
 

UNIVERSIDADE FEDERAL DE ALAGOAS
INSTITUTO DE COMPUTAÇÃO

COORDENAÇÃO DE PÓS-GRADUAÇÃO EM INFORMÁTICA

EMANUEL ADLER MEDEIROS PEREIRA

WATER POTABILITY CLASSIFICATION: AN APPROACH
USING MACHINE LEARNING IN AN EMBEDDED SYSTEM

Maceió

2024



EMANUEL ADLER MEDEIROS PEREIRA

WATER POTABILITY CLASSIFICATION: AN APPROACH
USING MACHINE LEARNING IN AN EMBEDDED SYSTEM

Dissertação apresentada ao Programa de Pós-
Graduação em Informática da Universidade Fed-
eral de Alagoas como requisito parcial para
obtenção do título de Mestre em Informática.

Área de Concentração: Engenharia de Sistemas
Computacionais.

Orientador: Prof.º Dr.º Erick de Andrade Barboza

Maceió-AL

2024



Catalogação na Fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767

                     P436w      Pereira, Emanuel Adler Medeiros.
      Water potability classification : an approach using machine 
learning in an embedded system / Emanuel Adler Medeiros Pereira. – 
2024.

                                           44 f. : il.

                                           Orientadora: Erick de Andrade Barboza.
                                           Dissertação (mestrado em informática) - Universidade Federal de 

Alagoas. Instituto de Computação. Maceió, 2024.

                                           Bibliografia: f. 40-43.
                                           Apêndices: f. 44.

                                          1. TinyML. 2. Água potável. 3. Sistemas embarcados (Computadores). 4. 
Aprendizagem de máquina. 5. Inteligência artificial. 6. Random Forest. 7. 
Redes neurais. I. Título.                            

                                                                             
                                                                                                               CDU: 004.383.8



​

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE ALAGOAS

INSTITUTO DE COMPUTAÇÃO
Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió - AL, 57.072-970

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO (PROPEP)
PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Folha de Aprovação

EMANUEL ADLER MEDEIROS PEREIRA

CLASSIFICAÇÃO DA POTABILIDADE DA ÁGUA: UMA ABORDAGEM
UTILIZANDO APRENDIZAGEM DE MÁQUINA EM SISTEMA EMBARCADO

WATER POTABILITY CLASSIFICATION: AN APPROACH USING MACHINE
LEARNING IN AN EMBEDDED SYSTEM

Dissertação submetida ao corpo docente do
Programa de Pós-Graduação em Informática
da Universidade Federal de Alagoas e
aprovada em 26 de julho de 2024.

Banca Examinadora:

________________________________________
Prof. Dr. ERICK DE ANDRADE BARBOZA

UFAL – Instituto de Computação
Orientador

________________________________________
Prof. Dr. ICARO BEZERRA QUEIROZ DE ARAUJO

UFAL – Instituto de Computação
Examinador Interno

________________________________________
Prof. Dr. ALLAN DE MEDEIROS MARTINS

UFRN - Universidade Federal do Rio Grande do Norte
Examinador Externo



Dedicatória

Dedico este trabalho a todos que sonham e acreditam

que podem mudar a própria realidade.

“Dreaming is believing, your wishing well.” - ANGRA.

i



Agradecimentos

Agradeço primeiramente a Deus, que me guiou por todo o caminho até mais uma

conquista, sem deixar que eu desistisse nos momentos mais difíceis.

Agradeço muito à minha família, por todo o suporte ao longo de toda a minha vida.

Foram muitos sacrifícios, especialmente das minhas três mães Amazilde, Elúzia e Janicledja,

para que eu pudesse ter a oportunidade de ter uma boa educação e ser tudo aquilo que um

dia sonhei. Sou muito grato também à minha esposa Camylla, pois sem o apoio diário dela,

jamais teria alcançado o fim desta etapa.

Agradeço à Universidade Federal de Alagoas e seus professores, em especial ao meu

orientador, Erick Barboza, por toda a sua dedicação e tempo, possibilitando a realização

deste trabalho e contribuindo de maneira significativa com meu crescimento pessoal e profis-

sional.

Por fim, agradeço aos amigos e colegas que contribuíram direta e indiretamente com

esta minha jornada, em especial ao colega Jeferson Santos, que me auxiliou com a importante

tarefa de medir o consumo de energia neste estudo. O caminho se torna muito menos tortuoso

quando temos boas companhias para compartilhar a vida.

ii



Resumo

O acesso à água potável é um recurso vital e um direito humano reconhecido. Con-

tudo, ainda hoje, bilhões de pessoas sofrem com a falta de acesso à água adequada para

consumo, o que pode levar a diversos problemas de saúde. Um dos principais desafios no

monitoramento da qualidade da água é a coleta e análise de grandes volumes de dados. Mod-

elos de Aprendizado de Máquina têm sido amplamente aplicados no monitoramento da qual-

idade da água para facilitar a tomada de decisão por gestores e prevenir a contaminação. Um

sistema embarcado que integre sensores a um modelo de Aprendizado de Máquina poderia

oferecer respostas em tempo real e seria viável para ser aplicado em qualquer local, inde-

pendentemente da conexão com a internet. Esse sistema, no contexto da classificação da

potabilidade da água, permitiria respostas mais rápidas diante de potenciais ameaças. Este

estudo propõe um modelo de TinyML eficiente em termos energéticos para a classificação da

potabilidade da água, utilizando apenas parâmetros que podem ser obtidos por meio de sen-

soriamento eletrônico. O estudo avaliou o desempenho utilizando métricas como Acurácia,

Precisão, Recall, F1-Score, espaço ocupado em memória pelo modelo, tempo de execução e

consumo de energia, e comparou modelos desenvolvidos com os algoritmos Random Forest

e Redes Neurais. Também foi analisada a melhor combinação entre modelo e biblioteca de

adaptação para o sistema embarcado. O modelo de Aprendizado de Máquina inicial, uti-

lizando Random Forest, demonstrou um bom desempenho alcançando uma Precisão de 0.70

e pode funcionar por anos com uma bateria comum como fonte de energia. Comparando

todos os modelos e bibliotecas do estudo, o modelo de perceptron multicamadas com a bib-

lioteca EmbML usou a menor memória, com 283.113 bytes, e o modelo Random Forest com

Micromlgen teve o menor consumo de energia, usando apenas 104.534 milijoules. Este tra-

balho pode ajudar pesquisadores e profissionais a implementar sistemas de classificação de

potabilidade da água e a usar TinyML em outros problemas de classificação também.

Palavras-chave: TinyML, Água, Potabilidade, Sistemas Embarcados, Aprendizagem de

Máquina, Inteligência Artificial, Random Forest, Redes Neurais.
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Abstract

Access to clean drinking water is a vital resource and a recognized human right.

However, billions of people still suffer from the lack of access to safe drinking water, leading

to various health issues. One major challenge in water quality monitoring is the collection

and analysis of large amounts of data. Machine learning models have been widely applied in

water quality monitoring to aid decision making by managers and prevent contamination. An

embedded system that integrates sensors with a Machine Learning model could provide real-

time responses and be feasible for deployment anywhere, regardless of internet connectivity

requirements. Such a system, in the context of water potability classification, would allow

faster responses to potential threats. This study proposes an energy-efficient TinyML model

for classifying water potability, using only parameters available through electronic sensing.

The study evaluated performance using metrics such as Accuracy, Precision, Recall, F1-

Score, memory occupied by the model, execution time, and energy consumption, comparing

models developed with Random Forest and Neural Networks algorithms. It also assessed

the best combination of model and adaptation library for the embedded system. The initial

Machine Learning model, using Random Forest, demonstrated good performance, reaching

a Precision of 0.70, and compared to its cloud-based counterpart, it can operate for years on

a standard battery power source. When comparing all models and libraries in the study, the

multilayer perceptron model with the EmbML library used the least memory, with 283,113

bytes, and the Random Forest model with Micromlgen had the lowest energy consumption,

using only 104.534 millijoules. This work can help researchers and professionals implement

water potability classification systems and use TinyML in other classification problems as

well.

Keywords: TinyML, Water, Potability, Embedded Systems, Machine Learning, Artificial

Intelligence, Random Forest, Neural Networks.
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1 Introduction 1

1 Introduction

This chapter outlines the driving factors behind conducting a study to develop a

TinyML model for classifying water potability, using data exclusively from electronic sen-

sors.

1.1 Motivation of the Work

Access to clean drinking water and basic sanitation is considered a fundamental hu-

man right due to its importance for public health and quality of life. According to (WHO -

World Health Organization, 2024) data for 2020, approximately 2 billion people worldwide

still lack access to clean water, being forced to use unfit water for consumption. This use of

contaminated water is linked to various diseases, such as cholera and diarrhea. The improper

handling of urban, industrial, and agricultural wastewater results in dangerous contamina-

tion or chemical contamination of the drinking water consumed by hundreds of millions of

people. As pointed out by (LI; WU, 2019), over time, various chemicals that are untreated in

water sources by different types of industry can be classified as a high risk to human health.

In general, large databases are required to study the parameters and variations in the

quality of drinking water. A tool for these studies can be the use of Machine Learning, a field

of Artificial Intelligence, which has been widely applied in water treatment and management

systems, including the management of drinking water sources, treatment processes, water

distribution, and decision making, as observed in the study by (ZHU et al., 2022). Machine

learning models can be applied to the identification and evaluation of drinking water quality

can be used to prevent contamination.

Some solutions suggest, as the one proposed by (KODITALA; PANDEY, 2018), in-

tegrating these intelligence models with other technologies such as Cloud Computing and the

Internet of Things (IoT), using embedded devices, sensors, and Internet connectivity. How-

ever, these solutions typically perform the inference of the model developed in the cloud,

lacking solutions that propose execution on the embedded device. Another common lim-

itation found in existing solutions in the literature relates to the use of data derived from

parameters that cannot be acquired through electronic sensors and require chemical and lab-

oratory analysis for their collection. Acquiring this type of data entails significant material
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and labor costs compared to the expense of obtaining other data through electronic sensing.

The effort to embed machine learning models in resource constraint devices is called

TinyML. (DUTTA; BHARALI, 2021) defines TinyML as an emerging concept focused on

running optimized machine learning models on ultra-low power microcontrollers that con-

sume less than 1 mW of power. TinyML stands out as a valuable tool in these settings

by enhancing processing capabilities. It achieves this by enabling data processing and Ma-

chine Learning services directly within the device, thereby significantly boosting the device’s

functionality. This effort is made because of two main advantages. First, executing a ma-

chine learning model on the embedded device means that the solution does not depend on

a communication infrastructure, making its implementation simpler and suitable for a wider

variety of locations. Furthermore, because the embedded device does not need to commu-

nicate with other devices, it consumes less energy, which makes it capable of operating on

battery power for extended periods. Therefore, by running the machine learning model, the

solution becomes more versatile, energy efficient, and potentially more cost effective.

1.2 Objectives

1.2.1 General Objective

The aim of this study is to create an energy-efficient machine learning model to clas-

sify the potability of water that can be used in an embedded system, considering only data

that can be acquired by electronic sensors, and that this model does not require the use of the

cloud for its execution.

1.2.2 Specific Objectives

1. Assess the quality of a machine learning model based on literature references, using

only sensors that can be embedded.

2. Analyze the feasibility of embedding this model.

3. Compare the performance between different Machine Learning models and TinyML

libraries for water potability classification.
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1.2.3 Research Questions

• RQ1: How different is the performance of the machine learning model when reducing

the number of features to consider only sensors that can be embedded?

• RQ2: What is the performance outcome when embedding the reference machine learn-

ing model in comparison to results found in the literature?

• RQ3: How different is the performance of the embedded model compared to the cloud

model?

• RQ4: Does an embedded model with a neural network algorithm perform better in

this problem than the one with a Random Forest algorithm?

• RQ5: Which combination of algorithm and TinyML library adaptation performs best

under similar conditions for this problem?

1.3 Structure of the Work

This document is organized as follows. Chapter 2 addresses the theoretical founda-

tion of the main topics necessary to understand the methods that will be described throughout

this research proposal. Chapter 3 provides a review of related work and outlines the starting

point of this research. Chapter 4 describes the research methodology adopted, detailing the

set of tasks performed during the different phases of this work, and the tools used. Chapter

5 presents the results achieved, along with a discussion of them and their impact. Finally,

Chapter 6 offers the final conclusions of this research and suggests directions for future work.
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2 Theoretical Foundation

This chapter delves into the theoretical framework to enhance understanding of the

problem under analysis. It covers concepts related to water quality monitoring, machine

learning and classification methods, and TinyML as well.

2.1 Water Quality Monitoring

Water quality monitoring is defined by the International Organization for Standard-

ization (ISO) as a planned process of sampling, measuring, and subsequently recording or

signaling various water characteristics, aiming to assess their compliance with specified ob-

jectives (ISO et al., 2006). These specified objectives are related to how the water will be

used. For example, for agricultural use purposes, the sodium content must be low to avoid

harming the soil. For human consumption, there should be no microorganisms or harm-

ful chemical substances. This monitoring enables competent authorities to make rational

decisions based on all obtained information (BARTRAM; BALLANCE, 1996). Therefore,

online and large-scale water quality monitoring data are essential to detect environmental

pollution and react in the best possible way to avoid risks to human health (STANDARD-

IZATION, 1991).

Collecting a large number of samples is one of the main challenges in the field, as it is

necessary to ensure an accurate and reliable analysis of water parameters. The conventional

processes required to monitor water quality involve manually collecting various samples,

possibly from different points in the water body, followed by laboratory tests and analyses.

Being a lengthy, laborious process, and sometimes incapable of providing real-time results, it

can be considered ineffective for the purpose of promoting more proactive responses against

water contamination (PULE et al., 2017).

The use of remote sensing in water quality monitoring is feasible, as there are sensors

that can detect physicochemical parameters such as pH, electrical conductivity, turbidity, and

chlorine content (PULE et al., 2017). There are also biosensors and optical sensors that can

be used to measure other important parameters, such as the amount of bacteria or algae and

dissolved oxygen. Each detection and sensing method has its strengths and weaknesses,

and the choice of sensor type depends on the application’s needs. Some optical sensors, for
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example, require the addition of reagents to the water and some level of human manipulation.

This type of sensor would not be suitable for an application that wishes to perform automatic

and real-time monitoring of water parameters (KRUSE, 2018).

2.2 Machine Learning and Classification

Machine Learning originated in the 1960s as a branch of Artificial Intelligence with

the goal of identifying patterns in complex data sets (IZBICKI; SANTOS, 2020). It can be

understood as a set of computational techniques that use experience to improve performance

or make accurate predictions. In this context, experience refers to the information available to

the machine, usually in the form of previously collected data (MOHRI et al., 2018). Machine

Learning can also be defined as an interdisciplinary field that encompasses concepts and

techniques from various areas, such as mathematics, statistics, information theory, game

theory, and optimization (SHALEV-SHWARTZ; BEN-DAVID, 2014).

Machine Learning can be employed to solve a variety of classic problems extensively

studied by the scientific community. Among these problems are Classification, Regression,

Ranking, Clustering, and Dimensionality Reduction (MOHRI et al., 2018). These techniques

allow a machine learning model to be trained to classify items into specific categories, make

numerical predictions, rank items according to a certain criterion, group similar datasets to-

gether, and reduce the complexity of datasets while preserving their essential characteristics.

Machine Learning types can be classified into Supervised Learning, Unsupervised

Learning, and Reinforcement Learning (MOHRI et al., 2018). A flowchart describing these

types and some problems that can be solved using them can be seen in Figure 1. Below is a

brief description of each:

1. Supervised Learning: In this type of learning, the model is trained using a set of labeled

data. After that, it makes predictions for new data based on what it learned during

training. Classification, Regression, and Ranking problems are commonly addressed

by supervised learning algorithms, such as Random Forest, Support Vector Machine

(SVM), and Neural Networks.

2. Unsupervised Learning: The model is trained only with unlabeled data, that is, without

any prior information about expected outcomes. The goal is to find patterns, structures,
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or groups in the data. Clustering and Dimensionality Reduction problems are common

in unsupervised learning. Algorithms like K-Nearest Neighbors (KNN) and Principal

Component Analysis (PCA) are examples of this type of learning.

3. Reinforcement Learning: The model actively interacts with the environment, collect-

ing information and receiving rewards or penalties for its actions. The training and

testing phases are mixed, and the goal is to learn to make decisions that maximize

rewards over time. Algorithms like Q-Learning and Monte Carlo are examples of

reinforcement learning.

Figure 1: Types of Machine Learning and some problems that can be solved by them.

A flowchart for constructing a Supervised Learning model for classification can be

seen in Figure 2. The main steps for this construction, according to (SEN et al., 2020), can

be:

1. Collect and clean the database or preprocess the data.

2. Initialize the classifier model.

3. Split the database using cross-validation and feed the model with training data.

4. Predict a label for new data not seen in training.

5. Evaluate the error rate of the classifier model on the test database.
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Figure 2: Work flowchart for a classification model (Adapted from (SEN et al., 2020)).

2.2.1 Evaluation metrics for classification models

Evaluation metrics for a classification model serve as tools to quantify the model’s

effectiveness. The calculation of these metrics is crucial in the development of a classifica-

tion model and is typically performed at the end of the training process, using a test dataset

that the model has not encountered during training.

When analyzing the classification outcome of a model in a binary problem scenario,

there are four categories into which the results can fall. A True Positive (TP) occurs when

a model correctly classifies an outcome as positive. A True Negative (TN) occurs when

a model correctly classifies an outcome as negative. A False Positive (FP) occurs when a

model incorrectly classifies an outcome as positive when it is actually negative. A False

Negative (FN) occurs when a model incorrectly classifies an outcome as negative when it is

actually positive.

A visual representation of the performance of these classifications is the Confusion

Matrix, that indicates the number of correct and incorrect predictions for each class. This
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matrix aids in identifying which classes the model misclassifies as another class, as described

by (BATARSEH; YANG, 2020). Figure 3 presents an example of a confusion matrix for a

binary classification issue.

Figure 3: Example of a confusion matrix for a binary classification problem.

(BATARSEH; YANG, 2020) mentions that Accuracy is among the most frequently

utilized metrics in classification tasks. The model’s Accuracy is determined by the following

formula:

Accuracy =
T P+T N

T P+T N +FP+FN

Accuracy is effective when the class distribution is balanced, with an equal number

of samples per class. However, it may provide misleading results with imbalanced datasets.

Consequently, other metrics derived from the confusion matrix are recommended for a more

reliable evaluation of performance.

Precision evaluates a machine learning model’s performance by indicating the pro-

portion of positive predictions that are actually correct. The calculation is as follows:

Precision =
T P

T P+FP

Recall quantifies the frequency with which a machine learning model accurately iden-
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tifies true positives (TP) among all the actual positive instances present in the dataset. It is

calculated as follows:

Recall =
T P

T P+FN

The F1-Score combines precision and recall into a single measure, calculated as the

harmonic mean of these two values. This metric provides insight into how precise (accurately

classifying instances) and robust (minimizing missed instances) a classifier is.

F1-Score = 2× Precision×Recall
Precision+Recall

2.3 TinyML

TinyML is a significant advancement in artificial intelligence (AI) that focuses on

executing AI algorithms on extremely low-power devices, such as microcontrollers. This

approach addresses the high energy consumption and carbon dioxide emissions associated

with traditional AI by reducing the computational load required for machine learning tasks.

Unlike standard CPUs and GPUs, which consume considerable power, TinyML devices op-

erate on milliwatts or microwatts, enabling them to run with batteries for extended periods,

from weeks to years. TinyML pushes intelligence to the edge, allowing AI applications to

function with low latency, minimal power consumption, and low bandwidth requirements

(ABADADE et al., 2023).

By processing data locally on the device where it is generated, TinyML also en-

hances data privacy and security, as the data does not need to be transmitted to the cloud.

This makes TinyML particularly suitable for applications in environments where internet

connectivity is unreliable or unavailable (ABADADE et al., 2023). TinyML applications

span various domains, including industrial anomaly detection, where it can effectively iden-

tify potential failures in extreme environments such as submersible pumps (ANTONINI et

al., 2023), and medical applications, where this technology can enable autonomous and safe

healthcare by integrating Machine Learning algorithms into wearable devices (TSOUKAS et

al., 2021). This innovative field of AI opens up new possibilities for sustainable development

and privacy-preserving machine learning applications.
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According to (CAPOGROSSO et al., 2024), TinyML systems consist of two key

components: the machine learning model and the hardware platform. Developers typically

start with the component they are most familiar with, but a more efficient approach is to

develop both simultaneously for an integrated solution. The traditional workflows in TinyML

are ML-oriented and HW-oriented, whereas the integrated approach is known as co-design.

These workflows are described in Figure 4.

Figure 4: Traditional workflows used in TinyML (Adapted from (CAPOGROSSO et al.,
2024).

In the ML-oriented workflow, the focus is primarily on designing, adapting, training,

and evaluating machine learning models, with limited flexibility in hardware platform selec-

tion due to specific industrial requirements. An example is adapting modern neural network

models for embedded devices, which requires extensive experimentation to ensure efficiency

in power consumption, latency, and memory usage, given the limited resources compared to

cloud solutions (CAPOGROSSO et al., 2024).

In the HW-oriented approach, developers focus on creating enhanced hardware plat-

forms optimized for embedded applications to run state-of-the-art machine learning algo-
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rithms. This often involves addressing bottlenecks in existing architectures, such as im-

proving throughput and consumption in neural network computations by designing hard-

ware accelerator modules. Examples include reducing computational complexity in convo-

lution layers, developing efficient low-power perceptrons, and improving data caches (CA-

POGROSSO et al., 2024).

Finally, in the co-design workflow, both model optimization and hardware design are

integrated from the outset to achieve significant improvements in performance and resource

consumption. Unlike the separate steps in the ML-oriented and HW-oriented workflows,

co-design involves intertwined and co-optimized processes. This approach can result in

custom architectures for specific machine learning algorithms on FPGAs or enable neural

network computations on customized accelerators using analog Compute-in-Memory (CiM)

hardware through HW-informed training methodologies (CAPOGROSSO et al., 2024).

In (ABADADE et al., 2023) the authors state that TinyML leverages software to

deploy machine learning models on resource-constrained hardware by optimizing model size

and computational needs, enabling integration into various devices. Some key techniques

include:

• Pruning: This technique involves training a neural network and then removing less

important connections by identifying weights below a specific threshold. While the

initial pruned model may lose some accuracy, retraining the remaining weights can

restore it. Pruning also helps eliminate connections and neurons without inputs or

outputs.

• Quantization: This reduces the precision of weights and activations from 32-bit or

64-bit floating-point numbers to 8-bit or lower fixed-point numbers. This not only de-

creases the model’s memory footprint but also improves processing efficiency. Quan-

tization can be done during or after training, aiming to balance model accuracy with

precision.

• Low-Rank Factorization: This mathematical technique approximates a high-

dimensional matrix with a low-dimensional one, reducing dimensionality while pre-

serving important information. It decomposes a dense weight matrix into two lower-

dimensional matrices, making the model more compact and computationally efficient.
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• Huffman Coding: As a lossless compression method, Huffman coding assigns shorter

binary codes to frequently occurring symbols and longer codes to less frequent ones.

This reduces the overall space required for data representation without losing any in-

formation.

• Knowledge Distillation: This technique involves training a smaller, more compact

model (student model) to mimic the outputs of a larger, more accurate model (teacher

model). The student model learns useful information from the teacher model, making

it more efficient without needing to be as complex. The training involves two steps:

training the teacher model on the original data and then training the student model

using the teacher model’s predictions.

• Hyperparameter Optimization: Automates the search for optimal hyperparameter val-

ues, such as learning rate, batch size, and network size, to enhance model performance.

Techniques like Grid Search, Random Search, and Bayesian Optimization explore the

hyperparameter space to find the best combination, reducing effort and time while

improving performance (CAPOGROSSO et al., 2024).

In (CAPOGROSSO et al., 2024) the authors highlight several challenges that future

research in the field of TinyML needs to address:

• Benchmarking: The absence of a recognized benchmark, caused by challenges such

as low power, limited memory, hardware heterogeneity, and software heterogeneity,

poses a significant impediment that could hinder TinyML services.

• Memory Constraints: The relentless demand for computation and high accuracy has

driven continuous innovation in machine learning algorithms. However, the extremely

limited size of SRAM and flash memory makes deploying deep learning on edge de-

vices a significant challenge.

• Data-driven engineering: Thoroughly understanding data quality is crucial, relying

solely on accuracy can be misleading for predicting model behavior. It is necessary a

substantial amount of relevant real-world data to identify instances where the model

fails or behaves incorrectly.
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• Lack of accepted models: Many deep learning models are widely accepted for conven-

tional infrastructure. For instance, MobileNet serves as the benchmark for deep neural

networks in mobile edge computing devices. However, no similarly popular model

exists for adoption within the TinyML ecosystem on MCUs.

• Lack of public datasets: Despite the availability of some datasets specifically designed

for TinyML, to date, TinyML is mainly focused on general sensor processing.
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3 Related Works

This chapter presents studies from the scientific literature that directly relate to the

objectives of this study. The literature review is organized into two subsections. In sub-

section 3.1, the studies related to proposals for water quality classification systems using

Machine learning and IoT are introduced. Finally, in subsection 3.2, the significance of this

dissertation proposal is emphasized.

3.1 Machine Learning and IoT for Water Quality Classification

The study (C.ASHWINI et al., 2019) proposes an intelligent water quality monitor-

ing system for domestic use utilizing the Internet of Things (IoT). The system comprises a

NodeMCU controller and sensors to collect pH, turbidity, dissolved oxygen, temperature,

color, and conductivity data. Sensor readings are sent over the network and stored in a

database. The data in this database are fed into a neural network model, which predicts the

quality of the water and sends alerts to the user. The neural network was trained with 198

databases.

The study (ALZUBI, 2022) offers a solution for monitoring water quality using IoT

and Machine Learning. Unlike (C.ASHWINI et al., 2019), it proposes a fusion of the K-

Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms for a more accu-

rate classification. The system uses sensors for pH, temperature, turbidity, and conductivity.

Sensor values are transferred to a cloud server via the NodeMCU controller with Low Power

Wide Area Network (LPWAN) technology. The performance of the proposed classifier is

evaluated through cross-validation, achieving higher accuracy than other algorithms com-

pared. In addition to the good performance of the classifier, the study highlights the low cost

and applicability of the system in a real-time scenario.

The study (JHA, 2020) aims to classify groundwater quality using a system composed

of a microcontroller and sensors in a tank. The architecture involves connecting sensors

to the microcontroller via Zigbee/Wi-Fi technology. The system uses a cloud platform to

store and analyze sensor data, with water quality classification done using the Decision Tree

algorithm. The algorithm achieved high accuracy with a database of 307 records, and the

system met its objective.
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The study by (ABDULWAHID, 2020) proposes an IoT-based system for real-time

monitoring of water quality, leveraging affordable technology and cloud computing. The

system integrates several sensors, such as turbidity, temperature, total dissolved solids, and

pH, connected to an Arduino unit, which are designed to measure key water quality param-

eters. Data from these sensors are processed by a microprocessor and transmitted to the

ThingSpeak API via a network. The key advantages of the proposed system include efficient

data processing, affordability, and the capability to visualize data on cloud platforms and

mobile devices using Wi-Fi.

The research by (ALIPIO, 2020) presents the development of an IoT-based system

for monitoring water quality and classifying water potability, specifically designed for rural

areas in developing countries. The system incorporates portable sensor nodes that gather

physicochemical properties of water such as pH, turbidity, total dissolved solids, and tem-

perature from various sources. These nodes wirelessly transmit data to a base station that

performs potability classification using ensemble learning techniques. Results are communi-

cated back to households in real-time via 2G/3G networks and are also sent to a cloud server

for remote monitoring. The system demonstrated a 93.33% match with conventional indus-

trial water tests and achieved a 97% accuracy in classification. The authors point out that

future improvements could include incorporating additional water parameters like dissolved

oxygen and advanced machine learning algorithms to enhance the accuracy and viability of

the system.

The paper by (MUKTA et al., 2019) introduces an IoT-based smart water quality

monitoring system designed to continuously measure water quality through four physical

parameters: temperature, pH, electrical conductivity, and turbidity. Utilizing an Arduino

Uno connected to four sensors, the system captures data and transmits it to a desktop appli-

cation developed on the .NET platform. This data is compared against WHO standard values

to determine water potability. The system employs a fast forest binary classifier to assess

whether water samples are drinkable, demonstrating effective and accurate performance in

real-time water quality prediction. The successful implementation of this IoT-enhanced sys-

tem showcases its potential for expanded real-time monitoring, including the detection of

chemical parameters in the future.

The publication by (BRIA et al., 2020) explores a sensor-based system for identi-
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fying six contaminants in tap water, testing nine different classifiers to find an IoT-ready

solution. The K-nearest Neighbor (KNN) classifier performed best, achieving a top accuracy

of 95.4%. The study found that Multi-Layer Perceptron offers the best trade-off in terms

of classification performance, memory usage, and processing time when applied to low-end

MCUs. Future work will focus on advancing data processing and classification capabilities

directly on MCUs and further improving system performance with high-end MCUs.

The study by (RAWAT et al., 2023) evaluates the effectiveness of eight machine

learning algorithms, including Gaussian Naive Bayes, Extreme Gradient Boost, SVM, KNN,

Logistic Regression, Random Forest, and Decision Tree, for predicting water quality. The

main goal was to identify the most accurate algorithm, with Extreme Gradient Boost and

SVM showing the highest accuracies of 69.89% and 65.87% respectively after optimiza-

tion. The results demonstrate that machine learning can be effectively used to predict water

quality, suggesting its potential application in managing and monitoring water systems. The

findings encourage further research to optimize these algorithms and test them on larger

datasets to improve their predictive performance.

The research by (ALNAQEB et al., 2022) focuses on addressing the critical envi-

ronmental issue of water quality by designing an intelligent system that employs machine

learning models to assess and predict water potability. It compares various machine learning

algorithms, such as Decision Tree, K-Nearest Neighbor, Support Vector Machine, Random

Forest, and LightGBM, in order to identify the most accurate model for predicting water

quality. The study found that the LightGBM model outperformed others, achieving the high-

est prediction accuracy of 99.74% on experimental data.

The research by (AHMED et al., 2019) addresses the urgent need for cost-effective

and real-time water quality monitoring by employing machine learning algorithms to esti-

mate the Water Quality Index (WQI) and classify Water Quality Class (WQC) using just

four parameters: temperature, turbidity, pH, and total dissolved solids. Among various algo-

rithms tested, gradient boosting and polynomial regression demonstrated the most efficient

predictions of WQI with mean absolute errors of 1.9642 and 2.7273, respectively, while a

multi-layer perceptron (MLP) model proved most effective for classifying WQC with 85%

accuracy. This streamlined approach contrasts with traditional methods that rely on exten-

sive lab analyses involving numerous parameters, making it suitable for integration into an
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inexpensive, real-time detection system. Future enhancements envision implementing these

findings in a large-scale IoT-based monitoring system that could provide immediate water

quality assessments and alerts, thereby improving public health outcomes.

The research conducted by (KADDOURA, 2022) aimed to assess the efficiency of

using machine learning techniques for classifying water potability. This work used an open-

access database with water quality parameters. In the data preprocessing phase, rows with

null data were removed and normalization was applied. Subsequently, the data were split into

training and testing sets in an 80/20 ratio. A performance comparison of various supervised

learning algorithms was conducted, using the precision, recall, F1-Score, and ROC AUC

metrics.

The study by (PRIYADARSHINI et al., 2022) had the same objective as the previous

study and used the same database. The preprocessing step did not explicitly detail the data

cleaning strategy, but the split ratio between train and test remained consistent. Regarding

the metrics employed, the key difference was the use of Accuracy instead of ROC AUC

for model evaluation. Emphasizing Accuracy, the publication identified the Random Forest

model as the best performer. The study also conducted a comparative analysis of Machine

Learning models using a data set related to the quantity of marine litter.

The research by (IVANOV; TOLEVA, 2023) addresses the critical ecological issue

of water potability, proposing a simplified, effective machine learning algorithm designed to

predict water quality across various regions. It enhances Decision Tree, Support Vector Ma-

chine, and Random Forest by improving accuracy and classification metrics and effectively

manages class imbalances. The study demonstrates that this algorithm can quickly evaluate

water quality without extensive parameter tuning or the need for balancing techniques, mak-

ing it particularly useful for initial assessments of imbalanced water data. The metrics used

to evaluate the models were the same used by (PRIYADARSHINI et al., 2022).

The article by (ARORA et al., 2022) explores the critical issue of water potability

by utilizing various machine learning algorithms to classify whether water is potable based

on its chemical and physical properties. With a focus on a binary classification of water

potability, the study tests algorithms such as K-Nearest Neighbors, XG-Boost, Decision Tree,

SVM, and Random Forest, among others, applying them to a dataset filtered by a correlation

matrix. Among these, the Decision Tree model outperformed the rest, achieving the highest
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scores with an accuracy of 0.9358, an F1 score of 0.9374, and an ROC AUC score of 0.9220.

The primary aim of this paper was to harness machine learning’s capability to classify water

samples as potable or non-potable based on chemical factors such as pH and turbidity. In

comparing various algorithms, Random Forest was found to provide the best accuracy among

all models evaluated.

Table 1 presents a comparison of the accuracy, ROC AUC, precision, recall, and F1

score metrics for the Random Forest models used in the four previously mentioned publica-

tions. These publications utilized the same dataset, and the Random Forest model yielded

noteworthy results in each study.

Table 1: Metrics of the Random Forest models from the articles that use the same dataset.

Metric (KADDOURA, 2022) (PRIYADARSHINI et al., 2022) (IVANOV; TOLEVA, 2023) (ARORA et al., 2022)

Accuracy - 0.81 0.81 0.82

ROC AUC 0.702 - - 0.786

Precision 0.46 0.80 0.82 0.86

Recall 0.93 0.91 0.81 0.64

F1-Score 0.61 0.85 0.81 0.73

The database used by the publications in Table 1, entitled "Water Quality - Drinking

water potability" from (KADIWAL, 2021), is available online and contains water quality

metrics for 3276 different entries of water bodies. The presented metrics are: pH value;

Hardness; Solids (Total dissolved solids - TDS); Chloramines; Sulfate; Conductivity; Or-

ganic carbon (Total organic carbon - TOC); Trihalomethanes (THM); Turbidity; Potability.

According to the documentation of the dataset, the potability column specifies the

suitability of water for human consumption, with a value of 1 indicating potability and 0

indicating non-potability. The data for pH are an indicator of the acidic or alkaline condition

of the water. Hardness in water primarily results from the presence of calcium and magne-

sium salts, which dissolve from geological deposits encountered during the water’s journey.

High levels of total dissolved solids (TDS) signify highly mineralized water, resulting in an

undesirable taste and a diluted color in its appearance. Chloramine serves as a disinfectant

used in public water systems, typically produced by adding ammonia to chlorine during the

treatment of drinking water. Sulfates, naturally occurring substances found in minerals, soil,

rocks, ambient air, groundwater, plants, and food, have a primary commercial application in
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the chemical industry.

Pure water, being a good insulator, does not conduct electric current effectively. How-

ever, the conductivity of water improves with an increase in the concentration of ions. In

general, the electrical conductivity of water is influenced by the quantity of dissolved solids

present.

The origin of Total Organic Carbon (TOC) in source waters can be traced to the

decomposition of natural organic matter (NOM) and synthetic sources. TOC serves as a

metric to quantify the total carbon content within the organic compounds present in pure

water.

Trihalomethanes (THMs) are substances that may be detected in water treated with

chlorine. The presence and concentration of THMs in drinking water are influenced by fac-

tors such as the organic content of the water, the amount of chlorine needed for the treatment

of the water, and the temperature of the water undergoing treatment.

The water turbidity is dependent on the amount of solid matter present in a suspended

state. This parameter gauges the light-emitting characteristics of water and serves as a test

to assess the quality of waste discharge with respect to colloidal matter.

Table 2 presents a statistical analysis of the parameters in the database, including the

count of items, mean, standard deviation, and minimum and maximum values. Figure 5

displays the distribution of values in the column representing water potability in the dataset,

highlighting a higher number of values corresponding to the non-potable water category.

Table 2: Statistical analysis of the dataset features. The column StdDev means Standard
Deviation, while Min and Max mean minimum and maximum, respectively.

Parameter Count Mean StdDev Min Max

pH 2785 7.08 1.59 0 14

Hardness 3276 196.37 32.88 47.43 323.12

Solids 3276 22014.09 8768.57 320.94 61227.20

Chloramines 3276 7.12 1.58 0.35 13.13

Sulfate 2495 333.78 41.42 129 481.03

Conductivity 3276 426.20 80.82 181.48 753.34

Organic carbon 3276 14.28 3.31 2.20 28.30

Trihalomethanes 3114 66.40 16.18 0.74 124

Turbidity 3276 3.97 0.78 1.45 6.74

Potability 3276 0.39 0.49 0 1
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Figure 5: Distribution of the ‘Potability’ Column in the Dataset.

Following (PULE et al., 2017), the use of remote sensing is possible to monitor wa-

ter quality, as there are sensors capable of detecting physical and chemical parameters such

as pH, electrical conductivity, turbidity, and chlorine levels. The study by (LVOVA et al.,

2019) demonstrates the effectiveness of chemical sensors in water quality monitoring sys-

tems, highlighting their ability to detect various water pollutants such as transition and heavy

metals, algal toxins, herbicides, and pesticides. There are also biosensors and optical sensors

that can be employed to measure other important parameters, such as the amount of bacte-

ria or algae and dissolved oxygen. The research by (MANJAKKAL et al., 2021) explores

innovative sensor deployment and intelligent data analysis for online real-time monitoring

of water quality, focusing on the use of multiparametric sensor systems coupled with smart

algorithms to standardize data analysis globally, which improves monitoring in various pa-

rameters of water quality and addresses critical issues such as food safety and water-related

diseases.

3.2 Relevance of the Proposal

The studies (C.ASHWINI et al., 2019) and (ALZUBI, 2022) mention the use of sen-

sors that are more accessible for reproducing the work or even for system production. There
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are certain water quality parameters that cannot be automatically obtained through sensing,

requiring human intervention through laboratory analysis or the use of reagent substances in

the water, making it challenging to implement machine learning models with these parame-

ters in embedded systems. The study developed in this proposal will aim to use only those

parameters in the adopted models that can be automatically sensed.

(C.ASHWINI et al., 2019; ALZUBI, 2022; JHA, 2020; ABDULWAHID, 2020; ALI-

PIO, 2020; MUKTA et al., 2019; BRIA et al., 2020) refer to the use of cloud-based system

for the inferences from the intelligence models, not on the devices themselves, implying the

need for an internet connection for the proposed systems to function. This requirement for

internet connectivity may render the application of these systems infeasible in remote areas

or those with low coverage, such as rural zones. Studies (IVANOV; TOLEVA, 2023; RAWAT

et al., 2023; ARORA et al., 2022) focus on comparing different machine learning models for

water quality prediction but do not explore the possibility of deploying them in embedded

devices to evaluate their performance. Another research gap is the lack of attention to energy

consumption, which is crucial for IoT and TinyML applications.

Therefore, since no studies in the literature tried to embed the classification model,

and real-world solutions should benefit for running on-device, it is relevant to construct a

Machine Learning model for classifying water potability that considers sensor accessibility

and tests the model inference on an embedded device. Through a performance comparison

with the same solution using cloud processing, it is possible to verify the viability of the

embedded solution. It is also relevant to find the best combination of algorithm and library

to ensure that the model performs optimally.
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4 Materials and methods

In this chapter, the methodology used to carry out this research is described. This

chapter is divided into four subsections, each representing a stage of the work. The subsec-

tion 4.1 outlines the set of tasks undertaken to create and tailor the machine learning model to

classify the potability of water using only columns of the database that represent the parame-

ters available through electronic detection. Subsection 4.2 refers to the set of tasks performed

to implement the first Random Forest model developed on an embedded device and evalu-

ate its performance. Subsection 4.3 outlines the steps taken to build two neural network

models and assess their performance, specifically to draw comparisons with the previous

implementation using Random Forest. Subsection 4.4 outlines the procedures followed to

evaluate various machine learning models and TinyML libraries used in the development of

embedded models.

4.1 Adapting the Random Forest model to work with electronic sensors

The following steps were taken to answer RQ1 - “How different is the performance of

the machine learning model when reducing the number of features to consider only sensors

that can be embedded?":

1. The dataset, the same used by the reference machine learning model from the liter-

ature, has been modified to remove columns representing parameters that cannot be

obtained through electronic sensing;

2. The dataset was preprocessed and split using the same method described in the refer-

ence study;

3. A machine learning model was trained using the Random Forest algorithm;

4. The hyperparameters of this model were optimized;

5. The performance of this model was evaluated using the test dataset;

6. The results of the model were compared with the reference machine learning model

from the literature.
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Each method of detection of water quality parameters has its strengths and weak-

nesses, with the choice of sensor type depending on the specific needs of the application. For

instance, some optical sensors require the addition of reagents to water and a certain level of

human manipulation. This type of sensor would not be suitable for an application that aims

to automatically and in real time monitor water parameters, as indicated by (KRUSE, 2018).

Due to this, in this work, we decided to use only data related to sensors that are suitable for

use in a real-time monitoring application.

A study was conducted on the sensors available in the market that could be used to

obtain each of the parameters present in the columns of the adopted database. Some param-

eters, such as organic carbon and sulfate, require detailed chemical analysis in a laboratory

for their acquisition, as can be seen in (EVOQUA, 2022) and (TABATABAI, 1974). Addi-

tionally, no electronic solution was found to obtain the parameter related to trihalomethanes.

Based on the findings from the examination of available market solutions, the follow-

ing columns were selected to train the machine learning model: pH value (can be obtained

using the PH4502C1 sensor, for example); Hardness (can be obtained using the WHB-3002

sensor, for example); Solids or Total Dissolved Solids - TDS (can be obtained using the

CDPB-033 sensor, for example); Chloramines (can be obtained using the PC1014 sensor,

for example); Conductivity (can be obtained using the CDPB-035 sensor, for example);

Turbidity (can be obtained using the CUS52D6 sensor, for example).

This project used Python and the Pandas library to handle the data. During the data

preprocessing phase, unwanted columns (non-electronic data) were removed, and missing

values were addressed by filling nulls with the average value of their respective columns. Out

of the dataset, only three columns contained null values: pH, Sulfate, and Trihalomethanes.

With Sulfate and Trihalomethanes columns already removed, the process was applied solely

to the pH column. The dataset displayed an imbalance in the number of values classified

as potable (labeled "1") and non-potable (labeled "0"), with potable instances occurring less

frequently. To address this, a random sampling of non-potable data was conducted to equal-

1https://thinkrobotics.com/products/ph4502c-ph-meter
2https://pt.aliexpress.com/item/32976651193.html
3https://www.lutroninstruments.eu/ph-redox–conductivity–oxygen/conductivity-probe-lutron-cdpb-03/
4https://pt.aliexpress.com/i/1005004242550901.html
5https://www.lutroninstruments.eu/ph-redox–conductivity–oxygen/conductivity-probe-lutron-cdpb-03/
6https://www.endress.com/en/field-instruments-overview/liquid-analysis-product-overview/turbidity-

drinking-water-sensor-cus52d
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ize the sample sizes and achieve balance. Finally, the data was split into a training set and

a test set at a ratio of 72% for training and 28% for testing, with this division being done

randomly. After this, normalization was applied to the data using the StandardScaler from

the Sci-kit Learn library, which standardizes the data by removing the mean and scaling to

unit variance.

Based on the examples of the references that used the same dataset, (KADDOURA,

2022; PRIYADARSHINI et al., 2022; IVANOV; TOLEVA, 2023; ARORA et al., 2022), the

following metrics were chosen to assess the performance of the machine learning model:

Accuracy, Precision, Recall and F1 Score.

The machine learning model chosen for this research was Random Forest, which is

widely used for data classification and also yielded good results according to the researches

from (KADDOURA, 2022; PRIYADARSHINI et al., 2022; IVANOV; TOLEVA, 2023;

ARORA et al., 2022). The library used to train the model was Sci-kit Learn. To identify

the best hyperparameters for the model, the Optuna tool was used during training. The pa-

rameters used in the model can be found in Table 3. Following the training phase, the model

was validated using the previously separated test dataset. This Random Forest model will be

referred to in this work as the RF Model.

Table 3: Parameters used for training the RF model using Sci-kit Learn library.

Parameter Value

max_features sqrt

n_estimators 130

max_depth 10

min_samples_split 4

min_samples_leaf 4

criterion log_loss

4.2 Embedding the first Random Forest model

The following steps were taken to answer RQ2 - “What is the performance outcome

when embedding the reference machine learning model in comparison to results found in the
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literature?", and RQ3 - “How different is the performance of the embedded model compared

to the cloud model?":

1. The machine learning model was deployed on the board;

2. The performance of the on-device model was evaluated using the test dataset;

3. The same model is deployed on the cloud for use with the board;

4. The performance of the cloud model was evaluated using the test dataset;

5. The results of both machine learning models were compared.

With the machine learning model ready and validated, it was prepared and deployed

on an ESP-32 board, specifically the ESP32-S3-DevKitC-1 model manufactured by Espres-

sif, which can be seen in Figure 6. This board was chosen because its specification is suitable

for running various machine learning models and requires a low voltage for power.

Figure 6: Description of the components of the ESP32 board manufactured by Espressif
(Source: (Espressif Systems (Shanghai) Co., 2023)).

To adapt the Random Forest model, the Emlearn library made by (NORDBY et al.,

2019) was used, translating the Python model into pure C language code. The Emlearn

library serves as an inference engine for machine learning, specifically designed for micro-

controllers and embedded devices. It takes a trained machine learning model from Sci-kit

Learn as input and outputs a file with the C language code equivalent to the input model.
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Subsequently, the C code of the machine learning model was compiled on the board with

the assistance of the open source software Integrated Development Environment (IDE) (Ar-

duino, 2024).

After deploying the machine learning model on the board, it was tested considering

the same test dataset used to evaluate the model on the computer. The test database, previ-

ously segregated from the rest of the database used to train the model in the preceding phase,

was converted into six floating-type data arrays, one for each parameter, and integrated into

the code compiled on the board. Each inference made by the model used one item from each

array, continuing this process until the entire database was processed. Therefore, we did not

use data from real sensors, we just simulated the input parameters.

The required time and energy consumption of the machine learning model to run all

inferences from the test set was measured, as well as the memory space occupied by the

model on the board. The information on the memory space occupied by the model was ob-

tained using the Arduino IDE tool, which reports these data on its console after compiling

the code. The execution time was measured with the help of the Arduino’s millis() func-

tion, which starts a millisecond timer during the code execution on the board. The timer

was initiated immediately before making the first inference with the model and was stopped

immediately after the last inference was executed. The outcome of the timer was displayed

on the Arduino IDE console.

Measurement of energy consumption on the ESP-32 board was performed using a

Power Profiler Kit II, manufactured by Nordic Semiconductor. The hardware setup used to

measure energy consumption can be visualized in Figure 7, and the Power Profiler software

is shown in Figure 8. The software provides information on the amount of charge and the

average current over a given time window in seconds. Six measurements were taken using the

software and the kit, making all inferences from the test dataset for each measurement. The

first measurement was discarded because of interference spikes from the process of powering

up the board. From the next 5 measurements, an average of the amount of charge used in

each execution window of the machine learning model was calculated. By multiplying the

amount of charge by the applied voltage on the board, which is 3.3 V, we obtain the energy

in Joules.
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Figure 7: Tools used to measure the power consumption of the ESP-32 board.

Figure 8: Print screen of the Nordic Power Profile Software used to measure the power
consumption of the ESP-32 board, highlighting the measurement that was discarded and the
measurements that were selected to calculate the average amount of charge.

The classification model was also deployed in the cloud using the Google Cloud

platform. The aim was to compare the model’s performance when it is running in the cloud

and accessed by the ESP-32 via API with the model’s performance when it is running in
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the ESP-32. The execution of the inferences was carried out iteratively, repeating the same

strategy and using the same test database that was used for the embedded model. Figure 9

presents a diagram that illustrates the architecture used for both the embedded model and the

cloud model.

Figure 9: Architectures used in the two machine learning models developed during the study.

4.3 Developing the neural network models

The following steps were taken to answer RQ4 - “Does an embedded model with a

neural network algorithm perform better in this problem than the one with a Random Forest

algorithm?":

1. It was implemented two different machine learning models using neural network algo-

rithms for water potability classification, employing the same training data used with

the model that utilizes the Random Forest algorithm;

2. The hyperparameters of these two new models were optimized;

3. The performance of these models was evaluated using the same test dataset that was

used with the Random Forest model;

4. The models were deployed on the board used and their performances were compared.

The first neural network model was developed using the Sci-kit Learn library and

will be called MLP Model. The second neural network model was developed using the
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TensorFlow library and its extension for embedded systems (TensorFlow Lite Micro), it will

be called TF Model. The methodology for selecting and preparing the data from the dataset

was thoroughly described for the RF model, in subsection 4.1.

The Optuna framework was employed to determine the optimal hyperparameters for

the two machine learning models during their training phase. The parameters used in the

MLP Model and TF Model can be found in Table 4 and Table 5, respectively. After training,

we validated the models using the test dataset that had been set aside prior to the training

phase. We evaluated the performance of the machine learning models considering the fol-

lowing metrics: accuracy, precision, recall, and F1-Score.

Table 4: Parameters used for training the MLP Model.

Parameter Value

max_iter 200

hidden_layer_sizes (10, 50)

max_depth 10

activation relu

Table 5: Parameters used for training the TF Model.

Parameter Value

n_layers 3

n_units_layer0 80

n_units_layer1 126

n_units_layer2 60

dropout_layer0 0.7004368044240818

dropout_layer1 0.3935802884790261

dropout_layer2 0.40430275636333424

learning_rate 0.00014780473871194358

activation relu



4.4 Embedding and comparing multiple machine learning models and TinyML
frameworks 30

4.4 Embedding and comparing multiple machine learning models and

TinyML frameworks

The following steps were taken to answer RQ5 - “Which combination of algorithm

and TinyML library adaptation performs best under similar conditions for this problem?":

1. Each combination of machine learning model and selected TinyML library was de-

ployed on the board;

2. The models were run using the test dataset, and the metrics adopted in the study were

collected;

3. The results of the obtained metrics were analyzed and compared.

To embed the RF model, we considered three libraries: Emlearn (NORDBY

et al., 2019), Micromlgen (MICROMLGEN. . . , 2020), and Everywhereml (EVERY-

WHEREML. . . , 2021). To embed the MLP model, we considered Emlearn and EmbML

(SILVA et al., 2019). To embed the TF Model, we considered Emlearn, EloquentTinyML

(EloquentTinyML. . . , 2020), and Everywhereml. Each of these libraries takes a machine

learning model that has been pre-trained using Python and its corresponding library (either

Sci-kit Learn or TensorFlow, along with TensorFlow Lite Micro), and processes this model

by translating it into an equivalent C code file. Then, we compiled the C code on the board

using the open-source Arduino Integrated Development Environment (IDE) software (Ar-

duino, 2024).

The selection of libraries was based on their compatibility with the algorithm used

by the machine learning model. Some, like EloquentTinyML, are more specific and tailored

only for one type of model, in this case neural networks using TensorFlow. Micromlgen,

for example, supports some classification and regression models based on Sci-kit Learn but

without a type of neural network. Only the Emlearn library supported all the machine learn-

ing models adopted in the study.

Following their deployment on the board, each machine learning model underwent

testing using the same test dataset that had been prepared earlier. The approach for measuring

memory usage, execution time, and energy consumption followed the same methodology

described in subsection 4.2.
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5 Results and discussion

This chapter details and discusses the findings of the research, organized into three

subsections, each corresponding to a different stage of the study. Subsection 5.1 presents

the outcome of assessing the machine learning model’s ability to classify water potability,

utilizing only database columns that correspond to parameters detectable through electronic

means. Subsection 5.2 covers the performance results of the Random Forest model when

implemented on an embedded device. Finally, Subsection 5.3 provides an analysis of the

performance of various machine learning models and libraries on the embedded device to

classify water potability.

5.1 Adapting the Random Forest model to work with electronic sensors

Figure 10 depicts the confusion matrix for the Adapted Model and the Embedded

Model. The Adapted Model refers to the RF Model that was constructed using only the

parameters from the database related to electronic sensors. The Embedded Model, on the

other hand, refers to the RF model obtained after adjusting and porting the Adapted Model

to operate on the ESP-32 board. A false negative occurs when the model classifies the

water as non-potable and it is potable. A false positive occurs when the model classifies

the water as potable and it is non-potable. Therefore, in a machine learning model designed

to classify water potability, it is desirable to have the least number of false positives possible

to minimize the health risks to humans. The Adapted Model returned 135 false positives,

while the Embedded Model returned 92. This represents a disadvantage of the Adapted

Model from a quality point of view.
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Figure 10: Confusion matrices from the versions of the RF models built in this work.

The metrics obtained from the machine learning model adapted to consider only the

electronic detected data, after its validation, can be seen in Table 6. It should be noted that

removing columns related to parameters that were not feasible for electronic detection had

an impact on the model considering the results of (KADDOURA, 2022; PRIYADARSHINI

et al., 2022; IVANOV; TOLEVA, 2023; ARORA et al., 2022) using the same Random Forest

algorithm, as can be seen in Table 1. Since the study by (PRIYADARSHINI et al., 2022)

does not detail the steps taken for data processing and training of the Random Forest model,

we will use only the work of (IVANOV; TOLEVA, 2023) for the comparison of the results,

because this study provided a comprehensive description and served as the basis for the

replication of the model.



5.2 Results of embedding the first Random Forest model 33

Table 6: Metrics comparing all Random Forest models. The “Adapted Model" is the one
reproduced by this work using Ivanov’s model as a basis but considering only electronic
sensors, the “Embedded Model" is the adapted model running on the ESP-32 board, and the
“Cloud Model" is the adapted model running on Google Cloud and being consumed by the
ESP-32 board.

Metric (IVANOV; TOLEVA, 2023) Adapted Model Embedded Model Cloud Model

Accuracy 0.81 0.60 0.68 0.60

Precision 0.82 0.60 0.70 0.60

Recall 0.81 0.60 0.61 0.60

F1-Score 0.81 0.60 0.65 0.60

Memory occupied by the model (Bytes) - - 421,825 864,073

Time to run 716 inferences (ms) - - 362 862,549

Energy consumption (J) - - 0.112292 237.4578

The Adapted Model achieved a lower value than (IVANOV; TOLEVA, 2023) in all

metrics. It was 0.21 lower on Accuracy, Recall and F1-Score, and it was 0.22 lower on Pre-

cision. This addresses RQ1, which investigated the performance differences of the reference

machine learning model from the literature when the number of parameters is reduced.

The Embedded Model achieved a lower value than (IVANOV; TOLEVA, 2023) in all

metrics. It was 0.13 lower on Accuracy, 0.12 lower on Precision, 0.20 lower on Recall, and it

was 0.16 lower on F1-Score. This addresses RQ2, which investigated the performance result

of embedding the reference machine learning model from the literature.

5.2 Results of embedding the first Random Forest model

The Table 6 presents the results obtained from the machine learning models running

on the chosen board: the embedded and cloud-based models. In this table, we can observe

both the evaluation metrics of the model itself and the metrics of the model running on the

board. The size of the test dataset is 716 entries, so the time and energy consumption metrics

take this number into account.

One can see that in terms of memory space, the Embedded Model used 442,248

Bytes less compared to the Cloud Model. Regarding the time taken to run the 716 inferences

on the test dataset, the Embedded Model was faster by 862,187 milliseconds (14 minutes)

than the Cloud Model. Furthermore, in terms of energy consumption, the Embedded Model

consumed approximately 237.35 Joules less than the Cloud Model.
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From Table 6, we can observe a difference in the accuracy, precision, recall, and

F1-Score metrics obtained for the embedded model compared to the adapted model and

the cloud model. This slight discrepancy in the numbers may be related to differences in

floating point operations on the board or in the process of converting the adapted model

from Python to C using the Emlearn library. This factor should be taken into account when

considering the choice between the two types of models. If this difference is significant, the

cloud model has an advantage because it should not exhibit any variance from the results

of the adapted model. Another advantage of the cloud model would be the greater ease of

change or improvement in the model, as it would only require updating the application once

in the cloud and all devices consuming from it would be updated. To achieve the same with

the embedded model, it would be necessary to update the firmware of each device to run the

new model.

When analyzing the metrics of memory usage, time, and energy consumption, we

can observe that the embedded model has a significant advantage over the cloud model. It

occupies approximately 51.2% less memory space, runs approximately 99.95% faster for all

test inferences, and consumes approximately 99.95% less energy.

Regarding the memory occupied by the machine learning model, despite the fact that

the code of the cloud model is simple, dealing only with the board’s network connection

and handling the sending of requests and receiving of responses from the application, the

occupied size was much larger than that of the code with the embedded model. This can be

explained by the need to use software libraries that control Wi-Fi hardware and the HTTP

protocol.

An explanation for the significantly higher energy consumption of the cloud model

is that for it to operate, the board needs to be connected to the network via Wi-Fi, which is

extremely costly in terms of energy.

Taking into account the use of the board with a rechargeable Li-Po 482839 battery

of 500mAh and 3.7V, in a basic calculation, this battery would provide approximately 6,660

Joules of energy before being completely discharged. With the machine learning models

running on a board powered by this battery and processing the validation set once a hour,

ignoring the energy consumption of the board in sleep mode, the cloud model would last

approximately 1 day and 4 hours. On the other hand, the embedded model would last ap-
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proximately 7 years. This calculation only considers the energy consumption of running

the machine learning model on the board, but in a real-world scenario, the device would

also incur additional costs, such as those associated with the use of sensors and a device

to communicate results. Thus, this time difference can be lower, but the magnitude order

of the difference will be similar. Moreover, in this context, one possible method to acquire

data inside the board could be through Bluetooth Low Energy (BLE), which is a less energy

intensive option compared to WiFi (HODDIE; PRADER, 2020).

In the near future, there are plans to build a prototype using real sensors to collect

data on parameters and communicate results via Bluetooth Low Energy (BLE) to a central

water monitoring system. The results generated by the machine learning model running on

the device will then be validated by experts in the field to assess the quality and applicability

of the model in a real-world scenario.

These results address RQ3, which investigated the performance differences between

the Embedded Model and the Cloud Model.

5.3 Comparing results for multiple machine learning models and

TinyML frameworks

Table 7 presents the results of the Random Forest models executed on the selected

board. This table highlights not only the evaluation metrics of the machine learning models,

but also the performance metrics when running on the board. The test dataset consists of

716 entries and both time and energy consumption measurements are based on this quantity.

Time is measured as the duration needed to process these 716 entries, and energy consump-

tion is calculated as the average energy required to run the test dataset five times.

Examining the four evaluation metrics of the machine learning model itself, it is

observed that the outcomes were identical for Emlearn and Micromlgen. For Everywhereml,

there were differences in all metrics, with accuracy 14.7% lower, precision 17.14% lower,

recall 4.92% lower, and F1 score 10.77% worse.

Regarding memory usage, the Emlearn model required 20,372 Bytes less than Mi-

cromlgen and 47,168 Bytes less than Everywhereml. Taking into account the time, Emlearn

and Micromlgen were equally fast, while Everywhereml lagged by 53 milliseconds to exe-
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cute the 716 inferences. Regarding energy consumption, Micromlgen used 7.758 millijoules

less than Emlearn and 16.63 millijoules less than Everywhereml, indicating a negligible dif-

ference in this metric.

Table 7: Metrics comparing all libraries used for the developed machine learning models,
highlighting the best results for each metric.

RF Model MLP Model TF Model

Metric Emlearn Micromlgen Everywhereml Emlearn EmbML Emlearn EloquentTinyML Everywhereml

Accuracy 0.68 0.68 0.58 0.59 0.59 0.60 0.60 0.60

Precision 0.70 0.70 0.58 0.59 0.59 0.60 0.60 0.60

Recall 0.61 0.61 0.58 0.59 0.59 0.57 0.57 0.57

F1-Score 0.65 0.65 0.58 0.59 0.59 0.59 0.59 0.59

Memory occupied by the model (Bytes) 421,825 442,197 468,993 285,181 283,133 356,301 472,789 473,177

Time to run 716 inferences (ms) 362 362 415 643 606 4,424 978 3,567

Energy consumption (mJ) 112.292 104.534 121.164 167.199 163.404 1,002.714 246.880 848.063

Table 7 displays the results for each version of the MLP Model. It provides infor-

mation on both the evaluation metrics of the machine learning models and their operational

performance on the board. The test dataset is composed of 716 entries, and the recorded time

and energy consumption metrics reflect this total.

Reviewing the four evaluation metrics for the machine learning model, it was found

that Emlearn and EmbML produced the same results. In memory consumption, EmbML

utilized 2,048 Bytes less than Emlearn. Furthermore, EmbML completed the 716 inferences

of the test dataset 37 milliseconds faster and used 3.795 millijoules less energy. This slight

variation in energy consumption suggests a minimal and negligible difference in efficiency

between the two.

Table 7 presents the performance results for different versions of the TF Model. This

table includes information on the machine learning models’ evaluation metrics and their

operational efficiency on the board. With a test dataset comprising 716 entries, the data on

time and energy consumption are calculated based on this figure.

Upon analyzing the four evaluation metrics of the machine learning model, it was

observed that the three libraries chosen produced identical results. In terms of memory us-

age, Emlearn required 116,488 Bytes less than EloquentTinyML and 116,876 Bytes less

than Everywhereml. Regarding the execution time for 716 inferences from the test dataset,

EloquentTinyML was 2,589 milliseconds faster than Everywhereml and 3,446 milliseconds

faster than Emlearn. With respect to energy consumption, EloquentTinyML was more ef-
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ficient, consuming 753.834 millijoules less than Emlearn and 599.183 millijoules less than

Everywhereml.

In order to answer the RQ4, the best outcomes for the evaluation metrics of ma-

chine learning models adopted in this work were reviewed. Both the MLP Model and the

TF Model were outperformed by the RF Model, which demonstrated superior overall perfor-

mance. When looking at metrics related to the embedded model’s operation on the board, the

MLP Model uses slightly less memory, but the RF Model remains faster and more energy-

efficient. The decision on which machine learning model to use in future applications should

be based on which aspects are more critical for that application, whether they are related to

the time taken to perform inferences and energy consumption or to the model’s classification

performance and memory footprint.

There is no single solution that is best across all metrics. One way to determine the

best combination is to see which is fastest and lightest, thereby using less energy to operate,

and also which has the best performance in terms of model classification accuracy. The

combination of the RF Model and the Emlearn library achieved the best results considering

memory footprint and speed for running all inferences. Although the combination of the

RF Model and the Micromlgen library takes the same time and consumes roughly the same

amount of energy, there is a difference of almost 20 Bytes in memory usage, which should

be considered when developing for hardware with limited capacity. The combination of the

RF Model with Emlearn and Micromlgen libraries has the best overall results looking at the

classification outcomes of the model, with these results being similar among them. This

answers RQ5, which sought the best combination between the machine learning model and

the TinyML library for this problem.

Another notable point is that the Emlearn library is the only library that works with

all three types of machine learning models used in this study and has shown good results for

each, highlighting its versatility.
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6 Conclusion

This study presented a proposal for an energy efficient TinyML model for the water

potability classification problem, ensuring that all parameters used for model training could

be obtained through electronic sensing. The performance of the obtained model, using the

Random Forest machine learning algorithm, was close to a reference in the literature based

on metrics such as Accuracy, Precision, Recall, and F1-Score. This is particularly evident

compared to other models trained using the same database, but without limitations on the

types of water quality parameters.

The findings demonstrated that the embedded RF Model outperforms its cloud-hosted

counterpart in various metrics, including memory footprint, inference execution time, and

energy consumption. Specifically, it occupies about 51.2% less memory space, executes

all test inferences approximately 99.95% faster and consumes approximately 99.95% less

energy. This underscores its superior environmental sustainability and energy efficiency.

Moreover, it enables a machine learning model to run for 7 years, instead of less than 2 days,

in a device very resource-constrained.

As expected, the adaptation of the machine learning model to consider only electronic

sensors and the adaptation to run in an embedded system cause a degradation in the quality

of the model. In the worst case (RF Model running on cloud), the degradation of the model

was 26% (f1-score) compared to the original model proposed in the literature. Thus, the

proposed adaptation did not greatly affect the quality of the model.

This study also presented a comparative study of different machine learning models

and TinyML adaptation libraries applied to a water potability classification problem. The

study evaluated three different algorithms (Random Forest and two types of Neural Net-

works) and compared their performance across seven different metrics: Accuracy, precision,

recall, F1 score, memory occupied by the model, time to run all inferences from the test

dataset, and energy consumption to run all inferences from the test dataset. For each model,

TinyML adaptation libraries that support the respective algorithm were used.

The study showed that the Random Forest algorithm (RF Model) achieved the best

performance metrics (Accuracy, Precision, Recall, and F1-Score). This result was obtained

by combining the model with the Emlearn and Micromlgen libraries, both of which also



6 Conclusion 39

achieved the best result in terms of the shortest time required to run all inferences on the

test dataset, with 362 milliseconds. The MLP Model combined with the EmbML library

occupied the least memory space, with 283,113 bytes, which is important for use on memory

resource-constrained devices. The RF Model, along with the Micromlgen library, had the

lowest energy consumption, at only 104.534 millijoules, demonstrating the highest energy

efficiency. The Emlearn library stands out as the only library compatible with all three

types of machine learning model used in this study, demonstrating good results for each and

highlighting its versatility.

One limitation of the study is that it did not explore other machine learning algo-

rithms, focusing only on neural networks and Random Forest. Another limitation is that it

used only one hardware platform for comparison, the ESP-32 board. This study remained

focused solely on simulation and did not build a prototype system with real sensors to collect

data for feeding and validating the model. In addition, parameters and standards for water

potability classification and treatment can vary according to local health authorities, making

it challenging to develop a universal water potability classification model.

Future work can explore new combinations of algorithms and TinyML adaptation

libraries to compare their performance with those obtained in this study, with the aim of

developing even better and more efficient machine learning models. Other hardware plat-

forms can also be considered. Another future objective is to create an application that uses

data from real sensors in an experimental environment to assess the impact on the models.

Furthermore, future research could involve using a larger dataset containing data from local

water treatment stations to build more targeted TinyML models for water potability classifi-

cation.
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Appendix A Publications generated from this work

This appendix lists the publications that originated from this work. The results ob-

tained by deploying the machine learning model, derived from the literature reference and

using only parameters obtainable through electronic sensors, and comparing it with its cloud

counterpart, were published in an article titled “An energy efficient TinyML model for a wa-

ter potability classification problem" 7 in the journal Sustainable Computing: Informatics

and Systems 8, which holds a Qualis A2 rating according to the data from the Coordination

for the Improvement of Higher Education Personnel (CAPES) 9.

Additionally, the results from comparing different combinations of machine learning

algorithms and TinyML libraries, and testing them on the ESP-32 board during this research,

were submitted as an article titled “Comparing TinyML models and libraries for on-device

water potability classification" for the 2024 edition of the conference Symposium on Comput-

ing Systems Engineering (SBESC) 10, which holds a Qualis A4 rating according to CAPES

data.

7https://doi.org/10.1016/j.suscom.2024.101010
8https://www.sciencedirect.com/journal/sustainable-computing-informatics-and-systems
9https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/veiculoPublicacaoQualis/listaConsultaGeralPeriodicos.jsf

10https://sbesc.lisha.ufsc.br/sbesc2024/Home
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