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Davy de Medeiros Baia Prof. Ph.D., UFAL
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Resumo

No cenário atual do aumento progressivo da adoção de ferramentas digitais pela sociedade,
softwares de todos os tipos e tamanhos enfrentam constantemente ameaças à sua se-
gurança. No contexto da segurança digital, uma vulnerabilidade é definida como uma
fraqueza encontrada em componentes de software e hardware que, quando explorada, re-
sulta em um impacto negativo na confidencialidade, integridade ou disponibilidade do
serviço. O processo de mitigação das vulnerabilidades de segurança presentes em soft-
wares normalmente envolve alterações de código. Dessa forma, é necessário identificar
o trecho de código que introduz uma vulnerabilidade para que seja posśıvel realizar a
implementação da correção. Este trabalho apresenta uma metodologia de identificação e
extração de códigos vulneráveis em projetos de softwares open-source e seus respectivos
patches. Para isso, é apresentada uma ferramenta que identifica as vulnerabilidades de
software publicadas e extrai, de forma automática, o código associado. O dataset con-
strúıdo reúne vulnerabilidades de software e seus patches presentes em 3,587 projetos
desenvolvidos em 58 linguagens de programação. Além disso, foram realizadas análises
com o intuito de verificar a incidência das vulnerabilidades e as caracteŕısticas dos fixes
desenvolvidos nas principais linguagens do mercado.

Palavras-chave: Segurança da informação; Ameaças; Vulnerabilidades; Soft-
ware de código aberto.
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Abstract

In the current scenario of progressive increase in the adoption of digital tools by society,
software of all types and sizes constantly faces threats to its security. In the context
of digital security, a vulnerability is defined as a weakness found in software and hard-
ware components that, when exploited, negatively impact the service’s confidentiality,
integrity, or availability. The process of mitigating security vulnerabilities present in soft-
ware typically involves code changes. Therefore, it is necessary to identify the snippet
of code that introduces a vulnerability to implement the correction. This work presents
a methodology for identifying and extracting vulnerable codes in open-source software
projects and their patches. For this purpose, a tool is presented that identifies published
software vulnerabilities and automatically extracts the associated code. The constructed
dataset combines software vulnerabilities and their fixes in 3,587 projects developed in 58
programming languages. Furthermore, analyses were carried out to verify the incidence
of vulnerabilities and the characteristics of fixes developed in the main languages on the
market.

Keywords: Information security; Threats; Vulnerabilities; Open-source soft-
ware.
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Chapter 1

Introduction

In today’s constantly changing digital landscape, software systems of all sizes face on-
going security threats. A software vulnerability is a security flaw, glitch, or weakness
found in software code that could be exploited by an attacker [Dempsey et al., 2020] to
gain unauthorized access or cause harm to a system. These vulnerabilities can occur due
to a range of issues, including but not limited to coding errors, inadequate security con-
trols, software complexity, or the use of outdated or compromised third-party components
[Luo et al., 2020].

To ensure software reliability and data security, it is critical to detect and counter
these vulnerabilities consistently. For example, a cross-site scripting (XSS) or SQL
injection vulnerability in a Web application requires an urgent remediation strategy
[Erbel and Kopniak, 2018]. These two software vulnerabilities are widely known and eas-
ily exploited by malicious users seeking unauthorized access and compromise of sensitive
data. However, software vulnerabilities that require administrator-level access or are re-
stricted to local networks are typically a lower priority because their exploitation potential
is limited to a smaller subset of individuals.

These vulnerabilities are generally registered in a repository. One of these repositories
is The National Vulnerability Database (NVD). NVD is a repository of vulnerability
management data maintained by the United States Government’s National Institute of
Standards and Technology (NIST). It uses the Security Content Automation Protocol
(SCAP) to represent data in a standards-based format. The NVD’s primary goal is to
automate vulnerability management, security measurement, and compliance. To achieve
this objective, the NVD maintains databases of security checklist references, security-
related software flaws, misconfigurations, product names, and impact metrics.

Given the scenario of various programming languages and their particularities, the
study of vulnerabilities in different programming languages is critical in digital security.
Each programming language has its own resources and different application areas, which
results in different types of vulnerabilities that can be exploited. Languages aimed at web
development, such as PHP and JavaScript, are more susceptible to cross-site scripting
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(XSS) or code injection attacks, while languages such as C and C++, frequently used
in operating systems and embedded software, are more vulnerable to memory manage-
ment failures. Understanding these differences is crucial to developing more effective and
personalized solutions for each context and language. Furthermore, the in-depth study
of these vulnerabilities helps in the creation of more advanced detection and correction
tools, contributing to the development of secure applications.

Several previous works have proposed the creation of datasets that search for vulnera-
bilities associated with code snippets. In [Bhandari et al., 2021], the authors proposed a
dataset of vulnerabilities collected from NVD without performing any temporal analysis
or categorization by language or group of vulnerabilities. In [Fan et al., 2020], the pre-
sented dataset contains only vulnerabilities found in applications in C/C++ languages.
In [Challande et al., 2022], the authors extracted and analyzed vulnerabilities from one
project: the Android Open Source Project (AOSP).

In the software vulnerability life cycle context, previous work has been done to an-
alyze the evolution of different vulnerabilities to your discovery, patching, and exploita-
tion [Joh and Malaiya, 2017, Le et al., 2021, Lin et al., 2023, Shahzad et al., 2012]. In
[Shahzad et al., 2012], there was a more extensive and in-depth analysis of the entire
lifecycle of a software vulnerability, from the moment of its discovery to its publication,
patching, and exploitation. However, this study only covers vulnerabilities published
up to 2011, and the data sources used for the proposed analyses are no longer publicly
available, which prevents an analysis of this work with more up-to-date data.

The objectives of this work are to propose a new large dataset that presents soft-
ware vulnerabilities and their respective fix commits found in open-source projects in
different programming languages and to perform initial analyses on the collected data to
understand how these patches differ between programming languages and the different
categories of vulnerabilities assessed. For that, a tool was developed responsible for col-
lecting information about vulnerabilities published in the NVD and in various open source
code repositories. The extracted data was pre-processed and filtered, and the result served
as the basis for building the proposed dataset.

Aiming to validate the constructed dataset, the following research questions were
defined to be answered using the data obtained: RQ1 - How does the incidence of
reported software vulnerability compare for different programming languages?
And RQ2 - What are the characteristics of vulnerability fixes? Both research
questions are crucial to understanding the nature of vulnerabilities and their fixes in the
main programming languages on the market.

In total, 11,558 vulnerabilities were collected in 3,587 projects written in 58 differ-
ent programming languages with their respective vulnerable code snippets and 11,332
commits containing the fix for the vulnerabilities. By categorizing these vulnerabilities
into groups and examining their evolution, this work offers the following insights: PHP
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language exhibited a high prevalence of vulnerabilities typically associated with web appli-
cations and networked environments. In contrast, languages such as C and C++ present
a high percentage of vulnerabilities related to memory and resource management. Vul-
nerabilities in the C language have fix commits of varying sizes, while languages such as
Ruby or TypeScript have smaller and simpler fixes. Over the years, it was also possible
to identify an increase in the average severity of reported and fixed vulnerabilities.

To contribute to the scientific community and provide data that can be used for future
research in the area of information security - which includes new analyzes of the data and
use as a basis for creating Large Language Models (LLMs) for detecting and predicting
software vulnerabilities in multiple languages, the dataset created and the code developed
for the data collection, processing and analysis tools were made publicly available.

1.1 Objectives

The main objective of this work is to present a large dataset that contains code snippets
that present software vulnerabilities and their corresponding fix commits across multiple
programming languages. To achieve this, the following specific objectives were proposed:

• Analyze related work to identify existing data sources on reported vulnerabilities;

• Develop a tool that collects and catalogs published software vulnerabilities;

• Develop a tool that extracts code and data associated with related projects;

• Analyze the characteristics of the data obtained.

1.2 Structure

This work has been divided into 5 chapters to describe the steps followed during the theo-
retical foundation, tool development, dataset assembly, and analysis. Chapter 2 presents
some concepts in the computer security field that support this work and the current state
of the literature. Chapter 3 describes the tool design and development process, including
the technologies used during development. Chapter 4 presents the dataset obtained and
some analysis of the characteristics presented by the fixes made in the main programming
languages on the market. Chapter 5 contains the final conclusions of this work1.

1All the algorithms used in this work can be found at https://github.com/kevinwsbr/vulnfixes



Chapter 2

Background

This chapter presents the main concepts related to information security that serve as a
basis for this work and discusses some related work.

2.1 Information Security

According to the ABNT NBR ISO/IEC 17799:2005 standard, information is an essential
asset to a company’s business and, therefore, needs to be adequately protected. This is
especially important in the business environment, which is increasingly interconnected.
As a result of this incredible increase in interconnectivity, information is now exposed
to an increasing number and a wide variety of threats and vulnerabilities. Information
can exist in different forms. It can be printed or written on paper, stored electronically,
transmitted by mail or electronic means, presented on film, or spoken in conversations.
Regardless of the form presented or the means through which information is shared or
stored, it is recommended that it always be adequately protected.

In its introductory section, the ABNT NBR ISO/IEC 17799:2005 standard defines
information security as “the protection of information from various types of threats to
ensure business continuity, minimize business risk, maximize return on investments and
business opportunities.” [Sêmola, 2013] defines information security as ”an area of knowl-
edge aimed at protecting information and associated assets against unavailability, undue
changes, and unauthorized access”.

Therefore, when both definitions converge, information security can be defined as
the strategies to protect data and information systems from unauthorized access, use,
disclosure, interruptions, modifications, or destruction. In this sense, the main objective
of information security is to protect information in aspects related to its confidentiality,
integrity, and availability.

The CIA triad stands for confidentiality, integrity, and availability and is a founda-
tional model for framing information security policies within organizations. Sometimes
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termed the AIC triad to distinguish it from the Central Intelligence Agency, this model
emphasizes three core cybersecurity principles.

Figure 2.1: Information security attributes: confidentiality, integrity, and availability.

Dividing these critical concepts into distinct focus areas helps security teams identify
specific strategies for each. According to [Sêmola, 2013], these concepts are defined as
follows:

2.1.1 Confidentiality

Confidentiality is about ensuring that data remains private. This involves controlling
access to prevent unauthorized data sharing, both intentional and accidental. It is es-
sential to restrict access to sensitive resources and grant the necessary privileges to the
right people. Protecting confidentiality involves neutralizing direct attacks such as man-
in-the-middle (MITM) attacks and accidental access resulting from human error or weak
security. Access control policies, encryption, and multi-factor authentication (MFA) are
vital to ensuring confidentiality.

2.1.2 Integrity

Integrity is about ensuring that data is reliable and authentic. Integrity violations, often
deliberate, can involve the bypass of security systems or accidental errors. Protecting
integrity involves using techniques such as hashing, encryption, digital certificates, and
non-repudiation measures, ensuring that data has not been compromised.

2.1.3 Availability

Availability is about ensuring that data and systems are accessible when necessary. Sys-
tems, networks, and applications must function correctly. Availability challenges can
arise due to natural disasters, power outages, or cyber-attacks like DoS or ransomware.
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Maintaining availability involves using redundant systems, regular software updates, and
comprehensive disaster recovery plans.

2.2 Related concepts

Understanding information security beyond the basic concepts already presented also
requires understanding secondary concepts related to data protection, such as asset, vul-
nerability, threats, attacks, and risk. These concepts will be presented in this section.

2.2.1 Asset

An asset is any value element to an organization, be it a human or technological resource.
[Sêmola, 2013] defines an asset as every element that makes up the processes that manip-
ulate and process information, including the information itself, the medium in which it is
stored and the equipment in which it is handled, transported and discarded.

2.2.2 Vulnerability

Vulnerability is the weakness in an information system, system security procedures,
internal controls, or implementation that could be exploited by a threat source
[Paulsen and Byers, 2019]. According to [Sêmola, 2013], vulnerabilities are weaknesses
present in or associated with assets that manipulate and/or process information that,
when exploited by threats, allow a security incident to occur, negatively affecting one
or more information security principles. Vulnerabilities are flaws that do not cause in-
cidents, as they are passive elements that depend on an agent to exploit them, making
them threats to the organization’s security.

Figure 2.2: The asset, threat, and vulnerability model for information risk.
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2.2.3 Threat

A threat can be defined as any event that exploits vulnerabilities and attributes them as
the potential cause of an unwanted incident that could damage a system or organization.
According to [Cawthra et al., 2020], a threat is any circumstance or event with the poten-
tial to adversely impact organizational operations. According to [Sêmola, 2013], threats
are agents or conditions that cause incidents that compromise information and its assets
through the exploitation of vulnerabilities, causing losses of confidentiality, integrity, and
availability and, consequently, causing impacts on a company’s business. Threats can be
divided into three groups:

• Natural: these are those resulting from natural phenomena, such as natural fires,
floods, and earthquakes, among others.

• Involuntary: unconscious, almost always caused by lack of knowledge, such as
accidents, errors, lack of energy, among others.

• Voluntary: purposeful, caused by human agents, such as hackers, invaders, spies,
and thieves.

2.2.4 Attack

According to [Coelho et al., 2014], an attack is defined as “[...]any action that com-
promises the security of an organization” and “[...]a deliberate act of attempting to
bypass security controls with the objective of exploiting vulnerabilities.” According to
[Coelho et al., 2014], there are four attack models:

• Interruption: an interruption attack occurs when an asset is destroyed or becomes
unavailable (or unusable), characterizing an attack against availability.

• Interception: an interception attack occurs when an asset is accessed by an unau-
thorized party (person, program, or computer), characterizing an attack against
confidentiality.

• Modification: a modification attack occurs when an asset is accessed by an unau-
thorized party (person, program, or computer) and further altered, characterizing
an attack against integrity.

• Fabrication: a fabrication attack occurs when an unauthorized party (person,
program, or computer) inserts counterfeit objects into an asset, characterizing an
attack against authenticity.

[Coelho et al., 2014] also defines two types of attack, passive and active:
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• Passive: the passive attack is based on listening and monitoring transmissions,
with the aim of obtaining information that is being transmitted. Eavesdropping on
a telephone conversation is an example of this category. Attacks in this category
are difficult to detect because they do not involve data changes; however, they can
be prevented with the use of encryption.

• Active: active attacks involve modifying data, creating counterfeit objects or denial
of service, and have properties opposite to those of passive attacks. These attacks
are difficult to prevent due to the need for complete protection of all communication
and processing facilities at all times. Therefore, it is possible to detect them and
apply measures to recover the losses caused.

2.2.5 Risk

According to the ABNT NBR ISO/IEC 27005:2011 standard, risk in the context of infor-
mation security is defined as the possibility of a given threat exploiting vulnerabilities in
an asset or set of assets, causing negative impacts on the organizatioIn general, the risk
to an organization is the intersection of:

• The vulnerabilities and threats to the organization;

• The likelihood that the vulnerability and threat event will be realized;

• The impact to the organization should the event be realized.

2.3 Evaluation metrics

This section describes in detail which metrics were considered to evaluate the source codes
obtained.

2.3.1 Complexity

Complexity metrics are used to determine how complex a piece of software is. The most
common form of this metric is the Cyclomatic Complexity [McCabe, 1976]. Cyclomatic
Complexity measures the number of linearly independent paths through a program’s
source code. This is done by analyzing its control flow graph. Generally, higher Com-
plexity suggests a code that is more difficult to understand and maintain.

2.3.2 Number of Lines of Code (NLOC)

NLOC refers to the count of lines in a computer program that are not comments or
blank lines, essentially representing the lines that contribute to the actual codebase. It’s
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a simple measure of software size and is used to assess the amount of code in a software
project.

2.3.3 Token Count

The token count is a measure of the number of individual pieces of syntax in the source
code. Tokens are the smallest elements of a program, such as keywords, operators, identi-
fiers, and symbols. Counting tokens is a way to measure the size and Complexity of code,
but in a way that is more detailed than simply counting lines of code.

2.3.4 Delta Maintainability Model (DMM)

The Delta Maintainability Model (DMM) is an innovative approach to evaluating the
maintainability of code changes in a fine-grained manner. The DMM measures the main-
tainability of a code change as the ratio between low-risk code and the overall code
modified. The DMM identifies code riskiness by reusing software metrics and risk pro-
files of the SIG Maintainability Model (SIG-MM) while applying new aggregations and
scoring for software metric deltas at the level of fine-grained code changes like commits
or pull-requests instead of aggregating at the system level [di Biase et al., 2019].

The core concept of DMM is to calculate the maintainability proportion of code
changes (additions or removals of lines of code, LOC) based on the risk profiles of the units
and modules affected by these changes. It uses five key code properties: Duplication, Unit
Size, Unit Complexity, Unit Interfacing, and Module Coupling, each with defined low-risk
criteria. DMM measures and classifies code changes into each property’s risk profile (low,
medium, high, very high). In this work, the following DMM metrics were considered:

DMM Unit Size: The Unit Size metric refers to the size of the source code units,
determined by the number of lines of code (NLOC), excluding lines of only whitespace
or comments. A unit with 15 LOC or less is considered low-risk. This metric is cru-
cial because smaller, more concise units of code are generally easier to understand and
maintain.

DMM Unit Complexity: The Unit Complexity metric assesses the complexity
within the smallest executable parts of the source code, such as methods or functions.
Complexity is gauged using McCabe’s cyclomatic complexity. A unit with a McCabe com-
plexity of 5 or less is deemed low-risk. This metric is significant as it helps to understand
the intricacy of code changes and their impact on maintainability.

DMM Unit Interfacing: The Unit Interfacing metric in DMM is about the size
of the interfaces of the units in terms of the number of interface parameter declarations.
Units with at most two parameters are categorized as low-risk, indicating that simpler
interfaces typically lead to better maintainability. This aspect is crucial for evaluating
how changes in the interfaces of code units affect the overall maintainability.
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2.4 Related works

Several previous works have proposed the creation of datasets that search for vulnera-
bilities associated with code snippets. In [Bhandari et al., 2021], the authors proposed a
dataset covering 5,365 CVE records for 1,754 open-source projects that were addressed
in a total of 5,495 vulnerability fixing commits without performing any temporal analysis
or categorization by language or group of vulnerabilities. In [Fan et al., 2020], the pre-
sented dataset contains only vulnerabilities found in applications in C/C++ languages.
In [Challande et al., 2022], the authors extracted and analyzed vulnerabilities from one
project: the Android Open Source Project (AOSP). In these three works, the number of
vulnerabilities collected, languages analyzed, and projects cataloged is lower than that of
the dataset presented in this work.

In [Pianco et al., 2016], the authors explore the impact of the change history of func-
tions on the existence of vulnerabilities in software. By analyzing over 95,000 functions
from the Mozilla and Linux Kernel projects, the study investigates how the frequency of
function changes can indicate their vulnerability to security threats. [Alves et al., 2016a]
evaluates various machine learning techniques for predicting vulnerabilities in software
using a comprehensive dataset encompassing 2,186 vulnerabilities from five open-source
projects. It reveals that while specific techniques can predict nearly all vulnerabili-
ties in the dataset, they do so with low precision. Together, [Pianco et al., 2016] and
[Alves et al., 2016a] bring vulnerabilities from just five projects, a considerably smaller
number than proposed in the dataset presented in this work.

In [Alves et al., 2016b], the authors investigate the relationship between software met-
rics and security vulnerabilities. Using a dataset built from 2,875 security patches across
five widely-used projects, the study investigates whether software metrics can reflect the
characteristics leading to vulnerabilities. The analysis shows that while software metrics
can distinguish between vulnerable and non-vulnerable functions, finding strong correla-
tions between these metrics and the number of vulnerabilities proved challenging. As in
the [Alves et al., 2016a], this work catalogs vulnerabilities in only five different projects.

In the software vulnerability life cycle context, previous work has been done to analyze
the evolution of different vulnerabilities to your discovery, patching, and exploitation. In
[Shahzad et al., 2012], there was a more extensive and in-depth analysis of the entire
lifecycle of a software vulnerability, from the moment of its discovery to its publication,
patching, and exploitation. However, this study only covers vulnerabilities published
up to 2011, and the data sources used for the proposed analyses are no longer publicly
available, which prevents an analysis of this work with more up-to-date data. In contrast,
the dataset presented in this work covers vulnerabilities published over a longer period,
from 2009 to 2022.



Chapter 3

Methodology

This chapter presents the methodology adopted in this work to define the structure of the
dataset, development of the tools used to collect and process the data and the research
questions selected to validate the dataset presented.

3.1 Dataset construction

This section will detail the steps taken to construct the dataset, including the source
selection process and the structure of the dataset.

3.1.1 Data sources

The proposed dataset was created using two main sources: the National Vulnerability
Database (NVD), which is a collection of vulnerability management data maintained by
National Institute of Standards and Technology (NIST), and GitHub, a platform used for
hosting source code. These sources offer various real-life instances of software vulnerabil-
ities and their respective fixes.

National Vulnerability Database

The National Vulnerability Database (NVD) is an extensive repository that provides
information about security vulnerabilities in software. The NIST maintains it and serves
as a database containing all Common Vulnerabilities and Exposures (CVE) records. Each
vulnerability record published in NVD has a standardized structure, which includes:

• Vulnerability description;

• Affected software versions;

• Severity and impact metrics;

• References.

11
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NVD was chosen for CVE extraction in this project due to its comprehensive and
reliable nature. As a primary source for CVE data, NVD provides a well-structured
and up-to-date repository of vulnerabilities, each with a unique identifier and detailed
metadata. Using NVD ensures that data extracted from CVE is reliable and covers
various software and vulnerabilities. This is particularly important for the objectives
proposed in this work, which consist of analyzing vulnerabilities in a wide spectrum of
software systems and programming languages.

Figure 3.1: NVD page with the SQL Injection vulnerability record in a WordPress plugin.

The NIST performs an exhaustive analysis of CVEs published in the CVE Dictionary.
The NVD staff analyzes CVEs by aggregating data points from the description, references
supplied, and any supplemental data that can be found publicly at the time. This analysis
results in the association of impact metrics (Common Vulnerability Scoring System -
CVSS), vulnerability types (Common Weakness Enumeration - CWE), and applicability
statements (Common Platform Enumeration - CPE), as well as other pertinent metadata.

The CVSS is a standardized framework for assessing and quantifying software vul-
nerability severity. CVSS offers a numerical score that helps organizations and security
professionals understand a vulnerability’s potential impact and risk. Three primary ver-
sions of CVSS are available: CV SS2, CV SS3, and CV SS3.1. CV SS2, introduced in 2007,
considers different factors, including access complexity, authentication requirements, and
impact metrics, to assign a score ranging from 0 to 10, where 10 indicates the most severe
vulnerability. It aimed to provide a systematic method of prioritizing security patches
and comprehending the potential consequences of a vulnerability.
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In contrast, CV SS3, released in 2015, brought several notable changes, such as a more
detailed approach to base, temporal, and environmental metrics. CV SS3.1, a subsequent
update, introduced supplementary metrics to incorporate nuanced aspects of vulnerabil-
ities, including their effects on confidentiality, integrity, and availability, further refining
the scoring system. The overall precision of scores increased significantly with the update,
resulting in an even higher level of usefulness for organizations in determining vulnerabil-
ity remediation and mitigation strategies.

GitHub

GitHub is a widely used platform for version control and collaborative software devel-
opment using Git. GitHub acts as a code hosting service, allowing developers to store,
manage, and track changes to the source code of developed applications. GitHub’s exten-
sive use in the software development community means it hosts vast open-source code,
including projects of significant size and complexity across different programming lan-
guages. Additionally, GitHub’s API facilitates automated data extraction, allowing infor-
mation about repositories, commits, and code changes to be extracted in a streamlined
way. These factors were decisive for choosing GitHub as a source for obtaining source
codes for the reported vulnerabilities.

3.1.2 Dataset structure

Figure 3.2 shows the proposed dataset diagram. The tables were structured as follows:

• CVEs: represents the CVEs published by NVD. Each record is identified by an ID,
its description, the published and last modified dates of the record in the NVD, the
CVSS risk, impact and exploitability assessment metrics, and information about
the attack vectors and impact ratings on confidentiality, integrity, and availability
of the affected service;

• CWEs: represents the CWEs published by MITRE. Each record is identified by
an ID, its short and long descriptions, and a link to its web page;

• Classifications: represents the associations between CVEs and CWES;

• Fixes: represents the fixes applied to resolve vulnerabilities. Each record is linked
to vulnerabilities and commits, indicating the code changes that fixed that vulner-
ability;

• Commits: represents the collected fix commits. Each record includes the commit
message, author, publish date, and information about the change size and complex-
ity metrics of the changes made;
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• Files: represents the files in which vulnerabilities were found and fixed. Each
record contains the file name, language, the paths before and after the change, the
differences introduced by the commit (diff), and various code complexity metrics;

• Repositories: represents the code repositories in which vulnerabilities were found.
Each record contains the repository’s URL, name, responsible user, creation and
update date, stars and forks count, and the primary language;

• Methods: represents the modified methods in the source code, indicating where
the vulnerabilities were present and where the fixes were applied. Each record con-
tains information about the method name, parameters, file position, and associated
complexity metrics.

Figure 3.2: Entity-Relationship Diagram of the proposed dataset.
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3.2 Development of the extraction tool

Figure 3.3 illustrates the detailed diagram of the dataset construction process proposed
in this work. In phase 1, vulnerabilities published by NVD since 1999 were collected and
filtered. In phase 2, the associated CWEs were identified and extracted to categorize
published vulnerabilities. In phase 3, the repositories and fix commits related to each
CVE were extracted. In phases 4 and 5, the collected repositories and fix commits were
analyzed, which made it possible to identify the changed files and methods.

Vulnerabilities 
classification

Identification of
vulnerable projects

Code 
extraction

Commits Files and 
Methods

CVEs listed in the National 
Vulnerability Database

CWE records published
by MITRE

Github

PostgreSQL
Database

CVEs 
extraction

Metadata 
extraction

1 2 3

4 5

Figure 3.3: Dataset construction flow.

The tools used for the collected data’s extraction, selection, and pre-processing steps
were developed using the Python language in version 3.11.2, and the relational database
management system (RDBMS) chosen to store the data was PostgreSQL in version 14.2.
Each phase of the dataset construction process has been detailed in the following subsec-
tions:

3.2.1 CVEs extraction

A tool was developed to automate the collection of information related to previously
cataloged software vulnerabilities. For this, the tool uses the NVD API to download all
the CVEs published since 1999, the date of the first publication, until July 2023. Each
CVE record is returned in JSON format and provides crucial details such as the CVE-ID,
publication date, description, reference links, and metrics that classify the severity of the
vulnerability in question.

The automatic extraction process collected 226,017 CVEs. However, when carrying
out a detailed analysis of this data, it became evident that many records did not contain
sufficient information to answer the questions proposed in this study. Therefore, a filtering
step became necessary to identify CVEs that met the following desired criteria:
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• Status: ”Published”;

• One or more CWEs associated;

• CVSS metrics available in versions 2, 3.0 or 3.1;

• One or more references pointing to repositories hosted on GitHub containing the
code with the fix for the presented vulnerability.

During this process, the database was significantly refined, reducing the number of
CVEs from 226,017 to 11,558, resulting in a more accurate and comprehensive dataset
that provides essential insight into the nature and severity of each vulnerability and access
to associated code snippets.

3.2.2 Vulnerabilities classification

The Common Weakness Enumeration (CWE) is a community-developed list of standard
software and hardware weakness types with security ramifications. A ”weakness” is a
condition in a software, firmware, hardware, or service component that, under certain
circumstances, could contribute to introducing vulnerabilities. The CWE List and as-
sociated classification taxonomy serve as a language that can be used to identify and
describe these weaknesses in terms of CWEs, along with information about how they can
be exploited and recommendations for mitigating or fixing the issue.

Each CVE collected has one or more associated CWEs, denoted by the code ”CWE-
<ID>”. In addition, NVD uses two supplemental classifications, ”NVD-CWE-noinfo”
and ”NVD-CWE-other”, to indicate cases where there is insufficient detail to classify a
vulnerability or where the NVD classification does not match an equivalent CWE.

3.2.3 Identification of vulnerable projects

Vulnerable projects were identified by analyzing the URLs labelled as fixes in the ”ref-
erences” section of the CVEs collected. Regular expressions were used to pinpoint links
to published GitHub fix commits for each existing entry. Each commit is assigned a
unique identifying code called a ”hash”. This hash allowed us to determine the URL of
the corresponding repository and the specific project to which the code belongs.

3.2.4 Metadata extraction

For each repository collected, the GitHub API was used to extract the metadata associ-
ated with each project. During this phase, it was observed that some previously fetched
commits became unavailable because their repositories had been deleted or were no longer
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available. To solve this, the repositories were filtered to keep only those that were acces-
sible and had source code available.

The data obtained from the resultant repositories includes the name of the reposi-
tory, description, date of creation, last date of push, number of collaborators involved,
number of forks, number of stars and the license under which the code is made available.
This information provides significant insights into the maturity and complexity of the
projects and the community involved in the development process, allowing for a more
comprehensive understanding of the relevance and context of each project.

3.2.5 Code extraction

The previously identified hashes, obtained through the extraction of vulnerable projects
via the CVE references, indicate the commit where the vulnerability was addressed. With
this, it was possible to identify which code versions were released before and after the fix’s
implementation.

For each commit, it was extracted the associated metadata, revealing information
about the committer, the associated message, the commit date, a log of the files modified,
and the delta maintainability model measurements associated with the change. Similarly,
information was obtained about the changed files, such as name, programming language,
type of the modification(i.e., added, deleted, modified, or renamed), number of lines
added or removed, and the complexity of the changes introduced. In addition, more
specific information about the modifications made to the existing methods was extracted
using the PyDriller tool, such as their name, signature, parameters, modified code, and
the modification’s complexity.

3.3 Data analysis

The dataset presented in this work contains information about vulnerabilities published
in NVD about several open-source projects and their fixes. With the data collected, it was
possible to analyze the evolution of vulnerabilities reported over the years and check how
they behave in different programming languages. To this end and aiming to validate the
presented dataset and its importance, the following research questions guided the analysis
process:

RQ1 - How does the incidence of reported software vulnerability compare
for different programming languages?

The main objective of this research question was to analyze project repositories that
have published CVEs to identify which languages were used in the development of these
projects. With this, it was possible to obtain a more in-depth understanding of the
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types of vulnerabilities that occur recurrently in the most popular programming languages
currently in use.

RQ2 - What are the characteristics of vulnerability fixes?

This research question evaluates the code complexity of the solutions implemented
to resolve the reported vulnerabilities. To achieve this, the components of the modified
code snippets, such as files, methods, and changed lines of code, were analyzed to extract
complexity metrics.



Chapter 4

Results

This chapter presents the results obtained in this work, including the characteristics pre-
sented by the constructed dataset and the results obtained for the research questions.

4.1 Dataset summary

Table 4.1 presents a summary of the proposed dataset. 11,558 CVEs were collected from
a total of 3,587 open-source software projects developed in 58 different programming
languages (PL). 11,332 fix commits for these vulnerabilities were identified, with changes
made to 23,360 files and 99,182 unique methods. CVEs were classified into 316 distinct
CWE types. The number of commits is lower than the number of CVEs because some
commits were responsible for resolving more than one CVE simultaneously.

Table 4.1: Summary of the presented dataset.
CVEs CWEs Projects Programming languages Commits Files Methods

11,558 316 3,587 58 11,332 23,360 99,182

Table 4.2 presents a summary of security vulnerabilities across various programming
languages quantified by CVE and CWE counts. The ten programming languages that
present the highest number of reported CVEs were selected to make the data presentation
more straightforward. This choice was made to optimize the understanding of the dataset,
focusing on the languages that demonstrate a higher incidence of security vulnerabilities
and thus offering a more targeted analysis for the most critical programming languages in
terms of reported vulnerabilities. Language C tops the list with a substantial lead, having
2,566 CVEs reported and 135 different CWEs identified. This high number reflects the
widespread use of C in various systems and its legacy codebase, which often contributes
to a higher number of discovered vulnerabilities. PHP follows with 1,046 CVEs and 110
CWEs, indicating a significant number of security issues that could be due to its extensive
use in web applications, which are common targets for security attacks.

19
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Table 4.2: Summary of the top 10 programming languages with most CVEs.
Programming language CVEs CWEs Commits Contributors

C 2,566 135 2,620 52,672
PHP 1,046 110 1,024 20,662
C++ 726 100 750 16,331
JavaScript 568 107 561 22,843
Python 457 109 507 29,028
Java 348 107 379 13,690
Go 331 100 314 19,697
Ruby 246 68 268 12,239
TypeScript 169 53 179 12,774
Vim Script 166 20 168 722

Furthermore, the table demonstrates that newer languages like TypeScript and Go
have lower CVE counts of 169 and 331, respectively. However, their range of common
weaknesses is also less diverse. This may indicate that newer languages can incorporate
more robust security features.

Table 4.3: Summary of the projects with most CVEs.
Project CVEs CWEs Contributors Stars Forks PL Commits Files Methods

linux 1,084 71 14,678 50,846 159,752 C 1,110 1,554 4,326
tensorflow 399 39 410 89,056 178,469 C++ 412 794 2,180
vim 166 20 280 5,084 33,281 Vim Script 167 204 480
gpac 118 23 63 486 2,355 C 113 139 342
tcpdump 111 8 156 817 2,365 C 114 137 397
pimcore 72 9 286 1,357 3,030 PHP 64 108 300
xwiki-platform 70 29 185 501 878 Java 78 252 1,022
radare2 63 19 356 2,915 18,779 C 60 84 294
discourse 58 23 383 8,150 38,972 Ruby 66 214 732
php-src 51 18 236 7,677 36,168 C 49 54 230

Table 4.3 presents a comprehensive summary of the top ten projects with more CVEs
reported, detailing key metrics that reflect their development and community engagement.
The table lists projects such as Linux, TensorFlow, and Vim. This data highlights the
popularity and scale of these projects and provides a snapshot of their current state in
terms of security, community engagement, and development activity.

Table 4.4 presents a general comparison between the characteristics of the main
datasets found in the literature and the dataset presented in this work.
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Table 4.4: Comparative table between the characteristics of the main vulnerability
datasets extracted from real projects present in the literature.

Dataset CVEs CWEs Projects Languages Commits Files Methods

[Alves et al., 2016a] - - 5 2 5,750 15,490 10,385
[Pianco et al., 2016] - - 2 2 1,010 - 1,784
[Fan et al., 2020] 3,754 91 348 - 4,432 8,143 11,823
[Bhandari et al., 2021] 5.365 180 1,754 31 5,495 18,249 50,322
[Nikitopoulos et al., 2021] 5,131 168 1,675 48 5,877 13,738 -
[Challande et al., 2022] 1,991 - 1,800 3 1,275 - -
This work 11,558 316 3,587 58 11,332 23,360 99,182

4.2 Data analysis

The data extracted from the dataset presented in this work and displayed in the tables
4.1, 4.4 and 4.3 listed above and in the figures 4.1, 4.2, 4.3, 4.4 and 4.5, allows it to be
possible to answer the following RQ:

RQ1 - How does the incidence of reported software vulnerability compare
for different programming languages?

Figure 4.1 shows the percentage of vulnerabilities with associated fix commits for
each programming language. It can be seen that the C language leads with the highest
percentage of reported vulnerabilities with 28.72%, followed by PHP with 16.76% and
other languages with lower percentages.
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Figure 4.1: Percentage of vulnerabilities by programming languages.
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Figure 4.2 shows the proportion of contributors in different programming languages.
The C language has the highest percentage of contributors, with 23.86%, followed by
Python with 12.03% and JavaScript with 10.93%. The other languages, such as PHP,
Go, C++, Java, Ruby, TypeScript, and Rust, have progressively smaller percentages of
contributors.
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Figure 4.2: Percentage of contributors by projects languages.

C simultaneously has the highest number of contributors and the highest percentage
of vulnerabilities, suggesting that popularity and widespread use may be correlated with
a more significant number of known vulnerabilities. On the other hand, languages like
Python and JavaScript, although they are in the top three in terms of contributors, have
a lower percentage of reported vulnerabilities compared to the C language. It can also be
seen that languages like TypeScript and Rust have fewer reported vulnerabilities. Fewer
vulnerabilities could result from a more secure design or a smaller user base, leading to
fewer discovered vulnerabilities.

Figure 4.3 presents an overview of the number of vulnerabilities with associated fix
commits presented by the ten programming languages with the most reported vulnera-
bilities between 2009 and 2022. After applying the previously mentioned filters to select
the CVEs, finding commits related to vulnerabilities reported before 2009 was impossible.
Therefore, records from previous years are not present in this temporal analysis.
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Figure 4.3: Number of vulnerabilities reported over the years.

The general trend shown by the data indicates an increase in the number of vulnera-
bilities in almost all of the programming languages in the top 10, which may be due to an
increase in the use of these languages, an increase in the complexity of the software being
developed, or more accurate methods of vulnerability detection. This growing trend high-
lights the ongoing challenges in software security and the importance of rigorous security
practices in software development and maintenance.

According to CVE Details [MITRE, 2023a], more than 14600 vulnerabilities were re-
ported in 2017, compared to the 6447 reported in 2016. This historic peak can be seen
when analyzing the same behavior presented by the C language, with a significant increase
in reported and fixed vulnerabilities in 2017.

The CWE Top 25 Most Dangerous Software Weaknesses List [MITRE, 2023b] is a
free, easy-to-use community resource that identifies the most widespread and critical
programming errors that can lead to serious software vulnerabilities. These weaknesses
are often easy to find, and easy to exploit. They are dangerous because they are often
easy to find, exploit, and allow adversaries to completely take over a system, steal data,
or prevent an application from working.

To facilitate the analysis process, the CWE Top 25 Most Dangerous Software Weak-
nesses List was used as a basis to group all vulnerabilities present in the proposed data
set into five subgroups, organized as follows:

Group 1: Injection Vulnerabilities: vulnerabilities in this group occur when an
attacker sends malicious data to the application as part of a command or query. Such
data may cause the application to execute unintended commands or access unauthorized
data.
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• CWE-787: Out-of-bounds Write

• CWE-79: Cross-site Scripting (XSS)

• CWE-89: SQL Injection

• CWE-78: OS Command Injection

• CWE-77: Command Injection

Group 2: Memory and Resource Management: vulnerabilities in this group are
related to the mismanagement of memory and other critical resources in the application,
which can lead to crashes, performance issues, or security vulnerabilities.

• CWE-416: Use After Free

• CWE-125: Out-of-bounds Read

• CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer

Group 3: Authentication and Authorization Issues: vulnerabilities in this
group are related to weaknesses in verifying a user’s identity, process, or application
(authentication) and determining whether a requester has the right to access a resource
(authorization).

• CWE-287: Improper Authentication

• CWE-862: Missing Authorization

• CWE-476: NULL Pointer Dereference

• CWE-306: Missing Authentication for Critical Function

• CWE-863: Incorrect Authorization

• CWE-276: Incorrect Default Permissions

Group 4: Deserialization and Input Validation: vulnerabilities in this group
are related to mishandling of serialized data or poor input validation that may result in
application compromise.

• CWE-502: Deserialization of Untrusted Data

• CWE-190: Integer Overflow or Wraparound

• CWE-20: Improper Input Validation
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Group 5: Web and Network-related Issues: vulnerabilities in this group are
related to web and network security issues, from the security of web sessions to the
integrity of communication between applications.

• CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’Path
Traversal’)

• CWE-352: Cross-Site Request Forgery (CSRF)

• CWE-434: Unrestricted Upload of File with Dangerous Type

• CWE-798: Use of Hard-coded Credentials

• CWE-918: Server-Side Request Forgery (SSRF)

• CWE-362: Concurrent Execution using Shared Resource with Improper Synchro-
nization (’Race Condition’)

• CWE-269: Improper Privilege Management

• CWE-94: Improper Control of Generation of Code (’Code Injection’)

Figures 4.4 and 4.5 show the distribution of vulnerabilities present in each group in
relation to programming languages and the evolution of the number of vulnerabilities per
group over the years.
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Figure 4.4: Distribution of clusters by languages.

Notably, PHP has a high percentage of vulnerabilities related to Web and Network-
related Issues, reflecting its widespread use in web development. Conversely, C and C++
show a significant proportion of their vulnerabilities in Memory and Resource Manage-
ment, which aligns with the common challenges of managing low-level operations in these
languages. Injection vulnerabilities are less dominant in languages such as JavaScript and
TypeScript but still represent a notable concern.



Data analysis 27

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

0

100

200

300

400

500
N

u
m

b
er

of
v
u

ln
er

ab
il
it

ie
s

Authentication and Authorization Issues

Deserialization and Input Validation

Injection Vulnerabilities

Memory and Resource Management

Web and Network-related Issues

Figure 4.5: Number of vulnerabilities reported per group over the years.

It was possible to extract the tables and figures presented below through the tables
of commits, files, and methods existing in the dataset presented. As a result, the data
obtained made it possible to answer the following RQ:

RQ2 - What are the characteristics of vulnerability fixes?

Tables 4.5, 4.6 and 4.7 summarize the base scores for software vulnerabilities across
different programming languages evaluated by the Common Vulnerability Scoring System
(CVSS) versions 2, 3, and 3.1.

Table 4.5: Summary of CV SS2 base scores by programming languages.
Programming language Min Max Mean Median

C 2.1 7.8 5.63 5.8
C++ 5 7.5 6.43 6.8
Go 2.6 10 5.36 5.5
Java 3.5 7.5 5.46 5.2
JavaScript 2.1 10 5.21 5
PHP 2.1 9 4.51 4.3
Python 3.5 10 5.69 5
Ruby 3.5 5.2 4.23 4.3
TypeScript 3.5 10 5.47 5
Vim Script 4.3 9.3 6.29 6.8
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In the CV SS2 version, the scores are generally lower, with the C programming lan-
guage having the broadest range of scores and PHP presenting the lowest mean score.

Table 4.6: Summary of CV SS3 base scores by programming languages.
Programming language Min Max Mean Median

C 2.5 9.6 6.76 7.10
C++ 7.4 8.8 7.90 7.50
Go 3.5 10 7.24 7.50
Java 4.2 9.8 7.22 7.30
JavaScript 3.5 10 7.33 7.50
PHP 2.6 9.9 6.48 6.50
Python 2.4 10 7.40 7.65
Ruby 3.5 8.1 6.61 7.30
TypeScript 4.3 9.8 7.16 7.50
Vim Script 5.5 8.6 7.41 7.80

In CV SS3, the base scores across all languages have increased. Notably, C++ shows
a higher mean in CV SS3 than CV SS2, suggesting an increase in the severity of vulnera-
bilities identified within projects using this language.

Table 4.7: Summary of CV SS3.1 base scores by programming languages.
Programming language Min Max Mean Median

C 3.3 9.8 7.34 7.5
C++ 7.5 9.8 8.36 7.8
Go 5.3 9.8 7.68 7.8
Java 4.2 9.8 7.16 6.1
JavaScript 3.3 9.9 6.95 6.5
PHP 3.5 9.8 6.28 6.1
Python 4.3 9.8 7.68 7.5
Ruby 5.4 9.8 6.55 6.1
TypeScript 4.3 9.8 6.84 7.5
Vim Script 3.3 9.8 7.47 7.8

The minimum scores in CV SS3.1 consistently increase, with most languages exhibit-
ing higher mean scores than the previous version. C++ and Python show particularly
significant increases. The rise in scores may stem from better vulnerability reporting,
increasingly complex software systems, and an increased awareness of security implica-
tions. This progression across CVSS versions highlights an ongoing maturation in the
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vulnerability assessment process and suggests that reported vulnerabilities are becoming
more severe and complex.

Figures 4.6, 4.7 and 4.8 presents violin plots that show the distribution of DMM metrics
[di Biase et al., 2019] of all commits that have vulnerability fixes that were extracted
according to the programming languages that have the most associated CVEs. These
metrics show how project maintenance has been affected by security fixes.
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Figure 4.6: DMM unit complexity by programming languages.

Figure 4.6 shows the distribution of method changes depending on their cyclomatic
complexity. Languages such as Ruby and TypeScript had a higher proportion of low-risk
changes in terms of complexity, meaning that changes made in these languages are more
likely to involve less complex methods and, therefore, easier to maintain. On the other
hand, C and JavaScript showed more significant variations, indicating more risk in the
changes made.



Data analysis 30

0.0 0.2 0.4 0.6 0.8 1.0
DMM Unit Interfacing

Vim Script

TypeScript

Ruby

Python

PHP

JavaScript

Java

Go

C++

C

P
ro

je
ct

la
n

gu
ag

e

Figure 4.7: DMM unit interfacing by programming languages.

Figure 4.7 shows the changes in the number of method parameters in each language.
Languages such as PHP, Python, and Ruby show a higher proportion of low-risk changes,
suggesting that methods in these languages are modified to have fewer parameters, po-
tentially making them easier to understand and use.
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Figure 4.8: DMM unit size by programming languages.

Figure 4.8 shows the changes in the length of the methods in terms of lines of code.
Vim Script has a low proportion of minor changes, indicating that many methods were
increased while fixing vulnerabilities, which can make them more difficult to maintain.
On the other hand, languages like TypeScript and Ruby had a higher proportion of minor
changes, suggesting that methods in these languages tend to be smaller and easier to
maintain.

Tables 4.8, 4.9 and 4.10 provides a comprehensive view of the nature and scale of
vulnerability fixes across various programming languages, highlighting differences in fix
sizes, complexity, and syntactic verbosity, focusing on lines of code (NLOC), complexity,
and token count.
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Table 4.8: NLOC of the changed files by programming languages.
Programming language Min Max Mean Median

C 0 24963 1247.70 679
C++ 0 15237 731.40 305
Go 1 45725 659.32 197
Java 1 5356 372.77 148
JavaScript 0 19630 916.83 209
PHP 0 37472 428.99 154
Python 0 12550 485.40 208
Ruby 1 4165 287.92 131
TypeScript 1 9824 332.81 161.5
Vim Script 317 10839 3553.74 3578

Table 4.8 highlights the variation in the size of code changes (measured in lines of
code) required to fix vulnerabilities in different programming languages. For example,
C projects have shown the widest range in fix sizes, with some fixes being minimal and
others substantial, suggesting a high variability in the complexity of vulnerabilities in C.
Meanwhile, languages like Ruby and TypeScript tend to have smaller and more consistent
fix sizes, as indicated by their lower mean and median values. Notably, Vim Script stands
out with a remarkably high mean and median, indicating that fixes in this language tend
to be significantly larger than in other languages.

Table 4.9: Complexity of the changed files by programming languages.
Programming language Min Max Mean Median

C 0 10284 259.73 132
C++ 0 3485 128.91 42
Go 0 13249 125.21 26
Java 0 1561 66.75 22
JavaScript 0 50897 932.15 39
PHP 0 18601 85.19 17
Python 0 3022 91.26 34
Ruby 0 606 41.96 18
TypeScript 0 1249 43.68 19
Vim Script 0 3098 693.33 460

Table 4.9 presents the complexity of vulnerability fixes in terms of cyclomatic complex-
ity, a metric that evaluates the number of linearly independent paths through a program.
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The data indicates that JavaScript and Vim Script have the highest potential for com-
plex fixes, with JavaScript having an extraordinarily high maximum complexity (50,897)
compared to other languages. This suggests that while JavaScript fixes may not always
be extensive in terms of line count, they can be highly intricate.

Table 4.10: Token count by programming languages.
Programming language Min Max Mean Median

C 0 142811 7900.51 4250
C++ 0 117238 5419.44 2284.5
Go 2 291613 4432.67 1309
Java 4 42889 2860.18 1122
JavaScript 0 2383237 37680.39 1481
PHP 0 435017 2938.16 1006.5
Python 0 103942 3271.09 1323.5
Ruby 2 27233 1693.07 699
TypeScript 7 47976 2183.29 1056
Vim Script 862 68652 14882.42 13082

Table 4.10 shows the verbosity or syntactic complexity of the fixes across languages.
The collected data suggests that some vulnerability fixes in JavaScript can be highly ver-
bose or involve significant syntactic changes. On the other hand, programming languages
like Ruby and Python have considerably lower mean and median token counts, indicating
less syntactic complexity in the fixes. Vim Script shows a high mean and median, aligning
with its high NLOC and complexity values, suggesting more extensive and complex fixes
in this language.
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Conclusion and Future Works

This work presented a comprehensive study of various aspects related to software vulner-
abilities and the characteristics of their fix commits. A large dataset containing essential
information about 11,558 vulnerabilities in 58 programming languages and their respective
patch codes in 11,332 commits across 3,587 projects was developed. The analyses carried
out on the constructed dataset showed that specific languages are more prone to certain
types of vulnerabilities, such as PHP for web and network application vulnerabilities and
C/C++ for memory and resource management vulnerabilities.

It was also found that there is significant variability in the frequency and types of vul-
nerabilities across different programming languages. Languages such as C and JavaScript
showed a wide range in the size and complexity of fixes. In contrast, languages such as
Ruby and TypeScript tended to have smaller fix sizes and a higher proportion of low-risk
changes. This suggests that fixes in these languages involve less complex methods and
are easier to maintain. However, JavaScript had the highest potential for complex fixes,
with fixes showing extensive verbosity or significant syntactic changes.

Additionally, there are several possible applications for the data collected: the dataset
can be used to apply more advanced statistical or machine learning techniques to discover
deeper insights and potentially predictive models about software vulnerabilities and their
fixes. Another possible application involves a deeper analysis of vulnerability patterns
specific to languages such as C, JavaScript, and PHP, which could help create more
targeted and effective analysis tools for each language.

Other applications include comparative studies to understand why certain languages
tend to have lower-risk features while others have more complex, higher-risk features and
how this correlates with language standards and its use in various projects. It is also
possible to use the dataset to explore vulnerabilities presented in multiple languages,
seeking to understand how vulnerabilities in one language can affect or be affected by
codes developed in another language.

One of the limitations of this work is the choice of projects only available on GitHub
to maximize and standardize metadata extraction. Future work could consider this and
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expand the sources to collect projects hosted on the GitLab, BitBucket, or Sourceforge
platforms and cover other bug and vulnerability tracking platforms such as Bugzilla,
Mantis, and Redmine. Future work may also include an analysis through a manual review
of the collected source code to provide a more solid basis for evaluating security threats
and their detection and fixes processes.
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