

UNIVERSIDADE FEDERAL DE ALAGOAS – UFAL REDE NORDESTE DE BIOTECNOLOGIA - RENORBIO

THÁSSIA CASADO LIMA FRANÇA

ANÁLISE ESPORTÔMICA NO METABOLISMO DE AMINOÁCIDOS E PRODUÇÃO DE AMÔNIA EM JOGADORES DE FUTEBOL

MACEIÓ- AL, 2023.

THÁSSIA CASADO LIMA FRANÇA

ANÁLISE ESPORTÔMICA NO METABOLISMO DE AMINOÁCIDOS E PRODUÇÃO DE AMÔNIA EM JOGADORES DE FUTEBOL

Trabalho apresentado ao Programa de Pósgraduação em Biotecnologia pela Rede Nordeste de Biotecnologia, ponto focal da Universidade Federal de Alagoas, como requisito parcial a obtenção do título de Doutor em Biotecnologia.

Orientador: Prof. Dr. Antonio Euzebio Goulart Santana

Coorientadores: Prof. Dr. Eduardo Seixas Prado

Prof. Dr. Henrique Fonseca Goulart

MACEIÓ- AL, 2023.

Catalogação na Fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 – 1767

F814a França, Thássia Casado Lima.

Análise esportômica no metabolismo de aminoácidos e produção de amônia em jogadores de futebol / Thássia Casado Lima França. – 2023.

55 f.: il.

Orientador: Antonio Euzebio Goulart Santana.

Co-orientador: Eduardo Seixas Prado. Co-orientador: Henrique Fonseca Goulart.

Tese (Doutorado na Rede Nordeste de Biotecnologia) — Universidade Federal de Alagoas. Instituto de Química e Biotecnologia. RENORBIO. Maceió, 2023.

Bibliografia: f. 46-55.

1. Neurometabolismo. 2. Metabolômica. 3. Hiperamonemia. 4. Metabolismo de aminoácidos. 5. Redes e vias metabólicas. 6. Ciências do esporte. I. Título.

CDU: 616.8

DEDICATÓRIA

A Deus, Senhor da minha vida. Aquele que torna o impossível possível. Aquele que dá sentido à minha existência. O teu cuidado e bondade me trouxe até aqui. Obrigada por tudo, Deus;

Aos meus pais, Marília e Clemicio, que ofertaram tudo o que tinham para que eu e meus irmãos tivéssemos educação/formação. Obrigada por todo apoio, amor e dedicação;

Aos meus irmãos, Thaise, Thales e Thiago, que é, antes de tudo, a certeza de que nunca estarei só nesse mundo;

Aos meus sobrinhos, Lavinya, Duda, Lucas, Lara e Chloe, por iluminarem a minha vida; As minhas grandes amigas, Ana Paula e Marianna, por não me deixar esquecer quem eu sou e pelo incentivo e todo o apoio;


Ao Prof. Dr. Luis Carlos, por toda paciência, incentivo, dedicação e leveza para me ensinar de forma brilhante sobre rotas metabólicas e todas as suas nuances. Todo o meu respeito e gratidão, Professor;

Ao meu amigo Renan Muniz-Santos, por todas as conversas, apoio, discussões, dedicação ao nosso manuscrito e risadas compartilhadas;

Ao Prof. L. C. Cameron por ter lançado a "sportomics" na comunidade científica. Por todas as discussões, ensinamentos e apoio ao longo desse processo;

Ao meu orientador Prof. Dr. Antonio Euzebio, pela oportunidade concedida e parceria durante esses quatro anos;

Ao meu co-orientador Prof. Dr. Eduardo Seixas Prado, por não medir esforços para que esse trabalho fosse realizado. Obrigada por tanta generosidade, confiança em meu trabalho. Já são dez anos de parceria, você tem a minha admiração e respeito pelo professor e ser humano que és.

AGRADECIMENTOS

A todos os colegas do laboratório **LAPEFIM** e **LPQRN**, por todos os aprendizados, conversas, risadas e amizade:

Aos membros da banca examinadora, por aceitarem o convite;

A todos meus colegas da turma RENORBIO (2018-2022), que compartilharam comigo um dos períodos mais desafiadores da minha vida , especialmente aos amigos Joice e Adso, que tornaram a caminhada mais leve;

A Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), pela concessão da bolsa de estudos;

A Rede Nordeste de Biotecnologia (RENORBIO), na pessoa da Profa. Dra. Marília Goulart, pela oportunidade concedida para realizar este Curso deDoutorado.

RESUMO

A esportômica é a aplicação da metabolômica no exercício e, tem sido utilizada para investigar as alterações metabólicas induzidas pelo exercício no esporte. Durante o exercício, a produção elevada de amônia pode causar fadiga central. Acredita-se que a hiperamonemia pode ter um impacto significativo durante o exercício por promover prejuízos no desempenho cognitivo. No entanto, há pouca informação disponível sobre o papel do metabolismo de aminoácidos na descoberta de biomarcadores que possam ajudar a elucidar alterações de desempenho durante o exercício. O objetivo da tese foi realizar uma análise esportômica no metabolismo de aminoácidos e produção de amônia em jogadores de futebol. Anteriormente, foi avaliado em corredores o efeito agudo do salbutamol inalado na amônia sanguínea, contagem de glóbulos brancos e desempenho cognitivo-motor após exercício prolongado sob condições de calor. Os resultados mostraram que a inalação aguda de salbutamol pode diminuir a síntese de ureia e subsequentemente aumentar as concentrações de amônia no sangue. Além disso, o salbutamol inalatório pode induzir uma redução na contagem de linfócitos, mas não afeta o desempenho cognitivo-motor durante exercícios prolongados no calor. Em seguida, um novo estudo foi realizado e baseado na esportômica para investigar mudanças no metabolismo durante uma partida de futebol em 30 jogadores de futebol profissionais juniores do sexo masculino. Amostras de urina foram coletadas antes e depois dos 25 minutos da partida e analisadas por cromatografia líquida e espectrometria de massa. Os resultados mostraram 26 alterações significativas no metabolismo da tirosina. O exercício causou uma regulação negativa dos metabólitos homogentisato 4-maleylacetoacetato e succinilacetona para (p = 4,69E-5) e 16% (p = 4,25E-14), respectivamente. Descobriu-se que o 4-hidroxifenilpiruvato, um precursor do homogentisato, está regulado positivamente em 29-26% (p = 7,20E-3). A concentração de hawkinsina e seu metabólito 4-hidroxiciclohexila acetato aumentou ~6 vezes (p = 1,49E-6 e p = 9,81E-6, respectivamente). Diferentes vias do metabolismo da DOPA também foram afetadas pelo exercício. DOPA e dopaquinona aumentaram de quatro a seis vezes (p = 32 5,62E-14 e p = 4,98E-13, respectivamente). 3-metoxitirosina, indol-5,6-quinona e melanina foram regulados negativamente de 1 a 25%, assim como a dopamina e a tiramina (diminuindo para até 5% ou 80%; p = 34 5,62E-14 e p = 2,47E -2, respectivamente). O TCO2 sanguíneo diminuiu, bem como a glutationa urinária e o glutamato (40% e 10% respectivamente) associados a um aumento de duas vezes no piroglutamato. Além disso, observou-se alterações no metabolismo da arginina e compostos guanidínicos em resposta a uma partida de futebol. Os metabólitos Nalfa-acetil-L-arginina, D-arginina, gama glutamil ornitina, agmatina, ácido arginínico e espermina, aumentaram após a partida de futebol. Entre as análises do metabolismo de aminoácidos e produção de amônia, não foram encontradas vias para a produção de amônia através da abordagem esportômica. No entanto, foi identificado a produção de hawkinsina e ácido arginínico, sugerindo a descoberta de novos marcadores com potencial de promover danos ao desempenho.

Palavras-chave: Neurometabolismo. Metabolômica. Hiperamonemia. Metabolismo de aminoácidos. Vias metabólicas. Ciência do esporte.

ABSTRACT

Sportomics is application of exercise metabolomics in sports science to investigate the metabolic changes induced by exercise in sport. During exercise, increased ammonia production can cause central fatigue. It is postulated that hyperammonemia leads a significant impact during exercise by promoting impairments in cognitive performance. However, studies in sports remains limited on the role of amino acid metabolism in discovering biomarkers that can help elucidate performance changes during exercise. The present study is to investigate, through a sportomics analysis, the metabolism of amino acids and ammonia production in football players. Previously, the acute effect of inhaled salbutamol on blood ammonia, white blood cell count and cognitive-motor performance after prolonged exercise under hot conditions was evaluated in runners. The results showed that acute inhalation of salbutamol can decrease urea synthesis and subsequently increase blood ammonia concentrations. Furthermore, inhaled salbutamol may induce a reduction in lymphocyte counts, but does not affect cognitive-motor performance during prolonged exercise in the heat. Then, a new study based on sportomics aimed to investigate changes in metabolism during a soccer match in 30 male junior professional football players. Urine samples were collected before and after 25 minutes of the match and analyzed by liquid chromatography and mass spectrometry. The results showed 26 significant changes in tyrosine metabolismo. Exercise caused a downregulation of the homogentisate metabolites 4-maleylacetoacetate and succinylacetone to (p = 4.69E-5) and 16% (p = 4.25E-14), respectively. 4-Hydroxyphenylpyruvate, a homogentisate precursor, was found to be upregulated by 26% (p = 7.20E-3). The concentration of hawkinsin and its metabolite 4-hydroxycyclohexyl acetate increased ~6-fold (p = 1.49E-6 and p = 9.81E-6, respectively). Different DOPA metabolism pathways were also affected by exercise. DOPA and dopaquinone increased four- to six-fold (p = 5.62E-14 and p = 4.98E-13, respectively). 3-Methoxytyrosine, indole-5,6-quinone, and melanin were downregulated from 1 to 25%, as were dopamine and tyramine (decreasing to up to 5% or 80%; p = 5.62E-14 and p = 5.62E-14= 2.47E-2, respectively). Blood TCO2 decreased as well as urinary glutathione and glutamate (40% and 10% respectively) associated with a two-fold increase in pyroglutamate. Furthermore, changes in the metabolism of arginine and guanidine compounds were observed in response to a soccer match. N-alpha-acetyl-L-arginine, D-arginine, gamma glutamyl ornithine, agmatine, argininic acid and spermine increased after the football match. Among the analyzes of amino acid metabolism and ammonia production, no pathways for ammonia production were found through the sportomic approach. However, the production of hawkinsine and argininic acid was identified, suggesting the discovery of new markers with the potential to promote damage to performance.

Keywords: Neurometabolism. Metabolomics. Hyperammonemia. Amino acids metabolism. Metabolic pathways. Sports science.

SUMÁRIO

	10
CAPÍTULO 1 - A SPORTOMICS SOCCER INVESTIGATION UN EXERCISE-INDUCED SHIFT IN TYROSINE METABOLISM LE HAWKINSINURIA	ADING TO
CAPÍTULO 2 – CAN ARGININIC ACID IMPAIR PERFORMANCE? (ACONSTRUÇÃO)	
Subjects	23
Experimental design, sample collection, and preparation	23
UPLC–MS ^E method	
UPLC-MSE data processing with progenesis QI	
Blood sampling and total carbon dioxide (TCO2) measurement	
Data analysis	25
References	
RESULTS	20
PROLONGED EXERCISE UNDER HEAT STRESS CONDITIONS	IISING A
SPORTOMICS APPROACH	27
Abstract	30
Abstract Introduction	30 31
Abstract Introduction Methods	30 31 33
Abstract	
Abstract. Introduction Methods Study design and protocols Statistical analysis Results Discussion Study limitations Conclusions Acknowledgments Declaration of interest statement Funding statement Authors' contributions References	
Abstract	
Abstract. Introduction Methods Study design and protocols Statistical analysis Results Discussion Study limitations Conclusions Acknowledgments Declaration of interest statement Funding statement Authors' contributions References	

1. INTRODUÇÃO GERAL

O termo -ômica refere-se ao campo das ciências biológicas que caracterizam grandes conjuntos de moléculas, incluindo DNA, RNA, proteínas e metabólitos (YAN etal., 2015). Na década de 1990, essa nova tecnologia denominada "Ciências Ômicas" surgiu através do Projeto Genoma Humano, criado com o objetivo de sequenciar os pares de bases do DNA humano. Além disso, projetos de sequenciamento de outros seres vivos também estavam em andamento, como *Drosophila melanogaster, Escherichia coli, Arabdopiss thaliana* e *Mus musculus*, modelos comumente utilizados em pesquisas científicas (COLLINS et al., 1998; CRAIG VENTER et al., 2001; MORAES; GÓES, 2016).

Um ponto de virada significativo na história da pesquisa genética, foi o lançamento em 2003 da sequência completa do genoma humano pelo Consórcio Internacional de Sequenciamento do Genoma Humano. Essa publicação abriu o caminho para a pesquisa "genoma" e "genômica" e iniciou a chamada era pós-genômica na pesquisa biomédica (YAN et al., 2015).

Com os avanços tecnológicos a partir do projeto Genoma Humano, tecnologias ômicas adicionais foram criadas, referindo-se ao estudo completo das funções e interações de vários tipos de moléculas nas células de um organismo (OLIVIER et al., 2019). Isso inclui ciências como a própria Genômica, Proteômica, Transcriptômica e Metabolômica.

A Gênomica examina o código genético de um determinado organismo para entender a sua biologia (WARD; FRASER, 2005). A Transcriptômica é o estudo de todos os transcritos de RNA produzidos por um determinado tecido ou célula (MOORE;SEIBOLD, 2022). Essa tecnologia possibilita a comparação de tecidos ou células sob determinadas condições biológicas ou estados de doença para determinar mudanças na expressão gênica (CHAMBERS et al., 2019; VON REUMONT, 2018).

Já a Proteômica, corresponde a identificação e quantificação de proteínas em uma amostra biológica. Adicionalmente, possibilita a análise das modificações e interações de proteínas em um determinado evento celular (ASLAM et al., 2017; CIFANI; KENTSIS, 2017).

Comparada com as outras "ômicas", a metabolômica foi reconhecida recentemente como um tópico científico separado (os primeiros estudos publicados na literatura são do final dos anos 1990 e início dos anos 2000). No entanto, a metabolômica se desenvolveu e alcançou relevância científica, como evidenciado pelo aumento exponencial do número de publicações e pelo fato de estar sendo empregada em uma ampla variedade de aplicações em todo o mundo

(MONTEIRO et al., 2013).

A Metabolômica é o estudo quantitativo e qualitativo de todos os metabólitos (moléculas de baixo peso molecular < 1500 Da) presentes em uma amostra biológica. Nadécada de 1990, essa ciência foi definida para complementar todas as tecnologias "- ômicas" para mensurar e identificar o metaboloma presente em tecidos, células e fluidos, como sangue, urina, suor e saliva.

Ressonância magnética nuclear e espectrometria de massas são as técnicas comumente utilizadas na metabolômica (BEGER et al., 2016; MONTEIRO et al., 2013;NICHOLSON; LINDON; HOLMES, 2008).

A ressonância magnética nuclear (RMN) é um método não invasivo que detecta compostos orgânicos em amostras biológicas (ETTL et al., 1994; MUNZ; JAKOB; BORISJUK, 2016). A técnica de RMN consiste em um método espectroscópio utilizadopara informar em uma molécula o número de átomos magneticamente distintos do isótopoestudado. Vários núcleos podem ser estudados pela técnica, entre eles estão ¹H, ¹³C, ¹⁵N, ¹⁹F e ³¹P.

O fundamento do RMN é baseado no fato de que um próton possui dois estados de spin de mesma energia com números quânticos +1/2 e -1/2, quando aplicado um campomagnético esses spins passam a ter energias diferentes podendo absorver radiaçãoeletromagnética. Sendo assim, o espectro de RMN depende da absorção de energia quando o núcleo de um átomo é excitado de seu estado de spin de energia mais baixa aopróximo de energia mais alta (PAVIA et al., 2010; SILVERSTEIN et al., 2007).

Por outro lado, a espectrometria de massas (do inglês, mass spectrometry - MS) éuma técnica analítica que identifica e quantifica compostos químicos a partir do seu pesomolecular em uma diversidade de amostras (BUCHBERGER et al., 2018a; UNSIHUAY; MESA SANCHEZ; LASKIN, 2021). A MS, é uma ferramenta poderosa que tem sido utilizada em diversas áreas das ciências "ômicas", como proteômica e metabolômica (TAKÁTS; WISEMAN; COOKS, 2005).

Desde as primeiras pesquisas de Joseph John Thomson, a MS vem acompanhandoa evolução tecnológica e tem sido aperfeiçoada para facilitar a análise de analitos em níveis de traços e de misturas complexas (HOFFMANN; STROOBANT, 2007).

O espectrofotômetro de massas compreende a "fonte de íons", em que a amostra previamente preparada é ionizada e separada com base nas diferentes razões massa/carga(m / z) e, o "detector de íons" no qual os íons são detectados e identificados com base deum banco de dados, o qual resulta no espectro de massas correspondente (BUCHBERGER et al., 2018;

SAUER; KLIEM, 2010).

A amostra pode ser analisada após ser inserida diretamente no espectrômetro de massas, ou acoplando o aparelho a um sistema de separação, como o sistema de cromatografia líquida de alta eficiência acoplado à espectrometria de massas (do inglês, ultra-high-performance liquid chromatography mass spectrometry – UPLC-MS) (CHIARADIA; COLLINS; JARDIM, 2008; ZHANG et al., 2012).

A metabolômica pode usar estratégias direcionadas e não direcionadas, assim como as outras abordagens "ômicas". As análises direcionadas se aplicam na identificação e quantificação de metabólitos associados a processos biológicos pré- conhecidos e esperados. Essa abordagem, dimui a possibilidade de erros falsos positivos, que podem levar a uma interpretação errada da via metabólica de interesse. Em contraste,a análise não direcionada não se limita, pois essa técnica, identifica todos os metabólitospresentes na amostra biológica, possibilitando a descoberta de novos biomarcadores (GRIFFITHS et al., 2010; HEANEY; DEIGHTON; SUZUKI, 2019; RIBBENSTEDT; ZIARRUSTA; BENSKIN, 2018).

O uso da análise por espectrometria de massa não direcionada (EMND) é considerada uma abordagem campeã para compreender, holisticamente, uma avaliação in vivo das alterações proteômicas e metabolômicas induzidas pelo exercício. A EMND possibilita uma nova era de pesquisa metabólica induzida por exercício de alto rendimento, proporcionando uma melhor compreensão da integração de processos biológicos e estendendo o conhecimento do exercício e os sistemas biológicos (ATHERTON; PHILLIPS; WILKINSON, 2015; FENG et al., 2008; RA et al., 2014).

A abordagem esportômica, que é a aplicação da metabolômica no esporte, tem sido utilizada para investigar os efeitos da amônia. A amônia é um metabólito tóxico, e em altas concentrações sanguíneas pode levar a danos na função cerebral, por alterar a neurotransmissão glutamatérgica (HERMENEGILDO et al., 1998; MONFORT et al., 2002; FELIPO et al., 2012a; FELIPO et al., 2012b). Pacientes com encefalopatia hepática (EH) apresentam vários sintomas neuropsiquiátricos, incluindo comprometimento do ciclo sono-vigília, função cognitiva e atividade de coordenação motora, bem como alterações na personalidade e na consciência que podem piorar progressivamente (FELIPO 2013). O desenvolvimento de EH grave está associado a um maior grau de mortalidade (GARCIA-MARTINEZ 2011).

Por outro lado, sabe-se também que o exercício promove um conjunto de ajustes metabólicos para permitir que o músculo esquelético ativo atenda as suas necessidades energéticas (GIMENEZ et al., 2013). Entre as alterações impostas sobre o metabolismo pelo exercício, destaca-se a hiperamonemia e o aumento sanguíneo de metabólitos relacionados

(uréia e urato, entre outros), especialmente, quando associada à dietareduzida de carboidratos (CARVALHO-PEIXOTO; ALVES; CAMERON, 2007). Postula-se que a hiperamonemia induzida pelo exercício também pode afetar funções intelectuais, de personalidade e coordenação neuromuscular em vários graus, tal como naEH (FELIPO et al., 2012a; FELIPO et al., 2012b; STEWART; CERHAN, 2005; MONFORT et al., 2009).

Durante o exercício, a produção elevada da amonemia ocorre pelo catabolismo de aminoácidos e desaminação do monofosfato de adenosina (AMP), sendo ativadas de modo dependente da sua intensidade e duração (WILKINSON; SMEETON; WATT, 2010). Sugerese que um aumento exacerbado da amonemia durante o exercício pode causar fadiga central por promover alterações das funções cerebrais (ataxia, letargia e estupor), similares aos sintomas da EH (BANISTER; CAMERON, 1990). Acredita-se que a hiperamonemia pode ter um impacto significativo durante o exercício por promoverprejuízos no desempenho cognitivo (aqui denominado de desempenho cognitivo-motor)(OTT; VILSTRUP, 2014; FELIPO, 2013).

Baseado na abordagem esportômica, esse trabalho apresenta dois artigos derivados da tese. O primeiro focado no metabolismo da tirosina e o segundo (em construção) focado no metabolismo da arginina. Além disso, como trabalho preparatório, foi realizado uma análise com corredores usando a abordagem esportômica com utilização de um β2 agonista. Portanto, o objetivo da presente tese é realizar uma análise esportômica no metabolismo de aminoácidos e produção de amônia em jogadores de futebol.

CAPÍTULO 1 - A SPORTOMICS SOCCER INVESTIGATION UNVEILS AN EXERCISE-INDUCED SHIFT IN TYROSINE METABOLISM LEADING TO HAWKINSINURIA.

59

60

61 62

63 Q1

64

65

66

67

68

69

72

73

74

78

79

81

82

83

84

87

88

89

91

92

93

94

97

98

99

101

102

103

104

105

106

107

108

TYPE Brief Research Report HED XX XX 2023 DOI 10.3389/fnut.2023.1169188

Check for updates

OPEN ACCESS

Marija Takic University of Belgrade, Serbia

Roberto Cannataro University of Calabria, Italy

Kayvan Khoramipour Kerman University of Medical Sciences, Iran

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

32

33

34

35

37

38

39

40

42

43 44

45

47

48

49

50

52

53

54

Q5 Eduardo Seixas Prado ⊠ esprado@iefe.ufal.br I C Cameron ⊠ cameron@unirio.br

[†]These authors have contributed equally to this work and share first authorship

*These authors have contributed equally to this work and share last authorship

RECEIVED 19 February 2023 ACCEPTED 25 May 2023

França TCL, Muniz-Santos R, Caetano LC, Souza GHMF, Goulart HF, Assis M, Bottino A, Bassini A, Santana AEG, Prado ES and Cameron LC (2023) A sportomics soccer investigation unveils an exercise-induced shift in tyrosine metabolism leading to hawkinsinuria. Front. Nutr. 10:1169188. doi: 10.3389/fnut.2023.1169188

© 2023 França, Muniz-Santos, Caetano, Souza Goulart, Assis, Bottino, Bassini, Santana, Prado and Cameron. This is an open-access article distributed under the terms of the Ci use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

A sportomics soccer investigation unveils an exercise-induced shift in tyrosine metabolism leading to hawkinsinuria

Thássia Casado Lima França^{1†}, Renan Muniz-Santos^{2†}, Luiz Carlos Caetano³, Gustavo H. M. F. Souza⁴, Henrique Fonseca Goulart⁵, Marcio Assis⁶, Altamiro Bottino⁷, Adriana Bassini², Antonio Euzébio Goulart Santana⁵, Eduardo Seixas Prado^{1,2*‡} and L. C. Cameron^{2*‡}

Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió Alagoas, Brazil, *Institute of Chemistry and Biotechnology, Federal University of State of Rio de Janeiro, Rio de Q4 Janeiro, Brazil, *Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil, *Former Waters Corporation, Currently at SpectraMass, São Paulo, Brazil, *Research Laboratory on Natural Resources, Federal University of Alagoas, Maceió, Alagoas, Brazil, ⁶Past at laneiro, Brazil, ⁷Past at Sociedade Esportiva Palmeiras, Currently at Cuiabá Esporte Clube, Cuiabá, Mato

Tyrosine metabolism has an intense role in the synthesis of neurotransmitters. Our study used an untargeted, sportomics-based analysis of urine samples to investigate changes in metabolism during a soccer match in 30 male junior professional soccer players. Samples were collected before and after the match and analyzed using liquid chromatography and mass spectrometry. Results showed significant changes in tyrosine metabolism. Exercise caused a downregulation of the homogentisate metabolites 4-maleylacetoacetate and succinylacetone to (p=4.69E-5) and 16% (p=4.25E-14), respectively. 4-Hydroxyphenylpyruvate, a homogentisate precursor, was found to be upregulated by 26% (p=7.20E-3). The concentration of hawkinsin and its metabolite 4-hydroxycyclohexyl acetate increased ~six-fold (p=1.49E-6 and p=9.81E-6, respectively). Different DOPA metabolism pathways were also affected by exercise. DOPA and dopaquinone increased four-to six-fold (p=5.62E-14 and p=4.98E-13, respectively). 3-Methoxytyrosine, indole-5,6-quinone, and melanin were downregulated from 1 to 25%, as were dopamine and tyramine (decreasing to up to 5% or 80%; p=5.62E-14 and p=2.47E-2, respectively). Blood TCO₂ decreased as well as urinary glutathione and glutamate (40% and 10% respectively) associated with a two-fold increase in pyroglutamate. Our study found unexpected similarities between exercise-induced changes in metabolism and the inherited disorder hawkinsinuria, suggesting a possible transient condition called exercise-induced hawkinsinuria (EIh). Additionally, our research suggests changes in DOPA pathways may be involved. Our findings suggest that soccer exercise could be used as a model to search for potential countermeasures in hawkinsinuria and other tyrosine metabolism disorders.

neurometabolism, amino acids metabolism, exercise metabolome, metabolomics, biochemistry of exercise, metabolic pathways, sports science

França et al. 10.3389/fnut.2023.1169188

27 1. Introduction

Exercise can potentially impact the human metabolome (1, 2). The application of "-Omics" sciences in the field of play of various sports was conceived as sportomics, aiming to investigate the real challenges athletes face, using sports as a model of metabolic stress (3). Sportomics, like all "-Omics" sciences, depends on analytical methods with high processing power to analyze massive volumes of data and is a promising field of investigation (4). Although the number of metabolomic studies in sports remains limited, it continues to grow, supporting investigations in translational sports medicine (3, 5).

We have used sportomics to understand exercise-induced metabolic alterations in sports, including soccer (6). Several recent investigations of amino acid metabolism have focused on the production of ammonia, a toxic metabolite (7,8). And, we have been studying metabolic changes in response to exercise, especially related to peripheral and central fatigue, such as exercise-induced hyperammonemia (1). There needs to be more information available about the role of amino acid metabolism in biomarker discovery that may help elucidate performance changes during exercise and physiological and physiopathological conditions.

Analysis through a noninvasive sample, such as urine, supports the understanding of the metabolic responses induced by exercise and can lead us to investigate future practical interventions. Under these conditions, we hypothesized that a Sportomics approach might reveal new markers that influence performance during exercise. We previously performed a sportomics investigation of semiprofessional soccer players during a match by mass spectrometry nontargeted analysis (NTA). We were able to identify 3,500+ metabolites in urine. We previously focused on purine metabolism Prado et al. (6). In this study, other data and metabolic pathways were reanalyzed. Through our data, we have identified an exercise-induced metabolic deviation in tyrosine metabolism, resulting in various changes. In this sense, we evaluate these metabolic alterations, pinpointing potential key analytes that warrant further investigation to enhance our understanding of tyrosine metabolism during metabolic challenges.

2. Materials and methods

2.1. Participants

Thirty male soccer players (19.2 ± 0.2 years old; 71.5 ± 2.2 kg; 1.78 ± 0.01 m) from a junior professional team, playing in the main soccer national league and affiliated with the Confederação Brasileira de Futebol (CBF, Brazilian Soccer Confederation), participated in this study as volunteers. The players were healthy and did not have detectable diseases. The athletes underwent routine medical evaluations, including bimonthly clinical exams and regular assessments of general physiological parameters twice a week. Pre-participation exams were also conducted regularly by the medical department of the soccer club. Participants were instructed not to ingest any supplement or medication in the $10\,\mathrm{days}$ prior to the experiment. The athletes were in the training ground canteen, during which their dietary habits were carefully monitored and controlled. Overall, the athletes were following a similar diet, although there may

have been some individual variations in taste preferences. The participants were informed previously about the study, and written informed consent was obtained from each subject. All procedures were performed according to the ethical standards of the Ethics Committee for Human Research at the Federal University of the State of Rio de Janeiro (117/2007, renewed in 2011) and met the requirements for regulating research on human participants (Health National Council, Brazil, 1996). The participants were tested during the same match (n=30).

2.2. Experimental design, sample collection, and preparation

Two different urinary samples were collected, one immediately prior to and another one immediately after a soccer match (PRE vs. POST)

Urine samples were immediately transferred to a dry ice cooler and transported to the laboratory. Later, the samples were stored in an ultralow temperature freezer (-80°C) until they were prepared for liquid chromatography, followed by alternating low-and high-energy multiplexed MS/MS (UPLC-MSE) injections. Mass spectrometry analyses were further performed at a starting volume of 700 µL. Raw urine samples were then centrifuged at $10,000 \times g$ for $30 \, \text{min}$ at 4°C , and the supernatants were perfused through a dialysis membrane with a 3,000 Da molecular weight cutoff (MWCO) (Amicon, Merck Millipore, Germany). The filtrate was desalted using a solid phase hydrophilic-lipophilic-balanced extraction cartridge (Oasis® HLB, Waters Corporation, United States). The samples were concentrated using a SpeedVac Plus (Model: SC110A, ThermoSavant, United States) and reconstituted in solvent solution containing 3% acetonitrile and 0.1% formic acid in Milli-Q pure water. Finally, the samples were transferred to a UPLC autosampler vial (Waters Corporation, United States).

2.2.1. UPLC-MSE method

UPLC–MSE data were acquired in an ultrahigh-performance liquid chromatography system (Acquity UPLC I-Class, Waters, United States) coupled to an ESI (+) Qq-oaTOF mass spectrometer (Xevo G2-S Q-Tof, Waters, United Kingdom). A total of $10\,\mu L$ of each sample was injected, and the separation was performed on an ACQUITY UPLC CSH C18 column, $130\,\mathring{A},\,1.7\,\mu m,\,2.1\,mm\times50\,mm$ conditioned at $40^{\circ}C$. The mobile phases were 0.1% formic acid (pump A) and 0.1% formic acid in acetonitrile (pump B), and the flow rate was $900\,u L\,min^{-1}$.

The gradient method was programmed to achieve maximum separation performance as follows: initial condition 3% B (pump B), 2.37 min 35% B, 4.37 min 85% B, 5.37 min 85% B, and 6.37 min 3% B with a total run time of 8.37 min and a calculated percent B/column volume (Cv) factor of 2.6%B/Cv. The sample tray temperature was defined at 8°C. The mass spectrometry method and conditions were adjusted, including alternating the continuous ion current with low-and high-energy multiplexed MS/MS mode (MSE) that could achieve a collision energy ramp set to 10^{-30} Ev.

MS was controlled by the MassLynx V4.1 software package (Waters Corporation, United Kingdom). The scanning mass range, quadrupole profile, and instrument calibration were set to transmit the ion current from m/z 50 to 1,000. The source conditions were

Franca et al. 10.3389/fnut.2023.1169188

tuned as follows: capillary at 3 kV, sampling cone (skimmer) set to 15 V, step wave source offset of 30 V, cone gas flow (curtain gas) set to 50 Lh-1, and desolvation temperature set to 550°C. All runs were acquired with a detector voltage of 2,450 V with the following hybrid analog-to-digital converter (ADC) parameters: an amplitude threshold of 2 V, an ion area threshold of 3 V, and an ion area offset of 15 V. Instrument calibration was achieved with an automatic Intellistart application included in the MassLynx software package (Waters, United Kingdom), and the acquisition was conducted with a solution of 0.1% formic acid:0.1 M NaOH:acetonitrile at a ratio of 1:1:8 to achieve less than 1 ppm across 14 monoisotopic masses, such as [M+H]+. The LockSpray setup was also performed prior to acquisition with leucine enkephalin (leu-enk) [M+H]+= 556.2771. and DRE lenses were automatically adjusted to allow for maximum transmission with a solution at 1 ng uL-1 and an infusion rate of 5 $\mu L min^{-1}.$ An average ion area of 32 was also obtained from the detector setup with leu-enk.

2.2.2. UPLC-MSE data processing with progenesis QI

Raw UPLC–MSE data files were processed and grouped by conditions as described previously (9). The identification and relative quantification based on ion accounting of putative metabolites were performed (default parameters) via Progenesis QI v.2.0 (Nonlinear Dynamics, Waters, United Kingdom). The metabolites were identified "on the fly" with the use of precursor ion exact mass, isotopologue distribution match, and fragment mass ion matching with the Human Metabolome Database (HMDB) and filtered with the urine metabolites database.

2.2.3. Blood sampling and total carbon dioxide (TCO_2) measurement

Accredited phlebotomists performed venipuncture, and samples of venous blood were taken from players (n=27) at PRE and POST. Drops of blood were inserted into MetLyte 8 to measure TCO₂ using a Piccolo Xpress (Abaxis, CA, United States).

2.3. Data analysis

Raw data are available in a previous report Prado et al. (6). Urine samples were normalized by specific gravity to ensure comparisons. Tyrosine metabolic pathways were investigated using the KEGG database. Data were filtered based on metabolite replication over individual analytical data acquisition, and data are presented as either up-, unchanged or down-regulated. After testing for normality (Shapiro-Wilk), the changes (PRE and POST) were analyzed using a paired Student's t-test. Significance was set as p < 0.05.

3. Results

3.1. Soccer-induced hawkinsinuria

The homogentisate metabolites 4-maleylacetoacetate and succinylacetone were downregulated to 20 or 16% (i.e., 80 or 84% from the prematch), respectively, in response to the exercise protocol. 1,4-Benzoquinone acetate, a postulated homogentisate metabolite, also

decreased to 10% of this original concentration. 4-Hydroxyphenylpyruvate, a precursor of homogentisate, was found to be upregulated by 26%. The concentration of hawkinsin and its metabolite 4-hydroxycyclohexyl acetate (4-HCCA) increased ~six-fold (Table 1). The 3-(4-hydroxyphenyl) lactate and 4-hydroxyphenylacetate metabolites of 4-hydroxyphenylpyruvate decreased to ~30 and ~60%, respectively (Table 1).

3.2. Tyrosine neurotransmitters changed pathways

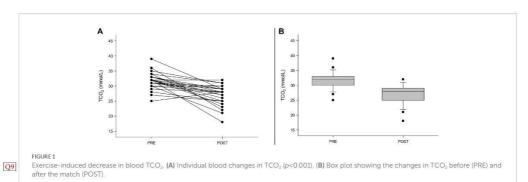
The DOPA urinary concentration after the match increased four-fold from the pre-match, while dopaquinone increased by ~500% and 3-methoxytyramine increased ~30%. The sulfated forms of dopamine and tyramine, the predominant form of the compounds in blood, decreased to up to 5% or 80% compared to the pre-match concentrations. Other metabolites of DOPA significantly decreased in response to exercise. 3-methoxytyrosine, indole-5,6-quinone, and melanin were downregulated from 1% to 25% of PRE. Otherwise, homovanillin increased by 26% (Table 1).

3.3. Exercise changes In pH and REDOX

Exercise is well known for decreasing pH and the buffering reserve inside muscle cells and blood. We measured a decrease in TCO_2 as well as glutathione and glutamate (reaching 40% and 10% compared to pre-match) associated with a twofold increase in pyroglutamate in urine. Carnosine, a dipeptide with an essential role in pH maintenance, was downregulated to less than 2% compared to pre-exercise (Table 1 and Figure 1).

4. Discussion

We previously performed a sportomics investigation of soccer players during a match focused on purine metabolism Prado et al. (6). Here, some results were reexamined and reanalyzed on amino acid metabolism, leading us to tyrosine metabolism.

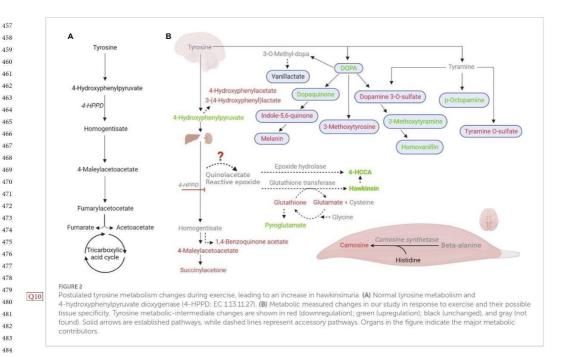

Mass spectrometry NTA can analyze a large number of metabolites present in human matrices (e.g., blood, urine, and saliva) and has potential applications in sports and exercise science (10). Urine is a convenient matrix due to its easy accessibility. Due to the systemic character of the urine, our data need to be interpreted as reflecting the sum of filtered blood metabolites.

Here, we show for the first time the upregulation of 4-hydroxyphenylpyruvate, hawkinsin, and 4-HCCA urinary excretion after exercise. We demonstrated an exercise-induced increase in hawkinsin in urine (which we propose to call exercise-induced hawkinsinuria; EIh). These unexpected findings are similar to those found in the inherited disorder hawkinsinuria (ORPHA:2118) (11, 12). The physiopathology of hawkinsinuria is not entirely understood, and the current knowledge regarding the role of hawkinsin in metabolism is limited to investigations of Hawkinsinuria. Patients with hawkinsinuria can develop cognitive impairments, ataxia, and degradation in visual sensation, manifestations widely recognized as impairing sports performance (13).

França et al. 10.3389/fnut.2023.1169188

TABLE 1 Changes in metabolites related to tyrosine metabolism in the urine of athletes in response to a soccer match.

Compound	Relative concentration	Log (POST/PRE)	t-test (p)	HMDB ID
1,4-Benzoquinone acetate	DOWN	-1.0	3.00E-4	HMDB0002334
Carnosine	DOWN	-1.9	6.33E-13	HMDB0000033
DOPA	UP	0.6	5.62E-14	HMDB0000181
Dopamine 3-O-sulfate	DOWN	-1.2	2.21E-6	HMDB0006275
Dopaquinone	UP	0.8	4.98E-13	HMDB0001229
Glutamate	DOWN	-1.0	-1.0 6.09E-9	
Glutathione	DOWN	-0.4	2.17E-2	HMDB0000125
Hawkinsin	UP	0.8	1.49E-6	HMDB0002354
Homovanillin	UP	0.1	3.58E-2	HMDB0005175
4-Hydroxycyclohexyl acetate	UP	0.8	9.81E-6	HMDB0000451
4-Hydroxyphenylacetate	DOWN	-0.2	9.00E-4	HMDB0000020
3-(4-Hydroxyphenyl)lactate	DOWN	-0.5	4.55E-6	HMDB0000755
4-Hydroxyphenylpyruvate	UP	0.1	7.20E-3	HMDB0000707
Indole-5,6-quinone	DOWN	-1.0	9.66E-11	HMDB0006779
4-Maleylacetoacetate	DOWN	-0.7	4.69E-5	HMDB0002052
Melanin	DOWN	-2.1	4.81E-12	HMDB0004068
3-Methoxytyramine	UP	0.1	6.30E-3	HMDB0000022
3-Methoxytyrosine	DOWN	-0.6	1.75E-5	HMDB0001434
p-Octopamine	UP	0.1	5.24E-3	HMDB0004825
Pyroglutamate	UP	0.3	4.31E-2	HMDB0000267
Succinylacetone	DOWN	-0.8	4.25E-14	HMDB0000635
Tyramine O-sulfate	DOWN	-0.1	2.47E-2	HMDB0006409
Vanillactate	UNCHANGED	-0.1	6.12E-1	HMDB0000913


Hawkinsinuria is caused by a mutation of the 4-hydroxyphenylpyruvate dioxygenase (4-HPPD, EC 1.13.11.27) gene, located in the chromosomal locus 12q24-qter, and is an autosomal dominant rare inborn error of metabolism characterized by acidosis and

underdevelopment (14). It was previously described that the impairment of 4-HPPD leads to an increase in urinary hawkinsin in hawkinsinuria (15). Our data revealed a significant increase in both hawkinsin and 4-HCCA in urine. The metabolism of 4-hydroxyphenylpyruvate remains to be elucidated and seems to be related to exercise (16). Under normal conditions, 4-HPPD catalyzes 4-hydroxyphenylpyruvate oxidation,

decarboxylation, and final rearrangement to homogentisate. We measured a decrease in 3-(4-hydroxyphenyl)lactate and 4-hydroxyphenylacetate, together with a 10–20% urinary decrease in the metabolites succinylacetone, 4-maleylacetoacetate and 1,4-benzoquinone acetate as well as an increase in 4-hydroxyphenylpyruvate (~25%). These data may suggest an impairment of 4-HPPD activity in EIh. The decrease in 4-hydroxyphenylacetate was recently described in another soccer study (17).

In hawkinsinuria, the 4-HPPD activity is impaired, hindering its rearrangement of an intermediate compound, generating a reactive

França et al. 10.3389/fnut.2023.1169188

epoxide. The epoxide can dissociate from 4-HPPD, ultimately producing quinoloacetate (18). Quinoloacetate can be drained to produce 4-HCCA or hawkinsin (19). In our study, we observed that a decrease in glutamate and glutathione is accompanied by an increase in pyroglutamate. Hawkinsinuria-related acidosis is not clearly understood, but it is believed to occur by pyroglutamate accumulation secondary to glutathione depletion (13). Children presenting hawkinsinuria showed an increased urinary excretion of pyroglutamate during acidotic phases (19). Decreased glutathione levels can modify the y-glutamyl cycle, increasing the formation of pyroglutamate and saturating 5-oxoprolinase (EC 3.5.2.9)

The genesis of muscle H+ and subsequent blood acidosis seems to be related to massive ATP hydrolysis during muscle exercise (20). We measured different biomarkers, such as TCO2, glutathione, and carnosine, that are affected by a decrease in pH buffering reserve. Carnosine buffering may be used sooner in exercise to counteract acid production, being estimated to be approximately 7% of total muscle buffering (21-23). It is challenging to express causality during an intense exercise, such as a soccer match. In addition, carnosine deficiency may impair skeletal muscle metabolism (24).

In our study, the soccer match produced an upregulation of DOPA and dopaguinone concentrations in urine. The impact of exercise on tyrosine metabolism was briefly postulated (17). Both DOPA and tyramine metabolism seemed to be altered in our protocol. Tyrosinase is a busy enzyme in DOPA metabolism. The synthesis of indole-5,6-quinone and melanin seems to be impaired in our protocol, while DOPA and dopaquinone were up-regulated. Oxidation of DOPA and dopamine generates dopaquinone and dopaminoquinone, which are both neuron-cytotoxic molecules. Tyrosinase may rapidly oxidize excess amounts of cytosolic dopamine and DOPA in the brain, maintaining DOPA levels (25). The enzyme is present in a wide range of normal human organs, and some of its catalytic reactions seemed to be affected in our study (26). Additionally, in our study, the presence of tyramine metabolites was affected by the soccer match, suggesting possible changed routes for DOPA pathways in the central nervous system.

A 4-HPPD transient defect in newborns was already published (27). The transient defect in the newborn is probably caused by retarded maturation of 4-HPPD, together with impaired ascorbate ingestion associated with the high ingestion of protein, leading to an increase in hawkinsin formation (28). However, the impact of these findings on athletic performance must be further investigated to exploit the magnitude and reproducibility of these findings across sex, age, ethnic groups, and other important potentially modifying factors. We believe that EIh (which data we summarized in Figure 2) can be a transient condition of exercise metabolism, such as exercise-induced hyperammonemia (9), and exercise can be used as a model for the understanding of hawkinsinuria and perhaps other tyrosine metabolism disorders.

5. Conclusion

The results suggest that under these conditions, exercise induces changes on amino acids metabolism, such as tyrosine metabolism. Combined, our results show that physical exercise can impair 4-HPPD activity, damaging the proper conversion of Franca et al. 10.3389/fnut.2023.1169188

4-hydroxyphenylpyruvate to homogentisate in normal tyrosine metabolism, which leads to hawkinsin urinary excretion. Therefore, the sportomics approach may be a suitable model for hawkinsinuria investigation. To the best of our knowledge, this is the first study to report physical exercise metabolism mimicking a rare genetic disorder. A future targeted replication and quantitative study will be necessary for a better understanding of the findings and showing how exercise stress could be used to study hawkinsinuria and other metabolic disorders.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.

Q12 Ethics statement

573

575

576

577

578 579

580

581

582

583

584

585

586

587

588

589 590

591

592

593

594

595

596

597

599

600

601 602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

618

619

620

621

622

623

624

625

626

628

629

630

The studies involving human participants were reviewed and approved by Ethics Committee for Human Research at the Federal University of the State of Rio de Janeiro (117/2007, renewed in 2011). The patients/participants provided their written informed consent to participate in this study.

Q13 Author contributions

MA, ABo, ABa, and LC: conceptualization. TF and RM-S: visualization. AS and LC: funding acquisition. EP and LC: supervision. TF, RM-S, EP, and LC: writing-original draft and writing-review and editing. All authors contributed to the article and approved the submitted version

References

- Bassini A, Cameron LC. Sportomics: building a new concept in metabolic studies and exercise science. Biochem Biophys Res Commun. (2014) 445:708-16. doi: 10.1016/j. bbrc.2013.12.137
- Kelly RS, Kelly MP, Kelly P. Metabolomics, physical activity, exercise and health: a review of the current evidence. *Biochim Biophys Acta Mol basis Dis.* (2020) 1866:165936. doi: 10.1016/j.bbadis.2020.165936
- 3. Bongiovanni T, Pintus R, Dessi A, Noto A, Sardo S, Finco G, et al. Sportomics: metabolomics applied to sports. The new revolution? *Eur Rev Med Pharmacol Sci.* (2019) 23:11011–9. doi: 10.26355/eurrev_201912_19807
- 4. Feng X, Liu X, Luo Q, Liu BF. Mass spectrometry in systems biology: an overview. Mass Spectrom Rev. (2008) 27:635–60. doi: 10.1002/mas.20182
- 5. Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. fetabolomics in exercise and sports: a systematic review. *Sports Med.* (2022) 52:547–83. doi: 10.1007/s40279-021-01582-y
- 6. Prado E. Souza GHME Pegurier M. Vieira C. Neto ABML, Assis M. et al. Non targeted sportomics analyses by mass spectrometry to understand exercise-induced metabolic stress in soccer players. *Int J Mass Spectrom.* (2017) 418:1–5. doi: 10.1016/j.
- 7. Camerino SRAES, Lima RCP, França TCL, Herculano EDA, Rodrigues DSA, Gouveia MGDS, et al. Keto analogue and amino acid supplementation and its eff nemia and performance under thermoneutral conditions. Food Funct. (2016) 7:872-80. doi: 10.1039/c5fo01054c
- 8. Lima RCP, Camerino SRAS, França TCL, Rodrigues DSA, Gouveia MGS, Ximenes-Da-Silva A, et al. Keto analogues and amino acids supplementation induces a decrease of white blood cell counts and a reduction of muscle damage during intense exercise under thermoneutral conditions. Food Funct. (2017) 8:1519–25. doi: 10.1039/c7fo00189d

Funding

This study was supported and funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Merck-Sigma-Aldrich, Universidade Federal do Estado do Rio de Janeiro and Waters Corporation.

Acknowledgments

The authors acknowledge the work of Marcelle Pegurier, Camila Vieira, Abelardo Barbosa Moreira Lima-Neto, Maria Izabel Florindo Guedes, Maria Gabriela Bello Koblitz, Mariana Simões Larraz Ferreira and Andrea Furtado Macedo in the original study.

Conflict of interest

MA was employed by Former Waters Corporation, Currently at SpectraMass.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 9. Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol. (2010) 91:200–19. doi: 10.1016/j.pneurobio.2010.01.012
- 10. Heaney LM, Deighton K, Suzuki T. Non-targeted metabolomics in sport and exercise science. J Sports Sci. (2019) 37:959–67. doi: 10.1080/02640414.2017.1305122
- 11. Zhao D, Tian Y, Li X, Ni M, Zhu X, Jia L. Variant analysis of HPD genes from two families showing elevated tyrosine upon newborn screening by tandem mass spectrometry (MS/MS). J Pediatr Endocrinol Metab. (2020) 33:563-7. doi: 10.1515/ ipem-2019-0498
- 12. Tomoeda K, Awata H, Matsuura T, Matsuda I, Ploechl E, Milovac T, et al. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. *Mol Genet Metab.* (2000) 71:506–10. doi: 10.1006/mgme.2000.3085
- 13. Chakrapani A, Holme F, Disorders of tyrosine metabolism. (2006). In: J Fernandes, J-M Saudubray, BergheG van den and JH Walter, (Eds.) (Berlin, Heidelberg), Springer. 233-243.
- 14. Cruz-Camino H, Vazquez-Cantu DL, Zea-Rey AV, López-Valdez J, Jiménez-Lozano J, Gómez-Gutiérrez R, et al. Hawkinsinuria clinical practice guidelines: a Mexican case report and literature review. J Int Med Res. (2020) 48:300060519863543. doi: 10.1177/0300060519863543.
- 15. Gomez-Ospina N, Scott AI, Oh GJ, Potter D, Goel VV, Destino L, et al. Expanding he phenotype of hawkinsinuria: new insights from response to N-acetyl-L-cysteine. J the phenotype of hawkinsinuria: new insights from response to N-a Inherit Metab Dis. (2016) 39:821–9. doi: 10.1007/s10545-016-9963-8
- Sibomana I, Foose DP, Raymer ML, Reo NV, Karl JP, Berryman CE, et al. Urinary metabolites as predictors of acute mountain sickness severity. Front Physiol. (2021) 12:709804. doi: 10.3389/fphys.2021.709804

Q14 631

633

634

635

637

638

639

640

642

643

644

645

647

650

652

653

654

655

657

665

666

667

681 682 683

686 687 688

França et al. 10.3389/fnut.2023.1169188

17. Cao B, Liu S, Yang L, Chi A. Changes of differential urinary metabolites after high-intensive training in teenage football players. Biomed Res Int. (2020) 2020:2073803–9. doi: 10.1155/2020/2073803

- 18. Brownlee JM, Heinz B, Bates J, Moran GR. Product analysis and inhibition studies of a causative Asn to Ser variant of 4-hydroxyphenylpyruvate dioxygenase suggest a simple route to the treatment of hawkinsinuria. *Biochemistry*. (2010) 49:7218–26. doi: 10.1021/bi1008112
- 19. Hocart CH, Halpern B, Hick LA, Wong CO. Hawkinsinuria—identification of quinolacetic acid and pyroglutamic acid during an acidotic phase. *J Chromatogr.* (1983) 275:237–43. doi: 10.1016/s0378-4347(00)84371-6
- 20. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. (2004) 287:R502–16. doi: 10.1152/Q17 a)pregu.00114.2004
- 21. Nemezio K, Yamaguchi GC, Ramkrapes APB, Schulz ML, Baptista IL, Riani LA, equivalent et al. The role of chronic muscle (in) activity on carnosine homeostasis: a study with spin cord-injured athletes. Am J Physiol Regul Integr Comp Physiol. (2021) 320:R824–32. doi: 10.1152/ajpregu.00360.2020
 - 22. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, et al. The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. *Amino Acids*. (2008) 34:547–54. doi: 10.1007/s00726-007-0008-3
 - 23. Suzuki Y, Nakao T, Maemura H, Sato M, Kamahara K, Morimatsu F, et al. Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. *Med Sci Sports Exerc.* (2006) 38:334–8. doi: 10.1249/01.mss.0000185108.63028.04

- 24. Wu J, Egusa A, Nishimura T. Carnosine synthase deficiency in mice affects protein metabolism in skeletal muscle. *Biochem Biophys Res Commun.* (2022) 612:22–9. doi: 10.1016/j.bbrc.2022.04.075
- 25. Asanuma M, Miyazaki I, Ogawa N. Dopamine-or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res. (2003) 5:165-76. doi: 10.1007/BF03033137
- 26. Battyani Z, Xerri I., Hassoun J, Bonerandi JJ, Grob JJ. Tyrosinase gene expression in human tissues. *Pigment Cell Res.* (1993) 6:400–5. doi: 10.1111/j.1600-0749
- 27. Thodi G, Schulpis KH, Dotsikas Y, Pavlides C, Molou E, Chatzidaki M, et al. Hawkinsinuria in two unrelated Greek newborns: identification of a novel variant, blochemical findings and treatment. *J Pediatr Endocrinol Metab.* (2016) 29:15–20. doi: 10.1515/jpem-2015-0132
- 28. Vitamin C for prophylaxis of tyrosinemia in the newborn. Statement by the nutrition Committee of the Canadian Paediatric Society. Can Med Assoc J. (1976) 114:447.
- 29. Bongiovanni T, Lacome M, Fanos V, Martera G, Cione E, Cannataro R. Metabolomics in team-sport athletes: current knowledge, challenges, and future perspectives. *Proteomes.* (2022) 10:27. doi: 10.3390/proteomes10030027
- 30. Item CB, Mihalek I, Lichtarge O, Jalan A, Vodopiutz J, Muhl A, et al. Manifestation of hawkinsinuria in a patient compound heterozygous for hawkinsinuria and tyrosinemia III. Mol Genet Metab. (2007) 91:379–83. doi: 10.1016/j.ymgme.2007.04.008
- 31. Sedic M, Gethings LA, Vissers JP, Shockcor JP, McDonald S, Vasieva O, et al. Labelfree mass spectrometric profiling of urinary proteins and metabolites from paediatric idiopathic nephrotic syndrome. *Biochem Biophys Res Commun.* (2014) 452:21–6. doi: 10.1016/j.bbrc.2014.08.016

CAPÍTULO 2 – CAN ARGININIC ACID IMPAIR PERFORMANCE? (ARTIGOEM CONSTRUÇÃO)

Methods

Subjects

Thirty male soccer players (18-20 years old) from a team affiliated with the Confederação Brasileira de Futebol (CBF, Brazilian Soccer Confederation) participated in this study as volunteers. The players were healthy and did not have detectable diseases. They were clinically evaluated twice per year. Participants were instructed not to ingest any supplement or medication in the 10 days prior to the experiment. The subjects were informed previously about the study, and written informed consent was obtained from each subject. All procedures were performed according to the ethical standards of the Ethics Committee for Human Research at the Federal University of the State of Rio de Janeiro (117/2007, renewed in 2011) and met the requirements for regulating research onhuman subjects (Health National Council, Brazil, 1996). The subjects were tested duringthe same match (n = 30).

Experimental design, sample collection, and preparation

Two different urinary samples were collected, one immediately prior to and another one immediately after a soccer match (PRE vs. POST).

Urine samples were immediately transferred to a dry ice cooler and transported to the laboratory. Later, the samples were stored in an ultralow temperature freezer (-80 °C)until they were prepared for liquid chromatography, followed by alternating low- and high-energy multiplexed MS/MS (UPLC–MSE) injections. Mass spectrometry analyses were further performed at a starting volume of 700 µL. Raw urine samples were then centrifuged at 10,000 x g for 30 min at 4 °C, and the supernatants were perfused througha dialysis membrane with a 3,000 Da molecular weight cutoff (MWCO) (Amicon, MerckMillipore, Germany). The filtrate was desalted using a solid phase hydrophilic-lipophilic-balanced extraction cartridge (Oasis® HLB, Waters Corporation, USA). The samples were concentrated using a SpeedVac Plus (Model: SC110A, ThermoSavant, USA) and reconstituted in solvent solution containing 3% acetonitrile and 0.1% formic acid in Milli-Q pure water. Finally, the samples were transferred to a UPLC autosampler vial (WatersCorporation, USA).

UPLC-MS^E method

UPLC–MSE data were acquired in an ultrahigh-performance liquid chromatography system (Acquity UPLC I-Class, Waters, USA) coupled to an ESI (+) Qq-oaTOF mass spectrometer (Xevo G2-S Q-Tof, Waters, UK). A total of 10 μ L of each and the separation was performed on an ACQUITY UPLC CSH C18 column, 130 Å, 1.7 μ m, 2.1 mm \times 50 mm conditioned at 40 °C. The mobile phases were 0.1% formic acid (pump A) and 0.1% formic acid in acetonitrile (pump B), and the flow rate was 900 μ L min-1.

The gradient method was programmed to achieve maximum separationperformance as follows: initial condition 3% B (pump B), 2.37 min 35% B, 4.37 min 85% B, 5.37 min 85% B, and 6.37 min 3% B with a total run time of 8.37 min and a calculated percent B/column volume (Cv) factor of 2.6% B/Cv. The sample tray temperature was defined at 8 °C. The mass spectrometry method and conditions were adjusted, including alternating the continuous ion current with low- and high-energy multiplexed MS/MS mode (MSE) that could achieve a collision energy ramp set to 10-30 Ev.

MS was controlled by the MassLynx V4.1 software package (Waters Corporation,UK). The scanning mass range, quadrupole profile, and instrument calibration were set to transmit the ion current from m/z 50 to 1000. The source conditions were tuned as follows: capillary at 3 kV, sampling cone (skimmer) set to 15 V, step wave source offsetof 30 V, cone gas flow (curtain gas) set to 50 L h -1, and desolvation temperature set to 550 °C. All runs were acquired with a detector voltage of 2450 V with the following hybrid analog-to-digital converter (ADC) parameters: an amplitude threshold of 2 V, an ion area threshold of 3 V, and an ion area offset of 15 V. Instrument calibration was achieved with an automatic Intellistart application included in the MassLynx software package (Waters, UK), and the acquisition was conducted with a solution of 0.1% formicacid:0.1 M NaOH:acetonitrile at a ratio of 1:1:8 to achieve less than 1 ppm across 14 monoisotopic masses, such as [M + H]+. The LockSpray setup was also performed priorto acquisition with leucine enkephalin (leu-enk) [M + H]+ = 556.2771, and DRE lenses were automatically adjusted to allow for maximum transmission with a solution at 1 ng uL-1 and an infusion rate of 5 µLmin-1. An average ion area of 32 was also obtained from the detector setup with leu-enk.

UPLC-MSE data processing with progenesis **QI**

Raw UPLC-MSE data files were processed and grouped by conditions as described previously. 1 The identification and relative quantification based on ionaccounting of putative metabolites were performed (default parameters) via Progenesis QI v.2.0 (Nonlinear Dynamics, Waters, UK). The metabolites were identified "on the fly" with the use of precursor ion exact mass, isotopologue distribution match, and fragment mass ion matching with the Human Metabolome Database (HMDB) and filtered with theurine metabolites database.

Blood sampling and total carbon dioxide (TCO2) measurement

Venipuncture was performed by accredited phlebotomists, and samples of venousblood were taken from players (n = 27) at PRE and POST. Drops of blood were inserted to MetLyte 8 to measure TCO2 using a Piccolo Xpress (Abaxis, CA, USA).

Data analysis

Raw data are available in a previous report. ² For this study, only tyrosine metabolites were used in all samples measured. Tyrosine metabolic pathways were investigated using the KEGG database. Data were filtered based on metabolite replicationover individual analytical data acquisition, and data are presented as either up-, unchanged or downregulated. After the normality test, significance was examined using ANOVA based on data distribution. ANOVA was performed comparing PRE and POSTspectra areas for each urinary metabolite. In addition, after testing for normality (Shapiro–Wilk), the changes in TCO₂ (PRE and POST) were analyzed using a paired Student's t test. For all outcomes, *P*<.05 was considered statistically significant.

References

- 1. Sedic M, Gethings LA, Vissers JP, et al. Label-free mass spectrometric profilingof urinary proteins and metabolites from paediatric idiopathic nephrotic syndrome. *Biochem Biophys Res Commun*. 2014;452(1):21-6. doi: 10.1016/j.bbrc.2014.08.016
- 2. Prado E, Souza GHMF, Pegurier M, et al. Non-targeted sportomics analyses by mass spectrometry to understand exercise-induced metabolic stress in soccer players. *International Journal of Mass Spectrometry*. 2017;418:1-5. doi: 10.1016/j.ijms.2017.02.002

RESULTS

Table 1. Changes in arginine metabolism in response to a soccer match.

Compound	Relative Concentratio n	Log (Post/Pre)	ANOVA (p)	HMDB ID	Percentual (%)
2- oxoarginine	DOWN	-0.4	5.81E-07	HMDB042 25	-60
N-alpha-Acetyl-L-arginine	UP	0.3	0.0072501 61	HMDB046 20	99
4-guanidino butanoic acid		0.0	0.3486282	HMDB034 64	0
Homo-L-arginine	DOWN	-0.1	0.4190957 75	HMDB006 70	-21
D-arginine	UP	0.1	0.0176140 67	HMDB034 16	26
Gamma glutamyl ornithine	UP	0.2	0.0102716 51	HMDB022 48	58
N-Acetylornithine	DOWN	-0.4	0.1891151	HMDB033 57	-60
Agmatine	UP	0.4	0.0020059 94	HMDB014 32	151
Argininic acid	UP	0.9	1.78E-09	HMDB031 48	694

CAPÍTULO 3 - INHALED SALBUTAMOL AND ITS EFFECTS ON AMMONIA METABOLISM, WHITE BLOOD CELL COUNTS AND PERFORMANCE AFTER PROLONGED EXERCISE UNDER HEAT STRESS CONDITIONS USING A SPORTOMICS APPROACH

INHALED SALBUTAMOL AND ITS EFFECTS ON AMMONIA METABOLISM,
WHITE BLOOD CELL COUNTS AND PERFORMANCE AFTER PROLONGED
EXERCISE UNDER HEAT STRESS CONDITIONS USING A SPORTOMICS
APPROACH

Thássia Casado Lima França¹ • Edla de Azevedo Herculano¹ • Natally Monteiro de Oliveira² • Mayara Roberta Fernandes Vieira¹ • Saulo Rodrigo Alves e Silva Camerino¹ • Antônio Euzébio Goulart Santana³ Gustavo Gomes de Araújo² • Aníbal M. de Magalhães- Neto⁴ • Alexandre Magno-França⁵• L. C. Cameron⁵ • Eduardo Seixas Prado^{1*}

¹Federal University of Alagoas, Laboratory for Research in Physical Exercise and Metabolism, Maceió, Alagoas, Brazil

²Federal University of Alagoas, Laboratory of Applied Sports Science, Maceió, Alagoas, Brazil

³Federal University of Alagoas, Research Laboratory on Natural Resources, Maceió,

Alagoas, Brazil

⁴Federal University of Mato Grosso, Biological and Health Sciences Institute, Barra do Garças, Mato Grosso, Brazil

⁵Federal University of State of Rio de Janeiro, Laboratory of Protein Biochemistry, Riode Janeiro, Rio de Janeiro, Brazil

*Corresponding author: Eduardo Seixas Prado, Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Av. Lourival Melo Mota, S/N,

Tabuleiro do Martins 57072-970, Maceió, AL, Brazil. Number: +55 (82) 3214-1032, e-mail address: esprado@iefe.ufal.br

ORCID of the authors: Thássia Casado Lima França: 0000-0003-1118-2009, Edla de Azevedo Herculano: 0000-0002-3988-2720, Natally Monteiro de Oliveira: 0000-0003-0519-453X, Antônio Euzébio Goulart Santana: 0000-0002-3750-438X, Aníbal M. de Magalhães-Neto5: 0000-0002-4887-5936, L. C. Cameron: 0000-0003-4180-2061, Eduardo Seixas Prado: 0000-0002-9631-3292*

Abstract

This study evaluated the acute effect of inhaled salbutamol on blood ammonia, white blood cell counts, and cognitive-motor performance after prolonged exercise under heat conditions using a Sportomics approach. Male endurance runners were divided into two groups: inhaled salbutamol (SEx) and placebo (PEx). The runners performed a half- marathon race (21.1 km), and the metabolic status, white blood cell counts, and cognitive- motor performance were assessed before (PreR) and after (PostR) the race using the absolute (Δ) and percentage (Δ %) changes. An increase of ~ 340% in blood ammonia concentration was observed in the Δ % SEx group but not in the Δ % PEx group (~ 200%). The Δ % PEx group had a smaller increase in blood urea (~ 26%) and blood glucose (~ 11%) concentrations after exercise than the Δ % PEx group (~ 35% and ~ 34%,respectively). The white blood cell counts indicated a significant decrease in the lymphocyte count after the race in the SEx group. We suggest that acute inhaled salbutamol might increase blood ammonia concentrations and induce decreased lymphocyte counts but does not affect cognitive-motor performance during prolonged exercise in the heat. **Keywords:** metabolism; exercise; heat stress; white blood cell counts; ergogenic effect; β 2-agonist

Introduction

Salbutamol is a β2-agonist and a widely used bronchodilator [1,2]. However, thedrug is known to influence other physiological and metabolic functions [3]. It has been shown that salbutamol can improve metabolism and provide ergogenic benefits to athletes[4,5]. Presently, several β-agonists are prohibited by the World Anti-Doping Agency [6], although inhaled salbutamol can be administered at a maximum of 800 μg over 12 h. Eliteathletes need to fulfill the WADA's Therapeutic Use Exemption (TUE) and provide a prescription and demonstrate the medical need for this type of drug [3,6,7]. Nevertheless,inhaled salbutamol has been a contentious topic in sports for 45 years, and that trend continues [8].

Several studies have examined the use of salbutamol at different doses and diverse administration methods (inhaled or oral), and they identified its effects on athletic performance, such as strength and psychomotor performance, as well as its effects on physiologic and metabolic changes [9–14]. Regarding metabolic changes, the therapeutic inhalation of salbutamol produced a rise in plasma glucose [15–18]. In addition, an inhaled β2-agonist (400 μg) was shown to decrease blood ammonia concentrations duringsubmaximal exercise under thermoneutral conditions [19]. Ammonemia occurrenceduring exercise depends on the carbohydrate metabolic availability [20–22]. Therefore, the increase in blood glucose concentration caused by inhaled salbutamol can be important during prolonged exercise, which decreases both amino acid catabolism and adenosine monophosphate (AMP) deamination and subsequently hinders the release of ammonia into the bloodstream [23].

The increase in ammonemia during exercise has been implicated in central fatigueby altering cerebral function and impairing cognitive performance (termed cognitive-motor performance) [24,25]. Thus, controlling the increase in ammonemia is believed to

improve exercise performance [26]. However, exercise is performed in heat can promote metabolic alterations that are exacerbated by an increase in body temperature or dehydration, which impair exercise performance. These previous conditions appear to aggravate the exercise-induced increase in ammonemia [27–32].

Furthermore, hyperammonemia is linked to an increase in ammonia metabolites, urea and urate in blood [33]. We previously described that decreases in urea synthesis with caffeine use could be due to the decrease in urea cycle amino acid concentrations in the blood due to impairment of glutamine transport of ammonia [34]. The acute effects of inhaled salbutamol on blood ammonia and its metabolites and the cognitive-motor performance response to exercise are poorly understood. A previous study demonstrated that oral salbutamol (12 mg/day for three weeks) decreased blood urea during exercise inrecreational athletes [35]. Additionally, the prolonged administration of salbutamolreduced both ketogenic and urea cycle amino acid concentrations in blood, while drug withdrawal promoted a decrease in glycogenic amino acids in an animal model [36]. To the best of our knowledge, only one study has explored the acute effect of inhaled salbutamol on ammonemia during exercise [19].

We previously demonstrated that exercise is an excellent tool to study the interactions between ammonia metabolism and white blood cell response [37,38]. We proposed that increased lymphocyte counts could be related to changes in ammonia metabolism and a possible signal of muscle injury during exercise [38–40]. Although themajor action of salbutamol is the relaxation of airway smooth muscle, this drug has several other outcomes, such as an anti-inflammatory effect by inhibiting the release of mediators from eosinophils, macrophages, T-lymphocytes, and neutrophils [41,42] However, little information is available on the acute effect of inhaled salbutamol on white blood cell counts and muscle injury marker responses to prolonged exercise.

Studies of athletes engaged in exercise in the field that mimic both the real challenges and conditions that are faced during sports situations (such as hot environmental conditions), such as in the Sportomics approach, can better reflect the realmetabolic changes during exercise [43]. The Sportomics approach can be helpful to better understand the effect of inhaled salbutamol on metabolism and performance following prolonged exercise under high-heat stress conditions.

Based on our previous findings, we hypothesized that inhaled salbutamol might affect both ammonia genesis and metabolism, white blood cell counts and cognitive- motor performance in response to exercise. Consequently, we evaluated the acute effect of inhaled salbutamol on these variables during a half-marathon race under heat stress conditions using a Sportomics approach.

Methods

Subjects

Male amateur endurance runners who were nonusers of salbutamol or other β 2- agonists were enrolled in a half-marathon race (21.1 km), with heat stress, under natural conditions. All subjects had at least three years of training and frequently participated in training and competitions under heat stress. Therefore, the runners were acclimatized to training and competitions in a hot environment. The subjects who volunteered for the study were divided into two groups, starting with nine runners each, as follows: salbutamol experimental group – SEx, (39.8 \pm 3.1 years; 74.9 \pm 2.5 kg; 1.75 \pm 0.01 m) and control group – PEx, (41.4 \pm 3.2 years; 75.8 \pm 3.1 kg; 1.71 \pm 0.02 m). Both groups showed similar levels of maximal oxygen consumption (VO_{2max}) (45.3 \pm 1.9 mL.kg⁻¹.min⁻¹ and 44.3 \pm 2.0 mL.kg⁻¹.min⁻¹, SEx and PEx, respectively). Diseases (respiratory tract, recognized asthma, or allergy), regular use of tobacco, or the use of ergogenic aids were exclusion criteria. The subjects were informed about the study before participation, and written informed consent was obtained. All procedures were performed in accordance with the guidelines dictated by the Declaration of Helsinki and the ethical standards of the Ethics Committee for Human Research at the Federal University of Alagoas, Brazil (017640/2011-61).

Study design and protocols

The runners were subjected to an anthropometric assessment, and dietary intake was determined one week before the half-marathon race. After the evaluation of dietary intake, all runners were screened for medical history (such as pulmonary function). All participants received an individualized diet plan, where the recommended energy intakewas 15% from proteins, 20% from lipids and 65% from carbohydrates. The subjects were asked to start the proposed diet two days before the race. Diet adherence was verified viaketonuria analysis by qualitative reagent strips for urinalysis (Biocolor/Bioeasy®, MinasGerais, Brazil). The absence of ketonuria was used for the assessment of adequate carbohydrate ingestion before the race.

The runners were also asked to avoid their normaltraining schedule until two days before the race day, maintain a fluid intake of ~ 3 L.d⁻¹ and avoid beverages containing caffeine and other xanthines. VO_{2max} was determined using a motorized treadmill (Inbramed®, Porto Alegre, Brazil), as described previously [44]. The subjects were familiarized and exhaustively trained in the appropriate use of inhalers before the experimental protocol ensured the effective delivery of inhaledsalbutamol.

One week after the preparation procedures, the subjects performed a half- marathon race (the race started at 8:00 AM). One hour before the race, the SEx group received four puffs (400 µg) of inhaled salbutamol (Aerolin® 100 µg; GlaxoSmithKline,Rio de Janeiro, Brazil) using a spacer device, and the PEx group (placebo) received the same number of puffs using propellant only. Both treatments were provided using the same inhaler type in a randomized double-blind manner. Immediately after the administration of inhaled salbutamol or placebo, the following assessments (in order) were performed before the race (PreR) and repeated after the race

(PostR): Hydration status was assessed by evaluating the percentage change in body mass(Δ % BM), urine color, and specific gravity (USG). Urine color was evaluated according to a previous study [45], and USG was measured using a manual refractometer (Biobrix®,São Paulo, Brazil). Hydration status was classified according to a previous study [46], where at least two of the three markers indicating the same state of hydration served as atiebreaker.

Immediately after the hydration status tests, blood samples were obtained from the median antecubital vein. The blood samples were immediately centrifuged (3000 x g,4 °C) to avoid the loss of volatile compounds used for biochemical analyses. Serum andplasma were divided into aliquots and stored at 4 °C. To prevent loss, plasma ammonia was measured immediately, and the other biochemical analyses (serum) were performed within 24 h. Glucose, lactate, urate, urea, creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured using commercial spectrophotometric assays (Labtest®, Minas Gerais, Brazil). Ammonia was measured using an enzymatic UV method (Randox, Crumlin, UK). All biochemical analyses were performed using a dade model dimension RXL automated chemistry analyzer (Dade Behring®, Eschborn, Germany). The samples were measured in duplicate, and the coefficient of variation for analysis was < 5%. Additionally, blood samples were collected in an EDTA vacuum tube to determine the white blood cell count, which was performed in a hematology analyzer (Human®, Hessen, Germany).

Following blood collection, the runners were tested to evaluate their cognitive- motor performances based on their immediate memory, motor coordination (by the finger-to-nose test), and simple reaction time as previously described [44].

Subsequently, the runners started the half-marathon race. The subjects were instructed to maintain their typical exercise intensity and allowed to drink water ad libitum during the race. Water intake was measured and evaluated as previously described (Monteiro et al 2022). Heart

rate (HR) was recorded at the end of the race using a heart rate monitor (Polar® FT1, Kempele, Finland). At the same time, race time and the subjective perception of effort (SPE) was evaluated [47].

Before and after the race, the runners' body temperature was measured using a tympanic thermometer (GeniusTM 2®, Minnesota, USA). The tympanic temperature values were used to calculate an equivalent rectal temperature (ERT) [48]. Additionally, the ambient temperature, relative humidity, air movement, and solar radiation (Instrutemp®, São Paulo, Brazil) were measured and used to calculate the wet-bulbe globe temperature (WBGT) Index. A WBGT > 25.7 °C was considered a high-heat stressenvironment [49].

Statistical analysis

All values are expressed as the mean \pm SEM. After testing for normality (Shapiro-Wilk) and equal variance (Brown-Forsythe), a 2 x 2 repeated-measures ANOVA was used to test for differences in condition (SEx and PEx) and time (PreR vs PostR). To isolate which group(s) differed from the others, multiple-comparison procedures were conducted with Bonferroni t-tests. An unpaired t-test was used to analyze changes in thefollowing variables: Δ % BM, Δ Urea/ammonia ratio, HR, SPE, fluid replacement and race time. For all of the measurements, P < 0.05 was considered statistically significant. Metabolic status was also shown by evaluating the absolute (PreR and PostR) and normalized for PreR value (Δ %) changes.

Results

We conducted a study during a half-marathon under environmental conditions that produced high thermal stress and evaluated the parameters in the PreR (WBGT, 27.5 °C)and PostR (WBGT, 30.9 °C) periods to determine some of the acute effects of inhaled salbutamol on metabolism and cognitive-motor performance. The race times were similar both groups (SEx: 120.1 ± 3.4 min and PEx: 118.1 ± 2.3 min). The runners reached similar intensity (SEx, HR: 147.0 ± 2.8 beats/min and PEx, HR: 141.6 ± 5.0 beats/min; SEx, SPE: 14.8 ± 0.9 and PEx, SPE: 14.9 ± 1.4) and fluid replacement during the race (SEx: 444.4 ± 47.5 mL and PEx: 450.0 ± 44.9 mL). The ketonuria analysis revealed thatrunners were not in ketosis before the race. No adverse events were reported.

The ERT values increased above baseline levels in response to similar high heat stress exercise in both conditions without a significant difference between the groups. After the race, the runners were hypohydrated with similar Δ % BM in both groups. Theurine color and USG values were elevated prior to the start of the race and showed that the runners were equally hypohydrated between minimal and significant (Table 1).

To investigate the effect of inhaled salbutamol on ammonia metabolism, we measured the concentrations of ammonia and some related metabolites in blood. Ammonemia increased in both groups in response to exercise and increased in response to salbutamol and exercise in all runners (Figure 1). There was a 3.4-fold significant increase in blood ammonia concentration in the SEx group, whereas a twofold increase was observed in the PEx group (Table 2).

To indirectly determine whether ammonia was produced by amino acid deamination or by AMP deamination, we measured the blood urea and urate concentrations. The blood urea and urate concentrations increased above baseline levelsafter the race in both groups. Exercise induced a smaller increase in blood urea concentrations in the runners (Figure 2). The salbutamol group showed a smaller increase(~26%) in blood urea concentrations after exercise compared with the PEx group (~35%). Furthermore, there was a significant decrease in the Δurea/ammonia ratio in the SEx group compared with the PEx group. Blood urate showed a similar increase in bothgroups (Table 2).

To understand the role of inhaled salbutamol in glycemia, we measured the bloodglucose concentrations during the half-marathon race. The changes in glycemia analyzedby group did not show significant differences due to the variance. When studied individually, we verified that the normalized glycemia had a smaller increase in the SExgroup than the PEx group (Table 2 and Figure 3). We also evaluated blood lactate concentration as an indicator of glucose metabolism during exercise. The blood lactate concentration significantly increased after the race in both groups (Table 2).

To investigate the role of salbutamol in muscle performance, we investigated enzyme biomarkers of muscle damage and white blood cell count responses. Both groupsshowed an early significant increase in blood CK and AST after the race compared withthe baseline values, and differences were not observed between groups. LDH in the bloodsignificantly increased after the race in the SEx group but not in the PEx group. No significant difference in blood ALT was found after the race and/or between the groups (Table 3). The leukocyte counts equally increased by almost twofold in both groups, which was mainly due to the neutrophil and monocyte counts. The lymphocyte count significantly decreased after the race in the SEx group but not in the PEx group (Table 4).

To evaluate the half-marathon race in the heat as a model for studying the effects of hyperammonemia on cognition, we employed different cognitive-motor performance tests. We did not find differences in the finger-to-nose test, simple reaction time, orimmediate memory before and/or after the half-marathon race (data not shown).

Discussion

Previous studies have shown that elevated blood ammonia, urea, and urate concentrations can be reduced through the use of amino acids or carbohydrate supplementation during exercise under thermoneutral conditions [50,51]. However, only one study has explored the acute effect of inhalation of salbutamol on blood glucose, lactate, ammonia, and urea during exercise under thermoneutral conditions [19].

This study aimed to evaluate the acute effects of inhaled salbutamol on ammonia metabolism, white blood cell counts, and cognitive-motor performance after prolonged exercise under high heat stress conditions using a Sportomics approach. Here, we showedthat inhalation of salbutamol increased the ammonemia response and decreased the bloodurea concentration after prolonged exercise in heat. Additionally, inhaled salbutamol induced a reduction in the lymphocyte response to exercise but did not induce differencesin enzyme biomarkers of muscle damage, which were elevated after the race. Moreover, we did not observe significant differences in the runners cognitive-motor performance after inhaling salbutamol.

Hyperammonemia has been suggested to promote neurological alterations, including impairment in cognitive-motor functions, such as in patients with clinical hepatic encephalopathy [25]. Ammonemia accumulation during exercise leads to impaired activity of neurotransmitters that are involved in cognitive-motor disturbances [43,52]. Therefore, induced hyperammonemia may also affect cognitive-motor performance [24,53]. Environmental heat stress is known to cause severe metabolic disorders during exercise, including hyperammonemia [53]. In the present study, we usedprolonged exercise in the heat to decrease the availability of glycogen and increase both amino acid catabolism and AMP deamination, which led to the release of more ammoniainto the bloodstream [20,30,54].

Matthys et al. demonstrated that the blood glucose concentration was maintained and that the blood lactate concentration was slightly but significantly increased after salbutamol inhalation during exercise, and these results suggest higher carbohydrate availability [19]. Our results showed that the salbutamol group demonstrated a much smaller percentage change in blood glucose concentration. Our findings are inconsistent with that of Goubault et al., who demonstrated no significant enhancement of metabolism(glucose and lactate) in highly trained nonasthmatic cyclists with different doses of inhaled salbutamol (200 μg or 800 μg) [12]. Dickinson et al. demonstrated that there was no significant difference in blood lactate concentrations following the inhalation of up to 1600 μg of salbutamol in nonasthmatic athletes in temperate (18 °C) and hot (30 °C) environments, both with 40% relative humidity [55].

These contradictory results are difficult to explain, and precisely how the acute effect of inhaled salbutamol promotes metabolic changes is unclear, especially during heat exercise. Inhalation of salbutamol appears to be associated with a more marked localeffect on pulmonary β2-adrenoceptors than on peripheral skeletal muscle adrenoceptors [3,4,56]. Moreover, the metabolic actions of acute oral salbutamol intake have been reported to include the stimulation of glycogenolysis and glycolysis with increased lactaterelease from tissues such as muscle [3]. However, short-term oral salbutamol intake during submaximal exercise may also decrease blood glucose concentrations [57]. Several studies of orally administered β2-agonists have investigated a greater number ofparameters than inhalation studies [3]. Therefore, additional studies are needed to elucidate the effect of salbutamol (inhaled and oral) on blood glucose concentrations under exercise in hot environments.

Matthys et al. demonstrated that inhaled salbutamol (400 μ g) decreased blood ammonia concentrations during submaximal exercise and concluded that exercise- induced ammonemia is regulated by type β 2 receptors [19]. In the present study (similar inhaled salbutamol, 400 μ g), we showed that the salbutamol group had a much higher percentage and greater absolute

changes in the increase in blood ammonia concentrationsafter exercise in the heat compared with the placebo group. As previously mentioned, ammonemia during exercise depends on carbohydrate metabolic availability, and we showed that salbutamol and exercise induced a smaller increase in blood glucose concentrations in runners.

In our study, blood urea concentrations showed a smaller increase after exercise in the salbutamol group than the placebo group. Hyperammonemia can occur during exercise via both amino acid and AMP deamination, in which urea and urate are the finalmetabolites, respectively [54]. The primary pathway for blood ammonia removal in a healthy individual is via ureagenesis [58]. Thus, the smaller increase in blood urea concentrations in the salbutamol group compared with the results for the blood ammoniaconcentrations may appear to contradict the measured blood urea decrease. However, a reduction in urea cycle amino acids was observed after salbutamol administration (2 mg.kg⁻¹ diet. day-1) for 38 days in animals (lambs), although such a change was not apparentin animals after salbutamol administration for 33 days [36]. Similarly, the blood urea concentrations were significantly decreased after oral salbutamol (12 mg/day for 3 weeks)treatment during resting and exercise [11]. Therefore, we suggest that the urea synthesisdelay induced by inhaled salbutamol could be explained by a reduction in urea cycle activity. Similarly, Bassini et al. observed that caffeine might decrease systemic urea by decreasing the glutamine serum concentration, which decreases the transportation of ammonia to the liver and thus decreases urea synthesis[34].

Strenuous exercise is known to result in increased oxidative stress, which leads tomuscle damage, as evidenced by the release of biomarkers such as CK, LDH, AST, and ALT [59–61]. The elevation of these enzyme biomarkers of muscle damage is generally observed when measured hours or days after exercise [62]. However, the results of the present study showed that CK and AST were higher in both groups immediately following the race. Previous studies have shown changes in injury biomarkers immediately after high-intensity endurance

exercise [38,63]. An adventure sprint raceincreased the leukocyte, neutrophil, and monocyte counts and increased the AST but notthe ALT, which is consistent with our study [63]. In addition, limited information is available on the influence of inhaled salbutamol on CK, and such effects may be a rarephenomenon [64]. Although the most likely explanation of such changes could be prolonged exercise in the heat, markers of muscle damage were elevated immediately after a soccer match under high-heat stress as well as under thermoneutral conditions [65]. Physical exercise is known to induce an increase in leukocyte counts and their subpopulations (especially neutrophil, lymphocyte, and monocyte counts) [66]. In this study, we observed an increase in white blood cell counts, with leukocytosis, neutrophilia, and monocytosis in both groups. We also showed that inhaled salbutamol caused asmaller lymphocyte count increase and led to higher ammonemia. Salbutamol has been shown to decrease acute inflammation in rats, and stimulation of β -2 adrenergic receptorsmay be the underlying mechanism responsible for the observed anti-inflammatory effects[67]. The most likely explanation for the contradictory results is that inhaled salbutamol exerts antiinflammatory effects, which could at least partially explain the mechanism underlying the reduction in lymphocyte count.

As mentioned above, we observed a reduction in lymphocyte counts with inhaled salbutamol and exercise. Leukocytosis may be involved in the regenerative inflammatory response to exercise, such as in muscle recovery and repair [63]. In particular, lymphocytosis can be associated with markers of muscle damage [38]. Our findings reinforce that inhaled salbutamol exerted anti-inflammatory effects, which could at least partially explain the mechanism underlying the reduction in lymphocyte counts.

In our study, we did not identify changes in the tested cognitive-motor performance. Goubault et al. also demonstrated a lack of significant enhancement of psychomotor performance (such as on the simple reaction test) [12]. Thus, the results of the present

experiment are consistent with these previous studies according to a physical performance perspective [68]. An acute dose of up to 4000 μ g of inhaled salbutamol likely would not improve the cycling time to exhaustion or oxygen kinetics [69]. In addition, Dickinson et al. demonstrated that chronic daily accumulated doses of 1600 μ gdid not improve endurance, strength, or power. Compared with inhaled β 2-agonists, oraladministration of salbutamol seems to be able to improve muscle strength and endurance performance [70]. Thus, prohibiting inhaled β 2-agonists does not appear to be justified according to the ergogenic effects [5].

We used a Sportomics approach, and it is necessary to perform a preamble. Compared with studies carried out in the laboratory under extremely controlled conditions, during Sportomics experiments, the samples are collected in the field and anuncontrolled environment to reproduce the challenges presented in real training and competition [38,39,71]. Therefore, sportomics seeks to avoid the use of the trial-error method applied in personalized medicine because of the importance of the role of variability of the metabolic response between individuals. Usually, the investigative standards used to examine athletes' performances are based on empirical information collected by coaches and laboratory tests and clinical data obtained by scientists. In manycases, subjects that maintain the same training, diet, and recovery routines present completely different metabolic responses according to their systemic response samples [72].

Study limitations

Due to laboratory limitations, we were not able to measure the achieved concentrations of salbutamol in the blood. Previous studies have shown that salbutamol is 100% absorbed, with its peak in blood achieved within 5-10 min and its levels maintained for up to 4 h [73–75]. According to these results on the pharmacokinetics andpharmacodynamics of salbutamol, we may have designed the study using the peak of thedrug in the blood. Additionally, we needed

to perform tympanic temperature measurements that are not considered the gold standard method for temperature studies due to nonscientific factors [76].

Conclusions

To the best of our knowledge, this study is the first to evaluate the acute effect of inhalation of salbutamol on metabolism ammonia, white blood cell counts, and cognitive-motor performance after prolonged exercise under high heat stress conditions. Wesuggest that acute inhaled salbutamol might decrease urea synthesis and subsequently increase blood ammonia concentrations. Additionally, inhaled salbutamol can induce a reduction in lymphocyte counts but does not affect cognitive-motor performance during prolonged heat exercise.

Acknowledgments

The authors would like to thank all participants for their hard work and dedication. This study was supported and funded by Coordenação de Aperfeiçoamento de Pessoal de NívelSuperior (CAPES) - Finance Code 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); and Fundação de Amparo à Pesquisa do Estado de Alagoas – FAPEAL (n° 001/2013). The authors thank the Laboratório DILAB for support with biochemical analyses.

Declaration of interest statement

The authors declare that they have no conflicts of interest.

Funding statement

This study was supported and funded by Coordenação de Aperfeiçoamento de Pessoal deNível Superior (CAPES) - Finance Code 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); and Fundação de Amparo à Pesquisa do Estado de Alagoas – FAPEAL (n° 001/2013). The authors thank the Laboratório DILAB for supportwith biochemical analyses.

Authors' contributions

Thássia Casado Lima França, Eduardo Seixas Prado: conceived and designed research. Thássia Casado Lima França, Edla de Azevedo Herculano, Natally Monteiro de Oliveira, Mayara Roberta Fernandes Vieira, Saulo Rodrigo Alves e Silva Camerino, Eduardo Seixas Prado: performed experiments. Thássia Casado Lima França, Eduardo Seixas Prado, L. C. Cameron, Aníbal M. de Magalhães-Neto, Marcos Guilherme de Sousa, Alexandre Magno-França, Euzébio Goulart Santana: data analysis and interpretation. Thássia Casado Lima França, Edla de Azevedo Herculano, Natally Monteiro de Oliveira, Mayara Roberta Fernandes Vieira, Eduardo Seixas Prado, L. C. Cameron: drafted the

manuscript and all authors commented on previous versions of the manuscript. All authors have read and approved the manuscript.

References

- 1. Jarvie DR, Thompson AM, Dyson EH. Laboratory and clinical features of self-poisoning with salbutamol and terbutaline. Clin Chim Acta. 1987;168:313–22. https://doi.org/10.1016/0009-8981(87)90007-6.
- 2. Davis E, Loiacono R, Summers RJ. The rush to adrenaline: drugs in sport actingon the β-adrenergic system. Br J Pharmacol. 2008;154:584–97. https://doi.org/10.1038/bjp.2008.164.
- 3. Collomp K, Le Panse B, Candau R, Lecoq A-M, De Ceaurriz J. Beta-2 agonistsand exercise performance in humans. Sci Sports. 2010;25:281–90. https://doi.org/10.1016/j.scispo.2010.08.002.
- 4. Clarkson PM, Thompson HS. Drugs and sport Research findings and limitations. Sports Med. 1997; 24:366–84. https://doi.org/10.2165/00007256-199724060-00003.
- 5. Kindermann W. Do inhaled B2-agonists have an ergogenic potential in non-asthmatic competitive athletes? Sport Med. 2007;37:95–102. https://doi.org/10.2165/00007256-200737020-00001.
- World-Anti Doping Agency. The 2021 WADA Prohibited List. World Anti-Doping.
 2021:1–24. Acessed 7 July 2021.
- 7. Wolfarth B, Wuestenfeld JC, Kindermann W. Ergogenic Effects of Inhaled B2-Agonists in Non-Asthmatic Athletes. Endocrinol Metab Clin North Am. 2010;39:75–87. https://doi.org/10.1016/j.ecl.2009.10.005.
- 8. Fitch KD. The enigma of inhaled salbutamol and sport: unresolved after 45 years.

- Drug Test Anal. 2017;9:977–82. https://doi.org/10.1002/dta.2184.
- 9. Meeuwisse WH, McKenzie DC, Hopkins SR, Road JD. The effect of salbutamolon performance in elite nonasthmatic athletes. Med Sci Sports Exerc. 1992;24:1161–6.
- 10. Carter WJ, Lynch ME. Comparison of the effects of salbutamol and clenbuterol on skeletal muscle mass and carcass composition in senescent rats. Metabolism. 1994;43:1119–25. https://doi.org/https://doi.org/10.1016/0026-0495(94)90054-x.
- 11. Collomp K, Candau R, Collomp R, Carra J, Lasne F, Prefaut C, et al. Effects of acute ingestion of salbutamol during submaximal exercise. Int J Sports Med. 2000;21:480–4. https://doi.org/10.1055/s-2000-7422.
- 12. Goubault C, Perault MC, Leleu E, Bouquet S, Legros P, Vandel B, et al. Effects of inhaled salbutamol in exercising non-asthmatic athletes. Thorax. 2001;56:675–9. https://doi.org/10.1136/thorax.56.9.675.
- 13. Decorte N, Bachasson D, Guinot M, Flore P, Levy P, Verges S, et al. Effect of salbutamol on neuromuscular function in endurance athletes. Med Sci Sports Exerc. 2013;45:1925–32. https://doi.org/10.1249/MSS.0b013e3182951d2d.
- 14. Koch S, Macinnis MJ, Sporer BC, Rupert JL, Koehle MS. Inhaled salbutamol does not affect athletic performance in asthmatic and non-asthmatic cyclists. Br JSports Med. 2015;49:51–5. https://doi.org/10.1136/bjsports-2013-092706.
- 15. Neville a, Palmer JB, Gaddie J, May CS, Palmer KN, Murchison LE. Metabolic effects of salbutamol: comparison of aerosol and intravenous administration. Br Med J. 1977;1:413–4. https://doi.org/10.1136/bmj.1.6058.413.
- 16. Rizza RA, Cryer PE, Haymond MW, Gerich JE. Adrenergic Mechanisms of Catecholamine Action on Glucose Homeostasis in Man. Metabolism. 1980;29:1155–63.

- 17. Taylor DR, Wilkins GT, Herbison GP, Flannery EM. Interaction between corticosteroid and β -agonist drugs; Biochemical and cardiovascular effects innormal subjects. Chest. 1992;102:519–24. https://doi.org/10.1378/chest.102.2.519.
- 18. Haffner CA, Kendall MJ. Metabolic Effects of β2-agonists. J Clin Pharm Ther. 1992;17:155–64.
- 19. Matthys D, Calders P, Pannier JL. Inhaled salbutamol decreases blood ammonialevels during exercise in normal subjects. Eur J Appl Physiol Occup Physiol. 1998;79:110–3. https://doi.org/10.1007/s004210050482.
- 20. Czarnowski D, Langfort J, Pilis W, Górski J. Effect of low-carbohydrate diet on plasma and sweat ammonia concentrations during prolonged nonexhausting exercise. Eur J Appl Physiol. 1995;70:70–4.
- 21. Snow RJ, Carey MF, Stathis CG, Febbraio MA, Hargreaves M. Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. JAppl Physiol. 2000;88:1576–80.
- 22. Langfort J, Czarnowski D, Zendian-Piotrwska M, Zarzeczny R, Górski J. Short-term low-carbohydrate diet dissociates lactate and ammonia thresholds in men. JStrength Cond Res. 2004;18:260–5.
- 23. Broberg S, Katz A, Sahlin K. Propranolol enhances adenine nucleotide degradation in human muscle during exercise. J Appl Physiol. 1988;65:2478–83.
- 24. Banister EW, Cameron BJC. Exercise-Induced Hyperammonemia: Peripheraland Central Effects. Int J Sport Med. 1990;5:S129–42.
- 25. Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. NatRev Neurosci. 2013;14:851–8. https://doi.org/10.1038/nrn3587.
- 26. Nybo L, Dalsgaard MK, Steensberg A, Møller K, Secher NH. Cerebral ammonia

- uptake and accumulation during prolonged exercise in humans. J Physiol.2005;563:285–90. https://doi.org/10.1113/jphysiol.2004.075838.
- 27. Febbraio MA. Alterations in energy metabolism during exercise and heat stress. Sports Med. 2001;31:47–59.
- 28. Binkley HM, Beckett J, Casa DJ, Kleiner DM, Plummer PE. National Athletic Trainers' Association position statement: Exertional heat illnesses. J Athl Train.2002;37:329–43.
- 29. Brisswalter J, Callardeau M, René A. Effects of acute physical exercise oncognitive performance. Sports Med. 2002;32:555–66. https://doi.org/10.1097/00005768-199701000-00009.
- 30 Linnane DM, Bracken RM, Brooks S, Cox VM, Ball D. Effects of hyperthermiaon the metabolic responses to repeated high-intensity exercise. Eur J Appl Physiol. 2004;93:159–66. https://doi.org/10.1007/s00421-004-1191-5.
- 31. Sharma HS. Interaction between amino acid neurotransmitters and opioidreceptors in hyperthermia-induced brain pathology. Prog Brain Res. 2007;162:295–317. https://doi.org/10.1016/S0079-6123(06)62015-3.
- 32. Ganio MS, Armstrong LE, Casa DJ, McDermott BP, Lee EC, Yamamoto LM, etal. Mild dehydration impairs cognitive performance and mood of men. Br J Nutr2011;106:1535–43. https://doi.org/10.1017/S0007114511002005.
- 33. Almeida RD, Prado ES, Llosa CD, Magalhães-Neto A, Cameron L-C. Acute supplementation with keto analogues and amino acids in rats during resistance exercise. Br J Nutr. 2010;104:1–5. https://doi.org/10.1017/S0007114510002321.
- 34. Bassini A, Magalhães-Neto AM, Sweet E, Bottino A, Veiga C, Tozzi MB, et al. Caffeine Decreases Systemic Urea in Elite Soccer Players During IntermittentExercise. Med Sci Sports. Exerc 2013;45:683–90. https://doi.org/10.1249/MSS.0b013e3182797637.

- 35. Collomp K, Candau R, Lasne F, Labsy Z, Préfaut C, De Ceaurriz J. Effects of short-term oral salbutamol administration on exercise endurance and metabolism. J Appl Physiol. 2000;89:430–6. https://doi.org/10.1136/bjsm.2007.039040.
- 36. del Barrio AS, García-Calonge MA, Fernández-Quintela A, Simón E, Portillo P. M, Astiasarán I, et al. Effects of the Beta-Adrenergic Agonist Salbutamol and Its Withdrawal on Protein Metabolism of Lambs. Ann Nutr Metab. 1995;39:317–24. https://doi.org/10.1159/000177879.
- 37. Bassini-Cameron A, Monteiro A, Gomes A, Werneck-de-Castro JPS, Cameron L. Glutamine protects against increases in blood ammonia in football players inan exercise intensity-dependent way. Br J Sports Med. 2007;42:260–6. https://doi.org/10.1136/bjsm.2007.040378.
- 38. Bessa A, Nissenbaum M, Monteiro A, Gandra PG, Nunes LS, Bassini-Cameron A, et al. High-intensity ultraendurance promotes early release of muscle injury markers. Br J Sports Med. 2008;42:589–93. https://doi.org/10.1136/bjsm.2007.043786.
- 39. Gonçalves LC, Bessa A, Freitas-Dias R, Luzes R, Werneck-de-Castro JPS, Bassini A, et al. A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. J Int Soc Sports Nutr. 2012;9:1–9. https://doi.org/10.1186/1550-2783-9-30.
- 40. Lima RCP, Camerino SRAS, França TCL, Rodrigues DSA, Gouveia MGS, Ximenes-Da-Silva A, et al. Keto analogues and amino acids supplementation induces a decrease of white blood cell counts and a reduction of muscle damageduring intense exercise under thermoneutral conditions. Food Funct.

- 2017;8:1519–25. https://doi.org/10.1039/c7fo00189d.
- 41. Barnes PJ. Beta-adrenoceptors on smooth muscle, nerves and inflammatory cells. Life Sci. 1993;52:2101–9. https://doi.org/10.1016/0024-3205(93)90725-i.
- 42. Barnes PJ. Effect of beta-agonists on inflammatory cells. J Allergy Clin Immunol. 1999;104:10–7. https://doi.org/10.1016/S0091-6749(99)70269-1.
- 43. Bassini A, Cameron LC. Sportomics: Building a new concept in metabolic studies and exercise science. Biochem Biophys Res Commun. 2014;445:708–16. https://doi.org/10.1016/j.bbrc.2013.12.137.
- 44. Camerino SRA e S, Lima RCP, França TCL, Herculano E de A, Rodrigues DSA, Gouveia MG de S, et al. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions. Food Funct. 2016;7:872–80. https://doi.org/10.1039/C5FO01054C.
- 45. Armstrong LE, Maresh CM, Castellani JW, Bergeron MF, Kenefick RW,LaGasse KE, et al. Urinary indices of hydration status. Int J Sport Nutr. 1994;4:265–79.
- 46. Casa DJ, Armstrong LE, Hillman SK, Montain SJ, Reiff R V., Rich BSE, et al.

 National Athletic Trainers' Association Position Statement: Fluid Replacementfor Athletes. J

 Athl Train. 2000;35:212–24. https://doi.org/10.4085/1062-6050-48.2.25.
- 47. Borg G a. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81. https://doi.org/10.1249/00005768-198205000-00012.
- 48. Cathcart AJ, Murgatroyd SR, McNab A, Whyte LJ, Easton C. Combined carbohydrate-protein supplementation improves competitive endurance exerciseperformance in the heat. Eur J Appl Physiol. 2011;111:2051–61. https://doi.org/10.1007/s00421-011-1831-5.

- 49. Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. Exertional heat illness during training and competition. Am Coll Sport Med. 2007;39:556–72. https://doi.org/10.1249/MSS.0b013e31802fa199.
- 50. Carvalho-peixoto J, Alves RC, Cameron L. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. ApplPhysiol Nutr Metab. 2007;32:1186–90. https://doi.org/10.1139/H07-091.
- 51. Prado ES, de Rezende Neto JM, de Almeida RD, Dória de Melo MG, Cameron L-C. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions. Br J Nutr. 2011;105:1729–33. https://doi.org/10.1017/S000711451000557X.
- 52. Monfort P, Cauli O, Montoliu C, Rodrigo R, Llansola M, Piedrafita B, et al. Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: Therapeutical implications. Neurochem Int. 2009;55:106–12. https://doi.org/10.1016/j.neuint.2009.01.021.
- 53. Nybo L. CNS fatigue provoked by prolonged exercise in the heat. Front Biosci(Elite Ed). 2010;2:779–92. https://doi.org/10.2741/e138.
- 54. Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain andfatigue; revisiting the link. Prog Neurobiol. 2010. https://doi.org/10.1016/j.pneurobio.2010.01.012.
- 55. Dickinson J, Hu J, Chester N, Loosemore M, Whyte G. Acute impact of inhaledshort acting B2-agonists on 5 km running performance. J Sport Sci Med. 2014;13:271–9.
- 56. Sanchez AMJ, Collomp K, Carra J, Borrani F, Coste O, Préfaut C, et al. Effect ofacute and short-term oral salbutamol treatments on maximal power output in non-asthmatic athletes. Eur J Appl Physiol. 2012;112:3251–8.

- https://doi.org/10.1007/s00421-011-2307-3.
- 57. Collomp K, Candau R, Lasne F, Labsy Z, Préfaut C, De Ceaurriz J. Effects of short-term oral salbutamol administration on exercise endurance and metabolism. J Apllied Physiol. 2000;89:430–6.
- 58. Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67:259–79. https://doi.org/10.1016/S0301-0082(02)00019-9.
- 59. Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, et al. Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl AcadSci U S A. 2003;100:5119–23. https://doi.org/10.1073/pnas.0831097100.
- 60. Brancaccio P, Maffulli N, Buonauro R, Limongelli FM. Serum EnzymeMonitoring in Sports Medicine. Clin Sports Med. 2008;27:1–18. https://doi.org/10.1016/j.csm.2007.09.005.
- 61. Davuluri G, Allawy A, Thapaliya S, Rennison HJ, Singh D, Kumar A, et al. Hyperammonemia induced skeletal muscle mitochondrial dysfunction results incataplerosis and oxidative stress. J Physiol. 2016;594:7341–60. https://doi.org/10.1111/j.1365-2958.2011.07903.x.
- 62. Pettersson J, Hindorf U, Persson P, Bengtsson T, Malmqvist U, Werkström V, etal. Muscular exercise can cause highly pathological liver function tests in healthymen. Br J Clin Pharmacol. 2008;65:253–9. https://doi.org/10.1111/j.1365-2125.2007.03001.x.
- 63. Tossige-Gomes R, Ottone VO, Oliveira PN, Viana DJS, Araújo TL, Gripp FJ, etal. Leukocytosis, muscle damage and increased lymphocyte proliferative response after an adventure sprint race. Brazilian J Med Biol Res. 2014;47:492–8. https://doi.org/10.1590/1414-431X20143187.
- 64. Craig TJ, Smits W, Soontornniyomkiu V. Elevation of creatine kinase from skeletal muscle associated with inhaled albuterol. Ann Allergy, Asthma Immunol. 1996;77:488–90. https://doi.org/10.1016/S1081-1206(10)63356-X.

- 65. Nybo L, Girard O, Mohr M, Knez W, Voss S, Racinais S. Markers of muscledamage and performance recovery after exercise in the heat. Med Sci Sports Exerc. 2013;45:860–8. https://doi.org/10.1249/MSS.0b013e31827ded04.
- 66. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar S, Shephard RJ, et al. Part two: Maintaining immune health. Int Soc Exerc Immunol. 2011;17:64–103.
- 67. Uzkeser H, Cadirci E, Halici Z, Odabasoglu F, Polat B, Yuksel TN, et al. Anti-inflammatory and antinociceptive effects of salbutamol on acute and chronic models of inflammation in rats: Involvement of an antioxidant mechanism. Mediators Inflamm. 2012;2012. https://doi.org/10.1155/2012/438912.
- 68. Laurent J, Guinot M, Le Roux Mallouf T, Marillier M, Larribaut J, Verges S. Effects of Acute Salbutamol Intake on Peripheral and Central Fatigue in TrainedMen. Med Sci Sports Exerc. 2018;50:1267–76. https://doi.org/10.1249/MSS.00000000000001565.
- 69. Elers J, Mørkeberg J, Jansen T, Belhage B, Backer V. High-dose inhaled salbutamol has no acute effects on aerobic capacity or oxygen uptake kinetics inhealthy trained men.

 Scand J Med Sci. Sport 2012;22:232–9. https://doi.org/10.1111/j.1600-0838.2010.01251.x.
- 70. Dickinson J, Molphy J, Chester N, Loosemore M, Whyte G. The ErgogenicEffect of Long-term Use of High Dose Salbutamol. Clin J Sport Med. 2014;24:474–81.
- 71. Resende NM, De Magalhães Neto AM, Bachini F, De Castro LEV, Bassini A, Cameron LC. Metabolic changes during a field experiment in a world-class windsurfing athlete: A trial with multivariate analyses. Omi A J Integr Bio.l 2011;15:695–704. https://doi.org/10.1089/omi.2011.0010.
- 72. Coelho WS, De Castro LV, Deane E, Magno-França A, Bassini A, Cameron LC. Investigating the cellular and metabolic responses of world-class canoeists training: A sportomics approach. Nutrients. 2016;8. https://doi.org/10.3390/nu8110719.
- 73. Newnham DM, McDevitt DG, Lipworth BJ. Comparison of the extrapulmonarybeta2-

adrenoceptor responses and pharmacokinetics of salbutamol given by standard metered dose-inhaler and modified actuator device. Br J Clin Pharmacol. 1993;36:445–50. https://doi.org/10.1111/j.1365- 2125.1993.tb00393.x.

- 74. Lipworth BJ. Pharmacokinetics of inhaled drugs. Br J Clin Pharmacol. 1996;42:697–705. https://doi.org/10.1046/j.1365-2125.1996.00493.x.
- 75. Pillard F, Lavit M, Cances VL, Rami J, Houin G, Didier A, et al. Medical and pharmacological approach to adjust the salbutamol anti-doping policy in athletes.Respir Res. 2015;16:1–10. https://doi.org/10.1186/s12931-015-0315-2.
- 76. Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of peripheral thermometers for estimating temperature: A systematic review and meta-analysis. Ann Intern Med. 2015;163:768–77. https://doi.org/10.7326/M15-1150.

Figure Legends

Figure 1: Salbutamol increased ammonemia in response to exercise in most individuals. Athletes exercised for 21.1 km under heat stress after inhalation of either salbutamol (SEx; ●) or placebo (PEx, ○). Data are expressed as absolute values, before (PreR) and after (PostR) the race (A and B) and normalized according to the subject pre-exercise concentration (C and D).

Figure 2: Salbutamol decreased the total blood urea raise due to exercise. Athletes exercised for 21.1 km under heat stress after inhalation of either salbutamol (SEx; ●) or placebo (PEx, ○). Data are expressed as absolute values, before (PreR) and after (PostR)the race (A and B) and normalized according to the subject pre-exercise concentration (Cand D).

Figure 3: Salbutamol diminished the raise in glycemia due to exercise in most individuals. Athletes exercised for 21.1 km under heat stress after inhalation of either salbutamol (SEx; ●) or placebo (PEx, ○). Data are expressed as absolute values, before (PreR) and after (PostR) the race (A and B) and normalized according to the subject pre-exercise concentration (C and D).

Table Legends

Table 1: Body temperature and hydration markers in the Sex and PEx groups before (PreR) and after (PostR) the race. Values are expressed as the mean \pm SEM. ERT: equivalent rectal temperature. Δ % BM: body mass change percentage. USG: urinespecific gravity. * Significant changes between PreR and PostR, within the groups (P < 0.05).

Table 2: Biochemical parameters in the SEx and PEx groups before (PreR) and after (PostR) the race. Values are expressed as the mean \pm SEM. * Significant changes betweenpre- and post-race, within the groups (P < 0.05). † Significant changes between SEx PostR - SEx PreR vs PEx PostR - PEx PreR (Δ SEx vs Δ PEx) (P < 0.05). # Significant changes between Δ urea/ammonia ratio SEx vs Δ Urea/Ammonia ratio PEx (P < 0.05).

Table 3: Enzyme biomarkers of muscle damage in the SEx and PEx groups before (PreR) and after (PostR) the race. Values are expressed as the mean \pm SEM. * Significant changes between PreR and PostR, within the groups (P < 0.05).

Table 4: White blood cell counts in the SEx and PEx groups before (PreR) and after (PostR) the race. Values are expressed as the mean \pm SEM. * Significant changes betweenPreR and PostR, within the groups (P < 0.05). \$ Significant changes between SEx PostRand PEx PostR (P < 0.05).

Table 1 Body temperature and hydration markers in the SEx	and PEx groups before
(PreR) and after (PostR) the race	

	SEx		PEx	
	PreR	PostR	PreR	PostR
ERT (°C)	37.0 ± 0.2	$37.6 \pm 0.1*$	37.2 ± 0.2	$37.8 \pm 0.1*$
$\Delta\%$ BM	-	-1.84 ± 0.77	-	-2.48 ± 0.65
Urine color	4.7 ± 0.4	6.2 ± 0.4	4.8 ± 0.6	5.4 ± 0.9
USG	1020.7 ± 2.5	1022.1 ± 2.1	1019.2 ± 1.7	1019.5 ± 2.6

Values are expressed as the mean \pm SEM. ERT: equivalent rectal temperature. $\Delta\%$ BM: body mass change percentage. USG: urine specific gravity. * Significant changes between PreR and PostR, within the groups (P < 0.05)

Table 2 Biochemical parameters in the SEx and PEx groups before (PreR) and after (PostR) the race

	SEx		PEx	
	PreR	PostR	PreR	PostR
Ammonia(µmol/L)	33.5 ± 7.0	113.2 ± 7.6*†	54.2 ± 8.2	110.6 ± 7.2*†
Urea (mmol/L)	3.8 ± 0.3	4.8 ± 0.5 *	4.0 ± 0.4	$5.4 \pm 0.4*$
Δ Urea/ammonia ratio	-	0.012 ± 0.004	-	$0.031 \pm 0.007^{\#}$
Urate (µmol/L)	288.9 ± 27.3	$354.\ 3 \pm 30.3*$	259.1 ± 30.9	$343.\ 2 \pm 29.3*$
Glucose (mmol/L)	4.4 ± 0.3	4.9 ± 0.4	4.7 ± 0.3	6.3 ± 1.0
Lactate (mmol/L)	2.2 ± 0.4	$5.1 \pm 0.5*$	2.4 ± 0.3	$5.1 \pm 0.8*$

Values are expressed as the mean \pm SEM. * Significant changes between pre- and post-race, within the groups (P < 0.05). † Significant changes between SEx PostR - SEx PreR vs PEx PostR - PEx PreR (Δ SEx vs Δ PEx) (P < 0.05). # Significant changes between Δ urea/ammonia ratio SEx vs Δ Urea/Ammonia ratio PEx (P < 0.05)

Table 3 Enzyme biomarkers of muscle damage in the SEx and PEx groups before (PreR) and after (PostR) the race

	SEx		PEx	
	PreR	PostR	PreR	PostR
CK (µkat/L)	2.6 ± 0.3	3.9 ± 0.3*	3.2 ± 0.5	4.5 ± 0.7 *
LDH (µkat/L)	5.1 ± 1.2	$6.7 \pm 1.6*$	5.9 ± 1.3	7.1 ± 1.6
AST (µkat/L)	0.4 ± 0.8	$0.5 \pm 0.7*$	0.4 ± 0.1	0.6 ± 0.1 *
ALT (µkat/L)	0.3 ± 0.8	0.3 ± 0.8	0.3 ± 0.1	0.3 ± 0.1

Values are expressed as the mean \pm SEM. * Significant changes between PreR and PostR, within the groups (P < 0.05)

Table 4 White blood cell counts in the SEx and PEx groups before (PreR) and after (PostR) the race

_	SEx		PEx	
	PreR	PostR	PreR	PostR
Leukocytes (x10 ⁹ /L)	6.75 ± 0.76	13.00 ± 2.18 *	5.85 ± 0.41	11.35 ± 1.75 *
Neutrophils	2.92 ± 0.60	$9.25 \pm 1.69*$	2.72 ± 0.34	$7.84 \pm 1.02*$
Eosinophils	0.24 ± 0.06	0.23 ± 0.03	0.16 ± 0.03	0.21 ± 0.04
Basophils	0.03 ± 0.02	0.08 ± 0.05	0.04 ± 0.02	0.09 ± 0.02
Lymphocytes	2.91 ± 0.36	$2.55 \pm 0.27^{\$}$	3.13 ± 0.43	3.28 ± 0.19
Monocytes	0.32 ± 0.07	0.66 ± 0.11 *	0.26 ± 0.07	$0.55 \pm 0.14*$

Values are expressed as the mean \pm SEM. * Significant changes between PreR and PostR, within the groups (P < 0.05). \$ Significant changes between SEx PostR and PExPostR (P < 0.05).

CONCLUSÃO

Entre as análises do metabolismo de aminoácidos e produção de amônia, nãoforam encontradas vias para a produção de amônia através da abordagem esportomica. No entanto, foi identificado a produção de hawkinsina e ácido arginínico, sugerindo adescoberta de novos marcadores com potencial de promover danos ao desempenho.