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Resumo

No presente trabalho utilizou-se um dispositivo impresso em 3D para medir a densidade

de uma micropart́ıcula fazendo uso de acustoflúıdica, a qual consiste em aplicar ondas

sonoras para prender part́ıculas no espaço livre. Inicialmente, a part́ıcula fica presa no

plano focal do microscópio (sem desfoque). Em seguida, os transdutores são desligados e

a part́ıcula ao longo do fluido, aumentando seu diâmetro devido ao desfoque causado pela

distância até a lente. Esse aumento de diâmetro ao longo do tempo fornece sua veloci-

dade, que pode, por sua vez, ser usada para calcular sua densidade. Anotar manualmente

o diâmetro nas imagens capturadas é uma tarefa tediosa e sujeita a erros. Isso acontece

devido ao alto rúıdo presente nas imagens, principalmente nos últimos quadros onde o

desfoque é alto. Dessa forma, usamos um processo de ajuste de modelo Gaussiano 2D para

estimar o diâmetro da part́ıcula em diferentes quadros de profundidade. Para encontrar

os diâmetros, inicialmente realizamos o ajuste dos parâmetros Gaussianos com Algoritmo

Genético em cada quadro da trajetória da part́ıcula registrada para evitar mı́nimos lo-

cais. Em seguida, refinamos o ajuste com Gradient Descendente usando Tensorflow para

compensar qualquer aleatoriedade presente no ajuste do Algoritmo Genético. Validamos

o método recuperando a densidade de uma part́ıcula conhecida com desempenho satis-

fatório.

Palavras-chave: Estimação de Densidade de Part́ıculas, Algoritmo Genético,

Gradiente Descendente, Ajuste de Gaussiana 2D, Acustoflúıdica.
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Abstract

We use a 3D printed device to measure the density of a micro-particle with acoustofluidics,

which consists in using sound waves to trap particles in free space. Initially, the particle is

trapped in the microscope’s focal plane (no blur). Then the transducers are shut off and

the particle falls inside the fluid, increasing its diameter due to defocus caused by the dis-

tance to the lens. This increase in diameter along time provides its velocity, which can, in

turn, be used to compute its density. To manually annotate the diameter in the recorded

images is a tedious task and is prone to errors. That happens due to the high noise present

in the images, specially in the last frames where the defocus is high. Because of that,

we use a 2D Gaussian model fitting process to estimate the particle diameter throughout

different depth frames. To find the diameters, we initially perform the Gaussian parame-

ters fit with Genetic Algorithm in each frame of the recorded particle trajectory to avoid

local minima. Then we refine the fit with Gradient Descent using Tensorflow in order to

compensate for any randomness present in the fit of the Genetic Algorithm. We validate

the method by retrieving a known particle’s density with acceptable performance.

Keywords: Particle Density Estimation, Genetic Algorithm, Gradient De-

scent, 2D Gaussian Fitting, Acoustofluidics.
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Chapter 1

Introduction

1.1 Motivation

Studying the density of nanometer scale particles is of great importance in many science

fields. It can be noted that, in biology and medicine, the analysis of a cell density may lead

to a series of informations about the cell. As stated by Bryan et al. (2010), cell volume

is coupled to mass and energy requirements that control cell division and survival. In

this way, by accurately measuring the size of a cell one can understand cycle position of a

cell and also identify its type. As the cell volume is directly related to mass and density,

changes in its size can be measured as variations in the density. In line with what was

reported above, Zhao et al. (2014) argues that density measurements can provide an

effective evaluation mechanism to monitor cell responses to external stimuli such as drugs

and environmental changes.

Therefore, scientists began to investigate effective ways of measuring the density of iso-

lated particles. In this way, the separation of particles of interest from complex mixtures to

play a crucial role, as shown by Fan et al. (2022) and Li et al. (2015). Recently, acoustoflu-

idic, which consists in using sound waves propagating through some fluid medium, has

been used in areas like clinical diagnostics Wang et al. (2021) and therapeutics Bose et al.

(2015) due to its capability of trapping particles having specific physical characteristics.

By observing isolated particles or conglomerates (colloids), one can confirm the occur-

rence of specific reactions and determine whether a given pathogen is present in a body

fluid sample using a microscope, for instance.

Traditionally, several techniques have been used to separate particles, such as those

based on centrifuges, which is time-consuming, can cause substantial material loss and

alter cell functions Fan et al. (2022). In contrast, with a carefully designed acoustic field,

one can separate target cells embedded in a complex liquid, which has been validated as

a viable, contact-less, bio-compatible and label-free technology. Additionally, by incorpo-

rating automation and tackling limitations of conventional strategies, isolating sub-micron

1



Motivation 2

bio-particles can potentially accelerate the development of Point-of-Care devices.

In this work, we use an acoustofluidic 3D printed device (fluid chamber) to measure the

density of polystyrene beads. The device is initially filled with a fluid in which the analytes

are embedded. Transducers are then excited to generate an acoustic field responsible for

“trapping” the particle in a given position. A microscope is used to acquire images of the

cells as exemplified in Fig. 1.1, where the “trapped” particle is represented by the first

image (top-left). After the acoustic field is disabled, the particle falls along time, causing

a strong blur as shown in the middle and final columns in Fig. 1.1, since the particle is

no longer within the microscope focus plane. By observing the fall velocity (depth per

moment in time) and using a calibration curve obtained in beforehand that relates the

particle’s diameter to depth, one can compute a good estimate of the cell’s density (cf.,

Chapter 3).

Figure 1.1: Captured images of a falling particle. The blur gradually increases along the
process. First row: original images captured by a microscope. Middle row: Same images
with enhanced contrast. Last row: particles fitted by a curve.

Source: The authors

Unfortunately, annotating cell’s diameters on different images is a manual process due

to a very low Signal-to-Noise Ratio (SNR) inherent to the blurring process caused by the

particle fall and short Depth-of-Field of the microscope optical apparatus. Therefore, one

must manually annotate each image in both stages of calibration and dynamic measure-

ment. Manually annotating images is a time-consuming and cumbersome process due to

many characteristics. It is prone to human error and fatigue, rendering automation and

development of Point-of-Care devices unfeasible.
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The bead’s diameter is related to the depth, which can provide information regarding

the velocity of the fall (depth per time). It can be shown that the velocity with which

the particle falls into the medium, along with other quantities can provide the particle’s

density value (cf. Chapter 2). Therefore, we propose a method capable of measuring the

particle’s diameters during its fall. Due to the amount of noise, we found that fitting a

2D Gaussian in a Gradient Descent fashion can provide reasonable performance in the

final densisty measurement.

Fitting a Gaussian onto a signal (image) is a method that can be applied on different

scenarios for different purposes. For instance, Ananthanarasimhan et al. (2022), used the

technique to estimate the diameter of discharges viewed by High Speed Cameras (HSC)

to characterize a rotating gliding arc (RGA) reactor. Kizel et al. (2015) proposed a

method for fully constrained spatially adaptive spectral unmixing for the localization of

endmembers. Lei et al. (2016) used a 2D Gaussian fitting procedure to locate motion-

blurred, weak celestial objects in images for the purpose of orbital debris monitoring. Dai

et al. (2010) used the method to estimate the Point Spread Functions of different optical

apparatus and ultimately increase the resolution of Single-Photon Emission Computerized

Tomography (SPECT) to sub-millimeter range. Anniballe and Bonafoni (2015) proposed

a Gaussian fitting procedure aimed at analyzing remotely sensed thermal multi-resolution

images to monitor variations in urban occupancy throughout area and time. Bui et al.

(2015) proposed the segmentation of murine tumor from noisy ultrasound clinical images

using Gaussian distribution to model local intensities.

In this context, a Computer Vision strategy capable of automatically measuring cell

diameter on noisy images was studied. This simple, yet effective, method is based on

2D Gaussian fitting using Genetic Algorithm (GA) and a subsequent refinement with

Gradient Descent (GD) method. Experiments showed that the methodology provides

a satisfactory performance and can eventually contribute to the development of fully

automated devices.

1.2 Objectives

1.2.1 General Objectives

Evaluate the performance of a 2D Gaussian curve fitting approach on the task of particle

density measurement based on microscope images captured from an acoustofluidic micro-

cavity.

1.2.2 Specific Objectives

1. Calculate a calibration curve that relates particle height and particle area;
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2. Implement a 2D Gaussian curve fitting algorithm that receives as input a prepro-

cessed microscope image;

3. Optimize Gaussian curve hyperparameters through Genetic Algorithm and Gradient

Descent approaches;

4. Use the calculated curves to estimate the particle area and generate a height curve

based on the calibration;

5. Derivate the particle velocity from the height curve and use it to estimate the particle

density.

1.3 Work Organization

This work was organized into chapters that report the steps followed during the devel-

opment of the solution, going into theoretical details and application of the technologies

involved. Chapter 2 presents a theoretical basis on the involved physical concepts, the

curve fitting approach, the used hyperparameter optimization strategies and on the ap-

plied evaluation metrics. Chapter 3 describes how all the steps in this work were devel-

oped, more specifically, the acquisition of the database, the generation of a calibration

curve, the data preprocessing, the construction of curve fitting models and their opimiza-

tion based on two different algorithms. Chapter 4 is dedicated to exposing and discussing

the obtained results. Finally, conclusions about the work are presented.



Chapter 2

Theoretical Foundation

2.1 Physical Background

The density of a particle embedded in a liquid affects the rate in which it falls (in distance

per time). The relation between fall rate and density can be found by analyzing the

problem’s dynamics, which, for a particle embedded in a fluidic medium, is ruled by a

specific set of forces. As explained by Zhao et al. (2014), forces caused by particle-to-

particle interaction, thermal effects and Brownian motion can be disregarded due to their

low order of magnitude when compared with other forces that act on the system. Thus,

the resulting force that pulls the particle down along the vertical axis can be expressed

as a combination of gravitational, viscosity and buoyancy forces:∑−→
F =

−→
F gravitational +

−→
F viscosity +

−→
F buoyancy (2.1)

Considering that the vertical axis is pointed downward and approximating the particle as

a perfect sphere, one can express the forces mentioned above as

−→
F gravitational =

(
4

3
πgr3ρparticle

)
k̂ (2.2)

−→
F buoyancy =

(
−4

3
πgr3ρfluid

)
k̂ (2.3)

−→
F viscosity = (6πrµv)k̂, (2.4)

where ρparticle is the particle’s density, ρfluid is the fluidic medium’s density, r is the

sphere’s radius, µ is the fluid’s dynamic viscosity and v is the particle’s velocity during

fall.

Therefore, by applying Newton’s second law, considering v as particle’s velocity along

z axis and solving the resulting differential equation for the intensities of the forces defined

5



Gaussian Function 6

above, the following expression is found:

v(t) =
2r2g(ρparticle − ρfluid)

9µ
(1− e−

t
τ ) (2.5)

Since τ = m/6πrηK is very small, the exponential term from Equation (2.5) can be

ignored. Manipulating the resulting expression, one can find the final relation between

particle density and fall velocity:

ρparticle =
9µv

2r2g
+ ρfluid. (2.6)

I.e., one can compute the particle’s density (in kilograms per cubic meters) if its fall veloc-

ity and its radius are known. During the course of this work 10µm diameter polystyrene

beads were used, which have a well known density of around 1050 kg·m−3.

2.2 Gaussian Function

Figure 2.1: Plot of a 2D Gaussian function

Source: Byttner (2019).

The Gaussian function is a very common approximation for the probability distribution

of many observable phenomenons. This function results in a ”bell shaped” curve and is

defined by the following equation:

y(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (2.7)
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Considering a multivariable distribution, this function can be extended to have x and

y as inputs, delivering a curve z(x, y) whose format can be seen in Fig 2.1. The particles

investigated during this work tend acquire a circular shape once the image contrast is

enhanced, providing the possibility to approximate their shape with a 2D Gaussian curve.

This happens due to the fact that the Gaussian value in a specific (x, y) coordinate can

be seen as the intensity of a grayscale image pixel with the same coordinates.

Thus, in the conducted experiments, we generate images by applying the following 2D

Gaussian function expression:

z(x, y) = p exp

[
−
(
(x− µx)

2

2σ2
+

(y − µy)
2

2σ2

)4
]

(2.8)

where:

• p: Gaussian amplitude.

• µx: Position of the Gaussian’s center in the image along the (horizontal) x-axis.

• µy: Position of the Gaussian’s center in the image along the (vertical) y-axis.

• σ: Standard deviation of the Gaussian (proportional to the radius of the image)

2.3 Hyperparameter Optimization

As stated above, this work studies a Gaussian function fitting approach. From Eq. (2.8),

we can consider p, µx, µy and σ2 as curve parameters. This turns finding the Gaussian

that best fits an specific particle image into a complicated task due to the high range of

values that this parameters can assume. A common approach for solving such class of

problems is using optimization algorithms and will thus be used during the course of this

work, more specifically Genetic Algorithm and Gradient Descent approaches.

2.3.1 Genetic Algorithm

Genetic Algorithms (GA) are a common choice for performing optimization tasks. This

kind of algorithms are inspired by evolutionist theory, where natural selection keeps alive

only the individuals that are more adapted to the environment and give them the oppor-

tunity to pass their genes to future generations. As exposed by Konak et al. (2006), in

the GA formalism each individual is represented by a vector called chromosome. Chro-

mosomes vectors are formed by values called genes. Each chromosome is considered to

be a solution to the problem which is being optimized and are grouped in a set called

population. The chromosome vectors generally are randomly initialized and through the

combination of their genes, in a iterative process, converge to an optimized solution.
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During this iterative process, two main operations are conduced: crossover and muta-

tion. Firstly, in the crossover operation, two chromosomes combine their genes to generate

a new one. Lastly the mutation introduces the chance of random changes to the genes,

which also happen in nature. At each iteration only the most adapted individuals are used

to perform the crossover operation. This metric of how much an individual is adapted to

the problem is called fitness and is calculated through a function that is defined according

to the optimization problem necessities.

2.3.2 Gradient Descent

Differential calculus defines the gradient of a function as a vector that indicates the

direction to move from the current input parameters point so that one can get the greatest

increase rate. Considering a multivariable function f(X), where X = [x1, x2, ..., xn−1, xn],

this vector can be calculated by applying the following equation:

∇f(X) = (
∂f

∂x1

(X),
∂f

∂x2

(X), ...,
∂f

∂xn−1

(X),
∂f

∂xn

(X)) (2.9)

Thus, in a optimization loop, one can minimize the function value by updating the

parameters to a direction opposite to the gradient of current input vector. This approach

is called Gradient Descent and is widely used in theMachine Learning field to find the best

solution for a problem by minimizing a loss function that fits the scenario. Considering

that we have a particle image I and we want to approximate it by a Gaussian curve

z(µx, µy, p, σ
2), our goal is to find µx, µy, p and σ2 values that minimize a chosen loss

function, which evaluates how far the generated curve is from the desired one.

Therefore, assuming w = [µx, µy, p, σ
2] as an input vector, we can minimize the loss

by updating it’s values in a iterative process by using the following expression

wi+1 = wi − α∇wL(I, z(w)) (2.10)

where α is called learning rate and is responsible for determining the update step size

at each iteration. L(I, z(w)) is the loss function, which receives as input the generated

Gaussian z(w) and the target image I. Finally ∇wL represents the gradient of the loss

function relative to the input vector w.

2.4 Evaluative Metrics

The task of fitting a 2D Gaussian curve consists of finding each pixel value in order to

generate the Gaussian that comes closest to the particle image. Thus, it can be classified

as a regression problem, leading to the usage of regression related functions during the

performance evaluation.
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2.4.1 Mean Squared Error (MSE)

The Mean Squared Error is a very common evaluation metric for regression models. This

metric is used during the optimization steps as a loss function. It consists of the mean of

the squared difference between expected and obtained outputs.

MSE =
1

N

n∑
i=i

[Yi − Ŷi]
2 (2.11)

However, as we are dealing with a image regression, the concept above needs to be

extended to two input variables. Thus, the MSE ends up being the mean of the squared

difference between each pixel from expected and obtained images. Therefore, consider-

ing z(x, y) and I(x, y) as the pixel value for a given (x, y) coordinate for the generated

Gaussian and the target image, respectively, the MSE formula can be defined as follows:

MSE =
1

WH

W∑
x=1

H∑
y=1

[I(x, y)− z(x, y)]2 (2.12)

where W and H are, respectively, images’ width and height values.



Chapter 3

Methodology

3.1 Image Acquisition

The experiments were done by using images acquired from a microscope attached to

a 3D printed device that contains a acoustofluidic chamber. This device is capable of

levitating the particle while acquiring images through the microscope. When the levitation

is interrupted the particle fall along the fluidic medium, causing the particle to gradually

defocus in the consecutive images.

3.1.1 Hardware

For the acoustofluidic device, a cylindrical structure was fabricated using a 3D printer

(cf., Fig. 3.1a) Santos et al. (2021). A small disk with a diameter of 4mm and a height

of 750µm was cast inside the cylindrical structure and top sealed by a glass cover which

also acted as an acoustic reflector (cf., Fig. 3.1b). This disk was used as an resonant

chamber inside which particles were placed. A small inlet hole could be used to fill

the chamber with fluid solutions of particles. This solutions could later be removed by

an outlet hole. To deliver our experiments we used a fluidic solution with density and

dynamic viscosity values of 997 kg·m−3 and 0.89×10−3 Pa·s, respectively. At the bottom

of the acoustic chamber a circular piezoelectric actuator, with a diameter of 25mm, was

attached. When the actuator is turned on, an acoustic standing wave is produced inside

the resonant chamber (cf., Fig. 3.1c). This creates an acoustic radiation force that traps

the particles in a standing wave node, which has a height of approximately 95×10−6m

from chamber’s bottom. An optical microscope is placed above the cylindrical structure

such that confocal plane matches the wave node where particles are levitated. Turning off

the actuator causes the acoustic forces to be extinguished (cf., Fig. 3.1d), so the particles

fall within the fluidic medium. As the particles fall, they gradually move away from

microscope’s confocal plane, becoming increasingly blurry in acquired images.

10
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Figure 3.1: (a) Diagram of the used hardware. (b) Cross-section cut illustration of the
device shown in (a). (c) When the actuator is on, a standing wave is generated and the
particle is trapped in the microscope confocal plane. (d) When the actuator is turned off,
the wave vanishes and the particle falls downwards presenting what we call a dynamic
behaviour.

Microscope lens

Printed
Cylinder

Actuator

Actuator

Resonant
Chamber

Printed
Cylinder

Resonant
Chamber

Confocal
plane Levitated

particle

Standing
wave

Confocal
plane

Falling
particle

(a) (b)

(c) (d)

Cross-section cut

Actuator off

Actuator on

Source: The authors.

3.1.2 Pipeline for Single Particle Configuration

During the course of this work, the fluidic solutions introduced inside the acoustic cham-

ber generally contained around 100 particles. A particle-to-particle interaction caused

the appearence of grouped packs of particles, which makes it difficult to carry out the

experiments. To achieve a single-particle configuration, a sequence of two steps was care-

fully followed. Firstly, once a pack of particles started to emerge, the actuator power was

turned off. Lastly, about 10 seconds later, the device was turned on again, causing only

a single particle to be trapped at the acoustic wave pressure node. Through this pipeline

the proposed experiments could be successfully conducted.

3.2 Calibration

As it was already discussed, the density of a particle can be measured by a model based

on the fall process inside a microfluidic cavity along with a confocal optical inspection.

As the particle falls, the relative distance to the image confocal plane becomes larger.

This results in a blurring effect, which increases the particle size in the image as it gets

increasingly defocused.

To analyze the dynamics of a particle with a specific diameter and unknown density,

it is necessary to use a calibration curve that relates the relative area of a particle, which
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Figure 3.2: Illustration of how the calibration procedure works.

Relative Area

Height
Calibration curve

Source: The authors.

has the same diameter, with previously known heights between particle and the resonant

cavity bottom during a fall process, as exposed in Figure 3.2. Considering that we have n

(18 were used in the calibration step of the experiment) acquired images from a particle

during fall and its respective heights and areas, relative area values can be computed by

the following equation:

Arelative =
Ai − A1

An − A1

(3.1)

where A1, Ai and An are, respectively, area values for the first, current and last captured

images.

Therefore, the computed values for relative area and height can be fitted to a double

exponential function, which is defined as follows:

h = α1 exp

[
−Arelative

β1

]
+ α2 exp

[
−Arelative

β2

]
+ ω0 (3.2)

where α1, α2, β1, β2 and ω0 can assume arbitrary values, having no physical meaning. The

resulting curve can be later used to estimate height values for a new particle by applying as

input the relative area values during a fall experiment. Lastly, we can derive the obtained

height values to estimate the falling velocity for that particle and with Eq. (2.6), find its

density.
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3.3 Data Preprocessing

As the acquired microscope images are very noisy and defocused and also has a low

contrast level, they are generally not in ideal conditions for use in experiments. Therefore,

before the curve fitting and optimization steps we applied some preprocessing steps in

order to have a better set of input images:

• Particle Alignment: The particles were aligned at the center of the respective image.

This reduces the number of hyperparameters that need to be optimized, as µx and

µy will be fixed to zero.

• Image Resizing: The images were resized to a 32×32 shape, leading to a reduction

in the search space for the optimization step.

• Contrast Enhancement: This step was done through the subtraction of a mean

background value of the image.

3.4 Curve Fitting

An important aspect of the particle area measurement process is that it is done manually,

being more susceptible to errors. This problem could be overcome through the usage of

a procedure to automatically compute the particle area in the captured image. Aiming

to achieve such solution, during this step of the work the feasibility of fitting curves to

the particle area in an input image was investigated. The tests focused mainly in the

application of 2D Gaussian functions for this task, which were previously discussed and

defined by Eq. 2.8.

The idea is to fit the Gaussian model into the image by minimizing the Mean Squared

Error (Eq. 2.12) between the Gaussian and each pixel in the image. This technique is

very powerful provided that the noise is symmetric. Regardless of the amplitude of the

noise present in the image the model will have minimum MSE only when the parameters

of the Gaussian fit as best as possible with the object in the image.

Once fitted, the Gaussian parameters can be used to give us measures on the object

like its position (mean of the Gaussian) and size (standard deviation).

3.5 Optimization

As stated before, defining a Gaussian function that suits the particle in an input image

is not trivial. Hence, we delegated the task of finding parameters that best fit a specific

particle image to optimization algorithms. As the particle was already centered in the

image, we only optimized the amplitude (p) and the variance (σ2) of the Gaussians for
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each image. The experiment set was comprised of 13 consecutive images acquired from a

fall process of a polysterene bead with same diameter as the one used in calibration.

Firstly, a Genetic Algorithm was applied using the following configuration:

• Generations: executed for 1000 generations;

• Population: 100 individuals (vectors [p, σ2]);

• Mutation Rate: a mutation rate of 1% was applied.

The fitness of each individual was measured by the Mean Squared Error between the

processed image and the Gaussian curve created with the current parameter values.

As the genetic algorithm is not deterministic, it may not reach the global minimum

of the error function. Thus, a natural step is to apply a more controlled optimization

method having as a starting point the best parameters found for each image by the GA.

For this task we tested the application of a Stocastic Gradient Descent Bottou (2012)

optimizer for p and σ2 parameters. For the Gradient Descent the following configuration

was used:

• Epochs: the process was executed for 1000 epochs;

• Learning Rate: Taking into account that the genetic algorithm achieved results close

to a global minimum, the curve gradient at this point will have very small values.

To tackle this scenario, we used a higher learning rate value of 2.0;

• Loss Function: Mean Squared Error (MSE).

This process was executed for each set of test images and initial parameters.



Chapter 4

Results and Discussions

Figure 4.1: Curve obtained by fitting an exponential function to height and relative area
values during the calibration process.
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By applying the proposed methodology, we were able to obtain a calibration curve

for the experiment. With the usage of ground-truth images, where particle’s contour

was previously known, we extracted particle’s radius from a pixel-micron relation. Then,

we calculated area values by considering the particle as a perfect circle and, along with

it’s respective height values, we could generate a calibration curve that related particle

height with relative area, as discussed in section 3.2. Numerically fitting the points to

the proposed double exponential function (Eq. (3.2)), we could achieve the curve shown

in Fig. 4.1.

15
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Figure 4.2: Image grid showing the results for diameter estimation. First row: Original
images (last 8 slices from left to right – ie. heights). Second row: Processed images.
Third row: Contours obtained with the Genetic Algorithm. Bottom row: Contours found
using the Gradient Descent approach.

Source: The authors.

After the application of the pipeline proposed in Section 3.5, we could achieve good

results for all test images. Figure 4.2 presents an image grid containing results for eight

of the thirteen tested images. Despite being stochastic, the genetic algorithm was able

to find good parameters for the 2D Gaussian functions. As shown in the second row of

Fig. 4.2, the contours of resulting Gaussian curves seem to fit, if not perfectly match, the

particle contour. The results are even more interesting for the last images of the sequence,

where we find a high amount of noise and a clear contour for the particle is not visually

identifiable. Still, the algorithm was able to find plausible parameters for the Gaussian.

The application of the Stochastic Gradient Descent optimizer did not change the

results in general. Despite giving a lower loss value, the resulting Gaussian curve was

practically the same. The only exceptions were the results for three of the thirteen

Figure 4.3: Noisy image (left). The genetic algorithm result is highlighted in green (mid-
dle) while the gradient optimization is in red (right). Although it is not trivial to spot
the particle visually, the genetic algorithm was able to identify a plausible contour.

Source: The authors.
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test images, which are shown in fourth, seventh and eighth columns of Fig. 4.2. The

optimization produced a visible result, since curve contours changed slightly with respect

to the ones found by the genetic algorithm. However, for all other images, the plotted

Gaussian contour was exactly the same, which ratifies the good result found by the genetic

approach. In Fig. 4.5 we can see resulting loss curves for the parameter tuning process.

Figure 4.4: Estimated height for each image by applying computed Gaussian areas as
input to the calibration curve.
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Source: The authors.

Lastly, we used the obtained Gaussian curves to compute particles’ areas in each image

and generate relative area values by applying Eq. (3.1). Such values could then be used

as input for the calibration curve discussed in Section 3.2 to estimate particle’s height at

each image, which are shown in Figure 4.4.

Then, we numerically derived the height curve and applied the mean value as particle’s

velocity in Eq. (2.6) to compute the particle’s density. For this computation we also used

a gravitational acceleration of g = 9.82 m·s−2 along with previously discussed values of

ρfluid = 997 kg·m−3 and µ = 0.89× 10−1 Pa·s. This procedure resulted in a density value

of 1059 kg·m−3, which is close to the real density value of 1050 kg·m−3, corresponding to

an error of 0.8%.

Such result ratifies our approach as a valid mean to estimate the area of a particle

and its density by applying the previously described equations. It is worth mentioning

that even in extreme cases, where the particle was not easily identifiable and the image

contained a lot of noise, the proposed method was capable of giving good estimates for
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Gaussian curve approximation for the particle, consequently allowing the computation of

it’s density.

Figure 4.5: Example of loss curves during the parameter optimization process. Plots
show, respectively, results for genetic algorithm and gradient descent steps.

Source: The authors.



Conclusion

The discussed work presented a methodology to obtain a sub-micron particle’s density

using acoustofluidics. This approach is traditionally performed manually, which renders

the development of point-of-care devices unfeasible.

Aiming at automating the process, the usage of 2D Gaussian fitting was proposed to

retrieve particle’s diameters throughout different positions during fall as an alternative

to analyze its velocity and compute its density. After a calibration procedure, the fall

dynamics was analyzed and the diameters were used as inputs to the calibration func-

tion in order to obtain the corresponding depths along time. This fall velocity is used

alongside different parameters in a given formulation to compute the density. Given a

reference known value of 1050 kg·m−3 the method provided a value of 1059 kg·m−3, satis-

factorily close to the calibration density. As future work, we intend to analyze the usage

of blur score metrics related to Gradient, Laplacian, Fourier Transform and wavelets as

an approach to the discussed particle fitting problem.
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