
UNIVERSIDADE FEDERAL DE ALAGOAS

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

MASTER’S THESIS

EXPLORING THE RELATIONSHIP BETWEEN SMELLS,
BUGS AND HARMFUL CODE THROUGH TRANSFER

LEARNING

MASTER CANDIDATE

DURVAL PEREIRA CÉSAR NETO

ADVISOR

BALDOINO FONSECA DOS SANTOS NETO, DR.

MACEIÓ, AL
AUGUST - 2023

i

Catalogação na Fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767

 A447u Cesar Neto, Durval Pereira.

 Exploring the relationship between smells, bugs and harmful code
through transfer learning / Durval Pereira Cesar Neto. – 2023.

 57 f. : il.

 Orientador: Baldoino Fonseca dos Santos Neto.
 Dissertação (mestrado em Informática) - Universidade Federal de

Alagoas. Instituto de Computação. Maceió, 2023.

 Bibliografia: f. 49-57.

 1. Qualidade de software. 2. Engenharia de software. 3. Transferência de

aprendizagem. 4. Aprendizado de máquina. I. Título.

 CDU: 004.81:159.953.5

 UNIVERSIDADE FEDERAL DE ALAGOAS/UFAL
Programa de Pós-Graduação em Informática – PPGI

Instituto de Computação/UFAL
Campus A. C. Simões BR 104-Norte Km 14 BL 12 Tabuleiro do Martins

Maceió/AL - Brasil CEP: 57.072-970 | Telefone: (082) 3214-1401

Folha de Aprovação

DURVAL PEREIRA CESAR NETO

COMPREENDENDO CÓDIGO NOCIVO POR MEIO DE TRANSFER LEARNING

Dissertação submetida ao corpo docente do Programa
de Pós-Graduação em Informática da Universidade
Federal de Alagoas e aprovada em 28 de agosto de
2023.

Banca Examinadora:

__
Prof. Dr. BALDOINO FONSECA DOS SANTOS NETO

UFAL – Instituto de Computação
Orientador

__
Prof. Dr. MARCELO COSTA OLIVEIRA

UFAL – Instituto de Computação
Examinador Interno

__
Prof. Dr. LEOPOLDO MOTTA TEIXEIRA
UFPE-Universidade Federal de Pernambuco

Examinador Externo

Resumo

A presença de code smells em um projeto de software é um forte indicativo da baixa qualidade do

mesmo no contexto de sua implementação e em uma parcialidade de casos podem estes mesmos

code smells serem os trechos de código nocivos para a aplicação, tornando-se os culpados na geração

de bugs. Atualmente, existem diferentes abordagens para a detecção de code smells e recentemente

houve um maior aprofundamento na análise da correlação entre estes code smells e a nocividade dos

mesmos para o código, mas ainda há muito a ser pesquisado no contexto de como podemos melhorar

a acurácia na detecção destes códigos potencialmente nocivos. Pensando nisto, este trabalho visa

ampliar os métodos para detecção de códigos nocivos utilizando o aprendizado por transferência para

construir um grande conjunto de dados para treinamento e validação dos modelos de aprendizagem

de máquina.

Abstract

The presence of code smells in a software project is a strong indication of its low quality in the context

of its implementation, and in many cases, these same code smells can be harmful code segments for

the application, becoming the culprits in bug generation. Currently, there are different approaches for

detecting code smells, and there has been a recent deeper analysis of the correlation between these

code smells and their harmfulness to the code. However, there is still much to be researched in the

context of how we can improve the accuracy of detecting these potentially harmful codes. With this

in mind, this work aims to expand the methods for detecting harmful code by using transfer learning

to build a large dataset for training and validating machine learning models.

ii

List of Figures

2.1 Long Method smelly code segment . 8

2.2 Buggy code segment (left) - Bug Fixed (right) 9

2.3 Difference between: (a) traditional machine learning and (b) transfer learn-

ing in machine learning [SJP09] . 10

3.1 Study design steps for creating the dataset and evaluating transfer learning . 19

3.2 Harmful Code results for the transfer learning combined for all code smells

and divided by each language. 26

4.1 Confusion Matrix of the models trained with smells and tested with bugs . . 42

4.2 Confusion Matrix of the models trained with bugs and tested with code smells 45

iii

List of Tables

3.1 Java Software projects analyzed in this work 20

3.2 C++ Software projects analyzed in this work 21

3.3 C# Software projects analyzed in this work 22

3.4 Understand Software Metrics . 22

3.5 Detection Rules for the Code Smells . 23

3.6 Transfer learning of harmful code trained in C++, C#, and Java and tested in

C++, C#, and Java. 25

3.7 F-Measure of Transfer Learning trained with multiple sample sizes 28

3.8 F-Measure of Transfer Learning trained with multiple sample sizes 30

4.1 Understand Software Metrics . 37

4.2 Detection Rules for the Code Smells . 38

4.3 Results for Model Trained with Code Smells and Tested with Bugs 41

4.4 Accuracy, precision, recall, and F-measure for the bug correctly classified by

the prediction model trained with smells 41

4.5 Accuracy, precision, recall, and F-measure for the smell correctly classified

by the prediction model trained with bugs 41

4.6 Results for Model Trained with Bugs and Tested with Code Smells 43

iv

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Objective . 5

1.2.1 Specific Objectives . 5

1.3 Work Structure . 5

2 Theoretical Framework 6

2.1 Bugs . 6

2.2 Code smells . 6

2.3 Harmful code . 7

2.3.1 Clean segment . 7

2.3.2 Smelly segment . 7

2.3.3 Buggy segment . 8

2.3.4 Harmful segment . 9

2.4 Transfer learning . 9

2.5 Related Work . 10

2.5.1 Code smell to Bug . 10

2.5.2 Bug to Smell . 11

2.5.3 Harmful Code . 12

2.5.4 Transfer Learning . 12

3 Is your code harmful too? Understanding harmful code through transfer learn-

ing 15

3.1 Main Study Design . 16

v

1

3.1.1 Programming Languages . 18

3.1.2 Project Selection . 18

3.1.3 Metrics and Code Smells . 19

3.1.4 Finding Bugs . 19

3.1.5 Discovering Harmful Code . 20

3.1.6 Application of Transfer Learning 21

3.2 Main Study Results . 24

3.2.1 Effective Transfer Learning to Detect Harmful Code 24

3.2.2 Efficient Transfer Learning to Detect Harmful Code 29

3.3 Limitations and Threats to Validity . 32

3.3.1 Construct and Internal Validity. 32

3.3.2 Conclusion and External Validity. 33

3.4 Main Study Conclusion . 33

4 Do Bugs follow the bad smells? 35

4.1 Research Study Design . 36

4.1.1 Metrics and Code smells . 36

4.1.2 Bug detection . 38

4.1.3 Model evaluation . 39

4.2 Research Results . 40

4.2.1 Effective Transfer Learning for Detecting Bugs 40

4.2.2 Effective Transfer Learning for Detecting Code Smells 43

4.3 Limitations and Threats to Validity . 44

4.3.1 Construct and Internal Validity. 44

4.3.2 Conclusion and External Validity. 46

4.4 Research Conclusion . 46

5 Conclusion & Future Work 47

Chapter 1

Introduction

The software life cycle is a continuous cycle, always returning to its beginning af-

ter reaching its end, with stages like development and maintenance being repeatedly exe-

cuted [MHD97,Rup10]. However, this cycle is not free from challenges [RPTU84]. The pur-

suit of error-free and easily maintainable code often encounters obstacles in the form of bugs

- unexpected errors that can disrupt the proper functioning of a program [FBF+20, SZZ05].

Furthermore, code quality is also influenced by code smells, subtle hints that indicate po-

tential issues with the structure or design of the source code [BSC+20, OGS+16, SOG+17,

OSO+18, UBO+20, BUC+20].

Software defects, more commonly known as bugs, constitute an ongoing challenge in the

software development industry [FBF+20,BCDL+12,GZNM10]. These undesired errors can

arise due to a variety of reasons, from logic mistakes to implementation issues. The presence

of bugs can result in data loss, system malfunctions, and even security risks. As the com-

plexity of software systems grows, identifying and rectifying bugs becomes an increasingly

crucial task, leading to innovative approaches to enhance code quality and system reliability.

Various approaches have been employed to automatically identify bugs in systems, such as

the utilization of the SZZ algorithm [NDCK19], machine learning approaches [Son19], and

search-based methods [PA21].

Code smells refer to coding practices that indicate potential quality issues in the source

code. These subtle hints may not directly result in errors, but they can compromise the read-

ability, maintainability, and healthy evolution of the software [UBO+20,BUC+20,FBF+20].

Identifying and addressing code smells is essential to avoid the accumulation of technical

2

1.1 Motivation 3

debt [LBT+21], which can lead to significant challenges in the long term. Early detection

and correction of these issues can contribute to clearer, sustainable, and easily maintainable

code. Currently, there are different approaches for detecting code smells - using various

techniques such as static code analysis [UBO+20], change metrics [CKK+18], and with the

intention of proposing rules and patterns in detecting these smells as well as understanding

the impact of their existence in code on the quality and maintainability of software.

Considering these significant factors, a contemporary trend has gained prominence: the

integration of advanced Machine Learning (ML) techniques as a potential solution to ad-

dress the challenge of detecting symptoms of poor-quality code, such as code smells and

bugs. Different approaches, such the use of Decision Trees [SG13], Support Vector Ma-

chines [PANVA09], Random Forest [TLNH19], and Naive Bayes [BHA14] are the most

used for this purpose. Nevertheless, there exist only a limited number of studies that have

explored the application of transfer learning to detect code smells [SELS19a, SELS21] and

bugs [ZLTW20,DZYX20]. It differs from traditional machine learning and semi-supervised

algorithms in that it takes into account the possibility that the domains of the training and test

data may differ. Conventional machine learning algorithms predict future data using math-

ematical models that are trained on previously collected labeled or unlabeled data, which

is assumed to be similar to future data [FAMZM16]. On the other hand, transfer learning

permits variations in domains, tasks, and distributions used for training and testing. Transfer

learning also is inspired by the human ability to apply prior knowledge to solve new but

similar problems with greater efficiency. In machine learning, the primary objective of trans-

fer learning is to develop lifelong learning methods that can preserve and reuse previously

acquired knowledge.

1.1 Motivation

In various software development scenarios, it is interesting to observe how the same in-

dicative signs of code smells can evolve to become parts of the code that cause substantial

issues in the application. This means that code segments that initially exhibited charac-

teristics suggesting poor practices or design deficiencies can, under certain circumstances,

transform into actual culprits for the occurrence of bugs.

4 CHAPTER 1. INTRODUCTION

Detecting code smells, bugs, and harmful code in diverse programming languages with

minimal effort is a pressing necessity in contemporary software engineering [TSLHS18,

PZAF+19, Kau20]. The software development landscape is highly polyglot, with projects

often spanning multiple languages [NWG12, YLC22]. As a result, developers face the chal-

lenge of maintaining code quality and identifying potential issues across this linguistic di-

versity. The ability to automate the detection of code smells, and bugs in different languages

streamlines the development process, reduces manual effort, and enhances software relia-

bility [LLC22]. This not only saves time and resources but also helps ensure consistent

code quality and security practices, irrespective of the programming language employed. In

a world where multilingual software development is increasingly common, tools and tech-

niques that facilitate cross-language code analysis become indispensable for developers and

researchers alike.

However, an even more intriguing approach to understanding the complex relationship

between code smells and bugs is the concept of harmful code. Following the perspective

presented by Lima et al. [Rod20], the term harmful code refers to code segments that are

associated with errors and also exhibit one or more characteristics of code smells, indicating

that they still possess problematic aspects related to their structure, maintenance, or perfor-

mance. In their work, Lima et al. [Rod20] conducts a thorough study of understanding and

identifying harmful code. They aim to identify the presence of harmful code generated by

code smells and bugs

When it comes to detecting multi-language issues in software development, leveraging

machine learning techniques has emerged as a potent approach [NLWS20]. Recent endeav-

ors in this field have demonstrated the effectiveness of employing machine learning, par-

ticularly transfer learning, to identify individual problems like code smells and bugs within

isolated programming languages [dSR20]. In the context of this landscape, our work stands

out by aiming to explore the unexplored territories of cross-domain transfer learning. We

seek to assess how well these machine learning techniques can be applied to transition from

the detection of bugs to code smells, code smells to bugs, and ultimately harmful code to

harmful code across different programming languages. This holistic perspective not only

sheds light on the transferability of knowledge across language barriers but also advances

our understanding of the interconnected nature of code quality issues in the multifaceted

1.2 Objective 5

realm of software development.

1.2 Objective

The aim of this study is to enhance the approaches for detecting code smells, bugs, and

harmful code through the application of transfer learning. This approach will be employed

in building a database that will serve as a reliable oracle, enabling a more precise and com-

prehensive analysis of the characteristics that can indicate quality issues in the source code.

1.2.1 Specific Objectives

Based on the established overall objective, we have formulated the following specific

objectives as means to achieve it:

• Compile a database of code smells.

• Compile a database of bugs.

• Build a machine learning model trained to detect code smells from a bugs database.

• Build a machine learning model trained to detect bugs from a code smells database.

• Build a machine learning model trained to detect harmful code from a database trained

with both code smells and bugs.

1.3 Work Structure

Finally, the work is organized as follows:

In Chapter 2, a theoretical framework will be presented, addressing the main computa-

tional topic of this proposal: i) code smells and bugs; ii) harmful codes; and iii) transfer

learning. In Chapter 3, we provide the main study on transfer learning and harmful codes.

In Chapter 4, we introduce the second study, which explores the ability of code segments

exhibiting code smells to identify the occurrence of bugs, and vice versa. Lastly, Chap-

ter 5 contains a conclusion on the material presented, as well as a discussion on potential

directions for future research.

Chapter 2

Theoretical Framework

2.1 Bugs

2.2 Code smells

Code smells are symptoms of quality issues that can impact various aspects of a soft-

ware system’s quality [OGC+15, OGC+14, OGS+14]. When a software system contains

excessive smells, it becomes challenging to maintain and enhance. Code smells are cat-

egorized into three main types: implementation smells, design smells, and architecture

smells [OGS+16, OSO+18, OSO+19, SS18, SELS19b], based on their scope, granularity,

and impact. Implementation smells are typically limited in scope and impact, often affecting

individual methods. Examples include long method, complex method, long parameter list,

and magic number [Mar99]. Design smells, on the other hand, occur at a higher level of

granularity, often affecting abstractions like classes or sets of classes. Some common exam-

ples of design smells are God class, multifaceted abstraction, wide hierarchy, and insufficient

modularization [Mar99].

While being a pervasive issue in software development, they also manifest across vari-

ous programming languages, including Java, C#, and C++. In Java, common code smells

often arise due to complex program structures, leading to decreased code maintainabil-

ity [SOG+17]. For instance, Multifaceted Abstraction might be evident when a class com-

bines disparate functionalities, such as handling both user interface and data access logic.

On the other hand, Wide Hierarchy in Java can manifest as deep inheritance chains, making

6

2.3 Harmful code 7

the codebase harder to navigate. Finally, Long Method smells are characterized by overly

complex and lengthy functions, making code comprehension difficult. C#, being another

object-oriented language, shares similarities with Java [Mok03]. Multifaceted Abstraction

might occur when a class handles multiple concerns, like combining file I/O and network

communication. Moreover, Insufficient Modularization might be seen in poor namespace or-

ganization, leading to a cluttered project structure. C++, on the other hand, the code smells

like Multifaceted Abstraction could be found in classes that mix low-level memory man-

agement with high-level algorithmic operations. Insufficient Modularization might involve

inadequate separation of header and implementation files. Wide Hierarchy might result from

deep template hierarchies. Long Method code smells in C++ can be identified by excessively

long and complex functions.

2.3 Harmful code

In their work, Lima et al. [Rod20] define the level of harmfulness of code segments in

four categories, as follows:

2.3.1 Clean segment

A code segment that, at the present time, displays no evidence of any detected code

smells or bugs within its source code. This implies that the segment has undergone analysis

for potential issues or inconsistencies utilizing a specific methodology (see Section 3.1.3).

In the context of bug detection, our methodology relies on bug reporting. Therefore, code is

considered "bug-free" if, up to the present moment, no bugs have been reported or discovered

within it.

2.3.2 Smelly segment

A code segment that has been flagged for having one or more code smells, suggests

potential design or implementation issues. However, it’s important to note that despite the

presence of these code smells, this specific code segment has never been reported or iden-

tified as having one or more bugs. In other words, it has not been associated with actual

8 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: Long Method smelly code segment

software defects or issues reported by users or developers. This indicates a distinct pattern

where code quality issues (smells) have been detected, but no related functional issues (bugs)

have been reported, highlighting the potential disconnect between code quality and software

reliability. We can see an example of the smelly segment in Figure 2.1.

2.3.3 Buggy segment

A code segment with bugs refers to a portion of code that was removed when a bug is

fixed (bug-fixing commit [SZZ05]). It’s important to note that, in this case, no code smells

were detected at this point in the code’s history. This observation underscores a unique

scenario where issues related to the code’s functionality (bugs) have been encountered, but

no design or implementation problems (code smells) were identified. This lack of code

smells may suggest that, while functional defects have been addressed, the code’s overall

quality has remained unaffected by typical code quality issues. We can see an example of

the buggy segment in Figure 2.2.

2.4 Transfer learning 9

Figure 2.2: Buggy code segment (left) - Bug Fixed (right)

2.3.4 Harmful segment

A smelly code segment, denoting that it has been associated with one or more code

smells, could also be considered buggy. This means that it has encountered one or more

reported bugs at this point in its history. This combination of code smells and historical bug

reports characterizes the segment as both smelly and buggy, and this combination is what we

call HARMFUL code.

In part of our work, we aim to detect the presence of HARMFUL code segments.

2.4 Transfer learning

Machine learning involves various techniques for sharing and adapting knowledge from

one specific task in a domain to a broader task in the same domain. For instance, a health-

care provider employs predictive modeling to anticipate patient re-admissions, enabling early

intervention and improving patient care outcomes. On the other hand, human beings demon-

strate a unique capability, the ability to transfer knowledge across related domains to effi-

ciently address novel challenges. This human-like approach becomes particularly advan-

tageous when the new task shares fundamental similarities with the existing knowledge,

enabling us to expedite problem-solving by leveraging our prior insights.

Transfer learning, at its core, involves transferring knowledge acquired in one source

task to enhance learning in a related target task [LWQ17]. One of the major advantages

of transfer learning is being valuable in scenarios characterized by a scarcity of training

10 CHAPTER 2. THEORETICAL FRAMEWORK

data [TS10]. When collecting ample training data for a target task proves challenging and

resource-intensive, we can identify a source task with similar underlying characteristics and

access to a vast training dataset. Subsequently, we train a machine learning model on this

source task, utilizing the abundant dataset, and then fine-tune the model on the target task,

leveraging the available yet limited training data. This strategic process empowers us to har-

ness prior knowledge effectively, significantly improving performance on the target task. For

instance, in traditional machine learning, typically, the same dataset is used for training and

testing for each task [SJP09]. Figure 2.3 illustrates the difference between the two processes,

and how using the transfer learning process, multiple pre-trained models for different tasks

can be harnessed to achieve a model that solves the target task.

Figure 2.3: Difference between: (a) traditional machine learning and (b) transfer learning in

machine learning [SJP09]

2.5 Related Work

2.5.1 Code smell to Bug

Takahashi et al. [TSLHS18] proposed a technique to improve bug localization by using

code smells. The authors found that by using the content of a bug report, containing a

summary and description as inputs for an existing bug localization approach and detecting

2.5 Related Work 11

the code smells of the source code with inFusion, it is possible to calculate the score of each

module and with that improve the traditional bug localization approach by 142.25% and

30.50% on average for method and class levels, respectively.

In a related academic endeavor, Ubayawardana [UK18] directed attention towards utiliz-

ing code smells as a potential metric for constructing a bug prediction model. This involved

considering both traditional source code metrics and metrics derived from code smells as

proposed in existing literature. The research proceeded by training the model using di-

verse iterations of 13 distinct Java-based open-source projects and subsequently leveraging

this trained model to forecast bugs within a specific version of a project. The findings of

this study illuminated the insufficiency of relying solely on source code metrics to fore-

cast project bugs. Instead, greater predictive accuracy was attainable by amalgamating code

smell-based metrics with traditional source code metrics.

Palomba et al. [PZAF+19] built a specialized bug prediction model for smelly classes.

Specifically, the authors evaluated the contribution of a measure of the severity of code smells

by adding it to existing bug prediction models based on both product and process metrics and

comparing the results of the new model against the baseline models, creating a smell-aware

prediction model which combines product, process and smell-related information. They

observed that the addition of an intensity index (i.e., a metric that quantifies the severity

of code smells) as a predictor of buggy components of the software generally increases the

performance of baseline bug prediction models.

In Kaur et al.’s [Kau20] literature review, a substantial body of prior research has been

examined, focusing on code smells and quality attributes. The findings from these studies

primarily revolve around the exploration of fault-proneness and defect-proneness as external

quality attributes. However, it’s important to note that the analysis in these studies primarily

centers on the influence of code smells on these quality attributes rather than considering

them collectively as a single entity, often referred to as "harmful code."

2.5.2 Bug to Smell

On the other hand, previous work [PZAF+19, PZF+16] assesses bug prediction models

specifically tailored for classes exhibiting code smells. The authors embarked on evaluating

the impact of incorporating a measure quantifying the severity of code smells into existing

12 CHAPTER 2. THEORETICAL FRAMEWORK

bug prediction models, which relied on both product and process metrics. By juxtaposing

the outcomes of this new model with baseline models, they formulated a smell-aware pre-

diction model that seamlessly amalgamates product, process, and smell-related information.

Significantly, their observations unveiled that the integration of an intensity index, a metric

gauging the severity of code smells, as a predictive factor for buggy software components,

consistently elevates the performance of baseline bug prediction models.

While preceding research has approached the subject from distinct angles, examining: i)

the application of transfer learning to detect code smells, and ii) the utilization of various

machine learning techniques to identify problematic code instances, our study uniquely in-

tegrates both facets. Our approach not only evaluates the efficacy of identifying bugs using

code smell instances but also evaluates the efficacy of using a dataset of bugs to detect the

presence of code smells. This allows us to explore the practicality of employing transfer

learning in detecting poor-quality structures of code and points of possible defects.

Furthermore, where previous work in transfer learning has primarily focused on differ-

ent levels of granularity, such as source files [SELS19b, KSV+22, UK18], our investigation

advances at the code expressions level. This perspective enables us to enhance the compre-

hensiveness and contextual understanding of our analysis.

2.5.3 Harmful Code

It was Lima et al. [Rod20] that later presented the term harmful code to determine a code

snippet that already had one or more bug reported, i.e., that is both smelly and buggy. In this

work, the authors evaluated machine learning techniques to classify code harmfulness in 13

different Java projects, concluding that while the Random Forest is effective in classifying

both smelly and harmful code, the Gaussian Naive Bayes is the less effective technique.

2.5.4 Transfer Learning

Earlier investigations have concentrated on exploring the viability of transfer learning

within the scope of code smell detection. Sharma et al. [SELS19b] delved into the utilization

of deep learning models for identifying code smells and examined the potential of applying

transfer learning to this area. They further evaluated the performance of deep learning models

2.5 Related Work 13

within the transfer learning context. This research introduced a novel paradigm that employs

transfer learning to detect code smells, particularly beneficial for programming languages

where comprehensive code smell detection tools are scarce.

In a separate endeavor, Kovacevic et al. [KSV+22] conducted an experiment focused

on the automated detection of specific code smells, namely the Long Method and God

Class, given their frequent occurrence during development. Distinguishing themselves from

Sharma et al. [SELS19b], their study diverges on two key fronts, instead of training a deep-

learning model for the same smell detection task across different programming languages,

they opted to transfer the knowledge captured by code understanding models. Moreover,

they employed a fully manually labeled code smell dataset as opposed to automatic labeling,

thus sidestepping the learning of imperfect automatic code smell detectors.

Also, Ardimento et al. [AAB+21] investigated whether the adoption of a transfer learning

approach can be effective for just-in-time design smell prediction. The approach used a

variant of Temporal Convolutional Networks to predict design smells and carefully selected

fine-grained process and product metrics. The empirical results show that when the class

is well-balanced the prediction model is effective for direct learning and is usable as an

alternative with comparable results. Moreover, its results also demonstrated that transfer

learning provides F1 scores very close to the ones obtained by direct learning.

While prior works consider, separately: i) the application of transfer learning for code

smell detection and ii) the use of other machine learning techniques to identify harmful

code, we combine both factors into our study. We not only evaluate the effectiveness of code

harmfulness identification but also use the generated dataset to train a model, allowing us

to understand the feasibility of transfer learning in harmful code detection, which could be

beneficial, especially for programming languages where there aren’t tools available for this

process. Finally, while prior work in transfer learning conducts their analyses at different

granularity levels, such as source file [SELS19b, KSV+22], we conduct our analyses at the

commit level, taking into account the historical aspects of software development.

Previous efforts [SELS19b,KSV+22,AAB+21,CSCT15] have primarily centered around

assessing the application and practicality of transfer learning in the domain of code smell

detection. In contrast, our study distinguishes by leveraging transfer learning for smell de-

tection using a labeled dataset of bugs, as well as a trained dataset with labeled smells to

14 CHAPTER 2. THEORETICAL FRAMEWORK

detect bugs. By using this data, we are also able to compound a dataset of harmful code to

detect other instances of harmful code in different programming languages.

Chapter 3

Is your code harmful too? Understanding

harmful code through transfer learning

One of the main points of our work in understanding the relation between bugs and code

smells through transfer learning, as pointed out in 2.3, is to investigate if is feasible to

identify harmful code using transfer learning techniques. Thus, in this chapter, we present

our main study: "Is your code harmful too? Understanding harmful code through transfer

learning".

This work reports a retrospective study aimed at using transfer learning to assess code

harmfulness across various software projects and programming languages. It was built on a

previous approach [Rod20] and [dSR20], categorizing code into clean, smelly, buggy, and

harmful types based on code smells and reported bugs. The study gathered source code from

23 open-source projects, analyzing the historical development of more than 250k versions

mined from these projects. It also examined five code smells, including design-type and

implementation-type issues, using class-level and method-level granularity.

In conclusion, our study explored using transfer learning to detect harmful code across

multiple programming languages, focusing on Java, C#, and C++. We found that knowledge

transfer between Java and C# for various code smells was promising, while C++ posed more

challenges. Despite limited data, a sample size of 32 showed positive outcomes for most code

smells, though some situations required larger samples, like with Multifaceted Abstraction.

Importantly, our research addressed a gap in the field by assessing transfer learning’s applica-

tion for harmful code detection using insights from different software systems. This insight

15

16
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

guides software engineering researchers, stressing suitable sample sizes and understanding

transfer learning intricacies for more accurate detection across diverse languages. Leverag-

ing transfer learning’s potential can boost software quality and development practices.

3.1 Main Study Design

In this section, we describe our research questions, the statistical approach and data col-

lection procedures (Sections 3.1.2, 3.1.3 and 3.1.4), and the quantitative approach (Sec-

tion 3.1.6.

Recent studies [SELS19b, KSV+22, KM19, AAB+21, DSPPDL21] have showcased the

potential of transfer learning in software engineering, particularly concerning code smells

detection and prediction. While various studies have proposed automatic approaches for

detecting code smells and some have explored understanding harmful code [Rod20], there

remains a significant research gap as none of these works have focused on assessing how

knowledge from other software systems can be utilized for detecting harmful code.

To this goal, we collected source code from 23 open-source projects to create a dataset

in which each project has historical granularity since all the history of software develop-

ment is being taken into account (code segments for each commit version). We also evalu-

ated the presence of five code smells: Multifaceted Abstraction, Insufficient Modularization,

Wide Hierarchy, Long Method, and Complex Method, with the first three being a design-type

with class-level granularity and the former two being implementation-type with method-level

granularity.

Finally, to address this gap, our study aims to explore the application of transfer learning

for detecting harmful code using five different types of code smells across three programming

languages. By doing so, we seek to contribute new insights and advancements in the realm

of code analysis and software quality assurance. Our research questions are designed to shed

light on the effectiveness and adaptability of transfer learning techniques in this domain,

offering valuable guidance for improving code analysis tools and promoting more efficient

and accurate harmful code detection practices. We present them as follows:

RQ1: How effective is transfer learning in detecting harmful code?

This research question seeks to evaluate the effectiveness of transfer learning (measured

3.1 Main Study Design 17

by the f1-score) of harmful code in open-source projects from the three different program-

ming languages. Through this analysis, we expect to ascertain the extent to which trans-

fer learning can be employed to generalize and identify harmful code in a more language-

agnostic manner.

The insights garnered from this research have significant implications for the software

development community. As harmful code poses serious security and reliability risks, the

ability to efficiently detect it across different programming languages can lead to more ro-

bust and secure software systems. Moreover, our findings will provide valuable guidance

to practitioners and researchers on optimizing transfer learning techniques for code analysis

tasks, ultimately fostering safer and more reliable software development practices.

RQ2: How efficient is transfer learning to detect code smells?

To address the RQ2, we delve into a comprehensive analysis of the effort required for

transfer learning to effectively detect harmful code. We comprehend efficiency as the number

of instances (sample size) comprising the training dataset utilized for training a deep learning

model.

Our investigation encompasses an exploration of varying sample sizes, ranging from

small to large (2 and 630, respectively), to ascertain how transfer learning’s performance

is impacted. We meticulously evaluate the model’s effectiveness in detecting code smells

across different programming languages as the sample size changes. Additionally, we evalu-

ate potential trade-offs associated with different sample sizes. Larger datasets may improve

model generalization and capture more diverse patterns, but they also require increased com-

putation and time. Conversely, smaller datasets may lead to overfitting or suboptimal perfor-

mance on specific programming languages.

Our findings will not only shed light on the ideal sample size for effective transfer learn-

ing but also provide insights into the generalizability and adaptability of the approach across

diverse programming languages. As a result, our research contributes to the development of

best practices in utilizing transfer learning for code smell detection, facilitating more efficient

and scalable approaches for ensuring code quality and maintainability in software projects.

18
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

3.1.1 Programming Languages

In this study, we selected three prominent programming languages, namely Java, C#,

and C++, for our comprehensive analysis. The rationale behind selecting this specific trio

of programming languages lies in their prevalence and significance in various domains of

software development. Java, known for its platform independence and widespread use in

enterprise applications, holds a dominant position in the industry. C# is particularly relevant

in the Microsoft ecosystem and game development, while C++ is widely employed in-system

programming and performance-critical applications.

By including these diverse languages in our analysis, we aim to gain a comprehensive

understanding of how transfer learning techniques perform across different programming

paradigms and use cases. Each language comes with its own set of unique features, syntax,

and programming conventions, which can significantly impact the effectiveness of transfer

learning for code analysis.

The insights gained from this study will be invaluable for developers, researchers, and

practitioners working on code analysis and software quality assurance. Understanding the

strengths and limitations of transfer learning in different programming languages can lead

to the development of more sophisticated and adaptable software analysis tools. Ultimately,

our research contributes to the advancement of more robust and versatile approaches for

ensuring code quality, improving software maintainability, and enhancing overall software

development practices across a wide range of programming languages.

3.1.2 Project Selection

In order to avoid well-known mining perils [KGB+16], we applied the following method-

ology to select the projects for this study: (i) systems that have at least 500 commits; (ii)

systems that are at least 3 years old, and are currently active; and (iii) Java, C++, and C#

based systems, as previously mentioned in 3.1.1. Moreover, the project selection was based

on related work [Rod20, dSR20, UBO+20, BUC+20, BUC+23], and we can see the project

list in Tables 3.1, 3.2 3.3. Each table represents the projects selected to be analyzed in our

study for the programming languages Java, C++ and C#, respectively. The tables not only

list the projects’ names but also describe the domain it - if it is a library, a framework, or

3.1 Main Study Design 19

Figure 3.1: Study design steps for creating the dataset and evaluating transfer learning

an app - as well as the number of: i) commits; ii) smells, and iii) bugs for each one of the

projects.

3.1.3 Metrics and Code Smells

We utilized only the detection rules from the DesigniteJava 1 tool [SS18] to identify

code smells in our projects, along with their corresponding thresholds, which were collected

using the Understand 2 to collect the metrics in all systems. Moreover, we needed to make a

pair relation between the DesigniteJava metrics names and the Understand metrics, as they

do not have the same name. Finally, the code smell list and their respective thresholds can

be seen in Table 4.2, and the metrics name pair relation can be seen in Table 4.1.

3.1.4 Finding Bugs

We rely on previous work [Rod20] methodology to collect the bugs used in our dataset.

This methodology utilizes a GitHub macro present in commit messages that fix bugs. These

macros typically include keywords such as "Fixes", "Fixed", "Fix", "Closes", "Closed" or

"Close", followed by a # and the issue/pull request number, e.g., "Fixes #12345". This

1https://www.designite-tools.com/designitejava/
2https://scitools.com/

20
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

Table 3.1: Java Software projects analyzed in this work

System Domain # Commits # Smells # Bugs

exoplayer Library 15057 134 71

baritone Library 3036 2025 2863

junit5 Framework 7753 0 2

lombok Library 3540 1530 1346

mindustry Game 16469 20 39

mockito Framework 5929 14 73

okhttp Http Client 5400 128 62

termux-app App 1431 28 10

bisq App 17481 661 781

l2jorg Library 2228 238 260

macro automatically closes/merges the issue/pull request, and by examining their label list,

we can check if that issue/pull request contains the label ’bug’ or ’defect’, showing that the

commit was a bug-fixing commit. Finally, to collect the commit that contains the bug, we

got the parent commit of the bug-fixing commit.

3.1.5 Discovering Harmful Code

Harmful code is a term introduced by Lima et al. [Rod20] to determine a code snippet

has two characteristics: (i) smelly, when the code contains a code smell; and (ii) buggy when

the code contains a bug. When containing both characteristics, we say that a code snippet is

harmful.

3.1 Main Study Design 21

Table 3.2: C++ Software projects analyzed in this work

System Domain # Commits # Smells # Bugs

gdal Library 51643 3446 312

keepassxc Software 4476 113 83

osquery Framework 6313 17 12

tdesktop Software 14819 181 59

px4-autopilot Framework 42390 187 26

qtox Software 8298 115 64

3.1.6 Application of Transfer Learning

We trained our transfer learning models with the generated dataset from previous steps,

allowing us to execute the transfer learning, according to the pseudo-code of Fig. 3.1 step 5.

The result of this step is a file with all necessary metrics to perform the model evaluation.

Our transfer learning model was built using a perceptron [Kan03], which utilizes a set of

crucial parameters that heavily influence its performance. We will discuss them as follows:

Embedding layer. It is the embedding layer added to the model. Embedding layers are

often used for text data. In our code, it is configured to accept input sequences of integers

(representing words or tokens) with a vocabulary size of 20,000 words. Each input word will

be embedded into a vector of size 8. The input_length parameter specifies the length of input

sequences.

Flatten layer. After the embedding layer, a flattened layer is added. This layer is used to

convert the 2D output from the previous layer into a 1D array.

Dense layer. A dense (fully connected) layer is added with a single neuron. The ’sig-

moid’ activation function is applied to this neuron, which is typical for binary classification

problems. It is used to output a probability that a given input belongs to a particular class.

Compilation parameters. We used the ’adam’ optimizer, which is a commonly used

optimization algorithm, and the loss function is set to ’binary_crossentropy,’ indicating that

22
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

Table 3.3: C# Software projects analyzed in this work

System Domain # Commits # Smells # Bugs

efcore Library 14104 1923 1484

humanizer Library 2319 12 10

jellyfin Software 24154 518 292

omnisharp-roslyn Http Server 6113 0 2

quicklook Software 838 12 15

neo Blockchain 1404 159 277

ryujinx Software 2840 45 38

Table 3.4: Understand Software Metrics

Name Abbrev. SciTools Understand Granularity

Lack of Cohesion in Methods LCOM PercentLackOfCohesion Class

Number of Fields NOF CountDecClassVariable + Class

CountDeclInstanceVariable

Number of Methods NOM CountDeclMethod Class

Number of Public Methods NOPM CountDeclMethodPublic Class

Weighted Methods per Class WMPC SumCyclomaticModified Class

Number of Children NC CountClassDerived Class

Lines of Code LOC CountLine Class/Method

Cyclomatic Complexity CC Cyclomatic Method

this model is likely used for binary classification tasks. Hence, the whole algorithm can be

seen in the snippet below:

3.1 Main Study Design 23

Table 3.5: Detection Rules for the Code Smells

Name Granularity Type Metric Logical Op.

LCOM >= 0.8

Multifaceted Abstraction Class Design NOF >= 7 AND

NOM >= 7

NOPM >= 20

Insufficient Modularization Class Design NOM >= 30 OR

WMC >= 100

Wide Hierarchy Class Design NC >= 10 N/A

Long Method Method Implementation LOC >= 100 N/A

Complex Method Method Implementation CC >= 8 N/A

f o r l a n g u a g e in l a n g u a g e s :

f o r s m e l l in s m e l l s :

f o r sample in n_sample :

model = l o a d (l anguage , sme l l , sample)

model = S e q u e n t i a l ()

model . add (Embedding (20000 , 8 ,

i n p u t _ l e n g t h = padd ing))

model . add (F l a t t e n ())

model . add (Dense (1 , a c t i v a t i o n = ’ s igmoid ’))

model . compi le (o p t i m i z e r = ’ adam ’ ,

l o s s = ’ b i n a r y _ c r o s s e n t r o p y ’)

e v a l _ l a n g u a g e s = l a n g u a g e s − l a n g u a g e

e v a l (l anguage , model , sme l l , e v a l _ l a n g u a g e s)

Evaluation

To evaluate the models, we first need to compute the results of TP, TN, FP, and FN, that

are described as follows:

• TP: True Positive, when the model correctly predicts the "YES" target class.

• TN: True Negative, when the model correctly predicts the "NO" target class.

• FP: False Positive, when the model incorrectly predicts the target class as "YES" when

it should be "NO".

24
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

• FN: False Negative, when the model incorrectly predicts the target class as "NO" when

it should be "YES".

Then, we are able to calculate the metrics that are the output of our model:

• Accuracy: The rate of correct classification by the model (as either a smell or not).

A = (TP + TN)/(TP + TN + FP + FN)

• Precision: Of the samples classified by the model as smells, how many were actually

smells.

P = TP/(TP + FP)

• Recall: The proportion of correctly classified smells out of the total number of samples

that were actually smells.

R = TP/(TP + FN)

• F1-score: The harmonic mean of precision and recall.

F = 2 ∗ [(P ∗R)/(P +R)]

3.2 Main Study Results

In this section, we present the key findings and main results derived from our study.

3.2.1 Effective Transfer Learning to Detect Harmful Code

In this RQ, our primary focus is to assess the effectiveness of transfer learning using the

Perceptron [Kan03] model for detecting harmful code. Our approach involves training indi-

vidual models for each programming language with buggy commits and distinct code smell

types using dedicated training datasets that consist of relevant code snippets and correspond-

ing smells in buggy commits. Subsequently, we check the performance of each trained model

is meticulously evaluated on testing datasets containing code snippets from all programming

languages studied to understand if harmful code from one language can be detected in the

others.

3.2 Main Study Results 25

Table 3.6: Transfer learning of harmful code trained in C++, C#, and Java and tested in C++,

C#, and Java.

Java C# C++

Java 88% 59% 53%

Complex Method C# 79% 84% 14%

C++ 74% 54% 97%

Java 77% 58% 4%

Long Method C# 70% 66% -

C++ 37% 45% 92%

Java 12% 13% 1%

Wide Hierarchy C# 1% 7% 1%

C++ 0% 1% 100%

Java 80% 74% 13%

Insufficient Modularization C# 71% 84% 27%

C++ 34% 63% 99%

Java 83% 41% 7%

Multifaceted Abstraction C# 50% 50% 29%

C++ 42% 34% 98%

The study enables us to identify the model’s strengths and limitations in different con-

texts, offering a nuanced understanding of its performance in detecting harmful code be-

yond the initial training dataset. The resulting insights are presented in Table 3.6, where the

first and second columns highlight the smell types involved in the buggy snippet and pro-

gramming languages used for training, while the horizontal arrangement corresponds to the

programming languages in the testing datasets.

Figure 3.2 presents the results of our transfer learning model for harmful code detection.

The confusion matrices provide a detailed breakdown of the model’s performance across

different programming languages and all code smells analyzed combined. Moreover, we

also have a confusion matrix for each smell type for each language type, those can be seen

26
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

Figure 3.2: Harmful Code results for the transfer learning combined for all code smells and

divided by each language.

3.2 Main Study Results 27

in our replication package 3.

By analyzing the confusion matrices, we gained valuable insights into the model’s

strengths and limitations, identifying areas where the model excelled and areas that could

benefit from further refinement. These results contribute to a better understanding of the

transfer learning model’s effectiveness in detecting code smells and lay the groundwork for

future research and improvements in code analysis and software quality assurance.

Harmful Code between Java and C#

In Table 3.6, the analysis highlights interesting observations concerning transfer learn-

ing between Java and C# programming languages. We notice a noteworthy variation in

effectiveness, ranging from 1% in the Wide Hierarchy smell to a maximum of 79% in the

Complex Method. This variability indicates that different types of smells exhibit distinct

levels of transferability between these languages. Specifically, the Complex Method demon-

strates promising results, with a respectable F1 score of 0.88 when evaluated within Java

itself and a commendable 0.59 when applied to C#. This suggests that the rule set for this

smell translates effectively between the two languages.

Furthermore, examining the Long Method and Insufficient Modularization, we observe

a similar pattern, with minor differences in effectiveness, ranging from 3% to 12%. These

findings imply that certain code smells have relatively consistent transferability between Java

and C#, while others may necessitate more targeted adjustments for optimal cross-language

detection. These insights elucidate the intricate relationship between different smells and

their transferability across programming languages. Understanding such nuances is crucial

for devising more effective and versatile transfer learning approaches in code analysis, ulti-

mately improving software quality and maintainability across diverse language ecosystems.

Finally, the outcomes for the Wide Hierarchy and Multifaceted Abstraction smells

were less promising. We obtained an F1-score of 0.01 as the result for Wide Hierarchy

detection between the two languages and encountered a difference of 9% in transferring the

knowledge of how to detect the Multifaceted Abstraction smell to the other language. These

results lead us to the conclusion that not all code smells are equally effective in detecting

harmful code between these two languages.

3https://opus-research.github.io/sbqs2023_harmful_code_transfer_learning/

28
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

Finding 1: The smells of Complex Method, Long Method, and Insufficient Modu-

larization demonstrate a high level of effectiveness in transferring knowledge between

C# and Java.

The varying degrees of transferability indicate that some smells may not generalize well

across different language contexts, underscoring the importance of carefully considering the

choice of code smells and their applicability when employing transfer learning techniques

for code analysis in such scenarios.

Table 3.7: F-Measure of Transfer Learning trained with multiple sample sizes

Samples = 4 Samples = 8 Samples = 16 Samples = 32

Java C# C++ Java C# C++ Java C# C++ Java C# C++

Java 46% 46% 1% 67% 52% 6% 77% 59% 10% 78% 56% 20%

Complex Method C# 36% 46% - 71% 58% 3% 79% 59% 14% 75% 60% 97%

C++ 48% 41% 31% 74% 54% 59% 16% 16% 35% 64% 46% 82%

Java 39% 56% - 27% 33% - 45% 57% - 71% 58% -

Long Method C# 40% 57% - 48% 61% - 63% 60% - 65% 56% -

C++ 13% 19% 67% 31% 45% 32% 29% 34% 71% 28% 34% 75%

Java 0% 1% 1% 0% 3% 0% 5% 2% 0% 12% - -

Wide Hierarchy C# 0% - 1% 0% 1% 1% 0% 0% 1% 0% 7% -

C++ 0% 1% 1% - - 100% - - 100% - - -

Java 18% - - 42% 31% - 73% 67% 68% 63% 72% 13%

Insufficient Modularization C# 30% 21% - 63% 62% - 71% 67% - 59% 73% 10%

C++ 34% 29% 16% 30% 53% 85% 22% 46% 93% 23% 47% 92%

Java 32% 2% - 56% 23% - 62% 37% 7% 61% 40% -

Multifaceted Abstraction C# 19% 14% 20% 25% 26% 23% 42% 34% 29% 46% 40% 25%

C++ 19% 34% 7% 32% 23% 83% 31% 25% 77% 33% 22% 88%

C++ and a low knowledge transferability

In the context of the C++ language, the observed poor transferability across all smell

types suggests that the application of transfer learning techniques for harmful code detec-

tion faces significant challenges in this language. The relatively low F1 scores highlight

3.2 Main Study Results 29

the difficulty in effectively adapting harmful code detection rules between C++ and other

programming languages.

For the Complex Method, the model achieved good results when training with C++ and

applying to Java (0.74), but not so good when applied to C# (0.54), when compared with the

0.97 when applied to itself. Moreover smell types Long Method, Multifaceted Abstraction,

and Insufficient Modularization, showed F1 scores lower than 0.5, which emphasizes the

complexity of these smells in C++ code. These findings indicate that the underlying struc-

tures and coding practices in C++ present unique nuances that hinder the straightforward

transfer of knowledge learned from other languages.

The results underscore the importance of considering language-specific characteristics

when applying transfer learning techniques in code analysis. As C++ is a language known

for its intricacies and versatility, it may require tailored approaches and specialized models

to achieve more accurate and effective harmful code detection.

Finding 2: C++ shows low knowledge transferability across languages, with Com-

plex Method and Insufficient Modularization achieving an F1 score of 0.5 with C# lan-

guage.

Further research and exploration of domain-specific features and transfer learning strate-

gies can aid in improving the transferability of knowledge across programming languages,

ultimately enhancing the overall performance of harmful code transfer learning approaches

in the context of C++.

3.2.2 Efficient Transfer Learning to Detect Harmful Code

Java high transferability with small samples

The observed behaviors from Tables 3.7 and 3.8 indicate that, for the majority of smells,

reaching a sample size of 32 or 64 is sufficient, as the gains from increasing to 128, 256, or

512 are not significantly substantial.

For the Complex Method, when comparing Java to C#, the behavior reaches its best

30
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

Table 3.8: F-Measure of Transfer Learning trained with multiple sample sizes

Samples = 64 Samples = 128 Samples = 256 Samples = 512

Java C# C++ Java C# C++ Java C# C++ Java C# C++

Java 75% 54% 33% 79% 56% 53% 85% 56% 43% 88% 59% 16%

Complex Method C# 75% 60% 12% 75% 67% 3% 78% 72% 8% 78% 84% 7%

C++ 66% 47% 90% 67% 45% 94% 23% 29% 95% 47% 42% 97%

Java 73% 57% 3% 69% 57% 3% 73% 56% - 77% 57% -

Long Method C# 70% 66% - 64% 60% - 59% 63% - - - -

C++ 35% 39% 84% 35% 38% 92% 36% 41% 90% - - -

Java - - - - - - - - - - - -

Wide Hierarchy C# - - - - - - - - - - - -

C++ - - - - - - - - - - - -

Java 69% 68% 10% 70% 71% 7% 76% 70% 3% 80% 74% 3%

Insufficient Modularization C# 53% 74% 22% 60% 76% 27% 65% 81% 26% 62% 84% 24%

C++ 25% 48% 95% 29% 52% 95% 34% 63% 96% 34% 61% 97%

Java 64% 40% 2% 70% 40% 2% 76% 40% 2% 83% 41% 7%

Multifaceted Abstraction C# 50% 44% 4% 49% 44% 8% 50% 50% 20% 42% 29% 98%

C++ 30% 23% 88% 36% 24% 92% 41% 29% 95% 2% - -

score with just 16 samples. However, when comparing Java to C++, the best performance is

achieved with 128 samples. In the case of Long Method, when comparing Java to C#, the

optimal score is achieved with 32 samples, while in the comparison between Java and C++,

64 samples yield the best result. Regarding Wide Hierarchy, the comparison of Java to C#

shows that 8 samples are sufficient for the best performance. In the context of Insufficient

Modularization, when comparing Java to C#, a sub-optimal performance is reached with 32

samples (72% compared to the optimal 74%). In the comparison between Java and C++, the

best case is achieved with 16 samples. Lastly, for Multifaceted Abstraction, the best case is

observed when comparing Java to C# with 64 samples. However, when training with C++, a

sub-optimal case is encountered with only 8 samples.

Overall, these findings provide valuable insights into the optimal sample sizes for each

smell type when applying transfer learning to detect harmful codes in the Java language.

Properly selecting sample sizes can lead to efficient and effective harmful code detection,

ultimately enhancing software quality and maintainability.

3.2 Main Study Results 31

Finding 3: For most harmful code trained in the Java language, sample sizes of 32

or 64 are sufficient for effective transfer learning, with minimal gains observed beyond

128 samples.

This finding underscores the efficiency of transfer learning for detecting harmful code

trained in the Java language. It demonstrates that developers and researchers can achieve

effective results with relatively modest sample sizes, particularly at 32 or 64 samples. Fur-

thermore, the observation of diminishing returns beyond 128 samples suggests that investing

in substantially larger datasets may not yield substantial improvements in detection accuracy.

This insight offers practical guidance for optimizing resource allocation in code smell detec-

tion efforts, emphasizing the potential benefits of focused data collection and model training

with moderate-sized datasets. Thus, our recommendation is to not go over 64 samples.

Harmful code between C# and C++

The Tables 3.7 and 3.8 results present compelling evidence of successful knowledge

transfer between the C++ and C# languages for most code smells, demonstrating the potential

for cross-language applicability in code smell detection.

An intriguing observation from the results is that a sample size of 32 already yields

promising outcomes for most of the analyzed smells. This highlights the efficiency of trans-

fer learning even with a relatively modest amount of data, which can be advantageous when

dealing with limited resources or large-scale software projects. Nevertheless, to achieve

optimal performance, larger sample sizes are necessary, as evidenced by the Multifaceted

Abstraction smell, where a sample size of 512 was required to achieve favorable results.

This discrepancy in sample size requirements underlines the importance of tailoring the

transfer learning approach based on the specific code smell and language combination,

ensuring more accurate and efficient detection.

Finding 4: Effective knowledge transfer between most code smells in C++ and C#

languages using transfer learning, and optimal performance often necessitates larger

32
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

sample sizes, particularly observed in the case of Multifaceted Abstraction.

These findings have significant implications for practitioners and researchers in software

engineering. Understanding the transferability of knowledge between programming lan-

guages can guide the development of more effective code analysis tools that can be applied

across diverse language ecosystems. Moreover, the insights on sample size requirements

shed light on the trade-offs between computational resources and detection accuracy, aid-

ing in the optimization of transfer learning techniques for code smell detection in real-world

software projects. Overall, this study contributes valuable knowledge towards advancing

transfer learning applications in software engineering and promoting better code quality and

maintainability.

3.3 Limitations and Threats to Validity

3.3.1 Construct and Internal Validity.

The influence of accurate identification, definition, and the choice of code smell detection

techniques and thresholds on the results must be considered. To mitigate this influence, we

based our detection techniques and thresholds on well-established previous work [PBD+18,

ACA+16, KSV+22]. Additionally, potential issues in the study, such as data collection,

bug detection, the selection of transfer algorithms, and the chosen programming languages,

were addressed by aligning our choices with relevant related research [FAMZM16,SELS19b,

AAB+21, DSPPDL21, FAZ17, BUC+20, BUC+23, UBO+20, FBF+20, SZZ05, Rod20]. By

building upon established methodologies and basing our decisions on existing literature, we

aimed to enhance the robustness and validity of our study findings.

Our methodology encountered limitations in executing the ablation study for our percep-

tron model. Our initial intention was to perform a comprehensive analysis by selectively

modifying and evaluating different model components. However, practical constraints, in-

cluding having only one labeled variable and tokens as training input, along with resource

limitations, posed challenges to implementing this aspect of the study. To address this limi-

tation, we opted for an ablation approach related to the sample size, as detailed in RQ2. Al-

3.4 Main Study Conclusion 33

though we maintain that our research findings hold value within this context, it’s important

to acknowledge the absence of a complete ablation study as a limitation when interpreting

the broader implications of our results.

3.3.2 Conclusion and External Validity.

In addition to the challenges related to the ablation study (internal), it is important to

acknowledge that our research also lacks a baseline comparison (external), which could have

provided a valuable reference point for evaluating the effectiveness of our transfer learning

approach. Furthermore, we acknowledge that the absence of similar studies for comparison is

due to the relatively recent emergence of the harmful code detection domain and the novelty

of applying transfer learning to this field. We addressed this limitation by making the model

between the same languages (e.g., C++ vs C++, Java vs Java) as a way for comparing the

cross-language models.

It is crucial to ensure that the observed performance differences between languages and

code smells selected are not due to chance or random variations. We used known approaches

for the buggy and smelly data collected in our study [OSO+19,OSO+18,SOG+17,FBF+20,

Rod20].

The specific selection of programming languages, code smells, and datasets containing

buggy snippets used in this work may limit the generalizability of the results to other software

systems or environments. To mitigate this concern, future research can explore a broader

range of programming languages, code smells, and datasets, ensuring a more comprehensive

evaluation of transfer learning’s applicability across different scenarios. Additionally, con-

ducting comparative studies with varying datasets and real-world software projects can help

confirm the broader relevance and utility of our findings beyond the specific choices made in

this study.

3.4 Main Study Conclusion

In conclusion, our study delved into the application of transfer learning for harmful code

detection across multiple programming languages, with a focus on Java, C#, and C++. The

findings revealed promising transferability of knowledge between Java and C# in the pres-

34
CHAPTER 3. IS YOUR CODE HARMFUL TOO? UNDERSTANDING HARMFUL

CODE THROUGH TRANSFER LEARNING

ence of various code smell types, while C++ exhibited more challenging transferability. No-

tably, a sample size of 32 demonstrated favorable outcomes for most smells, underscoring

the efficiency of transfer learning even with limited data. However, for certain situations,

achieving optimal performance necessitated larger sample sizes, as evident in the case of

Multifaceted Abstraction.

In addition to the findings related to transfer learning’s effectiveness and sample size re-

quirements, our study contributes to the broader field of software engineering by addressing

a significant research gap. While prior research has explored automatic approaches for de-

tecting code smells and understanding harmful code, our study is among the first to assess

the application of transfer learning for detecting harmful code using knowledge from other

software systems.

These insights provide valuable guidance for practitioners and researchers in software

engineering, emphasizing the importance of selecting appropriate sample sizes and under-

standing the nuances of transfer learning for more accurate and effective harmful code de-

tection across diverse language ecosystems. By harnessing transfer learning’s potential and

optimizing its application, we can enhance software quality and maintainability, contributing

to the advancement of code analysis techniques and fostering better software development

practices.

Chapter 4

Do Bugs follow the bad smells?

Another important investigation of our work is whether bugs are directly involved with

code smell snippets and if this relation can be detected. To add more depth to our study, in

this chapter, we presented the paper "Bugs follow the bad smells? The relationship between

bugs and code smells, a transfer learning approach.".

This research is centered on creating a model that was trained using an extensive dataset

of code smells in three distinct programming languages. Subsequently, we assessed its per-

formance using data that contained software bugs. Simultaneously, we conducted a parallel

investigation where we trained a model using bug-related data and subjected it to testing

involving code smells. This exploration had the potential to advance our understanding of

software vulnerabilities and improve our strategies for developing more resilient and main-

tainable software systems. Moreover, we aimed to grasp the transferability of knowledge

across various programming languages.

The findings of our study indicated that models trained using code smells were not well-

suited for the detection of bugs. Conversely, models trained with bug-related data exhibited

satisfactory results in identifying code smells, although there was room for improvement.

Considering the potentially challenging and time-consuming nature of training models to

identify bugs using code smells, our study offered valuable guidance for researchers in terms

of resource allocation and focus. These results shed light on the optimal utilization of time

and resources within the research community.

35

36 CHAPTER 4. DO BUGS FOLLOW THE BAD SMELLS?

4.1 Research Study Design

Previous studies have suggested using certain quality attributes to predict if code parts

might have bugs [GZNM10, BCDL+12]. Nevertheless, this methodology, as highlighted by

Palomba et al. [PZF+16], overlooks the consideration of code smells. Intriguingly, these

code smells can be assessed using the same attributes, leading to a noteworthy overlap be-

tween code smells and bugs. This intersection sheds light on their inherent similarity and in-

terrelationship. Furthermore, within the same investigation, the researchers devised a model

based on code smells to detect bugs. Their findings underscore that incorporating the sever-

ity of code smells can notably enhance the accuracy of bug prediction. Given this insight,

our objective is to employ code snippets linked to code smells in training a transfer learning

model for bug detection. Simultaneously, we aim to utilize code snippets containing bugs to

train a model for the detection of code smells.

In addressing this, we must initially establish the methodology that will guide our process

of detecting the presence of code smells and bugs.

4.1.1 Metrics and Code smells

First, for the purpose of detecting code smells, we employ a methodology used by many

previous studies [UBO+20, UBC+21, BUC+20]. This methodology involves the utilization

of software metrics, which are applied across a range of detection strategies. The culmi-

nation of this process leads to determining the presence or absence of a code smell. These

software metrics are collected using the Understand 1 framework, which is applicable to the

C++, C#, and Java programming languages, the use of this framework is well established in

the community [R+21, GSKJ21, BSC+20]. With these metrics in hand, we proceed to lever-

age the well-known code smell detection strategies outlined by Sharma [SS18] within the

DesignateJava tool, which are reported in Table 4.1. This methodology involves the utiliza-

tion of software metrics, which can be seen in Table 4.2, which are applied across a range of

detection strategies. The culmination of this process leads to a conclusive determination re-

garding the presence (smelly) or absence (non-smelly) of a code smell. In our investigation,

we address the following code smells:

1https://scitools.com/

4.1 Research Study Design 37

Table 4.1: Understand Software Metrics

Name Abbrev. SciTools Understand Granularity

Lack of Cohesion in Methods LCOM PercentLackOfCohesion Class

Number of Fields NOF CountDecClassVariable + Class

CountDeclInstanceVariable

Number of Methods NOM CountDeclMethod Class

Number of Public Methods NOPM CountDeclMethodPublic Class

Weighted Methods per Class WMPC SumCyclomaticModified Class

Number of Children NC CountClassDerived Class

Lines of Code LOC CountLine Class/Method

Cyclomatic Complexity CC Cyclomatic Method

• Multifaceted Abstraction: Class or module attempts to handle multiple responsibili-

ties, violating the principle of single responsibility. It results in tangled and convoluted

code, making maintenance and understanding challenging.

• Insufficient Modularization: Code lacks proper organization into separate modules

or functions. It can lead to tangled dependencies, reduced reusability, and difficulty in

tracking down issues.

• Wide Hierarchy: Excessive depth or breadth of class inheritance hierarchies. It can

lead to intricate relationships and increased complexity, making the code harder to

modify and understand.

• Long Method: When a method becomes excessively lengthy, it becomes a breeding

ground for confusion and error. This code smell can hinder code readability, mainte-

nance, and lead to difficulties in debugging.

• Complex Method: When a method contains intricate logic and a multitude of branch-

ing conditions. Such complexity can make the code challenging to understand, test,

38 CHAPTER 4. DO BUGS FOLLOW THE BAD SMELLS?

and modify.

Table 4.2: Detection Rules for the Code Smells

Name Granularity Type Metric Logical Op.

LCOM >= 0.8

Multifaceted Abstraction Class Design NOF >= 7 AND

NOM >= 7

NOPM >= 20

Insufficient Modularization Class Design NOM >= 30 OR

WMC >= 100

Wide Hierarchy Class Design NC >= 10 N/A

Long Method Method Implementation LOC >= 100 N/A

Complex Method Method Implementation CC >= 8 N/A

4.1.2 Bug detection

In order to detect the presence of a bug, we applied the methodology that has been

highly used by recent studies [Rod20,FBF+20,KVGS11,PBDP+18]. This approach utilizes

a GitHub macro found within commit messages specifically addressing bug fixes. These

macros typically encompass keywords such as "Fixes", "Fixed", "Fix", "Closes", "Closed",

or "Close", followed by a # sign and the associated issue or pull request number, as exempli-

fied by "Fixes #2023". The macro is designed to automatically close or merge the relevant

issue or pull request. By analyzing the list of labels associated with these issues or pull

requests, we can verify if they are marked with the ’bug’ or ’defect’ label, signifying their

classification as bug-fixing instances. Moreover, to collect the code snippets related to the

bug, we analyze the diff of the bug-fixing commit with its parent. By doing that, we are

able to collect the code removed or modified, which we call a buggy code. This systematic

methodology ensures a comprehensive and reliable compilation of bug-related data for our

study.

4.1 Research Study Design 39

4.1.3 Model evaluation

We relied on the Goal Question Metric template [WRH+12] to describe our study goal

as follows: analyze a transfer learning model of smelly and buggy code snippets; for the

purpose of detect buggy and smelly code; concerning software metrics and detection rules;

from the viewpoint of software developers when performing code changes; in the context

of twenty-three distinct open-source systems, spanning across three diverse programming

languages. We introduce our research questions (RQs) as follows.

RQ1: How effective is transfer learning to detect bugs from code smells?

RQ2: How effective is transfer learning to detect code smells from bugs?

Our first research question seeks to explore the effectiveness of utilizing transfer learning

as a means to identify software bugs that originate from code smells. Our goal here is to

observe how known code smells can be useful to find new bugs in the system. In order

to answer this research question, we need to establish an oracle capable of identifying the

existence of code smells within the source code of the analyzed software projects. Moreover,

we applied the methodology of Section 4.1.1 to generate this oracle, which is composed by

open-source projects from the three different programming languages. Finally, by employing

performance evaluation metrics such as precision, recall, and F-measure, our study aims to

quantify the capacity of transfer learning techniques to detect bugs that emerge due to the

existing code smells from our database.

Conversely, our second research question aims to understand the inverse relation, to

observe how effective a model is, when trained with bug-related data from three different

programming languages, to detect the presence of code smells. To address this research

question, we applied the methodology of Section 4.1.2 to generate our database of buggy

data.

We will analyze the results for this RQ using the same method as the first research ques-

tion. We think that the identification of code smells (or bugs) that stem from bugs (or code

smells) is important for enhancing code quality and maintaining a robust software ecosystem.

A transfer learning approach that effectively tackles this relationship could revolutionize the

bug detection process, leading to more comprehensive and nuanced resolution strategies.

Furthermore, our findings will serve as a valuable compass for practitioners and researchers,

guiding them in the exploration of transfer learning methodologies for the task of identifying

40 CHAPTER 4. DO BUGS FOLLOW THE BAD SMELLS?

quality-related attributes across languages and domains.

4.2 Research Results

Within this section, we outline the results and principal outcomes of our study.

4.2.1 Effective Transfer Learning for Detecting Bugs

In this research question, our primary objective is to evaluate the effectiveness of transfer

learning, for that purpose, we utilized the Perceptron model to detect the presence of bugs.

Our approach centers on training separate models for each programming language, utilizing

code snippets associated with code smells from training datasets. These code snippets are

selected from commits that contain code smells. This examination aims to determine the

model’s capability to identify bugs from one language in the code of another, enhancing bug

detection by leveraging insights from code smell analysis. Thus, Table 4.4 shows the Ac-

curacy, Precision, Recall, and F-Measure for each programming language evaluated. From

the table, we can infer that all models have shown poor results. However, within those re-

sults, we can see that the C++ model has the highest accuracy, precision, recall, and F1 score

among the three programming languages. It demonstrates strong performance in correctly

classifying and predicting outcomes in comparison to the models trained on Java and C#.

The C# model, on the other hand, has the lowest performance in terms of these metrics. This

suggests that the C++ model might be better suited for this classification task when compared

to the Java and C# models.

Concerning the effectiveness of the model, Table 4.3 illustrates F-measure percentages

across the following programming languages: Java, C#, and C++. This metric serves as an

indicator of effectiveness in the classification tasks. Notably, the F-measure results exhibit

significant variations among the languages. The highest F-measure of 44%, indicated by a

blue background, is achieved by C++, reflecting its superior performance. On the other hand,

C# showcases the lowest F-measure of 8%, emphasized with a pink background, signifying

the weakest outcome. Meanwhile, Java falls in between with an F-measure of 9%. The color-

coded highlighting effectively draws attention to the best and worst performances for quick

visual assessment. This table sheds light on the effectiveness of the F-measure across distinct

4.2 Research Results 41

programming languages, showcasing C++ as the standout performer and C# as the one with

comparatively weaker results. However, the results are not nearly optimal, demonstrating

that code smells are effective in detecting the presence of bugs. Finally, the ’-’ means the

model was not able to run for that model because of a correlation higher than 0.75 in the

data.

Table 4.3: Results for Model Trained with Code Smells and Tested with Bugs

Java C# C++

Java 9% 26% -

C# 8% 21% -

C++ 26% 44% -

Table 4.4: Accuracy, precision, recall, and F-measure for the bug correctly classified by the

prediction model trained with smells

Model Language Accuracy Precision Recall F1

Java 0.195 0.241 0.283 0.260

C# 0.187 0.204 0.216 0.210

C++ 0.291 0.364 0.558 0.440

Table 4.5: Accuracy, precision, recall, and F-measure for the smell correctly classified by

the prediction model trained with bugs

Model Language Accuracy Precision Recall F1

Java 0.500 0.500 1.000 0.666

C# 0.500 0.500 1.000 0.666

C++ 0.500 0.500 1.000 0.666

Finding 5: Code smells are not suited, in the context of transfer learning models, for

the detection of bugs.

42 CHAPTER 4. DO BUGS FOLLOW THE BAD SMELLS?

Figure 4.1: Confusion Matrix of the models trained with smells and tested with bugs

4.2 Research Results 43

Figure 4.1 presents the results of our transfer learning model for bug detection. The

confusion matrices provide a detailed breakdown of the model’s performance across different

programming languages. In general, we can see in the matrices that the number of FP and

FN are bigger except for the C++ vs C#. In other words, the model fails to identify actual

positive instances (higher FN) while also incorrectly labeling negative instances as positive

(higher FP). Finally, Tables 4.4 and 4.5 show the results for the accuracy, precision, recall,

and f-measure for the results of our trained model. Consistently uniform values were noticed

across all languages. In an effort to decipher this phenomenon, a closer examination of

our dataset revealed a crucial insight. The application of a correlation threshold, removing

columns with coefficients exceeding 0.75, inadvertently resulted in a reduced dataset size.

As a consequence, the models, regardless of the programming language, were operating with

a substantially similar set of data.

4.2.2 Effective Transfer Learning for Detecting Code Smells

Table 4.6: Results for Model Trained with Bugs and Tested with Code Smells

Java C# C++

Java 65% 64% 67%

C# 67% 63% 67%

C++ 67% 64% 67%

In this research question, the outcomes stemming from training a transfer model with

bug-related data to identify code smells offer intriguing insights. Our methodology involves

utilizing bug-related code snippets from various programming languages to train a transfer

learning model using the Perceptron algorithm. The trained model is subsequently evaluated

for its ability to detect code smells within these code snippets. In Table 4.5, we can observe

that all three models, trained on different programming languages (Java, C#, and C++), ex-

hibit the exact same performance across all metrics. The accuracy, precision, recall, and F1

score are consistent and identical for all models. This suggests that the models are making

predictions with complete accuracy and precision, achieving a recall of 100%, and an F1

44 CHAPTER 4. DO BUGS FOLLOW THE BAD SMELLS?

score of 0.6.

Regarding the effectiveness, the results, presented in Table 4.6, offer a comparative view

of performance metrics, likely indicating success rates, across three programming languages:

Java, C#, and C++. Highlighted cells with cyan backgrounds suggest the highest success

rates, representing the best outcomes. Notably, the 67% success rate is recurrent, observed

in multiple scenarios: where Java and C# intersect, as well as where C# and C++ intersect.

Conversely, the magenta cell, indicating a 63% success rate, could signify the weakest per-

formance among the considered cases. The remaining values fall within the mid-range of

around 64-65%. In summary, we can observe that the models presented good results when

compared to the baseline (e.g., Java vs Java, C++ vs C++).

Finding 6: Code snippets with bugs are good predictors, in the context of transfer

learning models, for the detection of code smells.

The outcomes of our transfer learning model for code smell detection are displayed in

Figure 4.2. Through confusion matrices, a comprehensive breakdown of the model’s perfor-

mance across various programming languages is depicted. In the matrices, we can see that

most cases involved with C++ language had a small sample because the dataset with bugs of

C++ only had 18 cases. Moreover, we can see that in this model the results are better, since

we can see a higher number of True positive cases, however, the number of false positives is

still high.

General Finding: Transfer learning models trained with code smells are poorly suited

to detect bugs, while the ones trained with bugs are better suited to detect code smells.

However, both models still need improvements.

4.3 Limitations and Threats to Validity

4.3.1 Construct and Internal Validity.

Considering the significant impact of accurately identifying, defining, and selecting code

smell detection techniques and thresholds on the research outcomes, it becomes imperative to

4.3 Limitations and Threats to Validity 45

Figure 4.2: Confusion Matrix of the models trained with bugs and tested with code smells

address this issue. Thus, to mitigate this potential influence, we based our detection methods

and thresholds on well-established prior studies [PBD+18, BUC+20, UBO+20, UBC+21].

Furthermore, we proactively tackled potential study-related challenges encompassing data

collection, the choice of transfer algorithms, and programming language selection by align-

ing our decisions with pertinent existing research [FAMZM16, SELS19b, AAB+21, DSP-

PDL21, FAZ17]. Through the utilization of established methodologies and leveraging in-

sights from the broader literature, we aimed to fortify the reliability and validity of our

46 CHAPTER 4. DO BUGS FOLLOW THE BAD SMELLS?

study’s outcomes.

4.3.2 Conclusion and External Validity.

Mitigating the potential impact of chance or random fluctuations is essential in assess-

ing the performance disparities across chosen programming languages However, the spe-

cific languages, code smell types, and datasets featuring buggy code snippets utilized in

this study might restrict the broader applicability of findings to different software con-

texts. Furthermore, the efficacy of large datasets without a comprehensive understanding

of project attributes in constructing accurate oracles is debatable, as noted by existing re-

search [HGA+17, HGFC18, dMOU+22], concerning the potential limitations of solely in-

creasing dataset sizes to enhance effectiveness.

4.4 Research Conclusion

In conclusion, the exploration of transfer learning between bugs and code smells repre-

sents a not very effective avenue within the realm of software engineering. The interplay

between these two crucial aspects of software quality and maintainability offers valuable in-

sights into the evolution of software systems. First, smells are not very suited to train models

to detect bugs, and second, bugs work better to train models to detect code smells.

Moreover, our study has highlighted the ability of code smells to detect bugs in software

development. Code smells serve as precursors to potential issues, and addressing them can

mitigate the emergence of bugs, enhancing overall software quality. Conversely, analyzing

bugs provides insights into the real-world implications of poor code quality. By understand-

ing and leveraging this connection, developers can create more reliable and efficient software

systems, ultimately elevating the user experience and long-term maintainability.

Chapter 5

Conclusion & Future Work

In this dissertation, we study how transfer learning models behave when trained with

bugs and code smells, which were used to train a harmful code model. With that said, we

present the contributions of our work:

Contribution 1: A transfer learning model trained with a dataset of five code smells in

three different programming languages. This model can be employed in various types of

knowledge transfer studies from code smells to other quality attributes of systems.

Contribution 2: A transfer learning model trained with a dataset of bugs in three differ-

ent programming languages. Similar to the first model, this one can also be utilized in other

studies in the realm of software quality or defects.

Contribution 3: A transfer learning model trained with a dataset of harmful code in

three different programming languages. This model opens doors for new studies in the area

of harmful code, allowing researchers to explore this field without exerting significant effort

in training models.

Contribution 4: A set of findings related to harmful code. Within this contribution, we

have two smaller contributions:

• Contribution 4.1: How efficient are the harmful code models across three programming

languages;

• Contribution 4.2: How effective are the harmful code models, and what is the optimal

sample size to train a harmful code model.

Lastly, we have Contribution 5: A set of findings related to the knowledge transfer

47

48 CHAPTER 5. CONCLUSION & FUTURE WORK

between bugs and code smells. Here, we uncover that a model trained with code smells is

not very efficient at detecting bugs, neither within the same language nor across different

languages. Conversely, models trained with bugs yield better results, illuminating the path

for future work.

Envisioning potential advancements of these studies, our objective is to qualitatively in-

vestigate cases where harmful code was successfully transferred across languages, aiming to

validate with developers whether they can make such inferences manually and confirm the

instances identified by the model.

Bibliography

[AAB+21] Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimi-

tile, and Martina Iammarino. Transfer learning for just-in-time design smells

prediction using temporal convolutional networks. ICSOFT 2021, pages 310–

317, 2021.

[ACA+16] Lucas Amorim, Evandro Costa, Nuno Antunes, Baldoino Fonseca, and Már-

cio Ribeiro. Experience report: Evaluating the effectiveness of decision trees

for detecting code smells. ISSRE 2015, 2016.

[BCDL+12] Mario Luca Bernardi, Gerardo Canfora, Giuseppe A Di Lucca, Massimiliano

Di Penta, and Damiano Distante. Do developers introduce bugs when they

do not communicate? the case of eclipse and mozilla. In 2012 16th Euro-

pean Conference on Software Maintenance and Reengineering, pages 139–

148. IEEE, 2012.

[BHA14] Diksha Behl, Sahil Handa, and Anuja Arora. A bug mining tool to iden-

tify and analyze security bugs using naive bayes and tf-idf. In 2014 Inter-

national Conference on Reliability Optimization and Information Technology

(ICROIT), pages 294–299, 2014.

[BSC+20] Ana Carla Bibiano, Vinicius Soares, Daniel Coutinho, Eduardo Fernandes,

João Lucas Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia,

Rohit Gheyi, Baldoino Fonseca, et al. How does incomplete composite refac-

toring affect internal quality attributes? In Proceedings of the 28th Interna-

tional Conference on Program Comprehension, pages 149–159, 2020.

49

50 BIBLIOGRAPHY

[BUC+20] Caio Barbosa, Anderson Uchôa, Daniel Coutinho, Filipe Falcão, Hyago Brito,

Guilherme Amaral, Vinicius Soares, Alessandro Garcia, Baldoino Fonseca,

Marcio Ribeiro, et al. Revealing the social aspects of design decay: A retro-

spective study of pull requests. In Proceedings of the XXXIV Brazilian Sym-

posium on Software Engineering, pages 364–373, 2020.

[BUC+23] Caio Barbosa, Anderson Uchôa, Daniel Coutinho, Wesley KG Assunçao,

Anderson Oliveira, Alessandro Garcia, Baldoino Fonseca, Matheus Rabelo,

José Eric Coelho, Eryka Carvalho, et al. Beyond the code: Investigating the

effects of pull request conversations on design decay. 2023.

[CKK+18] Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok Mishra,

and Cagatay Catal. Empirical analysis of change metrics for software fault

prediction. Computers & Electrical Engineering, 67:15–24, 2018.

[CSCT15] Qimeng Cao, Qing Sun, Qinghua Cao, and Huobin Tan. Software defect pre-

diction via transfer learning based neural network. In 2015 First International

Conference on Reliability Systems Engineering (ICRSE), pages 1–10, 2015.

[dMOU+22] Rafael de Mello, Roberto Oliveira, Anderson Uchôa, Willian Oizumi,

Alessandro Garcia, Baldoino Fonseca, and Fernanda de Mello. Recommen-

dations for developers identifying code smells. IEEE Software, 40(2):90–98,

2022.

[DSPPDL21] Manuel De Stefano, Fabiano Pecorelli, Fabio Palomba, and Andrea De Lucia.

Comparing within- and cross-project machine learning algorithms for code

smell detection. MaLTESQuE ’21, 2021.

[dSR20] André Moabson da Silva Ramos. Uma aplicação do aprendizado por transfer-

ência na detecção de code smells. 2020.

[DZYX20] Xiaoting Du, Zenghui Zhou, Beibei Yin, and Guanping Xiao. Cross-project

bug type prediction based on transfer learning. Software Quality Journal,

28:39–57, 2020.

BIBLIOGRAPHY 51

[FAMZM16] Francesca Fontana Arcelli, Mika V. Mäntylä, Marco Zanoni, and Alessandro

Marino. Comparing and experimenting machine learning techniques for code

smell detection. Empirical Software Engineering 21, 2016.

[FAZ17] Francesca Fontana Arcelli and Marco Zanoni. Code smell severity classifica-

tion using machine learning techniques. Knowledge-Based Systems, 2017.

[FBF+20] Filipe Falcão, Caio Barbosa, Baldoino Fonseca, Alessandro Garcia, Márcio

Ribeiro, and Rohit Gheyi. On relating technical, social factors, and the in-

troduction of bugs. In 2020 IEEE 27th International Conference on Soft-

ware Analysis, Evolution and Reengineering (SANER), pages 378–388. IEEE,

2020.

[GSKJ21] Aakanshi Gupta, Bharti Suri, Vijay Kumar, and Pragyashree Jain. Extract-

ing rules for vulnerabilities detection with static metrics using machine learn-

ing. International Journal of System Assurance Engineering and Manage-

ment, 12:65–76, 2021.

[GZNM10] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan

Murphy. Characterizing and predicting which bugs get fixed: an empirical

study of microsoft windows. In Proceedings of the 32nd ACM/IEEE Interna-

tional Conference on Software Engineering-Volume 1, pages 495–504, 2010.

[HGA+17] Mario Hozano, Alessandro Garcia, Nuno Antunes, Baldoino Fonseca, and

Evandro Costa. Smells are sensitive to developers! on the efficiency of (un)

guided customized detection. In 2017 IEEE/ACM 25th International Confer-

ence on Program Comprehension (ICPC), pages 110–120. IEEE, 2017.

[HGFC18] Mário Hozano, Alessandro Garcia, Baldoino Fonseca, and Evandro Costa.

Are you smelling it? investigating how similar developers detect code smells.

Information and Software Technology, 93:130–146, 2018.

[Kan03] Laveen N Kanal. Perceptron. In Encyclopedia of Computer Science, pages

1383–1385. 2003.

52 BIBLIOGRAPHY

[Kau20] Amandeep Kaur. A systematic literature review on empirical analysis of the

relationship between code smells and software quality attributes. Archives of

Computational Methods in Engineering, 27:1267–1296, 2020.

[KGB+16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel

M. German, and Daniela Damian. An in-depth study of the promises and per-

ils of mining github. Empirical Software Engineering, 21:2035–2071, 2016.

[KM19] Rahul Krishna and Tim Menzies. Bellwethers: A baseline method for transfer

learning. IEEE Transactions on Software Engineering, 45:1081–1105, 2019.

[KSV+22] Aleksandar Kovacevic, Jelena Slivka, Dragan Vidakovic, Katarina-Glorija

Grujic, Nikola Luburic, Simona Prokic, and Goran Sladic. Automatic de-

tection of long method and god class code smells through neural source code

embeddings. Expert Systems With Applications 204, 2022.

[KVGS11] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc, and Houari

Sahraoui. Bdtex: A gqm-based bayesian approach for the detection of an-

tipatterns. Journal of Systems and Software, 84(4):559–572, 2011.

[LBT+21] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, and

Francesca Arcelli Fontana. A systematic literature review on technical debt

prioritization: Strategies, processes, factors, and tools. Journal of Systems

and Software, 171:110827, 2021.

[LLC22] Wen Li, Li Li, and Haipeng Cai. On the vulnerability proneness of mul-

tilingual code. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software En-

gineering, pages 847–859, 2022.

[LWQ17] Jiaming Liu, Yali Wang, and Yu Qiao. Sparse deep transfer learning for convo-

lutional neural network. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 31, 2017.

[Mar99] Martin Fowler. Refactoring: improving the design of existing code. Addison-

Wesley, 1999.

BIBLIOGRAPHY 53

[MHD97] Michael J Muller, Jean Hallewell Haslwanter, and Tom Dayton. Participatory

practices in the software lifecycle. In Handbook of human-computer interac-

tion, pages 255–297. Elsevier, 1997.

[Mok03] Heng Ngee Mok. From Java to C# A Java Developer’s Guide. Addison-

Wesley Longman Publishing Co., Inc., 2003.

[NDCK19] Edmilson Campos Neto, Daniel Alencar Da Costa, and Uirá Kulesza. Revis-

iting and improving szz implementations. In 2019 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM),

pages 1–12. IEEE, 2019.

[NLWS20] Shuteng Niu, Yongxin Liu, Jian Wang, and Houbing Song. A decade survey of

transfer learning (2010–2020). IEEE Transactions on Artificial Intelligence,

1(2):151–166, 2020.

[NWG12] Andrew Neitsch, Kenny Wong, and Michael W. Godfrey. Build system issues

in multilanguage software. In 2012 28th IEEE International Conference on

Software Maintenance (ICSM), pages 140–149, 2012.

[OGC+14] W. Oizumi, A. Garcia, T. Colanzi, M. Ferreira, and A. Staa. When code-

anomaly agglomerations represent architectural problems? An exploratory

study. In Proceedings of the 2014 Brazilian Symposium on Software Engi-

neering (SBES); Maceio, Brazil, pages 91–100, 2014.

[OGC+15] W Oizumi, A Garcia, T Colanzi, A Staa, and M Ferreira. On the relation-

ship of code-anomaly agglomerations and architectural problems. Journal of

Software Engineering Research and Development, 3(1):1–22, 2015.

[OGS+14] W. Oizumi, A. Garcia, L. Sousa, D. Albuquerque, and D. Cedrim. Towards

the synthesis of architecturally-relevant code anomalies. In Proceedings of the

11th Workshop on Software Modularity; Maceio, Brazil, pages 39–52, 2014.

[OGS+16] W Oizumi, A Garcia, L Sousa, B Cafeo, and Y Zhao. Code anomalies flock

together: Exploring code anomaly agglomerations for locating design prob-

54 BIBLIOGRAPHY

lems. In The 38th International Conference on Software Engineering; USA,

2016.

[OSO+18] W. Oizumi, L. Sousa, A. Oliveira, A. Garcia, O. Agbachi, R. Oliveira, and

C. Lucena. On the identification of design problems in stinky code: experi-

ences and tool support. J. Braz. Comp. Soc., 24(1):13:1–13:30, 2018.

[OSO+19] W. Oizumi, L. Sousa, A. Oliveira, L. Carvalho, A. Garcia, T. Colanzi, and

R. Oliveira. On the density and diversity of degradation symptoms in refac-

tored classes: A multi-case study. In IEEE 30th International Symposium on

Software Reliability Engineering (ISSRE), pages 346–357, 2019.

[PA21] Mrutyunjaya Panda and Ahmad Taher Azar. Hybrid multi-objective grey wolf

search optimizer and machine learning approach for software bug prediction.

In Handbook of Research on Modeling, Analysis, and Control of Complex

Systems, pages 314–337. IGI Global, 2021.

[PANVA09] Saeed Parsa, Somaye Arabi Nare, and Mojtaba Vahidi-Asl. Early bug detec-

tion in deployed software using support vector machine. In Hamid Sarbazi-

Azad, Behrooz Parhami, Seyed-Ghassem Miremadi, and Shaahin Hessabi,

editors, Advances in Computer Science and Engineering, pages 518–525,

Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[PBD+18] Fabio Palomba, Gabriele Bavota, Massimiliano DiPenta, Fausto Fasano,

Rocco Oliveto, and Andrea De Lucia. On the diffuseness and the impact on

maintainability of code smells: a large scale empirical investigation. EMSE

2018, 2018.

[PBDP+18] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano,

Rocco Oliveto, and Andrea De Lucia. On the diffuseness and the impact

on maintainability of code smells: a large scale empirical investigation. In

Proceedings of the 40th International Conference on Software Engineering,

pages 482–482, 2018.

BIBLIOGRAPHY 55

[PZAF+19] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lu-

cia, and Rocco Oliveto. Toward a smell-aware bug prediction model. IEEE

Transactions on Software Engineering, 45(2):194–218, 2019.

[PZF+16] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia,

and Rocco Oliveto. Smells like teen spirit: Improving bug prediction perfor-

mance using the intensity of code smells. In 2016 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME), pages 244–255.

IEEE, 2016.

[R+21] André Moabson da Silva Ramos et al. Uma aplicação do aprendizado por

transferência na detecção de code smells. 2021.

[Rod20] Rodrigo Lima, Jairo Souza, Baldoino Fonseca, Leopoldo Teixeira, Rohit

Gheyi, Márcio Ribeiro, Alessandro Gracia, Rafael de Mello. Understanding

and detecting harmful code. SBES ’20, 2020.

[RPTU84] Chittoor V Ramamoorthy, Atul Prakash, Wei-Tek Tsai, and Yutaka Usuda.

Software engineering: problems and perspectives. Computer, 17(10):191–

209, 1984.

[Rup10] Nayan B Ruparelia. Software development lifecycle models. ACM SIGSOFT

Software Engineering Notes, 35(3):8–13, 2010.

[SELS19a] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis.

On the feasibility of transfer-learning code smells using deep learning. arXiv

preprint arXiv:1904.03031, 2019.

[SELS19b] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis.

On the feasibility of transfer-learning code smells using deep learning. ACM

Transactions on Software Engineering and Methodology, 1, 2019.

[SELS21] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis.

Code smell detection by deep direct-learning and transfer-learning. Journal

of Systems and Software, 176:110936, 2021.

56 BIBLIOGRAPHY

[SG13] Daniela Steidl and Nils Göde. Feature-based detection of bugs in clones. In

2013 7th International Workshop on Software Clones (IWSC), pages 76–82,

2013.

[SJP09] Qiang Yang Sinno Jialin Pan. A survey on transfer learning. 2009.

[SOG+17] Leonardo Sousa, Roberto Oliveira, Alessandro Garcia, Jaejoon Lee, Tayana

Conte, Willian Oizumi, Rafael de Mello, Adriana Lopes, Natasha Valentim,

Edson Oliveira, and Carlos Lucena. How do software developers identify

design problems?: A qualitative analysis. In Proceedings of 31st Brazilian

Symposium on Software Engineering, SBES’17, 2017.

[Son19] Tim Sonnekalb. Machine-learning supported vulnerability detection in source

code. In Proceedings of the 2019 27th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1180–1183, 2019.

[SS18] Tushar Sharma and Diomidis Spinellis. A survey on software smells. J. Syst.

Softw. (JSS), 138:158–173, 2018.

[SZZ05] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do

changes induce fixes? ACM SIGSOFT Software Engineering Notes, 30:1–

5, 2005.

[TLNH19] Ha Manh Tran, Son Thanh Le, Sinh Van Nguyen, and Phong Thanh Ho. An

analysis of software bug reports using machine learning techniques. SN Com-

puter Science, 1(1):4, Jun 2019.

[TS10] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research

on machine learning applications and trends: algorithms, methods, and tech-

niques, pages 242–264. IGI global, 2010.

[TSLHS18] Aoi Takahasi, Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. A

preliminary study on using code smells to improve bug localization. ICPC

’18, 2018.

BIBLIOGRAPHY 57

[UBC+21] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wes-

ley KG Assunçao, Silvia Regina Vergilio, Juliana Alves Pereira, Anderson

Oliveira, and Alessandro Garcia. Predicting design impactful changes in mod-

ern code review: A large-scale empirical study. In 2021 IEEE/ACM 18th In-

ternational Conference on Mining Software Repositories (MSR), pages 471–

482. IEEE, 2021.

[UBO+20] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenílio, Rafael

Lima, Alessandro Garcia, and Carla Bezerra. How does modern code review

impact software design degradation? an in-depth empirical study. In 2020

IEEE International Conference on Software Maintenance and Evolution (IC-

SME), pages 511–522. IEEE, 2020.

[UK18] Gihan M. Ubayawardana and Damith D. Karunaratna. Bug Prediction Model

using Code Smells. IEEE, 2018.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,

and Anders Wesslén. Experimentation in software engineering. Springer

Science & Business Media, 2012.

[YLC22] Haoran Yang, Wen Li, and Haipeng Cai. Language-agnostic dynamic analysis

of multilingual code: promises, pitfalls, and prospects. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 1621–1626, 2022.

[ZLTW20] Ziye Zhu, Yun Li, Hanghang Tong, and Yu Wang. Cooba: Cross-project bug

localization via adversarial transfer learning. In IJCAI, 2020.

