
Undergraduate Final Project

A Computational
Approach to
Screen Scratch
Detection and
Analysis for
Improved
Maintenance of
LCD Terminals
Hiago Lopes Cavalcante

advised by

Prof. Dr. Tiago Figueiredo Vieira

Universidade Federal de Alagoas
Institute of Computing

Maceió, Alagoas
September 27th, 2024

UNIVERSIDADE FEDERAL DE ALAGOAS

Institute of Computing

A COMPUTATIONAL APPROACH TO SCREEN SCRATCH
DETECTION AND ANALYSIS FOR IMPROVED

MAINTENANCE OF LCD TERMINALS

Undergraduate Final Project submited to

the Institute of Computing at the Universi-

dade Federal de Alagoas as a partial require-

ment for obtaining the degree of Computer

Engineer.

Hiago Lopes Cavalcante

Advisor: Prof. Dr. Tiago Figueiredo Vieira

Examining Board:

Erick de Andrade Barboza Prof. Dr., UFAL

Ícaro Bezerra Queiroz de Araújo Prof. Dr., UFAL

Maceió, Alagoas
September 27th, 2024

Catalogação na Fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767

 C376c Cavalcante, Hiago Lopes.
 A computational approach to screen scratch detection and analysis

for improved maintenance of LCD terminals / Hiago Lopes
Cavalcante. – 2024.

 29 f. : il.

 Orientador: Tiago Figueiredo Vieira.
 Monografia (Trabalho de conclusão de curso em Engenharia de

Computação) - Universidade Federal de Alagoas, Instituto de Computação.
Maceió, 2024.

 Texto em inglês.

 Bibliografia: f. 28-29.

 1. YOLOv8 (Detecção de objetos). 2. Cartão de crédito - Terminais
(Computador). 3. Inspeção visual automática. 4. Visão computacional. I.
Título.

 CDU: 004.35

HIAGO LOPES CAVALCANTE

18112108

Screen Scratch Detection and Analysis for Improved Maintenance of LCD Terminals

2087442 - TIAGO FIGUEIREDO VIEIRA

2343385 - ERICK DE ANDRADE BARBOZA

2995499 - ICARO BEZERRA QUEIROZ DE ARAUJO

27 09 2024 9,0 Nove

Acknowledgements

Firstly, I wish to express my heartfelt gratitude to my parents for the countless opportu-

nities they have provided me throughout my undergraduate studies. I am deeply indebted

to my family for their unwavering love and support. In particular, I would like to thank

my mother, Sysleide, and my father, Hélvio, for their lifelong dedication to my personal

growth and education. I would also like to extend my sincere thanks to my godparents,

Luciene and José, whose encouragement and influence have played a significant role in

shaping my academic journey.

I want to express gratitude for the friendships I cultivated throughout this period and

prior, they were fundamental throughout the process: Luana, Bruna, João Pedro, John,

Lucas Massa, Jhonnye, Hugo, Cabral, Mateus, Ruan, Marcus, Naricla, Raquel, Chrys,

and Yana.

I am grateful to the entire teaching staff and other employees at the Computing In-

stitute. I would like to express my sincere gratitude to my advisor, Dr. Tiago Figueiredo

Vieira, for providing unwavering support and insightful feedback, inspiring me to strive

for excellence. I would also like to thank Professor Erick Barboza for introducing me to

academic research and encouraging me to continue pursuing research and developing my

skills.

September 27th, 2024, Maceió - AL

Resumo

Fabricantes de terminais de cartão de crédito e débito emprestam seus produtos aos

varejistas, atribuindo a responsabilidade pela reparação ou substituição dos dispositivos

pós-verificação de defeitos funcionais, ou estéticos. Um operador loǵıstico, que processa

cerca de dez mil produtos diariamente, deve avaliar a condição de cada dispositivo por

meio de testes e inspeções visuais manuais. Dependendo da avaliação, um terminal pode

ser devolvido ao cliente ou enviado ao centro técnico do fabricante para reparo. Este

processo de inspeção é altamente subjetivo e propenso a erros humanos, pelo fato de que

diferentes operadores podem avaliar o mesmo dispositivo de maneira inconsistente. Para

resolver essas inconsistências, desenvolvemos um sistema de inspeção visual para avaliar

as condições das telas LCD desses terminais de pagamento. O hardware inclui uma estru-

tura impressa em 3D para otimizar a aquisição de imagens, um esquema de iluminação

ativa e uma câmera para a obtenção das imagens dos terminais. A aplicação desktop

integra um modelo de detecção de objetos YOLOv8, treinado com os nossos dados, para

destacar defeitos na tela dos terminais, que possui por uma interface intuitiva com várias

funcionalidades. Esse sistema melhorou a eficiência e a precisão das inspeções, proporcio-

nando aos operadores uma ferramenta confiável que garante consistência. O modelo final

alcançou uma precisão média (mAP) de 77,4% e uma velocidade de processamento de 88

milissegundos em CPU. Além disso, a interface da aplicação em tempo real oferece us-

abilidade de baixa latência, aprimorando mais o processo de inspeção. Após um rigoroso

treinamento e testes do modelo, realizados em colaboração com o fabricante dos terminais,

o sistema demonstrou sua confiabilidade para implantação em ńıvel de produção.

Palavras-chave: Detecção de Objetos, Terminais de Cartão de Crédito, In-

speção Visual, YOLOv8, Visão Computacional.

vi

Abstract

Manufacturers of credit and debit card terminals lend their products to retailers, re-

taining responsibility for repairing or replacing devices upon verification of malfunctions

or cosmetic defects. The logistic operator, which processes up to ten thousand products

daily, must assess each device’s condition through tests and manual visual inspections.

Depending on the evaluation, a terminal may be returned to the client or sent to the

manufacturer’s tech center for repair. This inspection process is highly subjective and

prone to human error, as different inspectors may assess the same device inconsistently.

To address these inconsistencies, we developed a visual inspection system specifically for

evaluating the LCD conditions of payment terminals. The hardware includes a 3D-printed

structure to optimize image acquisition, an active illumination scheme, and a camera to

capture images of the terminals. The web application features a YOLOv8 object detec-

tion model to highlight defects on the terminal’s screen, complemented by a user-friendly

interface with various functionalities. Our system significantly improved the efficiency

and accuracy of inspections, providing operators with a reliable tool that ensures con-

sistency. The final model achieved a mean Average Precision (mAP) of 77.4% and a

processing speed of 88 milliseconds on CPU. Additionally, the real-time application inter-

face offers low-latency usability, further enhancing the inspection process. After thorough

model training and testing conducted in collaboration with the terminal manufacturer,

the system has demonstrated its reliability for deployment at the production level.

Keywords: Object Detection, Credit Card Terminals, Visual Inspection,

YOLOv8, Computer Vision.

vii

List of Figures

1.1 Examples of mura in TFT LCDs. Source: Li et al. (2012) 2

2.1 Example of a neural network, including the input layer, hidden layers, and

output layer. Source: Yuste (2015) . 5

2.2 Description of the XOR problem. The separation is not possible using a

linear approach. Source: Image from internet. 5

2.3 Graphical representation of Stochastic Gradient Descent (SGD). Source:

Wagh (2022). 6

2.4 Example of convolution operating within an image. Source: Gu et al. (2015). 7

2.5 Example of pooling operation. Source: Author. 8

2.6 Example of the YOLO pipeline, setting bounding boxes and class proba-

bilities to configure the final detections. Source: Redmon et al. (2016). . . 8

2.7 Performance comparison of YOLO versions over the years. Source: Ultra-

lytics (2023). 9

2.8 Precision-recall curve from a training using YOLOv8. Source: Author, 2023. 11

3.1 Final design of booth designed for this project. Source: Author. 13

4.1 Examples of images from the database used in the project. Source: Author. 16

4.2 Example of the screen from the database with artificial scratches. Source:

Author. 17

4.3 Example of the screen with a scratch and its manually made annotation.

Source: Author. 18

4.4 Example of an image from the database Internet BI-400 of cellphone

screens with scratches. Source: Zhang et al. (2022). 18

4.5 Precision curve of the best training. Source: Author. 20

4.6 Recall curve of the best training. Source: Author. 20

4.7 mAP50 curve of the best training. Source: Author. 21

4.8 Home screen of application. Source: Author. 22

4.9 Camera settings screen on application. Source: Author. 22

4.10 Example of inspection from application. Source: Author. 23

4.11 Screen with old inspections on application. Source: Author. 23

viii

4.12 Example of a report generated by the application. Source: Author. 24

4.13 Resulting image and detection obtained from the model. Source: Author. . 25

ix

List of Symbols

α Learning rate.

|B| Batch size

σ Activation Function

L Loss function.

W Image width.

H Image height.

x

List of Abbreviations

YOLO You Only Look Once

mAP Mean Average Precision

AI Artificial Intelligence

FPS Frames Per Second

IoU Intersection over Union

GIoU Generalized Intersection over Union

CNN Convolutional Neural Network

TFT Thin Film Transistor

LCD Liquid Crystal Display

XOR Exclusive OR

DPMs Deformable Part Models

R-CNNs Region-based Convolutional Neural Networks

LED Light-emitting Diode

GPU Graphics Processing Unit

PCB Printed Circuit Board

xi

Summary

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.2.1 General Objectives . 2

1.2.2 Specific Objectives . 2

1.3 Work Organization . 3

2 Theoretical Foundation 4

2.1 Neural Networks and Deep Learning . 4

2.2 Convolutional Neural Networks . 6

2.3 Evaluation Metrics . 9

2.3.1 IoU . 9

2.3.2 Precision . 10

2.3.3 Recall . 10

2.3.4 Mean Average Precision (mAP) . 11

3 Methodology 12

3.1 Data Collection . 12

3.1.1 Hardware . 12

3.1.2 Pipeline for Data Acquisition . 13

3.2 Data Preprocessing . 14

3.3 Model architecture . 14

3.4 Training . 15

3.5 Deployment . 15

4 Results and Discussions 16

Bibliografia 28

xii

Chapter 1

Introduction

Engaging with the constant transformations and challenges of our contemporary world,

society is influenced by new technologies that bring innovation to many fields and is

affected by their impact every second. Hwang (2018) says that artificial intelligence is a

key point in these scenarios since it is incorporated in multiple areas and has had many

breakthroughs through research that built inventions, which has assisted many working

fields, including object detection.

Object detection is an important task widely adopted in many scenarios, focused on

detecting instances of objects in images, from industry prototypes to assist their workers

and responsibilities to personal use through a mobile application, for example. Through-

out the years, the fast evolution of deep learning techniques has improved and created

many approaches to multiple challenges in object detection [Zou et al. (2023)], which has

been responsible for the advances in various contemporary and traditional applications,

such as autonomous driving, facial recognition, and anomaly detection.

Following the preceding, it is explicit the uses and applications of object detection

using neural networks and traditional techniques for a long time. Such approaches are

well perceived and will promote many new methodologies, including defect detection in

many devices using computational power to identify these objects, which introduces a

new outlook for the field.

1.1 Motivation

In light of object detection breakthroughs, device maintenance has been one area that has

utilized these improvements, especially in repair centers where various tasks are executed

manually. With the promotion of deep learning pipelines, these tasks can be accelerated

and are suitable for automation, assisting operators with their reports and creating a new

environment for repairing devices.

To ensure the quality of devices entering the market, cosmetic defect detection is a

critical process in the industry. It is responsible for detecting any type of visual defects

1

Objectives 2

in products prior and after release. These defects can be categorized as mura, a Japanese

word meaning blemish, adopted in English to name imperfections of a display that are

seemingly visible. There are multiple types of mura defects, such as line mura, dot mura,

area mura, among others.

Figure 1.1: Examples of mura in TFT LCDs. Source: Li et al. (2012)

As these industry devices become more complex with different materials and textures,

defect detection is becoming an even more intricate challenge, especially considering the

specific purpose of each device in each company. Within these concepts, cosmetic defect

inspection in devices appears as decisive in enhancing the efficacy of repair centers in

industry as its benefits bring much value to many contexts, creating a faster and more

precise solution, as much as a well-defined methodology for solving said obstacles.

Despite that, the defect detection process still decays in terms of precision, since oper-

ators might have a divergence of manual inspections on the same device. This ambiguity

and the ongoing exchange of detections on the same device may also influence the pace of

these procedures. These challenges inspire a necessity for a different approach to object

detection, using neural networks, considering how versatile and robust it works[Zhao et al.

(2019)].

1.2 Objectives

1.2.1 General Objectives

This project involves developing an application approaching the detection of scratches on

powered off LCD screens of credit card machines in a desktop application, in order to

provide notable data to the operator in a commercial environment.

1.2.2 Specific Objectives

1. Obtain terminals for data collection.

Work Organization 3

2. Build the booth fit for the terminals.

3. Seek and select state-of-the-art, open-source computer vision models focused on

detection through a literature review.

4. Organize and train scratch detection models on screens.

5. Evaluate the trained models and integrate the one with the best exhibiting optimal

performance into the application.

1.3 Work Organization

This work was organized into chapters that report the steps followed during the devel-

opment of the solution, going into theoretical details and application of the technologies

involved. In Chapter 1, it is described the motivation behind this work, followed by

its objectives and background contexts for the development of this project. In the next

chapter, it is provided a framework for understanding the subjects approached in this

work, serving as the basis for our analysis and interpretation of gathered information,

defined as the theoretical foundation chapter (Chapter 2). In this chapter, it is shown

the concepts of neural networks, convolutions, and evaluation metrics used in this work.

In succession, a detailed sequence of steps is presented, known as methodology, outlining

the project’s progression. This includes explanations of the tools employed, the methods

for data collection and processing, the techniques for obtaining the results, the details

of the model’s architecture, and deployment stages. These steps were essential to ensure

better reproducibility in future research and can be found in Chapter 3. Subsequently,

the results and discussions chapter is introduced, presenting the findings throughout the

entire project, with a description of each step and its corresponding outcome deriving

from the methodology displayed in the chapter 3. Also, this chapter exhibits the issues

raised during the project’s duration, descriptions of the datasets obtained and their results

after training, and details of the desktop application where the model was integrated. At

last, there are the conclusions about this work, exhibiting the approaches and results in

a summarized manner.

Chapter 2

Theoretical Foundation

In this chapter, we introduce the fundamental concepts applied in this work, including neu-

ral networks, their history, structure, and functionality of neurons. In the same prospect,

we address the challenges during neural network training, in the means of detecting these

problems and assessing how to resolve them. Later, the focus shifts to convolution and its

application on neural networks, with convolutional neural networks, also known as CNNs,

their complexity and frequent use in computer vision tasks, such as pattern recognition

and anomaly detection. Furthermore, evaluation metrics will be introduced, measuring

and validating the performance of the trained models, including precision, recall, and

mAP. Within the scope of these topics, best practices for implementing and training

neural networks are explored in this chapter as well.

2.1 Neural Networks and Deep Learning

Neural networks and deep learning have transformed multiple technological domains,

achieving milestones that have impacted the society we inhabit. Deep learning can be

described as a remarkable standard in machine learning, since it has outperformed some

traditional techniques in domains such as cybersecurity, robotics, natural language pro-

cessing, and still has a broad range of classic applications using its techniques [Alzubaidi

et al. (2021)]. Deep learning models have their roots in biological systems and classic lin-

ear models. Based on artificial neural networks, these models seek to emulate the brain’s

structure and functionality through the training of deep multilayer networks, thereby

allowing AI systems to execute intricate tasks [Wang et al. (2017)].

The first concepts of neural networks can be traced back many decades ago, inspired

by the structure and functionality of the human brain, especially the biological neurons.

In a biological neuron, dendrites receive input signals from other neurons, process and

transmit through the axon to other neurons.

In the 1940s and 1950s, the concept of the perceptron by Frank Rosenblatt and the

establishment of an initial computational model of a neuron was essential to the advance-

4

Neural Networks and Deep Learning 5

ments of the subject in question. A perceptron can be described as a simple artificial

neuron, designed for binary classification. It operates by taking input values, applying

weights to them and their sum, passing the result through an activation function, and

generating an output value, similar to the biological neuron. The development of the

perceptron has laid the foundation for more complex neural network architectures and

has influenced the field of deep learning. By demonstrating its potential for learning,

adapting, and improving, the perceptron paved the way for the creation of many deep

learning models [Rosenblatt (1958)].

Figure 2.1: Example of a neural network, including the input layer, hidden layers, and
output layer. Source: Yuste (2015)

However, a significant limitation of the perceptron is its inability to solve nonlinear

problems, such as the XOR problem (see Figure 2.2), which involves a binary classifica-

tion task where the output is true only if the inputs are different. Using a single-layer

perceptron, the data points are not linearly separable, which means this model cannot

complete this task on its own. The lack of capability of the perceptron to handle nonlinear

problems highlighted the urge for more complex architectures, leading to the development

of multilayer neural networks, or multilayer perceptrons (MLPs), and other architectures

[Yanling et al. (2002)].

Figure 2.2: Description of the XOR problem. The separation is not possible using a linear
approach. Source: Image from internet.

As a last enhancement to initial neurons, we have a neural network. A neural network

Convolutional Neural Networks 6

is a computational model compiled in nodes, known as neurons, and layers connecting

these nodes, as seen in Figure 2.1. The workflow in this structure involves setting data

in the input layer, which will pass through the hidden layers with weights and biases

applied, propagating throughout the entire network and performing linear and nonlinear

operations, then finally generating a result from the output layer. This pipeline describes

the forward propagation and will be essential to improve the learning of the network.

Subsequent evolutions, especially the introduction of the backpropagation algorithm

in the 1980s, significantly enhanced the training of these networks. The use of back-

propagation in neural networks provided an efficient way of calculating the gradient of

the loss function by inspecting the network weights, making error optimization easier.

Specifically, the loss is propagated backward through the network to calculate gradients,

applying the chain rule and computing the derivative of the loss in the means of each

weight and bias. Then, using these gradients, the network can now update the weights to

optimize the loss. Optimization algorithms like Stochastic Gradient Descent (SGD), as

seen in Figure 2.3, are frequently used to promote these calculations [Bottou (2012)]. In

summary, backpropagation aids and maintains robustness in training, ensuring that the

network is learning and addressing incorrect outputs based on its previous weights.

Figure 2.3: Graphical representation of Stochastic Gradient Descent (SGD). Source:
Wagh (2022).

Nonetheless, it was not until the early 21st century, with the advent of powerful

computational resources and large datasets, that deep learning began to thrive. These

technological evolutions enabled the development of deep neural networks capable of pro-

cessing and learning from large amounts of data, leading to achievements in many fields

such as computer vision, natural language processing, and autonomous systems.

2.2 Convolutional Neural Networks

Complex problems may require complex solutions, especially when dealing with large-scale

data like images, videos, or audio. In a society where data is generated and transmitted

Convolutional Neural Networks 7

at an exponential rate, it is necessary to develop efficient approaches to these types of

data. When using high-quality images in neural networks, for example, its size usually will

define the dimension of the input, and considering a black and white image of 1000×1000

pixels, it’s a 106 size input layer. When scaling upwards, these inputs might make the

learning process more complex using the classic approaches. This is when a new concept

is introduced: convolution.

s[i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[i+m, j + n]K[m,n] (2.1)

A convolution is a mathematical operation that lays the foundation of convolutional

neural networks. It consists in passing a kernel matrix K, usually of size n× n, applying

a weighted sum of each term of the kernel and each pixel of the image matrix I, as seen in

the expression 2.1. When each pixel is multiplied by its corresponding term in the kernel,

the sum of these calculations will replace the value of the n × n pixels over which the

kernel has passed [Goodfellow et al. (2017)], as can be seen in Figure 2.4.

Figure 2.4: Example of convolution operating within an image. Source: Gu et al. (2015).

After a convolution is applied to an image, the resulting matrix representing the

input image will exhibit a decrease in its dimensions. As a result, this dimensionality

reduction will be one of the primary reasons for the creation and widespread usage of

convolutional neural networks (CNNs), assisting models in converging results. Also, small

and meaningful features such as edges can be detected by making the kernel smaller than

the input. In this way, we reduce the memory and quantity of operations requirements

of the model and improve its statistical efficiency. Within this context, convolutional

neural networks (CNNs) are a special type of neural network for processing data that has

a known, grid-like topology [Goodfellow et al. (2017)].

Generally used for problems involving images, a CNN has a specific structure dedicated

to dimensionality reduction, detailed feature extraction, and spatial hierarchy preserva-

tion, which consists of three main stages: convolution, activation, and pooling. After the

convolution, each modified input will pass through a nonlinear activation function, similar

to a classic neural network, and then modify the output of this layer on the pooling layer.

A pooling layer will be tasked with changing the value of a region of the output with a

Convolutional Neural Networks 8

statistic computation of the nearby values. For example, the mean pooling operator will

modify the value of certain regions of the output to its mean value. If the output from

the convolution is a 16× 16 grid, a mean pooling might operate through windows of 2× 2

values divided equally into four regions from the grid, resulting in a new grid with size

2 × 2, which will be passed to the next layer and so on. An example of pooling can be

seen in Figure 2.5.

Figure 2.5: Example of pooling operation. Source: Author.

As a result of the evolution of convolutional neural networks, many architectures

were developed throughout the years, with a primary focus on improved performance

and minimizing inference time. Considering these advances, a new architecture arises

with better performance for object detection using CNNs: YOLO. ”You Only Look

Once: Unified, Real-Time Object Detection”, by Redmon et al. (2016), introduced a

new approach to unified object detection, achieving good performance and better FPS

compared to other state-of-the-art models at the time.

Figure 2.6: Example of the YOLO pipeline, setting bounding boxes and class probabilities
to configure the final detections. Source: Redmon et al. (2016).

YOLO redefines object detection as a singular regression task, mapping image pixels

to bounding box coordinates and class probabilities, which achieves high speed. Unlike

sliding window and region proposal-based methods, such as DPMs and R-CNNs, YOLO

conducts a global analysis of the image when making predictions and processes the entire

image during both training and testing phases, inherently encoding contextual information

during training. In summary, YOLO divides the input image into an S × S grid. The grid

Evaluation Metrics 9

cell in which the center of an object is located is responsible for detecting that object, as

is shown in figure 2.6.

In the means of improvements, YOLO has evolved gradually since its first launch

(v1). With the new versions launching, many features were introduced, improving effi-

ciency and utility, including handling higher-resolution images, implementation of anchor

boxes, changes in the backbone, new activation functions for faster convergence, new

functionalities such as image segmentation and pose detection [Ultralytics (2023)]. As a

major feature, it introduces multiple-scale detection, making it easier to detect objects

of different sizes. Also, implemented different IoU loss calculations, such as GIoU, a

new computation of Intersection over Union (IoU) that considers the size and shape of

bounding boxes, which will improve the precision of detections [Li et al. (2022)].

In the Figure 2.7, it is explicited the difference in performance between the YOLO

models for each version (v5, v6, v7, and v8) and size (n, s, m, l, and x). The nano model

(n) is usually the fastest and lightest in parameters among the models.

Figure 2.7: Performance comparison of YOLO versions over the years. Source: Ultralytics
(2023).

2.3 Evaluation Metrics

This section introduces the metrics used in this project, aiming to demonstrate the model’s

performance after the training, validation, and testing phases. Among the metrics, we de-

fine precision, recall, and mAP, which are widely used in object detection pipelines. In the

same prospect, we evaluate the impact of these metrics in the results, intending to assert

value on evaluations and maintain the robustness of future outcomes and evaluations.

2.3.1 IoU

The Intersection Over Union metric (IoU), as seen in the expression 2.2, measures the

accuracy of an object detector, where P is the predicted bounding box and GT is the

ground-truth bounding box. It represents a ratio between the overlap region between the

bounding boxes and the union of these areas.

Evaluation Metrics 10

IoU =
P ∩GT

P ∪GT
(2.2)

2.3.2 Precision

As a metric, precision can be described as the proportion of true positive (TP) items

among all positive detections made by the model, including true positives (TP) and false

positives (FP). This means this metric measures the accuracy of the positive predictions

along all detections. For a better description, the metric may be calculated as follows:

Precision =
TP

TP + FP

2.3.3 Recall

Recall can be described as the proportion of true positive (TP) items among all actual

positive cases, including true positives (TP) and false negatives(FN). This means this

metric measures how well the model correctly detects negative instances of detection. For

a better description, the metric may be calculated as follows:

Recall =
TP

TP + FN

Evaluation Metrics 11

2.3.4 Mean Average Precision (mAP)

mAP, which stands for Mean Average Precision, calculates the average precision for each

class that the model can identify. In this work, mAP50 was used in major cases as

an evaluative metric, which considers an intersection of 50% between the predicted and

actual bounding boxes (Intersection over Union, IoU). This metric amplifies the initial

concept by computing the metric across multiple object classes. For a better description,

the metric may be calculated as the area under the curve of metrics cited above, precision

and recall, considering a threshold on confidence. An example of the computation of this

metric may be observed in figure 2.8:

Figure 2.8: Precision-recall curve from a training using YOLOv8. Source: Author, 2023.

Chapter 3

Methodology

In this chapter, we introduce the methodology applied in this work, including a description

of the hardware utilized in this project, steps for data collection, describing how the

images were obtained for training and evaluation, and restrictions for dataset creation

and processing. In the same prospect, a stage of data preprocessing was necessary for the

construction of the dataset, as much as a description of the architecture defined for this

work and training, for future analysis and integration into the solution.

3.1 Data Collection

In this section, we discuss the process of acquiring images for training, a description of the

hardware used in data collection and training, and the pipeline describing all the steps

for dataset creation.

3.1.1 Hardware

For the hardware for data collection, a booth was designed and built with the help of a

3D printer, aiming at the fitting of a credit card machine terminal, specifically the model

Move 5000. It has a placement tailored for this model and is designed to have an interior

as dark as possible, enhancing the visualization on the display. To assist the booth with

better lighting, two green LED lights were placed vertically inside the booth, one for each

side of the terminal.

For the data collection, a low-cost webcam is necessary and should have an easy way

of integrating with the application and fitting over the booth. In the means of light

management, a PCB was designed and linked with a microcontroller for lighting control.

Using a PCB for this purpose assists the user by assuring a controlled environment, where

the application has access to lighting control directly instead of the user.

In the means of training, a laptop and a desktop trained the models, each on their

specific purpose and scale. The laptop has the GPU NVIDIA RTX 3060 and the desktop

12

Data Collection 13

Figure 3.1: Final design of booth designed for this project. Source: Author.

uses an NVIDIA RTX 3090. Since the desktop is built as a machine learning rig, designed

for training with large datasets, consequently, it is the primary computer chosen for

training in this work.

3.1.2 Pipeline for Data Acquisition

For data acquisition, the steps consisted of setting the webcam enclosed on top of the

booth, turning on the lights inside, and capturing the images as pictures and videos using

a computer. This procedure demands a level of caution, as any noise can interfere with

data collection and corrupt the database properties.

After the images are stored on a PC, we need to annotate all video frames and images

for training. This procedure requires a tool to facilitate this process, which highlights

the functionalities and robustness of CVAT. Computer Vision Annotation Tool CVAT.ai

Corporation (2023), also known as CVAT, is a tool designed for annotation of various

sources of image data and different deep learning formats, such as PASCAL, COCO,

YOLO, and onwards.

This tool makes selecting and framing bounding boxes easier through an intuitive and

fast interface accessed through their website or Docker container [CVAT.ai Corporation

(2023)]. In the context of annotations for the YOLO architecture, it is essential to keep

consistency in the file format across the dataset. A YOLO label file is defined as a file with

the input name and populated with 5-size tuples containing five numbers: class label, x

center, y center, width, and height coordinates of the bounding box. These values follow

a precise format where all values are normalized based on the maximum image width and

height value. The calculations for these values go as follows:

Data Preprocessing 14

Xcenter =
Xmin +Xmax

2 ∗Wimage

Ycenter =
Ymin + Ymax

2 ∗Himage

Wbox =
Xmax −Xmin

Wimage

Hbox =
Ymax − Ymin

Himage

After annotating all the data, the dataset is split into two parts: training and valida-

tion. For the training section, we configure a threshold of 60 to 70% of the entire dataset

to its usage, including images and labels in YOLO format, already provided by CVAT

after annotation. In the same prospect, the other 40/30% of the dataset is allocated to

the validation section. A threshold is outlined in this work to ensure that multiple sizes

and structures of datasets were built throughout the project duration, varying the ratio

of training/validation dataset sizes.

3.2 Data Preprocessing

For the data preprocessing, some procedures were executed, including data augmentation.

The data preprocessing procedures were executed in the programming language Python

for easier replicability and experiment testing. In the data augmentation phase, the

Python library Albumentations operated in the dataset, alternating between changes in

brightness, rotation, translation, and tuples mixing these operations.

The second approach involved creating artificial scratches on the screens of the ter-

minals. Using a sharp tool, some scratches were made on these screens to expand the

dataset by adding images to those that already existed. This approach follows a series of

extra details involving some new textures of scratches [Wunsch et al. (2023)], since those

from real-life usage are quite smooth and smaller compared to hand-made scratches.

3.3 Model architecture

YOLOv8 (version 8) is a state-of-the-art architecture that represents various improve-

ments from the initial model from 2015. It presents many key innovations aiming at bet-

ter speed and accuracy on detection tasks. Recognized across industries, this architecture

is acknowledged for its proficiency in achieving real-time performance while preserving

consistency of detection results, making it a robust solution for applications aiming for

accurate object detection within image data.

This architecture implements an anchor-free model, which generates predictions from

the center of an object instead of a known anchor box. It was generally used in previ-

ous versions of YOLO and, in this new version, there is a reduction of box predictions,

speeding up the Non-Maximum Suppression (NMS), a usually complicated and longer

process. Overall, there are some changes in the neck and bottleneck of the architecture,

Training 15

including changes in convolution kernel sizes and output concatenation. One major fea-

ture launched with this version is the addition of mosaic augmentation in training, aiming

at new learning of objects in different locations. This method involved stitching four im-

ages from the input data together, creating new surroundings for the placement of the

detections.

3.4 Training

For the training of this model, hyperparameters are set for better comprehension of per-

formance and evaluation for future training sessions. The parameters used are listed

as follows in table 3.1. They were used in many contexts, such as the dataset used,

training-validation split, computer used for training, and different lighting situations.

These parameters would be chosen based on preliminary tests that indicated the optimal

balance between training speed and model accuracy. The epochs and batch size were

defined depending on the training device and computational power available. The other

hyperparameters were set to their default values.

Parameter Value(s)
Epochs 50, 200
Patience 50, 200
Batch size (|B|) 4, 8, 16
Image size 512
Optimizer Adam
Learning Rate (α) 0.01
Activation Function (σ) Mish Function [Ultralytics (2023)]

Table 3.1: Hyperparameters used in the model

Training files were implemented for training and evaluation of results. The program-

ming language used was Python for easier replicability and experiment testing. Scripts

for dataset creation, data augmentation, and neural network running were implemented

in this language and ran on the hardware available for the task, including a machine

learning rig, cited in the last chapter.

3.5 Deployment

For the deployment, the development of a desktop application integrated the trained

model, using techniques for better usability and fast inference, once this application runs

in real-time. To ensure clarity, this work will emphasize the applicability and efficiency of

the model itself, omitting the desktop application development and assembly of hardware,

while providing more detailed insights into the model’s functionality.

Chapter 4

Results and Discussions

With the booth assembly, a controlled environment would be established for capturing

images and, consequently, for building the database for training. Upon evaluating the

booth’s structure, capturing images of the terminal screens with the most stable lighting

was achievable. With green lighting and a black interior, much of the noise around the

terminal was reduced, allowing the lighting to highlight the screen and the scratches.

Therefore, it was possible to build this image database for training with YOLOv8. As

the project progressed, some terminals and screens were obtained, which could be placed

and adjusted without limitations between the terminals for multiple tests and database

construction for the project.

Figure 4.1: Examples of images from the database used in the project. Source: Author.

It is important to note that in the industry, there is the concept of the mura effect,

which in Japanese means irregularity, encompassing various types of imperfections pri-

16

17

marily in mass-produced products. In the context of this project, scratches, stains, or

cracks on the screens could be considered mura defects. Therefore, there is an abstraction

of this concept for defects that appear on these devices in other forms, resulting of mis-

use, for example. From the large-scale use of these terminals, scratches on these screens

may arise as factory defects or from user usage, with the friction of fingernails or pointed

objects on the screens.

In the development of this database, one of the approaches used to expand the database

and the types of scratches was to manually apply scratches to some terminal screens,

obtaining a new dataset with artificial scratches. In this way, there would be a synthetic

data augmentation, creating a different bias in the type of scratch found on the screens

[Wunsch et al. (2023)], since most of the scratches on the screens are smaller and have a

distinct shape. However, as the project progressed, greater instability was detected in the

detection of scratches when a merge of databases including manual and artificial scratches

was used, as the model detected manual scratches well and did not detect the original

scratches as effectively.

Figure 4.2: Example of the screen from the database with artificial scratches. Source:
Author.

Another recurring issue in detecting scratches on the screens is their similarity to much

smaller noisy objects that can be confused with scratches, such as dust. By isolating

external light and maintaining controlled lighting inside, any small noise becomes very

noticeable in the detection, since the majority of the image tends to be black, intensifying

noise and these small objects. Additionally, a new complication in the construction of

this database was the ambiguity of the concept of a scratch in detection, since, given the

context presented to the webcam, there is a limitation of exposure, focus, and overall

lighting that limits the visualization of what could be considered a scratch.

18

All collected screens had a label pointing to a scratch if there was one, which would

be an initial annotation for the database, as shown in the figure below. According to the

project definition, operators manually inspect and mark a possible scratch, which can be

omitted by other operators who will also inspect the same screen. These situations create

some ambiguity for the model. Furthermore, the concept of a scratch is also viewpoint-

dependent, as scratches may be detectable from one angle and not from others. In the

same prospect, this concept affects the database construction, as there are annotations

to be done, and something that one operator might consider a scratch might be another

type of irregularity on the screen.

Figure 4.3: Example of the screen with a scratch and its manually made annotation.
Source: Author.

In the initial phases of the project, other databases were used in training to amplify

the base and provide a starting point to test detection with similar scratches on real

screens. One of the databases created included internet images of screens similar to those

that would be used, such as cellphone and tablet screens.

Figure 4.4: Example of an image from the database Internet BI-400 of cellphone screens
with scratches. Source: Zhang et al. (2022).

To ensure an artificial intelligence model that meets the requirements of this project,

19

it was necessary to conduct a review of the literature for methods and state-of-the-art ap-

proaches that are suitable for detecting scratches on screens. Therefore, in the exploration

of appropriate methodologies for this problem, the chosen model was a state-of-the-art

model in unified object detection: YOLO. Defining a favorable approach, it was impera-

tive to ensure that this model would also be maintained for a considerable period, which

was indeed the case: during the course of the project, YOLO had already evolved to its

eighth version, thus being selected for the project.

In selecting YOLOv8, it was necessary to determine which version of v8 would be

used, and for testing purposes, the nano (n) version was chosen due to its reduced size

and shorter inference time. This choice aligns with the primary objective of this project,

which is to assist industry operators in conducting inspections with greater efficiency

and precision, this emphasizes the necessity for a real-time application. For the sake of

elucidation, this model will be referred to as YOLOv8n or v8n.

With YOLOv8n, it was possible to conduct training using the data from the database

assembled for the project, selecting hyperparameters, and training the model that would

be utilized.

Below, the table displays the metrics achieved after training with various database

scenarios and model configurations. All the training procedures were performed with

YOLOv8. The metric results can be seen in Figures 4.5, 4.6 and 4.7. The terms in the

table are as follows:

Dataset name Description

BI-400

Cell phone screens with scratches, as cited
in Figure 4.4. This dataset is consistent and
well-structured, with stable lighting and few
variations in the screens between images.

Source: Zhang et al. (2022).

Internet-ALL

Images of scratched screens of cell phones,
tablets, and other various devices from the
internet with screens similar to those of the

terminals.

Parts-AR
Screens defined for the project with

artificial scratches.

Parts-SA
Screens defined for the project without

artificial scratches.

Table 4.1: Description of each distinct dataset.

20

Model Precision Recall mAP50
Parts-AR - VF1 0.89 0.717 0.822
Parts-SA - UNI2 0.57 0.51 0.547

BI-400 + Parts-SA - UNI2 0.855 0.52 0.615
BI-400 + Parts-AR - VF1 0.82 0.83 0.87
BI-400 + Internet-ALL +

Parts-AR - UNI2
0.822 0.53 0.609

Parts-SA + Parts-AR - UNI2 0.624 0.596 0.662
Parts-SA - VF1 0.839 0.654 0.774

Table 4.2: Model performance on distinct datasets.
Inference time of the best model was 88ms on average.
1VF: The images are derived from video frames recorded for a maximum of 10 seconds from each screen,
resulting in a larger dataset.
2UNI: one image per screen, resulting in a dataset with fewer than 100 images.

Figure 4.5: Precision curve of the best training. Source: Author.

Figure 4.6: Recall curve of the best training. Source: Author.

21

Figure 4.7: mAP50 curve of the best training. Source: Author.

The primary issue in this project was the challenge posed in dataset construction, in

the means of having a reduced availability of terminals necessary to conduct training.

Since this issue persisted during the greater part of the project’s duration, different ap-

proaches were considered to address this problem. The dataset merging approach, cited in

table 4.2, was used as a method for generalizing the best performance from well-defined,

but not context-specific data, such as BI-400 dataset, and features from real specific data

for the project, as in Parts-SA dataset. This approach was not as successful, once the

validation stage exposed an undermining performance when the ratio of context-specific

data for this project increased. From this training, the model might not have learned

the characteristics from the real scratches as much as the non-context-specific scratches,

especially when removing the BI-400 dataset, for example, retraining and obtaining a

worse performance.

On the other hand, the approach using video frames, cited in table 4.2 as well, as-

serted the issue involving the small dataset, once the quantity of data was defined by the

quantity of terminals, and securing new terminals would be a more complex and unlikely

task. When capturing the images from the credit card machines, videos with a maximum

length of 10 seconds and 30 FPS were recorded, generating a new and artificial dataset,

containing the same characteristics from the unique terminal images, now incremented

with more frames from the same terminals. After recording all these videos, an annota-

tion pipeline started, followed by replicating these annotations based on the first frame of

each video. At the end of this pipeline, 57 videos composed the dataset, along with 6306

images and their labels.

For this project, it was implemented a desktop application that leverages the power

of neural networks by integrating our neural network model. By incorporating this model

into the application, users can benefit from the capabilities of deep learning for scratch

detection. Also, this application features a user-friendly interface designed to be intuitive

and easy to use. The interface includes a range of tools and features that enable users to

22

capture and inspect images, as well as view and analyze detected scratches. For example,

users can adjust the sensitivity of the scratch detection algorithm, change the camera

settings, and other features, as seen in Figures 4.8 and 4.9. This level of customization

shows that the application can be effective in a wide range of scenarios.

Figure 4.8: Home screen of application. Source: Author.

Figure 4.9: Camera settings screen on application. Source: Author.

The YOLO model is effective in detecting scratches due to its ability to accurately

process images in real time and identify objects. This aspect with the selection of this

model is essential, since this application should generate accurate responses in real-time.

The speed of inference directly impacts the user’s experience, as delays may lead to frus-

tration and decreased productivity. Also, the reliability of the detections generated by the

23

model is essential for making decisions before generating a report. In summary, real-time

functionality further enhances the application’s value by providing as close as immedi-

ate results. Therefore, the combination of speed, accuracy, and real-time performance

is imperative to meet user expectations and ensure the application’s practical utility in

demanding environments. An example of one inspection’s result can be seen in Figure

4.10.

Figure 4.10: Example of inspection from application. Source: Author.

Figure 4.11: Screen with old inspections on application. Source: Author.

After the application obtains an inference from the model and the user populates the

application with data from both the client and the recently inspected device, such as the

client’s name and type, terminal diagnostics, final evaluation, and terminal condition, a

24

PDF report is generated containing this data (check Figure 4.12). The visualization of

the report might also be explored and analyzed later on the other page, incorporating old

inspections and reports, as seen in Figure 4.11.

Figure 4.12: Example of a report generated by the application. Source: Author.

In the field of computer vision, one of the persistent challenges is achieving accurate

object detection in video streams, especially when dealing with intermittence—where

objects temporarily disappear or get occluded. This issue is critical in many applications,

especially in real-time applications, where continuous and reliable tracking is primordial.

After many trainings, it was detected that our model had a certain intermittence on

specific occasions, from tilted terminal positioning to differences in lighting. After many

image preprocessing operations, such as white balancing and morphology treatment, this

intermittence would not be reduced.

In this project, this challenge is addressed with BoT-SORT [Aharon et al. (2022)],

a state-of-the-art tracker designed to enhance neural network models by reducing inter-

mittence. BoT-SORT employs sophisticated algorithms that predict and maintain object

trajectories, even through periods of occlusion or temporary disappearance. By inte-

grating BoT-SORT with the predictions of our model, it was possible to achieve robust

bounding box tracking. This not only improves the reliability and accuracy of the neu-

ral network’s performance but also ensures that the model can be effectively utilized in

real-world scenarios where uninterrupted tracking might be necessary.

Upon further analysis, the results reveal the notable impact of the dataset containing

screens with artificial scratches during training, as well as the effect of incorporating the

BI-400 dataset, as its omission leads to a considerable decrease in performance. After using

recordings of the terminal screens, the performance of the models increased significantly

in the precision, recall, and mAP metrics. For the integration of the final model into

the application, the tracker amplified the model’s consistency and robustness, achieving a

25

refined model for the user in the final version of the application. One example of inspection

from the application after these treatments can be seen in Figure 4.13.

Figure 4.13: Resulting image and detection obtained from the model. Source: Author.

Conclusion

This work involves the creation of a solution capable of cosmetically inspecting equipment

for screen scratches. This project aims to assist in the inspection process of such equipment

in repair centers through computer vision tools. The data obtained during inspections is

useful for approving or rejecting a specific piece of equipment, thereby providing valuable

information to support decision-making regarding the inspected equipment.

From a technical standpoint, alterations in architectures are observed that can en-

hance the application’s stability and performance, contributing to making the continuous

development process more sustainable. Furthermore, new state-of-the-art models in the

field of computer vision are constantly emerging, introducing a new quality standard to

be achieved. On the other hand, the continuous collection of data during the use of the

application in production can be employed to retrain the models, resulting in a greater

specialization of the tool in its domain of operation.

Finally, it was necessary to conduct tests and consider expanding the hardware ca-

pacity to determine the conditions for deploying the application in a future version that

can handle a larger number of scenarios and equipment. In other words, analyzing the

scalability of the product to apply it not only to a single piece of equipment but to an

entire equipment portfolio.

Since this is a cosmetic inspection of the screens of these devices, a limiting factor in

implementing this type of solution was the difficulty in collecting data to train the vision

models that met our requirements, requiring incremental data collection to improve the

system’s stability.

In addition to providing a commercial application for computer vision tools, research

of this kind plays a crucial role in establishing connections between industry and scientific-

technological production. Given the broad current relevance of this topic, the application

of artificial intelligence to practical problems addresses one of the fundamental missions of

the research and innovation field: integrating intellectual production into people’s daily

lives. Following the completion of this work, the content was revised and adapted for

publication as a scientific article, submitted and accepted in the 2024 XIV Brazilian

Symposium on Computing Systems Engineering (SBESC) conference [Cavalcante et al.

(2024)], reinforcing the relevance of this project, as much as contributing to the field of

computer vision and anomaly detection. At the same time, the practical implementation

26

27

of knowledge developed in academia provides invaluable experience, often resulting in new

ideas and indicating promising directions and opportunities for future research.

Bibliography

Aharon, N., Orfaig, R., and Bobrovsky, B.-Z. (2022). Bot-sort: Robust associations

multi-pedestrian tracking. arXiv preprint arXiv:2206.14651.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,

Santamaŕıa, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of

deep learning: concepts, cnn architectures, challenges, applications, future directions.

Journal of big Data, 8:1–74.

Bottou, L. (2012). Stochastic gradient descent tricks. pages 421–436.

Cavalcante, H., Alves, D., Amaral, L., and Vieira, T. (2024). Screen scratch detection

on credit card payment terminals for logistics optimization. In 2024 XIV Brazilian

Symposium on Computing Systems Engineering (SBESC), pages 1–6.

CVAT.ai Corporation (2023). Computer Vision Annotation Tool (CVAT).

Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep learning, volume 1. MIT press

Cambridge, MA, USA.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang,

G., Cai, J., and Chen, T. (2015). Recent advances in convolutional neural networks.

ArXiv, abs/1512.07108.

Hwang, T. (2018). Computational power and the social impact of artificial intelligence.

arXiv preprint arXiv:1803.08971.

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie,

W., et al. (2022). Yolov6: A single-stage object detection framework for industrial

applications. arXiv preprint arXiv:2209.02976.

Li, T.-Y., Tsai, J.-Z., Chang, R.-S., Ho, L.-W., and Yang, C.-F. (2012). Pretest gap mura

on tft lcds using the optical interference pattern sensing method and neural network

classification. IEEE Transactions on Industrial Electronics, 60(9):3976–3982.

28

Bibliography 29

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386.

Ultralytics (2023). YOLOv8: A state-of-the-art real-time object detection system. https:

//docs.ultralytics.com. Accessed: 7th August 2023.

Wagh, A. (2022). Gradient descent and its types.

Wang, H., Raj, B., and Xing, E. (2017). On the origin of deep learning. ArXiv,

abs/1702.07800.

Wunsch, L., Anding, K., Polte, G., Liu, K., and Notni, G. (2023). Data augmentation for

solving industrial recognition tasks with underrepresented defect classes. Acta IMEKO,

12(44):1–5.

Yanling, Z., Bimin, D., and Zhanrong, W. (2002). Analysis and study of perceptron

to solve xor problem. The 2nd International Workshop on Autonomous Decentralized

System, 2002., pages 168–173.

Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews Neuro-

science, 16:487–497.

Zhang, J., Ding, R., Ban, M., and Guo, T. (2022). Fdsnet: An accurate real-time surface

defect segmentation network. In ICASSP 2022-2022 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 3803–3807. IEEE.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep learning:

A review. IEEE transactions on neural networks and learning systems, 30(11):3212–

3232.

Zou, Z., Chen, K., Shi, Z., Guo, Y., and Ye, J. (2023). Object detection in 20 years: A

survey. Proceedings of the IEEE, 111(3):257–276.

https://docs.ultralytics.com
https://docs.ultralytics.com

	Introduction
	Motivation
	Objectives
	General Objectives
	Specific Objectives

	Work Organization

	Theoretical Foundation
	Neural Networks and Deep Learning
	Convolutional Neural Networks
	Evaluation Metrics
	IoU
	Precision
	Recall
	Mean Average Precision (mAP)

	Methodology
	Data Collection
	Hardware
	Pipeline for Data Acquisition

	Data Preprocessing
	Model architecture
	Training
	Deployment

	Results and Discussions
	Bibliografia

