forest, foram testados diferentes valores para o 

número de estimadores (“n_estimators”), que controla a quantidade de árvores na 

floresta. Também foram ajustadas a profundidade máxima das árvores (“max_depth”), 

o número mínimo de amostras para dividir um nó (“min_samples_split”) e o número 

mínimo de amostras em cada folha terminal (“min_samples_leaf”). Esses parâmetros 

influenciam diretamente a capacidade do modelo de capturar padrões complexos sem 

superajustar. Por fim, o uso ou não de amostragem com reposição (“bootstrap”) foi 

avaliado, permitindo analisar o impacto da variação dos dados de treinamento na 

robustez final do modelo. 

Por fim, neste trabalho também está sendo proposto o índice de generalização 

para regressões (Regression Generalization – REGE) ele foi calculado a relação de 

treino e teste, dado para a equação a seguir: 

Í𝑛𝑑𝑖𝑐𝑒 = (
𝑓𝑡𝑒𝑠𝑡𝑒−𝑓𝑡𝑟𝑒𝑖𝑛𝑜

𝑓𝑡𝑟𝑒𝑖𝑛𝑜
) × 100                                      (57) 

 Para o R², pela equação 57 a seguir: 

 

Í𝑛𝑑𝑖𝑐𝑒 = (
𝑅𝑡𝑒𝑠𝑡𝑒

2 −𝑅𝑡𝑟𝑒𝑖𝑛𝑜
2

𝑅𝑡𝑟𝑒𝑖𝑛𝑜
2 ) × 100                                       (57) 

 



62 

 

Um modelo com boa generalização em relação ao treino apresentará valores 

de 𝑅𝑡𝑟𝑒𝑖𝑛𝑜
2   e 𝑅𝑡𝑒𝑠𝑡𝑒

2  próximos. Isso indica que ele não apenas ajusta bem os dados de 

treinamento, mas também é capaz de prever corretamente em um conjunto de dados 

não visto. Por outro lado, grandes discrepâncias entre esses valores, como um 𝑅𝑡𝑟𝑒𝑖𝑛𝑜
2   

muito maior que o 𝑅𝑡𝑒𝑠𝑡𝑒
2   , são um sinal claro de overfitting. Nesse caso, o modelo 

aprende não só os padrões reais dos dados, mas também os ruídos ou variações 

específicas do conjunto de treinamento, comprometendo sua capacidade de 

generalização. 

Seguindo o mesmo raciocínio o índice REGE foi calculado a relação de treino 

e teste para o RMSE, pela equação 58 a seguir: 

 

Í𝑛𝑑𝑖𝑐𝑒 = (
𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡𝑒

2 −𝑅𝑀𝑆𝐸𝑡𝑟𝑒𝑖𝑛𝑜
2

𝑅𝑀𝑆𝐸𝑡𝑟𝑒𝑖𝑛𝑜
2 ) × 100                                    (58) 

 

O índice vai mostrar a variação relativa entre o erro de treino e o erro de teste. 

Se o índice for 0%, isso indica que o erro de teste e o de treino são iguais. Valores 

positivos indicam que o erro de teste é maior do que o erro de treino, enquanto valores 

negativos indicam o contrário. Esse tipo de índice é útil para entender a generalização 

de um modelo, ajudando a identificar sobre ajuste (overfitting) se o erro de treino for 

muito menor que o de teste.  
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5. RESULTADOS E DISCUSSÃO  

 

Uma das primeiras condições validadas na construção de todas a análise é a 

observação da correlação de Pearson. Esta correlação é muito importante para que 

seja possível selecionar as variáveis independentes corretamente. É possível 

observar na Figura 9 que não existe correlação significativa entre maioria das 

variáveis de entrada contidas na Tabela 3 entre si, com exceção da concentração de 

fósforo e nitrogênio que possuem correlação de 0,74.  

Isso acontece devido a necessidade de o microrganismo sintetizar proteínas 

essenciais a sua sobrevivência, onde o nitrogênio é intrinsecamente envolvido nas 

reações metabólicas. Ao passo que o Fósforo é consumido para que essas reações 

aconteçam, como é evidenciado nos trabalhos por de Farias Silva e Sforza (2016), de 

Farias Silva e Bertucco (2019) e Fu et al. (2019). Assim, como o fósforo também está 

relacionado com síntese de carboidratos e lipídios a correlação com o nitrogênio 

naturalmente não é maior. Essa correlação alta entre o nitrogênio e o fósforo é um 

indicativo de que possa existir sobreajuste nos modelos utilizados. Como alternativa, 

poderia ao invés de considerar as duas variáveis Nitrogênio e fósforo separadas 

considerar a razão N/P como foi utilizado por Hossain et al. (2022). 

Com relação aos valores das variáveis de saída (Tabela 4), as variáveis 

independentes, ou seja, as variáveis de entrada possuem baixa correlação, com 

valores inferiores a 0,5 às variáveis de entrada. Com exceção densidade óptica (OD) 

que possuiu correlações maiores que 0.5 com as variáveis de saída. Existem casos 

que nas variáveis de entrada, uma ou outra correlação possui um certo grau de 

correlação, mas nenhuma obteve R² > 0,5. Velásquez-Orta et al. (2024) ao 

correlacionar todas as variáveis estudadas do seu sistema de cultivo de microalgas 

também obteve baixa correlação entre as variáveis na maioria das vezes, ressaltando 

a complexidade do sistema que envolve cultivo de microrganismos. Onde apenas a 

concentração e iluminação possuíam correlação positiva. 
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Figura 9 - Correlação de Pearson entre todas as variáveis utilizadas. 
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As cores mais quentes (vermelho e laranja) indicam uma correlação positiva 

entre as variáveis. Isso significa que quando uma variável aumenta, a outra tende a 

aumentar também. Por exemplo, a produtividade de carboidratos apresenta uma forte 

correlação positiva com a produtividade da biomassa, sugerindo que um aumento na 

biomassa está associado a um aumento na produção de carboidratos. 

As cores mais frias (azul) indicam uma correlação negativa. Neste caso, 

quando uma variável aumenta, a outra tende a diminuir. Por exemplo, o nitrogênio 

apresenta uma correlação negativa com o tempo de residência, indicando que um 

aumento no tempo de residência pode estar associado a uma diminuição nos níveis 

de nitrogênio. As cores próximas ao branco indicam uma correlação fraca ou nula 

entre as variáveis. 

Os nutrientes (nitrogênio e fósforo) apresentam correlações positivas com a 

produtividade da biomassa e dos carboidratos, indicando que a disponibilidade de 

nutrientes é um fator importante para a produção biológica. O tempo de residência 

apresenta correlações mistas. Enquanto há uma correlação negativa com o nitrogênio, 

há uma correlação positiva com a produtividade da biomassa, sugerindo que o tempo 

de retenção da água pode influenciar a dinâmica dos nutrientes e a produção biológica 

de maneiras complexas. A intensidade luminosa apresenta correlações positivas com 

a produtividade da biomassa e dos carboidratos, o que é esperado, pois a luz é 

essencial para a fotossíntese como é observado por Marino (2018) e Six (2024b). 

O mapa de calor revela um intrincado conjunto de relações entre as variáveis 

analisadas. Destaca-se a forte correlação positiva entre a produtividade da fração de 

Carboidratos e a produtividade de carboidratos, indicando que um aumento na 

porcentagem de carboidratos está diretamente ligado a um aumento na produção de 

carboidratos, isso se deve a dependência entre si. Também é possível observar essa 

forte correlação entre o nitrogênio e o fósforo, isso se deve ao fato de serem nutrientes 

indispensáveis para o crescimento celular e ao fato de seguirem uma proporção entre 

si. Esse fenômeno também foi observado por Huang et al. (2021) e Xing et al. (2021), 

quando cultivaram a Chlorella vulgaris. 

 Em seguida, foi feito uma análise com relação à distribuição dos dados, ou seja, 

como ele se comportava com relação à sua própria grandeza. A construção de 

histogramas se mostrou uma ferramenta muito eficaz na percepção de como certos 

conjuntos de dados possuem certa assimetria.  



66 

 

Na Figura 10 é possível observar como se dá organização das grandezas de 

cada variável. É notável que nas condições de entrada existe (A – F) os dados tendem 

a possuir acúmulos em uma determinada margem do histograma, dessa forma é 

possível inferir que não há uma distribuição normal neles, em alguns casos como o 

tempo de residência e intensidade luminosa, ou seja, os histogramas D e E existem 

espaços vazios nos conjuntos de dados em determinados limites. Assim como em B 

e C para o fósforo e nitrogênio respectivamente, possuem picos muito altos nos limites 

do histograma. Essa assimetria não é vista significativamente nos dados de saída, 

que apesar de possuir a média mais centrada ao limite esquerdo do histograma, tende 

a possuir uma distribuição parcialmente normal. 

Chong et al. (2024) ao analisarem os dados de entrada para realizar as 

regressões relataram que existem comportamentos diversos na distribuição dos 

histogramas dependendo da espécie analisada. A Chlorella vulgaris tende a 

normalidade, enquanto a Spirulina platensis e Chlamydomonas reinhardtii tende a se 

concentrar nos extremos. Esse comportamento também é observado Hajinajaf et al. 

(2022) onde os valores preditos para a fixação de CO2 também apresentaram 

comportamento próximo a distribuição normal. Logo, é possível observar que os 

dados obtidos e analisados são da Chlorella vulgaris e que condizem com o esperado 

com a literatura. 

A ausência de normalidade na distribuição dos dados pode ser um fator 

determinante para a discrepância entre os resultados de treino e teste, uma vez que 

muitos modelos de aprendizado de máquina, especialmente os lineares como Linear, 

Ridge e LASSO, assumem implicitamente que as variáveis seguem uma distribuição 

aproximadamente normal para maximizar sua eficiência. Quando essa premissa não 

é atendida, os modelos podem ajustar-se bem aos dados de treino, mas falhar em 

capturar padrões generalizáveis, levando a desempenhos inferiores no teste. Além 

disso, modelos mais complexos, como Random Forest e RNA, que são menos 

sensíveis à distribuição dos dados, podem superajustar outliers e ruídos no conjunto 

de treino, resultando em overfitting e, consequentemente, em uma queda acentuada 

no desempenho no teste. 
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Figura 10 - Histograma de TN, Histograma de Fósforo, Histograma de Nitrogênio, Histograma de TR, Histograma de IL, Histograma de DO, Histograma de 

Acúmulo de carboidratos, Histograma de produtividade da biomassa, Histograma de produtividade de carboidratos. 

 

TN – tempo normalizado, TR – tempo de residência, DO – densidade óptica, Ad. – adimensional. 

Fonte: Autor (2025) 
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 Outra análise feita previamente antes da própria estimação através dos 

métodos de regressão, foi cálculo dos valores máximos e mínimos dos dados, assim 

como a média e desvio padrão. Diferentemente do que é esperado normalmente, não 

é importante que esses valores sejam curtos, ou estreitamente espaçados. Assim, 

como é possível observar na Tabela 6 existe uma margem ampla de dados que podem 

ser previstos utilizando os modelos de regressão. Vale ressaltar, no entanto que esses 

métodos tendem a não calcular muito bem dados que estão muito distantes da 

margem utilizada na regressão. 

 

Tabela 6 – Análise dos dados de entrada. 

 

A análise das variáveis mostra que algumas apresentam um espectro amplo, 

enquanto outras têm variações mais controladas. O fósforo e o nitrogênio, ambos 

medidos em mg L-1, destacam-se pela alta amplitude: o fósforo varia de 0,10 a 186,71, 

enquanto o nitrogênio vai de 0,00 a 644,35. Esses valores máximos muito superiores 

às médias (39,89 para fósforo e 84,07 para nitrogênio) indicam uma grande dispersão, 

evidenciada também pelos altos desvios padrão (43,49 e 142,11, respectivamente). A 

intensidade luminosa, com intervalo de 150 a 450 μE m-2 s-1 e desvio padrão elevado 

(118,36), também apresenta um espectro amplo, sugerindo que diferentes condições 

experimentais ou ambientais influenciaram fortemente os dados. Já a densidade 

óptica, adimensional, varia de 0,58 a 20,16 e apresenta uma dispersão moderada 

(desvio padrão de 4,29), cobrindo uma faixa relativamente ampla dentro de sua 

escala. 

Por outro lado, variáveis como o tempo normalizado e o tempo de residência 

mostram espectros mais limitados. O tempo normalizado, por definição, varia de 0 a 

1, mas os dados estão concentrados principalmente em torno da média de 0,65, com 

desvio padrão de 0,36. Isso indica que a variação não é tão distribuída ao longo da 

escala completa. O tempo de residência, medido em dias, apresenta o intervalo mais 

estreito (2,90 a 4.40), com uma média de 3,24 e desvio padrão de 0,55; sugerindo 

Nome Unidade Máximo Mínimo média Desvio padrão 

Tempo normalizado 𝑎𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 1.00 0.00 0.65 0.36 

Fósforo 𝑚𝑔  𝐿−1 186.71 0.10 39.89 43.49 

Nitrogênio 𝑚𝑔 𝐿−1 644.35 0.00 84.07 142.11 

Tempo de residência 𝑑𝑖𝑎𝑠 4.40 2.90 3.24 0.55 

Intensidade Luminosa µ𝐸/𝑚²𝑠 450.00 150.00 269.51 118.36 

Densidade óptica 𝑎𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 20.16 0.58 10.47 4.29 
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maior controle experimental nessa variável. Assim, enquanto algumas variáveis 

apresentam ampla variabilidade e cobertura de suas escalas, outras são bem mais 

restritas, provavelmente devido ao tipo de controle aplicado ou à natureza do 

experimento. 

A  Tabela 7 apresenta os melhores parâmetros encontrados para cada modelo 

avaliado. Para o modelo Linear, nenhum parâmetro foi ajustado, apenas o tempo de 

execução foi registrado. 

 

Tabela 7 – Melhores parâmetros encontrados para cada modelo. 

Modelo Parâmetros Melhor parâmetro 

Linear Tempo (s) 0.0039 

Lasso 

 'alpha' 0.298364724 

 'selection'  "random" 

 'fit_intercept' "False" 

 'positive' "False" 

 'precompute' "False" 

Tempo (s) 9.3982 

Ridge 

 'alpha' 0.388292423 

 'solver' 'sparse_cg' 

 'fit_intercept' "False" 

 'positive' "False" 

Tempo (s) 6053.0817 

RNA 

 'hidden_layer_sizes' "(13,)" 

  'activation' "relu" 

  'solver' "lbfgs" 

    'alpha' 0.5 

'learning_rate' "constant" 

Tempo (s) 73.8455 

SVR 

 'kernel' "rbf" 

    'degree' 1 

    'gamma' "auto" 

    'coef0' 0 

    'C' 2 

    'epsilon' 0.001 

    'shrinking' "False" 

Tempo (s) 25.0407 

Random Forest 

 'n_estimators'  100 

    'max_depth' 5 

    'min_samples_split'  2 

    'min_samples_leaf' 2 

    'bootstrap' "True" 

Tempo (s) 357.9394 
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Os resultados obtidos com as variações dos parâmetros indicam diferenças 

significativas no desempenho e no tempo de execução entre os modelos. O modelo 

Linear destacou-se pelo tempo extremamente baixo (0,0039 s), mas não oferece 

flexibilidade para capturar padrões mais complexos devido à sua simplicidade. Ele 

serve como referência inicial, mas é insuficiente para problemas que exigem 

modelagem mais elaborada. Price et al. (2023) relatou dificuldade semelhante. No 

entanto a quantidade de dados utilizada (30 amostras) em seu trabalho deve ter maior 

influência, pois, os resultados dele obtiveram R² em geral inferior a este. 

O LASSO obteve o máximo desempenho ao ajustar o parâmetro 'alpha' para 

0,298364724, com um tempo de execução de 9,3982 s. O teste da seleção "Random" 

pode ter contribuído para resultados mais robustos, reduzindo o risco de overfitting. 

Entretanto, o tempo foi consideravelmente maior do que o do modelo linear, 

evidenciando o custo adicional da regularização e da otimização em busca esparsada. 

Melkumova et al. (2017), Ching et al. (2022), Nguyen et al. (2023) e também 

encontraram valores para alpha inferiores a 1. O que é esperado ao atingir a 

convergência segundo Pedregosa et al. (2011). 

No caso do Ridge, seu maior desempenho foi alcançado com 'alpha' ajustado 

em 0,388292423 e o solver 'sparse_cg', resultando no maior tempo de execução, 

6053,0817 s. Este tempo elevado está provavelmente relacionado ao uso de um 

solver mais intensivo computacionalmente. Embora o Ridge seja uma extensão 

robusta da regressão linear, sua eficiência diminui para conjuntos de dados grandes 

ou ajustes muito finos. Esse resultado condiz com outros trabalhos que foram 

conduzidos Melkumova et al. (2017) e Ching et al. (2022) também encontraram 

valores para alpha inferiores a 1.  

Para a RNA, a configuração ótima utilizou uma camada oculta de 13 neurônios 

e ativação 'relu', com solver 'lbfgs', gerando um tempo de 73,8455 s. Apesar do tempo 

ser maior do que os modelos lineares, a RNA apresentou boa flexibilidade para 

capturar padrões mais complexos com uma arquitetura simples. A escolha do solver 

'lbfgs' garantiu um ajuste eficiente, mas aumentou o tempo de execução. 

O SVR destacou-se pela utilização do kernel 'rbf', com 'C = 2' e 'epsilon = 0.001', 

atingindo um tempo de execução de 25,0407 s. Este modelo mostrou bom equilíbrio 

entre capacidade preditiva e tempo computacional. A escolha de 'epsilon' pequeno 

indica alta sensibilidade a desvios, enquanto o kernel RBF lidou bem com não-

linearidades. 
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Por fim, o Random Forest alcançou resultados satisfatórios com ‘n_estimators’ 

= 100' e 'max_depth = 5', registrando 357,9394 s. A limitação da profundidade das 

árvores favoreceu o controle da complexidade do modelo, garantindo robustez e 

interpretabilidade. O uso de bootstrap como padrão ajudou na generalização, mas o 

custo computacional foi relativamente alto em comparação aos outros modelos não 

lineares, como SVR. 

A comparação entre os métodos de regressão revelou diferenças significativas 

no desempenho preditivo, especialmente entre as técnicas lineares e não lineares, 

como é possível observar na Tabela 8. A regressão linear multivariada, embora direta 

e computacionalmente eficiente, mostrou limitações na captura de relações 

complexas entre as variáveis preditoras e a concentração de substrato. Isso se deve 

ao fato de que ela assume uma relação linear que não reflete adequadamente a 

dinâmica não linear da biomassa da Chlorella vulgaris. 

Tabela 8 – Resultado das regressões para a amostragem de Treino. 

  
Acúmulo de 

Carboidratos (%) 
Produtividade da 

Biomassa (mg L-1 d-1) 
Produtividade de 

Carboidratos (mg L-1 d-1) 

  R² RMSE R² RMSE R² RMSE 

Linear 0.0147 10.5994 0.4785 0.1228 -0.0310 0.0721 

Ridge 0.3197 8.8077 0.6486 0.1008 0.1927 0.0638 

Lasso 0.3185 8.8154 0.6469 0.1010 0.1954 0.0637 

RNA 0.8717 0.3582 0.8962 0.3222 0.7053 0.5429 

SVR 0.7454 0.5046 0.7850 0.4637 0.6180 0.6311 

Random Forest 0.8770 0.3507 0.9220 0.2792 0.9347 0.2556 

 

As técnicas de regularização, como Ridge e Lasso, melhoraram a estabilidade 

da predição ao controlar o efeito de variáveis correlacionadas e ajustar modelos mais 

parcimoniosos. No entanto, a precisão desses métodos também foi limitada em 

comparação com técnicas mais robustas. 

Por outro lado, métodos baseados em aprendizado de máquina, como redes 

neurais e Random Forest, apresentaram desempenho superior, com menor erro 

quadrático médio e valores de R² mais elevados, especialmente em dados complexos 

e de alta dimensionalidade. As redes neurais, por exemplo, mostraram grande 

capacidade de ajuste, mas com o risco de overfitting, ressaltando a importância de 

otimizar parâmetros e utilizar validação cruzada. O Random Forest destacou-se pela 

combinação de robustez e capacidade de generalização, o que o torna uma opção 

promissora para modelar sistemas biológicos complexos. Esses resultados indicam 
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como também Igou et al. (2023) e Sonachalam et al (2024) observaram, que o uso de 

técnicas não lineares é essencial para a predição em sistemas biológicos, 

especialmente onde há variáveis altamente correlacionadas e interações não lineares.  

Nos resultados de regressão para os dados de teste contidos na tabela 9 a 

observa-se uma queda generalizada no desempenho dos modelos em comparação 

ao treino, o que é esperado, mas indica possíveis problemas de generalização para 

alguns casos. O Random Forest, embora tenha apresentado redução nos 𝑅², ainda 

manteve o melhor desempenho relativo, com 𝑅² acima de 0.39 em todas as métricas 

e erros mais baixos em relação a outros modelos. A RNA, por sua vez, sofreu uma 

redução mais acentuada na precisão, especialmente na produtividade de 

carboidratos, onde o RMSE subiu significativamente, sugerindo overfitting. Modelos 

como Ridge e LASSO apresentaram resultados mais consistentes entre treino e teste, 

mas seus desempenhos absolutos continuam inferiores aos modelos mais complexos, 

como o Random Forest. 

 

Tabela 9 – Resultado das regressões para a amostragem de Teste. 

  
Acúmulo de 

Carboidratos (%) 
Produtividade da 
Biomassa (mg L-1 d-1) 

Produtividade de 
Carboidratos (mg L-1 d-1) 

  R² RMSE R² RMSE R² RMSE 

Linear 0.5825 7.0761 0.7052 0.1032 0.4963 0.0583 

Ridge 0.2633 9.4000 0.54892 0.1276 0.2194 0.0725 

Lasso 0.2651 9.3887 0.5682 0.1248 0.3261 0.0673 

RNA 0.3788 0.8083 0.698 0.6141 0.3412 0.9389 

SVR 0.2610 0.8816 0.6583 0.6533 0.1702 1.0537 

Random Forest 0.3951 0.7976 0.7782 0.5263 0.4053 0.8920 

 

Os fatos evidenciados anteriormente ficam mais claros quando são calculados 

os índices através das equações 57 e 58 contidos na Tabela 10 a seguir. Onde é 

possível observar a relação de treino e teste de cada algoritmo para cada tipo de 

variável de saída estimada. 
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Tabela 10  – Relação entre os Resultados de treino e teste. 

  
Acúmulo de 

Carboidratos (%) 
Produtividade da 

Biomassa (mg L-1 d-1) 
Produtividade de 

Carboidratos (mg L-1 d-1) 

  R² RMSE R² RMSE R² RMSE 

Linear 3862.585 -33.2406 47.3772 -15.9609 -1700.9677 -19.1401 

Ridge -17.6415 6.7248 -15.3685 26.5873 13.8557 13.6364 

Lasso -16.7661 6.5034 -12.1657 23.5644 66.8884 5.6515 

RNA -56.5447 125.6561 -22.1156 90.5959 -51.6234 -100.0000 

SVR -64.9852 74.7126 -16.1401 40.8885 -72.4595 48.7720 

Random Forest -54.9487 127.4309 -15.5965 88.5029 -56.6385 312.2457 

 

O modelo linear apresenta os valores dos índices bem divergentes entre cada 

tipo de variável estimada bastante negativo, especialmente na Conversão em 

Carboidratos, onde o índice foi de: 3862.5850%; -33.2406%. Uma anomalia incomum, 

onde o treino teve pior desempenho que o teste.  Essa discrepância pode estar 

associada a limitações inerentes do modelo linear em capturar relações não-lineares 

ou interações mais complexas presentes nos dados. A anomalia observada na 

conversão em carboidratos, sugere que o modelo linear falhou em encontrar um ajuste 

mínimo aos dados, potencialmente devido à presença de outliers, variáveis com alta 

multicolinearidade ou falta de transformação adequada das variáveis independentes. 

O índice calculado para o Ridge em relação ao R² também é negativo na maior 

parte das métricas, indicando que o desempenho no conjunto de teste é pior do que 

no conjunto de treino. Por exemplo, na Produtividade da Biomassa, o índice para o 

RMSE foi de 26.5873%, o que sugere que o modelo, apesar de estar regularizado, 

não conseguiu capturar as relações entre as variáveis de forma eficaz. Isso pode ser 

um sinal de subajuste, onde o modelo não consegue modelar adequadamente os 

dados, mesmo com a regularização. 

O Lasso tem índices negativos também, mas com um desempenho 

ligeiramente melhor do que o Ridge, especialmente na Produtividade de Carboidratos 

(índice de 5.6515%). Isso indica que, embora o modelo LASSO seja mais simples, ele 

consegue fazer uma melhor generalização do que o Ridge, mas ainda assim 

apresenta uma diferença considerável entre treino e teste, o que sugere que ajustes 

adicionais nos parâmetros ou na escolha das variáveis podem ser necessários. Tanto 

no modelo utilizado do Ridge, quanto no LASSO, houve uma anomalia onde a 

produtividade de carboidratos obteve o índice para o R² positivo. 
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O modelo de Redes Neurais apresenta índices elevados e negativos (por 

exemplo, -56.5447% de R² para Conversão em Carboidratos), o que indica uma 

grande diferença no desempenho entre treino e teste. Esse comportamento sugere 

que a arquitetura ou os parâmetros de treinamento do modelo precisam de ajustes 

significativos, pois o modelo está falhando tanto no treino quanto no teste, refletindo 

um possível sub-ajuste. Pois, Jerry et al. (2023) utilizaram mais de 100 neurônios na 

camada oculta e alcançaram R² > 0,98 que são considerados ótimos, mas ao observar 

o RMSE > 1 o que sugere overfitting. Logo, deveria ter usado mais neurônios na 

camada oculta para obter um desempenho melhor. Supriyanto et al. (2019) ao montar 

Redes Neurais constatou que ao retirar algumas variáveis de entrada, houve melhor 

desempenho das predições.  

SVR (Support Vector Regression) também mostra índices negativos, com um 

valor muito alto de índice na Produtividade de Carboidratos (-72.4595%), o que sugere 

uma grande discrepância no desempenho entre treino e teste. Isso pode indicar que 

o modelo não está capturando as complexidades dos dados, resultando em uma 

performance insatisfatória nos dados de teste. Hossain et al. (2022) ao relacionar 

nitrogênio e fósforo em uma única variável de entrada diminui a correlação entre as 

variáveis de entrada. O que pode ser uma peça central para melhorar este 

desempenho. 

O Random Forest também apresenta índices negativos em todas as métricas 

de R², com valores elevados, como -56.6385% na Produtividade de Carboidratos. Isso 

sugere que o modelo está tendo dificuldades em generalizar para o conjunto de teste. 

No entanto, em relação a produção de Biomassa obteve o melhor desempenho de R² 

de todos os ensaios. Primeiramente, a colinearidade entre variáveis de entrada, como 

a forte correlação entre nitrogênio e fósforo, pode ter impactado negativamente o 

modelo. A colinearidade de nitrogênio e fósforo pode influenciar nas previsões deste 

algoritmo. Embora a razão N/P tenha sido considerada para mitigar esse problema, 

sua influência nas predições ainda pode ser relevante. Além disso, desbalanceamento 

ou ruído nos dados pode ter afetado a modelagem da produtividade de carboidratos, 

especialmente se houver grande variabilidade ou a presença de outliers. 

 Ao analisar os resultados de Igou et al. (2023) que utilizou uma base de 

dados muito maior, os resultados dos índices foram bem semelhantes aos obtidos 

neste trabalho R² variando de (-49,14%, -20,41%) e o RMSE variando de (123%, 

208%), enquanto que neste trabalho (sem considerar o modelo linear), para o índice 



75 

 

de R² variando de (-72, 4595%, 66,884%) e o índice do RMSE variando de (5,65%, 

312,2467%). Salvo os casos extremos, a predição utilizando Random Forest 

conseguiu desempenhar até mais, mesmo ao possuir bem menos dados 

O regime de operação tem impacto significativo na predição. A produção de 

carboidratos por Chlorella vulgaris em regime semi-contínuo tende a apresentar maior 

erro em comparação ao regime em batelada. Isso ocorre porque, no processo 

contínuo, há maior variabilidade nas condições operacionais, como taxa de diluição, 

disponibilidade de nutrientes e variações ambientais (como luz e CO₂). Pequenas 

flutuações nesses parâmetros podem impactar significativamente a composição 

bioquímica das células, levando a variações na produção de carboidratos como é 

possível observar nos trabalhos de Khoo, et al. (2016). Já no regime batelada, as 

condições do meio são mais estáveis ao longo do tempo, resultando em menor 

variabilidade na síntese de carboidratos e, consequentemente, menor erro na 

predição e controle da produção como foi relatado por He et al. (2016), Wang et al. 

(2019) e Figueroa-Torres et al. (2017). 

Os gráficos de dispersão para os carboidratos na Figura 11 apresentados 

oferecem uma visão geral da performance de diferentes modelos de regressão em um 

conjunto de dados específico. Ao comparar a distribuição dos pontos em relação à 

linha de regressão (diagonal), podemos inferir algumas características sobre cada 

modelo. 

Os gráficos de A a C demonstram um ajuste ruim (Figura 11), com os pontos 

dispersos de forma aleatória ao redor da linha de regressão. Isso sugere que os 

modelos correspondentes, possivelmente regressão linear simples ou múltipla, estão 

capturando a relação entre as variáveis de forma insatisfatória, que é condizente aos 

valores de R² e RMSE obtidos.  Já os gráficos de D a F (Figura 11), por sua vez, 

apresentam uma dispersão menor dos pontos em torno da linha, indicando um ajuste 

mais preciso. Esses modelos, Redes neurais e Random Forest, podem estar 

capturando relações mais complexas entre as variáveis. 

Os gráficos de resíduos na  

Figura 12 fornecem visualmente insights valiosos sobre a qualidade do ajuste 

dos modelos de regressão. Idealmente, os resíduos devem estar distribuídos 

aleatoriamente em torno da linha zero, indicando que o modelo captura a relação entre 

as variáveis de forma adequada. Ao analisar os gráficos apresentados, observamos 

que, em geral, os resíduos estão distribuídos de forma aleatória, sugerindo um bom 
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ajuste dos modelos. No entanto, alguns gráficos apresentam nuances que merecem 

atenção, como a possível presença de alguns outliers ou leves padrões nos resíduos, 

principalmente nas Regressões A, B e C. Especialmente na regressão B e C que são 

Ridge e LASSO respectivamente existe uma grande semelhança entre si nos 

resíduos. 
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Figura 11 - Regressão para a determinação do acúmulo de carboidratos. 

   

A –Linear multivariada; B – Ridge; C – Lasso; D – RNA; E – SVR; F – Random Forest.  
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Figura 12 - Gráficos dos resíduos para o acúmulo de carboidratos. 

           

A –Linear multivariada; B – Ridge; C – Lasso; D – RNA; E – SVR; F – Random Forest.  
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De modo semelhante aconteceu quando utilizada a produtividade de 

Carboidratos como a variável de saída (Figura 13). Os resultados sugerem que os 

modelos de aprendizado de máquina (RNA, SVR e Random Forest) superam os 

modelos lineares tradicionais (linear multivariada, Ridge e LASSO) na tarefa de 

previsão utilizando as variáveis de entrada deste trabalho. Esses modelos mais 

complexos conseguem capturar padrões mais complexos nos dados, resultando em 

previsões mais precisas. 

Os gráficos de resíduos apresentados na Figura 14 mostram a relação entre 

os resíduos e os valores previstos para os seis modelos distintos (A, B, C, D, E, F). 

De maneira geral, os pontos estão distribuídos aleatoriamente ao redor da linha 

vermelha, indicando que os modelos não apresentam erros sistemáticos evidentes. 

Além disso, a ausência de padrões claros, como tendências em U ou inclinações, 

sugere que as previsões capturam bem a relação entre as variáveis. No entanto, 

alguns gráficos, como B e F, apresentam variações na dispersão dos resíduos, o que 

pode indicar a presença de heterocedasticidade, ou seja, uma mudança na 

variabilidade dos erros ao longo dos valores previstos. 

 Ao comparar os gráficos sobre os resíduos nas predições, não existem um 

consenso sobre o comportamento da C. vulgaris perante qualquer tipo de regressão. 

O efeito do meio de cultura também tem um grande impacto, Ma et al. (2023) relataram 

alta dispersão nos resíduos e alta dispersão ao utilizarem resíduos da suinocultura. 

No entanto, Lam et al. (2017) não obtiveram os mesmos resultados e o desempenho 

da regressão obteve menor margem, sofrendo com as margens viciadas. De modo 

que todos os modelos testados possuem o mesmo comportamento, o que não é 

observado neste trabalho, onde todos os resíduos são aleatórios e cada gráfico 

diverge entre si. 

 A divergência entre os estudos reforça a complexidade da modelagem preditiva 

da produtividade de carboidratos em C. vulgaris, evidenciando que a escolha do 

modelo ideal pode depender fortemente das condições experimentais e das variáveis 

de entrada utilizadas, como é evidenciado na Tabela 2. Além disso, a influência do 

meio de cultura sobre os resíduos e a variabilidade dos erros sugere que ajustes nos 

modelos podem ser necessários para diferentes cenários produtivos. Assim, futuras 

pesquisas podem explorar a combinação de técnicas de aprendizado de máquina com 

abordagens híbridas ou o uso de variáveis adicionais para aprimorar a robustez das 

previsões e reduzir incertezas associadas às variações ambientais e operacionais. 
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Figura 13 - Regressão para a determinação da produtividade de carboidratos. 

 

A –Linear multivariada; B – Ridge; C – Lasso; D – RNA; E – SVR; F – Random Forest. 
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Figura 14 - Gráficos dos resíduos para a produtividade de carboidratos. 

 

 

A –Linear multivariada; B – Ridge; C – Lasso; D – RNA; E – SVR; F – Random Forest. 
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O melhor desempenho dos algoritmos se deu quando foi analisado a 

produtividade da biomassa como variável de saída, esse resultado que foi observado 

numericamente com o R² e RMSE também foi possível ser observado graficamente 

na Figura 15. O modelo linear teve o pior desempenho, onde se observa que a 

dispersão dos pontos está mais distante da linha de convergência. Ridge e Lasso 

tiveram desempenhos muito semelhantes e melhores ao algoritmo linear. Os 

algoritmos RNA e SVR tiveram desempenhos semelhantes entre si. E por fim o 

algoritmo Random Forest teve o melhor desempenho de todos os testes de saída. 

Tanto nos resíduos com relação a fração de carboidratos e a produtividade de 

carboidratos existe um comportamento aleatório na distribuição dos pontos ao longo 

da linha, o mesmo comportamento ocorreu com Velásquez-Orta et al (2024) com uma 

escala maior (-80,+80) e 69 amostras. Indicando que este trabalho conseguiu 

melhorar a performance, principalmente por usar mais variáveis de entrada 

independentes e mais dados. 

Os gráficos de resíduos para a produtividade de biomassa na figura 16 

apresentaram um comportamento distinto das demais variáveis analisadas. 

Observou-se um melhor desempenho, com os pontos mais próximos da linha da 

idealidade. No entanto, a análise dos resíduos revelou a ausência da aleatoriedade 

esperada, evidenciada pelo acúmulo dos pontos predominantemente na região central 

do gráfico. Esse comportamento sugere a presença de um viés nas regressões 

realizadas, comprometendo a qualidade das estimativas obtidas. Assim, pode-se 

afirmar que a hipótese levantada anteriormente é válida: os dados utilizados nas 

regressões possuem uma abrangência limitada, dificultando o estabelecimento de 

uma relação precisa entre as variáveis de entrada e a produtividade de biomassa. 

A comparação entre os algoritmos mostra que os métodos de aprendizado de 

máquina, como SVR e Random Forest, capturam melhor as relações não lineares 

entre as variáveis, evidenciando a limitação dos modelos lineares, que simplificam 

padrões complexos e podem perder informações relevantes. Ainda assim, a análise 

dos resíduos indica a presença de padrões nos erros, possivelmente relacionados à 

falta de variáveis explicativas ou à necessidade de um pré-processamento mais 

refinado. Além disso, a variação no desempenho entre os algoritmos sugere que a 

complexidade do modelo deve ser equilibrada com sua interpretabilidade e 

capacidade de generalização. O Random Forest teve o melhor desempenho, mas 

pode exigir um volume maior de dados para evitar sobreajuste. 
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Figura 15 - Regressão para a determinação da produtividade de biomassa. 

 

A –Linear multivariada; B – Ridge; C – Lasso; D – RNA; E – SVR; F – Random Forest. 
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Figura 16 - Gráficos dos resíduos para a produtividade de biomassa. 

 

A –Linear multivariada; B – Ridge; C – Lasso; D – RNA; E – SVR; F – Random Forest. 
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Desse modo é possível salientar que a questão em si não é a qualidade dos 

dados, e sim como eles estão distribuídos em seu domínio. Quanto maior o intervalo 

de abrangência dos dados de entrada para a variável de saída, existe a tendência de 

que a regressão desempenhe melhor. Isso não anula o fato de que este trabalho foi 

capaz de determinar as concentrações de carboidratos além da produtividade de 

biomassa e carboidratos. Além de que essa metodologia desenvolvida nesse trabalho 

é capaz de averiguar a qualidade dos dados antes de fazer a regressão. Sendo assim, 

foi previsto que a regressão não poderia desempenhar devido a questão da 

proporcionalidade e da quantidade de dados utilizados para treino em detrimento dos 

dados separados para o teste. 

Durante a avaliação do modelo, foi identificada uma discrepância significativa 

entre os resultados obtidos no teste e no treino, com valores consideravelmente 

inferiores no desempenho do modelo nos dados de teste. Essa diferença sugere uma 

possível falha relacionada à representatividade dos dados utilizados no treinamento, 

que correspondem a 80% do total disponível. Ao que tudo indica, os dados de treino 

não foram capazes de abranger de forma satisfatória a variabilidade e as 

características presentes nos 20% dos dados reservados para teste, comprometendo 

a generalização do modelo. Pozzobon et al. (2021) utilizou a mesma proporção de 

dados, utilizando 261 dados e conseguiu estimar bem os parâmetros de saída com 

10% de erro. Ressaltando desta forma a importância de um conjunto maior de dados 

para fazer as previsões. Já Pääkkönen et al. (2024) utilizaram apenas 50 ensaios e 

conseguiu R² >0.9. Em ambos os casos são sistemas que não variam com o tempo e 

tendem a linearidade. O que favoreceu o desempenho com uma quantidade menor 

de dados. 

Essa limitação também pode ter ocorrido devido a uma distribuição não 

homogênea dos dados, resultando em um conjunto de treino que não reflete 

adequadamente os padrões e outliers encontrados no conjunto de teste. Como 

consequência, o modelo apresentou um desempenho otimizado apenas para o 

subconjunto utilizado no treinamento, mas mostrou dificuldade em extrapolar para 

novos dados. Essa situação reforça a importância de realizar uma análise criteriosa 

prévia de amostragem, garantindo que tanto os dados de treino quanto os de teste 

representem de maneira equilibrada o domínio completo das variáveis em estudo. 
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6. CONSIDERAÇÕES FINAIS 

 

Neste estudo, foi aplicada a técnica de Machine Learning para prever a 

produção de carboidratos pela microalga Chlorella vulgaris em cultivo contínuo, 

utilizando variáveis nutricionais, ambientais e operacionais como entradas para os 

modelos preditivos. A análise do coeficiente de Pearson permitiu identificar 

correlações significativas entre as variáveis independentes e dependentes, 

destacando a influência de fatores como a concentração de nutrientes e a intensidade 

luminosa na produção de carboidratos. Foi observada alta correlação entre nitrogênio 

e fósforo, utilizar essas duas variáveis de entrada pode prejudicar regressões por 

conta da colinearidade e alternativamente a razão de N/P foi utilizada para contornar 

este problema. O histograma das variáveis demonstrou a distribuição dos dados, 

evidenciando padrões e tendências que podem afetar as predições. 

Diferentes técnicas de regressão foram implementadas e comparadas, 

abrangendo modelos lineares (Regressão Linear Multivariada, Ridge e LASSO) e não 

lineares (Random Forest, Redes Neurais e Support Vector Regression - SVR). 

Observou-se que os modelos não lineares apresentaram melhor desempenho na 

previsão de todas as variáveis de saída, especialmente o Random Forest e as Redes 

Neurais, devido à sua capacidade de capturar relações complexas entre as variáveis, 

e obtiveram o melhor R² de 0,9347; 0,8962 e RMSE 0,2556; 0,3222, na previsão da 

produtividade carboidratos e produtividade de biomassa, respectivamente.  

A otimização dos modelos foi realizada através da definição dos melhores 

hiperparâmetros para cada técnica, utilizando a busca em grade, permitindo uma 

melhoria significativa na acurácia das previsões. Além disso, a validação cruzada foi 

empregada para evitar overfitting e garantir a generalização dos resultados, tornando 

os modelos mais robustos e confiáveis. Os resultados obtidos destacam o potencial 

do machine learning na predição e utilização futura para sistemas de controles para 

processos biotecnológicos.  
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APÊNDICE A – ALGORITMO LINEAR MULTIVARIADO 

from pathlib import Path 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import root_mean_squared_error 

from sklearn.metrics import r2_score 

import time 

 

#Display data options 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

 

#Path of the data 

# Enter 

path_ent    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Entrada.xlsx") 

# out 

path_out    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Saida.xlsx") 

# First graph regression result 

path_reg    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Regressao\linear.png") 

# Second graph residual result 

path_res    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Residuos\linear.png") 

# Report .txt file path 



104 

 

path_rep    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Report\linear.txt") 

 

# Read the data 

X   = pd.read_excel(path_ent) 

y   = pd.read_excel(path_out) 

 

# Time measure 

inicio  = time.time() 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Create and train the linear regression model 

model   = LinearRegression() 

model.fit(X_test, y_test) 

 

# Make predictions on the train set 

y_pred_train    = model.predict(X_train) 

 

# Make predictions on the test set 

y_pred          = model.predict(X_test) 

 

# Time measure 

fim         = time.time() 

duration    = fim-inicio 

 

# Calculate the mean square error and R² 

# Test Data 

MQE_test    = root_mean_squared_error(y_pred, y_test) 

r_2_test    = r2_score(y_test, y_pred) 

# Train Data 

MQE_train   = root_mean_squared_error(y_train, y_pred_train) 

r_2_train   = r2_score(y_train, y_pred_train) 
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# Organization of data: 

y_test  = pd.DataFrame(y_test) 

y_train = pd.DataFrame(y_train) 

y_test  = y_test.values 

y_train = y_train.values 

 

# Residual calculation: 

residuos=  y_pred.reshape(len(y_pred),1)-y_test 

 

# Adicionando a linha y = x para referência 

min_val = min(y_train)  # Valor mínimo para definir o início da linha 

max_val = max(y_train)  # Valor máximo para definir o fim da linha 

 

# Format text content in file: 

def format_array(array): 

    return "\n".join(", ".join(f"{num:.4f}" for num in sublist) for sublist in array) 

 

# Report informations about all the regression process 

report_text = ( 

    "Relatório de Resultados de Regressão Linear\n\n" 

    "Parte específica do modelo:\n" 

    f"Coeficientes: {', '.join(f'{coef:.4f}' for coef in model.coef_[0])}\n" 

    f"Intercepto: {model.intercept_[0]:.4f}\n\n" 

     

    "Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.4f} s\n\n" 

     

    "Dados do Conjunto de Treinamento:\n" 

    f"Y_train:\n{format_array(y_train)}\n\n" 
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    f"Y_pred_train:\n{format_array(y_pred_train)}\n\n" 

     

    "Dados do Conjunto de Teste:\n" 

    f"Y_test:\n{format_array(y_test)}\n\n" 

    f"Y_pred_test:\n{format_array(y_pred)}\n" 

) 

path_rep.write_text(report_text) 

 

# Print the report: 

print("Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.6f} s\n\n" 

    ) 

 

# Generate image of regression: 

plt.scatter(y_test, y_pred, c='black', label='TESTE') 

plt.scatter(y_train, y_pred_train, marker = '+', c='blue', label ='TREINO') 

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-") 

#plt.title (f"") 

plt.legend() 

plt.xlabel('Experimental') 

plt.ylabel('Simulado') 

plt.savefig(path_reg, format='png') 

plt.show() 

 

# Previsões e cálculo dos resíduos 

# Gráfico de resíduos 

plt.scatter(y_pred, residuos, color="black") 

plt.axhline(y=0, color="red", linestyle="-") 

plt.xlabel("Valores previstos") 

plt.ylabel("Resíduos") 
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#plt.title("Gráfico de Resíduos") 

plt.savefig(path_res, format='png') 

plt.show() 
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APÊNDICE B – ALGORITMO LASSO 

 

from pathlib import Path 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn.linear_model import Lasso 

from sklearn.metrics import root_mean_squared_error 

from sklearn.metrics import r2_score 

from sklearn.model_selection import GridSearchCV, train_test_split 

import time 

 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

 

#Path of the data 

# Enter 

path_ent = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida1\Entrada.

xlsx") 

# out 

path_out    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Saida.xlsx") 

# First graph regression result 

path_reg    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Regressao\Lasso.png") 

# Second graph residual result 

path_res    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Residuos\Lasso.png") 

# Report .txt file path 
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path_rep    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Report\Lasso.txt") 

 

# Read the data 

X   = pd.read_excel(path_ent) 

y   = pd.read_excel(path_out) 

 

# Time measure 

inicio  = time.time() 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Define the model: 

model = Lasso(max_iter=10**7, tol=10**-8) 

 

# Definindo os parâmetros para busca 

param_grid = { 

                'alpha': np.logspace(-4, 4, 100), # Testa valores de alpha de 0.0001 a 10000 

                'selection':['ciclic', 'random'], 

                'fit_intercept':[True, False], 

                'positive':[True, False], 

                'precompute': [True, False] 

}   

 

# GridSearchCV para Ridge 

# GridSearchCV para o modelo 

best_model = GridSearchCV(model, param_grid, cv=5, 

scoring='neg_mean_squared_error') 

best_model.fit(X_train, y_train.values.ravel()) 

model_estimator = best_model.best_estimator_ 

 

# Make predictions on the train set 

y_pred_train    = model_estimator.predict(X_train) 
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# Make predictions on the test set 

y_pred          = model_estimator.predict(X_test) 

 

# Time measure 

fim         = time.time() 

duration    = fim-inicio 

 

# Calculate the mean square error and R² 

# Test Data 

MQE_test    = root_mean_squared_error(y_pred, y_test) 

r_2_test    = r2_score(y_test, y_pred) 

# Train Data 

MQE_train   = root_mean_squared_error(y_train, y_pred_train) 

r_2_train   = r2_score(y_train, y_pred_train) 

 

# Organization of data: 

y_test  = pd.DataFrame(y_test) 

y_train = pd.DataFrame(y_train) 

y_test  = y_test.values 

y_train = y_train.values 

 

# Residual calculation: 

residuos=  y_pred.reshape(len(y_pred),1)-y_test 

 

# Adicionando a linha y = x para referência 

min_val = min(y_train)  # Valor mínimo para definir o início da linha 

max_val = max(y_train)  # Valor máximo para definir o fim da linha 

 

# Report informations about all the regression process 

report_text = ( 

    "Relatório de Resultados de Regressão Linear\n\n" 

    "Parte específica do modelo:\n" 

    f"Coeficientes: {best_model.best_params_}\n" 
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    "Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.4f} s\n\n" 

     

    "Dados do Conjunto de Treinamento:\n" 

    f"Y_train:\n{y_train}\n\n" 

    f"Y_pred_train:\n{y_pred_train}\n\n" 

     

    "Dados do Conjunto de Teste:\n" 

    f"Y_test:\n{y_test}\n\n" 

    f"Y_pred_test:\n{y_pred}\n" 

) 

path_rep.write_text(report_text) 

 

# Print the report: 

print("Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.6f} s\n\n" 

    ) 

 

# Generate image of regression: 

plt.scatter(y_test, y_pred, c='black', label='TESTE') 

plt.scatter(y_train, y_pred_train, marker = '+', c='blue', label ='TREINO') 

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-") 

#plt.title (f"") 

plt.legend() 

plt.xlabel('Experimental') 
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plt.ylabel('Simulado') 

plt.savefig(path_reg, format='png') 

plt.show() 

 

# Previsões e cálculo dos resíduos 

# Gráfico de resíduos 

plt.scatter(y_pred, residuos, color="black") 

plt.axhline(y=0, color="red", linestyle="-") 

plt.xlabel("Valores previstos") 

plt.ylabel("Resíduos") 

#plt.title("Gráfico de Resíduos") 

plt.savefig(path_res, format='png') 

plt.show() 
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APÊNDICE C – ALGORITMO RIDGE 

from pathlib import Path 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn.linear_model import Ridge 

from sklearn.metrics import root_mean_squared_error 

from sklearn.metrics import r2_score 

from sklearn.model_selection import GridSearchCV, train_test_split 

import time 

 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

 

#Path of the data 

# Enter 

path_ent    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Entrada.xlsx") 

# out 

path_out    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Saida.xlsx") 

# First graph regression result 

path_reg    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Regressao\Ridge.png") 

# Second graph residual result 

path_res    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Residuos\Ridge.png") 

# Report .txt file path 
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path_rep    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Report\Ridge.txt") 

 

# Read the data 

X   = pd.read_excel(path_ent) 

y   = pd.read_excel(path_out) 

 

# Time measure 

inicio  = time.time() 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Define the model: 

model = Ridge(max_iter=10**7, tol=10**-8) 

 

# Definindo os parâmetros para busca 

param_grid = { 

                'alpha': np.logspace(-4, 4, 10**4), # Testa valores de alpha de 0.0001 a 

10000 

                'solver': ['svd', 'cholesky', 'sparse_cg', 'lsqr', 'sag', 'lbfgs'], # Testa com 

diferentes tipos de solver 

                'positive':[True, False] 

}   

 

# GridSearchCV para Ridge 

# GridSearchCV para o modelo 

best_model = GridSearchCV(model, param_grid, cv=5, 

scoring='neg_mean_squared_error') 

best_model.fit(X_train, y_train.values.ravel()) 

model_estimator = best_model.best_estimator_ 

 

# Make predictions on the train set 

y_pred_train    = model_estimator.predict(X_train) 
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# Make predictions on the test set 

y_pred          = model_estimator.predict(X_test) 

 

# Time measure 

fim         = time.time() 

duration    = fim-inicio 

 

# Calculate the mean square error and R² 

# Test Data 

MQE_test    = root_mean_squared_error(y_pred, y_test) 

r_2_test    = r2_score(y_test, y_pred) 

# Train Data 

MQE_train   = root_mean_squared_error(y_train, y_pred_train) 

r_2_train   = r2_score(y_train, y_pred_train) 

 

# Organization of data: 

y_test  = pd.DataFrame(y_test) 

y_train = pd.DataFrame(y_train) 

y_test  = y_test.values 

y_train = y_train.values 

 

# Residual calculation: 

residuos=  y_pred.reshape(len(y_pred),1)-y_test 

 

# Adicionando a linha y = x para referência 

min_val = min(y_train)  # Valor mínimo para definir o início da linha 

max_val = max(y_train)  # Valor máximo para definir o fim da linha 

 

# Report informations about all the regression process 

report_text = ( 

    "Relatório de Resultados de Regressão Linear\n\n" 

    "Parte específica do modelo:\n" 

    f"Coeficientes: {best_model.best_params_}\n" 
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    "Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.4f} s\n\n" 

     

    "Dados do Conjunto de Treinamento:\n" 

    f"Y_train:\n{y_train}\n\n" 

    f"Y_pred_train:\n{y_pred_train}\n\n" 

     

    "Dados do Conjunto de Teste:\n" 

    f"Y_test:\n{y_test}\n\n" 

    f"Y_pred_test:\n{y_pred}\n" 

) 

path_rep.write_text(report_text) 

 

# Print the report: 

print("Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.6f} s\n\n" 

    ) 

 

# Generate image of regression: 

plt.scatter(y_test, y_pred, c='black', label='TESTE') 

plt.scatter(y_train, y_pred_train, marker = '+', c='blue', label ='TREINO') 

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-") 

#plt.title (f"") 

plt.legend() 

plt.xlabel('Experimental') 
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plt.ylabel('Simulado') 

plt.savefig(path_reg, format='png') 

plt.show() 

 

# Previsões e cálculo dos resíduos 

# Gráfico de resíduos 

plt.scatter(y_pred, residuos, color="black") 

plt.axhline(y=0, color="red", linestyle="-") 

plt.xlabel("Valores previstos") 

plt.ylabel("Resíduos") 

#plt.title("Gráfico de Resíduos") 

plt.savefig(path_res, format='png') 

plt.show() 
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APÊNDICE D – ALGORITMO RNA 

from pathlib import Path 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

import time 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

from pathlib import Path 

from sklearn.metrics import root_mean_squared_error 

from sklearn.metrics import r2_score 

from sklearn.model_selection import GridSearchCV, train_test_split 

from sklearn.neural_network import MLPRegressor 

from sklearn.preprocessing import StandardScaler 

 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

 

#Path of the data 

# Enter 

path_ent    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Entrada.xlsx") 

# out 

path_out    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Saida.xlsx") 

# First graph regression result 

path_reg    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Regressao\RNA.png") 

# Second graph residual result 
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path_res    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Residuos\RNA.png") 

# Report .txt file path 

path_rep    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Report\RNA.txt") 

 

# Read the data 

X   = pd.read_excel(path_ent) 

y   = pd.read_excel(path_out) 

 

# Time measure 

inicio  = time.time() 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Normalização 

# Dados de entrada 

scalerInput = StandardScaler() 

scalerInput.fit(X_train) 

 

X_train = scalerInput.transform(X_train) 

X_test = scalerInput.transform(X_test) 

 

# Dados de saída 

scalerOutput = StandardScaler() 

scalerOutput.fit(y_train) 

 

y_train = scalerOutput.transform(y_train) 

y_test = scalerOutput.transform(y_test) 

 

# Definindo o modelo 

model = MLPRegressor(random_state=42) 
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# Definindo os parâmetros para busca 

parameter_space = { 

    'hidden_layer_sizes': [(3,), (5,), (6,),(10,), (11,), (12,), (13,),(14,), (15,), (16),  

                           (3, 3,), (5, 5,), (7, 7,), 

                           (3, 3, 3), (5, 5, 5), (6, 6, 6)], 

    'activation': ['tanh', 'relu', 'logistic', 'identity'], 

    'solver': ['sgd', 'adam', 'lbfgs'], 

    'alpha': [0.0001, 0.05, 0.1, 0.5], 

    'learning_rate': ['constant', 'adaptive', 'invscaling'], 

} 

 

# GridSearchCV para o modelo 

best_model = GridSearchCV(model, parameter_space, n_jobs=-1, 

scoring='neg_mean_squared_error') 

best_model.fit(X_train, y_train) 

model_estimator = best_model.best_estimator_ 

 

# Make predictions on the train set 

y_pred_train    = model_estimator.predict(X_train) 

 

# Make predictions on the test set 

y_pred          = model_estimator.predict(X_test) 

 

# Time measure 

fim         = time.time() 

duration    = fim-inicio 

 

# Calculate the mean square error and R² 

# Test Data 

MQE_test    = root_mean_squared_error(y_pred, y_test) 

r_2_test    = r2_score(y_test, y_pred) 

# Train Data 

MQE_train   = root_mean_squared_error(y_train, y_pred_train) 

r_2_train   = r2_score(y_train, y_pred_train) 
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# Organization of data: 

y_test  = pd.DataFrame(y_test) 

y_train = pd.DataFrame(y_train) 

y_test  = y_test.values 

y_train = y_train.values 

 

# ajuste das matrizes 

y_test       =  y_test.reshape(-1,1) 

y_pred       =  y_pred.reshape(-1,1) 

y_train      =  y_train.reshape(-1,1) 

y_pred_train =  y_pred_train.reshape(len(y_pred_train),1) 

 

#mudanca para variaveis originais 

y_test          =   scalerOutput.inverse_transform(y_test) 

y_pred          =   scalerOutput.inverse_transform(y_pred) 

y_train         =   scalerOutput.inverse_transform(y_train) 

y_pred_train    =   scalerOutput.inverse_transform(y_pred_train) 

#fim da mudanca 

 

# Residual calculation: 

residuos=  y_pred.reshape(len(y_pred),1)-y_test 

 

# Adicionando a linha y = x para referência 

min_val = min(y_train)  # Valor mínimo para definir o início da linha 

max_val = max(y_train)  # Valor máximo para definir o fim da linha 

 

# Report informations about all the regression process 

report_text = ( 

    "Relatório de Resultados de Regressão MLP\n\n" 

    "Parte específica do modelo:\n" 

    f"Coeficientes: {best_model.best_params_}\n" 

    f"Best parameters found:\n, {best_model.best_estimator_.coefs_}\n" 

    f"Best intercept found:\n, {best_model.best_estimator_.intercepts_}\n" 
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    "Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.4f} s\n\n" 

     

    "Dados do Conjunto de Treinamento:\n" 

    f"Y_train:\n{y_train}\n\n" 

    f"Y_pred_train:\n{y_pred_train}\n\n" 

     

    "Dados do Conjunto de Teste:\n" 

    f"Y_test:\n{y_test}\n\n" 

    f"Y_pred_test:\n{y_pred}\n" 

) 

path_rep.write_text(report_text) 

 

# Print the report: 

print("Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.6f} s\n\n" 

    ) 

 

# Generate image of regression: 

plt.scatter(y_test, y_pred, c='black', label='TESTE') 

plt.scatter(y_train, y_pred_train, marker = '+', c='blue', label ='TREINO') 

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-") 

#plt.title (f"") 

plt.legend() 
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plt.xlabel('Experimental') 

plt.ylabel('Simulado') 

plt.savefig(path_reg, format='png') 

plt.show() 

 

# Previsões e cálculo dos resíduos 

# Gráfico de resíduos 

plt.scatter(y_pred, residuos, color="black") 

plt.axhline(y=0, color="red", linestyle="-") 

plt.xlabel("Valores previstos") 

plt.ylabel("Resíduos") 

#plt.title("Gráfico de Resíduos") 

plt.savefig(path_res, format='png') 

plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

APÊNDICE E – ALGORITMO SVR 

from pathlib import Path 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import GridSearchCV, train_test_split 

import time 

from sklearn.metrics import root_mean_squared_error 

from sklearn.metrics import r2_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.svm import SVR 

 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

 

#Path of the data 

# Enter 

path_ent    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Entrada.xlsx") 

# out 

path_out    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Saida.xlsx") 

# First graph regression result 

path_reg    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Regressao\SVR.png") 

# Second graph residual result 

path_res    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Residuos\SVR.png") 

# Report .txt file path 
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path_rep    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Report\SVR.txt") 

 

# Read the data 

X   = pd.read_excel(path_ent) 

y   = pd.read_excel(path_out) 

 

# Time measure 

inicio  = time.time() 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Normalização 

# Dados de entrada 

scalerInput = StandardScaler() 

scalerInput.fit(X_train) 

 

X_train = scalerInput.transform(X_train) 

X_test = scalerInput.transform(X_test) 

 

# Dados de saída 

scalerOutput = StandardScaler() 

scalerOutput.fit(y_train) 

 

y_train = scalerOutput.transform(y_train) 

y_test = scalerOutput.transform(y_test) 

 

# Definindo o modelo 

model = SVR(max_iter=10**6, tol=10**-8) 

# Definindo os parâmetros para busca 

parameter_space = { 

    'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 

    'degree': [1, 2, 3, 4, 5], 
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    'gamma': ['scale', 'auto'], 

    'coef0': [0, 0.25, 0.75, 0.5, 1, 2], 

    'C': [.5,.75, 1, 1.5, 2], 

    'epsilon': [0.1,0.01, 0.001, 0.5, 1], 

    'shrinking': [True, False] 

} 

 

# GridSearchCV para o modelo 

best_model = GridSearchCV(model, parameter_space, n_jobs=-1, 

scoring='neg_mean_squared_error') 

best_model.fit(X_train, y_train.ravel()) 

model_estimator = best_model.best_estimator_ 

 

# Make predictions on the train set 

y_pred_train    = model_estimator.predict(X_train) 

 

# Make predictions on the test set 

y_pred          = model_estimator.predict(X_test) 

 

# Time measure 

fim         = time.time() 

duration    = fim-inicio 

 

# Calculate the mean square error and R² 

# Test Data 

MQE_test    = root_mean_squared_error(y_pred, y_test) 

r_2_test    = r2_score(y_test, y_pred) 

# Train Data 

MQE_train   = root_mean_squared_error(y_train, y_pred_train) 

r_2_train   = r2_score(y_train, y_pred_train) 

 

# Organization of data: 

y_test  = pd.DataFrame(y_test) 

y_train = pd.DataFrame(y_train) 
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y_test  = y_test.values 

y_train = y_train.values 

 

# ajuste das matrizes 

y_test       =  y_test.reshape(-1,1) 

y_pred       =  y_pred.reshape(-1,1) 

y_train      =  y_train.reshape(-1,1) 

y_pred_train =  y_pred_train.reshape(len(y_pred_train),1) 

 

#mudanca para variaveis originais 

y_test          =   scalerOutput.inverse_transform(y_test) 

y_pred          =   scalerOutput.inverse_transform(y_pred) 

y_train         =   scalerOutput.inverse_transform(y_train) 

y_pred_train    =   scalerOutput.inverse_transform(y_pred_train) 

#fim da mudanca 

 

# Residual calculation: 

residuos=  y_pred.reshape(len(y_pred),1)-y_test 

 

# Adicionando a linha y = x para referência 

min_val = min(y_train)  # Valor mínimo para definir o início da linha 

max_val = max(y_train)  # Valor máximo para definir o fim da linha 

 

# Report informations about all the regression process 

report_text = ( 

    "Relatório de Resultados de Regressão MLP\n\n" 

    "Parte específica do modelo:\n" 

    f"Coeficientes: {best_model.best_params_}\n" 

    f"Best parameters found:\n, {best_model.best_estimator_.support_vectors_}\n" 

    f"Best intercept found:\n, {best_model.best_estimator_.intercept_}\n" 

    

    "Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 
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    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.4f} s\n\n" 

     

    "Dados do Conjunto de Treinamento:\n" 

    f"Y_train:\n{y_train}\n\n" 

    f"Y_pred_train:\n{y_pred_train}\n\n" 

     

    "Dados do Conjunto de Teste:\n" 

    f"Y_test:\n{y_test}\n\n" 

    f"Y_pred_test:\n{y_pred}\n" 

) 

path_rep.write_text(report_text) 

 

# Print the report: 

print("Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.6f} s\n\n" 

    ) 

 

# Generate image of regression: 

plt.scatter(y_test, y_pred, c='black', label='TESTE') 

plt.scatter(y_train, y_pred_train, marker = '+', c='blue', label ='TREINO') 

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-") 

#plt.title (f"") 

plt.legend() 

plt.xlabel('Experimental') 

plt.ylabel('Simulado') 

plt.savefig(path_reg, format='png') 

plt.show() 
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# Previsões e cálculo dos resíduos 

# Gráfico de resíduos 

plt.scatter(y_pred, residuos, color="black") 

plt.axhline(y=0, color="red", linestyle="-") 

plt.xlabel("Valores previstos") 

plt.ylabel("Resíduos") 

#plt.title("Gráfico de Resíduos") 

plt.savefig(path_res, format='png') 

plt.show() 
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APÊNDICE F – ALGORITMO RANDOM FOREST 

 

from pathlib import Path 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn.metrics import root_mean_squared_error 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import r2_score 

from sklearn.model_selection import GridSearchCV, train_test_split 

from sklearn.preprocessing import StandardScaler 

import time 

 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

 

#Path of the data 

# Enter 

path_ent= 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida1\Entrada.

xlsx") 

# out 

path_out    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Saida.xlsx") 

# First graph regression result 

path_reg    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Regressao\RF.png") 

# Second graph residual result 

path_res    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Residuos\RF.png") 
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# Report .txt file path 

path_rep    = 

Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\IA\Simulation\Saida 

1\Report\RF.txt") 

 

# Read the data 

X   = pd.read_excel(path_ent) 

y   = pd.read_excel(path_out) 

 

# Time measure 

inicio  = time.time() 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Normalização 

# Dados de entrada 

scalerInput = StandardScaler() 

scalerInput.fit(X_train) 

 

X_train = scalerInput.transform(X_train) 

X_test = scalerInput.transform(X_test) 

 

# Dados de saída 

scalerOutput = StandardScaler() 

scalerOutput.fit(y_train) 

 

y_train = scalerOutput.transform(y_train) 

y_test = scalerOutput.transform(y_test) 

 

# Definindo o modelo 

model = RandomForestRegressor(random_state=42) 

# Definindo os parâmetros para busca 

param_grid = { 

    'n_estimators': [20, 50, 100, 150, 200],       # Número de árvores 
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    'max_depth': [None, 5, 10, 20, 30],      # Profundidade máxima da árvore 

    'min_samples_split': [2, 3, 4, 5, 6, 7, 10],      # Mínimo de amostras para dividir um 

nó 

    'min_samples_leaf': [1, 2, 3, 4],        # Mínimo de amostras em cada folha 

    'bootstrap': [True, False]            # Se deve usar amostragem com ou sem reposição 

}   

 

# GridSearchCV para o modelo 

best_model = GridSearchCV(model, param_grid, cv=5, 

scoring='neg_mean_squared_error') 

best_model.fit(X_train, y_train.ravel()) 

model_estimator = best_model.best_estimator_ 

 

# Make predictions on the train set 

y_pred_train    = model_estimator.predict(X_train) 

 

# Make predictions on the test set 

y_pred          = model_estimator.predict(X_test) 

 

# Time measure 

fim         = time.time() 

duration    = fim-inicio 

 

# Calculate the mean square error and R² 

# Test Data 

MQE_test    = root_mean_squared_error(y_pred, y_test) 

r_2_test    = r2_score(y_test, y_pred) 

# Train Data 

MQE_train   = root_mean_squared_error(y_train, y_pred_train) 

r_2_train   = r2_score(y_train, y_pred_train) 

 

# Organization of data: 

y_test  = pd.DataFrame(y_test) 

y_train = pd.DataFrame(y_train) 
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y_test  = y_test.values 

y_train = y_train.values 

 

# ajuste das matrizes 

y_test       =  y_test.reshape(-1,1) 

y_pred       =  y_pred.reshape(-1,1) 

y_train      =  y_train.reshape(-1,1) 

y_pred_train =  y_pred_train.reshape(len(y_pred_train),1) 

 

#mudanca para variaveis originais 

y_test          =   scalerOutput.inverse_transform(y_test) 

y_pred          =   scalerOutput.inverse_transform(y_pred) 

y_train         =   scalerOutput.inverse_transform(y_train) 

y_pred_train    =   scalerOutput.inverse_transform(y_pred_train) 

#fim da mudanca 

 

# Residual calculation: 

residuos=  y_pred.reshape(len(y_pred),1)-y_test 

 

# Adicionando a linha y = x para referência 

min_val = min(y_train)  # Valor mínimo para definir o início da linha 

max_val = max(y_train)  # Valor máximo para definir o fim da linha 

 

# Report informations about all the regression process 

report_text = ( 

    "Relatório de Resultados de Regressão Random Forest\n\n" 

    "Parte específica do modelo:\n" 

    f"Coeficientes: {best_model.best_params_}\n" 

  

    "Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 
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    f"Tempo de execução: {duration:.4f} s\n\n" 

     

    "Dados do Conjunto de Treinamento:\n" 

    f"Y_train:\n{y_train}\n\n" 

    f"Y_pred_train:\n{y_pred_train}\n\n" 

     

    "Dados do Conjunto de Teste:\n" 

    f"Y_test:\n{y_test}\n\n" 

    f"Y_pred_test:\n{y_pred}\n" 

) 

path_rep.write_text(report_text) 

 

# Print the report: 

print("Métricas de Avaliação:\n" 

    f"R² - Treino: {r_2_train:.4f}\n" 

    f"R² - Teste: {r_2_test:.4f}\n" 

    f"RMSE - Treino: {MQE_train:.4f}\n" 

    f"RMSE - Teste: {MQE_test:.4f}\n\n" 

    f"Tempo de execução: {duration:.6f} s\n\n" 

    ) 

 

# Generate image of regression: 

plt.scatter(y_test, y_pred, c='black', label='TESTE') 

plt.scatter(y_train, y_pred_train, marker = '+', c='blue', label ='TREINO') 

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-") 

#plt.title (f"") 

plt.legend() 

plt.xlabel('Experimental') 

plt.ylabel('Simulado') 

plt.savefig(path_reg, format='png') 

plt.show() 

 

# Previsões e cálculo dos resíduos 

# Gráfico de resíduos 
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plt.scatter(y_pred, residuos, color="black") 

plt.axhline(y=0, color="red", linestyle="-") 

plt.xlabel("Valores previstos") 

plt.ylabel("Resíduos") 

#plt.title("Gráfico de Resíduos") 

plt.savefig(path_res, format='png') 

plt.show() 

 

 

 


