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Maceió, Alagoas
November 29, 2023



Catalogação na Fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767

                     O48i        Albuquerque, Alvaro Amorim de.
    Classification of DPLDs in HRCT scans : a comparative study of 

texture analysis methods and a novel statistical and graph-based 
approach / Alvaro Amorim de Albuquerque. – 2023.

                            59 f. : il.

                                           Orientadora: Fabiane da Silva Queiroz.
                                           Monografia (Trabalho de conclusão de curso em Engenharia de 

Computação) - Universidade Federal de Alagoas, Instituto de Computação. 
Maceió, 2023.

                                           Bibliografia: f. 55-59.

                                          1. Classificação de imagens. 2. Classificação de textura. 3. Descritor de 
textura (Teoria dos grafos). 4. Imagens médicas. 5. Doenças Pulmonares 
intersticiais. I. Título.                            

                                                                                                      
                                                                                                                     CDU: 004:616.24



Acknowledgments

I would like to thank my family for all the support I’ve had during this journey.

Without their encouragement and faith in my potential, I would not be here and would

not be getting this degree.

I would like to thank Prof. Fabi Queiroz for being my advisor in this thesis and my

mentor in the academic field. Thanks to Prof. André “Alla” Aquino, who recommended
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Abstract

Problems of texture classification are consistently challenging once the patterns of different

instances can be very similar. Moreover, the descriptors need to be invariant to rotations,

scale, and lighting variations. In the context of medical imaging, this group of methods

can aid in diagnosing patients as part of the concept of Computer-Aided Diagnosis (CAD).

In this paper, we review methods for texture classification in the context of classifying Dif-

fuse Parenchymal Lung Diseases (DPLDs) on High-Resolution Computed Tomographies

(HRCTs) and propose a new method that uses concepts of complex networks and statis-

tical metrics. Our approach is based on mapping the input image into multiscale graphs

and extracting the closeness centrality metric. We transform the multiscale closeness

centrality images into one matrix that encapsulates local and global texture information.

From the matrix, we extract a feature vector that represents a DPLD pattern. This vec-

tor is then combined with Haralick and Local Binary Pattern descriptors to generate the

final feature vector. Once this process characterizes all the images, we go through a clas-

sification step to recognize the image. We analyze the proposed approach’s performance

by comparing it with other texture analysis methods and discussing its metrics for each

class (DPLD pattern) of the dataset. After the evaluation of different methods and our

proposed method, it is possible to conclude the effectiveness of our approach to aid the

diagnose process of DPDLs. Furthermore, we can highlight our technique as an aid on

the problem of diagnosing patients with COVID-19.

Keywords: Image Classification ; Texture Classification ; Graph-based Tex-

ture Descriptor ; Medical Image Analysis; Diffuse Parenchymal Lung Dis-

eases Classification.
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Resumo

Problemas de classificação de textura são consistentemente desafiadores uma vez que

padrões de diferentes instâncias podem ser bastante similares. Além disso, os descritores

precisam ser invariantes a rotações e variações de escala e iluminação. No contexto de

imagens médicas, esse grupo de métodos pode auxiliar no diagnóstico de pacientes como

parte do conceito de Diagnóstico Auxiliado por Computador (Computer-aided Diagno-

sis - CAD). Neste paper, nós revisamos métodos de classificação de textura no contexto

de classificação de Doenças Pulmonares Parenquimatosas Difusas (Diffuse Parenchymal

Lung Diseases - DPLDs) em Tomografias Computadorizadas de Alta Resolução (High-

Resolution Computed Tomographies - HRCTs) e propomos um novo método que utiliza

conceitos de Redes Complexas e métricas estat́ısticas. Nosso método é baseado em ma-

pear a imagem de entrada em grafos multi-escala e extrair métrica de centralidade de

proximidade. Transformamos as imagens de centralidade de proximidade multi-escala em

uma matriz que encapsula informação de textura global e local. Desta matriz, extráımos

um vetor de features que representa um padrão de DPLD que, por sua vez, é combinado

com descritores de Haralick e Padrão Binário Local (LBP) para gerar o vetor de features

final. Uma vez que isto caracteriza todas as imagens, passamos para a etapa de clas-

sificação para reconhecer a imagem. Analisamos a performance do método proposto ao

compará-lo com outros métodos de classificação de textura e discutindo as métricas para

cada classe (padrão da DPLD) do dataset. Após a avaliação de diferentes métodos e do

método proposto, é posśıvel concluir a efetividade da nossa abordagem para auxiliar o

diagnóstico de DPLDs. Além disso, podemos destacar nossa técnica como um aux́ılio ao

problema de diagnosticar pacientes com COVID-19.

Palavras-chave: Classificação de Imagens; Classificação de Textura ; De-

scritor de Textura Baseado em Grafos; Análise de Imagens Médicas; Clas-

sificação de Doenças Pulmonares Parenquimatosas Difusas.
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Chapter 1

Introduction

Diffuse Parenchymal Lung Diseases (DPLDs) form a group with more than 150 differ-

ent pathologies that affect the interstitial region, including walls of the air sacs of the

lungs and areas around blood vessels and lower airways [Pereyra et al., 2014]. The pa-

tient’s complete history (symptoms, family history, disease record), physical examination,

laboratory tests, pulmonary function tests, and visual findings on chest radiographs are

essential in diagnosing DPLDs.

There are various image patterns associated with each type of DPLD. They denote

different DPLDs with different histological appearances and clinical manifestations. Fig-

ure 1.1 illustrates visual texture patterns found in ROIs (Regions of Interest) of High-

Resolution Computed Tomography (HRCT) images of the lung. These patterns vary

from a healthy lung (Figure 1.1a) to five types of DPLDs: Pulmonary Consolidation

(Figure 1.1b), Emphysematous Area (Figure 1.1c), Septal Thickening (Figure 1.1d), Hon-

eycomb (Figure 1.1e), and Ground-glass Opacity (Figure 1.1f).

(a) Healthy (b) PC (c) EA (d) ST (e) HC (f) GGO

Figure 1.1: ROIs presenting texture patterns of DPLDs in high-resolution CT images:
(a) Healthy Lung, (b) Pulmonary Consolidation (PC), (c) Emphysematous Area (EA),
(d) Septal Thickening (ST), (e) Honeycomb (HC) and (f) Ground-glass Opacity (GGO)
(Adapted from [Pereyra et al., 2014]).

DPLDs occasionally mimic each other, either because they share identical HRCT

findings or because of the layover of patterns. In this context and with the increase use

of the technology as an aid to recognise patterns and classify objects, Computer-Aided

Diagnosis (CAD) has become one of the major research subjects in medical imaging and

diagnostic radiology [Mori, 2020].
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Medical imaging analysis is a field of study that has been gaining much attention

recently. It consists of using Computer Vision (CV) methods to assist the visual analysis

process for medical imaging data. An example of these medical imaging data is the Com-

puted Tomography, just like the ones on Figure 1.1. Therefore, a variety of methods can

be applied to aid the diagnosis of DPLDs. Once the textures of this family of pathologies

is very important in the diagnosis, it is important to analyse the behaviour of CV methods

as a texture classifier.

Textures present in medical digital images are complex visual patterns with particular

characteristics and can be seen as powerful discriminators [Zhang et al., 2015]. There-

fore, the texture classification process is an essential step in Medical Image Analysis tasks

and their applications, including content-based medical image retrieved [Wei et al., 2018],

image classification [Tuzuner et al., 2020, Darapureddy et al., 2021] and image segmenta-

tion [Monemian and Rabbani, 2019].

One of the main challenges in texture classification is developing an efficient

descriptor invariant to rotations, scale, and lighting variations. It is possible to accu-

rately classify textures using a large number of approaches [Humeau-Heurtier, 2019].

They include: statistical approaches, which are methods based on the ex-

traction of statistical features (e.g., mean, variance, energy and others)

from the spatial structure of images (e.g., Gray Level Co-occurrence Ma-

trix (GLCM), Haralick [Haralick et al., 1973], Histogram of Oriented Gradient

(HOG) [Sharma and Ghosh, 2015], Local Binary Patterns (LBP) [Ojala et al., 1996], and

some LBP-based variants [Fernandez et al., 2011, Nguyen et al., 2016]); spectral-based

approaches, which extract information from images using the frequency domain of

data (e.g., Fourier Transform, Wavelet Transform and Gabor filters [Lu et al., 2018]);

graph-based approaches, which use concepts of graph theory to extract information (e.g.,

local graph structures [Abusham and Bashir, 2011], graph of touristic walk approach

[Gonçalves et al., 2016], shortest path in graphs [de Mesquita Sa et al., 2013]); deep-

learning-based approaches, that use convolutional neural networks to generate filters that

highlight features through a learning process (e.g., WaveletCNN [Fujieda et al., 2018]

and textural convolutional neural network [Andrearczyk and Whelan, 2016]), among

others.

Using graph-based approaches to extract and classify textural features of images

includes converting textural images into graphs, followed by processing and extract-

ing relevant metrics. The conversion is done by, initially, creating the set of ver-

tices of the graph. Some works have used the method of converting the pixel di-

rectly into a vertex [de Mesquita Sa et al., 2013, Gonçalves et al., 2016]. Others have

used concepts of superpixels and each vertex represent a region with similar charac-

teristics [Avelar et al., 2020, Zhao et al., 2018]. The edges that connect the vertices

are a representation of the relationship between the pixels/superpixels in the origi-
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nal image. Common approaches have used the spatial distance and intensity to set

an edge [de Mesquita Sa et al., 2013, Gonçalves et al., 2016]. Others have used su-

perpixels as nodes and connect them based on spatial adjacency [Avelar et al., 2020,

Zhao et al., 2018]. For texture recognition problems, node attributes might include pix-

el/region intensity, pixel spatial position, color information, neighborhood information,

etc. Once the graph that represents the textural image is defined, the extraction of fea-

tures can be done with some Complex Networks knowledge.

In many applications, it is possible to interpret graphs as Complex Networks (CNs).

CNs are irregular and comprehensive structures inspired by empirical analysis of real net-

works that allows the understanding of various real systems [Cabral et al., 2014]. These

systems are called “complex system” because it is impossible to predict their collective be-

havior from their single components. However, understanding the topological description

of these systems makes predicting and controlling them possible [da Mata, 2020]. CNs

are described by several metrics, which represent their topological properties. These met-

rics can be used as descriptors of textural images in the problem of pattern recognition.

Studies using the extraction of these attributes and metrics to classify texture in images

have been explored.

1.1 Proposal

We can divide the contributions of this work into two parts:

1. Several approaches of image texture classification are reviewed, implemented and

analysed for classifying CT images that show DPLDs texture patterns, particu-

larly pulmonary consolidation, and ground-glass opacity abnormalities, which are

standard features of COVID-19 patients [He et al., 2020];

2. After this prior analysis, a new method is presented, based on statistical descriptors

and graphs-based ones (CNs). In this approach, the images are mapped into a set

of scaled graphs (CNs), and the closeness centrality metric from these graphs com-

bined with Haralick descriptors [Haralick et al., 1973] and Local Binary Patterns

(LBP) [Ojala et al., 1996] form up the texture features conducive to the classifica-

tion of observed texture patterns.

1.2 Structure

This document is structured as follows. All the theoretical background for the methods

analysed are described in Chapter 2. Given that we analyze a large number of classification

methods, this chapter is extensive because it presents the theoretical basis for all the

analyzed methods. Some related works that use concepts of textural classification in
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medical images are explored in Chapter 3. The chapter starts with more general context

and, later, the works cited are more focused in computed tomography of the lungs.

In Chapter 4, the empirical behaviour of the methods and how those concepts are

used to characterize the images on the dataset are explained in detail. Furthermore, the

proposed method is described and the whole process of mapping images to CNs, extracting

features and classifying the images is explained. Chapter 5 discusses the experiments and

results and compares the performance of all the methods using evaluating metrics. Finally,

Chapter 6 concludes and presents suggestions for further investigation.



Chapter 2

Theoretical Background

This chapter goes through all the concepts behind the methods analysed in this work.

All the theory that gives enough knowledge to understand the methods analyzed. It

is an overview of the variety of methods used in the context of texture classification,

like methods that use basic statistics, methods that extract measures from the frequency

domain of images, methods that use concepts of graphs and Complex Networks, and

knowledge of Deep Learning using Convolution Neural Network.

2.1 Statistical Methods

Statistical methods use the spatial distribution of the grey-level values within the pixel’s

neighborhood to extract metrics that can describe and characterize the input texture

image. Furthermore, these statistical methods can be categorized based on the number

of pixels used to define the feature. Methods that use one pixel to define the feature are

called first-order. If two pixels are used, they are called second-order, and if three or more

pixels are used, they are called higher-order statistics.

Even though the first-order methods only consider the pixel itself and not the relations

with the nearby elements, they are very frequently used because, since they are histogram-

based, they can extract valuable global features and they are very simple and low-cost to

execute. Some of those feature are: mean, variance, maximum, minimum and kurtosis.

The second-order statistical methods use the information between two pixels and de-

scribe the interrelationship between the levels of grey in the image. These methods extract

features from matrices that represent the frequency at which every grey-level value inter-

acts with each other in a given space of the image. The Grey-Level Co-occurrence Matrix

(GLCM) is one of the most used method to generate those matrices. The GLCM generate

matrices by computing the frequency that every combination of different grey-level value

occurs in a given direction and distance. The Haralick method uses the GLCM of the

image to extract valuable metrics from it.

If the statistical method uses more than two pixels to extract information from an

5
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image, it extracts higher-order features and can deal better with the occurrence of noise.

The Local Binary Pattern (LBP) is one of those methods and it focuses on the intensity

transitions within a subregion of the region of interest. LBP is a frequently used method

because it performs well on texture analysis once it combines the analysis of occurrences

and local structures of the image. Besides giving a good performance, it is susceptible

to rotation and noise. Therefore, different variations of LBP were proposed to address

some of these issues. Another well known method is the Histogram of Oriented Gradi-

ents (HOG), an effective texture descriptor commonly used for object detection and face

recognition. This method’s main idea is to categorize the image using the intensity dis-

tribution of the gradients or edge directions. Since it counts the occurrences of gradient

orientation in local cells, it is invariant to geometric and photometric transformations.

2.1.1 Haralick Features

Proposed by Robert Haralick in [Haralick et al., 1973], these features are a set of easily

computable statistical measures operated over the GLCM of the image and are capable of

characterizing the texture of an image. Given an image I with sizeM×K and grey-levels

in the range [1, N ], GLCM is a matrix P ∈ NN×N where each entry P(i, j) indicates

the number of times the grey-level i occurred in a given radius and direction of a given

grey-level j.

P(i, j) =
M∑

m=1

K∑

k=1




1, if I(m, k) = i and I (m+ dx, k + dy) = j

0, otherwise
(2.1)

Where δ = (dx, dy) is the displacement vector capable of varying the GLCM based

on different directions and distances of the given i and j grey-level values. It is possible

to generate different GLCMs with different displacement vectors. The next step is to

generate the normalized matrix p ∈ QN×N using Equation 2.2.

p =
P∑N

i=1

∑N
j=1P (i, j)

(2.2)

With the matrix p, the Haralick features can be extracted, given that:

• px(i) =
∑N

j=1 p(i, j) is the sum over the rows of p;

• py(j) =
∑N

i=1 p(i, j) is the sum over the columns of p;

• px+y(k) =
∑N

i=1

∑N
j=1i+j=k

p(i, j) is the sum of values of p where each intensity level

i and intensity level j sum up to k for k = 2, 3, . . . , 2N ;

• px−y(k) =
∑N

i=1

∑N
j=1|i−j|=k

p(i, j), is the sum of values of p where the absolute

difference of intensity level i and intensity level j is equal to k for k = 0, 1, . . . , N−1;
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• µx =
∑N

i=1 i · px (i) and σ2
x =

∑N
i=1 (i− µx)

2 · px (i) are the mean and standard

deviation of px;

• µy =
∑N

j=1 j · py(j) and σ2
y =

∑N
j=1 (j − µy)

2 · py (j) are the mean and standard

deviation of py;

• HX = −∑N
i=1 px (i) · log px (i) is entropy of px and HY = −∑N

i=1 py (i) · log py (i)
is entropy of py;

• HXY = −∑N
i=1

∑N
j=1 p (i, j) · log p (i, j) is joint entropy of p;

• HXY 1 = −∑N
i=1

∑N
j=1 p(i, j) log { px(i)py(j)} and HXY 2 =

−∑N
i=1

∑N
j=1 px(i)py(j) log {px(i)py(j)} are variations of the joint entropy.

Therefore, the Haralick Textural Features are:

1. Angular Second Moment (Energy): f1 =
∑N

i=1

∑N
j=1 { p(i, j)}2.

2. Contrast: f2 =
∑N

i=1

∑N
j=1 (i− j)2 p(i, j)

3. Correlation: f3 =
∑N

i=1

∑N
j=1 (ij)p(i,j)−µxµy

σxσy

4. Sum of Squares (Variance): f4 =
∑N

i=1

∑N
j=1 (i − µ)2p(i, j).

5. Inverse Difference Moment: f5 =
∑N

i=1

∑N
j=1

1
1+ (i− j)2

p(i, j).

6. Sum Average: f6 =
∑2N

i=2 ipx+y(i).

7. Sum Variance: f7 =
∑2N

i=2 (i − f8)
2px+y(i).

8. Sum Entropy: f8 = −∑2N
i=2 px+y(i) log {px+y(i)}.

9. Entropy: f9 = −∑N
i=1

∑N
j=1 p(i, j) log (p(i, j)).

10. Difference Variance: f10 = variance of px−y.

11. Difference Entropy: f11 = −∑N−1
i=0 px−y(i) log

{
px−y(i)

}
.

12. Information Measures of Correlation 1: f12 =
HXY−HXY 1
max{HX,HY }

13. Information Measures of Correlation 2: f13 = (1 − exp [−2.0(HXY 2 − HXY )])1/2

14. Maximal Correlation Coefficient: f14 = (Second largest eigenvalue of Q)1/2, where

Q(i, j) =
∑

k
p(i,k)p(j,k)
px(i)py(k)

.
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2.1.2 Local Binary Pattern

Initially proposed in [Ojala et al., 1996], Local Binary Pattern (LBP) is a method that

uses the grey-levels of a central pixel and its neighborhood to classify this central pixel

and, from it, generate a new image used to characterize the texture. However, this initial

approach was susceptible to noise and rotation. Therefore, [Ojala et al., 2002] proposed

an improved version of the method.

To define a texture T in a small surrounding area of a monochromatic texture image,

it is used a distribution of the grey levels of P image pixels, where P > 1:

T = t(gc, g0, . . . , gP−1), (2.3)

where gc is the gray level value of the central pixel in the local neighborhood and gp for

p = 0, 1, . . . , P − 1 correspond to the gray level of the P equally spaced pixels on a circle

with radius R around the central pixel, where R > 0. In Figure 2.1, the neighborhood

of elements can be seen for different values of P and R.

Figure 2.1: Circularly symmetric neighbor sets for different (P,R).
Source: [Ojala et al., 2002]

To achieve gray-scale invariance, the gc value is subtracted from the gray-level value

of the pixels from the circle, giving:

T = t(gc, g0 − gc, g1 − gc, . . . , gP−1 − gc). (2.4)

Assuming that the differences gp − gc are independent of gc,

T ≈ t(gc)t(g0 − gc, g1 − gc, . . . , gP−1 − gc). (2.5)

Since the distribution t(gc) describes the overall luminance of the image, which is

unrelated to local image texture, it does not provide useful information for the analysis.

Hence, distribution T is defined as, approximately:

T ≈ t(g0 − gc, g1 − gc, . . . , gP−1 − gc). (2.6)

This texture operator is highly discriminative once it gives information of the occur-
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rence of differents textures and various patterns. For exemple, a constant neighborhood

gives all zeros. If changes in luminance occur, the differences gp − gc are not affected. To

achieve invariance with respect to the scaling of the gray scale, it is considered only the

signs of the difference and not the difference itself:

T ≈ t(s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc)), (2.7)

where

s(x) =

{
1, if x ≥ 0

0, otherwise
(2.8)

A binomial factor 2p is assigned for each sign s(gp − gc) to generate a single value

LBPP,R to categorize the texture on this neighborhood:

LBPP,R =
P−1∑

p=0

s(gp − gc)2
p. (2.9)

The LBPP,R operator produces 2P different output values which are the possible values

of the local binary pattern in the neighborhood. If the image is rotated, the gp values are

gonna change because the g0 is always going to be the first element on the right of the

central pixel. Therefore the current LBPP,R operator is going to change when a rotation

occur on the same neighborhood. To remove the rotation variability a new operator is

defined:

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, . . . , P − 1}, (2.10)

where ROR(LBPP,R, i) performs a circular bit-wise right shift on the P-bit number

LBPP,R by i bits. The min operator sets that this operator will choose the minimum

LBPP,R for the neighborhood.

To improve the operator, it is introduced the concept of “Uniform” patterns. Uniform

circular structures present very few spatial transitions. Empirically, was proved that

these uniform patterns are fundamental properties of texture and very important in the

process of characterizing these structures. To formally define these Uniform patterns,

it is introduced an uniformity measure U , which corresponds to the number of spatial

transitions (bitwise 0/1 changes) in the pattern. The new operator that takes this concept

in consideration is defined as:

LBP riu2
P,R =

{ ∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise,
(2.11)
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where

U(LBPP.R) =| s(gP−1 − gc)− s(g0 − gc) | +
P−1∑

p=1

| s(gp − gc)− s(gp−1 − gc) | . (2.12)

So, in other words, this operator will count the number of spatial transitions in the

neighborhood. If it is lesser or equal to 2, LBPP.R will be the number of bits 1, otherwise

it will be the number of elements in the neighborhood.

2.1.3 Histogram of Oriented Gradients (HOG)

The central idea of this method [Dalal and Triggs, 2005] is based on evaluating well-

normalized local histograms of image gradient orientations in a dense grid. In the context

of texture analysis and recognition, the HOG descriptors will characterize the texture

using the distribution of local intensity gradients or edge directions. The method has

presented great performance in problems of object detection and face recognition.

Initially, the image is divided in smaller spatial regions called cells. For each cell, a

one dimensional histogram of gradient directions or edge orientations is generated over

the cells’ pixels. So, for each cell of the image, a 1-D vector is generated. The entire

image is then characterized by the combination of all the vectors from the cells. To

better the performance and to better the invariance to different illuminations settings, a

normalization is operated. To achieve that, the original image is divided into other spatial

regions called blocks that are formed by a group of cells. The local histogram energy of

these blocks are measured and accumulated to normalize the result of all the cells inside

the block. The normalized descriptor blocks are referred as the Histogram of Oriented

Gradients (HOG) descriptors. The grid described can overlap, therefore the pixels can be

part of more than one block or cell.

2.2 Spectral Methods

Spectral methods are a class of methods used to represent the textures in multiple reso-

lutions and scales. They can analyse the texture’s frequency content either exclusively in

spatial domain (using Laws’ Filters) or exclusively in the frequency domain (using meth-

ods like Fourier Transform). Alternatively, these methods can also be used to analyze

both the frequency and spatial domains of the texture, which can be achieved through

techniques like Gabor and Wavelet Transform.
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2.2.1 Laws’ Texture Energy

Introduced in [Laws, 1980], this method was one of the pioneers on the texture charac-

terization field using the spectral information of the image. Besides being rotationally

invariant, it presents great performance on characterizing textures. This method consists

of convolving the image with a set of filters and extracting statistics from the filter re-

sponse. The set of filters of the method is based on the 3 simple vectors of length 3: center

weighted local averaging L3 = (1, 2, 1), edge detection E3 = (−1, 0, 1) and spot detection

S3 = (−1, 2,−1).

If these vectors are convolved with themselves we have a set of filter with length 5:

center weighted local averaging L5 = (1, 4, 6, 4, 1), edge detection E5 = (−1,−2, 0, 2, 1)

and spot detection S5 = (−1, 0, 2, 0,−1). Furthermore, it is possible to obtain the

vectors with length 7: L7 = (1, 6, 15, 20, 15, 6, 1), E7 = (−1,−4,−5, 0, 5, 4, 1) and

S7 = (−1,−2, 1, 4, 1, 1,−2,−1). Given the family of vectors of length l, the Laws filters

of size l× l can be obtained by multiplying different combination of those one dimensional

vectors. For example, for the family of vectors of length 5, we have the 5× 5 filters:

LL = LT
5L5

EE = ET
5 E5

SS = ST
5 S5

LE = LT
5E5

LS = LT
5 S5

EL = ET
5 L5

ES = ET
5 S5

SL = ST
5 L5

SE = ST
5 E5

(2.13)

To extract information from the image and describe the texture, these filters are

convoluted over the image and statistical measures (e.g., energy) [Giakoumoglou, 2021]

are extracted from the filter responses. These filter responses can be viewed as two

dimensional signals, and, therefore, signal processing concepts can be used to extract

information. The measure of energy represents a numerical value of total magnitude of

the signal/image. Some measures are:

• Texture energy from the LL filter;

• Texture energy from the EE filter;

• Texture energy from the SS filter;

• Average texture energy from LE and EL filters: (LE + EL)/2;

• Average texture energy from ES and SE filters: (ES + SE)/2;
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• Average texture energy from LS and SL filters: (LS + SL)/2;

These measures will be used to characterize the input images.

2.2.2 Gabor Filters

Being very effective in texture representation and differentiation, the Gabor filters are

a family of filters generated by the modulation of a Gaussian kernel using a sinusoidal

plane wave. The method can deal very well with noise and changes in illumination,

but fail to achieve the same performance with variations in rotation and scale. This

bank of 2-D filters is formed by Gabor filters generated at different scale and orienta-

tions [Lu et al., 2018]. Let I(x, y) be an input image and gλ,θ(x, y, φ, σ, γ) be a Gabor

kernel function with scale value λ and orientation value θ. The filter response is defined

as the convolution of I(x, y) and gλ,θ(x, y, φ, σ, γ):

Gλ,θ(x, y) = I(x, y) ∗ gλ,θ(x, y, φ, σ, γ), (2.14)

where

gλ,θ(x, y, φ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
, (2.15)

x′ = x cos θ + y sin, θ, (2.16)

y′ = −x sin θ + y cos θ, (2.17)

γ = 0.5 is a constant, λ represents the wavelength (so 1/λ is spatial frequency) and φ

correspond to anti-symmetric functions (φ = −π/2 or φ = π/2). The ratio σ/λ is given

by

σ

λ
=

1

π

√
ln 2

2

2b + 1

2b − 1
, (2.18)

where b is the half response spatial frequency bandwidth.

With this definition, the amount of filters responses is going to depend on the chosen

n frequencies 1/λ and m orientations θ, giving n ·m responses. Figure 2.2 shows the 24

filters generated by 6 values of θ and 4 values of 1/λ.

After that, statistical information can be measured on the filter responses Gλ,θ(x, y).

These responses can be viewed as two-dimensional signals and we can use concepts of

signal processing to extract metrics. One very commonly used metric is the Gabor energy,

which, in this context, is a way to measure the total magnitude of the image/signal. For

each response Gλ,θ(x, y) generated, a value of energy can be extracted using

Eλ,θ(G) =
1

MN

M∑

x=1

N∑

y=1

|Gλ,θ(x, y)|2 , (2.19)



Spectral Methods 13

Figure 2.2: Examples of Gabor Kernels for different values of orientations θ and frequen-
cies 1/λ. In this, θ = (0, π/6, 2π/6, 3π/6, 4π/6, 5π/6) and 1/λ = (1/16, 1/18, 1/26,
1/32).
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where |Gλ,θ(x, y)|2 is the magnitude of the response Gλ,θ(x, y). This information will

be used to characterize the input image.

2.2.3 Fourier Transform

The Fourier transform is a fundamental approach on the frequency domain analysis

[Ghalati et al., 2022] once it is capable of decomposing a given input and convert its

information from time or spatial domain to the frequency domain using mathematical

fundamentals. It is based on the concept that every signal (one dimension) can be de-

composed into a sum of sine and cosine waves with different amplitudes and frequencies.

These sine and cosine waves are called the frequency components of the original signal.

This concept can be extended to images (two dimension) and used to decompose images

into their frequency components represented by a combination of vertical and horizontal

sine and cosine waves of different frequencies. Given an image f of size M × N , the

Fourier Transform F of the image is

F (u, v) =
1

MN

N−1∑

x=0

N−1∑

v=0

f(x, y)e−j2π(ux/M+vy/N), (2.20)

where u, v are the coordinate from the frequency domain. Alternatively, it is possible

to convert the frequency domain image back to the spatial domain using the Inverse

Fourier Transform defined as

f(x, y) =
M−1∑

u=0

N−1∑

v=0

F (u, v)ej2π(ux/M+vy/N). (2.21)

These operations give the capability to manipulate and perform operations on the

image in the frequency domain and return it to the original domain. One example of

usage is filtering out the noise of the image without losing important information in the

original domain. Furthermore, it is possible to work with the frequency domain image F

to characterize the texture on images. With the frequency domain image, it is possible

to extract spectral information of the original input using some statistical measures (e.g.,

energy).

2.2.4 Wavelet Transform

The Wavelet Transform was proposed as an alternative to the Fourier Transform once the

latter does not maintain time information in the frequency domain. Fourier Transform

uses the input signal to plot the contribution of different sine waves at different frequencies

but can’t inform at what time those frequencies begin or end. The Wavelet Transform

comes as an alternative for that problem and is used as method of Multiresolution Analysis

of data.
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Unlike Fourier Transform that use sine waves to represent the signal, the method uses

analysing functions called wavelets, which can be seen as sine waves restrained in time.

Those functions need to have zero mean and the area under the curve has to be finite,

which is what makes the function localized in time.

(a) Haar Wavelet

(b) Coiflets Wavelet

(c) Daubechies Wavelet

(d) Symlets Wavelet

(e) Biorthogonal Wavelet

Figure 2.3: Examples of some families of wavelet commonly used. ψ is the wavelet function
and ϕ is the scaling function.
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Figure 2.4: Decomposition of signal x into detail and approximation coefficients using
high-pass (h) and low-pass (g) filters, respectively. The coefficients are generated after
the downsample step.

Wavelets are used in families and each of the families have the mother wavelet (com-

monly called the wavelet function ψ) and the wavelet father (commonly called the scaling

function φ). The wavelet function ψ represents the high frequency components of the

input and the scaling function φ represent the low frequency components of the input.

Some families of wavelets can be seen on Figure 2.3.

Wavelet functions can be translated by a value k and scaled by a value j. Therefore,

ψj,k = ψ( t−k
j
) is a daughter wavelet function derived by the wavelet mother ψ. The

same can be define for daughter scaling functions φj,k. This manipulation will allow to

determine the influence of a given wavelet at a certain scale and time. Therefore, by

varying the scale and translation parameters, it is possible to determine what frequencies

are prominent in the signal at a given time point.

The wavelet series expansion of a function f(x) with respect to wavelet function ψ(x)

and scaling function φ(x) can be represented as

f(x) =
∑

k

cj0(k)φj0,k (x) +
∞∑

j=j0

∑

k

dj (k)ψj,k (x) , (2.22)

where cj0 id the approximation coefficient and dj for j ≥ j0 are the detail coefficients.

If the function f(x) being expanded is discrete, the approximation and detail coef-

ficients of the expansion are its Discrete Wavelet Transform (DWT) and the expansion

itself in Equation 2.22 is the function’s Inverse Discrete Wavelet Transform (IDWT).

Once digital (discrete) signals are the focus, the implementation of the DWT can be

achieved using digital filters and downsampling methods, once it will generate details of

the data at different scales.

The digital signal is passed through a low-pass filter g, producing the approximation

coefficient, and through a high-pass filter h, producing the detail coefficient. Since half

the frequencies were removed, according to Nyquist’s theorem, the resulting signal can be

downsampled by 2. This can be seen in Figure 2.4.

The signal can be decomposed in more than one level. For this, the process is repeated

and the approximation coefficient at level j is decomposed into the approximation and

detail coefficients of level j+1 using low- and high-pass filter with half the cut-off frequency

of level j. The Figure 2.5 illustrates this with 3 decomposition levels.

This transformation can be easily converted to deal with 2-D information. The process
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Figure 2.5: Decomposition of signal x into detail and approximation coefficients with 3
levels.

Figure 2.6: Decomposition of an image I into the approximation coefficient (AC) and
detail coefficients (DCv, DCh and DCd)

can be seen on Figure 2.6. Initially, the rows go under the low-pass (g) and high-pass

(h) filters and the number of columns are downsampled. Then, each column goes under

the filters and the number of rows is downsampled. The combination of each operation

generates 4 sub-images: AC (Approximation Coefficient) is the resultant image where the

low-pass filter went on both directions; DCd (Detail Coefficient - Diagonal) is the resultant

image of the high-pass filter on both directions; low-pass on each row and high-pass on

each column generated DCh (Horizontal); and high-pass on each row and low-pass on

each column generated DCv (Vertical).

The Figure 2.7 shows a real example of how the image and sub-images are displayed.

On the left, there is the original image I(x, y) = ACj. On the right, there are the 4

sub-images generated: AC(j−1), on the top-left; DCh,(j−1) on the top-right; DCv,(j−1) on

the bottom-left; and DCd,(j−1) on the bottom-right.

Furthermore, there is a variation of the DWT called Stationary Wavelet Transform

(SWT) which does not perform the downsampling of the rows and columns, but performs

an upsampling of the filters instead. This variations provides shift invariance to the

transformation but it has a higher computation cost.
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Figure 2.7: Usual arrangement of the original image and the subimages generated by the
2-D DWT. Source: [Gonzalez and Woods, 2018]

2.2.5 Fractal Dimension

The fractal dimension is often used in mathematics to describe the complexity of fractal

patterns. The complexity is quantified using a ratio of the change in detail to the change

in scale. It was first applied to characterize complicated shapes where the details seemed

more important than the gross pictures [Albers and Alexanderson, 2008]. For ordinary

shapes, the fractal dimension is the same as the topological dimension: 0-dimension for

points, 1-dimension for lines, 2-dimension for planes, 3-dimension for volumes. But if

the fractal dimension exceeds the topological dimension, it is considered to have a fractal

geometry.

The Fractal Dimension Df [Wu et al., 1992] of an image I(x, y) can be can be esti-

mated using

E(∆I2) = c(∆r)(6−2Df ), (2.23)

where E(·) is the expectation operator, ∆I is the intensity variation I(x2, y2)− I(x1, y1),

c is a constant and ∆r is the spatial distance (x2, y2) − (x1, y1). A simpler method is to

estimate the H parameter from the relationship

E(|∆I|) = k(∆r)H , (2.24)

where k = E(|∆I|)∆r=1. From 2.23 and 2.24, it is possible to simplify the process of

finding the fractal dimension Df by using

Df = 3−H. (2.25)

A large value of Df indicate a small value of H and represents rough surfaces.

Small values of Df indicates large value of H and represents smoother surfaces. Given

that image I has size M × M , the intensity difference vector is defined as IDV =

[id(1), id(2), . . . , id(s)], where s is the maximum possible distance between pixels on
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the image and id(k) is the average of the absolute intensity difference between all pairs

of pixels with horizontal or vertical distance k. id(k) is defined as

id(k) =

∑M−1
x=0

∑M−k−1
y=0 |I(x, y)− I(x, y + k)|+∑M−k−1

x=0

∑M−1
y=0 |I(x, y)− I(x+ k, y)|

2M(M − k − 1)
.

(2.26)

The value of H can be obtained by using least-squares linear regression to estimate the

slope of the curve of id(k) versus k in log-log scales. H is known as the Hurst Coefficient

or Hurst Exponent and it characterizes a curve using statistical measure of the curve’s

behaviour and estimation using Power Law. Besides the Fractal Dimension, this concept

is often used in Time Series field to measure the randomness of a data series.

Therefore, with those definitions, a feature vector [Wu et al., 1992] that uses multires-

olution information can be defined as

MF =
(
H(m), H(m−1), . . . , H(m−n+1)

)
, (2.27)

where M = 2m is the size of the image, H(p) is the H parameter estimated from image I

at resolution p and n is the number of resolution levels chosen. So, H(m) will be the Hurst

Coefficient of the image with original resolution, H(m−1) will be the Hurst Coefficient of

the image with half the resolution and so on. The Multiresolution Fractal (MF) feature

vector has information of the roughness, lacunarity and regularity of the image.

2.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the process of finding the principal components

of a set of data and then using those components to perform a change of basis in the data.

Usually, it is used as a way to reduce dimensionality once those principal components can

be used to represent the data in the correspondent dimension and, therefore, can remove

the dimension where the principal components has least variation.

Mathematically, the PCA is an orthogonal linear transformation that changes the

data coordinate system to one where the first coordinate is the principal component

with greatest variation. The second coordinate is the second greatest variance and so on

[Jollife, 2010].

Let the data be a matrix X of size n × p where each row is an occurrence of the

experiment and each columns is a feature. The transformation is a set of size l formed by

p-dimensional vectors of weights w(k) = (w1, . . . , wp)(k) that map each row x(i) of X to a

new vector of principal component scores t(i) = (t1, . . . , tl)(i), given by tk(i) = x(i) ·w(k) for

i = 1, . . . , n and k = 1, . . . , l in a way that the variables t1, . . . , tl of t considered over the

data inherits as much variance from the data as possible while still being orthogonal to
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the previous components. Usually, the number of principal components t is smaller than

p to help reduce the dimensionality of the data.

To maximize the variance of the data, the first weight vector w(1) satisfies

w(1) = arg max
|w|=1

{∑

i

(t1)
2
(i)

}
= arg max

∥w∥=1

{∑

i

(
x(i) ·w

)2
}
. (2.28)

Since w(1) is chosen to be a unit vector, this can be written in the matrix form as

w(1) = argmax

{
wTXTXw

wTw

}
. (2.29)

With w(1) found, the first principal component of a data vector x(i) can be given by

t1(i) = x(i) ·w(1). Subsequently, the k-th component can be found by subtracting the first

k − 1 principal components of X

X̂k = X−
k−1∑

s=1

Xw(s)w
T
(s) (2.30)

and then finding the weight vector that extracts maximum variance from X̂k:

w(k) = argmax

{
wTX̂k

T
X̂kw

wTw

}
. (2.31)

Therefore, the k-th principal component of data vector x(i) can be given by tk(i) = x(i) ·
w(k). The full principal component decomposition of X can be given by:

T = XW, (2.32)

where W is a p× p matrix of weights whose columns are the eigenvectors of XTX.

2.4 Graph Theory and the Closeness Centrality Met-

ric

Graphs Theory is a field that studies the relations between entities of a given set. A set

of these relations can be represented in the form of graphs formed by the vertices (enti-

ties) and edges (relations between the entities). A graph G is a mathematical structure

consisting of a set of vertices V and a set E of edges connecting the vertices: G = (V,E),

where V is a set and E ⊆ V × V is a set of ordered pairs of elements from V .

The graph is said to be undirected if the existence of an edge (u, v) ∈ E implies the

existence of and edge (v, u) ∈ E. Otherwise, the graph is called directed graph. The edges

of the graph can be assigned a numerical value by a weight function w : E −→ R. If the
edges of a graph have weights, it is called weighted graph, otherwise are called unweighted
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graph.

Graphs can be represented using a matrix of size N × N , where N is the amount of

vertices in the graph. Therefore, this matrix represents the existence of an edge between

every pair of vertex in the graph. This matrix A is called adjacency matrix. For an

unweighted graph, A(u, v) = 1 means the edge (u, v) exists in set E and A(u, v) = 0

indicates the opposite. For a weighted graph, the adjacency matrix can be replaced by a

matrix W that each entry W (u, v) indicates a numerical value representing the weight of

the edge between the vertices u and v. If the edge does not exist, it returns 0.

An important property of the vertices is the degree or valency k. The degree ku are

the amount of edges that connect to the node u, where self connecting edges ((u, u) ∈ E)

count as 2. For directed graphs, the degree can be separated as the amount of edges that

has the node u as the terminal node ku
in (in-degree) and the amount of edges that has u

as the initial node ku
out (out-degree). In this case, ku = ku

in + ku
out.

In graph theory, a very common object of study is the problem of the shortest paths.

This problem consists of finding the shortest path between two vertices using the edges

information. Therefore, the shortest path between two vertices is a series of adjacent

nodes that present the lowest total weight. It can also be thought as the shortest distance

or cheapest cost between two points. Various algorithms were developed to solve this

problem and one of those algorithms is the Dijkstra’s algorithm.

It consists of separating the vertices in two sets: visited set and unvisited set. Initially

the visited set is formed by a chosen initial vertex vi and the unvisited set is formed by

all the other nodes. The shortest distance from vi to itself is 0 and to all the other nodes

is set to infinity. The iteration starts by calculating the tentative distance through the

current node to all other nodes. If this tentative distance is smaller than the current

shortest path, the shortest path is updated. The next visited node will be the one on the

unvisited set with the shortest path. This iteration is repeated until all nodes are on the

visited set. Despite being only applicable to non-negative weight graphs, this algorithm

is very commonly used for its simplicity and good performance.

A further study, specializes at describing the behaviour of real world phenomenons us-

ing graphs and statistical physics analysis. This area is called the Complex Networks and

it is capable of describing real systems using graphs with complex topological structure.

In this field, in order to extract information and try to describe the behaviour of those

networks, multiple metrics were proposed.

One of the metrics is the Closeness Centrality. This metric gives a global information

of the graph or network and, for each node, it is given a numerical value that indicates

how central is the node compared to the other nodes of the network. For a connected

graph G, the Closeness Centrality metric CC of a vertex vi can be seen as the inverse

of the sums of the minimum path distances from vi to all other vertices of the network.

However, this definition is unsuitable when the network is disjointed, as some vertices are
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not reachable. Thus, a more common way to calculate the Closeness is from the sum of

the inverses of the shortest path distances

CC(vi) =
1

N − 1

∑

j ̸=i

1

dvi,vj
, (2.33)

where, N is the number of vertices in the Graph; dvi,vj is the length of the shortest

path between two vertices vi and vj; and, therefore,
1

dvi,vj
= 0 if there are no path between

vi and vj. With this, the more central is the node, bigger its closeness centrality measure

is and better is its view over the flow of data through the network [Lü et al., 2016].

Another metric that can be noted is the diffusion, which is one of the most stud-

ied phenomena in physics and biology [Comin et al., 2012]. On physics, diffusion is the

movement that particles perform from an area of high concentration to an area of low

concentration until stability is reached. This concept can be used on directed graphs to

describe the flow of information inside a network with complex topology. In practice, a

random walker is used to generate a probability distribution of the amount of time each

node is visited and how much information goes through it.

Mathematically, if the walker is at a node vj at a time t− 1, the probability of finding

this walker at a node vi at a time t is

Pi(t) =
N∑

j=1

Aij

kj
Pj(t− 1), (2.34)

where kj is the the degree of node j, N is the total number of nodes in the network and

Aij is the entry of the adjacency matrix A. After a long period of time, the system is

guaranteed to reach the equilibrium [Noh and Rieger, 2004] and Pi(t) = Pi(t− 1) = P∞
i .

Empirically, for directed graphs, the activity of each node is estimated by starting random

walks on each node. So, given the walker is at the node vi, the probability of going to a

node vj is

p(vi, vj) =
wvi,vj∑

vk∈V wvi,vk

. (2.35)

Then, the activity of a node α(vi) is given by the amount of times the node vi was visited

by the walker after all the random walks [Gonçalves et al., 2016].

2.5 Deep Learning

Deep Learning (DL) is a sub-area of the Machine Learning (ML) field that is responsible

for performing the process of finding patterns and making decisions using an artificial

neural network formed by neurons. The neurons are units that takes multiple inputs and

generates only one output. These units are distributed in multiple layers and can be
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configured to perform different calculations of the output. The combinations of the layers

makes up the network.

The first layer is the input, the last layer is the output and the middle ℓ layers are

called the hidden layers. If all the neurons are connected with the previous and next

neuron layers, it is called a fully connected network and it can be seen on Figure 2.8.

Figure 2.8: General fully connected network architecture with input of size n, ℓ hidden
layers and an output layer L. Source: [Gonzalez and Woods, 2018]

The process of training a network has the objective of finding the best weights w and

biases b that represent the data and gives the output value wanted. It is given by using

2 main steps: the forward pass and the backpropagation. The forward pass is the step

where the data is passed through the network to the output using all the current weight

and biases of each neuron.

This operation is done over all the layers and it will give an output on the last layer.

This output will be compared to the actual target output and the difference will be used

to adjust the weights and biases of all the neurons of the network. This step is the

backpropagation. The objective of this step is to find the optimal weights and biases for

the network as it will minimize an error function E.
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This can be visualized as the weights and biases being altered by the amount of

influence they had in the error function. Mathematically, there is

wk+1 = wk − α

[
∂E

∂w

]

w=wk

,

bk+1 = bk − α

[
∂E

∂b

]

b=bk

,

(2.36)

where wi and bi are the weights and biases at a given step i, ∂E/∂w indicates the influence

of the weight w in the error function E and α is the learning rate of the network and it

is a hyperparameter given by the user.

Using this concept of deep networks, a new type was proposed to work directly with

images: Deep Convolutional Neural Network. It is based on the concept that the network

itself will be able to find patterns and the features of the image. The overall behaviour

of Deep Neural Networks and Convolutional Neural Network (CNN) are very similar and

only differs on some operations. The basic structure of a CNN can be seen in Figure 2.9.

Figure 2.9: Basic structure of a Deep Convolutional Neural Network. Source:
[Gonzalez and Woods, 2018]

The first operations executed is the convolution which consists of moving a receptive

field over the image and generating other images called feature maps. These receptive

fields are also called kernels and they are a small d× d matrix formed by weights w. As

the kernel is passed through the image, the sum product of the weights and the pixels

contained in the receptive field at that position is executed and summed with a bias. Then,

this single value is passed through an activation function and the pixel of the feature map

is generated. The stride is the amount of increments the kernel takes to convolve over

the image. The strides are used to reduce the size of the data. For each receptive field, a

feature map is generated and are referred to as convolutional layer.

The next step is the subsampling or pooling. It has the objective of reducing the

spatial resolution of the feature map and, therefore, achieving translational invariance.

This consist of dividing the feature map in small neighborhoods (usually of size 2 × 2,

which results in 1/4 of the original size of the feature map) and generating a single value
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to represent this neighborhood in the next layer. Some common pooling methods are:

average pooling, take the average of the pixels in the neighborhood; max-pooling, choose

the larger value between the pixels in the neighborhood; L2, the values is given by the

square root of the sum of the pixels in the neighborhood.

In Figure 2.9 the process of generating the feature maps and pooling are executed

twice and then, the value of the last pooling layer is used as input on a fully connected

network (just as Figure 2.8) to perform the process of classification. Since the output of

the last pooling are 2D data, the output is vectorized to be used as input of the fully

connected layer. To achieve that, all the pooled feature maps are converted into a vector

and concatenated.

As said before, the process of feed forward and backpropagation are also used in CNNs

and are performed in similar way as the Fully Connected Networks. For the forward pass

step, the image is going through the network and executed over each step to the last layer

where an output will be given and a function error E is calculated using the output and

the target value. The backpropagation step will derive E in function of each weight and

bias of the CNN (which now are the entries of the kernel used in the convolutional layers)

and these weights and biases are going to be updated by a given learning rate α. An

important detail on the backpropagation step is that the pooling operation reduces the

size of the feature maps. Therefore, the pooled feature maps are upsampled to match

the size of the feature maps generated. With that, the backpropagation can be executed

through the pooling layers.
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Related Works

This chapter will go through some previous works that studied methods to recognize and

classify diseases. More specifically, various methods that use image processing and visual

findings to aid in the diagnosis of diseases are explored and, moreover, methods that work

exclusively with Computed Tomography of Lungs are cited.

3.1 Studies on Medical Imaging Analysis

Medical imaging analysis is a broad field of study in the context of Computer Vision and

it has been explored in various ways. Previous works have used different kinds of medical

images as a way to aid the diagnosis of different diseases and conditions. The appropriate

kind of medical image will vary based on the problem being solved. In [M. et al., 2017],

X-ray images were used to characterize bone structure using HOG as a way to distinguish

osteoporotic cases. In [Lu et al., 2018], Gabor filters were used to predict bone fracture

risk using Dual-Energy X-ray Absorptiometry (DXA, or DEXA), which is a medical image

type that determines Bone Mineral Density (BMD) by using two x-ray beams.

Other methods may use Optical Coherence Tomography (OCT), a non-invasive med-

ical imaging technique that uses light beams to generate 2-D and 3-D images based on

the reflection of these lights. In [Lingley-Papadopoulos et al., 2008], a texture analy-

sis was performed on OCT scans as a way to detect cancer in the urinary bladder. In

[Raupov et al., 2016], OCTs were studied as a way to recognize skin cancer using texture

analysis methods.

In [Zhang et al., 2008], Magnetic Resonance Imaging (MRI) was used as source of

information to discriminate between brain tissues and detect Multiple Sclerosis (MS)

lesions using texture classification methods. Early studies have shown that MRI was

sensitive in detecting abnormalities in patients with MS [Young et al., 1981].

In the context of diagnosing cancer in patients, the biopsy test is the most common

method used. In this method, a sample of the area is extracted from the patient and

it is analysed by the pathologist under a microscope. To aid in the process, studies like

26
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[Raupov et al., 2016] have studied Gabor filters as a way to recognize cervical cancer

using biopsy images. Computed Tomography (CT) scans have also been studied as a way

to diagnose cancer. In [Fan et al., 2018], CT scans were used as a base to sub-classify

bladder cancer using statistical approaches.

3.2 Studies on Lungs CT Scans

Computed Tomography is a very common method used on the diagnosis of different

conditions in different parts of the body. It consists of an X-ray source and a set of

detectors rotating around the patient. With this rotation, the X-ray beam passes through

the patient‘s body and is absorbed by the detectors, generating information of different

tissues at different angles. This information is processed and the images (scans) are

generated. Once it is a very common method, a lot of studies in Computer-aided Diagnosis

(CAD) have used this Medical Imaging as a source of information.

More specifically, CTs are very common on diagnosing patients with lung diseases or

conditions, because the process allows the lung tissues information to be better highlighted

as it generates information for a large amount of slices of the lungs [Pereyra et al., 2014].

In [Mattonen et al., 2014], CT scans were used with some statistical methods using GLCM

as a way to predict the recurrence of lung tumor by analysing the texture changes after

the patient goes through Stereotactic Ablative Radiotherapy (SABR).

Works like [Sørensen et al., 2008] have explored the usage of the Local Binary Pattern

(LBP) as a set features to classify texture in lungs CT scans. In [Song et al., 2012], they

combined LBP and HOG as features to recognize a set of different lesions in the lungs

using CTs.

Under the focus of a specific set of lung diseases, [Pereyra et al., 2014] has worked

with Diffuse Parenchymal Lung Diseases (DPLDs), which is a set of over 150 disorders

that are, mainly, characterized by the gradual scaring of lung tissues and frequently leads

to respiratory failure. It studied the capability of different characterization methods to

recognize these diseases in lungs CT scans.
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Methodology

This chapter presents how the methods described in Chapter 2 were used to characterize

the images. Some methods were used to generate a feature vector and some methods

are able to characterize the images using its own properties without the need to further

extract the features.

4.1 Statistical Methods

4.1.1 Haralick

As stated in Sub-section 2.1.1, the Haralick metrics are a set of features that describe

images using the Gray-Level Co-Occurrence Matrix. To characterize the image, the 14

features were used in the classification process [Pereyra et al., 2014].

Therefore, the feature vector extracted from the image is formed by the 14 Haralick

descriptors. The process was run over all the images on the dataset and the process

of classification was made using the k-Nearest Neighbors using the amount of nearest

neighbors as 5. The validation process was made using the Stratified K-Fold Validation

with 10 folds. The results presented on Chapter 5 are resultant of 100 executions.

4.1.2 Local Binary Pattern

For this method, the LBPP,R
riu2 operator was used, so the features would have no variation

with changes on rotation and luminance of the image using concept of Uniform Pattern

(see Sub-Section 2.1.2). To generate the feature vector, let P = (P1, P2, . . . , Pl) be a vector

of l values of P and R = (R1, R2, . . . , Rl) be a vector of l values of R. For each value

of Pk and Rk, a result image LBPPk,Rk
is generated and 2 features [Giakoumoglou, 2021]

are extracted: the energy and entropy. Let LBPPk,Rk
(x, y) be the pixel (x, y) of the result

image, the two features are given by

28
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Energy =
∑

i

∑

j

{LBPPk,Rk
(i, j)}2 (4.1)

Entropy = −
∑

i

∑

j

LBPPk,Rk
(i, j) log (LBPPk,Rk

(i, j)). (4.2)

In the experiments, the vectors P = (8, 16, 24) and R = (1, 2, 3) were

used [Ojala et al., 2002]. Since l = 3, this will result in a feature vector of length l · 2 = 6.

The feature vectors were generated for all the images and a k-Nearest Neighbors classi-

fication algorithm was executed using k = 5. For the validation, the Stratified 10-Fold

Validation was used. The results presented on Chapter 5 are resultant of 100 executions.

4.1.3 Histogram of Oriented Gradients

The method described in Sub-Section 2.1.3 was used with the cells size being 8 × 8

pixels and the block size being 3× 3 cells [Dalal and Triggs, 2005, Song et al., 2012]. To

normalize the histogram of the cells for each block, the method used the L2-norm. It

used 9 orientations to generate the histogram, so, the histograms for each cell has 9

bins [Giakoumoglou, 2021].

Using these parameters, the feature vector generated for images of size 64× 64 was of

length 2916. This vector was generated for each image in the dataset and the classification

process was performed using the k-Nearest Neighbor methods with parameter k = 5. The

validation was performed using the Stratified k-Fold Validation with a total of 10 folds.

The results presented on Chapter 5 are resultant of 100 executions.

4.2 Spectral Methods

4.2.1 Law’s Texture Energy Measure

For this method, as described in Sub-Section 2.2.1, a family of filters are passed across

the image and then measures can be extracted from the result images. Empirically,

the family of filters used have length l = 5 [Vince et al., 2000, Wu et al., 1992], and,

therefore, the family of filters is listed in Equation 2.13. With these filters, the feature

vector [Giakoumoglou, 2021] was generated by measuring the energy of the:

1. Result image from the LL filter;

2. Result image from the EE filter;

3. Result image from the SS filter;

4. Average of the result image from the LE filter and EL filter;
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5. Average of the result image from the ES filter and SE filter;

6. Average of the result image from the LS filter and SL filter;

Therefore, for each image, a feature vector of length 6 was generated. The classification

step was performed using the k-Nearest Neighbors with k = 5 and the validation was

performed using the Stratified k-Fold Validation methods with 10 folds. The results

presented on Chapter 5 are resultant of 100 executions.

4.2.2 Gabor

As stated in Sub-Section 2.2.2, the response to the Gabor filter is Gλ,θ(x, y) for a

given wavelength λ, frequency 1/λ and orientation θ. For the experiments, the val-

ues of frequency were 1/λ = (1/16, 1/18, 1/26, 1/32) and the values of orientation were

θ = (0, π/6, 2π/6, 3π/6, 4π/6, 5π/6) [Lu et al., 2018]. Therefore, the filters used can be

seen in Figure 2.2. All the possible combinations of these parameters gives a total of 24

response images Gλ,θ(x, y).

With these response images, the Gabor energy Eλ,θ(G) of the 24 images are taken using

the Equation 2.19. The feature vector is formed by these 24 Gabor energy values. The

feature vectors of all images are taken and a classification process is executed using the

k-Nearest Neighbors methods with k = 5. The validation is executed using the Stratified

k-Fold validation using 10 folds. The results presented on Chapter 5 are resultant of 100

executions.

4.2.3 Fourier Transform

For each image, the Fourier Transform was used to generate the frequency informa-

tion using the process stated in Sub-Section 2.2.3. To apply this information on

a texture characterization process, three sub-images were generated from the Fourier

transform: information in a vertical band around the origin, information in a hor-

izontal band around the origin and information in a circumference around the ori-

gin [Lingley-Papadopoulos et al., 2008]. This step can be seen on Figure 4.1.

Given the three sub-images, the energy was calculated for each one. The feature

vector of the input image is formed by these 3 features: the energy of different bands

of frequency of the Fourier Transform image. The classification was executed using the

k-Nearest Neighbors with k = 5 and the validation was executed using the Stratified

k-Fold Validation with 10 folds. The results presented on Chapter 5 are resultant of 100

executions.
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Figure 4.1: The process of generating the 3 sub-images from the Fourier Transform. From
top to bottom: horizontal band, vertical band and circumference band.

4.2.4 Wavelet Transform

Using the definitions of the Discrete Wavelet Transform (DWT) and Stationary Wavelet

Transform (SWT) stated in the Sub-Section 2.2.4, a method to describe texture

can be implemented. The amount of levels used for both DWT and SWT was

3 [Tsiaparas et al., 2011], so the image will be downsampled 3 times, for the DWT, and

the filters will be upsampled 3 times, for the SWT.

The wavelet used was the Wavelet Biorthogonal 3.3 (bior3.3 ), from the family of

Biorthogonal wavelets and presents symmetricity and is not orthonormal. Being biorthog-

onal means the wavelet transform associated can be inverted. This wavelet curve can be

seen on Figure 4.2.

To generate the feature vector, the mean and energy [Giakoumoglou, 2021] were ex-

tracted from each detail coefficients for each level for both DWT and SWT. Since there

are 3 levels of decomposition and 3 detail coefficient sub-images are generated for each

level, the feature vector formed by the mean and energy of these sub-images will have

length = 3 · 3 · 2 = 18. The feature vector was generated for each image on the dataset

and the classification was performed by a k-Nearest Neighbors algorithm with k = 5. For

the validation, the Stratified k-Fold Validation was executed with 10 folds. The results

presented on Chapter 5 are resultant of 100 executions.
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Figure 4.2: The Wavelet Biorthogonal 3.3 components. On the left, the wavelet function
ψ. On the right, the scaling function ϕ. Both decomposition and reconstruction versions
of the function are plotted.

4.2.5 Fractal Dimension Texture Analysis

As described in Sub-Section 2.2.5, a feature vector MF (see Equation 2.27) can be gener-

ated using the H parameter at different resolutions of the image I. The resolutions chosen

was the maximum possible [Wu et al., 1992], so, since the images have size 64 × 64, the

MF generated by the method is going to be MF = (H(6), H(5), H(4), H(3), H(2)) with

length=5. The feature vector was extracted from all the images and the classification

was executed using k-Nearest Neighbors with k = 5. The validation was performed using

the Stratified k-Fold Validation using 10 folds. The results presented on Chapter 5 are

resultant of 100 executions.

4.3 Graph Methods

The methods described in this section use concepts of Graph Theory to implement texture

classification process in images.

4.3.1 Shortest Paths

This method uses concept of shortest paths between nodes of a graph to generate the

feature vectors of the image [de Mesquita Sa et al., 2013]. It considers the shortest paths

along 4 directions of the image: 0◦, 45◦, 90◦ and 135◦. This means it calculates the

shortest paths among all the vertices and chooses the shortest ones along each orientation

to generate a representation. These 4 sets of shortest paths can be visualized in Figure

4.3.



Graph Methods 33

Figure 4.3: Example of the four sets of starting and ending vertices considered in the
calculus of the shortest paths. Source: [de Mesquita Sa et al., 2013]

Initially, the image I of sizeM×N is converted to a graph G = (V,E) structure where

each pixel (xi, yi) is a vertex vi ∈ V . The set of edges E is defined by the Chebyshev spatial

distance of the pixels E = {(vi, vj) ∈ V × V | max(|xi − xj|, |yi − yj|) = 1}. The weight

w(e) of a given edge e is given by w(e) = |I(xi, yi) − I(xj, yj)| + I(xi,yi)+I(xj ,yj)

2
, where

I(x, y) is the gray-level intensity of the pixel (x, y).

Now, the image is divided into non-overlapping boxes of size r×r, where r is a divisor

of the image. For each box, the four shortest paths (p0◦ , p45◦ , p90◦ , p135◦) are calculated

using the Dijkstra’s algorithm (see Section 2.4). Now, to represent the image, two vectors

are proposed: α⃗r = [µ0◦ , µ45◦ , µ90◦ , µ135◦ ] and β⃗r = [σ0◦ , σ45◦ , σ90◦ , σ135◦ ], where µd◦ and

σd◦ represent, respectively, the mean and standard deviation of the shortest path along

the direction d◦ through all the r × r boxes. These two vectors are concatenated to form

the feature vector ψ⃗r = [α⃗r, β⃗r]. This process is executed over different r×r sizes of boxes,
as it is possible to see in Figure 4.4.

Figure 4.4: Overview of the process of feature vector extraction, where rn is the size of
squares in which the image is divided into. Source: [de Mesquita Sa et al., 2013].
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Let the n boxes sizes chosen be r = (r1, . . . , rn), the final feature vector that charac-

terizes the original image is defined as the concatenation of all ψ⃗ri . Therefore the final

feature vector is φ⃗r = [ψ⃗r1 , . . . , ψ⃗rn ]. In the experiments, since the boxes sizes r need to

be divisor of the 64× 64 image, the chosen r were r = (4, 8, 16, 32). This gives a total of

32 features. This process was executed over each image and the classification algorithm

used was the k-Nearest Neighbor with k = 5. For the validation, it was used the Stratified

k-Fold Validation with 10 folds.

4.3.2 Diffusion in Networks

Proposed in [Gonçalves et al., 2016], this method uses concepts of diffusion and multiple

graphs to characterize images. The main steps can be seen on Figure 4.5.

Figure 4.5: Main steps of the proposed method: (a) image is mapped into a regular
directed network; (b) links are removed based on the pixel intensity difference; (c) activity
of each node is estimated by random walks; (d) histograms of activity are calculated to
describe the image. Source: [Gonçalves et al., 2016].

Initially, the image I of size M × N is converted to a graph G = (V,E) structure

where each pixel pi = (xi, yi) is a vertex vi ∈ V . The set of edges E is defined by the
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Euclidean distance between the pixels of the image. If the distance is within a certain

radius r, its weight is set as the difference of intensity, otherwise, the nodes corresponding

to the pixels are not connected:

evi,vj =

{
I(pi)− I(pj), if dist (pi, pj) ≤ r

NaN, otherwise
, (4.3)

where dist(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 and I(pi) is the intensity of the pixel in the

original image (Figure 4.5 (a)). To transform this network G in a directed network, all

the edges with negative weight evi,vj < 0 are discarded. Given the directed graph, a

function ϕ(t, N) is proposed to perform a limitation on the connections of the network

and, therefore, to present different texture information for different threshold t using

evi,vj =

{
evi,vj if 0 <evi,νj ≤ t

NaN, otherwise
. (4.4)

As t decreases, the network captures more fine details on the image because only pixels

with slight intensity difference are connected. For larger values of t, more differences on

intensities are considered and more global information is represented by the network

(Figure 4.5 (b)). Given the network generated by this process, the activity of each node

is extracted. For this, it is used the random walker probability, where the probability of

a walker in node vi go to another node vj is proportional to the weight of the edge that

connects these nodes:

p(vi, vj) =
evi,vj∑

vk∈V evi,vk
. (4.5)

The random walker takes W walks starting on each node and the activity α(vi) is the

amount of times the walker passed by the vi node. This generates an activity image for

each combination of radius r and threshold t (Figure 4.5 (c)). To generate the feature

vector for each activity image, an association with the in-degree kvi
in (See Section 2.4) of

each node is made to calculate the histogram hr,t(j) using

hr,t(j) =
∑

vi∈V

{
αr,t (vi), if kinvi = j

0, otherwise
, (4.6)

where αr,t (vi) is the activity of a node vi on the graph generated by radius r and threshold

t. The higher the in-degree of a node, higher the chance of it being visited. But it is not

always true because the activity uses a random walker based on the weight of the edges.

Therefore, this histogram can represent the textures properties of the image. The his-

tograms for each combination of radius r and threshold t are generated and concatenated

to form the feature vector φ that represents the image (Figure 4.5 (d)).

As said before, this is executed for a set of values of radius r and a set of values of
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threshold t. For the experiments, r = (
√
2) and t = (130, 190, 250) were used. This gives

a feature vector of length l = 1 · 3 · kinmax, where k
in

max is the maximum in-degree on

the images. Empirically, the value of kinmax was found to be 9. So, the feature vector for

each image φ has length 27. These feature vectors were used in a classification step using

the k-Nearest Neighbors algorithm using k = 5 and the validation was performed using

the Stratified k-Fold Validation with 10 folds.

4.4 Deep Learning Methods

4.4.1 Texture Convolutional Neural Network (T-CNN)

Proposed in [Andrearczyk and Whelan, 2016], this method uses a specific architecture of

Convolutional Neural Network (CNN) responsible for extracting textural information of

the input image. Its simple structure promotes good performance while maintaining a

low number of trainable parameters. The method is called Texture Convolutional Neu-

ral Network (T-CNN). Similar to regular CNN, it is composed of Convolutional Layers,

Pooling and Fully connected layers (see Section 2.4). However, the key difference is in the

step of vectorization of the feature maps to the connected layers. The pooling is chosen

in a way that each feature map is transformed into a single value. Therefore, after this

step, the output will already be a one dimensional vector.

The T-CNN were proposed as a family of Neural Networks where the difference be-

tween each variation is the amount of convolutional layers in the architecture. In the

experiment, the method was tested with five configurations T-CNN-1 to T-CNN-5. Each

one had 1 to 5 convolutional layers, respectively. In Figure 4.6, it is presented the T-

CNN-2 architecture.

Figure 4.6: T-CNN architecture using two convolution layers. Source:
[Andrearczyk and Whelan, 2016].

The architecture initiates with a convolution layer C1 with 96 kernels. It performs

the normalization and it passes the result through the ReLU activation function. Then it

goes through a max pooling operation at P1. After that, there is the second convolution
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layer C2 and an activation using the ReLU function. The next layer is the E2, where

the energy of the feature maps from C2 is extracted using an Average Pooling with pool

size equal to the feature map size to generate only one value as output. In Figure 4.6,

the size of the pool is 27× 27. This concept comes from the use of energy measure from

filters response in methods that has fixed filters. In the context of CNNs, these filters are

learned through the learning process of the network.

Since the output of E2 is a one dimensional vector, it can be easily connected to the

dense layers. E2 is followed by 3 fully connected layers: FC1 and FC2 as hidden layers

and FC3 as the output layer with the classification of the texture.

In [Andrearczyk and Whelan, 2016] the architecture with best overall performance

was T-CNN-3, so it was the one chosen to be used in the experiments. Its layers are the

same as T-CNN-2, with the addition of one extra convolution layer before the Energy

extraction layer. The network was trained from scratch over the dataset using the split

of the data in training, validation and testing set. It was used the Adam optimizer with

learning rate of 10−4.

4.4.2 Wavelet Convolutional Neural Networks

The method was proposed in [Fujieda et al., 2018] using concepts of Wavelet Transform

applied to a Convolutional Neural Network to perform a multiresolution analysis of im-

ages. The regular CNNs can be viewed as a limited form of multiresolution analysis, but

only by applying the concepts of decomposition of wavelet transformation (see Sub-Section

2.2.4) it presents a characteristic hierarchical decomposition.

To achieve this, [Fujieda et al., 2018] proposes a pair of filters kh,t and kl,t that are

high-pass and low-pass filters, respectively, at a given level t. On the context of Wavelet

Transform, kh,t is the wavelet function and kl,t is the scaling function. When compared to

regular CNNs that use filters kt learned iteratively through the dataset, the Wavelet CNN

presents better computational performance once the filters are differentiated between high-

pass and low-pass. The Wavelet function used in the experiments was the Haar wavelets,

but the model is not restricted. The architecture of the Wavelet CNN with 4 levels of

decomposition can be seen in Figure 4.7.

On the first level, the input image goes through the two filters kh,1 and kl,1. The

response of each filter is concatenated and goes through a regular convolution layer with

filter k1: firstly through 64 filters and then another 64 filter convolution with stride of 2

(so it reduces the size of the feature maps by 2). At the same time, the response of kl,1

goes trough the second level decomposition kh,2 and kl,2. The output of these filters a

concatenated and passed by a 64 filters convolution. This output and the output of the

convolution k1 are concatenated and forms the input of the second convolution layer k2,

that uses two convolution process with 128 filters and the second one with stride of 2 to
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Figure 4.7: Overview of wavelet CNN with 4-level decomposition of the input image.
Source: [Fujieda et al., 2018].

reduce the size of the feature maps. This process goes on until 4 levels of decomposition

is reached. The k4 output is then vectorized by an average pooling operation. The final

layers fc are composed by two fully connected layers with operations of normalization

and ReLU activation and an output layer that gives the final classification of the input

texture image. The network was trained from scratch over the dataset using the split of

the data in training, validation and testing set. It was used the Adam optimizer with

learning rate of 10−3.

4.5 Hybrids

In this section, methods that use knowledge from multiple areas are described. They are

called hybrid because their behavior and performance are dependent of multiple concepts

reported in Chapter 2.

4.5.1 PCA Network

The PCA Network (PCANet) was proposed in [Chan et al., 2015] and it uses concepts of

Principal Component Analysis (Section 2.3) over the training images to generate filters

that best describe images in a deep network architecture. An illustration showing the

main components of the network can be seen in Figure 4.8.

The image is passed on the first stage of PCA filters which generates L1 output images.

Then, each of these images are passed through the second stage of PCA filters, generating

L1 ·L2 output images. The next step is to binarize and convert the binary information to

decimal data. The final step generates an histogram that characterizes the input image.

A more detailed look on the architecture can be seen on Figure 4.9.
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Figure 4.8: Illustration of how the proposed PCANet extracts features from an image
through the three simplest processing components: PCA filters, binary hashing, and
histograms. Source: [Chan et al., 2015].

Figure 4.9: A detailed block diagram of the proposed (two-stage) PCANet. Source:
[Chan et al., 2015]

Let N be the amount of training images {Ii}Ni=1 of size m × n and at each stage the

2D filters are of size k1 × k2. Those filters are learned from the training images using

PCA concepts. For the first stage, a patch of size k1 × k2 is taken around each pixel of

the image and it is vectorized as xi,j ∈ Rk1·k2 where j is the j-th vectorized patch of the

image Ii. Then, each of these vectors are subtracted by the patch mean and generate

X̄i = [x̄i,1, x̄i,2, . . . x̄i,m̃ñ], where m̃ = m − [k1/2] and ñ = n − [k2/2]. This is executed

over all N training images, which gives X = [X̄1, X̄2, . . . , X̄N ] ∈ Rk1k2×Nm̄n̄. Let Li be

the amount of filters at stage i, the PCA will minimize the reconstruction error within a

family of orthonormal filters [Chan et al., 2015] with

min
V∈Rk1k2×L1

∥X−VVTX ∥2F , s.t. VTV = IL1 , (4.7)

where IL1 is the identity matrix of size L1×L1. Using the knowledge of PCA, the solution
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will be the L1 principal eigenvectors of XXT . Therefore, the L1 filters of the first stage

can be expressed as

W1
l
.
= matk1,k2(ql(XXT )) ∈ Rk1×k2 , l = 1, 2, . . . , L1, (4.8)

where ql(XXT ) is the l-th principal eigenvectors of XXT , matk1,k2(v) is an operation that

maps the vector v ∈ Rk1·k2 to a matrix W ∈ Rk1×k2 and Wi
l is the l-th filter in the i-th

stage.

The process is repeated for the second stage, except the filters are now calculated over

the L1 outputs of the first stage for each of the N training images. The filters of the

second stage can be expressed as

W2
ℓ
.
= mat k1,k2(qℓ(YYT )) ∈ Rk1×k2 , ℓ = 1, 2, . . . , L2, (4.9)

where Y is analogous to X and, therefore, is a matrix Y = [Y1,Y2, . . . ,YL1 ] ∈
Rk1k2×L1Nm̃ñ formed after the vectorization of patches around each pixel on the L1 images

of all N training images.

For each of the L1 images of the stage 1, L2 images are the output at stage 2. The

binarization is performed using the Heaviside function: If the value of the pixel is positive,

it is turned into 1; it is turned into 0 otherwise. Now, with this binarization, the L2 images

can be seen as only one image T l
i with each pixel being the decimal conversion of L2 bits.

After this step, for each input image Ii, there is L1 images T l
i , for l = 1, . . . , L1.

Now, each of the L1 images T l
i are partitioned into B blocks, and a histogram of 2L2

bins is calculated. The histograms of all the blocks of an image T l
i are concatenated into

a vector Bhist(T l
i ). With the concatenation of all L1 vectors Bhist(T l

i ), a feature vector

fi for the image Ii can be defined as

fi
.
= [Bhist(T 1

i ), · · ·,Bhist(T L1
i )]T ∈ R(2L2)L1B. (4.10)

For the experiments, the size of the filters of each stage was set as k1 = k2 = 5. The

amount of filters on each stage was chosen to be L1 = 8 and L2 = 8. The block B size used

to generate the histograms was set as 50 × 50. These parameters were used to generate

the feature vectors fi of length L1 · 2L2 = 2048 for each image in the training set. For the

classification step, the Support Vector Machine (SVM) was used with the Radial Basis

Function kernel. To validate the performance, the Stratified k-Fold Validation method

was used with 10 folds. The results presented on Chapter 5 are resultant of 15 executions.

4.5.2 Proposed Method

The method proposed in this work and in [Álvaro Albuquerque et al., 2022] ex-

pands the usage of Complex Networks and Graph Theory concepts presented in
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[Gonçalves et al., 2016] while combining with some classical statistical methods (Section

2.1). The overall steps of the method can be seen in Figure 4.10.

Figure 4.10: Classification of textural images using the Closeness Centrality metric and
statistical image texture descriptors. Source: [Álvaro Albuquerque et al., 2022].

The process is divided into 3 main steps: mapping images into networks, features

extraction and classification. To map the image into a network, the first step is to

model a grayscale image I into a network G = (V,E) based on [Gonçalves et al., 2016]

and [Couto et al., 2017], where V is the set of all the vertices and E is the set of all edges.

Each pixel pi = (xi, yi) (where x and y represent its spatial position) has an intensity

value associated I(pi) ∈ [0, 255]. The pixel pi is mapped into a vertex (or node) vi ∈ V .

Two vertices vi and vj are connected if the Euclidean distance d(pi, pj) =√
(xi − xj)2 − (yi − yj)2 is equal or less than a given radius r. For each graph edge

e ∈ E, a weight evi,vj , defined by the value of the pixels intensity difference, is assigned,

according Equation 4.11. Initially, this mapping is a regular weighted graph presenting

connected vertices in a neighborhood defined by the radius r.

evi,vj =




I(pi)− I(pj), if d(pi, pj) ≤ r

NaN (Not a Number), otherwise
(4.11)

In Equation 4.11, the non-existence of an edge is given by the Not a Number (NaN)

symbol. Thus, to transform the obtained network into a complex network G, we applied

a transformation ϕ(l, G), ϕ : G → G on the edges of the network to reveal the properties

of the original image texture, where G is a multiscale graph set. It consists of selecting an

edge according to the value of its weight evi,vj . Edges with weight less than a threshold l,

are selected.
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To obtain a directed graph, links with negative weights are discarded. In Equation 4.12

it is possible to see that edges with negative weights are excluded from the set of edges

E. Therefore, the direction of an edge e ∈ E in directed graph G is given by the pixel

with larger intensity values to pixels with lower intensity values.

evi,vj =

{
evi,vj, if 0 < evi,vj ≤ l

NaN, otherwise
(4.12)

The transformation ϕ(l, G) can be seen as a multiscale graph analysis. For each value

of l, the original graph is transformed into a l-scaled graph Gl ∈ G. In this way, small

values of l, provides detailed local information about image textures, while larger values

of l presents better global information, such as image edges. l is called scaled threshold.

To generate the features, the closeness of each l-scaled graphGl is taken using Equation

2.33. Let Dl be the matrix where each entry Dl(vi) is the closeness centrality metric of

the vertex vi ∈ V in a given graph Gl. Then, the average matrix D is taken as the average

of all Dl for all l ∈ L, where L = {l1, l2, . . . , lN} (Equation 4.13).

D =
1

N

∑

l∈L
Dl (4.13)

The creation of a feature vector using the closeness centrality metric consists of the

relation between the intensity values of the image I and the values of the matrix D

obtained by applying the centrality closeness measure over the graphs Gl ∈ G. The value
D(vi) is finally the average of all closeness values for all l-scaled graphs, for the vertex

vi ∈ V , and consequently, for the pixel pi. Letm be the amount of equally spaced intervals

in the intensity image range [0, 255], therefore [wk, zk] is the k-th interval into the range.

Then, the relation between the intensity values of the image I and the values of the matrix

D can be expressed by Swk,zk (Equation 4.14)

Swk,zk =
∑

vi∈Mk

D(vi) (4.14)

where Mk = {vi ∈ V |wk ≤ I(pi) < zk}.
The process of generating the HG can be seen on Figure 4.11. Some pixels with

lower intensity levels on the original image are highlighted in red and some pixels of

higher intensity level are highlighted in blue. The values of closeness centrality of the

correspondent pixels in the Closeness Centrality matrix D are summed based on the

intensity levels, resulting in Sw1,z1 for pixels with lower intensity and Swm,zm for pixels

with higher intensity.

Then, for a single image, the feature vector HG = {Sw1,z1 , Sw2,z2 , . . . , Swm,zm} can be

defined. The HE is formed by the 14 Haralick’s features (see Sub-Section 2.1.1) and by a

10 bin histogram of the LBP image result (see Sub-Section 2.1.2). The feature vector H
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Original Image CC Matrix

∑ ∑

Figure 4.11: HG generation.

Figure 4.12: Initial threshold l1 hyperparameter analysis. The hyperparameter l1 were
incremented by 5 until reach 50.

that characterize the image is the concatenation of HE and HG.

The parameters of the method are: the radius r used to connect the vertices; the

initial threshold l1, which is the first value of the set L; the increment amount li and the

amount of times the increment is used n, that will be used to generate the other values of

L. According to [Gonçalves et al., 2016], the main parameters to build the graph are the

radius r and the initial threshold l1. This occurs because the radius is the parameter that

defines the connection area of each vertex and the initial threshold limits the approach’s

analysis scale. Therefore, given the importance of these parameters, we ran experiments

to find the best values for them.

On Figure 4.12 we can see the algorithms performance as we increment l1. The values

of l1 = 15 and l1 = 35 stand out once they present better accuracy, recall and precision

when compared to other values. With l1 = 15 we reach accuracy of 83.46%, precision

of 83.61% and recall of 83.68% while with l1 = 35 the accuracy is 83.47%, precision is

83.63% and recall is 83.67%. Given these metrics, we decided to run the experiments

with l1 = 15, once l1 = 35 presents a peak along its neighborhood and can bring more

uncertainty to the algorithm.

On Figure 4.13 we can observe that the approach’s performance tends to decrease

as we increase the radius of the algorithm. Therefore, we used radius r = 2 to run the
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Figure 4.13: Radius r hyperparameter analysis. The hyperparameter r were analyzed in
the range of 2 to 8.

experiments once it presents the best metrics: accuracy of 85.48%, precision of 85.67%

and recall of 85.64%. We believe that the smaller the radius, the better is for the method

to detect variations in the images textures and, therefore, favoring the classification.

Given this analysis, the proposed approach was executed using the following param-

eters: an initial threshold, l1 = 15; threshold increment li = 40; amount of times the

threshold is incremented n = 5; and the radius defining the neighbourhood of vertex

vi, r = 2. The threshold increment is used to generate multiple scale networks. Larger

values of li allows a better exploration of the graph’s scales [Gonçalves et al., 2016]. All

these parameter values were chosen based on experiments ran with the objective to best

describe the computed tomography images of the DPLD.

To generate the vector HG for each image, 75 equally partitioned intervals were used

with the normalized range [0, 1]. Then, the 75 intervals were: [0,1/75), [1/75, 2/75), . . . ,

[74/75, 1]. These intervals will characterize the matrix D. With these parameters, the

length of HG is 75. The LBP operator was the LBPP,R
riu2 with P = 24 and R = 3 which,

with the extraction of the histogram of 10 bins and the 14 haralick descriptors, makes the

HE have length 24. Therefore, the feature vector H has length 99.

This feature vector was extracted from all the images in the dataset and then used in

the classification step with the k-Nearest Neighbors algorithm with k = 5. The results

were validated using the Stratified k-Fold Validation with 10 folds.
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Experimental Results and

Discussions

5.1 Dataset

The dataset used in the experiments presented in this document is composed of textural

images of computed tomographies of the lungs region in different patients. This data was

extracted from exams conducted in the Clinical Hospital of the Ribeirão Preto School of

Medicine – University of São Paulo (HCFMRP – USP). The initial database consisted of

246 High-Resolution Computed Tomographies (HRCTs) from 108 different exams selected

by a group of radiologists. These images were grouped based on their radiology report

and radiographic pattern, which generated categories of approximately 35 images. Only 6

of these categories were selected: honeycomb, ground glass, septal thickening, pulmonary

consolidation, emphysematous areas and healthy.

Then, those images were normalized to pixels of 8 bits and, to highlight the patterns,

a histogram equalization and centering was performed. With binary thresholding and

object selection, the Regions of Interest (ROI) were extracted. This process generated a

total of 3258 ROIs of size 64×64 partitioned into the six previously mentioned categories.

Table 5.1 shows the support of each class in the database. More details of the dataset

generation process can be seen in [Pereyra et al., 2014]. Examples of the ROIs of each

class can be seen in Figure 5.1.

5.2 Results

To evaluate the performance of each method presented in Chapter 4, the values of accu-

racy, precision and recall were extracted. Furthermore, the amount of features that the

method generates was also noted once it can impact the algorithm’s computational cost.

Given a dataset with elements of two possible classes: C and, its negative, C̃. The set

45
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Class Support

Healthy 590
Pulmonary Consolidation 451
Emphysematous Area 502
Septal Thickening 590
Honeycomb 530
Ground-glass Opacity 595

Total 3258

Table 5.1: Support of all the classes in the database.

of true positives (TP) is formed by the elements the algorithm correctly classified as C
and the set of false positives (FP) is formed by the elements the algorithm classified as C
but are C̃. The true negatives (TN) set is formed by the elements the algorithm correctly

classified as C̃ and the false negatives (FN) set is formed by the elements the algorithm

classified as C̃ but are actually from class C.
Accuracy scores the method in a more general point-of-view once it refers to how close

the algorithm is to the truth and is given by TP+TN
TP+TN+FP+FN

. Precision and recall are

commonly used to analyze classification algorithms once it measures the performance of

the method under the optics of the classes. Precision can be viewed as “the amount of

right guesses out of all the guesses of the algorithm for a given class”. Recall, however,

can be simplified as “the amount of individuals the algorithm was able to correctly classify

out of all individuals of the given class”. Mathematically, precision is given by TP
TP+FP

and recall is given by TP
TP+FN

.

On Table 5.2 it is possible to see the results for the statistical methods of Section

4.1. Haralick’s method was capable of achieving the highest accuracy, recall and precision

among the methods of this context with, respectively, 79.32%, 79.63% and 79.65%. LBP

came in second with accuracy of 54.16%, recall of 54.88% and precision of 55.55% and

HOG came in third with the lowest score of 23.70%, 22.43% and 31.07% for accuracy,

precision and recall. It is important to notice the considerate difference of the Haralick’s

method when comparing the amount of feature of each method. While Haralick has the

best performance with a low amount of 14 features, the HOG method generates 2916

features with a very low performance. Therefore, for the context of the purely statistical

methods analysed in this work, the Haralick method presents better results for the dataset

used.

For the methods that use spectral information to classify images described in Section

4.2, the results are presented in Table 5.3. The method that had the highest score was

the Stationary Wavelet Transform (SWT) with accuracy of 73.38%, recall of 73.98% and

precision of 73.86%. The Law’s Texture Energy Measure came in second with accuracy,

recall and precision of, respectively, 58.87%, 59.77% and 59.90%. The Discrete Wavelet
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(a) Healthy Lung

(b) Pulmonary Consolidation

(c) Emphysematous Area

(d) Septal Thickening

(e) Honeycomb

(f) Ground-glass Opacity

Figure 5.1: Regions of Interest presenting texture patterns of DPLDs in high-resolution
CT images (Adapted from [Pereyra et al., 2014]).

Transform is in third place with accuracy, recall and precision of, respectively, 52.21%,

52.70% and 52.26%. The Fractal Dimension came in fourth, followed by the Fourier Trans-
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Method Features Acc. Rec. Prec.

LBP (sub-section 4.1.2) 6 54.16% 54.88% 55.55%
Haralick (sub-section 4.1.1) 14 79.32% 79.63% 79.65%
HOG (sub-section 4.1.3) 2916 23.70% 22.43% 31.07%

Acc=Accuracy; Rec=Recall; Prec=Precision.

Table 5.2: Accuracy, Recall and Precision for Statistical Methods (Section 4.1) analysed.

Method Features Acc. Rec. Prec.

Law’s (sub-section 4.2.1) 6 58.87% 59.77% 59.90%
Gabor (sub-section 4.2.2) 24 38.03% 38.33% 38.72%
Fourier (sub-section 4.2.3) 3 47.87% 48.37% 49.47%
DWT (sub-section 4.2.4) 18 52.21% 52.70% 52.26%
SWT (sub-section 4.2.4) 18 73.38% 73.98% 73.86%
Fractal Dimension (sub-section 4.2.5) 5 49.80% 50.36% 50.90%

Acc=Accuracy; Rec=Recall; Prec=Precision.

Table 5.3: Accuracy, Recall and Precision for Spectral Methods (Section 4.2) analysed.

form and then the Gabor Filters. The amount of features were, overall, pretty low. The

difference in the performance of the methods DWT and SWT may be due to the transla-

tion invariance the SWT variation provides to the Wavelet Transform method. Therefore,

among the spectral methods analysed, the Stationary Wavelet Transform presented the

best performance while keeping the amount of features in a low amount of 18.

In the context of the methods that use graph theory to classify textures described in

Section 4.3, the results can be seen on Table 5.4. It is possible to notice that the Diffusion

in Networks method had the better results with accuracy, recall and precision of 77.00%,

77.26% and 77.51% when compared to the Shortest Paths method with 70.55%, 71.03%

and 71.07%. The amount of features both method generates are very close: Diffusion in

Networks generates 27 features and Shortest Paths method generates 32 features. With

this, it is possible to notice that the Diffusion in Networks method, which made use of the

network’s diffusion and the amount of activity of the nodes based on a Random Walker,

was capable of better describing the textures in the dataset used.

When comparing the methods that use Deep Learning to classify textures referenced in

Section 4.4, the results can be seen on Table 5.5. The T-CNN-3 was capable of achieving

Method Features Acc. Rec. Prec.

Shortest Paths (sub-section 4.3.1) 32 70.55% 71.03% 71.07%
Diffusion in Networks (sub-section 4.3.2) 27 77.00% 77.26% 77.51%

Acc=Accuracy; Rec=Recall; Prec=Precision.

Table 5.4: Accuracy, Recall and Precision for Graph Methods (Section 4.3) analysed.



Results 49

Method Acc. Rec. Prec.

T-CNN-3 (sub-section 4.4.1) 81.37% 80.26% 82.24%
WaveletCNN (sub-section 4.4.2) 68.75% 61.43% 73.91%

Acc=Accuracy; Rec=Recall; Prec=Precision.

Table 5.5: Accuracy, Recall and Precision for Deep Learning Methods (Section 4.4) anal-
ysed.

Method Features Acc. Rec. Prec.

PCANet (sub-section 4.5.1) 2048 81.35% 80.96% 82.33%
Proposed Method (sub-section 4.5.2) 99 85.45% 85.62% 85.63%

Acc=Accuracy; Rec=Recall; Prec=Precision.

Table 5.6: Accuracy, Recall and Precision for Hybrid Methods (Section 4.5) analysed.

81.37%, 80.26% and 82.24% of accuracy, recall and precision, respectively. This was

superior to the WaveletCNN that achieved 68.75%, 61.43% and 73.91% of accuracy, recall

and precision.

On Table 5.6 the results for the Hybrid methods described in section 4.5 are displayed.

The PCANet method got accuracy of 81.35%, recall of 80.96% and precision of 82.33%

with a total of 2048 features. A better performance was noted on this work’s proposed

method. It presented an accuracy of 85.45%, recall of 85.62% and precision of 85.63%

while keeping the amount of features considerably low with only 99 features. When

compared to methods of other contexts of this document, it is possible to notice that the

Hybrid methods presented an overall better performance. This result shows that utilizing

concepts from diverse fields and extracting image information using various methods can

lead to improved performance in the texture classification field.

With a more detailed examination, we can analyse the proposed method’s behavior

by comparing different combinations of the final vector features. If we take the combined

vector and evaluate accuracy of the three descriptors individually, we see that Local Bi-

nary Pattern gets 51.01%, Haralick gets 79.32% and the proposed Closeness method alone

(HG) performs better with 80.34%. Pairing up the features we get that Closeness + LBP

and Closeness + Haralick perform similarly with accuracy of 83.74% and 83.26%, respec-

tively, while LBP + Haralick (HE) underperforms with accuracy of 80.24%. However, if

we analyse the algorithm with the feature vector combined of the three descriptors, we

get an accuracy of 85.45%. That’s an increase of more than 1.7% in the classification

performance. These results can be seen on Table 5.7.

On Figure 5.2 the performance of all the methods can be seen. The Proposed method

came in first, followed by the PCANet, which are the Hybrid ones. Tied in third place

were the T-CNN-3 and the Haralick and, in fourth, the Diffusion in Networks method. It

is cool to notice that Haralick is a very classic and old method but can still compete with
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Variations Features Acc. Rec. Prec.

Closeness 75 80.34% 80.61% 81.14%
LBP 10 51.01% 51.48% 51.56%
Haralick 14 79.32% 79.63% 79.65%
LBP + Haralick 24 80.24% 80.51% 80.41%
Closeness + LBP 85 83.74% 83.93% 84.15%
Closeness + Haralick 89 83.26% 83.44% 83.72%
Proposed Method 99 85.45% 85.62% 85.63%

Acc=Accuracy; Rec=Recall; Prec=Precision.

Table 5.7: Combined feature vector variations metrics.

some state-of-the-art methods that use deep learning or graph theory.

Figure 5.2: Bar plot with the accuracy, recall and precision of the methods analysed: LBP
(sub-section 4.1.2), Haralick (sub-section 4.1.1), Gabor (sub-section 4.2.2), Law’s (sub-
section 4.2.1), Fourier (sub-section 4.2.3), DWT and SWT (sub-section 4.2.4), FD - Fractal
Dimension (sub-section 4.2.5), SP - Shortest Paths (sub-section 4.3.1), DN - Diffusion
in Networks (sub-section 4.3.2), T-CNN-3 (sub-section 4.4.1), WaveletCNN (sub-section
4.4.2), PCANet (sub-section 4.5.1), Proposed Method (sub-section 4.5.2).

When analysing the performance of each method for every class individually, the

Table 5.8 can be formed. For each class, the precision and recall of each method were

measured. The highest results for each class were styled in bold. The proposed method

presented great performance on every class with best result for both precision and recall

for EA and GGO, best precision for healthy and ST and best recall for PC and HC.

PCANet presented best precision for PC and best recall for ST. SWT presented best

precision for HC.

Furthermore, it is important to analyse the method’s performance on the PC and

GGO classes once they are standard features of COVID-19 patients [He et al., 2020].

The highest scores on these classes belongs to the Proposed method with 92.39% and

88.98% for precision and recall of GGO, and 86.54% and 89.56% of precision and recall
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on PC. Its performance on the Healthy class is also great with precision and recall of

88.35% and 86.54%, respectively.
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Table 5.8: Precision and Recall for all analysed methods for each class in the dataset: PC
is Pulmonary Consolidation, EA is Emphysematous Area, ST is Septal Thickening, HC
is Honeycomb and GGO is Ground-glass opacity. Classes with (*) are classes presented
by COVID-19 patients.
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Conclusion and Future Works

In this work, an analysis of various methods used to characterize images was performed

over a dataset of regions of interest of HRCT scans of the lungs and, with this study, a new

approach that presents better performance on performing classification on the dataset

is proposed. The dataset is composed of 6 classes: healthy, pulmonary consolidation,

emphysematous area, septal thickening, honeycomb and ground-glass opacity. Each of

these classes are textural patterns presented by some Diffuse Parenchymal Lung Diseases

(DPLDs). This family of diseases are very difficult to diagnose because they can present

visual similarities to each other. The objective of this work is to explore the capability of

the methods on recognizing these patterns and to suggest a new approach that enhances

the outcomes in addressing this issue.

The proposed method combines graph-based and statistical texture descriptors (Har-

alick and LBP) to classify the images into the 6 mentioned classes. The original image

is mapped into directed complex networks. Each pixel was considered as a vertex of the

network connecting vertices within a given radius. The closeness centrality metric is ex-

tracted from multiple scaled networks, and a vector of texture features is formed from

the sum of the closeness values within a specific pixel intensity interval. The final feature

vector is composed of the vector generated by this process, the 14 haralick features and a

histogram of the resultant image from the LBP operator.

After the experiments, it is possible to notice that the Proposed method had the

best overall results on classifying DPLDs using this dataset. Followed by the PCANet

– a network architecture method that uses concepts of Principal Component Analysis to

generate filter for the images – and, T-CNN-3 – a member of a family of Convolution

Neural Networks for Texture Classification.

Another important point is to analyze the method’s metrics for each class. The pro-

posed method presented the highest scores for most of the classes. Furthermore, it is pos-

sible to analyse the method’s performance as an aid on the problem of diagnosing patients

with COVID-19, once its patients present the pulmonary consolidation and ground-glass

opacity. The proposed approach presented a great performance on these classes.

53
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Further studies on the method can be performed to improve its performance on this

application. Given that this approach combines various methods and concepts, there is

room for future research to experiment with alternative combinations in order to enhance

effectiveness. In addition to the methods outlined in this study, other works have explored

the field of Information Theory concerning the classification of textures. The next steps

include the investigation of various domains to construct an efficient texture classification

method, leveraging descriptors that can accurately distinguish between different patterns.
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