
Master’s Thesis

A Multi-Start Simulated Annealing Strategy for Data
Lake Organization Problem

Danilo Fernandes Costa
dfc@ic.ufal.br

Advisers:
Dr. André Luiz Lins de Aquino

Dr. Rian Gabriel Santos Pinheiro

Maceió
March 26, 2024

http://ic.ufal.br

Danilo Fernandes Costa

A Multi-Start Simulated Annealing Strategy for Data
Lake Organization Problem

A thesis submitted by Danilo Fernandes Costa in partial
fulfillment of the requirements for the degree of Master
of Science in Informatics at the Federal University of
Alagoas, Computing Institute.

Advisers:

Dr. André Luiz Lins de Aquino

Dr. Rian Gabriel Santos Pinheiro

Maceió
March 26, 2024

Catalogação na fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

 Bibliotecária: Helena Cristina Pimentel do Vale – CRB4 –661

 C837m Costa, Danilo Fernandes.
 A multi-start simulated annealing strategy for data lake organization problem /
 Danilo Fernandes Costa. - 2024.
 54 f : il.

 Orientadores: André Luiz Lins de Aquino e Rian Gabriel Santos Pinheiro.
 Dissertação (mestrado em Ciência da Informática) – Universidade Federal de
 Alagoas, Instituto de Computação. Maceió, 2024.

 Bibliografia: f. 47-54.

 1. Data lake. 2. Organização. 3. Meta-heurística. I. Título.

 CDU: 004.6

 MINISTÉRIO DA EDUCAÇÃO
 UNIVERSIDADE FEDERAL DE ALAGOAS

 INSTITUTO DE COMPUTAÇÃO
 Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió - AL, 57.072-970

 PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO (PROPEP)
 PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

 Folha de Aprovação

 DANILO FERNANDES COSTA

 UMA ESTRATÉGIA MULTI-START SIMULATED ANNEALING PARA O PROBLEMA
 DA ORGANIZAÇÃO DE DADOS EM DATA LAKE

 A MULTI-START SIMULATED ANNEALING STRATEGY FOR DATA LAKE
 ORGANIZATION PROBLEM

 Dissertação submetida ao corpo docente do
 Programa de Pós-Graduação em Informática
 da Universidade Federal de Alagoas e
 aprovada em 19 de abril de 2024.

 Banca Examinadora:

 __
 Prof. Dr. ANDRE LUIZ LINS DE AQUINO

 UFAL – Instituto de Computação
 Orientador

 __
 Prof. Dr. RIAN GABRIEL SANTOS PINHEIRO

 UFAL – Instituto de Computação
 Coorientador

 __
 Profa. Dra. FABIANE DA SILVA QUEIROZ

 UFAL – Campus de Engenharia e Ciências Agrárias
 Examinadora Interna

 __
 Prof. D r. FABIO JOSE COUTINHO DA SILVA

 UFAL – Instituto de Computação
 Examinador Interno

 __
 Prof. Dr. IGOR MACHADO COELHO
 UFF - Universidade Federal Fluminense

 Examinador Externo

ANDRE LUIZ LINS
DE
AQUINO:03235015
400

Assinado de forma digital
por ANDRE LUIZ LINS DE
AQUINO:03235015400
Dados: 2024.05.14
10:07:26 -03'00'

Resumo

Data Lake é a solução para Big Data que mais tem recebido atenção na atualidade. Sua princi-

pal característica é a capacidade de administrar imensos volumes de dados heterogêneos em

seu formato bruto. Contudo, isto torna o acesso, a gestão e a exploração de dados mais com-

plexos. Esse desafio define um problema organizacional. O Problema de Organização de Data

Lake consiste na geração de uma estrutura navegacional otimizada para reduzir o esforço do

usuário na exploração de todos os dados disponíveis. O objetivo é encontrar uma organização

de dados que maximize a probabilidade esperada de descoberta de tabelas durante a navega-

ção do utilizador. Para este problema, propomos uma metaheurística de recozimento simulado

e comparamo-la com a solução Organize da literatura em instâncias de referência. Propomos

também uma variação mais eficiente que elimina os cálculos excessivos. As instâncias são

amostras do Socrata Open Data Lake com tópicos variados e dados abertos de entidades go-

vernamentais de todo o mundo. Para validar as nossas propostas, realizamos uma análise

estatística utilizando um teste não paramétrico, que confirmou o domínio da nossa proposta

sobre o estado-da-arte. Nossa melhor proposta foi mais eficiente e aumentou a probabilidade

esperada de descoberta de tabelas em até 44%. Assim, nossa estratégia pode encontrar me-

lhores soluções nos benchmarks avaliados mesmo sem analisá-los exaustivamente e explorar

mais efetivamente o espaço de soluções.

Keywords: Data Lake, Descoberta de datasets, Taxonomia, Otimização.

i

Abstract

Data Lake is the solution for Big Data that has received the most attention recently. Its main

feature is handling vast volumes of heterogeneous data in its raw format. However, this makes

data access, management, and exploration more complex. Such a challenge defines the orga-

nizational problem. The Data Lake Organization Problem comprises optimized data navigation

structures generation to reduce the user’s time exploring all available data. The goal is to find a

data organization that maximizes the expected probability of table discovery during user naviga-

tion. For this problem, we propose a simulated annealing metaheuristic and compare it with the

Organize literature solution on benchmark instances. We also propose a more efficient variation

that prunes excessive computations. The instances are Socrata Open Data Lake samples with

varying topics and open data from government entities worldwide. To validate our proposals, we

performed statistical analysis using a non-parametric test, which confirmed the dominance of

our proposition over the state-of-the-art. Our best proposal was more efficient and increased the

expected probability of table discovery up to 44%. Thus, our strategy can find better solutions in

the benchmarks evaluated even without exhaustively analyzing all of them and more effectively

exploring the space of solutions.

Keywords: Data Lake, Dataset Discovery, Taxonomy, Optimization.

ii

Contents

Figure List . iv
Table List . v
Algorithm List . vi

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 4

2 Technologies and Concepts 7
2.1 Big Data . 7
2.2 Data Lake . 9
2.3 Data Lake Organization . 15

3 Methodology 18
3.1 Data Lake Organization Problem . 18

3.1.1 Organization . 18
3.1.2 Navigation Model . 19
3.1.3 Organization Discovery Problem . 20

3.2 Data Lake Organization Through Multi-Start Simulated Annealing 21
3.2.1 Organization Initialization . 22
3.2.2 Simulated Annealing . 24
3.2.3 Neighborhood Structures . 25
3.2.4 Fast SA . 32

4 Results and Discussion 33
4.1 Benchmark Data Lakes . 33
4.2 Algorithms Tuning . 35
4.3 Performance Evaluation . 36

4.3.1 Effectiveness . 36
4.3.2 Efficiency . 38
4.3.3 Success Probability . 43

5 Final Considerations 45

References 47

iii

List of Figures

2.1 Annual Size of the Global Datasphere (Reinsel et al., 2018) 8
2.2 General data lake zone architecture. 10
2.3 Data processing (Ramos et al., 2023). 13
2.4 An organization for the data lake described in the Table 2.3, as provide by Narge-

sian et al. (2023) . 16
3.1 Flowchart of the proposed approach in terms of its component algorithms 22
3.2 Add parent operation between Economy and Grains states. 26
3.3 States and transitions that need updating after adding parent operation. 27
3.4 Delete parents applied to level 2 states. 28
3.5 States and transitions that need updating after deleting parent operation. 28
4.1 Summary of the benchmark data lakes. 35
4.2 Time to target for instances (a) Socrata-100-3; (b) Socrata-100-5; (c) Socrata-

300-6; (d) Socrata-500-6. 42
4.3 Tables success probabilities per organization approach for (a) Socrata-100-1; (b)

Socrata-100-7; (c) Socrata-300-1; (d) Socrata-500-6. 44

iv

List of Tables

1.1 Comparison between main features of our work and similar literature proposals. . 5
2.1 Data Warehouse vs. Data Lake: advantages and disadvantages. 10
2.2 Key differences between early and late binding. 11
2.3 Sample Table from Open Data (Nargesian et al., 2023) 16
4.1 Sets of data categories . 34
4.2 Recommend parameters by Irace for Organize and our proposal (SA) 36
4.3 Best solution effectiveness and average number of restarts achieved in organizing

benchmark data lakes with 100 tables . 37
4.4 Best solution effectiveness and average number of restarts achieved in organizing

benchmark data lakes with 300 tables. 37
4.5 Best solution effectiveness and average number of restarts achieved in organizing

benchmark data lakes with 500 tables. 38
4.6 Sign test conducted to assess the dominance of one heuristic over another, pair-

wise analyzing the best effectiveness achieved over all the benchmark data lakes. 38
4.7 Effectiveness sample mean and standard deviation achieved in organizing bench-

mark data lakes with 100 tables. 39
4.8 Effectiveness sample mean and standard deviation achieved in organizing bench-

mark data lakes with 300 tables. 39
4.9 Effectiveness sample mean and standard deviation achieved in organizing bench-

mark data lakes with 500 tables. 40
4.10 Mann-Whitney test conduced to compare the median effectiveness achieved by

each heuristic on each benchmark data lake with 100 tables. 40
4.11 Mann-Whitney test conduced to compare the median effectiveness achieved by

each heuristic on each benchmark data lake with 300 tables. 41
4.12 Mann-Whitney test conduced to compare the median effectiveness achieved by

each heuristic on each benchmark data lake with 500 tables. 41

v

List of Algorithms

3.1 Multi-start Simulated Annealing . 23
3.2 Simulated Annealing with Early Stop . 24
3.3 Random Roulette Wheel Neighbor Selection 25
3.4 Adds Parent Operation . 29
3.5 Update ancestor nodes of d . 29
3.6 Update State s . 30
3.7 Update descendant nodes of p . 30
3.8 Deleting Parent Operation . 31

vi

1
Introduction

1.1 Motivation

Big data has become one of the most critical databases and distributed systems research chal-

lenges. Unprecedented volume, variety, and high velocity of data must be collected, stored,

and processed to ensure integrity and generate value. The International Data Corporation fore-

casts that the global amount of data will reach 175 Zettabytes in 2025, ten times the volume of

data generated by 2016 (Reinsel et al., 2018). According to this report, Internet of Things (IoT)

devices will produce most of this data.

Efficient analytical systems are desirable and commonly indispensable for IoT and Big Data

(Fernandes et al., 2023a). There are effective systems to store and analyze ordinary IoT data,

but they are limited to specific data types (e.g., trajectory data) (Bakli et al., 2019; Solmaz et al.,

2019). The systems are helpful for many applications since we can deploy IoT devices for spe-

cific tasks (e.g., traffic monitoring). However, IoT data analysis is not only required for applica-

tions with a single type of device deployed by a single organization. Applications with varying

devices provided by different organizations are just as essential (Sasaki, 2022). Furthermore,

an integration scenario of heterogeneous devices is the expected setting for smart city environ-

ments (Hashem et al., 2016).

In smart cities, we collect big data from several heterogeneous devices and systems, store,

integrate, and analyze holistically (Ramos et al., 2023). For example, the data can refer to the

geospatial indication of autonomous cars and drones’ location over time; text and images from

social media; video from surveillance systems; temperature, humidity, and pollution measure-

ments collected by sensors distributed over the environment; and conventional structured data

from multiple information systems (Talebkhah et al., 2021).

Data Lakes have been receiving attention due to their capacity to handle general and spe-

cific applications independently of big data variety. Traditional, time-tested solutions used data

warehousing for management and processing. A data warehouse is a classic integrated storage

1

INTRODUCTION 2

system designed to perform massive analysis (Stefanowski et al., 2017). However, while still rel-

evant and robust for structured known sources, these solutions are not suited for semi-structured

and unstructured data (Zagan and Danubianu, 2020).

Data lakes are appropriate solutions to scalable systems, enabling storage and analysis of

heterogeneous data in its raw state for knowledge extraction (Fernandes et al., 2023a). This

approach requires metadata generation and management to provide a high-quality data catalog

through well-defined policies and tools. In addition, users have access to integration features,

logical and physical organization, and scalable storage and processing power (Sawadogo and

Darmont, 2021). These features make Data Lake an effective solution for data management and

value generation for smart cities.

Considering a complex and heterogeneous system like a data lake, a robust metadata man-

agement system is imperative for optimized value extraction and insights (Francia et al., 2021).

One of the functionalities of this system is dataset discovery. We typically formulate the dataset

discovery as a search problem. In one version of the problem, the query is a set of keywords,

and the goal is to find tables relevant to the keywords (Brickley et al., 2019). Alternatively, the

query can be a table, and the problem is to find appropriate, joinable, or unionable tables (Zhu

et al., 2016; Bharadwaj et al., 2021; Nargesian et al., 2018).

A complementary alternative to search is navigation. A user navigates through an organiza-

tional structure to find tables of interest in this paradigm. Such a mechanism allows expert Data

Lake users to browse available topics, going from more general concepts to specific concepts

(Nargesian et al., 2020). This approach saves time while exploring the available data and in

vaguely defined searches since it is unnecessary to check everything stored.

The first effort to directly address this challenge was in the proposal of the Data Lake Or-

ganization Problem (DLOP) (Nargesian et al., 2020). In this, user browsing is modeled as a

probabilistic graph whose optimization leads to a data organization that maximizes the expected

probability of discovering tables during user navigation. Although there are some proposals for

generating metadata graphs to integrate data in data lakes (Fernandez et al., 2018b; Aso et al.,

2020; Yu et al., 2021a), these are not suitable for navigating (Nargesian et al., 2023). To the

best of our knowledge, all the studies dealing with DLOP use the same heuristic to optimize it,

namely the ‘Organize’ algorithm (Nargesian et al., 2020, 2023; Ouellette et al., 2021).

However, organizing data into navigable structures remains a difficult and time-consuming

task due to the data lake volume and variety. Given its relevance and complexity, we present

a new Data Lake Organization Problem strategy. We propose a multi-start simulated annealing

metaheuristic, called here just SA, which explores two neighborhood structures: add edge and

delete node. Although suggested in the literature, these operations modify the probabilistic graph

and have not been described algorithmically. Their foundation and complexity lie in guaranteeing

the consistency of all probabilities after a modification, which requires coherent graph traversal

algorithms based on dynamic programming. For these, we show how to implement them effi-

ciently. We also propose a more efficient variation of SA that prunes excessive computations,

INTRODUCTION 3

called Fast SA.

In addition to the existing efforts in addressing the Data Lake Organization Problem (DLOP),

our research introduces a novel approach that aims to overcome the limitations of current

methodologies. While previous studies have predominantly relied on the ‘Organize’ algorithm

as a heuristic for optimizing data organization within data lakes, our proposed multi-start sim-

ulated annealing metaheuristic represents a significant departure from traditional methods. By

exploring two distinct neighborhood structures - namely, the addition of edges and the deletion

of nodes - our approach offers a more comprehensive and flexible framework for optimizing the

probabilistic graph that models user browsing behavior.

Importantly, our methodology addresses a key gap in the literature by algorithmically de-

scribing these operations and ensuring the consistency of probabilities throughout the graph.

Furthermore, we demonstrate the efficiency of our implementation, highlighting its potential to

streamline the process of organizing data within data lakes. This novel strategy contributes to

advancing the field of data lake management. It offers practical benefits for organizations that

manage large volumes and diverse data types.

The main reason behind selecting SA for our study is rooted in its capacity to navigate com-

plex, non-convex search spaces (Delahaye et al., 2018) efficiently. Unlike other trajectory meta-

heuristics such as GRASP, ILS, and Tabu Search, SA does not need to scan the entire neigh-

borhood structure to select the next potential solution. This quality becomes especially crucial

when dealing with a large neighborhood and confronting high time and space complexity during

fitness evaluations such as those arising from big data problems (Ceschia and Schaerf, 2024).

The SA’s ability to escape local optima, coupled with its flexibility in handling diverse problem

structures, aligns well with the intricacies of our optimization problem (Heu, 2010). Furthermore,

its simplicity of implementation is advantageous, considering the high computational demands

associated with fitness evaluations in our context. SA’s probabilistic acceptance of inferior so-

lutions provides a valuable trade-off between exploration and exploitation in scenarios where

fitness evaluations are computationally expensive. It is particularly well-suited for our problem

domain (Delahaye et al., 2018).

We introduce the first set of benchmark data lakes for DLOP, leveraging those to compare our

metaheuristic with the state-of-the-art one. We populate these instances with open data involving

various topics, varying in context and size. A fair comparison between the metaheuristics was

possible by tuning their hyper-parameters. We evaluate in terms of effectiveness, efficiency, and

success probability.

First, we perform a non-parametric statistical test on solution fitness obtained in repeated

experiments. In the second, we investigate the time to reach a reasonable solution. In the latter,

we evaluate the navigation quality by simulating a user’s exploration. For benchmarking, we

consider a set of 30 data lakes sampled from the Socrata (Socrata, 2022), an open data lake

populated with data from government entities from different countries. These data lake instances

vary in size and context and contain data related to finances, social services, demographics,

INTRODUCTION 4

infrastructure, health, environment, public safety, education, economy, and transportation.

In the effectiveness analysis, our proposals excelled in all instances, showing an improve-

ment in the solution quality by up to 44%. For a better comparison, we ran the Mann-Whitney

test (Mann and Whitney, 1947) on the effectiveness of solutions. We obtained p-values lower

than 10−2, which shows the dominance of our approaches over the competition. In the effi-

ciency analysis, we found reasonable solutions for an instance 75× faster than the literature in

most trials. Finally, we have achieved organizations with navigability up to 5% better than in the

literature. All analyses revealed that our proposals increases the expected probability of discov-

ering tables and demands less time to find a suitable solution compared to the best literature

approach.

1.2 Related Work

Taxonomies and semantic graphs are strategies often applied to enrich the data lake metadata

that can provide hierarchical navigation (Gupta et al., 2017; Futia et al., 2020). Such structures

are imported from existing and curated ones or automatically induced from data (Torregrossa

et al., 2021; Yu et al., 2021a). Those allow annotating data with interrelated entities having dif-

ferent levels of granularity. Although they enable browsing through entities and faceted-search

over them, each data source may be associated with various entities (Aso et al., 2020). Further-

more, these approaches are designed for something other than practical navigation, providing a

hard browsing (Nargesian et al., 2023). Then, an organizational structure optimized to support

navigation and exploration over tables in data lakes is advisable (Nargesian et al., 2020).

Yu et al. (2021a) developed an automated tool to build them for metadata representation.

Their approach recognizes entities, concepts, properties, and relations by extracting statistical

features and similarities from disparate data sources. The objective is to semantically integrate

all data under a unified metadata model enriched with knowledge graphs. A similar metadata

model is the Enterprise Knowledge Graph (EKG) proposed by Fernandez et al. (2018b). EKGs

are built human effortlessly by Aurum, a metadata system that captures relationships between

data columns and references from knowledge graphs. This system offers a significant advantage

over the former by addressing data discovery through a search engine on top of the EKG. Yet,

such approaches provide lazy and low successful browsing (Nargesian et al., 2023).

Nargesian et al. (2020, 2023) proposed a suitable framework. They have modeled the data

lake organization as a graph, where each node represents a data topic. Browsing through such

topics, the user can obtain relevant data sources when a keyword query needs to be better de-

fined. Further, they define the DLOP, whose goal is finding an organization that minimizes the

user’s cognitive effort during data exploration. They proposed a metaheuristic named ‘Orga-

nize’ with two neighborhood structures for the problem. However, they still need to provide an

implementation for these.

INTRODUCTION 5

Achieving more robust data discovery is possible by combining search and navigation (Nar-

gesian et al., 2023). In this way, Ouellette et al. (2021) proposed RONIN as an exploration tool

that integrates these two paradigms. In RONIN, a user can perform a keyword or joinability

search over a data lake, then browse the result using an organization built by Organize. During

navigation, the user can refine the query, retry the search, and return to navigating an updated

organization based on the search. However, this requires generating organization in near real-

time, which demands more efficient algorithms.

Previous works, except for Aso et al. (2020), infer a model from the data that enables its

navigation. Some of them address the problem of searching datasets, as in Aso et al. (2020),

Fernandez et al. (2018a,b), and Ouellette et al. (2021). However, only Nargesian et al. (2020,

2023) and Ouellette et al. (2021) propose approaches that infer data structures effective for nav-

igation, and all of them use the same Organize algorithm to achieve this. Our work contributes

to the more efficient induction of a more effective navigable structure for a data lake. Table 1.1

compares the features of our work and those.

Table 1.1: Comparison between main features of our work and similar literature proposals.

References
Model Search Effective

Inference Engine Browsing

Our proposed solution ✓ ✓
Aso et al. (2020) ✓

Fernandez et al. (2018b) ✓ ✓
Futia et al. (2020) ✓
Gupta et al. (2017) ✓

Nargesian et al. (2020) ✓ ✓
Nargesian et al. (2023) ✓ ✓
Ouellette et al. (2021) ✓ ✓ ✓

Torregrossa et al. (2021) ✓
Yu et al. (2021a) ✓

Although Simulated Annealing is a traditional heuristic, it is still highly competitive in signif-

icant problems with a high cost of evaluating the quality of the solution (Ceschia and Schaerf,

2024). This performance is due to the possibility of exploring the solution space well without

evaluating the entire neighborhood through local search. Danandeh Mehr et al. (2020) proposed

a new hybrid model that enhances the Elman Neural Network (ENN) with an SA optimization

for spatio-temporal drought forecasting. This work compares the performance of ENNs with and

without SA, where the former predominates.

Osegi and Jumbo (2021) conducted a comparative analysis of Artificial Neural Network

(ANN) algorithms for detecting credit card fraud and found that the SA-optimized model was

superior, especially compared to a well-known robust model such as LSTM. To effectively deal

with large instances in the capacitated facility location problem with customer incompatibilities,

Ceschia and Schaerf (2024) introduced a Multi-neighborhood SA, which proved to be more ef-

INTRODUCTION 6

fective than more exhaustive heuristics based on local search such as ILS, GRASP and the

Evolutionary Algorithm.

2
Technologies and Concepts

This Chapter reviews Big Data, presenting its opportunities and challenges. It also examines

a leading solution for Big Data: the Data Lake. It offers the main features of this solution and

discusses metadata management as a central challenge. Finally, it describes the data lake

organization as a recent approach contributing to this issue.

2.1 Big Data

Data creates a modern way of interacting with the world, transforming how we live, work, and

play. Companies and industries worldwide are using data to evolve their business models to

become more efficient, improve the customer experience, and develop new sources of compet-

itive advantage. People live in an increasingly digital world. They depend on online and mobile

channels to connect with friends and family, access goods and services, and manage almost

every aspect of their lives.

Data drives today’s economy, and this dependency will only increase as services become

more intelligent and data collection increasingly ubiquitous. Data generally comes from transac-

tional systems, the Internet of Things (IoT), and social media (Reinsel et al., 2018). According to

predictions, there are demands to connect 75 billion devices worldwide by 2025 (IRENA Group,

2019).

An integration scenario of heterogeneous devices is the expected setting for smart city en-

vironments (Ramos et al., 2023). Smart cities emphasize the interconnection between systems

to produce data about themselves, allowing information sharing between different platforms. We

can achieve the sharing with ubiquitous monitoring, data analysis, and homogeneous represen-

tation of all information in a unified framework (Rathore et al., 2016).

Furthermore, decision-makers can benefit from the information to plan how to use resources

and expand smart areas (Bibri, 2018). Smart cities can leverage data applications to numerous

7

TECHNOLOGIES AND CONCEPTS 8

Figure 2.1: Annual Size of the Global Datasphere (Reinsel et al., 2018)

sectors, providing better customer experiences and services to increase performance for com-

panies (e.g., increased profits and market value) and public institutions (e.g., reduced costs and

increased customer satisfaction).

The consequence of this increasing reliance on data has been the exponential growth in the

size of the Global Datasphere, as seen in Figure 2.1. The Global Datasphere quantifies the

amount of data created, captured, and replicated in any given year across the world (Reinsel

et al., 2018). Estimated to be 33 Zettabytes in 2018, IDC forecasts the Global Datasphere to

grow to 175 Zettabytes by 2025 (Reinsel et al., 2018).

This scenario offers a complete set of opportunities. However, it requires storing and analyz-

ing massive and complex data that exceeds the capacity of conventional computer systems and

algorithms (Marx, 2013). This characteristic is the main feature of Big Data. Big Data is often

defined by 5Vs (Stefanowski et al., 2017): (1) Volume (referring to the huge amount of data);

(2) Variety (indicating multiple, heterogeneous, and complex data representations); (3) Velocity

(referring to the speed to generate and analyze the data, as well as their dynamics and evolution

in time, e.g., data streams); (4) Veracity (referring to the worse quality and uncertainty of data);

(5) Value (referring to a potential business value that big data analysis could give).

Big Data is a reality nowadays. However, transitioning from previous approaches developed

for knowledge discovery from databases to Big Data raises new challenges. Complexity not only

affects the structure of data, but also the techniques for data collecting and analyzing. Although

arguably advanced in recent decades, data processing and analysis methods are primarily de-

signed for static and well-structured (usually tabular) data representations (Karimi et al., 2021).

In addition, there is an evident scarcity of approaches, algorithms, and technologies that

explicitly address all the Vs, and the demand for them is growing steadily (Stefanowski et al.,

2017). It is partially driven by years of practice-recurrence that have brought an avalanche of us-

age scenarios and applications that result in massive volumes of complex, poorly structured, and

dynamic data in many domains, such as social networks, mobile services, network monitoring,

TECHNOLOGIES AND CONCEPTS 9

smart cities, and intelligent transportation.

The Data Warehouse is one solution that has dominated the Big Data landscape for years

and is still very relevant. This solution has reached a high maturity level and is built on well-

established technologies (mainly the Apache Hadoop environment toolset) (Alekseev et al.,

2016). A Data Warehouse is a data repository from heterogeneous independent sources that

have undergone a subject-oriented integration and structuring procedure (Chandra and Gupta,

2017). It provides tools to transform raw data, clean it, and integrate it into a unified storage

repository for further analysis and decision support (Alekseev et al., 2016).

We model data warehouses multidimensionally to facilitate complex analysis and visualiza-

tion (Chandra and Gupta, 2017). The processed and stored data follows a cube pattern in

multidimensional databases (MDDBs), which organize the data into dimensions and fact ta-

bles (Chaudhuri and Dayal, 1997). Typically, the data originating from multiple data warehouse

sources does not comply with its multidimensional model (Ali and Wrembel, 2017). For exam-

ple, a long text document requires natural language processing to produce relevant topics and

counts inserted into some fact or dimension table columns.

Furthermore, the incoming data may need to be more consistent and have better quality,

presenting missing, redundant, and even contradictory values (Ali and Wrembel, 2017). Conse-

quently, purpose-built software is commonly used in a data warehouse architecture to integrate

its different sources (Machado et al., 2019). This software, or procedure, is known as Extrac-

tion–transformation–loading (ETL), and we use it as an intermediary between data sources and

a data warehouse (Machado et al., 2019).

As limitations for this Big Data solution, we can mention resistance to change and adapta-

tion, which usually impacts business models. There is a limitation of the available data due to

the inability of the ingestion process to extract all available information and load it into a multi-

dimensional model (Sawadogo and Darmont, 2021). This limitation utterly restricts the amount

of information accessible to understand events and aid decision-making (Ramos et al., 2023).

Thus, data warehouses become better options for applications with limited requirements in terms

of variety and scalability.

2.2 Data Lake

Although researchers have discussed big data for some years, it still has many research chal-

lenges, especially the variety of data. It poses considerable difficulty to integrate, access, and

query a large volume of diverse data in information silos with the traditional ’schema-on-write’ ap-

proaches such as data warehouses (Stefanowski et al., 2017). Data lakes have been proposed

as a solution to this problem. They are repositories storing raw data in their original formats and

providing a standard access interface (Fernandes et al., 2023a).

Data Lakes offer flexibility for changing, storing, and integrating different structured, semi-

TECHNOLOGIES AND CONCEPTS 10

structured, or non-structured data sources. Considering the access gain and cost reduction of

cloud services, the volume of data can increase more than enough to enable rich information

results. It is also possible to perform batch processing and search through advanced Distributed

Computing algorithms (He and Da Xu, 2012). Finally, table 2.1 presents some advantages of

using a data lake or a data warehouse, with the characteristic of the systems playing a significant

role in choosing the more appropriate or both solutions.

Table 2.1: Data Warehouse vs. Data Lake: advantages and disadvantages.

Data Warehouse Data Lake

Advantages

Low maintenance
Matured technology
Optimized searches

Usability

Volume and variety
Flexible to changes
Batch processing

Advanced analysis
Governance

Disadvantages
Limited data

Resistance to change
High technical expertise
Complex maintenance

We have seen the surge of many data lake architectures in recent years. Most of them

use the zone concept. They assign the data to each zone according to its refinement degree

(Giebler et al., 2019). For example, Figure 2.2 presents a general representation of a zone-

based architecture composed of four zones to perform data Ingestion, Distillation, Processing,

and Insights.

In addition, a governance layer traverses all the other layers to assure data security, privacy,

quality, and monitoring (Giebler et al., 2019). Each layer has different governance levels, and the

further from the ingestion layer, the greater the governance level (Giebler et al., 2019). However,

this is only one of several variants of the zone architecture. Such architectures generally differ in

the number and characteristics of the zones (Giebler et al., 2019).

INSIGHT PROCESSING INGESTION DESTILLATION

GOVERNANCE

Figure 2.2: General data lake zone architecture.

TECHNOLOGIES AND CONCEPTS 11

Ingestion

The data is stored in raw format or with minimum processing during ingestion. Also, integrating

different applications creates a voluminous non-structured storage unity, highly connected and

augmented with metadata (Sawadogo and Darmont, 2021). The aim is to minimize and avoid in-

formation loss by not prematurely processing data during the ingestion stage. The main features

of data lakes lie in the late-binding aspect. Some differences between the mentioned approach

and early-binding are presented in Table 2.2, adapted from Fang (2015).

Table 2.2: Key differences between early and late binding.
Early-Binding Late-Binding

Data
Storage

Well-defined schema; Ingest data
Processing; Evaluate data

Ingest data
Data catalog

Users
Consume data

Produce information

Define data schema; Processing
Consume data; Evaluate data

Produce information

Suited for
Known predictable sources

Reusability
Consistent results

Unfamiliar data
Infrequent usage

Heterogeneous sources

Late-binding has no pre-defined schema. The input could be more familiar (structured or un-

structured). The storage aims to ingest and save data processed when needed. Although there

is no unique structuring, data must be well documented and associated with its metadata to

facilitate discovery through the data lakes catalog. Users can serve themselves to process, eval-

uate, and extract information from diversified and heterogeneous sources (Gorelik, 2019). Early

binding is well suited to known and predictable sources. Applications have access to treated,

validated, and ready-to-use data consumed consistently to absorb the information provided by

analysis, graphs, and results of inference models.

Usually, data lake architectures copy data from the source to a scalable or distributed file

system such as HDFS (Hadoop Distributed File System) (Shvachko et al., 2010). There are

known sets of technologies to transfer and process data, such as Apache Kafka (Le Noac’H

et al., 2017), Sqoop (Vohra, 2016), Flink (Carbone et al., 2015), and Samza (Noghabi et al.,

2017). We can mention a data table, an XML (Extensible Markup Language) file, or raw text as

source examples.

The additional required storage is one of the disadvantages of these methodologies, as well

as the need for periodic data updates (Stefanowski et al., 2017). We can avoid these problems

with a federated data lakes approach, in which data is accessed directly in its source through

distributed query engines (e.g., PrestoDB, Apache Drill, and Hive) connected to the databases

or file systems (Mami et al., 2019). The performance loss is one of the issues of this approach

since a search on multiple distinct servers can increase the complexity of queries. There are

active research and cache mechanisms to mitigate the problem (Stefanowski et al., 2017).

TECHNOLOGIES AND CONCEPTS 12

Although there is barely any processing in the ingestion layer, and data is primarily found in

its raw state, many problems and challenges arise from ample heterogeneous storage, espe-

cially from a data lake perspective. For example, how can a single query hit multiple databases

and fetch relevant data from a similar context? For such cases, we can find previous research

proposals on using semantic integration to match equivalent attributes (Li and Clifton, 1994; Li

et al., 2000).

This process involves extracting semantics, expressing it as metadata, and matching equiva-

lent data through discovery instead of pre-programming. For example, Facebook’s recent efforts

use natural databases to query data based on facts represented as short natural language sen-

tences. One of the benefits of neural database systems is that they have no pre-defined schema.

Another convenience is that users can perform updates and queries in natural language forms.

For now, the success of neural databases depends on overcoming scalability challenges since

we can not scale them to non-trivial databases nor apply them to set-based and aggregation

queries (Thorne et al., 2021).

Distillation

Distillation is the stage in which data is segregated and cataloged according to governance poli-

cies and other relevant criteria such as quality and security (Sawadogo and Darmont, 2021).

Some segregation practices split data between free or restricted access. For example, smart

cities allow access to health care, public security, and education applications. The distillation’s

granularity can be as fragmented as needed to facilitate search and satisfy governance require-

ments. After segregation procedures such as anonymization or access restrictions, we subject

each data batch to treatment and validation.

Data scientists, engineers, analysts, and business managers access data at different refine-

ment levels and have different perspectives. As the application’s privacy policy demands, we

should submit the data to segregation criteria before being available in the data lakes catalog.

Data quality impacts application and business models, and treatment and validation steps aim

to produce ready-to-go data to generate fast and accurate results (Gao et al., 2016). If specific

data treatment and manipulation are required to boost results, users can access data in its raw

state and apply their treatment and analysis.

Processing

In the processing stage, users should be able to seamlessly manipulate data using automation

tools such as Apache NiFi (Mathis, 2017). Big non-processed data give the user more freedom

to apply techniques to select features, identifying hidden patterns that otherwise would be erased

by premature processing. Future-proofing comes as another advantage since new projects will

be able to access the data that initially had no purpose, minimizing the impacts of the fast-paced

TECHNOLOGIES AND CONCEPTS 13

evolution of big data (Gorelik, 2019).

With more possibilities to choose from, we can take advantage of feature engineering more

broadly to maximize efficiency and information gained from algorithms (Heaton, 2016). Further-

more, since data lakes aggregate multiple data sources, the users can benefit from big-scale

analysis in a structured platform that eases the overhead of experiment replication. We can

embed previously recurrent tasks, such as data augmentation performed by data scientists, in

the processing layer to speed up the deployment of machine learning and statistical inference

models. Data augmentation provides a suite of techniques that enhance the size and quality of

datasets (Shorten and Khoshgoftaar, 2019). We can store manipulated and enhanced data in

the data lakes for future use and information harvesting.

We can use parallel data processing tools such as Apache Hadoop, which contains MapRe-

duce (Sawadogo and Darmont, 2021) operations for large datasets. However, since MapReduce

saves processing results in the computer’s hard disk, it has performance limitations, making it in-

efficient for fast data (Li et al., 2018). To overcome such limitations, alternative frameworks such

as Apache Spark, Apache Flink, and Apache Storm propose an in-memory approach rather than

the file system to save intermediate results (Sawadogo and Darmont, 2021). We can implement

Flink and Storm simultaneously as stream processing engines to real-time data (Li et al., 2018).

DATA CATALOG

AI / Machine
Learning

Distributed
Algorithms

Feature
Enginering

Data
Augmentation

PROCESSING

Distributed File System

DATA LAKE
RETROFEEDING

Figure 2.3: Data processing (Ramos et al., 2023).

TECHNOLOGIES AND CONCEPTS 14

Insights

Most business ideas, problem identification, and solutions emerge from analyzing and reflecting

on situations and results. So, the whole point of a data lake is to provide the feedstock data to

fuel information gain. Therefore, users should have access to a framework to highlight the events

of a specific business or application. This action occurs through an insights layer available to

managers or stakeholders.

We use available analysis tools, such as Tableau, Microsoft Power BI, and Apache Zeppelin,

to understand and expose event results to managers and stakeholders (Sawadogo and Darmont,

2021; Li et al., 2018). Such evaluations enable meaningful analysis and data-driven decision-

making to continuously improve the success of a specific business or application (Provost and

Fawcett, 2013).

The types of decisions that matter fall, more specifically, into two categories: i) decisions for

which "discoveries" need to be made in the data; and, ii) repeatable decisions, especially on a

large scale. Thus, decision-making can benefit even under small increases in the accuracy of

this process based on data analysis. Data-driven decision-making enables decisions based on

data analysis rather than intuition. The more data-driven it is, the more productive a company

or government entity becomes (Provost and Fawcett, 2013). But it is worth mentioning that

decision-makers need to be very cautious against decision bias (Kahneman et al., 2021).

Governance

Several factors are constantly present to ensure good governance for every layer, preventing

the emergence of vulnerabilities or turning the data lakes into a data swamp (Francia et al.,

2021). Data swamps are unusable or hard-to-harvest datasets that only generate expenses to

their maintainers, either by poor metadata management or by inaccessibility to users (Ramos

et al., 2023). Data Lakes require meticulous care and monitoring, as they are complex storage

solutions with advantages and disadvantages.

Data governance builds the foundation for data management and enforcement of the rules

abided by stakeholders and decision-making processes. It covers the planning, monitoring, and

execution of data lifecycle management and policies (Eichler et al., 2021). Lifecycle management

refers to processes related to the design, creation, collection, storage, usage, maintenance,

enhancement, archiving, and disposal of data (Eichler et al., 2021).

The policies cover all data lifecycle stages and involve security, privacy, compliance, and data

quality management (Eichler et al., 2021). All involve generating or using stored information, or

in this case, metadata (Francia et al., 2021). Considering a complex and heterogeneous system

like a data lake, a robust metadata management system is imperative for optimized extraction of

value and insights (Fernandes et al., 2023a).

As there is no main effort on data structuring, data lakes offer more flexibility to change

TECHNOLOGIES AND CONCEPTS 15

constantly, subject to governance policies of all data lake layers and access levels. The con-

sistency assurance in multiple layers can make maintenance tasks more complex. The greater

data volume and variety require more knowledge from users performing search and analysis.

The decision to deploy a data lake depends on the number of integrated systems, heterogeneity,

and integration degree.

2.3 Data Lake Organization

The rising popularity and size of data lakes are fueling interest in dataset discovery. The dataset

discovery process is usually done by search querying or browsing. In search, the query can

consist of a set of keywords or data, and the goal is to find datasets related to it (Brickley et al.,

2019; Zhu et al., 2016). When the query is a tabular dataset, it is still possible to search for

joinable and unionable tables (Bharadwaj et al., 2021; Nargesian et al., 2018).

In the browsing paradigm, a user navigates through an organizational structure to find data

of interest. Such a mechanism allows expert Data Lake users to browse available topics, going

from general concepts to more specific ones (Nargesian et al., 2020). This approach saves time

while exploring the available data and in vaguely defined searches since it is unnecessary to

check everything stored.

Existing taxonomies or structures provide hierarchical navigation over entities automatically

created using taxonomy induction (Torregrossa et al., 2021; Gupta et al., 2017). Entities may

have some known features to apply faceted-search over the entities (Aso et al., 2020). Taxonomy

induction identifies is-a relationships between entities (e.g., Tesla is-a Company), whereas face

search evaluates predicates (e.g., model = Cybertruck) to filter collections of entities (Kharlamov

et al., 2017).

In contrast to hierarchies over entities, in data lakes, the domain of each data source can be

related to many different types of entities. There may be no is-a relationships between datasets

or their attributes and no easily defined facets for grouping them. A common approach is to

annotate tables with class labels from a knowledge base (Mami et al., 2019). In this way, the is-a

relationships between the class labels provide a kind of organization for the tables (Futia et al.,

2020). However, knowledge bases are not designed to provide effective navigation (Nargesian

et al., 2023).

Nargesian et al. (2020) proposes to build an organization designed best to support navigation

and exploration over tables in data lakes. They define an organization as a Directed Acyclic

Graph (DAG) with nodes representing sets of attributes from a data lake. A node may have a

label created from attribute values or metadata. A table is associated with all nodes containing

any of its attributes. An edge indicates that the attributes in a parent node are a superset of the

attributes in a child one. Thus, a user can find a table traveling from an organization source node

to any sink node containing its attributes.

TECHNOLOGIES AND CONCEPTS 16

Root

Food Economy Immigration

Fishery Food

Inspection
 Grains

d1.a1 d1.a2 d2.a2 d5.a3 d6.a2 d3.a1 d4.a2

d1.a1 d1.a2 d2.a2 d5.a3 d6.a2

Figure 2.4: An organization for the data lake described in the Table 2.3, as provide by Nargesian
et al. (2023)

For example, consider the collection of tables from an open data lake described in the table

2.3. A table can be multi-faceted, and its attributes can regard different topics. One path to

reveal this data to a user is through a flat structure of all attributes. A user can browse the data

and select data of interest. With many tables, an organization over attributes may provide more

efficient navigation. Suppose the data lake organization is in the DAG of Figure 2.4. The label

of a non-sink node in this organization summarizes the content of the attributes in its subgraph.

Suppose a user is interested in the topic of food inspection. Using this organization, the number

of options at each navigation step is limited to three, and only two steps are necessary to achieve

the goal.

Table 2.3: Sample Table from Open Data (Nargesian et al., 2023)

Id Table Name

d1 Surveys Data for Olympia Oysters, Ostrea lurida, in BC.
d2 Sustainability Survey for Fisheries.
d3 Grain deliveries at prairie points 2015-16.
d4 Circa 1995 Landcover of the Prairies.
d5 Mandatory Food Inspection List.
d6 Canadian Food Inspection Agency (CFIA) Fish List.
d7 Wholesale trade, sales by trade group.
d8 Historical releases of merchandise imports and exports.
d9 Immigrant income by period of immigration, Canada.

d10 Historical statistics, population and immigrant arrivals.

Nargesian et al. (2020) define the Data Lake Organization Problem as finding an organization

that allows a user to most efficiently find tables. They describe the user navigation through an

organization using a Markov model. In this model, each node in an organization is equivalent to

TECHNOLOGIES AND CONCEPTS 17

a state in the navigation model. They provide a set of the following states (the children of the

current) to a user in each state. An edge denotes the transition from the current state to the next

state. Due to the subset property of edges, each transition filters out some attributes until the

browsing reaches characteristics of interest.

The effectiveness of an organization is defined as dependent on a set of properties. The

first of these is related to the branching factor. The number of choices presented to the user at

each step should be reasonable. Another consideration is the distinction between the options

available in each state. This aspect makes it easier for users to choose the most relevant one.

Additionally, the transition probability function of the proposed Markov model assumes that users

choose the next state that has the highest similarity to the topic query they have in mind. Finally,

it is established that the number of choices they need to make (the length of the discovery path)

should be insignificant.

3
Methodology

This Chapter reviews the definition of the Data Lake Organization Problem. It also discusses the

best algorithm proposed in the literature for this problem. Finally, we offer multi-start simulated

annealing for the DLOP and algorithms for neighborhood structures defined by Nargesian et al.

(2020).

3.1 Data Lake Organization Problem

To provide a complete understanding of the Data Lake Organization Problem, this section sum-

marizes the concepts, formulations, figures, and definitions presented by Nargesian et al. (2020,

2023) in their seminal works.

3.1.1 Organization

Let T be the set of all tables in a data lake. Each table T ∈ T consists of a set of data

columns named attributes and denoted by attr(T). Let A = attr(T) =
⋃

T∈T attr(T) be the

set of all attributes in a data lake. For example, with the data lake in TABLE 2.3, we have

A = {d1.a1,d1.a2,d2.a1,d3.a1, d4.a1,d5.a1,d6.a1,d7.a1,d8.a1,d9.a1,d9.a2,d10.a1}. As

defined in Nargesian et al. (2020), an organization of T is an agglomerative clustering of A
in a directed acyclic graph (DAG). Let O = (V,E) be an organization of T , then every v ∈ V

corresponds to a set of columns Dv ⊆ A . For instance, in the organization in Fig. 1, the node

Fishery contains the attributes D = {d1.a1,d1.a2,d2.a1}. Every column A ∈ A has a set of

values called the domain (dom(A)). The domain of a node v is dom(v), which is dom(Av) when

v is a sink node and
⋃

A∈Dv
dom(A) otherwise.

A vertex u is a parent of v if uv ∈ E. The vertex v is then a child of u. A vertex u is an

ancestor of v if the digraph contains a path from u to v. If u is an ancestor of v, then v is a

descendant of u. For example, Fishery is the child of Food and descendant of Root in Fig. 2.4.

18

METHODOLOGY 19

Let ch(·) map a node to its children, and par(·) be the mapping of a node to its parents. Every

edge uv indicates a relationship such that Dv ⊆Du. This is called inclusion property, and implies

∀v ∈V , Dv =
⋃

w∈ch(v)Dw. For instance, the Food node contains the union of all columns under

Fishery, Food Inspection, and Grains. Hence, each sink node z corresponds to a distinct

attribute Az ∈ A . An organization has only one source node, called Root, and it originates all

user navigation. The Root corresponds to the set of all columns A .

3.1.2 Navigation Model

The user experience during an organization’s discovery, Nargesian et al. (2023) consider a model

based on the Markov chain. Each node corresponds to a state indicating the user’s position, and

each edge corresponds to a transition. For simplicity, we will use these related terms inter-

changeably. The navigation starts in the source node, and the user selects the next node at

each browsing step. Consequently, because of the inclusion property, the transition state filters

out some attributes of the previous node. The discovery process stops once the user reaches a

sink node.

The user’s intent is modeled as a search topic X . Given an organization O and a search

topic X , the transition probability P(c|s,X ,O) regards the likelihood that the user who searches

for X will choose c as the next state if they are at the state s. The probability should rely on the

similarity between dom(c) and X , so let κ(c,X) be a similarity metric. The transition probability

is

P(c|s,X ,O) =
e

γ

|ch(s)| ·κ(c,X)

∑t∈ch(s) e
γ

|ch(s)| ·κ(t,X)
. (3.1)

The term |ch(s)| is a penalty factor to avoid excessive choices in each browsing step. The impact

of the high similarity of a state with X reduces when its parent has a high branching factor. To

adjust the importance between the similarity to X and the out-degree, a similarity factor γ is

included. Such a constant must be a strictly positive number. Its relevance is evident when the

κ(·, ·) image has a too-short range relative to the desired branching factor.

The goal of exploring the content of heterogeneous data lakes makes it reasonable to em-

ploy a semantic similarity. Consequently, the literature has chosen to build organizations on text

attributes. To capture semantics, each data value v is represented by an embedding vector v⃗

such that values more likely to share the same context have embedding vectors close in em-

bedding space according to some metric. Every state s is indicated by a topic vector, which is

the sample mean (µs) of set {⃗v|v ∈ dom(s)}; the transition probability to state c, κ(c,X) is the

cosine similarity between µc and µX .

All states in O are reachable from the Root through some discovery sequence. A discovery

sequence is a path, r = s1, . . . ,sk where si ∈ ch(si−1) for 1 < i≤ k. The Markov property claims

METHODOLOGY 20

that the probability of transitioning to a state depends only on its parent. Hence, the probability

of reaching state sk through a discovery sequence r = s1, . . . ,sk, while looking for X can be

expressed as

P(sk|r,X ,O) =
k

∏
i=2

P(si|si−1,X ,O). (3.2)

This formulation naturally punishes longer sequences. Since an organization is a digraph, a

state is reachable by multiple discovery sequences. Let paths(s) be the set of all discovery

sequences in O that achieve s from the Root. The probability of reaching a state s in O while

searching for X is

P(s|X ,O) = ∑
r∈paths(s)

P(s|r,X ,O), (3.3)

which is equivalent to

P(s|X ,O) = ∑
p∈par(s)

P(s|p,X ,O)P(p|X ,O). (3.4)

3.1.3 Organization Discovery Problem

Finding an appropriate organization for a data lake is achieved by optimizing a DAG O consid-

ering the topics held by its tabular attributes. Therefore, the organization construction always

assumes X ∈ A . The discovery probability of an attribute A in organization O is P(sA|A,O),

where sA is a sink node. We denote the discovery probability of A as P(A|O).

The discovery of a table T in an organization is O whenever a discovery sequence reaches

any of its attributes. As there is independence for finding features, the discovery probability of a

single table T is

P(T |O) = 1−∏
A∈T

(1−P(A|O)). (3.5)

For a set of tables T , the organizational effectiveness is the expected probability of finding

tables, defined as

P(T |O) =
1
|T | ∑

T∈T
P(T |O). (3.6)

Finally, given a set of tables T in a data lake, the Data Lake Organization Problem is to find an

organization Ô such that

Ô = argmax
O

P(T |O). (3.7)

METHODOLOGY 21

3.2 Data Lake Organization Through Multi-Start Simulated

Annealing

Simulated Annealing is one of the best-known metaheuristic methods for addressing challenging

global optimization problems (Delahaye et al., 2018). SA is a good candidate when there is no

objective function explicitly, and its evaluation involves complex simulation processes requiring

a lot of memory (Delahaye et al., 2018). SA proves to be more powerful than traditionally more

robust metaheuristics (i.e., GRASP, ILS, and GA) in problems where generating neighboring so-

lutions and calculating fitness is extremely costly in terms of time and space (Ceschia et al.,

2022; Ceschia and Schaerf, 2024). We achieve better results when the SA is enhanced with

a multi-start strategy (Yu and Lin, 2014), which is motivated by its capacity to improve explo-

ration and overcome local optima. This approach mitigates sensitivity to initial solutions, handles

stochasticity, and adapts to diverse problem instances (Heu, 2010).

Our Data Lake Organization proposal uses a multi-start strategy and considers as input the

data lake structure T and different hyper-parameter: similarity factor γ, temperature decay factor

α, and several explored solutions ki until the temperature decreases. To find the best organiza-

tion, we consider the Algorithm 3.1 based on a multi-start strategy. The algorithm considers the

following steps: (1) Creation of an initial organization (section 3.2.1); (2) Application of the Simu-

lated Annealing process kr times to improve initial solution during k f interactions (section 3.2.2);

(3) Choice the organization with the highest effectiveness according to Eq. 3.6.

Due to the complexity of the problem, our approach has been modulated into a set of al-

gorithms whose interdependence and overall execution flow are illustrated in Figure 3.1. The

arrows indicate that the source module (algorithm) executes the destination one. The double

arrows show that this execution happens often until it reaches a stop condition. The diamond

indicates a choice, a bifurcation between two possible execution flows. In general terms, our

proposal starts by running the already discussed Algorithm 3.1, which runs Simulated Annealing

(Algorithm 3.2) several times until that reaches the stop condition. Each run of this will evaluate

multiple organizations generated by Random Neighbor Selection (Algorithm 3.3). This strategy

performs a heuristic method to select a node from the graph and randomly picks an operation to

modify it, which can add or delete a parent.

The Add Parent Operation (Algorithm 3.4) heuristically inserts a new parent node into the

chosen node and then calls Update ancestors (Algorithm 3.5). This strategy will traverse the

nodes that reach the changed node (in other words, its ancestors) and, for each of them, it will

execute the Update state (Algorithm 3.6) until there are no more ancestors to update their domain

information. Once these changes have been made, Algorithm 3.5 runs Update descendants

(Algorithm 3.7), which downward traverses the graph updating the probabilities. At the end of this

procedure, we have the sink nodes with attribute discovery probabilities available to compute the

organization’s effectiveness. The delete parent operation (Algorithm 3.8) heuristically removes a

METHODOLOGY 22

parent (and also its siblings) from the chosen node, previously transferring their children nodes to

their parents, and then calls Update descendants. Once the probabilities have been refreshed,

we have a new organization ready to be assessed by the SA.

Simulated Annealing

(Algorithm 2)

Multi-start Simulated
Annealing

(Algorithm 1)

Random Neighbor
Selection

(Algorithm 3)

Adds Parent Operation

(Algorithm 4)

Deleting Parent Operation

(Algorithm 8)

Update ancestors

(Algorithm 5)

Update state

(Algorithm 6)

Update descendant

(Algorithm 7)

Figure 3.1: Flowchart of the proposed approach in terms of its component algorithms

3.2.1 Organization Initialization

The initial organization O is an induced tree from the attributes of the data lake, based on hierar-

chical clustering algorithms (Nargesian et al., 2020, 2023). In our case, the initialization relies on

the nearest neighbor chain (NNC) algorithm designed for agglomerative hierarchical clustering,

METHODOLOGY 23

Algorithm 3.1 Multi-start Simulated Annealing
1: Require: T , γ, α, kr, ki, k f
2: Ensure: O∗
3: O← InitializeOrganization(T)
4: while stopping criteria do
5: O ′← SimulatedAnnealing(O,T ,γ,α,ki,k f) ▷ Algorithm 3.2 in subsection 3.2.2
6: if O∗ = /0 or P(T |O ′)> P(T |O∗) then
7: O∗← O ′
8: end if

9: end while

whose complexity is O(n2) (Yu et al., 2021b). Over these clusters, in this work, we consider

the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) to evaluate the distance be-

tween clusters (Murtagh and Contreras, 2011). In this strategy, the elements are the attributes’

topic vectors, and the distance is the normalized inverse of the cosine similarity. At each itera-

tion, the NNC creates a new node by agglomerating two others, decreasing the number of nodes

available to cluster by one. Thus, there will be |A |−1 iterations, and the clustering will produce

a graph with V = 2 · |A |−1 nodes.

We create edges between the new state and the states of clustered nodes, and the former

henceforth contains the union of their attributes. To save computation time and memory space,

we store only the topic vector for each state instead of all the vectors that compose its domain.

The topic vector is the sum of its embedding domain for each organization node. Hence, the topic

vector in a non-sink node is the sum of the topic vectors in its children when their domains are

disjoint. This strategy adapts the initial approach and does not distort the transition probabilities.

Suppose a state s ∈V with a domain dom(s). Let dom′(s)⊂ Rd be the transformation image of

dom(s) for a given embedding space, and µs ∈ Rd , its sample mean. Then, for any query topic

X represented by µX ∈ Rd , we have

κ(s,X) = cos(µs,µX)

=
< µs,µX >

∥µs∥∥µX∥
. (3.8)

Then,

κ(s,X) =

〈
1

|dom(s)|σs,µX

〉
1

|dom(s)|∥σs∥∥µX∥

=
< σs,µX >

∥σs∥∥µX∥
. (3.9)

Furthermore,

κ(s,X) = cos(σs,µX), (3.10)

METHODOLOGY 24

where σs is the summation of the vectors in dom′(s).

3.2.2 Simulated Annealing

After the organization initialization, we have the tree O as the initial organization. Our Simulated

Annealing approach considers as input the organization O to be optimized, and the same hyper-

parameter used in Algorithm 3.1. For the optimization of this initial organization structure, we

consider the Algorithm 3.2 with the following steps: (1) Generation of new random solution based

on the neighborhood of the current one (Delahaye et al., 2018); (2) If the new solution is better

than the current one, it is accepted, and the search process resumes from this new current

solution; (3) We adopt a worse solution than the current solution with some probability;

Algorithm 3.2 Simulated Annealing with Early Stop
1: procedure SIMULATEDANNEALING(O, T , γ, α, ki, k f)
2: A ← attr(T)
3: O∗← O
4: t← P(O|T)
5: k← 0
6: while t > 0 or k < k f do
7: for i← 1 to ki do
8: O ′← RandomNeighbor(O,γ,A) ▷ Algorithm 3.3 in subsection 3.2.2
9: k← k+1

10: ∆← P(O|T)−P(O ′|T)
11: if ∆ < 0 then
12: O← O ′
13: if P(O ′|T)> P(O∗|T) then
14: O∗← O ′
15: k← 0
16: end if
17: else
18: x← Random([0,1))
19: if x < e−∆/t then
20: O← O ′
21: end if
22: end if
23: end for
24: t← α t
25: end while
26: return O∗

27: end procedure

The differential in our implementation is the random neighbor selection. Instead of choos-

ing a neighboring solution in a purely random manner, we use a roulette wheel selection ap-

proach (Goldberg, 1989). We consider neighborhood structures the addition and deletion of

parents detailed in Section 3.2.3. To produce a neighbor organization, we consider the Algo-

rithm 3.3 with the following steps: (1) The neighborhood structure is randomly selected. The

procedures AddParent and DeleteParent (Algorithms 3.4 and 3.8) compose the neighbor-

hood structure; (2) A roulette wheel selects an organization level with a probability inversely

METHODOLOGY 25

proportional to its value; (3) It is choosing a state belonging to the drawn level with a prob-

ability inversely proportional to its reachability, which is defined as (Nargesian et al., 2023):

P(s|O) = 1
|A |∑A∈A P(s|A,O). (4) The drawn operation (AddParent or DeleteParent) is ap-

plied to the chosen state, producing an organization neighboring the current one. This approach

favors states closer to the Root and has a lower reachability probability. Then, their modification

has more significant potential to impact the organization’s effectiveness positively (Nargesian

et al., 2023).

Algorithm 3.3 Random Roulette Wheel Neighbor Selection
1: procedure RANDOMNEIGHBOR(O, γ, A)

2: h← ∑
depth(O)
l=2 l−1

3: l← 2
4: z← 0
5: x← Random([0,h))
6: while z < x do
7: z← z+ l−1

8: l← l +1
9: end while

10: S ← states(O, l)
11: h← ∑∀s∈S P(s|O)−1

12: z← 0
13: s← null
14: x← Random([0,h))
15: for all s′ ∈ S do
16: z← z+P(s′|O)−1

17: if z≥ x then
18: s← s′

19: break
20: end if
21: end for
22: x← Random([0,1))
23: if x < 0.5 then
24: O ′← AddParent(O, l,s,γ,A) ▷ Algorithm 3.4 in subsection 3.2.3
25: else
26: O ′← DeleteParent(O, l,s,γ,A) ▷ Algorithm 3.8 in subsection 3.2.3
27: end if
28: return O ′

29: end procedure

3.2.3 Neighborhood Structures

Similar to Nargesian et al. (2023), we restrict our choices of a new organization at each step to

those created by the operations add and delete the parent. For add parent operation, given a

selected state s at level l, we insert a transition between s and the state at level l− 1 with the

highest reachability probability that is not a parent of s. The new parent of s and its ancestors are

updated to contain the attributes in s, Ds, satisfying the inclusion property. Such an operation

potentially increases the reachability probability of a state by adding more discovery paths ending

at that state at the cost of increasing the branching factor (Nargesian et al., 2023).

METHODOLOGY 26

Consider the organization presented before in Fig. 2.4. Suppose the selection of Grains

node (level 2) for the operation, and Economy is the node with the highest reachability probability

of level 1. Then, we will insert an edge from Economy to Grains, as shown in Fig. 3.2. Since the

Economy did not contain the attributes held by Grains, the former must be updated to include

them. Since the parent of Economy is the source node containing all the attributes, changing it

is unnecessary. However, changing the attributes of the Economy implies a change in its domain

and, consequently, in its topic vector.

Root

Food Economy Immigration

Fishery Food
Inspection Grains

d1.a1 d1.a2 d2.a1 d5.a1 d6.a1 d3.a1 d4.a1

d7.a1 d8.a1 d9.a2 d9.a1 d10.a1

Figure 3.2: Add parent operation between Economy and Grains states.

Since the topic vector of a state impacts the transition probabilities of this state and its siblings

(Eq. (3.1)), it is necessary to update the transitions that start from the source node. However,

this implies the need to update the probabilities of all states reachable from the Root as a con-

sequence of Eq. (3.4). For the same reason, updating all the probabilities of the edges that

start from the Economy is also required. Fig. 3.3 illustrates this behavior, where the states and

transitions updated due to adding parent operation are in red. Also, Economy becomes Economy

Grains and is on a solid disk to indicate the change of its attributes and topic vector.

The delete parent operation removes the parent with the most negligible reachability prob-

ability of a given state s. We also remove the siblings of such a parent node to decrease the

organization’s length. With this, all nodes that have had their parents deleted become children

of the states that were previously their grandparents. This operation does not change the graph

path number that leads to the node, and due to the inclusion property, it does not change the

representation of the grandparent nodes either. It only makes the length of paths to s smaller,

which boosts the reachability probability of s (Nargesian et al., 2023). However, this increases the

branching factor of such ancestors, which decreases their transition probabilities overall (Nar-

gesian et al., 2020).

METHODOLOGY 27

Root

Food Economy Immigration

Fishery Food
Inspection Grains

d1.a1 d1.a2 d2.a1 d5.a1 d6.a1 d3.a1 d4.a1

d7.a1 d8.a1 d9.a2 d9.a1 d10.a1

Figure 3.3: States and transitions that need updating after adding parent operation.

Considering Fig. 2.4, suppose that we delete the non-sink states belonging to level 2 (Fig.

3.4). By removing them and transferring their children to their parents, the Food state becomes

the parent of all sink nodes that were their children. Since its attributes remain the same, this

strategy does not change the Food domain. However, it shortens the path to the sink nodes

reachable by Food, increasing the number of children. Therefore, updating the probabilities of

Food’s descent is necessary, as illustrated in Fig. 3.5.

The AddParent procedure performs the parent addition, as presented in Algorithm 3.4, by

the following steps: (1) Get the selected state s and the set of states from the previous level;

(2) Ruled out the states already parents or reachable from s. Such verification is necessary

to avoid cycle insertion into the DAG; (3) The new parent is the remaining state with the high-

est reachability probability p∗, and from this is inserted an outcoming edge to s. (4) Finally,

UpdateAncestors is executed to identify the nodes impacted by the operation and update them,

keeping the organization’s properties.

During the adds operation, we must update the attribute set of p∗ such that Ds ⊂ Dp∗ to

preserve the inclusion property. In addition, we must recursively verify this into its ancestors.

Since the domain determines the topic vector, this operation can potentially modify the transition

probabilities of states very close to the Root (Nargesian et al., 2023). These modifications would

update the probabilities in almost every state in the organization. Our update operation starts

from p∗ and upward traverses the graph in breadth as it updates its ancestors’ reach, attributes

set, and topic vector.

Considering the inclusion property, we need only to compare the evaluated states with s,

which does not require any specific sorting in the navigation. Nevertheless, we employed two

pruning strategies in the graph traversal. The first considers that when visiting a node that does

METHODOLOGY 28

Root

Food Economy Immigration

Fishery Food
Inspection Grains

d1.a1 d1.a2 d2.a1 d5.a1 d6.a1 d3.a1 d4.a1

d7.a1 d8.a1 d9.a2 d9.a1 d10.a1

Figure 3.4: Delete parents applied to level 2 states.

Root

Food Economy Immigration

d1.a1 d1.a2 d2.a1 d5.a1 d6.a1 d3.a1 d4.a1 d7.a1 d8.a1 d9.a2 d9.a1 d10.a1

Figure 3.5: States and transitions that need updating after deleting parent operation.

not need a domain or reach update, its parents do not need to be evaluated by the inclusion

property. The second pruning is related to the downward traversal needed to update the prob-

abilities. In this strategy, the probabilities update starts from nodes that did not modify in their

domains, unlike at least one of their children. It prevents this second update step from starting

closer to the source node due to the reach update.

Such an update operation is performed by UpdateAncestors, as presented in the Algorithm

3.5, following the steps: (1) We insert the new parent p∗ in pair with a boolean true value into

a queue Q . This value indicates whether we must update the state if we have the probabilities;

(2) Then, we will iteratively remove the first node in the queue and the reach, attribute set, and

topic vector updating by UpdateState operation. Such an operation returns the performed mod-

ification: none, reach, or domain (the last also includes reaching change); (3) When there is a

METHODOLOGY 29

Algorithm 3.4 Adds Parent Operation
1: procedure ADDPARENT(O, l, s, γ, A)
2: P ← states(O, l−1)
3: p∗← null
4: for all p ∈ P do
5: if ch(p) ̸= /0 and p /∈ par(c) and not reach(c, p) and (p∗ = null or P(p∗|O)< P(p|O)) then
6: p∗← p
7: end if
8: end for
9: if p∗ ̸= null then

10: E← E ∪{p∗c}
11: UpdateAncestors(c, p∗,γ,O,A) ▷ Algorithm 3.5 in subsection 3.2.3
12: end if
13: return O
14: end procedure

change (other than none), we insert the current node’s parents into Q paired with a boolean flag;

(4) If the domain changed, the flag will have the same value as the actual node; (5) Otherwise,

the flag will be set to false. In this case, the current state’s children have outdated probabilities;

then we insert it into the set S to perform a downward traversal updating. (6) This graph traver-

sal ends when Q becomes empty, i.e., no more nodes to update the reach or domain. Then,

UpdateDescendants is performed to update the probabilities of the descendants of the nodes

in S .

Algorithm 3.5 Update ancestor nodes of d
1: procedure UPDATEANCESTORS(c, p∗, γ, O, A)
2: S ← /0

3: Initialize a queue Q
4: Q .push(p∗, true)
5: while not Q .empty() do
6: s, f lag← Q . f ront()
7: Q .pop()
8: change← UpdateState(c,s,O) ▷ Algorithm 3.6 in subsection 3.2.3
9: visited(s)← true

10: if change ̸= none then
11: if f lag and change = reach then
12: S ← S ∪{s}
13: f lag← false
14: end if
15: for all p ∈ par(s) do
16: if not visited(p) then
17: Q .push(p, f lag)
18: end if
19: end for
20: end if
21: end while
22: UpdateDescendants(S ,γ,O,A) ▷ Algorithm 3.7 in subsection 3.2.3

23: end procedure

The UpdateState is given in Algorithm 3.6 and follows the steps: (1) Verify whether for every

node defined as reachable from c is also defined as reachable from s, where s is ancestor of c.

METHODOLOGY 30

Algorithm 3.6 Update State s
1: procedure UPDATESTATE(c, s, O)
2: change← none
3: for all v ∈V do
4: if reach(c,v) and not reach(s,v) then
5: reach(s,v)← true
6: if change ̸= domain then
7: change← reach
8: end if
9: if ch(v) = /0 then

10: Ds← Ds∪{Av}
11: σs← σs +σv
12: change← domain
13: end if
14: end if
15: end for
16: return change
17: end procedure

(2) If this is not true for any node v, set v as reachable from s. Further, if v is a sink node, insert

the column Av into the columns represented by s, Ds, and sum the topic vector σv to σs. The

UpdateDescendants operation is given in Algorithm 3.7 and performs the downward traversal

update step. It applies a topological sort (Kahn, 1962) (TopologicalSort procedure) given the

starting point nodes and the organization. This step retrieves a list of ordered states reachable

from at least one of the given starting nodes so that we visit a state after all its ancestors within

that set. More formally, it returns a list Q = v1,v2, ...,vn, where if vi,v j ∈ Q and viv j ∈ E then

i < j. This approach allows updating the level and probabilities of the states according to the

equation 3.4 in a consistent manner.

Algorithm 3.7 Update descendant nodes of p
1: procedure UPDATEDESCENDANTS(P , γ, O,A)
2: Q ← TopologicalSort(P ,O)
3: while not Q .empty() do
4: s← Q . f ront()
5: Q .pop()
6: visited(s)← false
7: level(s)← min

p∈par(s)
level(p)+1

8: for all X ∈ A do
9: compute P(s|X ,O) considering γ

10: end for
11: end while

12: end procedure

Finally, the DeleteParent operation performs the parent deletion, as presented in Algo-

rithm 3.8, by the following steps: (1) Identify the parent p∗ of the chosen state s with the most

negligible reachability probability; (2) Then p∗ and its siblings are inserted into the set P of

the states to be deleted; (3) For each state in P , insert transitions from its parents to its chil-

dren (4) Additionally, remove all state into P and their transitions from the graph; (5) Finally, the

METHODOLOGY 31

UpdateDescendants function updates the probabilities starting from the parents of the deleted

states.

Algorithm 3.8 Deleting Parent Operation
1: procedure DELETEPARENT(O, l, s, γ, A)
2: P ← /0

3: G ← /0

4: p∗← null
5: for all p ∈ par(s) do
6: if p∗ = null or P(p|O)< P(p∗|O) then
7: p∗← p
8: end if
9: end for

10: for all g ∈ par(p∗) do
11: for all s ∈ ch(g) do
12: if ch(s) ̸= /0 then
13: P ← P ∪ s
14: end if
15: end for
16: end for
17: for all p ∈ P do
18: for all c ∈ ch(p) do
19: E← E−{pc}
20: for all g ∈ par(p) do
21: E← E ∪{gc}
22: end for
23: end for
24: for all g ∈ par(p) do
25: E← E−{gp}
26: G ← G ∪{g}
27: end for
28: end for
29: O ′← (V −P ,E)
30: U pdateDescendants(G ,γ,O,A)
31: return O ′

32: end procedure

The TopologicalSort implementations usually have O(|V |+ |E|) time complexity. Since

E has at most |V |2 edges in a DAG, O(|V |2) is also valid. Then, considering a digraph built

by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Murtagh and Contreras,

2011) and modified without adding new nodes, we have that |V | ≤ 2 · |A |−1; hence, O(|A |2).
For each attribute X ∈ A in the data lake, computing P(s|X ,O) requires iterating through all the

parent nodes, which can be at most |A | − 1. Then, it is in O(|A |2). Consequently, because

UpdateDescendants has the potential to traverse all nodes in the graph, its time complexity is

O(|A |3).
In UpdateAncestors, there is the possibility of visiting all |A | − 1 non-sink nodes, with

UpdateState being the most costly operation in each iteration. This function loops through

all nodes of the graph (which is at most 2 · |A |−1), and for the sink nodes, it may sum vectors

of d dimensions, then its time complexity is O(d · |A |). Thus, having UpdateDescendants

executed at the end, UpdateAncestors has O(|A |3 +d · |A |2) time complexity. Assuming d <

METHODOLOGY 32

|A |, this can be simplified to O(|A |3). Since reach(·, ·) and P(·|O) are O(1) operations, we

have that UpdateAncestors is the most costly operation in AddParent. Therefore, it is in

O(|A |3+d · |A |2). Analogous to AddParent, UpdateDescendants is the most costly operation

in DeleteParent, so its time complexity is O(|A |3).

3.2.4 Fast SA

A modified version of SA is also proposed in this work: Fast SA. This improvement uses

dynamic programming to calculate transition probabilities. In the update probabilities step

(UpdateDescendants’ loop), we compute and save the following descriptor for the current s∈Q :

Ws(X) = ∑
t∈ch(s)

e
γ

|ch(s)| ·κ(t,X)
. (3.11)

Then, ∀c ∈ ch(s), c ∈ Q and

P(c|s,X ,O) =
e

γ

|ch(s)| ·κ(c,X)

Ws(X)
. (3.12)

The topological sort ensures the consistency of this operation, since Ws(X) will be recom-

puted before P(c|s,X ,O). Another improvement is to compute P(c|s,X ,O) and Wc(X) if and

only if X ∈ Dc. This strategy is based on the idea that most nodes can reach a small number of

attributes. Its consistency lies in the fact that the effectiveness equation only involves discovery

attribute probabilities P(zA|A,O). Consequently, each sink node zA ∈ V only requires parent

probabilities related to its attribute P(s|A,O), ∀s ∈ par(zA). Therefore, it is evaluated P(s|A,O)

∀A ∈ Ds if ch(s) are sink nodes. Naturally, the concept extends to the nodes upwarding s.

As a result of this last optimization, it is no longer possible to evaluate the reachability prob-

ability defined as in the step (4) of Algorithm 3.3 description . Therefore, for the Fast SA, a new

definition is given in the equation 3.13.

P(s|O) =
1
|Ds| ∑

A∈Ds

P(s|A,O) (3.13)

This definition is better suited to its purpose in the optimization process, which is to identify states

that need upgrades. However, since neighborhood structures consist of changing the parents of

a node, it is preferable that this metric be directly related to the attribute discovery probabilities of

its descendant sink nodes. Thus, an improvement in this metric necessarily implies an increase

in one of these probabilities, unlike the old definition of reachability probability.

4
Results and Discussion

The experimental results of the algorithms are evaluated according to the methodology pre-

sented in Barr et al. (1995). In other words, the analysis is carried out in terms of robustness,

quality of the solutions, and computational efforts. This evaluation considers the same set of

instances (test problems) and execution on the same machine.

We executed the experiments in an Intel i7-8565U (1.80 GHz and 4 physical cores) computer

with 16GB of RAM on an Ubuntu 18.04 LTS operational system. To provide a comparative anal-

ysis of our proposition, we also implemented and executed Organize (Nargesian et al., 2023),

the state-of-the-art algorithm, in the same environment. The C++ source code for such imple-

mentations is available for download (Fernandes et al., 2023b).

4.1 Benchmark Data Lakes

A fair comparison between our proposal and Organize would be achieved if they were evaluated

in the same experimental environment used by Nargesian et al. (2020) in proposing their ap-

proach. However, the set of instances used in their experiments was not available. We propose

benchmark data lakes to overcome this shortfall based on the methodology used to generate

their instances. Like Nargesian et al. (2020), we collected datasets of various topics from the

Socrata API (Socrata, 2022) and processed the metadata tags using their methodology, which

will be discussed at the end of this subsection. Socrata is a popular open data lake that allows

access to available data sets provided by government entities worldwide.

We provide 30 benchmark data lakes partitioned into three groups according to their size. In-

stances can have 100, 300 or 500 tables. In addition, there is no overlapping between instances

from the same size group. Each instance has its tables uniformly distributed into a set of cate-

gories. A category is a topic of interest in society, represented by a label in the table’s metadata.

Each benchmark data lake is denoted as Socrata-M-N, where M ∈ {100,300,500} indicates the

33

RESULTS AND DISCUSSION 34

size and N ∈ {1, ...,10} indexes the set of categories. The chosen categories were:

A - Finance,

B - Social Services,

C - Demographics,

D - Infrastructure,

E - Health,

F - Environment,

G - Public Safety,

H - Education,

I - Economy,

J - Transportation.

Therefore, the sets of categories are indexed as follows:

Table 4.1: Sets of data categories

Set Categories

1 A
2 B, C
3 D, E, F
4 G – J
5 F – J
6 E – J
7 D – J
8 C – J
9 B – J
10 A – J

This methodology provides data lake instances with different semantic contents and sizes,

diversifying the difficulty and semantic complexity. Fig. 4.1(a) and 4.1(b) show the number of

columns and tags per instance, respectively. For these figures, we ordered the instances on the

x-axis primarily by the number of tables and secondarily by the number of categories. Tags are

additional labels associated with tables provided by Socrata API. They differ in categories.

In Fig. 4.1(b), we see the count of the original tags and those obtained after normalization.

This transformation reduces redundancy (Nargesian et al., 2020). Finally, in the pre-processing

stage, all tables have their non-textual columns removed. The remaining columns, we trans-

formed into topic vectors through a fastText model (Wang et al., 2020). All the benchmark data

lakes — including their meta, raw, and vectorized data — are available for download (Fernandes

et al., 2023b).

RESULTS AND DISCUSSION 35

0 10 20 30
Data Lake ID

0

1000

2000

3000

4000

5000
#C

ol
um

ns

(a) Number of columns per benchmark data lake.

0 10 20 30
Data Lake ID

0

500

1000

1500

2000

#T
ag

s

Raw
Normalized

(b) Number of tags per benchmark data lake.

Figure 4.1: Summary of the benchmark data lakes.

4.2 Algorithms Tuning

We achieve a fair comparison between metaheuristics when both approaches have their param-

eters well-tuned and, at the same time, perform the search. We use Irace (López-Ibáñez et al.,

2016) to automatically find the best parameters for the evaluated solutions.

The Organize algorithm for the DLOP has two parameters: maximum number of iterations

without significant improvement (k f) and relative improvement threshold (ε). They are used to

identify a plateau and stop the search. The value range for the mentioned parameters is:

k f ∈ [1,150]⊂ Z (4.1)

ε ∈ [0.01,0.10]⊂ R. (4.2)

For tuning our SA Algorithm, we define the parameters value range as follows:

α ∈ [0.001,0.010]⊂ R (4.3)

ki ∈ [1,100]⊂ Z (4.4)

k f ∈ [1,50]⊂ Z (4.5)

We also set γ = 25.0 and the maximum elapsed time to 100s for both metaheuristics. When

an algorithm finishes before this threshold, it restarts and searches for another solution, keep-

ing the best. The tuning process also requires a set of instances, so we create 10 more data

instances with 500 tables each. We use these instances exclusively to calibrate the algorithms

and present different tables from those previously discussed. For such input, Irace has recom-

mended for Organize and our approach the parameters shown in Table 4.2. Since Fast SA is

a variant of SA with a smaller number of computations and a more appropriate metric for node

selection, we considered the same parameters for both.

RESULTS AND DISCUSSION 36

Table 4.2: Recommend parameters by Irace for Organize and our proposal (SA)

Organize (O) Our prop. (SA)

ε k f α ki k f

0.019 79 0.0094 1 31

4.3 Performance Evaluation

We conduct the performance evaluation for Organize and our SA Algorithms over the benchmark

data lakes described previously and using the parameters recommended by Irace. Additionally,

we assumed γ = 25.0 and limited the maximum elapsed time to 300 seconds. Again, when a

heuristic finishes before that threshold, it restarts and searches for another solution, keeping the

best one.

4.3.1 Effectiveness

To evaluate the effectiveness of all approaches, we execute them 15 times for each benchmark

data lake. Tables 4.3 – 4.5 provide the fitness of the best solution (Ebest) achieved by three

heuristics and the average number of heuristic restarts (µ̂r) for each instance. In addition, we

provide the relative percentage improvement

Imp% =
ESA

best−EO
best

ESA
best

×100, (4.6)

SA is one of our solutions, and O is the Organize one. This metric quantifies the increase in

maximum effectiveness reached by our proposal (ESA
best) compared to the Organize (EO

best).

The greatest Ebest for each instance is bold. Our proposals outperformed Organize in all

instances, with Fast SA always outperforming the other two heuristics. The top three Imp% in

each size group are underlined. The best result was in Socrata-500-6, where the Imp% was

44.54%. The average Imp% for SA was 9.21%, 4.95% and 3.97% for the size groups 100, 300
and 500, respectively. As for Fast SA, they were 13.27%, 14.08% and 22.78% for the respective

groups. On average, our approaches performed more restarts than Organize, which suggests

that the former converges faster.

We execute a sign test on the Ebest pairs (Taillard et al., 2008) to provide statistical evidence

of the Fast SA’s superiority. For this, we applied the test to the pairs Organize-SA, Organize-Fast

SA and SA-FastSA. The null hypothesis assumes that there is no superiority of one approach

over the other. In other words, the probability of heuristic X obtaining a better solution than

Y is 0.5, i.e. P(EX
best > EY

best) = P(EY
best > EX

best) = 0.5. Thus, given n = 30 trials in different

instances, the number of occurrences K in which EX
best > EY

best is a a random variable that obeys

a binomial distribution, i.e. K = #(EX
best > EY

best)∼ bin(n = 30, p = 0.5).

RESULTS AND DISCUSSION 37

Table 4.3: Best solution effectiveness and average number of restarts achieved in organizing
benchmark data lakes with 100 tables

Instance
Organize (O) Our prop. (SA) Our prop. (Fast SA)

Ebest µ̂r Ebest µ̂r Imp% Ebest µ̂r Imp%

Socrata-100-1 0.3056 45.1 0.3392 256.9 10.99 0.3545 722.1 16.00
Socrata-100-2 0.3388 27.1 0.3813 179.9 12.54 0.3892 456.5 14.87
Socrata-100-3 0.3713 29.8 0.4012 182.8 8.05 0.4067 582.2 9.53
Socrata-100-4 0.3253 19.8 0.3638 123.9 11.84 0.3771 366.4 15.92
Socrata-100-5 0.4710 10.3 0.4824 69.2 2.42 0.5015 169.4 6.48
Socrata-100-6 0.3638 9.6 0.3897 60.6 7.12 0.4081 129.6 12.18
Socrata-100-7 0.3718 26.2 0.4306 175.4 15.81 0.4408 413.73 18.56
Socrata-100-8 0.2918 13.1 0.3298 86.0 13.02 0.3341 154.27 14.50
Socrata-100-9 0.3763 15.3 0.3884 106.1 3.22 0.4310 283.73 14.54
Socrata-100-10 0.3799 15.5 0.4067 120.7 7.05 0.4182 337.6 10.08

Average 9.21 13.27

Table 4.4: Best solution effectiveness and average number of restarts achieved in organizing
benchmark data lakes with 300 tables.

Instance
Organize (O) Our prop. (SA) Our prop. (Fast SA)

Ebest µ̂r Ebest µ̂r Imp% Ebest µ̂r Imp%

Socrata-300-1 0.1795 3.0 0.2011 17.8 12.03 0.2312 35.9 28.80
Socrata-300-2 0.2281 2.0 0.2281 13.0 0.0 0.2301 34.7 0.88
Socrata-300-3 0.1698 2.0 0.1699 13.3 0.06 0.2017 29.3 18.79
Socrata-300-4 0.2400 2.0 0.2409 11.0 0.38 0.2485 20.5 3.54
Socrata-300-5 0.1643 2.0 0.1719 8.0 4.63 0.1953 13.3 18.87
Socrata-300-6 0.1633 2.0 0.1851 8.3 13.35 0.1866 12.5 14.27
Socrata-300-7 0.2100 2.0 0.2170 11.0 3.33 0.2303 20.67 9.67
Socrata-300-8 0.1866 2.0 0.1953 14.3 4.66 0.2003 29.5 7.34
Socrata-300-9 0.1983 2.0 0.2109 12.1 6.35 0.2292 23.87 15.58
Socrata-300-10 0.1864 2.0 0.1951 14.2 4.67 0.2312 29.93 23.03

Average 4.95 14.08

The alternative hypothesis is that p> 0.5 and the p-value is P(K ≥ k), where k is the number

of EX
best > EY

best events observed in the experiment. The hypotheses of the tests and their p-

values are shown in the Table 4.6. As a result, we get a p-value= 9.3 ·10−10 in all tests, which

leads to rejecting the null hypothesis and assuming the alternative one at 0.01 significance level.

Therefore, our proposal has superior effectiveness and Fast SA is the best one.

Tables 4.7 – 4.9 provide the sample mean, standard deviation fitness of both solutions. Each

instance’s most significant µ̂E is bold. Note that in terms of average, our solution Fast SA still

holds better outcomes. We applied the Mann-Whitney test (Mann and Whitney, 1947), consid-

ering all fitness values of each pair of solutions to inspect the improvement of our solutions in

RESULTS AND DISCUSSION 38

each data lake. We can use this non-parametric test when the data’s normality assumption is

not satisfied, as in heuristic performance data (Ribeiro et al., 2011).

The null hypothesis states that the median effectiveness of the solutions generated by heuris-

tics X and Y are equal, i.e, mX
E = mY

E . The alternative presumes that mX
E > mY

E . Tables 4.10 –

4.12 provide the hypothesis for each pair of heuristics with the p-values obtained for each data

lake through the test. The greatest p-value in each table is in bold. At the 0.01 level, we discard

the null hypothesis and keep the one stating the prevalence of our solutions. Furthermore, we

infer again that Fast SA was dominant.

Table 4.5: Best solution effectiveness and average number of restarts achieved in organizing
benchmark data lakes with 500 tables.

Instance
Organize (O) Our prop. (SA) Our prop. (Fast SA)

Ebest µ̂r Ebest µ̂r Imp% Ebest µ̂r Imp%

Socrata-500-1 0.1240 1.0 0.1242 5.3 0.16 0.1479 11.93 19.27
Socrata-500-2 0.1228 1.0 0.1235 5.0 0.57 0.1600 10.53 30.29
Socrata-500-3 0.1126 1.0 0.1128 4.8 0.18 0.1340 7.67 19.01
Socrata-500-4 0.1283 1.0 0.1285 3.3 0.16 0.1479 5.2 15.28
Socrata-500-5 0.1275 1.0 0.1338 4.0 4.94 0.1597 6.07 25.25
Socrata-500-6 0.1089 1.0 0.1248 4.0 14.60 0.1574 6.67 44.54
Socrata-500-7 0.1266 1.0 0.1274 3.5 0.63 0.1491 6.27 17.77
Socrata-500-8 0.1090 1.0 0.1171 5.0 7.43 0.1203 9.27 10.37
Socrata-500-9 0.1013 1.0 0.1023 3.0 0.99 0.1161 4.53 14.61
Socrata-500-10 0.1372 1.0 0.1510 5.3 10.06 0.1803 11.2 31.41

Average 3.97 22.78

Table 4.6: Sign test conducted to assess the dominance of one heuristic over another, pairwise
analyzing the best effectiveness achieved over all the benchmark data lakes.

H0 : P(ESA
best > EO

best) = 0.5 H0 : P(EFastSA
best > EO

best) = 0.5 H0 : P(EFastSA
best > ESA

best) = 0.5

Ha : P(ESA
best > EO

best)> 0.5 Ha : P(EFastSA
best > EO

best)> 0.5 Ha : P(EFastSA
best > ESA

best)> 0.5

9.31 ·10−10 9.31 ·10−10 9.31 ·10−10

4.3.2 Efficiency

We perform another experiment with a graphical analysis through time-to-target (ttt) plots (Aiex

et al., 2006) to conduct the efficiency evaluation. Such a plot shows the empirical cumulative

distribution function of the time required for an algorithm to produce a solution and a target.

For this analysis, we choose the problem instances Socrata-100-3, Socrata-100-5, Socrata-300-

6, and Socrata-500-6. We chose the first two because they are the ones in which Organize

RESULTS AND DISCUSSION 39

Table 4.7: Effectiveness sample mean and standard deviation achieved in organizing benchmark
data lakes with 100 tables.

Instance
Organize (O) Our prop. (SA) Our prop. (Fast SA)

µ̂E σ̂E µ̂E σ̂E µ̂E σ̂E

Socrata-100-1 0.3056 0.0000 0.3336 0.0039 0.3485 0.0039
Socrata-100-2 0.3388 0.0000 0.3649 0.0049 0.3825 0.0025
Socrata-100-3 0.3615 0.0109 0.4010 0.0001 0.4056 0.0010
Socrata-100-4 0.3253 0.0000 0.3574 0.0126 0.3718 0.0048
Socrata-100-5 0.4576 0.0084 0.4817 0.0006 0.4891 0.0036
Socrata-100-6 0.3638 0.0000 0.3873 0.0047 0.4022 0.0063
Socrata-100-7 0.3718 0.0000 0.4046 0.0073 0.4356 0.0039
Socrata-100-8 0.2918 0.0000 0.3190 0.0050 0.3256 0.0049
Socrata-100-9 0.3763 0.0000 0.3845 0.0017 0.4178 0.0073
Socrata-100-10 0.3799 0.0000 0.4028 0.0088 0.4124 0.0052

presents more variability in its solutions’ quality. We chose the last two because, in them, we

scored the best in the size groups 300 and 500, respectively.

Table 4.8: Effectiveness sample mean and standard deviation achieved in organizing benchmark
data lakes with 300 tables.

Instance
Organize (O) Our prop. (SA) Our prop. (Fast SA)

µ̂E σ̂E µ̂E σ̂E µ̂E σ̂E

Socrata-300-1 0.1795 0.0000 0.1831 0.0068 0.2115 0.0125
Socrata-300-2 0.2281 0.0000 0.2281 0.0000 0.2298 0.0006
Socrata-300-3 0.1698 0.0000 0.1699 0.0000 0.1859 0.0095
Socrata-300-4 0.2400 0.0000 0.2402 0.0003 0.2441 0.0036
Socrata-300-5 0.1643 0.0000 0.1650 0.0019 0.1838 0.0087
Socrata-300-6 0.1633 0.0000 0.1684 0.0082 0.1804 0.0062
Socrata-300-7 0.2100 0.0000 0.2120 0.0023 0.2181 0.0040
Socrata-300-8 0.1866 0.0000 0.1882 0.0021 0.1960 0.0039
Socrata-300-9 0.1983 0.0000 0.2013 0.0035 0.2220 0.0102
Socrata-300-10 0.1864 0.0000 0.1872 0.0022 0.2232 0.0119

We measure the CPU time (in seconds) for each problem instance to find an objective func-

tion value at least as good as a given target value. Each heuristic is run 50 times on the fixed

instance and using the given target solution. We define the target value for each instance as the

sample average of the fitness obtained by Organize. Such values were 0.3615, 0.4576, 0.1633,

and 0.1089 for the instances Socrata-100-3, Socrata-100-5, Socrata-300-6, and Socrata-500-6,

respectively. However, we rounded those values to four decimal digits, limiting the elapsed time

to 300 seconds.

RESULTS AND DISCUSSION 40

Table 4.9: Effectiveness sample mean and standard deviation achieved in organizing benchmark
data lakes with 500 tables.

Instance
Organize (O) Our prop. (SA) Our prop. (Fast SA)

µ̂E σ̂E µ̂E σ̂E µ̂E σ̂E

Socrata-500-1 0.1240 0.0000 0.1241 0.0000 0.1342 0.0099
Socrata-500-2 0.1228 0.0000 0.1229 0.0002 0.1415 0.0115
Socrata-500-3 0.1126 0.0000 0.1127 0.0001 0.1206 0.0101
Socrata-500-4 0.1283 0.0000 0.1284 0.0001 0.1334 0.0078
Socrata-500-5 0.1275 0.0000 0.1281 0.0016 0.1372 0.0115
Socrata-500-6 0.1089 0.0000 0.1109 0.0049 0.1267 0.0121
Socrata-500-7 0.1266 0.0000 0.1268 0.0003 0.1362 0.0095
Socrata-500-8 0.1090 0.0000 0.1107 0.0025 0.1142 0.0034
Socrata-500-9 0.1013 0.0000 0.1015 0.0003 0.1053 0.0047
Socrata-500-10 0.1372 0.0000 0.1382 0.0035 0.1691 0.0115

Fig. 4.2(a) shows the time to target for the SA, Fast SA and Organize in the problem instance

Socrata-100-3. The superiority of our approaches is straightforward. In these, the probability of

reaching the target at t = 25s is 1.0. However, in Organize, the probability for this case is less

than 0.3. At t = 4s such a probability is preserved for Fast SA, but for SA it drops to 0.42 and

Organize to 0.03. In addition, the probability of the last one finds a solution as good as the target

at most 300s is almost 0.6. That is, there is a probability greater than 0.4 that the literature

algorithm will reach the time limit without hitting the target.

Table 4.10: Mann-Whitney test conduced to compare the median effectiveness achieved by each
heuristic on each benchmark data lake with 100 tables.

Instance
H0 : mSA

E = mO
E H0 : mFastSA

E = mO
E H0 : mFastSA

E = mSA
E

Ha : mSA
E > mO

E Ha : mFastSA
E > mO

E Ha : mFastSA
E > mSA

E

Socrata-100-1 3.4 ·10−7 3.4 ·10−7 1.6 ·10−6

Socrata-100-2 3.4 ·10−7 3.4 ·10−7 2.0 ·10−6

Socrata-100-3 1.1 ·10−6 1.2 ·10−7 1.6 ·10−6

Socrata-100-4 3.3 ·10−7 3.4 ·10−7 4.3 ·10−6

Socrata-100-5 9.2 ·10−7 9.1 ·10−7 1.6 ·10−6

Socrata-100-6 3.3 ·10−7 3.4 ·10−7 1.6 ·10−6

Socrata-100-7 3.3 ·10−7 3.3 ·10−7 1.6 ·10−6

Socrata-100-8 3.4 ·10−7 3.4 ·10−7 2.6 ·10−4

Socrata-100-9 3.4 ·10−7 3.4 ·10−7 1.7 ·10−6

Socrata-100-10 2.6 ·10−7 3.4 ·10−7 1.6 ·10−6

The Socrata-100-5 instance is more complex in the time to target of Fig. 4.2(b). Indeed,

our SA and Fast SA reach the target at most t = 9s with a probability around 0.35 and 1.0,

RESULTS AND DISCUSSION 41

Table 4.11: Mann-Whitney test conduced to compare the median effectiveness achieved by each
heuristic on each benchmark data lake with 300 tables.

Instance
H0 : mSA

E = mO
E H0 : mFastSA

E = mO
E H0 : mFastSA

E = mSA
E

Ha : mSA
E > mO

E Ha : mFastSA
E > mO

E Ha : mFastSA
E > mSA

E

Socrata-300-1 3.4 ·10−7 1.5 ·10−6 1.2 ·10−6

Socrata-300-2 1.4 ·10−5 1.5 ·10−6 7.5 ·10−5

Socrata-300-3 3.4 ·10−7 1.5 ·10−6 1.7 ·10−5

Socrata-300-4 3.4 ·10−7 1.5 ·10−6 1.4 ·10−4

Socrata-300-5 1.3 ·10−6 1.5 ·10−6 1.8 ·10−5

Socrata-300-6 3.4 ·10−7 1.5 ·10−6 1.5 ·10−3

Socrata-300-7 3.4 ·10−7 3.4 ·10−7 8.0 ·10−6

Socrata-300-8 3.4 ·10−7 4.5 ·10−7 2.4 ·10−7

Socrata-300-9 3.4 ·10−7 3.4 ·10−7 1.4 ·10−5

Socrata-300-10 3.4 ·10−7 3.4 ·10−7 1.6 ·10−6

respectively. In contrast, the likelihood of the Organize reaching the goal in at most 9s is 0.03.

In addition, there is a probability greater than 0.7 that the algorithm will get the time limit without

hitting the target. For the Socrata-300-6 and Socrata-500-6, whose time to target (Figs. 4.2(c)

and 4.2(d)), the Organize algorithm failed to reach the goal within the time limit.

Table 4.12: Mann-Whitney test conduced to compare the median effectiveness achieved by each
heuristic on each benchmark data lake with 500 tables.

Instance
H0 : mSA

E = mO
E H0 : mFastSA

E = mO
E H0 : mFastSA

E = mSA
E

Ha : mSA
E > mO

E Ha : mFastSA
E > mO

E Ha : mFastSA
E > mSA

E

Socrata-500-1 4.3 ·10−6 3.4 ·10−7 1.7 ·10−6

Socrata-500-2 1.0 ·10−4 3.4 ·10−7 1.4 ·10−6

Socrata-500-3 4.1 ·10−5 3.4 ·10−7 1.3 ·10−3

Socrata-500-4 1.4 ·10−5 3.4 ·10−7 3.5 ·10−3

Socrata-500-5 1.3 ·10−6 3.4 ·10−7 4.0 ·10−5

Socrata-500-6 4.3 ·10−6 3.4 ·10−7 4.8 ·10−5

Socrata-500-7 4.1 ·10−5 3.4 ·10−7 2.5 ·10−6

Socrata-500-8 3.4 ·10−7 3.4 ·10−7 2.0 ·10−3

Socrata-500-9 4.1 ·10−5 3.4 ·10−7 6.6 ·10−5

Socrata-500-10 1.4 ·10−5 3.4 ·10−7 2.5 ·10−6

In contrast, our Fast SA always reaches the goal in less than 32s and 135s, respectively. For

these instances and cut-off times, the SA hits the target with 0.7 probability. The sudden jump

observed near the maximum time to target in Figure 4.2 for the Organize algorithm provides

valuable insights into its performance dynamics within the context of data lake organization. This

behavior can be attributed to the algorithm’s inherent difficulty in efficiently reaching the target

RESULTS AND DISCUSSION 42

value within shorter time frames, highlighting its diminishing returns in effectiveness beyond the

fourth decimal place.

Notably, this phenomenon becomes more pronounced in larger data lake environments,

where the complexity of the dataset exacerbates the algorithm’s limitations. The challenge then

emerges in the pursuit of further improvements in initial data organization, as reducing the target

value to a level that triggers a different behavior would necessitate grappling with a myriad of

decimal places.

0 100 200 300
Time to target (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Organize
SA
Fast SA

(a)

0 100 200 300
Time to target (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Organize
SA
Fast SA

(b)

0 100 200 300
Time to target (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Organize
SA
Fast SA

(c)

0 100 200 300
Time to target (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Organize
SA
Fast SA

(d)

Figure 4.2: Time to target for instances (a) Socrata-100-3; (b) Socrata-100-5; (c) Socrata-300-6;
(d) Socrata-500-6.

RESULTS AND DISCUSSION 43

4.3.3 Success Probability

For additional evaluation, we simulate a user by the success probability of finding each table in

the data lake. Such a measure considers navigation successful if it finds tables with the exact or

a similar attribute to the query’s attribute (Nargesian et al., 2023). Let κ be a similarity measure

between two attributes and 0 < θ ≤ 1 be a threshold. The success probability of an attribute A

is defined as (Nargesian et al., 2023)

Success(A|O) = 1− ∏
Ai∈A∧κ(Ai,A)≥θ

(1−P(Ai|O)) (4.7)

We use the cosine similarity on the topic vectors of attributes for κ and θ = 0.9. From the

attribute success probabilities, we can compute table success probability as Success(T |O) =

1−∏A∈T (1−Success(A|O)) (Nargesian et al., 2023).

Figs. 4.3(b) – 4.3(d) show the table success probabilities from different approaches in or-

ganizing Socrata-100-1, Socrata-100-7, Socrata-300-1, and Socrata-500-6, respectively. We

sorted the tables from lowest to highest probability on the x-axis. We also include two baselines

to reinforce the organization’s improvement in user navigation. The first considers no organiza-

tional structure, modeled as a flat organization where we connect all sink nodes directly to the

source node (Nargesian et al., 2023).

Data labeling is a common and straightforward way to organize a data lake (Sawadogo and

Darmont, 2021). We consider our labeling as proposed by Nargesian et al. (2023). They in-

duce an organizational structure by labeled tables, where each unique label is to an internal

node connected to their respective columns represented by sink nodes. Finally, They connect

all internal nodes to the source node. Such a method is the second baseline. To eliminate re-

dundancy, we merge labels provided by metadata through syntactic, semantic, and structural

normalization (Fernandes et al., 2023b).

The Socrata API metadata provides some sets of labels. The used in this step was domain

tags, different from category used previously in the data collection. The reason was to avoid the

bias inherent in creating instances and enriching them with more metadata. For example, for

instances built from a single category, the organization inferred from the metadata would be flat.

Domain tags bring each dataset a set of tags with greater detail than the category. In this way,

generating a more effective organization than that achieved by categories is possible because it

provides a better distinction between datasets.

In Figs. 4.3(a) – 4.3(d), the first baseline, the second one, the Organize approach, and

our proposals are denoted respectively by No Org, Metadata, Organize, SA and Fast SA. As

expected, the flat baseline was the least successful structure for user navigation, and the meta-

data tag-induced approach provides a considerable improvement over that. The plots strongly

indicate that the algorithms for DLOP provide a more successful navigation structure than the

baselines. Additionally, our proposals proved more successful than the Organize one algorithm.

RESULTS AND DISCUSSION 44

0 20 40 60 80 100
Table ID

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s P
ro

ba
bi

lit
y

No Org
Metadata
Organize
SA
Fast SA

(a)

0 20 40 60 80 100
Table ID

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

No Org
Metadata
Organize
SA
Fast SA

(b)

0 50 100 150 200 250 300
Table ID

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

No Org
Metadata
Organize
SA
FastSA

(c)

0 100 200 300 400 500
Table ID

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

No Org
Metadata
Organize
SA
Fast SA

(d)

Figure 4.3: Tables success probabilities per organization approach for (a) Socrata-100-1; (b)
Socrata-100-7; (c) Socrata-300-1; (d) Socrata-500-6.

The mean difference between their success probabilities are 0.036, 0.044, 0.021 and 0.015 for

SA in Socrata-100-1, Socrata-100-7, Socrata-300-1 and Socrata-500-6, respectively. For Fast

SA, these indicators increase for 0.048, 0.052, 0.038 and 0.032, respectively. Such analysis

corroborates the results discussed earlier for the superiority of our proposals in producing more

effective organizations.

5
Final Considerations

This work presented two new approaches for generating navigation structures for data lakes. Our

approaches consist of Multi-Start Simulated Annealing variants for the DLOP. Such metaheuris-

tics generates random neighbor solutions through a roulette wheel selection-based approach.

We propose algorithms for updating an organization after edge addition and node deletion. To

compare with the state-of-the-art, called here Organize, we propose a set of 30 benchmark data

lakes with different levels of complexity.

We applied the approaches for each instance and saved their best solutions. In our best

result, our proposal outperforms the Organize by generating a 44.5% more effective solution.

To compare the efficiency, we evaluate the time to target that reveals our approaches’ faster

convergence. Further, we compute the success probability of finding tables for the approaches

and two baselines. Again, our proposals was the most successful.

Our methodology addresses a critical gap in the literature by algorithmically describing these

operations and ensuring the consistency of probabilities throughout the graph. Furthermore,

we demonstrate the efficiency of our implementation, showcasing its potential to streamline the

process of organizing data within data lakes. However, it’s important to note some limitations.

While our approach offers promising advantages, it may face challenges in specific scenarios,

such as highly complex data lake architectures or massive datasets.

Additionally, the computational complexity associated with implementing our methodology

may require careful consideration of computational resources. Finally, the main limitation of our

work is that it only deals with textual tabular data and does not consider the real scenario of data

distributed in computer clusters. Despite these potential drawbacks, our novel strategy repre-

sents a significant step forward in data lake management. It offers theoretical advancements and

practical benefits for organizations grappling with the complexities of managing diverse datasets

within their data lakes.

In future works, we plan to implement the organizing algorithms in CUDA for GPU paral-

lel processing. Also, we plan to employ other metaheuristics to the organization problem and

45

FINAL CONSIDERATIONS 46

develop new neighborhood structures. A further idea is the generalization of the Data Lake

Organization Problem for unstructured data. Finally, adapting the MapReduce paradigm and

implementing it on Apache Spark is also an interesting issue.

In terms of academic papers, part of the findings presented in this text have been submitted

to the journal Soft Applied Computing and are currently under review. Nevertheless, the following

works were already published during the master’s program: • Toward Data Lake Technologies

for Intelligent Societies and Cities (Ramos et al., 2023): In this work, we provided an overview

of data lake technologies and recent literature contributions while also discussing its relevance

in the context of sustainable smart cities. Finally, we proposed a data lake architecture improved

with a robust metadata management system composed of the most promising techniques in

the literature. • Towards Edge-Based Data Lake Architecture for Intelligent Transportation

System (Fernandes et al., 2023a): This paper proposed an Edge-based Data Lake Architecture

to integrate and analyze the complex data from ITS efficiently. The architecture offers scalability,

fault tolerance, and performance, improving decision-making and enhancing innovative services

for a more intelligent transportation ecosystem.

References

Handbook of Metaheuristics. Springer US, 2010. ISBN 9781441916655.

DOI 10.1007/978-1-4419-1665-5. URL

http://dx.doi.org/10.1007/978-1-4419-1665-5.

Renata M. Aiex, Mauricio G. C. Resende, and Celso C. Ribeiro. TTT plots: a perl program to

create time-to-target plots. Optimization Letters, 1(4):355–366, October 2006.

A. A. Alekseev, V. V. Osipova, M. A. Ivanov, A. Klimentov, N. V. Grigorieva, and H. S. Nalamwar.

Efficient data management tools for the heterogeneous big data warehouse. Physics of

Particles and Nuclei Letters, 13(5):689–692, September 2016.

Syed Muhammad Fawad Ali and Robert Wrembel. From conceptual design to performance

optimization of ETL workflows: current state of research and open problems. The VLDB

Journal, 26(6):777–801, September 2017.

Taro Aso, Toshiyuki Amagasa, and Hiroyuki Kitagawa. Relation-oriented faceted search method

for knowledge bases. In Proceedings of the 22nd International Conference on Information

Integration and Web-Based Applications & Services, page 192–199. Association for

Computing Machinery, 2020.

Mohamed Bakli, Mahmoud Sakr, and Esteban Zimanyi. Distributed Moving Object Data

Management in MobilityDB. In Proceedings of the 8th ACM SIGSPATIAL International

Workshop on Analytics for Big Geospatial Data. Association for Computing Machinery, 2019.

Richard S. Barr, Bruce L. Golden, James P. Kelly, Mauricio G. C. Resende, and William R.

Stewart. Designing and reporting on computational experiments with heuristic methods.

Journal of Heuristics, 1(1):9–32, September 1995. ISSN 1572-9397.

DOI 10.1007/bf02430363. URL http://dx.doi.org/10.1007/BF02430363.

Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha. Discovering Related

Data At Scale. Proceedings of the VLDB Endowment, 14(8):1392–1400, april 2021.

47

http://dx.doi.org/10.1007/978-1-4419-1665-5
http://dx.doi.org/10.1007/978-1-4419-1665-5
http://dx.doi.org/10.1007/bf02430363
http://dx.doi.org/10.1007/BF02430363

REFERENCES 48

Simon Elias Bibri. The IoT for smart sustainable cities of the future: An analytical framework for

sensor-based big data applications for environmental sustainability. Sustainable Cities and

Society, 38:230–253, 2018.

Dan Brickley, Matthew Burgess, and Natasha Noy. Google dataset search: Building a search

engine for datasets in an open web ecosystem. In The World Wide Web Conference, page

1365–1375. Association for Computing Machinery, 2019.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas

Tzoumas. Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, 36(4), 2015.

Sara Ceschia and Andrea Schaerf. Multi-neighborhood simulated annealing for the capacitated

facility location problem with customer incompatibilities. Computers amp; Industrial

Engineering, 188:109858, February 2024. ISSN 0360-8352. DOI 10.1016/j.cie.2023.109858.

URL http://dx.doi.org/10.1016/j.cie.2023.109858.

Sara Ceschia, Luca Di Gaspero, Roberto Maria Rosati, and Andrea Schaerf.

Multi-neighborhood simulated annealing for the minimum interference frequency assignment

problem. EURO Journal on Computational Optimization, 10:100024, 2022. ISSN 2192-4406.

DOI 10.1016/j.ejco.2021.100024. URL

http://dx.doi.org/10.1016/j.ejco.2021.100024.

Pravin Chandra and Manoj K. Gupta. Comprehensive survey on data warehousing research.

International Journal of Information Technology, 10(2):217–224, December 2017.

Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing and OLAP

Technology. SIGMOD Rec., 26(1):65–74, mar 1997.

Ali Danandeh Mehr, Babak Vaheddoost, and Babak Mohammadi. Enn-sa: A novel

neuro-annealing model for multi-station drought prediction. Computers amp; Geosciences,

145:104622, December 2020. ISSN 0098-3004. DOI 10.1016/j.cageo.2020.104622. URL

http://dx.doi.org/10.1016/j.cageo.2020.104622.

Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau. Simulated annealing: From

basics to applications. In International Series in Operations Research & Management

Science, pages 1–35. Springer International Publishing, September 2018.

Rebecca Eichler, Corinna Giebler, Christoph Gröger, Holger Schwarz, and Bernhard

Mitschang. Modeling metadata in data lakes—A generic model. Data & Knowledge

Engineering, 136:101931, 2021.

http://dx.doi.org/10.1016/j.cie.2023.109858
http://dx.doi.org/10.1016/j.cie.2023.109858
http://dx.doi.org/10.1016/j.ejco.2021.100024
http://dx.doi.org/10.1016/j.ejco.2021.100024
http://dx.doi.org/10.1016/j.cageo.2020.104622
http://dx.doi.org/10.1016/j.cageo.2020.104622

REFERENCES 49

Huang Fang. Managing data lakes in big data era: What’s a data lake and why has it became

popular in data management ecosystem. In 2015 IEEE International Conference on Cyber

Technology in Automation, Control, and Intelligent Systems (CYBER), pages 820–824. IEEE,

2015.

Danilo Fernandes, Douglas L. L. Moura, Gean Santos, Geymerson S. Ramos, Fabiane

Queiroz, and Andre L. L. Aquino. Towards edge-based data lake architecture for intelligent

transportation system. In Proceedings of the Int’l ACM Symposium on Performance

Evaluation of Wireless Ad Hoc, Sensor, amp; Ubiquitous Networks, MSWiM ’23. ACM,

October 2023a. DOI 10.1145/3616394.3618270. URL

http://dx.doi.org/10.1145/3616394.3618270.

Danilo Fernandes, Geymerson S. Ramos, Rian G. S. Pinheiro, and André L. L. Aquino. Data

lake organization source code and datasets.

https://github.com/danilofernandes45/Data-Lake-Organization/, jun 2023b.

Raul Fernandez, Essam Mansour, Abdulhakim A. Qahtan, Ahmed Elmagarmid, Ihab Ilyas,

Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. Seeping semantics:

Linking datasets using word embeddings for data discovery. In IEEE 34th International

Conference on Data Engineering (ICDE), pages 989–1000, 2018a.

Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden, and

Michael Stonebraker. Aurum: A data discovery system. In IEEE 34th International

Conference on Data Engineering (ICDE), 2018b.

Matteo Francia, Enrico Gallinucci, Matteo Golfarelli, Anna Giulia Leoni, Stefano Rizzi, and

Nicola Santolini. Making data platforms smarter with MOSES. Future Generation Computer

Systems, 125:299–313, December 2021.

Giuseppe Futia, Antonio Vetrò, and Juan Carlos De Martin. SeMi: A SEmantic Modeling

machIne to build Knowledge Graphs with graph neural networks. SoftwareX, 12:100516, July

2020.

Jerry Gao, Chunli Xie, and Chuanqi Tao. Big data validation and quality assurance–issuses,

challenges, and needs. In 2016 IEEE symposium on service-oriented system engineering

(SOSE), pages 433–441. IEEE, 2016.

Corinna Giebler, Christoph Gröger, Eva Hoos, Holger Schwarz, and Bernhard Mitschang.

Leveraging the Data Lake: Current State and Challenges. In Carlos Ordonez, Il-Yeol Song,

Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil, editors, Big Data Analytics and

Knowledge Discovery, pages 179–188. Springer International Publishing, 2019.

http://dx.doi.org/10.1145/3616394.3618270
http://dx.doi.org/10.1145/3616394.3618270

REFERENCES 50

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1989. ISBN 0201157675.

Alex Gorelik. The Enterprise Big Data Lake: Delivering the Promise of Big Data and Data

Science. O’Reilly Media, 2019.

Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. Taxonomy induction using

hypernym subsequences. In ACM Conference on Information and Knowledge Management,

page 1329–1338. Association for Computing Machinery, 2017.

Ibrahim Abaker Targio Hashem, Victor Chang, Nor Badrul Anuar, Kayode Adewole, Ibrar

Yaqoob, Abdullah Gani, Ejaz Ahmed, and Haruna Chiroma. The role of big data in smart city.

International Journal of Information Management, 36(5):748–758, 2016.

Wu He and Li Da Xu. Integration of Distributed Enterprise Applications: A Survey. IEEE

Transactions on Industrial Informatics, 10(1):35–42, 2012.

Jeff Heaton. An Empirical Analysis of Feature Engineering for Predictive Modeling. In IEEE

Region 3 South East Conference (SoutheastCon’16), 2016.

IRENA Group. Innovation Landscape Brief: Internet of Things. Technical Report ISBN

978-92-9260-142-3, International Renewable Energy Agency, 2019.

A. B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–562,

November 1962.

Daniel Kahneman, Olivier Sibony, and Cass R Sunstein. Noise: A flaw in human judgment.

Little, Brown, 2021.

Yaghoob Karimi, Mostafa Haghi Kashani, Mohammad Akbari, and Ebrahim Mahdipour.

Leveraging big data in smart cities: A systematic review. Concurrency and Computation:

Practice and Experience, 33(21):e6379, 2021.

Evgeny Kharlamov, Luca Giacomelli, Evgeny Sherkhonov, Bernardo Cuenca Grau, Egor V.

Kostylev, and Ian Horrocks. Semfacet: Making hard faceted search easier. In Proceedings of

the 2017 ACM on Conference on Information and Knowledge Management, page

2475–2478. Association for Computing Machinery, 2017.

Paul Le Noac’H, Alexandru Costan, and Luc Bougé. A performance evaluation of Apache Kafka

in support of big data streaming applications. In 2017 IEEE International Conference on Big

Data (Big Data), pages 4803–4806. IEEE, 2017.

Wen-Syan Li and Chris Clifton. Semantic integration in heterogeneous databases using neural

networks. In Proceedings of the 20th international conference on very large data bases,

1994.

REFERENCES 51

Wen-Syan Li, Chris Clifton, and Shu-Yao Liu. Database integration using neural networks:

implementation and experiences. Knowledge and information systems, 2(1):73–96, 2000.

Ying Li, AiMin Zhang, Xinman Zhang, and Zhihui Wu. A Data Lake Architecture for Monitoring

and Diagnosis System of Power Grid. In Artificial Intelligence and Cloud Computing

Conference (AICC’18), 2018.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and

Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.

Operations Research Perspectives, 3:43–58, 2016.

Gustavo V. Machado, Ítalo Cunha, Adriano C. M. Pereira, and Leonardo B. Oliveira. DOD-ETL:

distributed on-demand ETL for near real-time business intelligence. Journal of Internet

Services and Applications, 10(1), November 2019.

Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Soren Auer, and Jens

Lehmann. Uniform Access to Multiform Data Lakes Using Semantic Technologies. In 21st

International Conference on Information Integration and Web-based Applications & Services

(IIWAS’19), 2019.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is

stochastically larger than the other. The Annals of Mathematical Statistics, 18(1):50–60,

March 1947.

Vivien Marx. The Big Challenges of Big Data. Nature, 498(7453):255–260, 2013.

Christian Mathis. Data Lakes. Datenbank-Spektrum, 17(3):289–293, October 2017.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview.

WIREs Data Mining and Knowledge Discovery, 2(1):86–97, December 2011.

Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union search on open

data. Proceedings of the VLDB Endowment, 11(7):813–825, mar 2018.

Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and Renée J. Miller.

Organizing Data Lakes for Navigation. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, page 1939–1950. Association for

Computing Machinery, 2020.

Fatemeh Nargesian, Ken Pu, Bahar Ghadiri-Bashardoost, Erkang Zhu, and Renée J. Miller.

Data lake organization. IEEE Transactions on Knowledge and Data Engineering, 35(1):

237–250, 2023. DOI 10.1109/TKDE.2021.3091101.

http://dx.doi.org/10.1109/TKDE.2021.3091101

REFERENCES 52

Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, Indranil Gupta,

and Roy H Campbell. Samza: stateful scalable stream processing at LinkedIn. Proceedings

of the VLDB Endowment, 10(12):1634–1645, 2017.

E.N. Osegi and E.F. Jumbo. Comparative analysis of credit card fraud detection in simulated

annealing trained artificial neural network and hierarchical temporal memory. Machine

Learning with Applications, 6:100080, December 2021. ISSN 2666-8270.

DOI 10.1016/j.mlwa.2021.100080. URL

http://dx.doi.org/10.1016/j.mlwa.2021.100080.

Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri Bashardoost, Erkang Zhu,

Ken Q. Pu, and Renée J. Miller. Ronin: Data lake exploration. Proceedings of the VLDB

Endowment, 14(12):2863–2866, oct 2021.

Foster Provost and Tom Fawcett. Data Science and its Relationship to Big Data and

Data-driven Decision Making. Big data, 1(1):51–59, 2013.

Geymerson S. Ramos, Danilo Fernandes, Jorge Artur P. de M. Coelho, and Andre L. L. Aquino.

Toward Data Lake Technologies for Intelligent Societies and Cities, pages 3–29. Springer

International Publishing, Cham, 2023. ISBN 978-3-031-30514-6.

M. Mazhar Rathore, Awais Ahmad, Anand Paul, and Seungmin Rho. Urban planning and

building smart cities based on the Internet of Things using Big Data analytics. Computer

Networks, 101:63–80, 2016. Industrial Technologies and Applications for the Internet of

Things.

David Reinsel, John Gantz, and John Rydning. Data Age 2025: The Digitization of the World

From Edge to Core. Technical report, International Data Corporation (IDC), 2018.

Celso C. Ribeiro, Isabel Rosseti, and Reinaldo Vallejos. Exploiting run time distributions to

compare sequential and parallel stochastic local search algorithms. Journal of Global

Optimization, 54(2):405–429, August 2011.

Yuya Sasaki. A Survey on IoT Big Data Analytic Systems: Current and Future. IEEE Internet of

Things Journal, 9(2):1024–1036, 2022.

Pegdwende Sawadogo and Jerome Darmont. On Data Lake Architectures and Metadata

Management. Journal of Intelligent Information Systems, 56(1):97–120, 2021.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep

learning. Journal of big data, 6(1):1–48, 2019.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop

Distributed File System. In IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST’10), 2010.

http://dx.doi.org/10.1016/j.mlwa.2021.100080
http://dx.doi.org/10.1016/j.mlwa.2021.100080

REFERENCES 53

Socrata. Socrata open data api. https://dev.socrata.com/, sep 2022.

Gürkan Solmaz, Everton Luís Berz, Marzieh Farahani Dolatabadi, Samet Aytaç, Jonathan

Fürst, Bin Cheng, and Jos den Ouden. Learn from IoT: Pedestrian Detection and Intention

Prediction for Autonomous Driving. In Proceedings of the 1st ACM Workshop on Emerging

Smart Technologies and Infrastructures for Smart Mobility and Sustainability, page 27–32.

Association for Computing Machinery, 2019.

Jerzy Stefanowski, Krzysztof Krawiec, and Robert Wrembel. Exploring Complex and Big Data.

International Journal of Applied Mathematics and Computer Science, 27(4):669–679, 2017.

Éric D. Taillard, Philippe Waelti, and Jacques Zuber. Few statistical tests for proportions

comparison. European Journal of Operational Research, 185(3):1336–1350, March 2008.

Marieh Talebkhah, Aduwati Sali, Mohsen Marjani, Meisam Gordan, Shaiful Jahari Hashim, and

Fakhrul Zaman Rokhani. IoT and Big Data Applications in Smart Cities: Recent Advances,

Challenges, and Critical Issues. IEEE Access, 9:55465–55484, 2021.

James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel, and Alon

Halevy. From natural language processing to neural databases. In Proceedings of the VLDB

Endowment, pages 1033–1039. VLDB Endowment, 2021.

François Torregrossa, Robin Allesiardo, Vincent Claveau, and Guillaume Gravier. Unsupervised

tree extraction in embedding spaces for taxonomy induction. In IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, page 302–309.

Association for Computing Machinery, 2021.

Deepak Vohra. Using apache sqoop. In Pro Docker, pages 151–183. Springer, 2016.

Kun Wang, Yanpeng Cui, Jianwei Hu, Yu Zhang, Wei Zhao, and Luming Feng. Cyberbullying

detection, based on the fasttext and word similarity schemes. ACM Transactions on Asian

and Low-Resource Language Information Processing, 20(1), nov 2020.

Han Yu, Hongming Cai, Zhiyuan Liu, Boyi Xu, and Lihong Jiang. An Automated Metadata

Generation Method for Data Lake of Industrial WoT Applications. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, pages 1–14, 2021a.

Shangdi Yu, Yiqiu Wang, Yan Gu, Laxman Dhulipala, and Julian Shun. Parchain: A framework

for parallel hierarchical agglomerative clustering using nearest-neighbor chain. Proceedings

of the VLDB Endowment, 15(2):285–298, oct 2021b.

Vincent F. Yu and Shih-Wei Lin. Multi-start simulated annealing heuristic for the location routing

problem with simultaneous pickup and delivery. Applied Soft Computing, 24:284–290, 2014.

REFERENCES 54

Elisabeta Zagan and Mirela Danubianu. Data Lake Approaches: A Survey. In International

Conference on Development and Application Systems (DAS’20), 2020.

Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. Lsh ensemble: Internet-scale

domain search. Proceedings of the VLDB Endowment, 9(12):1185–1196, aug 2016.

	7f4144d64d985112cabbc611dacd8f2d9d6bcc7dfd5eff3094d22936687f3dd1.pdf
	a19158fa61506e8f3f490d77d01d70182c6f428821f862383fafd8a299023b75.pdf
	dissertacao danilo
	Microsoft Word - Fichacat15650-2024-D-C. DA INFORMÁTICA-DANILO FERNANDES COSTA- Data lake.Organização. Meta

	0c19aea986cab97d4af9f6818a5cb9d13ff8be78dd72750ad5f743bb99e9b68c.pdf
	a19158fa61506e8f3f490d77d01d70182c6f428821f862383fafd8a299023b75.pdf
	dissertacao danilo
	Contents
	List of Figures
	Figure List
	List of Tables

	Table List
	Algorithm List
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Technologies and Concepts
	2.1 Big Data
	2.2 Data Lake
	2.3 Data Lake Organization

	3 Methodology
	3.1 Data Lake Organization Problem
	3.1.1 Organization
	3.1.2 Navigation Model
	3.1.3 Organization Discovery Problem

	3.2 Data Lake Organization Through Multi-Start Simulated Annealing
	3.2.1 Organization Initialization
	3.2.2 Simulated Annealing
	3.2.3 Neighborhood Structures
	3.2.4 Fast SA

	4 Results and Discussion
	4.1 Benchmark Data Lakes
	4.2 Algorithms Tuning
	4.3 Performance Evaluation
	4.3.1 Effectiveness
	4.3.2 Efficiency
	4.3.3 Success Probability

	5 Final Considerations
	Bibliography

