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RESUMO
Neste estudo, foi aplicada a técnica de Machine Learning (ML) para prever a producao
de carboidratos pela microalga Chlorella vulgaris em um cultivo continuo, utilizando
varidveis nutricionais (concentracdo de nitrogénio, 500-75 mg L-1, e fésforo, 200-50
mg L-1, em meio), ambientais (intensidade luminosa entre 150-450 umol m-2 s-1 e a
densidade Optica entre 0,5-20) e operacionais (tempo de residéncia entre 2,9-4,4 dias
e tempo normalizado entre 0-1) como entradas para os modelos preditivos dana
produtividade de biomassa e carboidratos e a % de acumulo de carboidratos em
biomassa. A andlise do coeficiente de Pearson permitiu identificar correlacdes
significativas entre as variaveis independentes e dependentes, destacando a
influéncia da concentracdo de nutrientes e da intensidade luminosa na producédo de
carboidratos. Foi observada alta correlacdo entre nitrogénio e fésforo, o que pode
comprometer a qualidade das regressdes devido a colinearidade; como alternativa, a
razdo N/P foi utilizada para contornar esse problema. O histograma das variaveis
evidenciou padrdes e tendéncias nos dados, impactando as predi¢des. Diferentes
técnicas de regressao foram implementadas e comparadas, incluindo modelos
lineares (Regressao Linear Multivariada, Ridge e LASSO) e nao lineares (Random
Forest, Redes Neurais e Support Vector Regression — SVR). Os modelos néo lineares
apresentaram melhor desempenho na previsdo de todas as variaveis de saida,
especialmente Random Forest e Redes Neurais, que capturaram relacdes complexas
entre as variaveis. O melhor desempenho foi obtido com Random Forest, alcancando
R2 de 0,9347 e RMSE de 0,2556 para a produtividade de carboidratos, e R2 de 0,8962
e RMSE de 0,3222 para a produtividade de biomassa. A otimizacdo dos modelos foi
realizada por meio da busca em grade (grid search), permitindo a definicdo dos
melhores hiperpardmetros e melhorando significativamente a acurécia das previsoes.
Além disso, a validacdo cruzada foi empregada para evitar overfitting e garantir a
generalizacdo dos resultados, tornando os modelos mais robustos e confiaveis. Além
da analise estatistica dos modelos, foi realizada uma avaliacao grafica dos residuos
para verificar a adequacdo das predicdes. Observou-se que, apesar do bom
desempenho numérico dos modelos nao lineares, os residuos indicaram um leve viés
centralizado, sugerindo que melhorias podem ser alcancadas com a inclusdo de novas

variaveis de entrada ou ajustes nos pré-processamentos dos dados.



Palavras-chave: Redes neurais artificiais, Chlorella vulgaris, microalga, producéo de

carboidratos, amido, regressao, Support vector regression.



ABSTRACT

In this study, Machine Learning (ML) technique was applied to predict carbohydrate
production by the microalgae Chlorella vulgaris in a continuous cultivation, using
nutritional (nitrogen concentration, 500-75 mg L-1, and phosphorus, 200-50 mg L-1, in
medium), environmental (light intensity between 150-450 umol m-2 s-1 and optical
density between 0.5-20) and operational (residence time between 2.9-4.4 days and
normalized time between 0-1) variables as inputs for the predictive models on biomass
and carbohydrate productivity and the % of carbohydrate accumulation in biomass.
The analysis of Pearson's coefficient allowed to identify significant correlations
between the independent and dependent variables, highlighting the influence of
nutrient concentration and light on carbohydrate production. A high correlation was
observed between nitrogen and phosphorus, which can compromise the quality of the
regressions due to collinearity; as an alternative, the N/P ratio was used to circumvent
this problem. The histogram of the variables showed patterns and trends in the data,
impacting the predictions. Different regression techniques were implemented and
compared, including linear models (Multivariate Linear Regression, Ridge and LASSO)
and non-linear models (Random Forest, Artificial Neural Networks and Support Vector
Regression — SVR). The non-linear models showed better performance in predicting
all output variables, especially Random Forest and Neural Networks, which captured
complex relationships between the variables. The best performance was obtained with
Random Forest, reaching R2 of 0.9347 and RMSE of 0.2556 for carbohydrate
productivity, and R2 of 0.8962 and RMSE of 0.3222 for biomass productivity. The
optimization of the models was performed through grid search, allowing the definition
of the best hyperparameters and significantly improving the accuracy of the
predictions. Furthermore, cross-validation was used to avoid overfitting and ensure
generalizability of the results, making the models more robust and reliable. In addition
to the statistical analysis of the models, a graphical evaluation of the residuals was
performed to verify the adequacy of the predictions. It was observed that, despite the
good numerical performance of the nonlinear models, the residuals indicated a slight
centralized bias, suggesting that improvements can be achieved with the inclusion of

new input variables or adjustments in the data preprocessing.



Keywords: artificial neural networks, microalgae, starch production, regression,

support vector regression.
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1. INTRODUCAO

A inteligéncia artificial tem revolucionado diversas areas cientificas e
industriais, sendo o Machine Learning um de seus principais pilares. Essa abordagem
se destaca pela capacidade de identificar padrées complexos e modelar sistemas néo
lineares, especialmente em contextos em que os métodos tradicionais de regressao,
como por exemplo, a regressao linear, polinomial e linear mdultipla apresentam
limitagBes na predi¢éo das variaveis de interesse (Goodfellow et al., 2016).

No campo dos bioprocessos, a aplicagdo de Machine Learning tem mostrado
potencial significativo na predicdo de carboidratos produzidos (David, et al., 2023;
Ramandani, et al. 2025; Paakkonen, et al. 2024; Sheik, et al. 2024.). Particularmente
no cultivo de microalgas, como a Chlorella vulgaris, que € amplamente reconhecida
por seu alto teor de carboidratos, proteinas e outros compostos bioativos (Safi et al.,
2014; Paakkonen, et al. 2024; Ahmad Sobri, et al. 2023).

As microalgas desempenham um papel crucial na biotecnologia devido a sua
versatilidade em aplicagbes como producdo de bioenergia, alimentos funcionais e
tratamentos ambientais (Su et al., 2023). A Chlorella vulgaris, em particular, destaca-
se por sua capacidade de produzir elevadas concentracdes de biomassa e de
acumular alto teor de carboidratos (até 60%) em condicfes especificas de cultivo, que
pode otimizar sua produtividade em modo continuo (Abdel-Latif et al., 2022). No
entanto, a otimizagdo do cultivo dessa microalga exige uma compreenséao detalhada
da interacdo entre variaveis nutricionais, ambientais e operacionais, uma vez que o
acumulo de carboidrato intracelular depende da interacdo dessas variaveis. Além
disso, esses carboidratos podem ser utilizados para os mais diversos fins, como a
producéo de etanol (De Farias Silva e Sforza, 2016).

Ferramentas de aprendizado supervisionado, como regressao linear, Ridge,
Lasso, Redes Neurais, Suport Vector Regression e Random Forest, sdo amplamente
utilizadas para modelar sistemas complexos (Pedregosa et al., 2011). Essas
metodologias permitem prever com precisdo a produtividade e a composicao
biogquimica de culturas das microalgas, fornecendo insights valiosos para otimizacao
de processos. Além disso, a normalizacao de variaveis e a aplicagdo de métricas como
o coeficiente de Pearson garantem a robustez dos modelos preditivos (Fisher, et al.
2022)
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Dado o crescente interesse em tecnologias sustentaveis, este trabalho visa
aplicar técnicas avancadas de Machine Learning para prever a producdo de
carboidratos pela Chlorella vulgaris em cultivo continuo. A abordagem proposta incluiu
uma andlise comparativa de métodos de regressdo e aprendizado supervisionado,
com o objetivo de identificar o modelo mais eficaz para a predi¢do de variaveis-chave,
como produtividade da biomassa e de carboidratos e o percentual de carboidrato em
biomassa. Ao explorar a relagéo entre condi¢cdes de cultivo e produgéao de biomassa,

espera-se contribuir para o avanco do uso de microalgas em processos industriais.
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2. OBJETIVOS
2.1. Geral
Prever a producéo de carboidratos de Chlorella vulgaris em cultivo continuo
aplicando Machine learning a partir de variaveis nutricionais (concentragdo de fosforo
e nitrogénio), ambientais (intensidade luminosa e, densidade Optica) e operacionais
(tempo de residéncia e tempo normalizado).
2.2. Especificos

¢ Identificar relacGes entre variaveis independentes e dependentes usando
métricas: o coeficiente de Pearson e histograma;

e Implementar e comparar diferentes métodos de regressdo: Técnicas
lineares (regressao linear multivariada, Ridge e LASSO). Técnicas nao
lineares (Random Forest, Redes Neurais e Support Vector Regression -
SVR);

e Otimizar os modelos de Machine Learning ao definir os melhores
hiperparametros para cada técnica;

¢ Realizar validacdo cruzada para evitar overfitting e garantir a generalizacao
dos resultados;

e Validar os modelos preditivos, ao avaliar a precisdo com métricas como R2

e RMSE para cada variavel de saida em dados de teste.
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3. FUNDAMENTACAO TEORICA

Este capitulo tem como escopo apresentar um levantamento bibliografico que
serviu como base para o presente trabalho, sendo descritas algumas definicdes
referentes os modelos de regressdo, método Pearson e outras andlises estatisticas
sobre a organizacdo e distribuicho dos dados, assim como as ferramentas

disponibilizadas pelo SK-Learn em conjunto com o Python.

3.1. Python

Python é uma linguagem de programacdo de alto nivel, conhecida por sua
sintaxe simples e legivel, o que a torna ideal tanto para iniciantes quanto para
profissionais experientes. Seu vasto ecossistema de bibliotecas, permite o
desenvolvimento de solucbes eficientes para uma ampla gama de aplicagdes,
incluindo analise de dados, aprendizado de maquina, automacao e desenvolvimento
web. Além disso, sua comunidade ativa e crescente contribui constantemente com
Nnovos recursos e ferramentas, tornando o Python uma das linguagens mais populares
e versateis do mundo da programacéao (Ranganathan, et al. 2019).

O Scikit-learn é uma biblioteca de aprendizado de maquina em Python,
reconhecida por sua eficiéncia e facilidade de uso. Construida sobre NumPy, SciPy e
Matplotlib, oferece algoritmos para regressao, classificacéo, clustering e reducao de
dimensionalidade, incluindo SVR, Random Forest e PCA. (Pedregosa et al., 2011). E
€ a biblioteca mais importante deste trabalho, pois, foi ela que todas as regressdes
foram construidas. Outras bibliotecas foram de grande importancia, como Pandas e
Seaborn que oferecem ferramentas de pré-processamento de dados e visualizacao.
(Mckinney, 2025; Waskom, 2025).

Além de ferramentas para pré-processamento, validacdo cruzada e ajuste de
hiperparametros, permite a automacéo do fluxo de trabalho por meio de pipelines. Um
desafio comum no aprendizado de maquina é o overfitting, que prejudica a
generalizagdo dos modelos. Para evita-lo, & essencial separar corretamente os dados
de treinamento e teste (Ying, 2019).

O Scikit-learn € uma biblioteca amplamente adotada para aprendizado de
magquina em Python, destacando-se pela sua facilidade de uso e eficiéncia.
Construida sobre NumPy, SciPy e Matplotlib, ela fornece uma variedade de algoritmos

para tarefas de regresséao, classificacéo, clustering e reducao de dimensionalidade.



19

Recursos como regressao linear, regressao Lasso, regressédo Ridge, Redes Neurais,
SVR (Support Vector Regressor), RF (Random Forest), e PCA (Principal Component
Analysis) ajudam a resolver diferentes desafios de analise de dados. (Pedregosa et
al., 2011)

3.2. Machine learning

Machine Learning (ML), ou aprendizado de maquina, € uma subarea da
inteligéncia artificial que desenvolve algoritmos capazes de aprender com dados e
tomar decisdes ou realizar previsdes sem serem explicitamente programados. Esses
algoritmos identificam padrdes em conjuntos de dados e usam esse conhecimento
para generalizar e aplicar o aprendizado em situagdes novas. A abordagem baseia-
se em modelos matematicos e estatisticos que, quanto mais expostos a dados,
melhoram seu desempenho ao longo do tempo. Esse processo de aprendizado ocorre
de forma iterativa, permitindo que os modelos se adaptem a contextos variados e
complexos. (Sun et al. 2024; Smiti, 2020; Yuksel, et al. 2023)

Existem trés categorias principais de aprendizado: supervisionado
(supervised), ndo supervisionado (unsupervised), por reforco (reinforcement) e o
semi-supervisionado (Semi-supervised). No aprendizado supervisionado, o modelo
aprende com dados rotulados, ou seja, entradas com as respostas corretas ja
conhecidas, como prever precos ou classificar imagens. No aprendizado nao
supervisionado, o0 objetivo é encontrar padrbes ou estruturas ocultas em dados néo
rotulados, como segmentacao de clientes. Ja o aprendizado por reforco ocorre por
tentativa e erro, onde o modelo é recompensado ou penalizado por suas ac¢des. E o
aprendizado semi-supervisionado é um tipo de aprendizado de maquina que utiliza
uma combinacdo de dados rotulados (com respostas conhecidas) e dados néo
rotulados (sem respostas) para treinar um modelo. (Sarker, 2021a, 2021b; Smiti,
2020)

Dentro das trés principais categorias de Machine Learning, existe uma ampla
variedade de algoritmos sendo desenvolvidos continuamente, cada um com
caracteristicas especificas e aplicacbes voltadas para diferentes desafios
computacionais. De modo geral, esses algoritmos podem ser agrupados em grandes
categorias, cada uma delas englobando técnicas distintas que visam solucionar

problemas especificos. No entanto o mesmo algoritmo pode ser adaptado, para
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desempenhar funcdes distintas como € o caso do SVM, que é utilizado comumente
como classificador e seu conceito adaptado para a regresséo temos o SVR. Aimagem
da Figura 1 apresenta uma classificagdo resumida das principais abordagens de ML,
destacando suas categorias, técnicas e algoritmos aplicados em diferentes contextos.

Figura 1 - Tipos de algoritmos que envolvem Machine Learning.

SUPPORT VECTOR MACHINE (SVM)
DECISION TREE
RANDOM FOREST

CLASSIFICACAO

NAIVE BAYES
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LINEAR
5 RIDGE
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AGRUPAMENTO PCK-MEANS

DBSCAN

Fonte: (Autor, 2025; El-Gawad et. al., 2021 — adaptado)

O Aprendizado Supervisionado é caracterizado pela utilizacdo de dados
rotulados para treinar modelos preditivos, sendo dividido em classificacdo e
regressdo. Na classificacdo, os algoritmos mais utilizados incluem Support Vector
Machines (SVM), Decision Tree, Random Forest (RF) e Naive Bayes, que sao
amplamente empregados para problemas que envolvem a predicdo de categorias
discretas, como diagndéstico de doencas ou reconhecimento de padrdes. J& na
regressao, 0s principais métodos incluem Linear Regression, Ridge Regression,
LASSO, Support Vector Regression (SVR) e Redes Neurais, voltados para a predicao
de valores continuos, como previsdo de preg¢os ou tendéncias de mercado. (El-
Gawad, 2021; Shah, 2021; Sarker, 2021b); da mesma maneira que este trabalho que

tem por objetivo prever continuamente a producao de carboidratos.
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No Aprendizado N&o Supervisionado, os dados utilizados ndo possuem
rotulos, e o objetivo é identificar padrdes ou estruturas ocultas nos dados. Essa
abordagem é dividida em reducdo de dimensionalidade e clustering. Na reducéo de
dimensionalidade, técnicas como Principal Component Analysis (PCA) e Linear
Discriminant Analysis (LDA) séo utilizadas para simplificar conjuntos de dados
complexos, preservando as informacdes mais relevantes, o que facilita a analise e
visualizacdo. Ja no clustering, ou seja, grupos de dados formados com base em
caracteristicas ou similaridades compartilhadas. Entre eles algoritmos como K-Means
e Mean Shift sdo aplicados para agrupar os dados em clusters com base em
similaridades, sendo amplamente usados em segmentacéao de clientes e agrupamento
de imagens. (EI-Gawad et. al., 2021; Vaish et. al., 2021; Zhou, 2022)

O Aprendizado por Reforgco € uma abordagem baseada em tomada de
decisdo em que um agente aprende interagindo com um ambiente dinamico,
recebendo recompensas ou penalidades conforme suas a¢des. Os algoritmos mais
comuns nessa categoria sdo Q-Learning e R-Learning, que sao utilizados em
aplicacdes como controle de robds, jogos, otimizacdo de processos e navegacgao
autbnoma. (Vaish et. al., 2021; Nayeri et. al., 2021; Zhang et al., 2023; Schwartz, 1993;
Watkins et al., 1992.)

Por fim, o Aprendizado Semi-Supervisionado combina dados rotulados e nao
rotulados, sendo uma solucao intermediaria que aproveita o potencial dos dados néo
rotulados para melhorar o desempenho dos modelos. Essa abordagem é subdividida
em classificacdo e clustering. Na classificacdo, destacam-se os algoritmos Semi-
Supervised SVM (S3VM) e Gaussian Mixture Models (GMM), que utilizam técnicas
avancadas para explorar a estrutura dos dados néo rotulados e aprimorar a predi¢ao
em cenarios com poucos dados rotulados disponiveis. Na area de clustering, métodos
como COP-KMeans, PCK-Means e DBSCAN incorporam restricdes e informacdes
parciais para formar agrupamentos mais consistentes e precisos. (Piccialli et. al.,
2024; Zhao et al., 2025; Rao et al. 2023; Ikotun, 2023; Quinones-Grueiro et al. 2019;
Hajihosseinlou et al., 2024)

3.3. Vantagens e desvantagens do uso de machine learning

A Tabela 1 apresenta uma viséo equilibrada das vantagens e desvantagens

do uso de machine learning (ML), destacando tanto o potencial transformador dessa
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tecnologia quanto os desafios que precisam ser superados. Entre as vantagens,
destaca-se a capacidade do ML de lidar com tarefas complexas e grandes volumes
de dados, oferecendo alta precisdo e automacao de processos repetitivos. Além disso,
a adaptabilidade dos modelos permite que eles sejam continuamente aprimorados
com novos dados, 0 que é crucial em cenarios dinamicos. A tomada de decisao
baseada em dados também é um ponto forte, pois reduz vieses humanos e aumenta
a eficiéncia do resultado (DAHIYA et al., 2022). Esses beneficios sdo respaldados por
estudos como os de Goodfellow et al. (2016) e LeCun et al. (2015), que destacam o
poder do ML e do deep learning em resolver problemas antes considerados

intrataveis.

Tabela 1 - Desempenho e Caracteristicas de Modelos de Regressédo e Machine Learning.

Algoritmo  Caracteristica Vantagem Desvantagem Referéncia

simplicidade e facilidade Limitagdo em capturar a

Linear 30 amostras, 4 de Uso na previsio de complexidade das interagdes, PRICE, et al.
multivariada variaveis ap resultando em previsdes 2023
toxicidade, . .
imprecisas

Precisdo em predi¢bes
42 amostras, 2  com dados colineares; Sensivel a escolha de parametros  CHING, et al.

Ridge variaveis lida bem com pequenos e exige dados consistentes 2022
conjuntos de dados
O uso do LASSO néo s6 melhorou
129 amostras, Selegfao _automatl_ca de a pre(flsa()_ da _e_stlmatlva, mas NGUYEN, L. et
Lasso o variaveis, reduzindo também simplificou o modelo,
12 variaveis ~ ! o L al. 2023
redundéancias tornando-o mais pratico e eficiente
para aplicagbes em tempo real
1 milhdo de CapacldadeNde'modeIar Requer maior nimero de dados IGOU et al.
RNA amostras, 5 relacdes ndo-lineares . "
R para evitar overfitting 2023
variaveis complexas
SVR 149 amostras, Boa generalizacdo em  Sensivel a escolha de parametros CHEN, J. et al.

3 variaveis dados nao-lineares como kernel 2022

Robusto contra
overfitting e util para
dados complexos

Fonte: Autor, 2025

Random 25 amostras, 6
Forest variaveis

Alta demanda computacionale =~ SONACHALAM,
menos interpretabilidade et al. 2024

Por outro lado, as desvantagens revelam desafios significativos que precisam
ser abordados para garantir o uso ético e eficaz do ML. A dependéncia de dados de
qualidade é um dos maiores obstaculos, pois modelos treinados com dados
incompletos ou enviesados podem gerar resultados imprecisos ou até prejudiciais.

Além disso, o custo computacional elevado e a falta de interpretabilidade de modelos
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complexos, como redes neurais, limitam sua aplicacdo em cenarios onde a
transparéncia € essencial (Ahmad Sobri et al., 2023; Kenge, 2020). Outro ponto critico
€ 0 risco de viés e discriminacado, jA& que modelos podem perpetuar desigualdades
presentes nos dados de treinamento, como discutido por Mehrabi et al. (2021). Esses
desafios exigem atencdo continua da comunidade cientifica e de desenvolvedores

para garantir que o ML seja utilizado de forma responsavel e justa.

3.4. Aplicacéo de Machine learning no cultivo de microalgas

A aplicacdo de aprendizado de maquina na fase de crescimento de microalgas
tem se mostrado promissora para melhorar o rendimento e facilitar sua colheita,
fatores que influenciam diretamente o custo de producdo. O crescimento e a
morfologia das microalgas sédo afetados por diversos fatores, e, embora muitos
estudos tenham sido realizados para reduzir esses custos, abordagens tradicionais
podem ser trabalhosas ou pouco precisas, dificultando a oferta de solucdes eficientes
para a producdo real (Ning et al., 2022). Nesse contexto, técnicas de aprendizado de
magquina tém sido cada vez mais exploradas para prever o crescimento e o rendimento
final das microalgas.

Os estudos analisam diferentes abordagens para modelagem do crescimento
e producdo de biomassa em microalgas. He et al. (2016), Wang et al. (2019) e
Figueroa-Torres et al. (2017) desenvolveram modelos cinéticos para estimar a
formacdo de biomassa e lipidios sob diferentes condic6es nutricionais, enquanto
Kaplan et al. (2020) avaliaram os efeitos do NaCl e fontes de carbono no crescimento
de Chlorella vulgaris. Murwanashyaka et al. (2020) e Gojkovic et al. (2020)
empregaram modelos baseados em Monod e Droop para analisar a geragdo de
biomassa e armazenamento de moléculas em culturas heterotroficas, e Packer et al.
(2011) propuseram um modelo matematico para sintese de lipidios neutros.

O aprendizado de maquina tem sido amplamente explorado. Supriyanto et al.
(2019), Rodriguez-Rangel et al. (2022) e Hossain et al. (2022) aplicaram redes neurais
artificiais (ANN) e algoritmos hibridos para prever a produtividade de microalgas.
Lopez-Exposito et al. (2019), Yew et al. (2020) e Cosgun et al. (2021) utilizaram
técnicas de visdo computacional para prever propriedades fotossintéticas e biomassa.
Liyanaarachchi et al. (2021) e Mohamed et al. (2013) otimizaram condi¢des de cultivo
com ANN e RSM.
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Outros estudos abordaram modelagem estatistica e aprendizado profundo.
Ambat et al. (2019) aplicaram regressao linear para avaliar a produtividade de
biomassa em &guas residuais, enquanto Noguchi et al. (2019) e Susanna et al. (2019)
usaram ANN para estimar o crescimento de culturas mistas e a produtividade de
Spirulina platenses, respectivamente. Liu et al. (2020) desenvolveram uma rede neural
para prever concentracdes celulares a partir de espectros de fluorescéncia, e Garcia-
Camacho et al. (2016) aplicaram redes neurais feed-forward para prever a
concentracéo celular de Karlodinium veneficum.

A regressao linear multivariada foi utilizada por Price et al. (2023) para prever
a toxicidade cronica do zinco para Chlorella sp., enquanto Ching et al. (2022)
aplicaram regresséo Ridge para estimar o rendimento final da biomassa de Spirulina
platensis. Nguyen et al. (2023) utilizaram o modelo LASSO para prever a densidade
de Chlorella vulgaris a partir de imagens. Elmalky e Araji (2024) e Igou et al. (2023)
aplicaram redes neurais e Random forest para monitoramento de produtividade,
enquanto Chen et al. (2022) usaram aprendizado de maquina para prever o poder
calorifico de biochars. Sonachalam et al. (2024) demonstraram alto desempenho na
predicdo de emissdes e eficiéncia de motores dual-fuel.

Além disso, Rogers et al. (2022) exploraram transfer learning para modelar
bioprocessos, Del Rio-Chanona et al. (2019) revisaram modelos fisicos e baseados
em dados para simulacéo dinamica de processos biolégicos, e Bradford et al. (2018)
usaram processos Gaussianos para otimizar a producao de algas sob incerteza.

Por fim, este estudo utilizou abordagens de aprendizado de maquina, como
regressdo multivariada, Ridge, LASSO, SVR e Random Forest, para modelar a
produtividade de biomassa e carboidratos e concentracdo de Chlorella vulgaris,
considerando tempo normalizado, intensidade luminosa e concentragéo de nutrientes.

Um resumo das previsdes € possivel ser observado a seguir, na Tabela 2.



25

Tabela 2 - Resumo das previsdes que envolvem microalgas usando abordagens baseadas em ML e ndo baseadas em ML.

Modelo de cultura

Modelo de Entrada

Tipos de Modelos

Saidas

Ref.

Isochrysis galbana

Biomassa, Lipidios, NaNO;

Equacbes de Baranyi-Roberts e

) i Producéo de lipidios
Luedeking-Piret

He et al. (2016)

Dunaliella viridis

Biomassa funcional,
carboidratos, lipidios, clorofila a,
nitrogénio extracelular e
intracelular

o Producéo de lipidios,
Modelo cinético _ )
carboidratos e biomassa

Wang et al. (2019)

Chlamydomonas

Nitrogénio, Acetato na

biomassa, formacao de amido e

Crescimento de

Modelo cinético biomassa, acimulo de

Figueroa-Torres et al.

reinhardtii o ] o (2017)
lipidios amido e lipidios
_ L Random Forest, CCA (Cluster-
Velocidade de agitacao, i .
Chlorella . i Cluster Aggregation); CLD . ) Lopez-Exposito; Negro;
o concentracao de biomassa, o Concetracdo de biomassa
sorokiniana. (Chord Length Distribution); Blanco, (2019).

floculante

CLSM,

Chlorella kessleri

temperatura, ciclo luz-escuro
(LD) e razéo N/P

SVR, RSM (Response Surface
methodology), Generalized Eficiéncia de remocao de
Linear model, Crow Search, N/P

modelo de remocao

Hossain et al. (2022).

Cultura mista

luz, temperatura, pH, oxigénio
dissolvido (DO) e sélidos totais
dissolvidos (TDS).

Produtividade de
CNN (Densenet121), AVM )
microalgas

Igou et al. (2023)

Chlorella sp.

Médias da cores (RGB),

intervalo das médias de valores

LASSO, Processo Gaussiano,

Densidade de microalgas
GS2

Nguyen et al. (2023)




de pixels, frequéncias espaciais,

entropias

Spirulina platensis

pH, densidade 6ptica (OD)

Ridge, Linear multivariada

Rendimento de biomassa

Ching et al. (2022)

Chlorella sp.

pH, dureza (CaCOs) e (demanda

guimica de oxigénio DQO)

Linear multivariado

Toxicidade de Zinco

Price et al. (2023)

Chlorella vulgaris
SAG 211-12

NaCl, glicose, glicerol

Modelo polinomial de baixa

ordem

Crescimento, lipidios e

amido

Kaplan et al. (2020)

Chlorella sorokiniana
FACHB-275

Glicose, nitrogénio, fésforo

Modelo cinético baseado em
Monod e Luedeking-Piret

Biomassa, carboidratos e

lipidios

Murwanashyaka et al.
(2020)

Coelastrella sp. 3-4,
Scenedesmus sp.
B2-2 e Scenedesmus
obliquus RISE
(UTEX 417)

Lipidios, biomassa, nitrogénio,

carboidratos

Modelo cinético baseado no

modelo matematico de Droop

Crescimento de biomassa

Gojkovic et al. (2020)

Pseudochlorococcum

sp.

Concentragao de biomassa
excluindo lipidios neutros,
Concentracgéo de lipidios

neutros, clorofila, concentracao

de nitrogénio extracelular

Modelo cinético baseado no
modelo matematico de Droop

Crescimento de
microalgas e lipidios

neutros

Packer et al. (2011)

Cultura mista

Concentracéo inicial de
microalgas (base seca), Periodo
de colheita, Tempo de retencéo
hidraulica, Adicdo de acetato de

sédio, Irradiancia solar média,
temperatura média da agua, pH

médio, Concentracao de nitrato

Rede Neural Artificial (ANN)

Concentracdo de

microalgas

Supriyanto et al. (2019)
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Cultura mista

Licor misto, producédo de
biomassa, carboidratos,

populacgdo de cianobactérias,

populacdo de diatomaceas, ANNSs, CNN, LSTMs, KNN, RF

populacéo de algas verdes,
populacao de protozoarios, TIC,
TOC, TIN

Conteldo de carboidratos

Rodriguez-Rangel et al.
(2022)

Biomassa inicial, concentracéo

Imagens de microalgas

para estimativa de

C. vulgaris ) . KNN ) Yew et al. (2020)
de nitrogénio e valor de pH. propriedades
fotossintéticas.
. . Temperatura, intensidade Produtividade de
Varias espécies de . . i _ i
) luminosa, fotoperiodo, contetido AR, DT biomassa e contetdo Cosgun et al. (2021)
microalgas o
de CO,, PO, e N. lipidico.
Biomassa, concentracdo
. . de lipidios totais, lipidios . )
C. vulgaris pH e tempo de cultivo. MLP, RSM ) o Liyanaarachchi et al. (2021)
insaturados e acido
oleico.
. _ Concentragdo de
_ Concentracgao de glicose, extrato ) _
Tetraselmis sp. _ MLP, RSM biomassa e rendimento Mohamed et al. (2013)
de levedura e nitrato. o
lipidico.
. . Concentragdo de nutrientes,
Vérias espécies de ) TN, TP, COD e producéo
producédo de biomassa e LR Ambat et al. (2019)

microalgas

produtividade lipidica.

de biomassa.
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Concentracéo inicial de

Desmodesmus sp., microalgas, periodo de colheita,

28

Scenedesmus sp., tempo de retencgéo hidraulica, Concentragdo de
Dictyosphaerium sp., adicao de acetato de sédio, ANN microalgas no periodo de Noguchi et al. (2019)
Klebsormidium sp., irradiancia solar média, cultivo.
Microctinium sp. temperatura média da agua, pH
médio, concentracao de nitrato.
Temperatura da cultura,
intensidade luminosa, pH, .
o ) Concentragéo de
oxigénio dissolvido, taxa de ]
o ] . o tricomas, tamanho dos
Spirulina platensis produgéo de oxigénio, tempo MLP ) ] Susanna et al. (2019)
. . . tricomas e densidade
apos colheita, bicarbonato, o
. . Optica.
fosfato, nitrato e biomassa
inicial.
_ - Espectros de emisséo de . )
C. reinhardtii o ANN, GA Concentragéo celular. Liu et al. (2020)
fluorescéncia.
Karlodinium Concentragdo inicial de células e Garcia-Camacho et al.
] ) . FFBN Concentragéo celular.
veneficum nutrientes, e duracéo da cultura. (2016)

Intensidade luminosa, taxa de

o . influxo de nitrato, biomassa,
Acido succinico e . .
nitrato e concentracgéo de

Transfer Learning: Comparado

Mudanca na biomassa,

nitrato e concentracao de

Rogers et al. (2022)

salicilico i ~ . com modelos cinéticos e ANN i
luteina, concentracéo de acido luteina.
salicilico.
o Mudanca na biomassa, )
_ Concentracéo inicial de ) Del Rio-Chanona et al.
C. vulgaris ANN fosfato, glicose e

biomassa, fosfato, glicose e

concentracdo de nitrato.

(2019)




nitrato, coeficientes de

rendimento.

Biomassa, concentracdo de
Desmodesmus sp.  nitrato e luteina, taxa de influxo,
F51 nitrato influente, intensidade

luminosa.

LR, SGD

Biomassa, concentragcéo
de nitrato e producéo de

luteina.

Bradford et al. (2018)

Dados experimentais de pH,
Chlorella vulgaris temperatura, COD de entrada e

taxa de fluxo de ar

ANN, correla¢des empiricas

Eficiéncia de remocéo de
DQO e DQO residual

Jerry et al. (2023)

Tempo normalizado,
concentracao de fosforo,
] concentracao de nitrogénio,
Chlorella vulgaris .
tempo de residéncia,
intensidade luminosa, densidade

Optica

Linear multivariada, Ridge,
LASSO, SVR, RF

Porcentagem de
carboidratos em
biomassa, Produtividade
de carboidratos,
Produtividade de

biomassa

Este estudo
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3.5. Chlorella vulgaris

Chlorella vulgaris € uma microalga verde unicelular amplamente estudada
devido a sua versatilidade metabdlica e a rica composicéo nutricional, o que a torna
uma matéria-prima promissora para diversas aplicacdes industriais. Pertencente ao
filo Chlorophyta, essa microalga destaca-se por sua elevada taxa de crescimento, alta
eficiéncia fotossintética e resisténcia a condicbes ambientais adversas. Sua
composicdo é rica em proteinas (cerca de 61,6%), lipidios (12,5%) e carboidratos
(13,7%), além de vitaminas, minerais, pigmentos, polissacarideos, fatores de
crescimento e outros compostos bioativos. Isso confere a C. vulgaris um grande
potencial para a producdo de biocombustiveis, alimentos, racdo animal e
nutracéuticos, além de suas aplicac6es em biotecnologia e bioeconomia sustentavel
(Coronado-Reyes et al., 2022; Safi et al., 2014).

O cultivo de C. vulgaris pode ser realizado de forma sustentavel, utilizando
fontes alternativas de nutrientes, como residuos industriais e agroindustriais, o que
ndo s6 reduz os custos de producdo, mas também contribui para a mitigacdo dos
impactos ambientais causados pelo descarte inadequado de residuos. De fato, a
capacidade de adaptacdo dessa microalga e seu alto teor de biomoléculas de
interesse tornam-na uma excelente candidata para aplicacdes em larga escala, tanto
na biotecnologia quanto na bioenergia (Peter, et al., 2022; Chu et al., 2022).

Em resposta a condicbes de estresse, como a deficiéncia de nitrogénio e
excesso de carbono como provimento de ar enriquecido com CO:2 continuamente, C.
vulgaris acumula amido, e se o estresse for prolongado, aumenta sua concentracéo
de lipidios intracelular, principalmente triacilglicer6is — TAGS, como reservas
energéticas. Esses compostos sdo armazenados nos plastidios, como os cloroplastos,
e em goticulas lipidicas no citoplasma, que servem como fontes de energia quando
as condicbes ambientais se tornam desfavoraveis (Chokshi et al., 2017; Sun, et al.
2018; de Farias Silva e Sforza, 2016).

O estresse salino (estresse osmoético) e mudancas de temperatura também
podem induzir esse comportamento metabdlico, promovendo a sintese de reservas
energeéticas. A combinacao de salinidade e luz intensa aumenta a biomassa, lipidios
e antioxidantes em C. vulgaris, otimizando a producéo de biodiesel e compostos

valiosos (El-Fayoumy et al., 2024; Mountourakis, et al. 2023).
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Deficiéncias de fésforo ou enxofre interferem em processos essenciais, como
a producao de ATP e proteinas, forcando a célula a acumular carboidratos e lipidios
como mecanismos adaptativos. A limitagdo de fosforo tem um impacto significativo na
composi¢éo bioquimica da microalga Chlorella vulgaris, aumentando o teor de lipidios
e reduzindo a quantidade de proteinas (Javed et al., 2022; Fu, et al., 2019; Xing et al.,
2021).

No entanto, provocar condicdoes de estresse nao quer dizer que
necessariamente havera aumento na produtividade de forma significativa como
Marino (2018) demonstrou ao inibir a luz, é importante verificar a combinacao de todos
os fatores, ambientais. Nutricionais e operacionais. Ainda assim, estratégias como o
cultivo mixotréfico, que combina fotossintese e consumo de carbono organico, podem
melhorar o crescimento celular e a producdo de biomassa e lipidios. Ao utilizar a
vinhaca e biochar (Ferreira, et al. 2021), glicose (Yun, et al., 2021), 4guas residuais
(Chu et al. 2022), dejetos de frango (Tan et al., 2021), junto do fornecimento de luz,
houve a producédo de biomassa com teores de carboidratos e lipidios aumentados.

Outro fator importante € que o comprimento de onda da luz também pode
estimular o acumulo de amido e lipidios, uma vez que o carbono fixado pela
fotossintese € redirecionado para o armazenamento desses compostos, quando as
vias metabdlicas de crescimento celular estdo limitadas. Six et al. (2024a) revelou que
a inducao de amido pode ser realizada através de métodos abibticos, como a privacéao
de nitrogénio ou exposicdo a luz vermelha, que promove uma producdo estavel e
constante de amido, adequada para sistemas de cultivo continuos.

E destacada a potencialidade da C. vulgaris para a producédo de bioplasticos,
oriunda da extracdo do amido do seu crescimento para producdo de amido
termoplastico, que pode ser processado em escala industrial com altos rendimentos e
purezas (Arora et al., 2023; Six et al. 2024b). A producédo de Microalgas tem sido
utilizada amplamente para diversos fins, desde a producéo de ragéo para alimentagéo,
suplementacao de nutrientes, produtos farmacéuticos. (Su et al. 2023). As microalgas
possuem um grande potencial na aquicultura por seus compostos bioativos, como
antioxidantes, acidos graxos, proteinas e pigmentos, que melhoram a saude dos
organismos aguaticos, aumentando a resisténcia ao estresse e a imunidade (Abdel-
Latif et al. 2022).

No campo da saude humana, C. vulgaris pode ser eficaz na reducdo do

colesterol total e LDL, com beneficios comprovados na prevencdo de doencas
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cardiovasculares. Uma meta-analise de ensaios clinicos randomizados revelou uma
reducdo média de 7,47 mg/dL no colesterol total e 7,71 mg/dL no colesterol LDL,
destacando seu potencial como suplemento alimentar para o controle lipidico
(Sherafati, 2022). Sua composicao rica em fibras, carotenoides e &cidos graxos
insaturados também pode contribuir para a saude cardiovascular, além de melhorar a
absorcao de lipidios no intestino (Barghchi et al., 2023; Bito et al., 2020)

Além de suas aplicagdes industriais, C. vulgaris também tem demonstrado
grande eficiéncia na adsor¢do e bioacumulacdo de metais pesados, como cadmio,
chumbo, niquel, cromo, cobre e zinco, com eficiéncias de remocéao superiores a 90%
em alguns casos. A microalga utiliza mecanismos de detoxificacdo, como a producéo
de fitochelatinas e metalotioneinas, para mitigar os efeitos toxicos desses metais,
tornando-a uma excelente candidata para o tratamento de aguas contaminadas
(Faruque et al., 2024; Yadav, et al., 2022). No entanto, a exposicao de C. vulgaris a
nanoparticulas (NP) de ZnO e Fe,O; reduz a taxa de crescimento, o contetdo de
clorofila e a integridade celular. As NP induzem estresse oxidativo, aumentando ROS,
peroxidacao lipidica e a atividade de enzimas antioxidantes. Microscopia revelou
danos estruturais, como lise celular e desintegracdo da membrana. Em comparacao
com suas formas particuladas maiores, as NP mostraram maior toxicidade devido a
maior area superficial e interacao celular. (Saxena et al., 2021)

Quando associada a tratamento anaerébico C. vulgaris também pode
biodegradar poluentes, e a combinagéo do cultivo de microalgas com o tratamento
anaerobico melhora a qualidade do efluente, reduzindo a DQO de 16.000 mg/L para
1.000 mg/L (Sidabutar, et al., 2024; Zhang et al., 2024). A producéo de energia através
da biomassa de C. vulgaris por carbonizacdo hidrotérmica catalitica com acido
acético, vem destacando seu potencial como fonte renovével para energia de baixo
carbono. O hidrocarvdo resultante apresentou maior densidade energética,
estabilidade e desempenho de combustdo em relacdo a biomassa bruta. Além disso,
C. vulgaris mostrou alto potencial de fixacdo de CO,, reduzindo emissdes em até -
1,54 kg CO,,eq/kWh na combustéo conjunta com carvao, reforcando sua viabilidade
como recurso sustentavel para energia limpa (Sztancs et al., 2021).

Por fim, a producdo de etanol a partir de C. vulgaris tem se mostrado
promissora devido ao seu alto teor de carboidratos. Em estudos recentes, foi possivel
produzir etanol a partir da biomassa da microalga cultivada em aguas residuais, com

uma produtividade que sugere viabilidade econbmica para grandes escalas de



33

produgédo. A otimizagao de fatores como iluminagao, aeragéo enriquecida com CO, e
teor de nutrientes pode ainda melhorar a eficiéncia desse processo, consolidando a
C. vulgaris como uma opcéo viavel para a producdo de biocombustiveis e outros

produtos sustentaveis (Honorio et al., 2024; de Farias Silva e Bertucco, 2019).

3.6. Cultivo continuo com limitacdo de nutrientes

O estudo de Farias Silva e Sforza (2016) que € a base para este trabalho,
investigou a produtividade de carboidratos em Chlorella vulgaris cultivada em um
fotobiorreator continuo de 300 mL, sob diferentes intensidades luminosas (150, 300 e
450 umol fétons m=2 s71), variagBes na concentracao de nitrogénio e fosforo no cultivo,
além do tempo de residéncia. O sistema operou continuamente apés atingir uma
concentracdo celular significativa, com o tempo de residéncia controlado por uma
bomba peristaltica. A biomassa foi analisada diariamente para medir a concentracao
celular, o conteudo de carboidratos e o consumo de nutrientes.

Os resultados indicaram que a limitacdo de nitrogénio combinada com alta
intensidade luminosa aumentou o acumulo de carboidratos, atingindo 52% do peso
seco em 450 pmol fétons m™2s™!, embora a produtividade de biomassa tenha
diminuido. A fotossaturacéo reduziu a eficiéncia fotossintética em intensidades mais
altas, e o tempo de residéncia maior favoreceu o acumulo de carboidratos. O fésforo
teve um comportamento influenciado pela luz, acumulando-se mais em intensidades
elevadas (de Farias Silva e Sforza, 2016).

O estudo identificou condicbes ideais para maximizar a producdo de
carboidratos, equilibrando produtividade de biomassa e acumulo de reservas
energéticas, através da combinacdo das variaveis supracitadas. Os resultados
demonstram a viabilidade do cultivo continuo de Chlorella vulgaris em relacdo a
batelada no aumento de sua produtividade e explicita que o motivo principal do
trabalho para aplicacdes industriais visou a producdo de bioetanol a partir dessa

biomassa.

3.7. Regresséo linear multivariada

A regressao linear multivariada € uma técnica estatistica amplamente utilizada

para modelar a relacdo entre uma variavel dependente e multiplas variaveis
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independentes. Diferente da regressao linear simples, que lida com uma Unica variavel
preditora, a regressao multivariada permite que multiplos fatores influenciem o
comportamento da variavel resposta. Essa abordagem é fundamental para entender
relacbes complexas, onde muitos fatores podem contribuir simultaneamente para um
determinado resultado. O objetivo principal é identificar como cada variavel
independente afeta a variavel dependente, proporcionando uma previsao precisa e
insights valiosos sobre as interacdes entre as variaveis. (Rencher; Christensen, 2012;
Meyers, 2003)

No entanto, para que os resultados da regressao linear multivariada sejam
validos e uteis, algumas suposicbes precisam ser atendidas, como linearidade,
homoscedasticidade e auséncia de multicolinearidade entre as variaveis
independentes. Quando essas condi¢cdes sdo cumpridas, o modelo pode fornecer
estimativas robustas e interpretacdes confiaveis. Apesar de ser uma ferramenta
poderosa, a regressao linear multivariada também apresenta limitacdes, como a
sensibilidade a outliers e a complexidade no tratamento de multicolinearidade, o que
pode comprometer a precisdo dos coeficientes estimados. Portanto, é fundamental
realizar diagnoésticos adequados apds o ajuste do modelo para garantir que 0s
resultados sejam interpretaveis e relevantes para o contexto de andlise. (CHEIN,
2019; Rencher; Christensen, 2012)

A regresséo linear considera a seguinte relacdo entre um nimero de variaveis
independentes de entrada (preditores) x,,...,x;_,€ uma variavel dependente na

saida, y (resposta) (Melkumova et al., 2017). Assim, o y € dado por:
y = bO + b1x1 +... +bk_1xk_1 + & (1)

As medicOes sao realizadas n vezes para que se tenha n valores de y para n

conjuntos de x;
Yi=byg+bixjyy+...+b_1xp_1+ & | I =1n (2)

Onde x;; é a i-ésima observacédo de x;. Os ¢; ndo sdo observados diretamente.
As equacgbes (2) podem ser expressas na forma matricial apds adicionar 0s

parametros:

x10=x20=...=xn0=1 (3)
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Entao:
Y=XB + § 4
Onde:
Y =[yiln: X = [xjlaxk; B =[bjli; §=[&iln (5)

As coordenadas b, + b; +...+b,_; do vetor B sdo desconhecidas. O objetivo

da analise de regressao é estimar o vetor B com base nas observac¢des multivariadas.

x10 x11 xlk—l yl
X X e X2k-1 Y2

[X,y]=|"20 ~2r - TR (6)
Xno Xn1 - Xnk-1 Yn

Uma abordagem tradicional para este problema € usar o estimador de minimos
quadrados (MQ) onde:

2

n k-1
Z (yl- - Z(bixij)> - min
i=1 i=1
()
As estimativas de MQ dos coeficientes desconhecidos: by + by + ... +b;_;
minimizam (7):

B = [b)]i (8)

Como: det XX > 0. O MQ pode ser calculado utilizando a seguinte equagéo:
B = (X'x)"1 Xty 9)

Sendo Y = XB. Pode-se reescrever esta equacdo na forma coordenada da
seguinte forma:

Py

W= bo+bixyy +...4b_axx—s | 0= 1n (10)

Onde ¥, € o valor de resposta previsto que corresponde aos valores preditores
Xq,...,Xx—1. A soma residual dos quadrados (SRQ) mede a discrepancia entre os

dados e o0 modelo de estimativa, assim:
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SRQ = ) 3= ¥)?
i=1

(11)

O coeficiente de determinacédo Rz

2 _ _ Z?:l(y\l_yi)z
k"= L i-9)? (12)

O valor de R? (12) também mede a qualidade do modelo de regressao: quanto
mais proximo de 1, melhor o modelo de regressao (10) se ajusta aos dados (6). A
padronizacdo dos dados pela normalizacéo é frequentemente usada na analise de

regressao linear (Melkumova et al., 2017). Ou seja, denotando:

1 n 1 n 1 n n

_ — _ —\2 .

Y==) % y=- E yii Sy =~ E i =972 S = E (vj—%) 5 j=Lk-1
=1 i=1 i=1 i=1

i i

(13)
Obtemos variaveis centralizadas e normalizadas para a amostra inicial (6):
_Yi7y, 0 SR s
vi_?r Wij_ Usjj,l—l,n, ]_1lk_1 (14)
Assim podemos denotar que:
V=[iln; W=[wjlnxk-1 (15)

Caso det W'W > 0., as estimativas de MQ para o modelo padronizado podem

ser calculadas usando a formula:

B = wW'w) 1wty (16)

Existem varias vantagens em usar dados padronizados para regressao linear.
Primeiro, com dados padronizados a solucdo nao depende da escala de medigéo. Os

preditores x; podem ser medidos em escalas diferentes, enquanto os preditores

padronizados w; séo reduzidos a mesma escala “neutra”. Segundo, a entrada do
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preditor tem mais probabilidade de depender do valor relativo w; do que do valor

absoluto x;. (Melkumova et al., 2017)

3.8. Regresséao LASSO

A regressao LASSO (Least Absolute Shrinkage and Selection Operator) foi
introduzida por Tibshirani (1996) como uma abordagem inovadora que combina
regularizacdo e selecdo de variaveis em modelos de regressao linear, destacando
suas vantagens em cenarios de alta dimensionalidade e multicolinearidade. O método
rapidamente ganhou popularidade por sua eficacia e simplicidade, tornando-se uma
ferramenta essencial em estatistica e aprendizado de maquina (Varshini; Kumari,
2020).

A regressdo LASSO. E um operador de minima reducéo absoluta e selecéo.
Se destacando os dois aspectos principais do método: a reducgédo (ou "encolhimento")
dos coeficientes e a selecdo automatica de variaveis. E uma técnica amplamente
utilizada na modelagem estatistica e aprendizado de maquina para realizar selecéo
de variaveis e regularizacdo de modelos lineares. Diferente da regressdo linear
comum, que minimiza o erro quadratico, o LASSO adiciona um termo de penalidade
baseado na soma dos valores absolutos dos coeficientes. Essa penalidade forca
alguns coeficientes a se tornarem exatamente zero, permitindo a exclusdo automatica
de variaveis irrelevantes ou redundantes. Como resultado, o LASSO é especialmente
atil em cenarios onde ha muitas variaveis preditoras e o objetivo é identificar um
subconjunto de variaveis que mais contribuem para a previsao do modelo. (Ranstam;
Cook, 2018).

Uma das principais vantagens do LASSO é sua capacidade de evitar o
overfitting, proporcionando modelos mais simples e interpretaveis. No entanto, essa
técnica também apresenta limitacbes, como a tendéncia de selecionar apenas uma
variavel entre aquelas altamente correlacionadas, o que pode levar a perda de
informacdes importantes. Além disso, o desempenho do LASSO depende do ajuste
cuidadoso de seu parametro de regularizagcéo, geralmente determinado por validagao
cruzada. (Saini, et al., 2023)

A estimativa Lasso B; € a solucdo dos seguintes problemas de minimizagcao

equivalentes para observacdes padronizadas {W, V}.
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\V—WBJ||*>+ A||B||; - min (23)

Paratodo A > 0, existe um t(4) > 0 tal que:

|V —WBJ||? - min (24)
Tal que:
AlBlly < t(A) (25)
Onde:
1Bl < XfZ1 18l (26)

A penalidade no vetor de coeficientes g;, j = 1,k — 1 imposta pelo LASSO é
ligeiramente diferente de Ridge. No caso do LASSO, o parametro A € multiplicado pela

norma ¢, do vetor (84, ..., fx—1) €nquanto Ridge usa a norma #,.

Um dos efeitos positivos desta mudanca em termos de interpretacdo do modelo
de Lasso, ao contrario da regressédo de Ridge resulta em um modelo onde algumas
estimativas de coeficiente sdo exatamente iguais a zero quando A é grande. Em outras
palavras, a regularizacdo LASSO realiza adicionalmente a selecdo de variaveis, o que
facilita a interpretacdo do modelo. Como no caso de Ridge, diferentes valores de A
produzem diferentes vetores f8,. E por isso que é importante selecionar um valor
adequado de 1 (Melkumova, et al. 2017).

3.9. Regresséao Ridge

A Regressao Ridge é uma técnica amplamente utilizada em problemas de regresséo
para lidar com a multicolinearidade, que ocorre quando as variaveis independentes
estdo altamente correlacionadas entre si. Proposta inicialmente por Arthur Hoerl e
Robert Kennard em 1970, essa abordagem é uma extensdo da regressao linear
tradicional, com a adicdo de um mecanismo de regularizagdo que reduz a
complexidade do modelo (Hoerl, 2020; Gruber, 1998; Hoerl, 1970).

A regressdo Ridge é uma variante da regressao linear que introduz uma
penalizacdo L, aos coeficientes do modelo para reduzir a complexidade e evitar o

overfitting. Ela funciona adicionando um termo de regularizacédo a funcéo de custo,
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gue é proporcional ao quadrado da magnitude dos coeficientes. O objetivo € minimizar
o0 erro quadratico médio, enquanto restringe o tamanho dos coeficientes. A
regularizacdo ajuda a lidar com problemas de multicolinearidade, ou seja, quando as
variaveis independentes sdo altamente correlacionadas e melhora a generalizacdo do
modelo (Theodoridis; Koutroumbas, 2009).

Um aspecto importante da regresséo Ridge é que, ao contrario da regressao
LASSO, ela ndo for¢a os coeficientes a zero, mas os reduz de forma suave, mantendo
todos os preditores no modelo. Isso a torna Util quando se deseja manter todas as
variaveis explicativas, mas sem permitir que algumas delas dominem as demais. O
parametro de regularizagdo, A, controla o equilibrio entre ajuste aos dados e
complexidade do modelo: quanto maior o valor de A, mais forte a penalizagao e,
consequentemente, menores os coeficientes. (Shah, et al., 2021)

A estimativa Ridge de um vetor desconhecido B, para observacdes
padronizadas {W, V} é dada por:

B, = (W'W + AL) 1wty (17)

Onde I, € a matriz identidade e 2 > 0 & chamado de parédmetro de

regularizacdo. Denotaremos a forma coordenada do estimador de Ridge por:

B; = [B;(D]k-1 (18)

Ao adicionar parametro 2 (Ridge) aos elementos diagonais da matriz WV, é
possivel transformar a matriz em (W'W + AI,,) e ndo interferir significativamente no
formato da matriz. Desta forma evitamos problemas habituais com a inversdo de
matriz mal condicionada. Contudo, vale a pena notar que, ao contrario do MQ, a
estimativa de Ridge: B, é tendenciosa (Melkumova, et al. 2017). Pode ser mostrado
que a estimativa de Ridge: B, € a solucéo dos seguintes problemas de minimizag&o

equivalentes:
IV —WB|? + A||B||? - min (29)
Paratodo A > 0, existe um t(1) > 0 tal que:

IV —WB]| - min||[V—WB|?+ AlB||? - min (20)
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Tal que:

AlBll; = t(d) (21)
Onde:

1Bl < X521 18l (22)

Portanto, a estimativa de Ridge pode ser vista como uma estimativa SRQ com

uma penalidade adicional imposta ao vetor de coeficientes.
3.10. Redes Neurais para Regresséao

Uma rede neural € um sistema computacional que opera de maneira distribuida
e massivamente paralela, composto por unidades de processamento simples. Ela
possui a capacidade de aprender com a experiéncia, armazenando esse
conhecimento e utilizando-o conforme necessario. Assim como o cérebro humano, a
rede neural adquire informagcdes por meio de interacbes com o ambiente. O
aprendizado ocorre ajustando as conexdes entre as unidades de processamento,
chamadas de pesos sinapticos, onde o conhecimento é efetivamente armazenado
(Géron, 2019).

Essas redes tém uma natureza de “caixa preta” e possuem a capacidade comum
de construir modelos empiricos dos sistemas para 0s quais as dependéncias tedricas
entre a entrada e a saida sdo extremamente complicadas ou mesmo desconhecidas.
Esse processo permite a rede reconhecer padrdes e realizar tarefas complexas de
forma semelhante ao funcionamento dos neurénios biolégicos. (Elyashberg; Williams;
Martin, 2008; Haykin, 2001).

Tais Tarefas de aprendizado de maquina geralmente sdo descritas em termos
de como o sistema deve processar um exemplo. Um exemplo € uma colecao de
caracteristicas que foram medidas quantitativamente a partir de algum objeto ou
evento que queremos que o sistema de aprendizado de maquina processe.
Normalmente, representamos um exemplo como um vetor x € R™, onde cada entrada

x; do vetor corresponde a uma caracteristica. (Goodfellow et al., 2016).
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O modelo neural ilustrado na Figura 2, possui um viés externo, representado por
b,, que altera a entrada liquida da funcéo de ativacdo. Esse viés b, pode aumentar

ou reduzir a entrada, dependendo de ser positivo ou negativo, respectivamente.

Figura 2 - Modelo rede neural ndo linear.

Entrada Fixa xo = +1 4’@ Wro = by
Fungdo de

ativacdo
[ @ ””””””” ’@ Saida

Entradas
,f\\\

Juncdo pela soma

Pesos sinapticos
(incluindo o Bias)

Fonte: HAYKIN, 2009. (adaptado)

Onde x;, x5,..., X, SA0 0s sinais de entrada; wy,, Wiz,..., Wiy SA0 0S
respectivos pesos “sinapticos” do neurénio k; u, (ndo mostrado na Fig. 2) € a
combinacao linear devido aos sinais de entrada; b, € o viés; ¢(.) é a funcédo de
ativacao; e y, € o sinal de saida do neurbnio. Matematicamente, o neurdnio k na Fig.

5 pode ser descrito pelas equacfes a seguir:
U = N4 Wy Xj (27)

Vi = @(Uk + by) (28)

Existem diversos tipos de funcdes de ativacdo ¢ amplamente utilizadas, as
funcdes disponiveis no Scikit-learn séo a: ‘identity’, € uma funcao de ativacédo no-op,
uma abreviacdo de "no operation”, que em portugués significa "sem operacao”, ou

seja, ndo ha transformacado aplicada a entrada, retorna f(x) = x ; ‘logistic’, a funcéo

2_){; ‘tanh’, a fungao tangente hiperbdlica, retorna

sigmoide logistica, retorna f(x) = m

f(x) = tanh(x); ‘relu’, a funcao unitaria linear retificada, retorna f(x) = max(0,x).
(Haykin, 2009)
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O processo se repete para cada camada até a camada de saida, com cada
camada fornecendo entradas ponderadas para a proxima como € possivel observar

na Figura 3 a seguir:

Figura 3 - Fluxograma de funcionamento de uma Rede Neural MLP.

PROPAGAGAO

>
7N
1 \ J
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< verdadeiros (y)

Fungdo
de Perda

Pontuagao de
Perda

Atualizagdo dos Pesos
Otimizagdo

RETROPROPAGACAO
%
Fonte: Autor, PRAMODITHA (2022), adaptado.
3.11. Support Vector Regression

O SVM (Support Vector Machine) foi inicialmente desenvolvido por Vapnik,
1998. O SVM destaca-se em problemas de aproximacdo de funcbes com alta

BN

dimensionalidade, gracas a técnica de kernel, que transforma os vetores de
caracteristicas em um espaco de maior dimensdo. Este modelo é um dos mais
versateis e populares no aprendizado de maquina, sendo adequado tanto para tarefas
de classificacdo quanto de regresséo, especialmente em pequenos conjuntos de
dados complexos. (Sui et al. 2021; Suykens; Vandewalle, 1998) A Suporte Vetorial
para Regressdo (SVR) é uma extensdo do conceito de Maquinas de Vetores de
Suporte (SVM) para tarefas de regressao.

A Figura 4 ilustra o funcionamento SVR o modelo busca ajustar um hiperplano

(representado pela linha vermelha) que descreve a relacdo entre as variaveis de
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entrada e a variavel de saida, mantendo os desvios dentro de uma margem de
tolerancia definida pelo parametro €. As linhas tracejadas paralelas delimitam essa
margem de tolerancia €, dentro da qual os desvios dos valores reais (pontos pretos)
em relacdo ao hiperplano s@o considerados aceitaveis e ndo contribuem para a
penalizacdo na fungédo de custo (Vapnik, 2000; Awad; Khanna, 2015; Arshad et al.,
2021).

Figura 4 - Regressao vetorial de suporte para modelagem de resposta.

Variaveis de referéncia s 13

\J

Fonte: Autor, 2025; Arshad et al., 2021 (adaptado)

Contudo, pontos que ultrapassam essa margem geram desvios residuais,
representados pelas variaveis ¢ (Qquando o desvio € positivo) e §; (quando o desvio é
negativo). Esses desvios sdo penalizados no processo de otimizacdo, forcando o
modelo a buscar um equilibrio entre minimizar os erros e evitar um ajuste excessivo
(overfitting). O SVR &, portanto, uma técnica robusta que permite flexibilidade ao lidar
com ruidos nos dados, mantendo a capacidade de generalizacdo. (COMITO, C.;
PIZZUTI, C.; 2022)

Dado um conjunto de dados com n exemplos de treinamento {(x; , y;)}i=, onde
x; € R sdo as caracteristicas de entrada e onde y; € R. O objetivo do SVR é

encontrar uma funcdo f(x) que seja o mais "plana" possivel e que se desvie dos
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valores reais y; por no maximo uma certa margem € Awad e Khanna (2015). No SVR,

a funcao f(x) é representada como:

fX)=9=wipx)+b+e (29)

Na regresséao por vetores de suporte (SVR), a funcdo de perda desempenha
um papel crucial, e 0 uso de y para representar essa funcéo de perda ajuda a explicar
como o erro é tratado no modelo. onde ¥ € um mapeamento que cria um espacgo de
caracteristicas lineares com dimens&o R? para os dados de entrada. Usando uma
funcao de perda insensivel a €, 0 modelo SVM difere de outros modelos de regresséo
linear. De acordo com Awad e Khanna (2015), um erro maior que € € considerado
indesejavel. Ou seja, 0 objetivo do SVM basico é identificar os coeficientes étimos w
e b tais que a funcgéo, f, ndo contenha erros superiores a €. Por esse motivo, esse
modelo também é conhecido como SVM de margem rigida. Assim podemos definir o

modelo como:
. 1
min,, , EWTW (30)

{)’i —-wiyp(x) —b<e€
WTIP(XL') +b— Vi =€

vi €{1,2,...,N} (31)
No entanto, nem sempre € viavel encontrar um minimo sob estas restri¢coes.

Portanto, a seguinte funcéo de perda € introduzida:

0, [yi—yil <e

yi—9il—e sendo  "LEL2N} (32)

£e@uy) = |

Assim a solucao primal deste problema torna-se:

min, e 5 |wll” +CXL, & +& (33)
Sujeitada a:
yi—wix;<e+& | i=1..N
wlix,—y—<e+¢&§ | i=1..N

£,60>0 | i=1..N (34)
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O erro de regressdo aumentara para amostras fora da banda €, mas amostras
aceitaveis sdo aquelas com erro previsto menor que &, conforme. Para tornar a
otimizagdo possivel com limitacdes que de outra forma seriam impraticaveis, as
variaveis da margem limite §; e ¢; sé@o introduzidas para fornecer uma margem suave
e permitir erros de medigao. (Awad; Khanna, 2015)

O objetivo do SVR € minimizar a norma do vetor de pesos w (que controla a
"planicidade"” da funcdo) enquanto permite algum desvio € dos valores alvo y;. Para
lidar com erros que excedem essa margem, sdo introduzidas variaveis de folga ¢; e
&7, que representam os erros de superestimacao e subestimagéo, respectivamente.

Assim, o problema de otimizacdo primal (33) quando colocada na forma
Lagrangiana, é introduzido os multiplicadores de Lagrange ndo-negativos para cada
restricdo (34). a; e a; para as duas primeiras restricbes de erro, e n; e n; para a

terceira. Assim a Lagrangiana do problema se torna:

2
Lw,b, &8 a,a’,nn?) =2 |wl|” + CEL (G + &) + @ By (e + & — i+ w.x; + b) —

a; Yis (e + & +yi—w.x; —b) = XL (&) — Xim (i€ (35)

Para encontrar o valor otimizado, ou seja, com o minimo de erro basta derivar
a equacao anterior (35) em relacdo as variaveis primais w, b, ¢, ¢ para obter o valor
minimo. Isso requer definir as derivadas parciais de L em relacdo a essas variaveis

como zero. A minimizacdo em relacéo a w.

a *
o _w— Yi(ap—a)x; =0 (36)

ow
Resultando em:
w =Y (a; —aj) x; (37)

A minimizacédo em relacdo a b.

oL *)

o = dizi(@i —a)) =0 (38)

Assim:
Z?:l(“i —a;)=0 (39)
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Minimizagdo em relagcdo a ¢ e £*:

oL

a_fi:C_ai_niZO (40)

JaL * *

4

Como n;,n; =0, é possivel chegar nas seguintes conclusdes:

0<a <C (42)
0<a; <C (43)
Substituindo:

. 1
MiNg,q* (e — o) (i — a){o, 25) + € Xy (o — @) — By yily — &)

(44)

No caso de ser necessario uma fronteira de decisdo néo-linear, podemos usar

o truque do kernel para substituir o produto interno (xl-,xj) por uma funcéo de kernel
K(x;, x;) que mapeia os dados para um espaco de caracteristicas de dimenséo mais

alta. Isso transforma o problema dual em:

. 1 * * * *
MiNg o> 52?:1(%' —a;) (a; — ai)K(xi'xj) +eXis (o —ai) — Y, yila; — a7)

(43)

Sujeita as mesmas restricbes anteriores obtidas pelas derivadas. Depois de
resolvermos os valores 6timos de «; e a;, a funcéo de predi¢éo para uma nova entrada

7z

Xe:

fO) =Yl —a) K(x,x) +b (45)

As funcgdes kernel mais utilizadas séo: Linear, polinomial, Radial Basis Function
(RBF), Sigmoide. Segundo Scholkopf (2001), a fungéo kernel linear que é definida

7

como: K(xl-,xj) = x;.x; , este tipo de funcdo € adequado quando os dados sdo

aproximadamente linearmente separdveis, possui como vantagem ser simples e

eficiente em problemas de alta dimensionalidade. A funcdo kernel polinomial é
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definida por: K(x;x;) = (v.x;. % + c)d. C, d e ysdo parametros ajustaveis, d
representa o grau do polinémio, y controla a largura do kernel (geralmente ajustado
entre 0 e 1, ¢ representa o deslocamento do kernel. E bastante (til quando existe uma
relagdo polinomial entre as caracteristicas. Por outro lado, a funcéo kernel RBF é

2
definida por: K(xi,x]-) = e<_y||xi_xj|| ) y € um parametro ajustavel e assim como no
kernel polinomial ele tem a funcdo de controlar a largura do kernel. E adequado para
dados complexos e ndo linearmente separaveis. Por fim a funcdo kernel sigmoide:
K(xi,xj) = tan(y. x;.x; + ¢), 0s parametros variaveis seguem o mesmo raciocinio do

kernel polinomial. E pode funcionar bem em alguns tipos de dados néo lineares.
3.12. Random Forest

O Random Forest é um método de aprendizado de maquina supervisionado
amplamente utilizado para tarefas de classificacdo e regresséo. Introduzido por Leo
Breiman em 2001, o Random Forest pertence a categoria de algoritmos baseados em
conjuntos (ensemble methods), que combinam multiplos modelos fracos para formar
um modelo robusto e preciso. A base do Random Forest esta nas arvores de decisao
individuais, cuja combinac&o permite melhorar a generalizagcdo do modelo e reduzir o
risco de overfitting.

O Random Forest constroi uma colecao de arvores de decisdo a partir de
subconjuntos aleatoérios dos dados de treinamento e utiliza amostras aleatorias das
caracteristicas (variaveis preditoras) em cada divisdo dos nés das arvores, como é
possivel observar na Figura 5. Esse processo de amostragem, conhecido como
Bagging (ou Bootstrap Aggregating), promove a independéncia entre as arvores,

aumentando a robustez e a precisdo do modelo final. (Sarker et al., 2021)
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Figura 5 - Arvore de decisdo do modelo Random Forest.
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Fonte: Autor, 2025; Sarker 2021a (adaptado)

Uma das principais vantagens do Random Forest é sua capacidade de lidar
com grandes volumes de dados e com um numero elevado de variaveis, mesmo na
presenca de ruido ou dados faltantes. Além disso, o algoritmo fornece métricas
importantes, como a importancia das variaveis (feature importance), facilitando a
interpretacdo dos resultados (BREIMAN, 2001).

Seja um conjunto de N arvores de decisdo, denotadas por h,(x), onde n =

1,...,N. A previsao final do modelo Random Forest para um dado ponto x € dada por:

P() = ~ 2N by () (46)
Onde:

e h,(x) representa a previsao da n-ésima arvore para x .

« N é o nimero total de arvores na floresta.



49

Cada arvore do Random Forest € construida usando Bootstrap Aggregating
(Bagging) e selecdo aleatéria de variaveis. Para cada arvore h,, amostramos um
subconjunto D,, do conjunto de treinamento N com reposicéo (técnica de bootstrap)
(Hastie; Tibshirani; Friedman, 2009). Em cada n6 da arvore, em vez de considerar

todas as variaveis, escolhemos aleatoriamente um subconjunto de m variaveis:
D" = {(Xi,yDH (46)

Onde cada D™ tem o mesmo tamanho de D (ou seja, m,), mas pode incluir
amostras duplicadas devido a reposi¢cdo. Cada arvore de deciséo f, na floresta &
treinada em um conjunto de dados bootstrap: D™. Em cada n6 na arvore, seleciona-
se aleatoriamente um subconjunto de atributos F c {1,2,...,n} | F |< n). O objetivo em

cada no é encontrar o atributo j € F e o limiar t; que minimiza o erro, geralmente o

Erro Quadréatico Médio (EQM). (Hastie; Tibshirani; Friedman, 2009). Calculado como:

EQM (j,t)) = - Ties (i = $1)* + o= Tien (i — F)? (47)

Onde:

« L e R sao os conjuntos de amostras divididos pelo limiar ¢; no atributo j,

e Yyrey, sdo as médias dos valores-alvo y para as amostras em L e R.

Para entender a precisdo do Random Forest, é (til analisar a decomposicdo

de viés e variancia do erro. Para uma Unica arvore, o erro pode ser decomposto como:
E[(y — 9$:)?] = Viés? + Variancia + Erro Irredutivel (51)

Ao fazer a média de varias arvores, o Random Forest reduz a variancia porque

a media de N arvores reduz a variancia por um fator de N. conforme mostrado:

Varianciag,.,ore

: (52)

Varianciagprestq =
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Essa reducdo na variancia, combinada com o0 minimo viés de arvores
profundas, torna o Random Forest um modelo estavel e preciso para tarefas de

regresséo. (Hastie; Tibshirani; Friedman, 2009)

3.13. Grid Search

O Grid Search é uma técnica sistematica de otimizacao de hiperparametros
amplamente utilizada em aprendizado de maquina. Seu principal objetivo é encontrar
a combinacdo de parametro de ajuste que maximize o desempenho de um modelo,
com base em uma métrica de avaliacdo previamente definida. Essa abordagem
consiste em testar exaustivamente todas as combina¢des possiveis de valores para
0s parametros de controle especificados dentro de um espaco definido, garantindo
gue o melhor conjunto seja identificado. (Ghate; Hemalatha, 2023)

O Grid Search apresenta diversas vantagens. Por ser uma abordagem
sistematica, ele garante que todas as combinac¢fes sejam testadas dentro do espaco
definido. Além disso, sua facilidade de implementacédo e ampla ado¢éo em bibliotecas
como o Scikit-learn tornam-no acessivel para muitos usuarios. Por fim, os resultados
confiaveis ajudam a identificar a melhor combinacdo de hiperparametros para o
modelo. (Pedregosa et al., 2011)

Entretanto, o custo computacional é uma limitagc&o significativa. O numero de
combinacdes cresce exponencialmente com o nimero de hiperparametros e seus
valores, tornando-o inviavel para grades muito amplas. Além disso, pode ser
ineficiente em espacos de busca grandes, especialmente quando muitas combinacdes
geram desempenhos semelhantes. (Attar et al., 2024)

O funcionamento do Grid Search envolve algumas etapas essenciais.
Primeiro, o usuario deve definir o espaco de busca, especificando os parametros de
ajuste do modelo a serem otimizados e os valores possiveis para cada um. Em
seguida, todas as combinacfes de parametros de controle sdo geradas, formando
uma "grade" de opc¢bes (Figura 6). Por exemplo, se dois parametros de controle
possuem trés valores cada, o total de combinac¢des serdo nove. (Pilario et al., 2021,
Belete; Huchaiah, 2022)
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Figura 6 - (a) busca em grade; e (b) busca aleatdria.
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Fonte: (Pilario et al., 2021; Shim et al., 2023) adaptado.

Na etapa seguinte, o modelo é treinado e avaliado para cada combinagéo de
hiperparametros, utilizando validag&o cruzada ou um conjunto de validagéo separado.
Por fim, a combinacdo de parametro de controle que obtiver o melhor desempenho
em uma métrica especificada é selecionada como a melhor configuracao. (Pilario et
al., 2021)

Grid Search e Random Search sdo métodos usados para otimizar
hiperparametros em modelos de machine learning, mas diferem na abordagem e
eficiéncia. O Grid Search testa todas as combinacdes possiveis de valores dentro de
um espaco definido, garantindo uma busca exaustiva. Apesar disso, €
computacionalmente caro e ineficiente para espacos de busca grandes, ja que avalia
combinac¢des redundantes em regides de baixa relevancia. Por outro lado, o Random
Search seleciona combina¢des de maneira aleatéria, cobrindo o espaco de busca de
forma mais ampla e eficiente (Figura 6), especialmente em cenarios com muitos
parametros ou valores possiveis (Sukamto; Hadiyanto; Kurnianingsih, 2023; Belete;
Huchaiah, 2022).

Enquanto o Grid Search é ideal para espacos pequenos e bem definidos, o
Random Search se destaca em contextos em que poucos hiperparametros tém
impacto significativo no desempenho do modelo. Shim et al. (2023) observaram que

o Random Search frequentemente encontra boas solu¢bes mais rapidamente, ao



52

passo que o Grid Search pode gastar tempo avaliando configuracbes menos
relevantes. Assim, a escolha entre os dois métodos depende da dimenséo do espaco
de busca, do orgcamento computacional disponivel e da importancia de explorar
sistematicamente todas as combinacdes possiveis.

A escolha da métrica de avaliacdo (ou scoring) € essencial para determinar a
qualidade de um modelo. O Scikit-learn, uma das bibliotecas mais populares de
aprendizado de maquina em Python, oferece uma ampla gama de opc¢des de scoring,
gue variam de acordo com o tipo de problema. (Pedregosa et al., 2011)

Para problemas de regressao, as métricas que avaliam a diferenca entre os
valores previstos e os valores reais:

Coeficiente de determinacao ('r2'), mede o qudo bem o modelo explica a
variancia dos dados. A variancia explicada € matematicamente similar ao R2, pois
ambos calculam a propor¢cdo da variacdo explicada. A principal diferenca é que a
variancia explicada pode ser usada em outros contextos, incluindo modelos de
classificacdo, PCA etc; enquanto o R2 € comumente usado em regressao (Pedregosa
et al., 2011; Figueiredo; Silva; Rocha, 2011). Ambos sdo calculados pela mesma

equacao a seguir:

2 _ 4 Zisai -9
R*=1 L i-y)? (53)

O Erro absoluto médio negativo (‘neg_mean_absolute error'): Diferenca
média absoluta entre as previsdes e os valores reais. (Pedregosa et al., 2011).

Também conhecido como MAE,., (Negative Mean Absolute Error) é dado pela

equacao:
1 ~
MAEneg = _;Z?=1|yi — Vi | (54)

Erro quadratico médio negativo (‘'neg_mean_squared_error'): Penaliza erros
maiores de forma mais severa. O Scikit-learn usa o valor negativo do MSE para que
a meétrica funcione em algoritmos que maximizam a pontuagédo (como em validacdes
cruzadas). Isso significa que para valores menos negativos (mais proximos de 0)
indicam melhor desempenho do modelo, e valores mais negativos indicam pior

desempenho. (Pedregosa et al., 2011) E dada pela equacao:
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—MSE = =YL, (y; — 9:)? (55)

Raiz quadrada do erro quadratico médio (‘'neg_root_mean_squared_error’) é
a versao da raiz do MSE raiz do erro quadratico médio, também é conhecido como
(RMSE — Root Mean Squared Error). O RMSE é expresso na mesma unidade da
varidvel de saida, o que facilita a interpretacdo (Kiraga et al., 2024; Pedregosa et al.,
2011;). Por exemplo, se vocé esta prevendo a producao de biomassa em gramas por

litro (g/L), 0 RMSE também seré expresso em g/L. E dada pela equacéo:

—VMSE = —\[37, (v; — 91)? (56)

Métricas gerais, que podem ser aplicadas em diferentes contextos, incluem o
Erro maximo (‘'max_error'), gue mede o maior erro absoluto em uma predicao, e o Log-
Loss ('log_loss'), que avalia a incerteza das previsdes probabilisticas. Também ha
desvios especificos, como Poisson ou Gamma, para distribuicdes particulares
(Pedregosa et al., 2011).
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4. METODOLOGIA

Este trabalho utilizou como referéncia os dados fornecidos por de Farias Silva
e Sforza (2016), no total de 145 conjunto de dados foram inseridos, onde foi estudada
a produtividade de biomassa e carboidratos em cultivo continuo sob limitacdo de
nitrogénio, efeito da intensidade luminosa e do tempo de residéncia na absorcao de
nutrientes em Chlorella vulgaris. A espécie de microalga foi mantida e cultivada em
meio BG11 modificado (tamponado com 10 mM HEPES pH 8), esterilizado em
autoclave por 20 min a 121-C. Os teores de P e N do meio, na forma de K2HPO4 e
NaNO3, foram otimizados para estudar a limitacdo de nutrientes.

Experimentos continuos foram realizados em fotobioreator de policarbonato de
placa plana vertical operando como um CSTR (reator de tanque agitado
continuamente), com um volume de trabalho de 300 mL, uma profundidade de 1,2 cm
e uma superficie exposta a luz de 250 cm?. O excesso de CO: foi fornecido por uma
mistura de COz-ar (5% v/v) borbulhando no fundo do reator (1 L h™* da vazao total de
gas), que também proporcionou mistura. Um agitador magnético também foi utilizado
para evitar qualquer deposicdo de biomassa e assim garantir uma boa mistura do
reator. O meio fresco foi alimentado a uma taxa constante por uma bomba peristaltica
(Watson-Marlow sci400, faixa de vazéo: 25-250 mL d™?, diretamente relacionada ao
tempo de residéncia). A luz foi fornecida por uma lampada LED (Photon System
Instruments, SN-SL 3500-22) para experimentos continuos. A intensidade luminosa
foi medida nos painéis frontal e traseiro do reator usando um fotorradibmetro (HD
2101.1 da Delta OHM), que quantifica a radiacado fotossinteticamente ativa (PAR).

As variaveis estudadas foram na faixa de 150-450 umol.m2 s de intensidade
luminosa, tempos de residéncia entre 2,9-4,4 dias e concentra¢gdes na entrada para N
e P entre 500-75 e 200-50 mg L, respectivamente. Importante mencionar que para
considerar o estado estacionario, medias diarias durante pelo menos 3 dias, foram
realizadas para mostrar a constancia da concentracdo celular e porcentagem de
carboidrato em biomassa.

A concentracdo de biomassa foi monitorada diariamente por analise
espectrofotométrica da densidade éptica (DO - 750nm) usando um espectrofotébmetro
UV-vis (UV 500, Spectronic Unicam, Reino Unido). A concentragdo de biomassa
também foi medida gravimetricamente como peso seco (PS) em termos de g L™ em

células previamente coletadas com um filtro de 0,22 m e, em seguida, secas por 4
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horas a 80-C em um forno de laboratério. Os nutrientes analisados foram nitrato (N-
NO:3s) e fosfato (P-POa), avaliados em pelo menos trés momentos diferentes para cada
estado estacionario. As amostras de cultura foram filtradas para medir apenas
nutrientes dissolvidos (0,2 m): a concentracdo de N foi medida por um kit de teste
analitico fornecido pela St. Carlo Erba Reagenti, Italia (codigo 0800.05482) e P foram
medidos pelo método do acido ascorbico descrito em APHA-AWWA-WEF, 1992.
Para realizar as simulacdes, foi utilizado um notebook Acer® Aspire 5, 8gb de
ram, processador 12° Geracdo Intel® Core™ i5-12450H 2.00 GHz, utilizando
Windows® 11. Os dados obtidos foram entédo organizados e colocados numa planilha
no formato (.xIxs) esses dados foram separados em duas partes: as variaveis de

entrada e variaveis de saida. Conforme é possivel observar no esquema da Figura 7.

Figura 7 — Esquema do processamento de arquivos.
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Fonte: Autor (2025)

Para cada teste foram utilizadas uma das variaveis de saida. Na primeira
bateria de testes foram utilizados os dados de acumulo de carboidratos (%), na
segunda bateria de testes foram utilizados os dados de produtividade de biomassa (g
L-1d1), e na terceira bateria de testes foi utilizado produtividade de carboidratos (g L-
1 d1). Esses dados foram analisados através de um algoritmo escrito em Python

utilizando uma regresséo predefinida. Apos serem calculados o algoritmo retornou
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duas saidas: A primeira em formato .txt que retornavam os valores de R2 e do RMSE,
e a segunda contendo o grafico dos dados originais em relacdo ao que foi estimado
pela regressdo. A escolha de utilizar R2 e RMSE para fazer a avaliacao se da pelo fato
de serem métricas bem difundidas e utilizadas para esse tipo de tarefa, como é
observado por (Kuhn; Johnson, 2013)

No arquivo de entrada existem as variaveis independentes que foram utilizadas
para estimar a variavel de saida contida no arquivo de saida. As variaveis utilizadas
foram o tempo normalizado, densidade Optica, concentracéo de fésforo, concentracéo
de nitrogénio e intensidade luminosa. O principal critério para considerar o uso dessas
variaveis de processo foi o fato de que elas pouco estdo correlacionadas entre si,
suportando a hipétese de que sejam variaveis independentes. O tempo normalizado
se refere ao tempo que se passou desde o inicio da operacao do reator, relacionado

com o tempo maximo que ficou em funcionamento, definido pela equacéao:

t, = ——min_ (57)

tmax—tmin

Para utilizar o tempo normalizado em analises de regressao, primeiramente,
foram organizados os dados temporais de cada série, que podem ter magnitudes
muito variaveis, o que afeta a precisdo da regressdo. A normalizacdo transformou o
tempo em uma escala de 0 a 1 ao dividir cada valor pelo valor maximo do conjunto,
criando uma nova variavel que permite comparar pontos ao longo do tempo de forma
consistente. O restante das variaveis fora obtido integralmente do trabalho realizado
por de Farias Silva e Sforza (2016). E estao descritas a seguir na Tabela 3.

Tabela 3 - Variaveis de entrada

Nome Sigla Unidade
Tempo normalizado th adimensional
Fésforo P mg L1
Nitrogénio N mg L1
Tempo de residéncia T dias
Intensidade luminosa I uE/m?s
Densidade dptica oD adimensional

Os parametros analisados neste estudo sdo essenciais para 0 controle e a

otimizacdo do cultivo de microalgas. O tempo normalizado (t,) € uma variavel
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adimensional que permite a comparacao direta entre diferentes escalas temporais de
experimentos, facilitando a andlise de processos com duragdes distintas. O fésforo (P)
e 0 nitrogénio (N), ambos medidos em mg L™, s&o nutrientes cruciais para o
metabolismo microalgal. O fésforo é indispensavel para a formacdo de moléculas
como ATP e acidos nucleicos, enquanto o nitrogénio esta associado a sintese de
proteinas e outros compostos celulares. Concentragdes insuficientes desses
nutrientes podem limitar o crescimento das microalgas, ao passo que valores
excessivos podem causar impactos ambientais, como a eutrofizacéo de corpos d'agua
(Li et al., 2019).

O tempo de residéncia (), em dias, indica o periodo médio em que a biomassa
ou o fluido permanece no sistema, sendo um parametro que afeta diretamente a
produtividade e a eficiéncia do processo. A intensidade luminosa (l), expressa em
HE-m~2.s71 representa a quantidade de luz disponivel para a fotossintese, fator
determinante para a taxa de crescimento das microalgas. Ja a densidade 6ptica (OD
ou DO) é uma medida adimensional usada para monitorar a turbidez do meio,
funcionando como um indicador indireto da concentracdo celular (de Farias Silva e
Sforza, 2016).

Do mesmo modo as variaveis utilizadas isoladamente nas regressdes para a
saida (tabela 4) em cada teste, também foram retiradas integralmente do trabalho de
Farias Silva e Sforza (2016). A tabela 4 apresentada resume parametros essenciais
na analise de bioprocessos, especificamente aqueles relacionados a producao de
biomassa e carboidratos.

Tabela 4 - Variaveis de saida utilizadas nas regressoées.

Nome Sigla Unidade
Acumulo de Carboidratos em Biomassa % adimensional
Produtividade da Biomassa Px mg L' d™*
Produtividade de Carboidratos Pc mg Lt d*

A conversdo em carboidratos (%), adimensional, reflete a eficiéncia do
processo na transformacdo de substratos em carboidratos, fornecendo uma medida
importante para a otimizacéo de condi¢des operacionais, como a taxa de consumo de
nutrientes. Esse parametro é crucial para entender a conversao de recursos e avaliar
a eficacia do processo em termos de utilizacdo de substratos. Ja a produtividade da

biomassa (Px), expressa em mg L™ d™, quantifica o crescimento celular, sendo
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fundamental para o monitoramento da eficiéncia do cultivo e para garantir que a
producdo de biomassa esteja em conformidade com o0s objetivos do processo
biotecnologico.

Por sua vez, a produtividade de carboidratos (P;), também medida em mg L™
d™1, indica a taxa de producao de carboidratos desejada no sistema. Esse parametro
€ de particular importancia em processos biotecnolégicos que visam a producao de
carboidratos como bioprodutos, como na fabricacéo de biocombustiveis ou alimentos.
Juntos, esses parametros fornecem uma visdo abrangente da eficiéncia de um
bioprocesso, permitindo ajustes finos nas variaveis de operacdo para maximizar a
producdo de biomassa ou carboidratos.

A conexao entre os parametros de bioprocessos, como produtividade de
biomassa e carboidratos, e técnicas de aprendizado de maquina, como o train-test
split, se da pela necessidade de analise preditiva e otimizacdo de processos. Modelos
preditivos podem ser usados para antecipar o comportamento de sistemas
biotecnolégicos, baseando-se em dados histéricos de produtividade. Para garantir a
precisdo dessas previsfes e evitar ajustes excessivos aos dados de treinamento, a
técnica de divisdo do conjunto de dados em treinamento e teste se torna essencial.
Isso permite que o modelo seja validado de maneira robusta e sua capacidade de
generalizac@o seja testada, possibilitando uma anélise mais eficaz e controlada do
desempenho dos bioprocessos.

O train-test split € uma técnica usada em aprendizado de maquina para dividir
um conjunto de dados (data set) em duas partes: uma para treinar o modelo (training
set) e outra para testa-lo (test set), como é possivel observar na Figura 8. A diviséo é
feita aleatoriamente, em proporcdo 80/20, para garantir que o modelo ndo seja
tendencioso. E o padrdo recomendado pela propria biblioteca do Sk-learn (Pedregosa
et al., 2011). O conjunto de treinamento € usado para ajustar o modelo, enquanto o
conjunto de teste avalia sua capacidade de generalizacdo em dados néo vistos,
ajudando a evitar o overfitting e fornecendo métricas de desempenho para validar o

modelo.
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Figura 8 - Processo de regressao dos dados.
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Os testes foram conduzidos foram conduzidos utilizando a série de variacédo de
parametros contidos na tabela 4 para cada tipo de modelo utilizado, e considerando
50.000 de quantidade maxima de iteracdes para cada combinacdo e tolerancia
minima de convergéncia de 1078,

Utilizou-se a técnica de grid search como abordagem principal para a
otimizacdo dos parametros dos modelos de aprendizado de maquina aplicados no
estudo. Essa metodologia consiste em uma busca exaustiva no espacgo de
hiperparametros, avaliando sistematicamente diversas combinacdes predefinidas
para identificar aquelas que maximizam o desempenho dos modelos. o critério de
avaliacado utilizado foi o negative mean squared error (neg MSE), que mede a
qualidade do ajuste do modelo por meio do erro médio quadratico. Essa métrica,
guando maximizada durante o processo de otimizacdo, busca minimizar os erros de
predicdo do modelo.

A Tabela 5 apresenta uma lista de algoritmos de aprendizado de maquina
(LASSO, Ridge, Redes Neurais Artificiais, SVR e Random Forest) juntamente com os
parametros que podem ser ajustados para melhorar o desempenho de cada modelo.
Esses pardmetros possuem valores variados, abrangendo tanto op¢des continuas
(como o coeficiente de regularizacdo 'alpha’ em LASSO e Ridge, que varia na escala
logaritmica entre 10 a 10* quanto categorias discretas (como os kernels no SVR ou

funcdes de ativagdo em Redes Neurais).



Tabela 5 — Relacdo de parametros que foram otimizados e faixa de variacéo.

Modelo Parametros Variagao
‘alpha’ np.logspace(-4,4,100)
'selection’ 'Ciclic', 'Random’
Lasso 'fit_intercept’ 'True', 'False'
'positive’ ‘True', 'False'
'precompute’ ‘True', 'False'
‘alpha’ np.logspace(-4,4,100)
Ridge 'solver' 'svd', ‘cholesky’, 'sparse_cg', 'Isqr', 'sag', 'Ibfgs'
'fit_intercept' 'True', 'False'
'positive’ 'True', 'False'
idden_layer_szes | (5 (6100, (1) 12, (13318, (15), (16)3,3). 5
'activation’ 'tanh’, 'relu’, 'logistic', 'identity’
A 'solver' sgd', 'adam’, 'Ibfgs'
‘alpha’ 0.0001, 0.05, 0.1, 0.5
'learning_rate' constant', 'adaptive', 'invscaling'
'kernel' 'linear', 'poly', 'rbf', 'sigmoid’
'degree’ 1,2,3,4,5
'‘gamma’ 'scale’, 'auto’
SVR ‘coef0’ 0,0.25,0.75,0.5,1, 2
'C' 0.5,0.75,1,1.5,2
'epsilon’ 0.1,0.01, 0.001, 0.5, 1
'shrinking' 'True', 'False'
'n_estimators' 20, 50, 100, 150, 200
'max_depth' None, 5, 10, 20, 30
R?:::;n 'min_samples_split' 2,3,4,5,6,7,10
'min_samples_leaf' 1,2,3,4
'bootstrap’ '"True', 'False’

A Tabela 5 apresentada sintetiza os hiperparametros considerados durante o
ajuste fino de modelos utilizados no estudo. Para os modelos de regressédo LASSO e
Ridge, o principal pardmetro de controle é alpha, que regula a intensidade da
penalizacdo imposta aos coeficientes, variando em uma escala logaritmica para
explorar uma ampla faixa de valores. No caso do LASSO, os parametros adicionais
“selection” e “positive” permitem customizar a estratégia de atualizacdo dos
coeficientes (como selecao ciclica ou aleatéria) e impor restricoes como coeficientes

exclusivamente positivos. Essas configuracdes sao importantes para equilibrar a

capacidade de generalizagao e a interpretabilidade dos modelos.
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No modelo de redes neurais (Multi-Layer Perceptron — MLP), foi explorada uma
ampla diversidade de configuracbes estruturais por meio do hiperparametro
“hidden_layer_sizes”, que define o numero de neurbnios e camadas ocultas.
Combinacbes de tamanhos de camadas simples e multiplas foram testadas,
permitindo avaliar o impacto da complexidade estrutural sobre o desempenho. Além
disso, funcdes de ativacdo, como “tanh” e “relu”, foram incluidas para capturar ndo
linearidades dos dados. Diferentes otimizadores (“sgd”, “adam”, ‘lbfgs”) foram
utilizados para comparar a eficiéncia na convergéncia, enquanto ajustes na taxa de
aprendizado (“learning_rate”) permitiram testar o impacto de velocidades constantes,
adaptativas e inversamente escalonadas no treinamento.

Para o Support Vector Regression (SVR), os hiperparametros controlam
aspectos centrais do modelo. O tipo de kernel (“linear”, “poly”, “rbf”, “sigmoid”) define
a natureza da funcdo de decisdo, enquanto o grau (‘degree”) € ajustado
especificamente para kernels polinomiais, permitindo capturar diferentes niveis de
complexidade. O parametro “gamma” regula a influéncia de cada ponto de suporte, e
“épsilon” define a margem de tolerancia ao erro na predigéo.

No caso do modelo Random Forest, foram testados diferentes valores para o
namero de estimadores (“n_estimators”), que controla a quantidade de arvores na
floresta. Também foram ajustadas a profundidade maxima das arvores (“max_depth”),
0 nimero minimo de amostras para dividir um né (“min_samples_split”) e o nimero
minimo de amostras em cada folha terminal (“min_samples_leaf”). Esses parametros
influenciam diretamente a capacidade do modelo de capturar padrées complexos sem
superajustar. Por fim, o uso ou ndo de amostragem com reposicao (“bootstrap”) foi
avaliado, permitindo analisar o impacto da variacdo dos dados de treinamento na
robustez final do modelo.

Por fim, neste trabalho também esta sendo proposto o indice de generalizacao
para regressoes (Regression Generalization — REGE) ele foi calculado a relacéo de

treino e teste, dado para a equacgéo a seguir:
Indice = (M) x 100 (57)
treino

Para o R?, pela equagéo 57 a seguir:

<. R%, . n—RZ%.:
Indice = (M) x 100 (57)
Rtreino



62

Um modelo com boa generalizacdo em relacdo ao treino apresentara valores
de R .ino € RZste Proximos. Isso indica que ele ndo apenas ajusta bem os dados de
treinamento, mas também é capaz de prever corretamente em um conjunto de dados
n&o visto. Por outro lado, grandes discrepancias entre esses valores, como um RZ..;,,
muito maior que o RZ . , Sdo um sinal claro de overfitting. Nesse caso, o0 modelo
aprende ndo sO os padrbes reais dos dados, mas também os ruidos ou variacdes
especificas do conjunto de treinamento, comprometendo sua capacidade de
generalizacao.

Seguindo o mesmo raciocinio o indice REGE foi calculado a relacéo de treino

e teste para o RMSE, pela equacgao 58 a seguir:

2 2
RMSEteste_RMSEtreino
2
RMSEtreino

indice = ( ) x 100 (58)

O indice vai mostrar a variacao relativa entre o erro de treino e o erro de teste.
Se o indice for 0%, isso indica que o erro de teste e o de treino séo iguais. Valores
positivos indicam que o erro de teste € maior do que o erro de treino, enquanto valores
negativos indicam o contrario. Esse tipo de indice € util para entender a generalizacao
de um modelo, ajudando a identificar sobre ajuste (overfitting) se o erro de treino for

muito menor que o de teste.
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5. RESULTADOS E DISCUSSAO

Uma das primeiras condi¢fes validadas na construcao de todas a andlise é a
observacéo da correlacdo de Pearson. Esta correlacdo € muito importante para que
seja possivel selecionar as varidveis independentes corretamente. E possivel
observar na Figura 9 que ndo existe correlacdo significativa entre maioria das
varidveis de entrada contidas na Tabela 3 entre si, com excec¢ao da concentracdo de
fésforo e nitrogénio que possuem correlacdo de 0,74.

Isso acontece devido a necessidade de o microrganismo sintetizar proteinas
essenciais a sua sobrevivéncia, onde o nitrogénio é intrinsecamente envolvido nas
reacOes metabdlicas. Ao passo que o Fosforo € consumido para que essas reacdes
acontecam, como é evidenciado nos trabalhos por de Farias Silva e Sforza (2016), de
Farias Silva e Bertucco (2019) e Fu et al. (2019). Assim, como o fosforo também esta
relacionado com sintese de carboidratos e lipidios a correlacdo com o nitrogénio
naturalmente nao é maior. Essa correlacao alta entre o nitrogénio e o fosforo é um
indicativo de que possa existir sobreajuste nos modelos utilizados. Como alternativa,
poderia ao invés de considerar as duas variaveis Nitrogénio e fésforo separadas
considerar a razdo N/P como foi utilizado por Hossain et al. (2022).

Com relacdo aos valores das variaveis de saida (Tabela 4), as variaveis
independentes, ou seja, as variaveis de entrada possuem baixa correlacdo, com
valores inferiores a 0,5 as variaveis de entrada. Com excec¢ao densidade 6ptica (OD)
gue possuiu correlacdes maiores que 0.5 com as variaveis de saida. Existem casos
gue nas variaveis de entrada, uma ou outra correlacdo possui um certo grau de
correlacdo, mas nenhuma obteve R2 > 0,5. Velasquez-Orta et al. (2024) ao
correlacionar todas as variaveis estudadas do seu sistema de cultivo de microalgas
também obteve baixa correlacédo entre as variaveis na maioria das vezes, ressaltando
a complexidade do sistema que envolve cultivo de microrganismos. Onde apenas a

concentracdo e iluminagao possuiam correlacao positiva.



Figura 9 - Correlacé@o de Pearson entre todas as variaveis utilizadas.
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As cores mais gquentes (vermelho e laranja) indicam uma correlacdo positiva
entre as variaveis. Isso significa que quando uma variavel aumenta, a outra tende a
aumentar também. Por exemplo, a produtividade de carboidratos apresenta uma forte
correlagao positiva com a produtividade da biomassa, sugerindo que um aumento na
biomassa esta associado a um aumento na producéo de carboidratos.

As cores mais frias (azul) indicam uma correlacdo negativa. Neste caso,
quando uma variavel aumenta, a outra tende a diminuir. Por exemplo, o nitrogénio
apresenta uma correlacdo negativa com o tempo de residéncia, indicando que um
aumento no tempo de residéncia pode estar associado a uma diminuicdo nos niveis
de nitrogénio. As cores proximas ao branco indicam uma correlagcédo fraca ou nula
entre as variaveis.

Os nutrientes (nitrogénio e fosforo) apresentam correlacfes positivas com a
produtividade da biomassa e dos carboidratos, indicando que a disponibilidade de
nutrientes € um fator importante para a producado biolégica. O tempo de residéncia
apresenta correla¢des mistas. Enquanto hd uma correlagao negativa com o nitrogénio,
h& uma correlacdo positiva com a produtividade da biomassa, sugerindo que o tempo
de retencao da agua pode influenciar a dindmica dos nutrientes e a producéao bioldgica
de maneiras complexas. A intensidade luminosa apresenta correlacdes positivas com
a produtividade da biomassa e dos carboidratos, o que € esperado, pois a luz é
essencial para a fotossintese como é observado por Marino (2018) e Six (2024b).

O mapa de calor revela um intrincado conjunto de relacdes entre as variaveis
analisadas. Destaca-se a forte correlacdo positiva entre a produtividade da fracdo de
Carboidratos e a produtividade de carboidratos, indicando que um aumento na
porcentagem de carboidratos esta diretamente ligado a um aumento na producéo de
carboidratos, isso se deve a dependéncia entre si. Também é possivel observar essa
forte correlacéo entre o nitrogénio e o fésforo, isso se deve ao fato de serem nutrientes
indispensaveis para o crescimento celular e ao fato de seguirem uma proporgéo entre
si. Esse fen6meno também foi observado por Huang et al. (2021) e Xing et al. (2021),
quando cultivaram a Chlorella vulgaris.

Em seguida, foi feito uma analise com relacdo a distribuicdo dos dados, ou seja,
como ele se comportava com relagdo a sua propria grandeza. A construcdo de
histogramas se mostrou uma ferramenta muito eficaz na percepc¢ao de como certos

conjuntos de dados possuem certa assimetria.
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Na Figura 10 é possivel observar como se da organizacdo das grandezas de
cada variavel. E notavel que nas condi¢des de entrada existe (A — F) os dados tendem
a possuir acumulos em uma determinada margem do histograma, dessa forma é
possivel inferir que ndo ha uma distribuicdo normal neles, em alguns casos como o
tempo de residéncia e intensidade luminosa, ou seja, 0s histogramas D e E existem
espacos vazios nos conjuntos de dados em determinados limites. Assim como em B
e C para o fosforo e nitrogénio respectivamente, possuem picos muito altos nos limites
do histograma. Essa assimetria ndo € vista significativamente nos dados de saida,
gue apesar de possuir a média mais centrada ao limite esquerdo do histograma, tende
a possuir uma distribuicdo parcialmente normal.

Chong et al. (2024) ao analisarem os dados de entrada para realizar as
regressdes relataram que existem comportamentos diversos na distribuicdo dos
histogramas dependendo da espécie analisada. A Chlorella vulgaris tende a
normalidade, enquanto a Spirulina platensis e Chlamydomonas reinhardtii tende a se
concentrar nos extremos. Esse comportamento também é observado Hajinajaf et al.
(2022) onde os valores preditos para a fixacdo de CO: também apresentaram
comportamento proximo a distribuicdo normal. Logo, € possivel observar que os
dados obtidos e analisados sé@o da Chlorella vulgaris e que condizem com o esperado
com a literatura.

A auséncia de normalidade na distribuicdo dos dados pode ser um fator
determinante para a discrepancia entre os resultados de treino e teste, uma vez que
muitos modelos de aprendizado de maquina, especialmente os lineares como Linear,
Ridge e LASSO, assumem implicitamente que as variaveis seguem uma distribuicédo
aproximadamente normal para maximizar sua eficiéncia. Quando essa premissa nao
€ atendida, os modelos podem ajustar-se bem aos dados de treino, mas falhar em
capturar padrdes generalizaveis, levando a desempenhos inferiores no teste. Além
disso, modelos mais complexos, como Random Forest e RNA, que sdo menos
sensiveis a distribuicdo dos dados, podem superajustar outliers e ruidos no conjunto
de treino, resultando em overfitting e, consequentemente, em uma queda acentuada

no desempenho no teste.



Acumulo de carboidratos, Histograma de produtividade da biomassa, Histograma de produtividade de carboidratos.
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Figura 10 - Histograma de TN, Histograma de Fésforo, Histograma de Nitrogénio, Histograma de TR, Histograma de IL, Histograma de DO, Histograma de
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Outra analise feita previamente antes da propria estimacdo através dos
meétodos de regressao, foi calculo dos valores maximos e minimos dos dados, assim
como a média e desvio padréo. Diferentemente do que é esperado normalmente, ndo
€ importante que esses valores sejam curtos, ou estreitamente espacados. Assim,
como é possivel observar na Tabela 6 existe uma margem ampla de dados que podem
ser previstos utilizando os modelos de regressao. Vale ressaltar, no entanto que esses
métodos tendem a nado calcular muito bem dados que estdo muito distantes da

margem utilizada na regressao.

Tabela 6 — Analise dos dados de entrada.

Nome Unidade Maximo Minimo média Desvio padrao
Tempo normalizado adimensional 1.00 0.00 0.65 0.36
Fosforo mg L1 186.71 0.10 39.89 43.49
Nitrogénio mg L~?! 644.35 0.00 84.07 142.11
Tempo de residéncia dias 4.40 2.90 3.24 0.55
Intensidade Luminosa uE /m?s 450.00 150.00 269.51 118.36
Densidade 6ptica adimensional 20.16 0.58 10.47 4.29

A andlise das variaveis mostra que algumas apresentam um espectro amplo,
enquanto outras tém variacbes mais controladas. O fésforo e o nitrogénio, ambos
medidos em mg L, destacam-se pela alta amplitude: o fésforo varia de 0,10 a 186,71,
enguanto o nitrogénio vai de 0,00 a 644,35. Esses valores maximos muito superiores
as médias (39,89 para fosforo e 84,07 para nitrogénio) indicam uma grande disperséo,
evidenciada também pelos altos desvios padrdo (43,49 e 142,11, respectivamente). A
intensidade luminosa, com intervalo de 150 a 450 JE m? s e desvio padrdo elevado
(118,36), também apresenta um espectro amplo, sugerindo que diferentes condicdes
experimentais ou ambientais influenciaram fortemente os dados. Ja a densidade
Optica, adimensional, varia de 0,58 a 20,16 e apresenta uma dispersdao moderada
(desvio padréo de 4,29), cobrindo uma faixa relativamente ampla dentro de sua
escala.

Por outro lado, varidveis como o tempo normalizado e o tempo de residéncia
mostram espectros mais limitados. O tempo normalizado, por definicdo, varia de 0 a
1, mas os dados estéo concentrados principalmente em torno da meédia de 0,65, com
desvio padrdo de 0,36. Isso indica que a variacdo néo € tao distribuida ao longo da
escala completa. O tempo de residéncia, medido em dias, apresenta o intervalo mais

estreito (2,90 a 4.40), com uma média de 3,24 e desvio padrao de 0,55; sugerindo
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maior controle experimental nessa variavel. Assim, enquanto algumas variaveis
apresentam ampla variabilidade e cobertura de suas escalas, outras sdo bem mais
restritas, provavelmente devido ao tipo de controle aplicado ou a natureza do
experimento.

A Tabela 7 apresenta os melhores parametros encontrados para cada modelo
avaliado. Para o modelo Linear, nenhum parametro foi ajustado, apenas o tempo de

execucao foi registrado.

Tabela 7 — Melhores parmetros encontrados para cada modelo.

Modelo Parametros Melhor parametro
Linear Tempo (s) 0.0039
‘alpha’ 0.298364724
'selection’ "random"
'fit_intercept' "False"
Lasso
'positive’ "False"
'precompute’ "False"
Tempo (s) 9.3982
'alpha’ 0.388292423
'solver' 'sparse_cg'
Ridge fit_intercept' "False"
'positive' "False"
Tempo (s) 6053.0817
'hidden_layer_sizes' "(13,)"
'activation’ "relu”
SR, 'solver' "lbfgs"
‘alpha’ 0.5
'learning_rate' "constant"
Tempo (s) 73.8455
'kernel' "rbf"
'degree’ 1
'‘gamma’ "auto"
'coef0’ 0
SVR
'C' 2
'epsilon’ 0.001
'shrinking' "False"
Tempo (s) 25.0407
'n_estimators' 100
'max_depth' 5
'min_samples_split' 2
Random Forest
'min_samples_leaf' 2
'bootstrap’ "True"
Tempo (s) 357.9394
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Os resultados obtidos com as variacdes dos parametros indicam diferencas
significativas no desempenho e no tempo de execucéo entre os modelos. O modelo
Linear destacou-se pelo tempo extremamente baixo (0,0039 s), mas nao oferece
flexibilidade para capturar padrées mais complexos devido a sua simplicidade. Ele
serve como referéncia inicial, mas € insuficiente para problemas que exigem
modelagem mais elaborada. Price et al. (2023) relatou dificuldade semelhante. No
entanto a quantidade de dados utilizada (30 amostras) em seu trabalho deve ter maior
influéncia, pois, os resultados dele obtiveram R? em geral inferior a este.

O LASSO obteve o maximo desempenho ao ajustar o parametro 'alpha’ para
0,298364724, com um tempo de execucao de 9,3982 s. O teste da selecdo "Random”
pode ter contribuido para resultados mais robustos, reduzindo o risco de overfitting.
Entretanto, o tempo foi consideravelmente maior do que o do modelo linear,
evidenciando o custo adicional da regularizacdo e da otimizacdo em busca esparsada.
Melkumova et al. (2017), Ching et al. (2022), Nguyen et al. (2023) e também
encontraram valores para alpha inferiores a 1. O que é esperado ao atingir a
convergéncia segundo Pedregosa et al. (2011).

No caso do Ridge, seu maior desempenho foi alcancado com 'alpha’ ajustado
em 0,388292423 e o solver 'sparse_cg', resultando no maior tempo de execucao,
6053,0817 s. Este tempo elevado esta provavelmente relacionado ao uso de um
solver mais intensivo computacionalmente. Embora o Ridge seja uma extenséo
robusta da regresséao linear, sua eficiéncia diminui para conjuntos de dados grandes
ou ajustes muito finos. Esse resultado condiz com outros trabalhos que foram
conduzidos Melkumova et al. (2017) e Ching et al. (2022) também encontraram
valores para alpha inferiores a 1.

Para a RNA, a configuracao 6tima utilizou uma camada oculta de 13 neurénios
e ativacado 'relu’, com solver 'lbfgs’, gerando um tempo de 73,8455 s. Apesar do tempo
ser maior do que os modelos lineares, a RNA apresentou boa flexibilidade para
capturar padrbes mais complexos com uma arquitetura simples. A escolha do solver
'Ibfgs’ garantiu um ajuste eficiente, mas aumentou o tempo de execucao.

O SVR destacou-se pela utilizagéo do kernel 'rbf', com 'C = 2' e 'epsilon = 0.001’,
atingindo um tempo de execucédo de 25,0407 s. Este modelo mostrou bom equilibrio
entre capacidade preditiva e tempo computacional. A escolha de 'epsilon’ pequeno
indica alta sensibilidade a desvios, enquanto o kernel RBF lidou bem com néo-

linearidades.
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Por fim, o Random Forest alcangou resultados satisfatérios com ‘n_estimators’
= 100" e 'max_depth = 5', registrando 357,9394 s. A limitacdo da profundidade das
arvores favoreceu o controle da complexidade do modelo, garantindo robustez e
interpretabilidade. O uso de bootstrap como padrao ajudou na generalizagcdo, mas o
custo computacional foi relativamente alto em comparacdo aos outros modelos nao
lineares, como SVR.

A comparacéo entre os métodos de regresséao revelou diferencas significativas
no desempenho preditivo, especialmente entre as técnicas lineares e néo lineares,
como é possivel observar na Tabela 8. A regressao linear multivariada, embora direta
e computacionalmente eficiente, mostrou limitacbes na captura de relacdes
complexas entre as variaveis preditoras e a concentracdo de substrato. Isso se deve
ao fato de que ela assume uma relacdo linear que néao reflete adequadamente a

dindmica néo linear da biomassa da Chlorella vulgaris.

Tabela 8 — Resultado das regressdes para a amostragem de Treino.

Acumulo de Produtividade da Produtividade de

Carboidratos (%) Biomassa (mg L d?) Carboidratos (mg L' d?)

R? RMSE R? RMSE R? RMSE
Linear 0.0147 10.5994 0.4785 0.1228 -0.0310 0.0721
Ridge 0.3197 8.8077 0.6486 0.1008 0.1927 0.0638
Lasso 0.3185 8.8154 0.6469 0.1010 0.1954 0.0637
RNA 0.8717 0.3582 0.8962 0.3222 0.7053 0.5429
SVR 0.7454 0.5046 0.7850 0.4637 0.6180 0.6311
Random Forest 0.8770 0.3507 0.9220 0.2792 0.9347 0.2556

As técnicas de regularizacdo, como Ridge e Lasso, melhoraram a estabilidade
da predicao ao controlar o efeito de variaveis correlacionadas e ajustar modelos mais
parcimoniosos. No entanto, a precisdo desses métodos também foi limitada em
comparacgao com técnicas mais robustas.

Por outro lado, métodos baseados em aprendizado de maquina, como redes
neurais e Random Forest, apresentaram desempenho superior, com menor erro
guadratico médio e valores de R2 mais elevados, especialmente em dados complexos
e de alta dimensionalidade. As redes neurais, por exemplo, mostraram grande
capacidade de ajuste, mas com o risco de overfitting, ressaltando a importancia de
otimizar parametros e utilizar validacéo cruzada. O Random Forest destacou-se pela
combinacgao de robustez e capacidade de generalizagdo, o que o torna uma opgao

promissora para modelar sistemas bioldgicos complexos. Esses resultados indicam
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como também Igou et al. (2023) e Sonachalam et al (2024) observaram, que o uso de
técnicas nao lineares € essencial para a predicdo em sistemas biologicos,
especialmente onde h& variaveis altamente correlacionadas e intera¢des néo lineares.

Nos resultados de regresséao para os dados de teste contidos na tabela 9 a
observa-se uma queda generalizada no desempenho dos modelos em comparacao
ao treino, o que € esperado, mas indica possiveis problemas de generalizacéo para
alguns casos. O Random Forest, embora tenha apresentado redugdo nos R?, ainda
manteve o melhor desempenho relativo, com R? acima de 0.39 em todas as métricas
e erros mais baixos em relagdo a outros modelos. A RNA, por sua vez, sofreu uma
reducdo mais acentuada na precisdo, especialmente na produtividade de
carboidratos, onde o RMSE subiu significativamente, sugerindo overfitting. Modelos
como Ridge e LASSO apresentaram resultados mais consistentes entre treino e teste,
mas seus desempenhos absolutos continuam inferiores aos modelos mais complexos,

como o Random Forest.

Tabela 9 — Resultado das regressfes para a amostragem de Teste.

Acumulo de Produtividade da Produtividade de
Carboidratos (%) Biomassa (mg L't d?) Carboidratos (mg L d?)
R? RMSE R? RMSE R? RMSE
Linear 0.5825 7.0761 0.7052 0.1032 0.4963 0.0583
Ridge 0.2633 9.4000 0.54892 0.1276 0.2194 0.0725
Lasso 0.2651 9.3887 0.5682 0.1248 0.3261 0.0673
RNA 0.3788 0.8083 0.698 0.6141 0.3412 0.9389
SVR 0.2610 0.8816 0.6583 0.6533 0.1702 1.0537
Random Forest 0.3951 0.7976 0.7782 0.5263 0.4053 0.8920

Os fatos evidenciados anteriormente ficam mais claros quando sao calculados
os indices através das equacdes 57 e 58 contidos na Tabela 10 a seguir. Onde é
possivel observar a relacdo de treino e teste de cada algoritmo para cada tipo de

variavel de saida estimada.
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Tabela 10 — Relagéo entre os Resultados de treino e teste.

Acumulo de Produtividade da Produtividade de
Carboidratos (%) Biomassa (mg L1 d?) Carboidratos (mg L't d})
R? RMSE R? RMSE R? RMSE

Linear 3862.585 -33.2406 47.3772 -15.9609 -1700.9677 -19.1401
Ridge -17.6415 6.7248 -15.3685 26.5873 13.8557 13.6364
Lasso -16.7661 6.5034 -12.1657 23.5644 66.8884 5.6515
RNA -56.5447 125.6561 -22.1156 90.5959 -51.6234 -100.0000
SVR -64.9852 74.7126 -16.1401 40.8885 -72.4595 48.7720
Random Forest -54.9487 127.4309 -15.5965 88.5029 -56.6385 312.2457

O modelo linear apresenta os valores dos indices bem divergentes entre cada
tipo de varidvel estimada bastante negativo, especialmente na Conversdo em
Carboidratos, onde o indice foi de: 3862.5850%; -33.2406%. Uma anomalia incomum,
onde o treino teve pior desempenho que o teste. Essa discrepancia pode estar
associada a limitagdes inerentes do modelo linear em capturar relagdes nao-lineares
ou interacdes mais complexas presentes nos dados. A anomalia observada na
conversdo em carboidratos, sugere que o modelo linear falhou em encontrar um ajuste
minimo aos dados, potencialmente devido a presenca de outliers, variaveis com alta
multicolinearidade ou falta de transformacéo adequada das variaveis independentes.

O indice calculado para o Ridge em relacao ao Rz também € negativo na maior
parte das métricas, indicando que o desempenho no conjunto de teste é pior do que
no conjunto de treino. Por exemplo, na Produtividade da Biomassa, o indice para o
RMSE foi de 26.5873%, o0 que sugere que o modelo, apesar de estar regularizado,
nao conseguiu capturar as relacdes entre as variaveis de forma eficaz. Isso pode ser
um sinal de subajuste, onde o modelo ndo consegue modelar adequadamente os
dados, mesmo com a regularizacéao.

O Lasso tem indices negativos também, mas com um desempenho
ligeiramente melhor do que o Ridge, especialmente na Produtividade de Carboidratos
(indice de 5.6515%). Isso indica que, embora o modelo LASSO seja mais simples, ele
consegue fazer uma melhor generalizacdo do que o Ridge, mas ainda assim
apresenta uma diferenca consideravel entre treino e teste, o que sugere que ajustes
adicionais nos parametros ou na escolha das variaveis podem ser necessarios. Tanto
no modelo utilizado do Ridge, quanto no LASSO, houve uma anomalia onde a

produtividade de carboidratos obteve o indice para o R2 positivo.
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O modelo de Redes Neurais apresenta indices elevados e negativos (por
exemplo, -56.5447% de R2? para Conversdao em Carboidratos), o que indica uma
grande diferenca no desempenho entre treino e teste. Esse comportamento sugere
gque a arquitetura ou os parametros de treinamento do modelo precisam de ajustes
significativos, pois 0 modelo esta falhando tanto no treino quanto no teste, refletindo
um possivel sub-ajuste. Pois, Jerry et al. (2023) utilizaram mais de 100 neurbnios na
camada oculta e alcangcaram R2 > 0,98 que sao considerados 6timos, mas ao observar
o RMSE > 1 o que sugere overfitting. Logo, deveria ter usado mais neurdnios na
camada oculta para obter um desempenho melhor. Supriyanto et al. (2019) ao montar
Redes Neurais constatou que ao retirar algumas variaveis de entrada, houve melhor
desempenho das predicoes.

SVR (Support Vector Regression) também mostra indices negativos, com um
valor muito alto de indice na Produtividade de Carboidratos (-72.4595%), 0 que sugere
uma grande discrepancia no desempenho entre treino e teste. Isso pode indicar que
o modelo ndo estad capturando as complexidades dos dados, resultando em uma
performance insatisfatéria nos dados de teste. Hossain et al. (2022) ao relacionar
nitrogénio e fésforo em uma Unica variavel de entrada diminui a correlacao entre as
variaveis de entrada. O que pode ser uma peca central para melhorar este
desempenho.

O Random Forest também apresenta indices negativos em todas as métricas
de R?, com valores elevados, como -56.6385% na Produtividade de Carboidratos. Isso
sugere que o0 modelo esta tendo dificuldades em generalizar para o conjunto de teste.
No entanto, em relacdo a producéo de Biomassa obteve o melhor desempenho de R2
de todos os ensaios. Primeiramente, a colinearidade entre variaveis de entrada, como
a forte correlacdo entre nitrogénio e fésforo, pode ter impactado negativamente o
modelo. A colinearidade de nitrogénio e fosforo pode influenciar nas previsdes deste
algoritmo. Embora a razdo N/P tenha sido considerada para mitigar esse problema,
sua influéncia nas predicdes ainda pode ser relevante. Além disso, desbalanceamento
ou ruido nos dados pode ter afetado a modelagem da produtividade de carboidratos,
especialmente se houver grande variabilidade ou a presenca de outliers.

Ao analisar os resultados de Igou et al. (2023) que utilizou uma base de
dados muito maior, os resultados dos indices foram bem semelhantes aos obtidos
neste trabalho R2? variando de (-49,14%, -20,41%) e o RMSE variando de (123%,

208%), enquanto que neste trabalho (sem considerar o modelo linear), para o indice



75

de Rz variando de (-72, 4595%, 66,884%) e o indice do RMSE variando de (5,65%,
312,2467%). Salvo os casos extremos, a predicdo utilizando Random Forest
conseguiu desempenhar até mais, mesmo ao possuir bem menos dados

O regime de operagao tem impacto significativo na predi¢gdo. A produgao de
carboidratos por Chlorella vulgaris em regime semi-continuo tende a apresentar maior
erro em comparagdo ao regime em batelada. Isso ocorre porque, no processo
continuo, ha maior variabilidade nas condigdes operacionais, como taxa de dilui¢éo,
disponibilidade de nutrientes e variacbes ambientais (como luz e CO,). Pequenas
flutuagbes nesses parametros podem impactar significativamente a composi¢cao
bioguimica das células, levando a variacdes na producao de carboidratos como é
possivel observar nos trabalhos de Khoo, et al. (2016). Ja no regime batelada, as
condicbes do meio sdo mais estaveis ao longo do tempo, resultando em menor
variabilidade na sintese de carboidratos e, consequentemente, menor erro na
predicdo e controle da producdo como foi relatado por He et al. (2016), Wang et al.
(2019) e Figueroa-Torres et al. (2017).

Os graficos de dispersdo para os carboidratos na Figura 11 apresentados
oferecem uma visdo geral da performance de diferentes modelos de regressdo em um
conjunto de dados especifico. Ao comparar a distribuicdo dos pontos em relacdo a
linha de regresséo (diagonal), podemos inferir algumas caracteristicas sobre cada
modelo.

Os gréficos de A a C demonstram um ajuste ruim (Figura 11), com os pontos
dispersos de forma aleatéria ao redor da linha de regressao. Isso sugere que 0s
modelos correspondentes, possivelmente regressao linear simples ou multipla, estéo
capturando a relacéo entre as variaveis de forma insatisfatoria, que é condizente aos
valores de R2 e RMSE obtidos. Ja os graficos de D a F (Figura 11), por sua vez,
apresentam uma dispersao menor dos pontos em torno da linha, indicando um ajuste
mais preciso. Esses modelos, Redes neurais e Random Forest, podem estar
capturando relagdes mais complexas entre as variaveis.

Os gréficos de residuos na

Figura 12 fornecem visualmente insights valiosos sobre a qualidade do ajuste
dos modelos de regressdo. ldealmente, os residuos devem estar distribuidos
aleatoriamente em torno da linha zero, indicando que o modelo captura a relagéo entre
as variaveis de forma adequada. Ao analisar os graficos apresentados, observamos

que, em geral, os residuos estao distribuidos de forma aleatéria, sugerindo um bom
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ajuste dos modelos. No entanto, alguns graficos apresentam nuances que merecem
atencao, como a possivel presenca de alguns outliers ou leves padrées nos residuos,
principalmente nas Regressotes A, B e C. Especialmente na regressao B e C que séo
Ridge e LASSO respectivamente existe uma grande semelhanca entre si nos

residuos.
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Figura 11 - Regresséo para a determinacédo do acumulo de carboidratos.
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Figura 12 - Graficos dos residuos para o acimulo de carboidratos.
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De modo semelhante aconteceu quando utilizada a produtividade de
Carboidratos como a variavel de saida (Figura 13). Os resultados sugerem que 0sS
modelos de aprendizado de maquina (RNA, SVR e Random Forest) superam o0s
modelos lineares tradicionais (linear multivariada, Ridge e LASSO) na tarefa de
previsdo utilizando as variaveis de entrada deste trabalho. Esses modelos mais
complexos conseguem capturar padrdes mais complexos nos dados, resultando em
previsbes mais precisas.

Os gréficos de residuos apresentados na Figura 14 mostram a relacéo entre
0s residuos e os valores previstos para os seis modelos distintos (A, B, C, D, E, F).
De maneira geral, os pontos estdo distribuidos aleatoriamente ao redor da linha
vermelha, indicando que os modelos ndo apresentam erros sistematicos evidentes.
Além disso, a auséncia de padrdes claros, como tendéncias em U ou inclinacdes,
sugere que as previsdes capturam bem a relacdo entre as variaveis. No entanto,
alguns graficos, como B e F, apresentam variaces na dispersao dos residuos, o que
pode indicar a presenca de heterocedasticidade, ou seja, uma mudanca na
variabilidade dos erros ao longo dos valores previstos.

Ao comparar os graficos sobre os residuos nas predicbes, ndo existem um
consenso sobre o comportamento da C. vulgaris perante qualquer tipo de regressao.
O efeito do meio de cultura também tem um grande impacto, Ma et al. (2023) relataram
alta disperséo nos residuos e alta disperséo ao utilizarem residuos da suinocultura.
No entanto, Lam et al. (2017) ndo obtiveram os mesmos resultados e o desempenho
da regressdo obteve menor margem, sofrendo com as margens viciadas. De modo
gue todos os modelos testados possuem 0 mesmo comportamento, o que ndo é
observado neste trabalho, onde todos os residuos sdo aleatérios e cada gréafico
diverge entre si.

A divergéncia entre os estudos reforca a complexidade da modelagem preditiva
da produtividade de carboidratos em C. vulgaris, evidenciando que a escolha do
modelo ideal pode depender fortemente das condi¢cdes experimentais e das variaveis
de entrada utilizadas, como é evidenciado na Tabela 2. Além disso, a influéncia do
meio de cultura sobre os residuos e a variabilidade dos erros sugere que ajustes nos
modelos podem ser necessarios para diferentes cenarios produtivos. Assim, futuras
pesquisas podem explorar a combinacao de técnicas de aprendizado de maquina com
abordagens hibridas ou o uso de variaveis adicionais para aprimorar a robustez das

previsdes e reduzir incertezas associadas as variagcbes ambientais e operacionais.
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Figura 13 - Regresséo para a determinacéo da produtividade de carboidratos.
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Figura 14 - Gréficos dos residuos para a produtividade de carboidratos.

0.10 4
L]
. L]
0.05 1 .'.
. * e e %o
0.00
L]
S .
L]
-0.05 4
L ] . ™
-0.10 " »
L]
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Valores previstos
0.15 4 .
0.10 4
L]
L ]
4 L]
0.05 ] ..
L] * -
2 L]
0.00
L []
i . . * 9 .
L]
-0.05 4
-0.10 .
L[]
-0.15 4 .
L]
0.10 0.15 0.20 0.25 0.30

Valores previstos

Residuos

Residuos

81

. .
0.10
0.10 ° .
. . .
. 0.05
0.05 4 . ® .
L
¢ * oo « 000 ) * d
0.00 d s e .
s . . . .
o _ . . s i ’
* < 0.05
-0.05 . : o
L ]
-0.10 - -0.10 .
. ° . .
-0.15 1 . . ~0.15 1 . .
0.16 018 0.20 0.22 0.24 0.26 012 014 016 018 020 022 024
Valores previstos alores previstos
0.20 4 . 0.15 .
0.15 - . 0.10 | .
.
] ) . .
0.10 005 |
L] ™ L]
.
0.05 . . g o* * e
(1] . 5 ooot—e * -
ae i % .
0.00 +—g " . & * .
. - o,° -0.05 .
-0.05 -
.
o ~0.10 .
-0.10 1 . .
. -0.15
~0.15 - . .
0.10 015 0.20 0.25 0.30 0.35 olo 015 0.20 0.25

Valores previstos

Valores previstos

A —Linear multivariada; B — Ridge; C — Lasso; D — RNA; E — SVR; F — Random Forest.



82

O melhor desempenho dos algoritmos se deu quando foi analisado a
produtividade da biomassa como variavel de saida, esse resultado que foi observado
numericamente com o R2 e RMSE também foi possivel ser observado graficamente
na Figura 15. O modelo linear teve o pior desempenho, onde se observa que a
dispersdo dos pontos estd mais distante da linha de convergéncia. Ridge e Lasso
tiveram desempenhos muito semelhantes e melhores ao algoritmo linear. Os
algoritmos RNA e SVR tiveram desempenhos semelhantes entre si. E por fim o
algoritmo Random Forest teve o melhor desempenho de todos os testes de saida.

Tanto nos residuos com relacéo a fracao de carboidratos e a produtividade de
carboidratos existe um comportamento aleatério na distribuicdo dos pontos ao longo
da linha, o mesmo comportamento ocorreu com Velasquez-Orta et al (2024) com uma
escala maior (-80,+80) e 69 amostras. Indicando que este trabalho conseguiu
melhorar a performance, principalmente por usar mais variaveis de entrada
independentes e mais dados.

Os graficos de residuos para a produtividade de biomassa na figura 16
apresentaram um comportamento distinto das demais varidveis analisadas.
Observou-se um melhor desempenho, com os pontos mais proximos da linha da
idealidade. No entanto, a analise dos residuos revelou a auséncia da aleatoriedade
esperada, evidenciada pelo acimulo dos pontos predominantemente na regido central
do grafico. Esse comportamento sugere a presenca de um Vviés nas regressdes
realizadas, comprometendo a qualidade das estimativas obtidas. Assim, pode-se
afirmar que a hipo6tese levantada anteriormente é valida: os dados utilizados nas
regressdes possuem uma abrangéncia limitada, dificultando o estabelecimento de
uma relacdo precisa entre as variaveis de entrada e a produtividade de biomassa.

A comparacao entre os algoritmos mostra que os métodos de aprendizado de
maquina, como SVR e Random Forest, capturam melhor as relacdes nao lineares
entre as variaveis, evidenciando a limitacdo dos modelos lineares, que simplificam
padrées complexos e podem perder informacdes relevantes. Ainda assim, a analise
dos residuos indica a presenca de padrdes nos erros, possivelmente relacionados a
falta de variaveis explicativas ou a necessidade de um pré-processamento mais
refinado. Além disso, a variagdo no desempenho entre os algoritmos sugere que a
complexidade do modelo deve ser equilibrada com sua interpretabilidade e
capacidade de generalizacdo. O Random Forest teve o melhor desempenho, mas

pode exigir um volume maior de dados para evitar sobreajuste.



Figura 15 - Regressao para a determinacéo da produtividade de biomassa.
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Desse modo € possivel salientar que a questdo em si ndo é a qualidade dos
dados, e sim como eles estao distribuidos em seu dominio. Quanto maior o intervalo
de abrangéncia dos dados de entrada para a varidvel de saida, existe a tendéncia de
gue a regressao desempenhe melhor. Isso ndo anula o fato de que este trabalho foi
capaz de determinar as concentracfes de carboidratos além da produtividade de
biomassa e carboidratos. Além de que essa metodologia desenvolvida nesse trabalho
€ capaz de averiguar a qualidade dos dados antes de fazer a regresséo. Sendo assim,
foi previsto que a regressdo nao poderia desempenhar devido a questdo da
proporcionalidade e da quantidade de dados utilizados para treino em detrimento dos
dados separados para o teste.

Durante a avaliagdo do modelo, foi identificada uma discrepancia significativa
entre os resultados obtidos no teste e no treino, com valores consideravelmente
inferiores no desempenho do modelo nos dados de teste. Essa diferenca sugere uma
possivel falha relacionada a representatividade dos dados utilizados no treinamento,
que correspondem a 80% do total disponivel. Ao que tudo indica, os dados de treino
ndo foram capazes de abranger de forma satisfatéria a variabilidade e as
caracteristicas presentes nos 20% dos dados reservados para teste, comprometendo
a generalizacdo do modelo. Pozzobon et al. (2021) utilizou a mesma propor¢céo de
dados, utilizando 261 dados e conseguiu estimar bem os parametros de saida com
10% de erro. Ressaltando desta forma a importancia de um conjunto maior de dados
para fazer as previsdes. Ja Paakkodnen et al. (2024) utilizaram apenas 50 ensaios e
conseguiu R2 >0.9. Em ambos 0s casos sdo sistemas que ndo variam com o tempo e
tendem a linearidade. O que favoreceu o desempenho com uma quantidade menor
de dados.

Essa limitacdo também pode ter ocorrido devido a uma distribuicdo né&o
homogénea dos dados, resultando em um conjunto de treino que nédo reflete
adequadamente os padrbes e outliers encontrados no conjunto de teste. Como
consequéncia, o modelo apresentou um desempenho otimizado apenas para 0
subconjunto utilizado no treinamento, mas mostrou dificuldade em extrapolar para
novos dados. Essa situacéo reforca a importancia de realizar uma analise criteriosa
prévia de amostragem, garantindo que tanto os dados de treino quanto os de teste

representem de maneira equilibrada o dominio completo das variaveis em estudo.
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6. CONSIDERACOES FINAIS

Neste estudo, foi aplicada a técnica de Machine Learning para prever a
producdo de carboidratos pela microalga Chlorella vulgaris em cultivo continuo,
utilizando variaveis nutricionais, ambientais e operacionais como entradas para 0s
modelos preditivos. A analise do coeficiente de Pearson permitiu identificar
correlagbes significativas entre as variaveis independentes e dependentes,
destacando a influéncia de fatores como a concentracao de nutrientes e a intensidade
luminosa na producédo de carboidratos. Foi observada alta correlacédo entre nitrogénio
e fosforo, utilizar essas duas variaveis de entrada pode prejudicar regressdes por
conta da colinearidade e alternativamente a razao de N/P foi utilizada para contornar
este problema. O histograma das varidveis demonstrou a distribuicdo dos dados,
evidenciando padrdes e tendéncias que podem afetar as predicdes.

Diferentes técnicas de regressdo foram implementadas e comparadas,
abrangendo modelos lineares (Regressao Linear Multivariada, Ridge e LASSO) e nao
lineares (Random Forest, Redes Neurais e Support Vector Regression - SVR).
Observou-se que os modelos nédo lineares apresentaram melhor desempenho na
previsao de todas as variaveis de saida, especialmente o Random Forest e as Redes
Neurais, devido a sua capacidade de capturar relacdes complexas entre as variaveis,
e obtiveram o melhor R2 de 0,9347; 0,8962 e RMSE 0,2556; 0,3222, na previsédo da
produtividade carboidratos e produtividade de biomassa, respectivamente.

A otimizacdo dos modelos foi realizada através da definicdo dos melhores
hiperparametros para cada técnica, utilizando a busca em grade, permitindo uma
melhoria significativa na acuracia das previsdes. Além disso, a validacéo cruzada foi
empregada para evitar overfitting e garantir a generalizacao dos resultados, tornando
0s modelos mais robustos e confiaveis. Os resultados obtidos destacam o potencial
do machine learning na predigao e utilizagc&o futura para sistemas de controles para

processos biotecnoldgicos.
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APENDICE A — ALGORITMO LINEAR MULTIVARIADO
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import root_mean_squared_error
from sklearn.metrics import r2_score

import time

#Display data options
pd.set_option(‘'display.max_rows', None)
pd.set_option(‘'display.max_columns', None)

pd.set_option(‘'display.width', None)

#Path of the data

# Enter

path_ent
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Entrada.xIsx")

# out

path_out
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Saida.xlsx")

# First graph regression result

path_reg
Path(r'C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Regressao\linear.png”)

# Second graph residual result

path_res
Path(r'C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Residuos\linear.png")

# Report .txt file path
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path_rep =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida

1\Report\linear.txt")

# Read the data
X = pd.read_excel(path_ent)
y = pd.read_excel(path_out)

# Time measure

inicio = time.time()

# Split the data into training and testing sets

X_train, X_test, y train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

# Create and train the linear regression model
model = LinearRegression()
model.fit(X_test, y_test)

# Make predictions on the train set

y_pred_train = model.predict(X_train)

# Make predictions on the test set
y _pred = model.predict(X_test)

# Time measure
fim = time.time()

duration = fim-inicio

# Calculate the mean square error and R?2

# Test Data

MQE_test =root_mean_squared_error(y_pred, y_test)

r 2 test =r2_score(y_test,y pred)

# Train Data

MQE_train =root_mean_squared_error(y_train, y_pred_train)

r 2 train =r2_score(y_train, y_pred_train)



# Organization of data:

y_test = pd.DataFrame(y_test)
y_train = pd.DataFrame(y_train)
y test =y test.values

y_train =y _train.values

# Residual calculation:

residuos= y_ pred.reshape(len(y_pred),1)-y_test

# Adicionando a linha y = x para referéncia
min_val = min(y_train) # Valor minimo para definir o inicio da linha

max_val = max(y_train) # Valor maximo para definir o fim da linha

# Format text content in file:
def format_array(array):

return "\n".join(", ".join(f"{num:.4f}" for num in sublist) for sublist in array)

# Report informations about all the regression process
report_text = (
"Relatério de Resultados de Regresséao Linear\n\n"
"Parte especifica do modelo:\n"
f'Coeficientes: {', '.join(f{coef:.4f}' for coef in model.coef [0])}\n"

f'Intercepto: {model.intercept_[0]:.4f}\n\n"

"Métricas de Avaliacdo:\n"

f'R2 - Treino: {r_2_train:.4f\n"

f'R2 - Teste: {r_2_test:.4f\n"
f'"RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execuc¢ao: {duration:.4f} s\n\n"

"Dados do Conjunto de Treinamento:\n"

f'Y_train:\n{format_array(y_train)j\n\n"
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f'Y_pred_train:\n{format_array(y_pred_train)}\n\n"

"Dados do Conjunto de Teste:\n"

f'Y_test:\n{format_array(y_test)}\n\n"

f'Y_pred_test:\n{format_array(y_pred)}\n"
)

path_rep.write_text(report_text)

# Print the report:

print("Métricas de Avaliacao:\n"
f'R2 - Treino: {r_2_train:.4fj\n"
f'R? - Teste: {r_2_test:..4f\n"
f'"RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.6f} s\n\n"

)

# Generate image of regression:

plt.scatter(y_test, y _pred, c='black’, label="TESTE)

plt.scatter(y_train, y_pred_train, marker ='+', c="blue’, label ="TREINO")

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-")

#plt.title (f™)

plt.legend()
plt.xlabel('Experimental’)
plt.ylabel('Simulado’)
plt.savefig(path_reg, format="png")
plt.show()

# Previsdes e célculo dos residuos

# Grafico de residuos

plt.scatter(y_pred, residuos, color="black")
plt.axhline(y=0, color="red", linestyle="-")
plt.xlabel("Valores previstos")
plt.ylabel("Residuos")
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#plt.title("Gréafico de Residuos™)
plt.savefig(path_res, format="png’)

plt.show()
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APENDICE B — ALGORITMO LASSO

from pathlib import Path

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from sklearn.linear_model import Lasso

from sklearn.metrics import root_mean_squared_error

from sklearn.metrics import r2_score

from sklearn.model_selection import GridSearchCV, train_test_split

import time

pd.set_option(‘'display.max_rows', None)
pd.set_option(‘'display.max_columns', None)

pd.set_option(‘'display.width', None)

#Path of the data

# Enter

path_ent =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lIA\Simulation\Saidal\Entrada.
xIsx™)

# out

path_out =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Saida.xIsx")

# First graph regression result

path_reg =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Regressao\Lasso.png")

# Second graph residual result

path_res =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Residuos\Lasso.png")

# Report .txt file path
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path_rep =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida

1\Report\Lasso.txt")

# Read the data
X = pd.read_excel(path_ent)
y = pd.read_excel(path_out)

# Time measure

inicio = time.time()

# Split the data into training and testing sets

X_train, X_test, y train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

# Define the model:

model = Lasso(max_iter=10**7, tol=10**-8)

# Definindo os parametros para busca
param_grid ={
‘alpha’: np.logspace(-4, 4, 100), # Testa valores de alpha de 0.0001 a 10000
'selection”:['ciclic’, ‘random’,
fit_intercept':[True, False],
‘positive”:[True, False],

‘precompute’: [True, False]

# GridSearchCV para Ridge

# GridSearchCV para o modelo

best_model = GridSearchCV(model, param_grid, cv=5,
scoring="neg_mean_squared_error")

best_model.fit(X_train, y_train.values.ravel())

model_estimator = best_model.best_estimator_

# Make predictions on the train set

y_pred_train = model_estimator.predict(X_train)



# Make predictions on the test set

y_pred = model_estimator.predict(X_test)

# Time measure
fim = time.time()

duration = fim-inicio

# Calculate the mean square error and R2

# Test Data

MQE_test =root_mean_squared_error(y_pred, y_test)

r 2 test =r2_score(y_test,y pred)

# Train Data

MQE_train =root_mean_squared_error(y_train, y_pred_train)

r 2 train =r2_score(y_train, y_pred_train)

# Organization of data:

y test = pd.DataFrame(y_test)
y_train = pd.DataFrame(y_train)
y test =y test.values

y_train =y _train.values

# Residual calculation:

residuos= y_pred.reshape(len(y_pred),1)-y_test

# Adicionando a linha y = x para referéncia
min_val = min(y_train) # Valor minimo para definir o inicio da linha

max_val = max(y_train) # Valor maximo para definir o fim da linha

# Report informations about all the regression process
report_text = (
"Relatorio de Resultados de Regressao Linear\n\n"
"Parte especifica do modelo:\n"

f'Coeficientes: {best_model.best_params_}\n"

110



"Métricas de Avaliacdo:\n"

f'R2? - Treino: {r_2_train:.4fj\n"

f'R? - Teste: {r_2_test:.4f\n"
f'"RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.4f} s\n\n"

"Dados do Conjunto de Treinamento:\n"
f'Y_train:\n{y_trainj\n\n"
f'Y_pred_train:\n{y_pred_train}\n\n"

"Dados do Conjunto de Teste:\n"
f'Y _test:\n{y_testh\n\n"
f'Y_pred_test:\n{y_pred}\n"

)

path_rep.write_text(report_text)

# Print the report:

print("Métricas de Avaliacdo:\n"
f'R2 - Treino: {r_2_train:.4fj\n"
f'R2 - Teste: {r_2_test:..4f\n"
f'RMSE - Treino: {MQE_train:.4f}\n"
f'/RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.6f} s\n\n"

)

# Generate image of regression:

plt.scatter(y_test, y_pred, c="black’, label="TESTE)

plt.scatter(y_train, y_pred_train, marker = '+', c="blue’, label = TREINO")
plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-")
#plt.title (f")

plt.legend()

plt.xlabel('Experimental’)
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plt.ylabel('Simulado’)
plt.savefig(path_reg, format="png")
plt.show()

# Previsdes e célculo dos residuos

# Grafico de residuos

plt.scatter(y_pred, residuos, color="black")
plt.axhline(y=0, color="red", linestyle="-")
plt.xlabel("Valores previstos")
plt.ylabel("Residuos")

#plt.title("Gréfico de Residuos")
plt.savefig(path_res, format="png’)

plt.show()
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APENDICE C — ALGORITMO RIDGE
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.metrics import root_mean_squared_error
from sklearn.metrics import r2_score
from sklearn.model_selection import GridSearchCV, train_test_split

import time

pd.set_option(‘'display.max_rows', None)
pd.set_option(‘'display.max_columns', None)

pd.set_option(‘'display.width', None)

#Path of the data

# Enter

path_ent =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Entrada.xIsx")

# out

path_out =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Saida.xlsx")

# First graph regression result

path_reg =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Regressao\Ridge.png")

# Second graph residual result

path_res =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Residuos\Ridge.png")

# Report .txt file path
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path_rep =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Report\Ridge.txt")

# Read the data
X = pd.read_excel(path_ent)
y = pd.read_excel(path_out)

# Time measure

inicio = time.time()

# Split the data into training and testing sets

X_train, X_test, y train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

# Define the model:
model = Ridge(max_iter=10**7, tol=10**-8)

# Definindo os parametros para busca
param_grid ={
‘alpha’: np.logspace(-4, 4, 10**4), # Testa valores de alpha de 0.0001 a
10000
'solver’: ['svd’, ‘cholesky’, 'sparse_cg', 'Isqr’, 'sag’, 'Ibfgs’], # Testa com
diferentes tipos de solver

‘positive”:[True, False]

# GridSearchCV para Ridge

# GridSearchCV para o modelo

best_model = GridSearchCV(model, param_grid, cv=5,
scoring="neg_mean_squared_error")

best_model.fit(X_train, y_train.values.ravel())

model_estimator = best_model.best_estimator_

# Make predictions on the train set

y_pred_train = model_estimator.predict(X_train)



# Make predictions on the test set

y_pred = model_estimator.predict(X_test)

# Time measure
fim = time.time()

duration = fim-inicio

# Calculate the mean square error and R2

# Test Data

MQE_test =root_mean_squared_error(y_pred, y_test)

r 2 test =r2_score(y_test,y pred)

# Train Data

MQE_train =root_mean_squared_error(y_train, y_pred_train)

r 2 train =r2_score(y_train, y_pred_train)

# Organization of data:

y test = pd.DataFrame(y_test)
y_train = pd.DataFrame(y_train)
y test =y test.values

y_train =y _train.values

# Residual calculation:

residuos= y_pred.reshape(len(y_pred),1)-y_test

# Adicionando a linha y = x para referéncia
min_val = min(y_train) # Valor minimo para definir o inicio da linha

max_val = max(y_train) # Valor maximo para definir o fim da linha

# Report informations about all the regression process
report_text = (
"Relatorio de Resultados de Regressao Linear\n\n"
"Parte especifica do modelo:\n"

f'Coeficientes: {best_model.best_params_}\n"
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"Métricas de Avaliacdo:\n"

f'R2? - Treino: {r_2_train:.4fj\n"

f'R? - Teste: {r_2_test:.4f\n"
f'"RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.4f} s\n\n"

"Dados do Conjunto de Treinamento:\n"
f'Y_train:\n{y_trainj\n\n"
f'Y_pred_train:\n{y_pred_train}\n\n"

"Dados do Conjunto de Teste:\n"
f'Y _test:\n{y_testh\n\n"
f'Y_pred_test:\n{y_pred}\n"

)

path_rep.write_text(report_text)

# Print the report:

print("Métricas de Avaliacdo:\n"
f'R2 - Treino: {r_2_train:.4fj\n"
f'R2 - Teste: {r_2_test:..4f\n"
f'RMSE - Treino: {MQE_train:.4f}\n"
f'/RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.6f} s\n\n"

)

# Generate image of regression:

plt.scatter(y_test, y_pred, c="black’, label="TESTE)

plt.scatter(y_train, y_pred_train, marker = '+', c="blue’, label = TREINO")
plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-")
#plt.title (f")

plt.legend()

plt.xlabel('Experimental’)
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plt.ylabel('Simulado’)
plt.savefig(path_reg, format="png")
plt.show()

# Previsdes e célculo dos residuos

# Grafico de residuos

plt.scatter(y_pred, residuos, color="black")
plt.axhline(y=0, color="red", linestyle="-")
plt.xlabel("Valores previstos")
plt.ylabel("Residuos")

#plt.title("Gréfico de Residuos")
plt.savefig(path_res, format="png’)

plt.show()
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APENDICE D — ALGORITMO RNA
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pathlib import Path
from sklearn.metrics import root_mean_squared_error
from sklearn.metrics import r2_score
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.neural_network import MLPRegressor

from sklearn.preprocessing import StandardScaler

pd.set_option(‘'display.max_rows', None)
pd.set_option(‘'display.max_columns', None)

pd.set_option(‘'display.width', None)

#Path of the data

# Enter

path_ent =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Entrada.xIsx")

# out

path_out =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Saida.xIsx")

# First graph regression result

path_reg =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Regressao\RNA.png")

# Second graph residual result
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path_res =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Residuos\RNA.png")

# Report .txt file path

path_rep =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Report\RNA.txt")

# Read the data
X = pd.read_excel(path_ent)
y = pd.read_excel(path_out)

# Time measure

inicio = time.time()

# Split the data into training and testing sets

X_train, X_test, y train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

# Normalizacao
# Dados de entrada
scalerlnput = StandardScaler()

scalerlnput.fit(X_train)

X_train = scalerlnput.transform(X_train)

X_test = scalerlnput.transform(X_test)

# Dados de saida
scalerOutput = StandardScaler()

scalerOutput.fit(y_train)

y_train = scalerOutput.transform(y_train)

y_test = scalerOutput.transform(y_test)

# Definindo o modelo

model = MLPRegressor(random_state=42)



# Definindo os parametros para busca

parameter_space = {
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‘hidden_layer_sizes": [(3,), (5,), (6,),(10,), (11,), (12,), (13,),(14,), (15,), (16),

(3,3),(5,5). (7, 7)),
(3,3,3), (5,5,5), (6, 6, 6)],
‘activation’: ['tanh’, 'relu’, 'logistic’, 'identity],
'solver': ['sgd’, '‘adam’, 'lbfgs’],
‘alpha': [0.0001, 0.05, 0.1, 0.5],

'learning_rate": ['‘constant’, '‘adaptive’, 'invscaling'],

# GridSearchCV para o modelo

best_model = GridSearchCV(model, parameter_space,
scoring='neg_mean_squared_error")

best_model.fit(X_train, y_train)

model_estimator = best_model.best_estimator_

# Make predictions on the train set

y_pred_train = model_estimator.predict(X_train)

# Make predictions on the test set

y _pred = model_estimator.predict(X_test)

# Time measure
fim = time.time()

duration = fim-inicio

# Calculate the mean square error and R?2

# Test Data

MQE_test =root_mean_squared_error(y_pred, y_test)

r 2 test =r2_score(y_test,y pred)

# Train Data

MQE_train =root_mean_squared_error(y_train, y_pred_train)

r 2 train =r2_score(y_train, y_pred_train)

n_jobs=-1,



# Organization of data:

y_test = pd.DataFrame(y_test)
y_train = pd.DataFrame(y_train)
y test =y test.values

y_train =y _train.values

# ajuste das matrizes

y test = y test.reshape(-1,1)
y_pred = y pred.reshape(-1,1)
y_train =y train.reshape(-1,1)

y_pred_train = y_pred_train.reshape(len(y_pred_train),1)

#mudanca para variaveis originais

y_test = scalerOutput.inverse_transform(y_test)
y_pred = scalerOutput.inverse_transform(y_pred)
y_train = scalerOutput.inverse_transform(y_train)
y_pred_train = scalerOutput.inverse_transform(y_pred_train)

#fim da mudanca

# Residual calculation:

residuos= y_pred.reshape(len(y_pred),1)-y_test

# Adicionando a linha y = x para referéncia
min_val = min(y_train) # Valor minimo para definir o inicio da linha

max_val = max(y_train) # Valor maximo para definir o fim da linha

# Report informations about all the regression process
report_text = (
"Relatério de Resultados de Regressao MLP\n\n"
"Parte especifica do modelo:\n"
f"Coeficientes: {best_model.best_params_}\n"
f'Best parameters found:\n, {best_model.best_estimator_.coefs_}\n"

f'Best intercept found:\n, {best_model.best_estimator_.intercepts_}\n"
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)

"Métricas de Avaliagdo:\n"

f'R2? - Treino: {r_2_train:.4fj\n"

f'R2 - Teste: {r_2_test:..4f\n"

f'"RMSE - Treino: {MQE_train:.4f}\n"
f'/RMSE - Teste: {MQE_test:.4f}\n\n"
f"Tempo de execucao: {duration:.4f} s\n\n"

"Dados do Conjunto de Treinamento:\n"
f'Y_train:\n{y_trainj\n\n"
f'Y_pred_train:\n{y_pred_train}\n\n"

"Dados do Conjunto de Teste:\n"
f'Y_test\n{y_testh\n\n"
f'Y_pred_test:\n{y_pred}\n"

path_rep.write_text(report_text)

# Print the report:

print("Métricas de Avaliacdo:\n"

f'R2 - Treino: {r_2_train:.4fj\n"

f'R2 - Teste: {r_2_test:..4f\n"
f'/RMSE - Treino: {MQE_train:.4f}\n"
f'/RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.6f} s\n\n"

)

# Generate image of regression:

plt.scatter(y_test, y_pred, c='black’, label="TESTE')

plt.scatter(y_train, y_pred_train, marker = '+', c="blue’, label = TREINO")

plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-")
#plt.title (f")
plt.legend()
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plt.xlabel(Experimental’)
plt.ylabel('Simulado’)
plt.savefig(path_reg, format="'png’)
plt.show()

# Previsdes e célculo dos residuos

# Gréfico de residuos

plt.scatter(y_pred, residuos, color="black")
plt.axhline(y=0, color="red", linestyle="-")
plt.xlabel("Valores previstos")
plt.ylabel("Residuos")

#plt.title("Gréfico de Residuos")
plt.savefig(path_res, format="png’)

plt.show()
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APENDICE E — ALGORITMO SVR
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import GridSearchCV, train_test_split
import time
from sklearn.metrics import root_mean_squared_error
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVR

pd.set_option(‘'display.max_rows', None)
pd.set_option(‘'display.max_columns', None)

pd.set_option(‘'display.width', None)

#Path of the data

# Enter

path_ent =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Entrada.xIsx")

# out

path_out =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Saida.xIsx")

# First graph regression result

path_reg =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Regressao\SVR.png")

# Second graph residual result

path_res =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Residuos\SVR.png")

# Report .txt file path
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path_rep =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Report\SVR.txt")

# Read the data
X = pd.read_excel(path_ent)
y = pd.read_excel(path_out)

# Time measure

inicio = time.time()

# Split the data into training and testing sets

X_train, X_test, y train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

# Normalizacao
# Dados de entrada
scalerlnput = StandardScaler()

scalerlnput.fit(X_train)

X_train = scalerlnput.transform(X_train)

X_test = scalerlnput.transform(X_test)

# Dados de saida
scalerOutput = StandardScaler()

scalerOutput.fit(y_train)

y_train = scalerOutput.transform(y_train)

y_test = scalerOutput.transform(y_test)

# Definindo o modelo
model = SVR(max_iter=10**6, tol=10**-8)
# Definindo os parametros para busca
parameter_space = {
‘kernel’: [linear', 'poly’, 'rbf', 'sigmoid’],
'degree': [1, 2, 3, 4, 5],



‘gamma’; ['scale’, 'auto’],

‘coef0": [0, 0.25, 0.75, 0.5, 1, 2],
'C"[.5,.75,1, 1.5, 2],

‘epsilon’: [0.1,0.01, 0.001, 0.5, 1],

'shrinking': [True, False]

# GridSearchCV para o modelo

best_model = GridSearchCV(model, parameter_space,
scoring="neg_mean_squared_error")

best_model.fit(X_train, y_train.ravel())

model_estimator = best_model.best_estimator_

# Make predictions on the train set

y_pred_train = model_estimator.predict(X_train)

# Make predictions on the test set

y _pred = model_estimator.predict(X_test)

# Time measure
fim = time.time()

duration = fim-inicio

# Calculate the mean square error and R?

# Test Data

MQE_test =root mean_squared_error(y_pred, y_test)

r 2 test =r2_score(y_test,y pred)

# Train Data

MQE_train =root_mean_squared_error(y_train, y_pred_train)

r 2 train =r2_score(y_train, y_pred_train)

# Organization of data:
y test = pd.DataFrame(y_test)

y_train = pd.DataFrame(y_train)

126

n_jobs=-1,



127

y test =y test.values

y_train =y _train.values

# ajuste das matrizes

y_test = y test.reshape(-1,1)
y_pred = y_pred.reshape(-1,1)
y train =y train.reshape(-1,1)

y_pred_train = y_pred_train.reshape(len(y_pred_train),1)

#mudanca para variaveis originais

y_test = scalerOutput.inverse_transform(y_test)
y_pred = scalerOutput.inverse_transform(y_pred)
y_train = scalerOutput.inverse_transform(y_train)
y_pred_train = scalerOutput.inverse_transform(y_pred_train)

#fim da mudanca

# Residual calculation:

residuos= y_pred.reshape(len(y_pred),1)-y_test

# Adicionando a linha y = x para referéncia
min_val = min(y_train) # Valor minimo para definir o inicio da linha

max_val = max(y_train) # Valor maximo para definir o fim da linha

# Report informations about all the regression process
report_text = (
"Relatério de Resultados de Regressao MLP\n\n"
"Parte especifica do modelo:\n"
f"Coeficientes: {best_model.best_params_}\n"
f'Best parameters found:\n, {best_model.best_estimator_.support_vectors_}\n"

f'Best intercept found:\n, {best_model.best_estimator_.intercept_}\n"

"Métricas de Avaliacdo:\n"
f'R2 - Treino: {r_2_train:.4fj\n"
f'R2 - Teste: {r_2_test:.4f}\n"
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f'"RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.4f} s\n\n"

"Dados do Conjunto de Treinamento:\n"
f'Y_train:\n{y_trainj\n\n"
f'Y_pred_train:\n{y_pred_trainj\n\n"

"Dados do Conjunto de Teste:\n"
f'Y _test:\n{y_testh\n\n"
f'Y_pred_test:\n{y_pred}\n"

)

path_rep.write_text(report_text)

# Print the report:

print("Métricas de Avaliacdo:\n"
f'R2 - Treino: {r_2_train:.4fj\n"
f'R2 - Teste: {r_2_test:..4f\n"
f'RMSE - Treino: {MQE_train:.4f}\n"
f'/RMSE - Teste: {MQE_test:.4f}\n\n"
f"Tempo de execucao: {duration:.6f} s\n\n"

)

# Generate image of regression:

plt.scatter(y_test, y_pred, c="black’, label="TESTE")

plt.scatter(y_train, y_pred_train, marker = '+', c="blue’, label ="TREINO")
plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-")
#plt.title (f")

plt.legend()

plt.xlabel('Experimental’)

plt.ylabel('Simulado’)

plt.savefig(path_reg, format="png’)

plt.show()



# Previsdes e célculo dos residuos

# Grafico de residuos

plt.scatter(y_pred, residuos, color="black")
plt.axhline(y=0, color="red", linestyle="-")
plt.xlabel("Valores previstos")
plt.ylabel("Residuos")

#plt.title("Gréfico de Residuos")
plt.savefig(path_res, format="png’)
plt.show()
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APENDICE F — ALGORITMO RANDOM FOREST

from pathlib import Path

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from sklearn.metrics import root_mean_squared_error

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import r2_score

from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.preprocessing import StandardScaler

import time

pd.set_option(‘'display.max_rows', None)
pd.set_option(‘'display.max_columns', None)
pd.set_option(‘'display.width', None)

#Path of the data

# Enter

path_ent=
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saidal\Entrada.
xIsx™)

# out

path_out =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Saida.xIsx")

# First graph regression result

path_reg =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Regressao\RF.png")

# Second graph residual result

path_res =
Path(r"C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Residuos\RF.png")
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# Report .txt file path

path_rep =
Path(r'C:\Users\axiaj\OneDrive\Documentos\mestrado\lA\Simulation\Saida
1\Report\RF.txt")

# Read the data
X = pd.read_excel(path_ent)
y = pd.read_excel(path_out)

# Time measure
inicio = time.time()
# Split the data into training and testing sets

X _train, X_test, y train,y test=train_test split(X,y, test_size=0.2, random_state=42)

# Normalizacao
# Dados de entrada
scalerlnput = StandardScaler()

scalerlnput.fit(X_train)

X_train = scalerlnput.transform(X_train)

X_test = scalerlnput.transform(X_test)

# Dados de saida
scalerOutput = StandardScaler()
scalerOutput.fit(y_train)

y_train = scalerOutput.transform(y_train)

y_test = scalerOutput.transform(y_test)

# Definindo o modelo
model = RandomForestRegressor(random_state=42)
# Definindo os parametros para busca
param_grid = {
'n_estimators": [20, 50, 100, 150, 200], # Numero de arvores
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'max_depth": [None, 5, 10, 20, 30], # Profundidade maxima da arvore

'min_samples_split": [2, 3, 4, 5, 6, 7, 10],  # Minimo de amostras para dividir um
né

'min_samples_leaf'" [1, 2, 3, 4], # Minimo de amostras em cada folha

'bootstrap’: [True, False] # Se deve usar amostragem com ou sem reposicao

# GridSearchCV para o modelo

best_model = GridSearchCV(model, param_grid, cv=5,
scoring="neg_mean_squared_error")

best_model.fit(X_train, y_train.ravel())

model_estimator = best_model.best_estimator_

# Make predictions on the train set

y_pred_train = model_estimator.predict(X_train)

# Make predictions on the test set

y _pred = model_estimator.predict(X_test)

# Time measure
fim = time.time()

duration = fim-inicio

# Calculate the mean square error and R?

# Test Data

MQE_test =root_mean_squared_error(y_pred, y_test)

r 2 test =r2_score(y_test,y pred)

# Train Data

MQE_train =root_mean_squared_error(y_train, y_pred_train)

r 2 train =r2_score(y_train, y_pred_train)

# Organization of data:
y test = pd.DataFrame(y_test)

y_train = pd.DataFrame(y_train)
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y test =y test.values

y_train =y _train.values

# ajuste das matrizes

y_test = y test.reshape(-1,1)
y_pred = y_pred.reshape(-1,1)
y train =y train.reshape(-1,1)

y_pred_train = y_pred_train.reshape(len(y_pred_train),1)

#mudanca para variaveis originais

y_test = scalerOutput.inverse_transform(y_test)
y_pred = scalerOutput.inverse_transform(y_pred)
y_train = scalerOutput.inverse_transform(y_train)
y_pred_train = scalerOutput.inverse_transform(y_pred_train)

#fim da mudanca

# Residual calculation:

residuos= y_pred.reshape(len(y_pred),1)-y_test

# Adicionando a linha y = x para referéncia
min_val = min(y_train) # Valor minimo para definir o inicio da linha

max_val = max(y_train) # Valor maximo para definir o fim da linha

# Report informations about all the regression process
report_text = (
"Relatério de Resultados de Regressao Random Forest\n\n"
"Parte especifica do modelo:\n"

f"Coeficientes: {best_model.best_params_}\n"

"Métricas de Avaliagdo:\n"

f'R2 - Treino: {r_2_train:.4f\n"

f'R2 - Teste: {r_2_test:.4f\n"
f'"RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f\n\n"
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f"Tempo de execucao: {duration:.4f} s\n\n"

"Dados do Conjunto de Treinamento:\n"
f'Y_train:\n{y_trainj\n\n"
f'Y_pred_train:\n{y_pred_trainj\n\n"

"Dados do Conjunto de Teste:\n"
f'Y_test\n{y_testh\n\n"
f'Y_pred_test:\n{y_ pred}\n"

)

path_rep.write_text(report_text)

# Print the report:

print("Métricas de Avaliacao:\n"
f'R2 - Treino: {r_2_train:.4fj\n"
f'R2 - Teste: {r_2_test:..4f\n"
f'RMSE - Treino: {MQE_train:.4f}\n"
f'"RMSE - Teste: {MQE_test:.4f}\n\n"

f"Tempo de execucao: {duration:.6f} s\n\n"

)

# Generate image of regression:

plt.scatter(y_test, y _pred, c='black’, label="TESTE)

plt.scatter(y_train, y_pred_train, marker ='+', c="blue’, label ="TREINO")
plt.plot([min_val, max_val],[min_val, max_val], color="red", linestyle="-")
#plt.title (f™)

plt.legend()

plt.xlabel('Experimental’)

plt.ylabel('Simulado’)

plt.savefig(path_reg, format="png")

plt.show()

# PrevisoOes e calculo dos residuos

# Gréfico de residuos



plt.scatter(y_pred, residuos, color="black")
plt.axhline(y=0, color="red", linestyle="-")
plt.xlabel("Valores previstos")
plt.ylabel("Residuos")

#plt.title("Gréafico de Residuos™)
plt.savefig(path_res, format="png’)

plt.show()
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