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RESUMO 

A teoria de volumes finitos é uma técnica numérica baseada no equilíbrio e tem apresentado 

sucesso em análises na mecânica dos sólidos devido a satisfação local das equações de 

equilíbrio e a imposição das condições de continuidade em termos médios nas faces dos 

subvolumes. Investigações prévias incluem a análise de convergência dos campos de 

deslocamentos e tensões e custo computacional, mostrando a eficiência das abordagens, 

especialmente no contexto de materiais heterogêneos e estruturas. Porém, essas investigações 

não incluíram uma análise energética, a qual é especialmente importante em problemas de 

minimização da flexibilidade estrutural. Como método dos elementos finitos, as técnicas 

numéricas baseadas em métodos de energia garantem a satisfação do balanço energético, 

garantindo também uma convergência monotônica para as estimativas de energia mecânica. A 

primeira contribuição desta tese é endereçar uma investigação numérica sobre os principais 

aspectos energéticos, envolvendo a teoria generalizada de volumes finitos para estruturas 

elásticas contínuas em análises quase estáticas para malhas estruturadas formadas por 

subvolumes retangulares. Os resultados obtidos são verificados por soluções analíticas e 

análises baseadas no método dos elementos finitos, mostrando uma convergência monotônica 

para as estimativas de energia com base na teoria de volumes finitos, além da satisfação do 

balanço energético para as versões de alta ordem da teoria quando uma malha suficientemente 

refinada é empregada. A otimização topológica é um método bem estabelecido para definição 

da melhor distribuição de material dentro de um domínio de análise. É comum se observar 

algumas instabilidades numéricas nas versões baseadas no método do gradiente, tais como o 

efeito do padrão xadrez, a dependência de malha e os mínimos locais. A formação das regiões 

com padrão xadrez está diretamente associada com domínios discretizados conectados por 

nós, usualmente observados em técnicas de otimização topológica baseadas no método dos 

elementos finitos. Por outro lado, a teoria de volumes finitos satisfaz as condições de 

continuidade entre faces comuns de subvolumes adjacentes, a qual é mais compatível do 

ponto de vista da mecânica do contínuo. Esta pesquisa apresenta a propriedade da teoria de 

volumes finitos de produzir topologias ótimas livres do efeito do padrão xadrez, a partir da 

performance de algoritmos de otimização topológica sem nenhuma técnica de filtragem, e 

empregando formulações elásticas e elastoplásticas para malhas estruturadas compostas por 

subvolumes retangulares. Uma formulação elastoplástica incremental da teoria padrão de 

volumes é empregada com o intuito de verificar como a deformação plástica pode interferir 

nas topologias ótimas e reduzir a concentração de tensões em determinadas regiões. Os 

algoritmos de otimização topológica baseados na teoria de volumes finitos são também 

executados utilizando um filtro para independência de malha, o qual regulariza as 

sensibilidades dos subvolumes, obtendo topologias ótimas que evitam a dependência de 

malha e problemas de tamanho de escala. A abordagem de material sólido isotrópico com 

penalização (SIMP – Solid Isotropic Material with Penalization) é empregada para evitar 

problemas de otimização discreta. O problema de otimização topológica proposto se mostrou 

eficiente, evitando instabilidades numéricas, tais como o efeito do padrão xadrez, a 

dependência de malha e o problema de tamanho de escala. 

Palavras-chaves: otimização topológica; topologias ótimas livres do padrão xadrez; análise 

energética; teoria de volumes finitos; minimização da flexibilidade estrutural. 

  



 

ABSTRACT 

The finite-volume theory is an equilibrium-based approach and has been successfully 

employed in solid mechanics analysis due to the equilibrium equations' local satisfaction and 

the imposition of continuity conditions in a surface-averaged sense through the subvolume 

interfaces. Previous investigations include stress and displacement fields convergence and 

computational cost, showing the approach's efficiency, especially in heterogeneous materials 

and structures. However, those investigations did not include an energy analysis, which is 

especially important in compliance minimization problems. As the finite element method, 

energy-based approaches impose energy balance, which guarantees a monotonic energy 

convergence. The first idea of this contribution is to address a numerical investigation about 

the main mechanical energy aspects involving the generalized finite-volume theory for 

continuum elastic structures in quasi-static analyzes for structured meshes formed by 

rectangular subvolumes. The obtained results are verified with analytical and finite element-

based analyzes, showing a monotonic energy convergence for the finite-volume theory and 

the energy balance's satisfaction for the higher-order versions when a sufficiently refined 

mesh is employed. Topology optimization is a well-suited method to establish the best 

material distribution inside an analysis domain. It is common to observe some numerical 

instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, 

and local minima. The formation of checkerboard regions is directly associated with 

discretized domains connected by nodes, usually observed in topology optimization 

techniques based on the finite element method. On the other hand, the finite-volume theory 

satisfies the continuity conditions between common faces of adjacent subvolumes, which is 

more likely from the continuum mechanics point of view. This research demonstrates the 

finite-volume theory's checkerboard-free property by performing topology optimization 

algorithms without filtering techniques and employing elastic and elastoplastic formulations 

for structured meshes composed by rectangular subvolumes. An incremental elastoplastic 

formulation of the standard finite-volume theory is performed to verify how the plastic strain 

could interfere with the optimized topologies and reduce their stress concentration. The 

topology optimization algorithms based on the finite-volume theory are also performed using 

a mesh independent filter that regularizes the subvolume sensitivities, providing optimized 

topologies that avoid the mesh dependence and length scale issues. The solid isotropic 

material with penalization (SIMP) approach is employed to avoid discrete optimization 

problems. The proposed optimization problem has shown to be efficient, avoiding numerical 

instabilities, such as checkerboard pattern, mesh dependence, and length scale issues. 

Keywords: topology optimization; checkerboard-free designs; energy analysis; finite-volume 

theory; compliance minimization. 
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1 INTRODUCTION 

In structural design, engineers want to find the best project that attends all the design 

restrictions and optimizes structural performance. Traditionally, the best project is 

accomplished based on the engineer experience, causing dependence on their work. 

Therefore, structural optimization techniques have been developed to help engineers find the 

optimal configuration for structural designs, without the need to base their designs on past 

experiences. In general, structural optimization problems can be divided into two main 

categories: material optimization and material distribution optimization. The first category 

intends to establish the best material properties to a design, while the second look up to find 

the best material distribution inside an analysis domain. 

The material distribution-based optimization problems include sizing optimization, 

which quests to find the optimal size in terms of length, thickness, and highness (LARSSON, 

2016); shape optimization, which introduces shape changes on the design to find the optimal 

solution (JOHNSEN, 2013); and topology optimization, which seeks to find the best material 

distribution inside the analysis domain for the given objective function and constraints 

(ELELWI et al., 2021). The structural topology optimization is one of the most important 

structural optimization problems, becoming one of the fastest-growing research fields in the 

structural analysis due to its applications in different areas, such as solid mechanics, physics, 

multi-material modeling, and computer sciences. Figure 1 illustrates optimized structures 

obtained by each structural optimization approach. 

Figure 01 – Categories of structural optimization 

 

Font: Adapted from Bendsøe and Sigmund (2003). 

The topology optimization problem was proposed initially by Michell (1904), who 

derived the Optimality Criteria (OC) method for the least weight layout of trusses. This 

method is typically used for compliance minimization or stiffness maximization problems, 
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usually combined with the so-called SIMP (Solid Isotropic Material with Penalization) 

approach (COLLET et al., 2017). In this case, the material properties are taken as constants 

inside each element of the discretized analysis domain, and the design variables are the 

element relative densities. 

In a topology optimization problem, the interest is in defining which points of the 

analysis domain should be material or void, generating a “black and white” design. Therefore, 

the structural material distribution is obtained by a binary “0-1”, where 0 indicates void and 1 

indicates the presence of material (BENDSØE; SIGMUND, 2003). This kind of topology 

optimization leads to an integer programming problem, which has shown to be an unfeasible 

approach. However, the material distribution can be also defined in terms of a continuum 

function, which defines the material relative density and can assume any real value between 

approximately 0, indicating void, and 1, indicating solid. In this case, the intermediate values 

of relative density must be avoided by penalization techniques (PARÍS et al., 2009). 

An alternative and popular technique to solve this problem is the “power-law 

approach” or SIMP approach, which penalizes the intermediate values of relative densities to 

obtain a “black and white” project. In this approach, the interest is in determining the best 

solid isotropic material distribution on the analysis domain (BENDSØE; SIGMUND, 2003). 

Therefore, the material properties are modeled by the relative material density raised to a 

given power to penalize the intermediate values. In topology optimization, the SIMP method 

has been extensively used due to its versatility, convergence, and ease implementation 

(ROZVANY, 2009). Other possible topology optimization methods include the ESO 

(Evolutionary Structural Optimization) method, where the optimized structure is sought by 

removing the inefficient elements on the design domain in every iteration step; BESO (Bi-

directional Evolutionary Structural Optimization) method, where the material is added in the 

vicinity of overstressed elements, and material is removed in inefficient areas; and level set 

methods, which consider level set functions to parameterize the design domain indicating 

solid for values greater than a specific constant and void for values below this constant 

(YÜKSEL, 2019). 

Topology optimization has raised as a powerful technique for structural design, 

although there are some problems related to numerical issues. The different types of 

numerical instabilities are well summarized by Sigmund and Petersson (1998) and can be 

divided into three main categories: checkerboard pattern effect, which refers to the formation 

of regions alternating solid and void elements in a checkerboard shape; mesh dependence, 
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which refers to the problem of not having qualitatively the same solution for different 

discretizations; and local minima, which refers to the problem of having different solutions 

for the same discretizations when different input parameters are employed. Unless the 

analysis desires to recover the Michell-type structure, it is undesirable to have any of these 

instabilities in the optimal solution, especially the mesh-dependence issue, once the analytical 

solution for topology optimization problems initially proposed by Michell (1904) have infinite 

bars, being characterized as a mesh-dependent solution. 

Figure 02 – Checkerboard pattern effect 

 

Font: Rouhi and Rohani (2008). 

According to Díaz and Sigmund (1995), the appearance of checkerboard regions in 

optimized topologies occurs due to the numerical assumptions from the finite element 

method, leading the optimized structure to present some sort of artificial stiffness. The 

checkerboard pattern problem is characterized by the emergence of a set of regions connected 

by pins or corner nodes, as illustrated in Figure 2(a, b, c, d), directly related to the physical 

modeling promoted by the topology design technique. According to Jog and Haber (1996), 

these regions appear when unstable finite elements are employed in the topology optimization 

analysis, where this instability is caused by the combination of the density and displacement 

fields. Thus, Jog et al. (1994) and Jog and Haber (1996) have discussed that certain 

combinations of density and displacement interpolation functions generate checkerboard-free 

designs, where these combinations promote finite-element strategies that are stable and more 

indicated for topology design problems. A desirable solution would be to change the finite-

element unstable strategies by numerical techniques that guarantee that the regions are 

connected by edges instead of nodes, as the finite-volume theory initially proposed by Bansal 

and Pindera (2003). 
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Possible solutions for the checkerboard-problem include the adoption of higher-order 

finite elements (DÍAZ; SIGMUND, 1995; JOG; HABER, 1996), filtering techniques based on 

image processing (SIGMUND; PETERSSON, 1998; SWAN; KOSAKA, 1997; SIGMUND, 

2007), additional constraints based on perimeter or gravity control (HABER et al., 1996; 

FUJII; KIKUCHI, 2000), and the employment of modified or polygonal finite elements 

(RAHMATALLA; SWAN, 2004; BALOGH; LÓGÓ, 2017; PAULINO; LE, 2009; 

TALISCHI et al., 2010 and 2012; ROZVANY et al., 2003). Other possible solutions would be 

the employment of corner contact function (POMEZANSKI et al., 2005), hierarchical 

neighboring search scheme (SVANBERG; WERME, 2005), additional constraint to prevent 

corner contacts (POULSEN, 2002), design variables defined by description or VOF (volume 

of fluid) functions (RUITER; KEULEN, 2004; ABE; KORO, 2006), nodal design variables 

and projection schemes (GUEST et al., 2004), or diffusion techniques and phase-field 

methods (WANG et al., 2004). 

In this case, to circumvent problems related to mesh dependence and local minima, 

more specifically, a sensitivity filter and continued penalization scheme can be respectively 

employed. In the image filter, elements sensitivities depend on the weight average of their 

neighboring elements. This procedure can also help to solve the mesh dependence problem, as 

suggested by Sigmund and Petersson (1998). The mesh dependence problem is also related to 

the local minima issue since the change in the mesh size (an initialization parameter) produces 

qualitatively different responses to the same optimization problem.  

Since the pioneering work of Bendsøe and Kikuchi (1988) in the homogenization 

method, the finite element-based strategy for structural topology optimization has received 

full attention and experienced considerable progress (WANG; WANG, 2006). Therefore, the 

advantages and disadvantages are well-known. An alternative technique to the finite element 

method is the finite-volume theory, which employs the volume-average of the different fields 

that define the material behavior and imposes the boundary and continuity conditions in an 

averaged sense. This technique has shown to be a well suitable method for elastic stress 

analysis in solid mechanics, investigations of its numerical efficiency can be found in 

Cavalcante et al. (2007a, b and 2008) and Cavalcante and Pindera (2012a, b). The satisfaction 

of equilibrium equations at the subvolume level, concomitant to kinematic and static 

continuities established in a surface-averaged sense between common faces of adjacent 

subvolumes, are features that distinguish the finite-volume theory from the finite element 

method. 
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The checkerboard instability mentioned later is related to the finite element method's 

assumptions, such as the satisfaction of equilibrium and continuity conditions at the element 

nodes. Also, the equilibrium equations are not satisfied at the element level, only when a 

sufficiently refined mesh is employed. Differently, the finite-volume theory satisfies the 

equilibrium equations at the subvolume level, and the compatibility conditions are established 

through the subvolume interfaces. Thus, in the finite-volume theory, the connections between 

adjacent subvolumes occur through subvolumes' faces, which is more likely from the 

continuum mechanics point of view. In the finite element method, the connections between 

neighboring elements occur through the nodes, leading to optimized topologies with 

checkerboard regions in the absence of regularization techniques for triangular or 

quadrilateral elements. 

This contribution addresses different topology optimization approaches of continuum 

elastic and elastoplastic structures based on the finite-volume theory for structured meshes 

formed by rectangular subvolumes, showing that the checkerboard pattern is a problem 

related to the conventional finite element analysis once these undesirable topologies emerge 

from the physical modeling proposed by a finite-element based strategy, which is 

characterized by the formation of sets of regions connected by nodes. Thus, this numerical 

instability tends to disappear when this method is substituted by a numerical technique that 

promotes connections by faces. The compliance minimization problem subjected to a volume 

constraint is evaluated in this research. For this problem, two different ways to evaluate the 

objective function in the context of the higher-order versions of the finite-volume theory are 

investigated as an essential guidance for this technique's employment. Comparison results 

between the different approaches are provided, demonstrating the new topology optimization 

techniques' efficiency based on the finite-volume theory, with competitive processing time, 

even when the higher-order versions of the theory are employed. The compliance function 

and its sensitivity formulation are also presented for the performed elastoplastic approach, 

providing topology optimization algorithms that increase the computational cost and decrease 

the level of stress concentration in the obtained optimized topology. 

1.1 Motivation 

In the last three decades, the finite element method has been widely employed for 

structural analysis in topology optimization problems. However, this numerical technique 

when employed in topology optimization problems provides optimized topologies with 
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inconsistencies, related to some numerical issues, more likely the checkerboard pattern. Since 

the finite-element method is a variational technique that satisfies the equilibrium and 

continuity conditions at the nodes, it is commonly observed the generation of checkerboard 

regions in the optimized topologies when this technique is employed. Here, it is suggested the 

employment of a numerical technique that establishes connections through edges between 

neighboring elements, as the finite-volume methods. This feature was also explored by other 

approaches in the literature to solve checkerboard pattern problem, as seen in Paulino and Le 

(2009), Talischi et al. (2009), Talischi et al. (2010 e 2012), Londoño and Paulino (2021), and 

Rahmatalla and Swan (2004). 

As the compliance minimization problem plays a big role in topology optimization, in 

this contribution, the compliance problem is implemented based on the finite-volume theory. 

According to the conservative work-energy principle, the work done by external loads is 

equal to the total strain energy. The term total strain energy is referenced to the strain energy 

evaluated in the entire domain of analysis. This principle is observed mainly in energy-based 

numerical approaches, like the finite element method. However, when an equilibrium-based 

approach is employed, a residual difference between work done by external loading and total 

strain energy can be observed for not sufficiently refined meshes. Therefore, an energetic 

evaluation of the finite-volume theory is performed to verify for what versions of the finite-

volume theory the equivalence between work done and strain energy is required. 

This contribution also addresses numerical approaches to compute the total strain 

energy and the work done by external loading of continuum elastic structures based on the 

generalized finite-volume theory. Comparing results with a traditional energy-based 

numerical technique (finite element method) is performed to investigate the proposed 

approaches’ efficiency. The obtained results are also compared with analytical solutions, 

showing a monotonic energy convergence with mesh refinement for the three versions of the 

finite-volume theory and the energy balance satisfaction for the higher-order versions when a 

sufficiently refined mesh is employed. Additionally, these obtained energy functions are 

explored in obtaining optimized topologies employing the finite-volume theory strategy for 

compliance minimization. Based on these investigations, it is proposed a topology 

optimization technique applying the finite-volume theory for compliance minimization 

problems based on the elastic and elastoplastic formulations.  

Araujo (2018) has obtained preliminary results for optimized topologies based on the 

generalized finite-volume theory for compliance minimization problems, where the 
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compliance function is defined as twice the work done by external loads in the absence of 

filtering techniques. However, it has not performed any sensitivity analysis considering the 

different assumptions of the finite-volume theory. In addition, the results were obtained for 

coarse meshes considering a continued penalization scheme, where the penalty factor has 

assumed the values of 1, 2, and 3 along the topology optimization process. This contribution 

evaluates compliance by considering the different mechanical energy aspects of the 

generalized finite-volume theory, including the total strain energy estimations. A difference 

between work done by external loads and total strain energy is observed for the first and 

second-order versions of the finite-volume theory when not sufficiently fine mesh is 

employed. In addition, before this contribution, an energy analysis based on a study of the 

energy balance was never performed for the generalized finite-volume theory.   

In this contribution, the continued penalization scheme is adjusted using increments of 

0.5 and increasing gradually from 1 to 4 to minimize possible local minimum issues for the 

performed elastic analysis. In contrast, increments of 0.25 are employed for the elastoplastic 

approaches. Additionally, this contribution implements and verifies sensitivity analyses of the 

adopted objective functions taking advantage of finite-volume theory assumptions. The 

employed meshes have been refined compared to Araujo (2018), and the damping factor is 

adjusted to avoid divergence during the optimization process. Also, this is the first 

contribution to present results employing a mesh-independent filter in topology optimization 

using the finite-volume theory, which regularizes the oscillation in the displacement field that 

occurs in the low-density regions and provides mesh-independent optimized topologies.  

An energy analysis of continuum elastic structures is performed based on the 

generalized finite-volume theory by presenting the different aspects that involve the 

mechanical energy estimation in the context of rectangular subvolumes. Cavalcante and 

Pindera (2012a,b) have performed different analyzes for the generalized finite-volume theory 

based on the quality of the displacement and stress fields, kinematic and static compatibilities, 

and convergence to analytical solutions. However, an analysis of convergence based on 

mechanical energy aspects, checking the equivalence between total strain energy and external 

work done in a structure, was never performed, which is also a contribution of this 

dissertation. These formulations could also be employed to obtain checkerboard-free and 

mesh-independent optimized topologies; additionally, they can reduce the structure perimeter 

compared to the same approaches based on the finite element method, which is a desired 

feature for printing or manufacturing purposes. 
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1.2 Objectives 

1.2.1 General objective 

To propose topology optimization approaches for compliance minimization problems 

based on the generalized finite-volume theory employing elastic and elastoplastic 

formulations. 

1.2.2 Specific objectives 

• To define a compliance function for the generalized finite-volume theory, considering 

the work done by external loading. 

• To define a compliance function for the generalized finite-volume theory, considering 

the total strain energy. 

• To verify the equivalence between external work and strain energy in the generalized 

finite-volume theory. 

• To implement topology optimization algorithms based on the generalized finite-

volume theory. 

• To implement topology optimization algorithms based on an incremental elastoplastic 

formulation for the standard finite-volume theory. 

• To obtain optimized topologies based on the different versions of the generalized 

finite-volume theory. 

• To obtain optimized topologies based on the elastoplastic formulation of the standard 

finite-volume theory. 

• To defined what strategy should be used for the estimation of the structural 

compliance. 

• To obtain optimized topologies by employing a mesh-independency filter. 

1.3 Dissertation Structure 

This dissertation is composed by six chapters, where this one is dedicated for 

introduction, motivation, objectives, and dissertation structure. In chapter 2, it is presented the 

general concepts about the generalized finite-volume theory, including the elastoplastic 

formulation for the standard finite-volume theory. In chapter 3, it is presented the employed 

topology optimization problem, including the OC method and the mesh-independent filter. In 

chapter 4, it is defined two different ways to estimate the compliance function for the 
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generalized finite-volume theory and for the elastoplastic formulation of the standard finite-

volume theory. In chapter 5, it is presented the numerical implementations using the MatLab 

language for mechanical energy computation and topology optimization for compliance 

minimization based on the generalized finite-volume theory. In chapter 6, the obtained results 

are presented, considering the energetic balance of the different versions of the generalized 

finite-volume theory, and the topology optimization algorithms for the new approaches. 
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2 GENERALIZED FINITE-VOLUME THEORY 

 In fluid mechanics analysis, the finite-volume method is a well-established technique 

for boundary-value problems governed by parabolic and hyperbolic equations (VERSTEEG; 

MALALASEKERA, 2007). The finite-volume method's simplicity and stability have 

motivated its implementation in solid mechanics' problems as an alternative approach to the 

finite element method. The formulation of this method in solid mechanics is characterized by 

differences in the subvolume displacement representation and domain discretization, in 

addition to the local satisfaction of differential equilibrium equations (CAVALCANTE; 

PINDERA, 2012a, b). Starting with the work of Demirdžić et al. (1988), Fryer et al. (1991), 

Demirdžić and Martinović (1993), Demirdžić and Muzaferija (1994), Bailey and Cross 

(1995), Taylor et al. (1995), and Wheel (1996), the applications to solid mechanics problems 

and further development of this technique continue. Cardiff and Demirdžić (2021) have 

recently presented the most relevant contributions to the finite-volume method in solid 

mechanics in the last three decades. 

 Unlike the former versions of the finite-volume method, the finite-volume theory has 

its origins in the so-called higher-order theory for functionally graded materials, developed in 

a sequence of papers in the 1990s, and summarized in Aboudi et al. (1999). Bansal and 

Pindera (2003 and 2005) and Zhong et al. (2004) firstly suggested a reconstruction of this 

theory. They have simplified the design domain discretization and implemented an efficient 

local/global stiffness matrix approach. Therefore, this reconstruction has revealed the new 

higher-order approach as, in fact, a finite-volume method, motivating the nomenclature 

changing to reflect the aspects of the reconstructed theory fundamentally. After that, 

Cavalcante et al. (2007a, b) introduced a parametric mapping in the elasticity-based version of 

the finite-volume theory, enabling the modeling of curved structures. Following Cavalcante et 

al. (2007a, b), Gattu et al. (2008) and Khatam and Pindera (2009 and 2010) suggested a 

parametric mapping of the homogenized version of the finite-volume theory, known as 

FVDAM (Finite-Volume Direct Averaging Micromechanics). 

 Haj-Ali and Aboudi (2012) advocate preserving the original name of the High-Fidelity 

Generalized Method of Cells (HFGMC), claiming to exist only computational implementation 

differences in the Finite-Volume Direct Averaging Micromechanics (FVDAM) theory for 

solving the governing equations for both orthogonal and parametric geometries of the 

subvolumes of the discretized domain of analysis. Cavalcante et al. (2012) critically compare 

the Parametric Finite-Volume Micromechanics with the High-Fidelity Generalized Method of 
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Cells with arbitrary cell geometry proposed by Haj-Ali and Aboudi (2010), showing that the 

extension proposed by Haj-Ali and Aboudi (2010) follows the framework of the parametric 

FVDAM theory, and not the original HFGMC model as claimed. Also, Cavalcante et al. 

(2012) demonstrate that the HFGMC with arbitrary cell geometry violates accepted principles 

that every mechanics theory must satisfy, namely correct reducibility and coordinate frame 

indifference. Direct comparison of predictions generated by the parametric FVDAM theory, 

the HFGMC with arbitrary cell geometry, and finite-element method demonstrates no need 

for the extension carried out in the specific manner proposed by Haj-Ali and Aboudi (2010), 

which produces inferior results (CAVALCANTE et al., 2012). 

 The second-order displacement field representation inside the subvolumes and the 

enforcement of tractions and displacements in a surface-averaged sense leads to 

interpenetrations between common faces of adjacent subvolumes (CAVALCANTE; 

PINDERA, 2012a). As a result, Cavalcante and Pindera (2012a) suggested a generalization of 

the finite-volume theory, based on a higher-order displacement field representation. They 

have introduced new surface-averaged kinematic and static variables, inspired on the linear 

elasticity theory assumptions, preserving the finite-volume framework, as the local 

satisfaction of equilibrium equations and the establishment of continuity conditions in a 

surface-averaged sense. Thus, the additional coefficients of the displacement field can be 

expressed in terms of the new surface-averaged kinematic variables, which enforces 

continuity across adjacent subvolumes, avoiding undesirable interfacial interpenetrations. 

 The generalization proposed by Cavalcante and Pindera (2012a, b) is applicable for 

rectangular analysis domains discretized in rectangular subvolumes. This generalization is 

accomplished by adding systematically different orders to the zeroth-order (standard) finite-

volume theory, which corresponds to the original version presented by Bansal and Pindera 

(2003). Each order corresponds to an increase in the displacement field complexity, followed 

by the addition of kinematic quantities evaluated in an average sense at the subvolume faces. 

Thus, the first order finite-volume theory incorporates rotations to the original version, while 

the second-order finite-volume theory includes rotations and curvatures. Cavalcante and 

Pindera (2014a, b) proposed a generalization of the homogenized version of the finite-volume 

theory for periodic materials under finite deformations. 

 Recently, Chen et al. (2018) proposed a three-dimensional parametric formulation of 

the FVDAM theory for multiphase heterogeneous materials with periodic microstructure. 

Similarly, Vieira and Marques (2019) have proposed a parametric three-dimensional 
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extension of the finite-volume theory to evaluate the thermal conductivity of periodic 

multiphase composites. Summarily, the finite-volume theory is quite a new numerical 

approach, mainly employed for heterogeneous materials with periodic microstructures, which 

is an excellent solution for the checkerboard pattern issue usually presented in topology 

optimization for compliance minimization based on the finite element method. 

 Different versions of the finite-volume method can be found in the literature, as the 

cell-centered and vertex-centered approaches (CAVALCANTE; PINDERA, 2012a). They can 

share similar features with the finite-volume theory, as the satisfaction of the equilibrium 

equations locally, and the continuity conditions imposed through the faces, as expected from a 

continuum mechanics point of view. These features can also be found in the Discrete Element 

Method (DEM) for continuous medium. See, for example, one of the most recent applications 

of the DEM approach to the multi-scale modeling of heterogeneous materials with periodic 

microstructure presented by Ferretti (2020). These approaches can also be explored to solve 

the checkerboard pattern of topology optimization. 

2.1 Theoretical Framework 

 The presented formulation has its roots in the second-order version of the generalized 

finite-volume theory presented in Cavalcante and Pindera (2012a) for structured meshes 

composed by rectangular subvolumes. This technique approximates the displacement field by 

second-order Legendre polynomials expressed as a function of the local coordinates inside 

each subvolume (CAVALCANTE et al., 2007a). Besides, the boundary and continuity 

conditions are imposed in a surface-averaged sense, and the equilibrium equations are 

satisfied at the subvolume level. 

 Figure 3 shows a rectangular structure subdivided in 𝑁𝑞 = 𝑁𝛽𝑁𝛾 rectangular 

subdomains called subvolumes. 𝑁𝛽 and 𝑁𝛾 indicate the number of subdivisions corresponding 

to the intervals 0 ≤ 𝑥1 ≤ 𝐿 and 0 ≤ 𝑥2 ≤ 𝐻, respectively. Each subvolume can be denoted by 

a single index 𝑞 (1 ≤ 𝑞 ≤ 𝑁𝑞) or by a pair of indexes 𝛽 = 1,… ,𝑁𝛽 and 𝛾 = 1,… , 𝑁𝛾, where 

𝑞 can be evaluated from 𝛽 and 𝛾. The subvolume (𝛽, 𝛾) occupies the position 𝛽 in the 

horizontal direction and the position 𝛾 in the vertical direction, or 𝑞 = 𝛾 + (𝛽 − 1)𝑁𝛾 for the 

discretized structure. In this formulation of the generalized finite-volume theory, the 

components of the displacement field in the subvolumes can be approximated by the 

Legendre polynomial expansion in the local coordinate system, shown in Figure 3 

(CAVALCANTE; PINDERA, 2012a): 
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(2.1) 

where 𝑖 = 1,2 and 𝑊𝑖(𝑚𝑛)
(𝑞)

 are the unknown coefficients of the displacement field. These 

coefficients are expressed as a function of the following kinematic quantities: surface-

averaged displacements, rotations, and curvatures, which are responsible for determining the 

generalized stiffness matrices (CAVALCANTE; PINDERA, 2012a). 

Figure 03 – Discretized analysis domain and local coordinate system of a generic subvolume 𝒒 

 

Font: Adapted from Cavalcante and Pindera (2012a). 

Figure 04 – Surface-averaged quantities: (a) surface-averaged kinematic quantities and (b) 

surface-averaged static quantities 

 

Font: Author (2022). 
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Figure 4a illustrates the kinematic quantities associated with each face of a generic 

subvolume 𝑞. Therefore, these quantities in terms of surface-averaged displacements, 

rotations and curvatures can be defined, respectively, as follows 

�̅�𝑖
(1,3) =

1

𝑙𝑞
∫ 𝑢𝑖 (𝑥1

(𝑞), ∓
ℎ𝑞

2
)𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

  

�̅�𝑖
(2,4) =

1

ℎ𝑞
∫ 𝑢𝑖 (±

𝑙𝑞

2
, 𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

�̅�21
(1,3) =

1

𝑙𝑞
∫

𝜕𝑢2(𝑥1
(𝑞)
,∓
ℎ𝑞

2
)

𝜕𝑥1
(𝑞) 𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

      

�̅�12
(2,4) = −

1

ℎ𝑞
∫

𝜕𝑢1(±
𝑙𝑞

2
,𝑥2
(𝑞)
)

𝜕𝑥2
(𝑞) 𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

  

�̅�21
(1,3) =

1

𝑙𝑞
∫

𝜕2𝑢2(𝑥1
(𝑞)
,∓
ℎ𝑞

2
)

𝜕𝑥1
2(𝑞) 𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

     

�̅�12
(2,4) = −

1

ℎ𝑞
∫

𝜕2𝑢1(±
𝑙𝑞

2
,𝑥2
(𝑞)
)

𝜕𝑥2
2(𝑞) 𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

, (2.2) 

where the superscript indicates the subvolume face number, indexed as illustrated in Figure 

4a. The surface-averaged quantities are evaluated along the edges, assuming a unitary 

dimension along the 𝑥3 coordinate axis. 

 Thereafter, the compatibility conditions are established in terms of the surface-

averaged variables, which is motivated by the satisfaction of point-wise continuity conditions 

between adjacent subvolumes (CAVALCANTE; PINDERA, 2012a). Thus, the kinematic 

compatibilization between the third and first faces of adjacent subvolumes is established as 

�̅�𝑖
(3)|

(𝑞)

= �̅�𝑖
(1)|

(𝑞+1)

�̅�21
(3)|

(𝑞)

= �̅�21
(1)|

(𝑞+1)

�̅�21
(3)|

(𝑞)

= �̅�21
(1)|

(𝑞+1)

. (2.3) 

 Similarly, the kinematic variables must be also compatibilized between the second and 

fourth faces of adjacent subvolumes. Substituting the polynomial representation of the 

displacement field, Eq. (2.1), in Eq. (2.2), 16 expressions are obtained for the surface-

averaged displacements, rotations, and curvatures, which can be represented in matrix 

notation as follows 
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[
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
] = 𝑨(16×16)

(𝑞) [

𝑾(𝑞)

𝑾𝛻
(𝑞)

𝑾
𝛻2
(𝑞)

] + 𝒂(16×2)
(𝑞) 𝑾(00)

(𝑞)
, (2.4) 

where �̅�(𝑞) = [�̅�1
(𝑞,1)

, �̅�2
(𝑞,1)

, �̅�1
(𝑞,2)

, �̅�2
(𝑞,2)

, �̅�1
(𝑞,3)

, �̅�2
(𝑞,3)

, �̅�1
(𝑞,4)

, �̅�2
(𝑞,4)]

𝑇

 is the local surface-

averaged displacement vector, �̅�(𝑞) = [�̅�21
(𝑞,1), �̅�12

(𝑞,2), �̅�21
(𝑞,3), �̅�12

(𝑞,4)]
𝑇

 is the local surface-

averaged rotation vector, �̅�(𝑞) = [�̅�21
(𝑞,1), �̅�12

(𝑞,2), �̅�21
(𝑞,3), �̅�12

(𝑞,4)]
𝑇

 is the local surface-averaged 

curvature vector, 𝑾(𝑞) = [𝑊1(10)
(𝑞) ,𝑊1(01)

(𝑞) ,𝑊1(20)
(𝑞) ,𝑊1(02)

(𝑞) ,𝑊2(10)
(𝑞) ,𝑊2(01)

(𝑞) ,𝑊2(20)
(𝑞) ,𝑊2(02)

(𝑞) ]
𝑇

 is 

the vector containing the unknown coefficients related to the zeroth-order finite-volume 

theory, 𝑾𝛻
(𝑞)
= [𝑊1(11)

(𝑞)
,𝑊2(11)

(𝑞)
,𝑊1(21)

(𝑞)
,𝑊2(12)

(𝑞) ]
𝑇

 is the vector formed by the unknown 

coefficients related to the first-order finite-volume theory, 𝑾
𝛻2
(𝑞) =

[𝑊1(12)
(𝑞) ,𝑊2(21)

(𝑞) ,𝑊1(22)
(𝑞) ,𝑊2(22)

(𝑞) ]
𝑇

 is the vector composed by the unknown coefficients related 

exclusively to the second-order finite-volume theory and 𝑾(00)
(𝑞) = [𝑊1(00)

(𝑞) ,𝑊2(00)
(𝑞) ]

𝑇

 is the 

vector containing the zeroth-order unknown coefficients. 𝑨(16×16)
(𝑞)

 and 𝒂(16×2)
(𝑞)

 are matrices 

that depend on the geometric features of the subvolume 𝑞, which can be found in Araujo 

(2018). 

 Similarly, the surface-averaged static quantities, shown in Figure 4b, can be defined in 

terms of averaged tractions, first and second derivative of normal tractions acting on the faces 

of a generic subvolume. Thus, these surface-averaged static quantities are respectively defined 

as 
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𝑡�̅�
(1,3) = ∓

1

𝑙𝑞
∫ 𝜎2𝑖 (𝑥1

(𝑞), ∓
ℎ𝑞

2
)𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

 

𝑡�̅�
(2,4) = ±

1

ℎ𝑞
∫ 𝜎1𝑖 (±

𝑙𝑞

2
, 𝑥2
(𝑞)) 𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

𝑡2̅ 1⁄
(1,3) = ∓

1

𝑙𝑞
∫

𝜕𝜎22(𝑥1
(𝑞)
,∓
ℎ𝑞

2
)

𝜕𝑥1
(𝑞) 𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

       

𝑡1̅ 2⁄
(2,4) = ∓

1

ℎ𝑞
∫

𝜕𝜎11(±
𝑙𝑞

2
,𝑥2
(𝑞)
)

𝜕𝑥2
(𝑞) 𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

      

𝑡2̅ 11⁄
(1,3) = ∓

1

𝑙𝑞
∫

𝜕2𝜎22(𝑥1
(𝑞)
,∓
ℎ𝑞

2
)

𝜕𝑥1
2(𝑞) 𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

     

𝑡1̅ 22⁄
(2,4) = ∓

1

ℎ𝑞
∫

𝜕2𝜎11(±
𝑙𝑞

2
,𝑥2
(𝑞)
)

𝜕𝑥2
2(𝑞) 𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

    

. (2.5) 

In the static analysis, the continuity conditions between the third and first faces of 

adjacent subvolumes are imposed as follows 

𝑡�̅�
(3)|

(𝑞)

− 𝑡�̅�
(1)|

(𝑞+1)

= 0     

𝑡2̅ 1⁄
(3) |

(𝑞)

− 𝑡1̅ 2⁄
(1) |

(𝑞+1)

= 0    

𝑡2̅ 11⁄
(3) |

(𝑞)

− 𝑡2̅ 11⁄
(1) |

(𝑞+1)

= 0

. (2.6) 

These continuities must also be established between the fourth and second faces of adjacent 

subvolumes. 

 Considering linear elastic isotropic materials, where the generalized Hooke’s law ( 

𝜎𝑖𝑗
(𝑞) = 𝐶𝑖𝑗𝑘𝑙

(𝑞) 𝜀𝑘𝑙
(𝑞)

) is valid, 16 expressions are obtained for the surface-averaged static variables 

in terms of the unknown coefficients. These expressions can be arranged in matrix notation as 

follows 

[

�̅�(𝑞)

�̅�𝛻
(𝑞)

�̅�
𝛻2
(𝑞)

] = 𝑩(16×16)
(𝑞) [

𝑾(𝑞)

𝑾𝛻
(𝑞)

𝑾
𝛻2
(𝑞)

], (2.7) 

where �̅�(𝑞) = [𝑡1̅
(𝑞,1), 𝑡2̅

(𝑞,1), 𝑡1̅
(𝑞,2), 𝑡2̅

(𝑞,2), 𝑡1̅
(𝑞,3), 𝑡2̅

(𝑞,3), 𝑡1̅
(𝑞,4), 𝑡2̅

(𝑞,4)]
𝑇

 is the local surface-averaged 

traction vector, �̅�𝛻
(𝑞) = [𝑡2̅ 1⁄

(𝑞,1), 𝑡1̅ 2⁄
(𝑞,2), 𝑡2̅ 1⁄

(𝑞,3), 𝑡1̅ 2⁄
(𝑞,4)]

𝑇

 is the local surface-averaged normal 

traction first derivative vector and �̅�
𝛻2
(𝑞) = [𝑡2̅ 11⁄

(𝑞,1), 𝑡1̅ 22⁄
(𝑞,2), 𝑡2̅ 11⁄

(𝑞,3), 𝑡1̅ 22⁄
(𝑞,4)]

𝑇

 is the local surface-

averaged normal traction second derivative vector. 𝑩(16×16)
(𝑞)

 is a matrix that depends on the 
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subvolume dimensions and the material elastic properties, which elements can be found in 

Araujo (2018). 

 In the absence of body forces, the equilibrium conditions at the subvolume level are 

established as 

∑ �̅�(𝑝)
(𝑞)𝐿𝑝

(𝑞)4
𝑝=1 = 𝟎, (2.8) 

where 𝐿1
(𝑞) = 𝑙𝑞, 𝐿2

(𝑞) = ℎ𝑞, 𝐿3
(𝑞) = 𝑙𝑞 and 𝐿4

(𝑞) = ℎ𝑞 are the subvolume edges lengths and �̅�(𝑝)
(𝑞)

 

is taken from Eq. (2.7) and can be expressed as 

�̅�(𝑝)
(𝑞)
= 𝑩(2×16)

(𝑞,𝑝)
(𝑨

(𝑞)
)
−1

(�̅�(𝑞) − 𝒂
(𝑞)
𝑾(00)

(𝑞)
), (2.9) 

where 𝑩(2×16)
(𝑞,𝑝)

 are submatrices of selected components of the matrix 𝑩
(𝑞)

 related to the 

surface-averaged tractions acting on a face 𝑝 of the subvolume 𝑞. Replacing Eqs. (2.4) and 

(2.7) in Eqs. (2.9) and (2.8), the following expression is obtained 

(∑ 𝑩
(𝑞,𝑝)𝐿𝑝

(𝑞)4
𝑝=1 ) (𝑨

(𝑞))
−1
[
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
] = (∑ 𝑩

(𝑞,𝑝)𝐿𝑝
(𝑞)4

𝑝=1 ) (𝑨
(𝑞))

−1

𝒂
(𝑞)𝑾(00)

(𝑞)
. (2.10) 

 The vector 𝑾(00)
(𝑞)

 can be obtained from Eq. (2.10), which is given by 

𝑾(00)
(𝑞) = �̅�(2×16)

(𝑞) [
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
], (2.11) 

where �̅�(2×16)
(𝑞) = [(∑ 𝑩

(𝑞,𝑝)𝐿𝑝
(𝑞)4

𝑝=1 ) (𝑨
(𝑞))

−1

𝒂
(𝑞)]

−1

(∑ 𝑩
(𝑞,𝑝)𝐿𝑝

(𝑞)4
𝑝=1 ) (𝑨

(𝑞))
−1

. Replacing 

Eq. (2.11) in Eq. (2.4), the following expression can be obtained: 

[

𝑾(𝑞)

𝑾𝛻
(𝑞)

𝑾
𝛻2
(𝑞)

] = �̅�(16×16)
(𝑞) [

�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
], (2.12) 

where �̅�(16×16)
(𝑞) = (𝑨

(𝑞))
−1

− (𝑨
(𝑞))

−1

𝒂
(𝑞)�̅�

(𝑞)
. Thus, the local system of equations for a 

generic subvolume can be obtained by replacing Eq. (2.12) in Eq. (2.7), which gives 

[

�̅�(𝑞)

�̅�𝛻
(𝑞)

�̅�
𝛻2
(𝑞)

] = 𝑲(16×16)
(𝑞) [

�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
], (2.13) 
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where 𝑲(16×16)
(𝑞) = 𝑩

(𝑞)�̅�
(𝑞)

 is the local stiffness matrix, which is a not symmetric matrix. 

For the global stiffness matrix assemblage, each subvolume’s contribution is 

considered on the discretized structure. Therefore, the global system of equations can be 

defined as 

𝑻(𝑛𝑑𝑜𝑓×1) = 𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓)𝑼(𝑛𝑑𝑜𝑓×1), (2.14) 

where 𝑛𝑑𝑜𝑓 is the total number of degrees of freedom, 𝑻(𝑛𝑑𝑜𝑓×1) and 𝑼(𝑛𝑑𝑜𝑓×1) are the 

global surface-averaged static and kinematic vectors, respectively, and 𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓) is the 

global stiffness matrix evaluated by 

𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓) = ∑ [(𝑳(16×𝑛𝑑𝑜𝑓)
(𝑞) )

𝑇

𝑲(16×16)
(𝑞) 𝑳(16×𝑛𝑑𝑜𝑓)

(𝑞) ]
𝑁𝑞
𝑞=1 , (2.15) 

where 𝑳(16×𝑛𝑑𝑜𝑓)
(𝑞)

 is the kinematic and static incidence matrix. The global stiffness matrix is a 

sparse and not symmetric matrix that can be used to obtain the surface-averaged kinematic 

variables by the product of its inverse and the global surface-averaged static vector. The 

inverse bar in MatLab software can optimize this process by using a Gaussian elimination 

once the global stiffness matrix is square (MATLAB, 2016). 

 The mechanical analysis can also be evaluated in a surface-averaged sense in each 

subvolume in terms of strain and stress. Therefore, the local strain tensor can be obtained 

from the following kinematic relation: 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
). (2.16) 

By employing the displacement field approximation presented in Eq. (2.1), the local strain 

tensor can be written as 

𝜺(𝑞) (𝑥1
(𝑞)
, 𝑥2
(𝑞)
) = 𝑬0

(𝑞)
(𝑥1

(𝑞)
, 𝑥2
(𝑞)
)𝑾(𝑞) + 𝑬1

(𝑞)
(𝑥1

(𝑞)
, 𝑥2
(𝑞)
)𝑾𝛻

(𝑞)
+

𝑬2
(𝑞) (𝑥1

(𝑞), 𝑥2
(𝑞))𝑾

𝛻2
(𝑞)

, 
(2.17) 

where 𝑬𝑚
(𝑞) (𝑥1

(𝑞), 𝑥2
(𝑞)) are the kinematic matrices relating the strain vector to the unknown 

coefficients and can be found in the Appendix B. Consequently, the local stress tensor can be 

obtained using the material constitutive relation as 

𝝈(𝑞) (𝑥1
(𝑞), 𝑥2

(𝑞)) = 𝑪(𝑞)𝜺(𝑞) (𝑥1
(𝑞), 𝑥2

(𝑞)), (2.18) 
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where 𝑪(𝑞) is the constitutive matrix for linear elastic isotropic materials under plane stress 

state.The previous theoretical development corresponds to the formulation of the second-order 

version of the generalized finite-volume theory for continuum elastic structures. For the lower 

order versions of the generalized finite-volume theory, the framework can be obtained by 

uncoupling curvatures, in the case of the first-order version, and curvatures and rotations, in 

the case of the zeroth-order version. The vectors composed by the unknown coefficients must 

also be uncoupled following the corresponding version of the generalized finite-volume 

theory. 

2.2 Finite-Volume Theory for Elastoplastic Analysis 

This technique employs the volume average of the different fields that define the 

material behavior and imposes boundary and continuity conditions between adjacent 

subvolumes in an average-sense. In this contribution, it is employed an incremental 

formulation of the finite-volume theory that considers the elastoplastic behavior of the 

material. Therefore, the equilibrium equations are satisfied in an average-sense in the volume, 

and the incremental displacement field in the subvolume is modeled by second-order 

polynomials defined in local coordinates. 

2.2.1 Incremental formulation of the finite-volume theory for elastoplastic analysis 

Figure 3 shows the adopted rectangular domain in 𝑥1 − 𝑥2 plane with 0 ≤ 𝑥1 ≤ 𝐿 and 

0 ≤ 𝑥2 ≤ 𝐻, which is discretized in 𝑁𝛽 horizontal subvolumes and 𝑁𝛾 vertical subvolumes. 

The subvolume dimensions are 𝑙𝑞 and ℎ𝑞 for 𝑞 = 1,… , 𝑁𝑞, where 𝑁𝑞 = 𝑁𝛽 ∙ 𝑁𝛾 is the total 

number of subvolumes. Here, we adopt the zeroth-order finite-volume theory for rectangular 

analysis domains discretized in rectangular subvolumes, as shown in Figure 3, and an 

incomplete quadratic incremental displacement field representation in the subvolume 𝑞, 

∆𝑢𝑖
(𝑞) = ∆𝑊𝑖(00)

(𝑞) + 𝑥1
(𝑞)
∆𝑊𝑖(10)

(𝑞) + 𝑥2
(𝑞)
∆𝑊𝑖(01)

(𝑞) +
1

2
(3(𝑥1

(𝑞)
)
2

−
𝑙𝑞
2

4
)∆𝑊𝑖(20)

(𝑞) +

1

2
(3(𝑥2

(𝑞)
)
2

−
ℎ𝑞
2

4
)∆𝑊𝑖(02)

(𝑞)
, 

(2.19) 

where 𝑖 = 1,2, and ∆𝑊𝑖(𝑚𝑛)
(𝑞)

 are unknown coefficients. 

2.2.2 Local tangent stiffness matrix 
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 The surface-averaged incremental displacement components at the subvolume faces 

can be evaluated by the following expressions: 

∆�̅�𝑖
(𝑞,𝑝)

=
1

𝑙𝑞
∫ ∆𝑢𝑖

(𝑞)
(𝑥1

(𝑞)
, ∓ ℎ𝑞 2⁄ )

+𝑙𝑞 2⁄

−𝑙𝑞 2⁄
𝑑𝑥1

(𝑞)
,  for  𝑝 = 1, 3

∆�̅�𝑖
(𝑞,𝑝)

=
1

ℎ𝑞
∫ ∆𝑢𝑖

(𝑞)
(± 𝑙𝑞 2⁄ , 𝑥2

(𝑞)
)

+ℎ𝑞 2⁄

−ℎ𝑞 2⁄
𝑑𝑥2

(𝑞)
,  for  𝑝 = 2, 4

, (2.20) 

where ∆�̅�𝑖
(𝑞,𝑝)

 
are the surface-averaged incremental displacements of a generic subvolume 𝑞, 

Figure 5a. 

Figure 05 – Surface-averaged kinematic and static quantities for a generic subvolume 𝒒: (a) 

surface-averaged incremental displacements and (b) surface-averaged incremental tractions 

 

Font: Author (2022). 

 Employing the components of the incremental displacement field, Eq. (2.19), in Eq. 

(2.20), eight expressions are obtained for the surface-averaged incremental displacements as a 

function of the incremental displacement field coefficients. Such expressions can be 

organized in matrix notation as follows: 

∆�̅�(𝑞) = 𝑨(8×8)
(𝑞) ∆𝑾(𝑞) + 𝒂(8×2)

(𝑞) ∆𝑾(00)
(𝑞)

, (2.21) 

where ∆�̅�(𝑞) = [∆�̅�1
(𝑞,1), ∆�̅�2

(𝑞,1), ∆�̅�1
(𝑞,2), ∆�̅�2

(𝑞,2), ∆�̅�1
(𝑞,3), ∆�̅�2

(𝑞,3), ∆�̅�1
(𝑞,4), ∆�̅�2

(𝑞,4)]
𝑇

 is the 

surface-averaged incremental displacement vector, ∆𝑾(𝑞) =

[∆𝑊1(10)
(𝑞) , ∆𝑊1(01)

(𝑞) , ∆𝑊1(20)
(𝑞) , ∆𝑊1(02)

(𝑞) , … , ∆𝑊2(02)
(𝑞) ]

𝑇

 is the vector containing the first and 

second order unknown coefficients and ∆𝑾(00)
(𝑞) = [∆𝑊1(00)

(𝑞) , ∆𝑊2(00)
(𝑞) ]

𝑇

 is the vector 
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containing the zeroth-order unknown coefficients. The matrices 𝑨(8×8)
(𝑞)

 and 𝒂(8×2)
(𝑞)

 can be 

found in the Appendix A. Therefore, the vector ∆𝑾(𝑞) can be evaluated as a function of ∆�̅�(𝑞) 

and ∆𝑾(00)
(𝑞)

 as follows: 

∆𝑾(𝑞) = (𝑨
(𝑞))

−1

∆�̅�(𝑞) − (𝑨
(𝑞))

−1

𝒂
(𝑞)∆𝑾(00)

(𝑞)
. (2.22) 

 Employing Cauchy's relations, the components of the incremental traction vectors, 

acting in an averaged sense on the faces of a generic subvolume 𝑞, can be expressed as 

shown: 

∆𝑡�̅�
(𝑞,𝑝)

= ∓
1

𝑙𝑞
∫ ∆𝜎2𝑖(𝑥1

(𝑞)
, ∓ ℎ𝑞 2⁄ )

+𝑙𝑞 2⁄

−𝑙𝑞 2⁄
𝑑𝑥1

(𝑞)
,  for  𝑝 = 1, 3

∆𝑡�̅�
(𝑞,𝑝)

= ±
1

ℎ𝑞
∫ ∆𝜎1𝑖(± 𝑙𝑞 2⁄ , 𝑥2

(𝑞)
)

+ℎ𝑞 2⁄

−ℎ𝑞 2⁄
𝑑𝑥2

(𝑞)
,  for  𝑝 = 2, 4

. (2.23) 

Applying the kinematic relations between strains and displacements and the tangent 

constitutive relationship, eight expressions in terms of the unknown coefficients can be 

obtained and organized in matrix notation as follows: 

∆�̅�(𝑞) = 𝑩(8×8)
(𝑞) ∆𝑾(𝑞), (2.24) 

where ∆𝐭̅(𝑞) = [∆𝑡1
(𝑞,1), ∆𝑡2

(𝑞,1), ∆𝑡1
(𝑞,2), ∆𝑡2

(𝑞,2), ∆𝑡1
(𝑞,3), ∆𝑡2

(𝑞,3), ∆𝑡1
(𝑞,4), ∆𝑡2

(𝑞,4)]
𝑇

 is the surface-

averaged incremental traction vector, Figure 4b. The matrix 𝑩(8×8)
(𝑞)

 can be found in the 

Appendix A. 

 In the absence of body forces, the satisfaction of equilibrium conditions is ensured by 

the following expression: 

∑ ∆�̅�(𝑞,𝑝)𝐿𝑝
(𝑞)4

𝑝=1 = 𝟎(2×1), (2.25) 

where  𝐿1
(𝑞)
= 𝑙𝑞, 𝐿2

(𝑞)
= ℎ𝑞, 𝐿3

(𝑞)
= 𝑙𝑞 e 𝐿4

(𝑞)
= ℎ𝑞 are the faces` lengths of the subvolume 𝑞, 

and ∆𝐭̅(𝑞,𝑝) can be evaluate as follows 

∆�̅�(𝑞,𝑝) = 𝑩(2×8)
(𝑞,𝑝) (𝑨

(𝑞))
−1

∆�̅�(𝑞) −𝑩(2×8)
(𝑞,𝑝) (𝑨

(𝑞))
−1

𝒂
(𝑞)∆𝑾(00)

(𝑞)
, (2.26) 

where 𝑩(2×8)
(𝑞,𝑝)

 are composed by different two lines of 𝑩
(𝑞)

. 

 Substituting Eq. (2.26) in Eq. (2.25), the following equation can be developed: 

(∑ 𝑩
(𝑞,𝑝)𝐿𝑝

(𝑞)4
𝑝=1 ) (𝑨

(𝑞))
−1

∆�̅�(𝑞) − (∑ 𝑩
(𝑞,𝑝)𝐿𝑝

(𝑞)4
𝑝=1 ) (𝑨

(𝑞))
−1

𝒂
(𝑞)∆𝑾(00)

(𝑞) = 𝟎. (2.27) 
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From Eq. (2.27), the vector ∆𝐖(00)
(𝑞)

 can be evaluated as 

∆𝑾(00)
(𝑞) = �̅�(2×8)

(𝑞) ∆�̅�(𝑞), (2.28) 

where �̅�(2×8)
(𝑞)

= [(∑ 𝐁
(𝑞,𝑝)

𝐿𝑝
(𝑞)4

𝑝=1 ) (𝐀
(𝑞)
)
−1

𝐚
(𝑞)
]
−1

(∑ 𝐁
(𝑞,𝑝)

𝐿𝑝
(𝑞)4

𝑝=1 ) (𝐀
(𝑞)
)
−1

. 

 By replacing Eq. (2.28) in Eq. (2.21), the following expression can be obtained: 

∆𝑾(𝑞) = �̅�(8×8)
(𝑞) ∆�̅�(𝑞), (2.29) 

where �̅�(8×8)
(𝑞) = (𝐀

(𝑞))
−1

− (𝐀
(𝑞))

−1

𝐚
(𝑞)�̅�

(𝑞)
. 

 Finally, replacing Eq. (2.29) in Eq. (2.24), the local system of equations is obtained for 

a generic subvolume as follows: 

∆�̅�(𝑞) = 𝑲(8×8)
(𝑞) ∆�̅�(𝑞), (2.30) 

where 𝐊(8×8)
(𝑞)

= 𝐁
(𝑞)
�̅�
(𝑞)

 is the local tangent stiffness matrix of a generic subvolume 𝑞. 

 2.2.3 Global tangent stiffness matrix assemblage 

 The global tangent stiffness matrix of the structure is assembled considering the 

individual contribution of each subvolume of the discretized domain. If the structure is 

subdivided in 𝑁𝑞 = 𝑁𝛽𝑁𝛾 subvolumes, considering two degrees of freedom per face, we have 

𝑛𝑑𝑜𝑓 = 2𝑁𝛽(𝑁𝛾 + 1) + 2(𝑁𝛽 + 1)𝑁𝛾 degrees of freedom for the structure. Based on the 

kinematic and static compatibility conditions, the expression that defines the global system of 

equations can be written as 

∆𝑻(𝑛𝑑𝑜𝑓×1) = 𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓)∆𝑼(𝑛𝑑𝑜𝑓×1), (2.31) 

where ∆𝐔(𝑛𝑑𝑜𝑓×1) and ∆𝐓(𝑛𝑑𝑜𝑓×1) are the global surface-averaged incremental displacement 

vector and the global surface-averaged incremental traction vector, respectively, and the 

global tangent stiffness matrix can be obtained by the following equation: 

𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓) = ∑ [(𝑳(8×𝑛𝑑𝑜𝑓)
(𝑞) )

𝑇

𝑲(8×8)
(𝑞) 𝑳(8×𝑛𝑑𝑜𝑓)

(𝑞) ]
𝑁𝑞
𝑞=1 , (2.32) 

where 𝐋(8×𝑛𝑑𝑜𝑓)
(𝑞)

 and (𝐋(8×𝑛𝑑𝑜𝑓)
(𝑞)

)
𝑇

 are the kinematic and static compatibility matrices of the 

structure, respectively. 
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 2.2.4 Tangent material stiffness matrix 

The elastoplastic behavior is characterized by an initially elastic material response 

and, from a certain stress level, by an essentially plastic behavior. The elastic behavior is 

reversible, and its domain is delimited by the yield surface, which, if exceeded, will lead to a 

plastic behavior. The plastic behavior of the material is generally accompanied by invariance 

of its volume. Two uniaxial models of elastoplastic behavior of the material are explained 

below, as well as their respective formulations and graphic representations. 

Elastic perfectly plastic model: In this uniaxial model, the material will present linear 

elastic behavior until reaching the yield stress (𝜎𝑦). From this stress level, the material will 

show a perfectly plastic behavior, i.e., without work hardening of the material. Figure 6a 

illustrates this model in more details. Considering the definition of this model and its 

graphical representation, it follows this mathematical expression for the yield stress: 

𝜎𝑦(𝜀𝑃) = 𝜎𝑦0 (2.33) 

where 𝜎𝑦0 is the initial yield stress of the material and 𝜀𝑃 is the plastic strain. 

Figure 06 – Uniaxial elastoplastic material models 

(a)  (b) 

Font: Author (2022). 

Bilinear elastoplastic model: In this uniaxial model, the material will present a linear 

elastic behavior until reaching the yield stress (𝜎𝑦). From this stress level, the material will 

start to show a plastic behavior with linear hardening. In other words, the stress must be 

increased linearly along with the evolution of the plastic strain. Figure 6b illustrates this 
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model more detailed. Considering the definition of this model and its graphical representation, 

it gives the following expression for the yield stress: 

𝜎𝑦(𝜀𝑃) = 𝜎𝑦0 +
𝐸𝐻

𝐸 − 𝐻
𝜀𝑃 (2.34) 

where 𝐸 is the elastic modulus and 𝐻 is the hardening coefficient of the material. 

The plastic behavior is conditioned to a yield criterion. The von Mises yield criterion 

for elastoplastic materials with isotropic hardening can be geometrically represented by an 

infinite circular cylinder with radius equal to √
2

3
𝜎𝑦(𝜀𝑃), represented in the coordinate system 

𝜎1, 𝜎2 and 𝜎3 (principal stresses), as shown in Figure 7. 

Figure 07 – Geometric representation of the von Mises yield criterion 

 

Font: Author (2022). 

 The multi-axial von Mises yield function in terms of the principal stresses considering 

an isotropic hardening can be mathematically expressed as follows: 

𝑓(𝜎1, 𝜎2, 𝜎3, 𝜀𝑃) = 𝜎𝑣𝑚(𝜎1, 𝜎2, 𝜎3) − 𝜎𝑦(𝜀𝑃) (2.35) 

where 𝜎𝑣𝑚(𝜎1, 𝜎2, 𝜎3) = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] is the equivalent von 

Mises stress and 𝜀𝑃 = √
2

3
[(𝜀1

𝑃)2 + (𝜀2
𝑃)2 + (𝜀3

𝑃)2]  is the effective plastic strain for an 

incompressible plastic material, with 𝜀𝑖
𝑃 being a principal plastic strain component. 
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 The exact tangent material stiffness matrix 𝑪(𝑞) employed in the proposed incremental 

elastoplastic formulation of the finite-volume theory can be eva luated for the elastic 

perfectly plastic material, Eq. (2.36), and the bilinear elastoplastic material, Eq. (2.37), as 

follows: 

𝑪(𝑞) = 𝑪𝑒𝑙
(𝑞)   for   𝜎𝑣𝑚(𝜎1, 𝜎2, 𝜎3) < 𝜎𝑦(𝜀𝑃) 

𝑪(𝑞) = 𝑪𝑒𝑙
(𝑞)

[
 
 
 

𝑰 −
𝟏

(
𝜕𝑓
𝜕𝝈)

𝑻

𝑪𝑒𝑙
(𝑞)
(
𝜕𝑓
𝜕𝝈)

(
𝜕𝑓

𝜕𝝈
)(
𝜕𝑓

𝜕𝝈
)
𝑻

𝑪𝑒𝑙
(𝑞)

]
 
 
 

   for   𝜎𝑣𝑚(𝜎1, 𝜎2, 𝜎3) ≥ 𝜎𝑦(𝜀𝑃) 
(2.36) 

 

𝑪(𝑞) = 𝑪𝑒𝑙
(𝑞)   for   𝜎𝑣𝑚(𝜎1, 𝜎2, 𝜎3) < 𝜎𝑦(𝜀𝑃) 

𝑪(𝑞) = 𝑪𝑒𝑙
(𝑞)

[
 
 
 
 
 

𝑰 −
𝟏

(
𝜕𝑓
𝜕𝝈
)
𝑻

𝑪𝑒𝑙
(𝑞)
(
𝜕𝑓
𝜕𝝈
) − (

𝜕𝑓
𝜕𝜀𝑃

)√
𝟐
𝟑
(
𝜕𝑓
𝜕𝝈
)
𝑻

(
𝜕𝑓
𝜕𝝈
)

(
𝜕𝑓

𝜕𝝈
) (
𝜕𝑓

𝜕𝝈
)
𝑻

𝑪𝑒𝑙
(𝑞)

]
 
 
 
 
 

  for  𝜎𝑣𝑚(𝜎1, 𝜎2, 𝜎3) ≥ 𝜎𝑦(𝜀𝑃) 
(2.37) 

where 𝑰 is the identity matrix and 𝑪𝑒𝑙
(𝑞)

 is the elastic material stiffness matrix. In the evaluation 

of the exact tangent material stiffness matrix was considered the elastic modulus 𝐸𝑞(𝜌𝑞) =

𝜌𝑞
𝑝𝐸0, the hardening coefficient 𝐻𝑞(𝜌𝑞) = 𝜌𝑞

𝑝𝐻0 and the initial yield stress 𝜎𝑦0
(𝑞)
= 𝜌𝑞

𝑝𝜎𝑦0
0 , 

being 𝜌𝑞 the relative density of the material, 𝑝 the penalization factor, and 𝐸0, 𝐻0 and 𝜎𝑦0
0  the 

reference elastic modulus, hardening coefficient and initial yield stress, respectively. 

 The plane stress state condition is satisfied trough the constitutive relationship that 

relates stress with elastic strain: 

∆𝝈(𝑞) = 𝑪𝑒𝑙
(𝑞)
∆𝜺𝑒𝑙

(𝑞)
= 𝑪𝑒𝑙

(𝑞)
(∆𝜺(𝑞) − ∆𝜺𝑝

(𝑞)
) (2.38) 

 where ∆𝝈(𝑞) is the stress increment vector, ∆𝜺(𝑞) is the strain increment vector, ∆𝜺𝑒𝑙
(𝑞)

 is the 

elastic strain increment vector and ∆𝜺𝑝
(𝑞)

 is the plastic strain increment vector in the subvolume 

q.  

The associated von Mises flow rule, which results in the Prandtl-Reuss equations, 

establishes a relationship between the infinitesimal plastic strain vector with the infinitesimal 

strain vector, which results in the exact tangent material stiffness matrix shown in Eqs. (2.36) 

and (2.37). In the case of an infinitesimal analysis, this procedure satisfies the consistency 

condition (maintenance of the stress state on the yield surface). However, the consistency 

condition is no longer satisfied for a purely incremental formulation, demanding an iterative-
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incremental formulation based on the radial return method and the consistent elastoplastic 

stiffness matrix proposed by Simo and Taylor (1986). Thus, the employment of an 

incremental elastoplastic formulation based on an exact tangent material stiffness matrix, 

which relates the infinitesimal stress vector with the infinitesimal strain vector, can satisfy the 

plane stress state, not the consistency condition. Thereafter, it is necessary to adopt very small 

increments of loading to approximately satisfy the consistency condition in the analysis 

domain. Besides, the out-of-plane strain component can be evaluated by employing the elastic 

constitutive relationship for the elastic part and the plastic incompressibility for the plastic 

part, as shown below: 

∆𝜀3(𝑒𝑙)
(𝑞)

= −𝜈𝑞 (∆𝜀1(𝑒𝑙)
(𝑞)

+ ∆𝜀2(𝑒𝑙)
(𝑞)

) (2.39) 

∆𝜀3(𝑝)
(𝑞)

= −∆𝜀1(𝑝)
(𝑞)

− ∆𝜀2(𝑝)
(𝑞)

 (2.40) 

∆𝜀3
(𝑞)
= ∆𝜀3(𝑒𝑙)

(𝑞)
+ ∆𝜀3(𝑝)

(𝑞)
 (2.41) 
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3 TOPOLOGY OPTIMIZATION PROBLEMS 

 In general, the topology optimization problem is formulated as an algorithm that seeks 

to find the best material distribution inside a reference domain. Basically, a topology 

optimization problem consists of finding a subdomain Ω𝑑, with a volume limit of �̅�, included 

in a prescribed design domain Ω, which optimizes a given objective function, as illustrated in 

Figure 8. By introducing a density function 𝜌, defined in Ω, that assumes values of 1 in Ω𝑑 

and 0 in the other points of the design domain, thus, a topology optimization problem with 

volume constraint can be defined as follows 

{
 
 

 
 

min𝑔0(𝜌)

subject to:                                              

∫ 𝜌 𝑑Ω
Ω

≤ �̅�,

𝜌(𝒙) = 0 or 1,    ∀ 𝒙 𝜖 Ω

, (3.1) 

Figure 08 – Topology optimization problem domains 

 

Font: Adapted from Silva (2003). 

3.1 Material Model 

 Since the optimization problem presented in Equation (3.1) has a high complexity, 

which can generate an integer optimization, the SIMP model is employed with the intention to 

model the material distribution adequately (KIYONO et al., 2016). The relaxion promoted by 

the SIMP method consists of increasing the design domain, thus, the relative density, which 

on the original problem could only assume values of 0 or 1, according to the presence of 

material, can assume any real value between 0 and 1 (0 < 𝜌 ≤ 1), providing a project with 

different tones of gray. Intermediate values for 𝜌 can have different interpretations, such as 

thickness or porosity (KIYONO et al., 2016). Here, the purpose is to avoid intermediate 

values employing the following power-law formulation: 

 
Figura 3.3.4 - Distribuição de tensões numa barra sujeita somente à flexão e somente tração. 

 

 

Essencialmente a OT é baseada em dois conceitos: domínio fixo estendido e modelo de 

material. 

 

A figura 3.3.5 ilustra o conceito de domínio fixo estendido. Na abordagem tradicional de 

otimização de forma (figura 3.2.2) são alterados os contornos internos e externos do domínio da 

estrutura de forma a obter a solução ótima. Furos internos no domínio podem ser aumentados, 

diminuídos ou deslocados, porém novos furos não podem ser criados. Na abordagem de OT, o objetivo 

consiste em se encontrar a distribuição de material no domínio fixo estendido que melhore a função 

objetivo [4]. Assim, novos furos podem agora ser criados utilizando-se esse conceito.  

 

 
Figura 3.3.5 - Conceito de domínio fixo estendido. 

 

O segundo conceito está relacionado a como se variar o material em cada elemento finito entre 
zero (ar) e um (sólido). A utilização de valores discretos em OT (somente zero ou um) se mostrou 

problemática, dando origem à instabilidades numéricas. Atualmente já existem alguns algoritmos a 
nível acadêmico que adotam esse procedimento, mas ainda a sua utilização requer mais estudos. Dessa 

forma, a formulação mais bem sucedida foi permitir que o material assuma valores intermediários 
durante a otimização definidos pelo chamado modelo de material que determina a lei de mistura entre 

os materiais zero e um. A formulação do modelo de material é o ponto chave da formulação de OT. 
Pelo fato de se permitir materiais intermediários ao invés de somente material sólido ou ar, diz-se que o 

problema de otimização foi relaxado [4,5,6]. 
 

A figura 3.3.6 mostra a seqüência de sintetização de uma das estruturas propostas por Michell 
em 1904. O resultado final pode ser comparado com o resultado obtido analiticamente por Michell 

como já comentado na figura 2.1b. Dessa forma comprova-se que o método é matematicamente 

correto. 
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𝐸(𝜌) = 𝜂𝑐(𝜌)𝐸0, (3.2) 

where 𝐸(𝜌) is the Young modulus at density 𝜌, 𝐸0 is the Young modulus of the solid 

material, and 𝜂𝑐(𝜌) = 𝜌𝑝 (LE et al., 2010), where 𝑝 is the penalization power used to push 𝜌 

towards to 0 or 1 (BRUGGI, 2008).  

As well known, the gradient-based algorithms can present problems to find a global 

minimum, once small changes in the simulation parameters can result in a local minimum 

instead of a global minimum solution. These problems occur due to the loss of convexity 

when a value larger than one is assumed to the density penalty factor. Different procedures 

have been suggested to minimize this problem, for instance, the continued penalization 

scheme, where a gradual increase to the density penalty factor is employed during the 

optimization process, reduces the local minima effects by providing a gradual convergence to 

the overall optimization problem (CHRISTENSEN; KLARBRING, 2009). For compliance 

minimization problems, the penalty factor's value can increase gradually from 1 to 4, which 

provides a gradual convergence to the optimization process and reduces the local minima 

issue's effects. 

3.2 Compliance Minimization Problem 

 In the last three decades, since the work of Bendsøe and Kikuchi (1988), a significant 

part of the advances in topology optimization has been achieved by employing methodologies 

based on structural compliance minimization problems, defined from the work done by 

external loading in the energy analysis (COLLET et al., 2017). Some examples of 

applications using this type of optimization problem are presented in Rozvany (2009), 

Vatanabe et al. (2016), Shobeiri (2016), and Wang et al. (2017). More recent studies on this 

field can be found in Ferrari and Sigmund (2020), Li et al. (2020), and Zhao et al. (2020). 

Here, the minimum compliance topology optimization problem is employed due to its low 

complexity, which facilitates the interpretation and production of good results. 

 The topology optimization problem based on the power-law approach applied in the 

context of the finite element method, where the objective is to minimize the compliance 

structural function under a volume constraint, can be described as 
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{
 
 

 
 min 𝑐(𝝆) = ∑ (𝜌𝑞)

𝑝
𝒅𝑞
𝑇𝑲𝑞

0𝒅𝑞
𝑁
𝑞=1

subject to:                                                          
𝑉(𝝆)

𝑉
= 𝑓

0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑞 ≤ 1

, (3.3) 

where 𝑉(𝝆) and �̅� are the material and the reference domain volumes, respectively, 𝒅𝑞 is the 

local displacement vector, 𝑲𝑞
0 is the local stiffness matrix for a unitary relative density, 𝝆 is 

the relative density vector, 𝑓 is the prescribed volume fraction, 𝜌𝑚𝑖𝑛 is the minimum relative 

density, 𝜌𝑞 is the relative density associated with each element and 𝑁 is the total number of 

elements. 

3.3 OC Method 

 The optimization problems presented in Equation (3.3) can be solved by using the 

classical approach denoted by optimality criteria (OC) method. Therefore, following the 

procedure suggested by Bendsøe and Sigmund (2003), a heuristic update for the design 

variables is established as 

𝜌𝑞
𝑘+1 = {

max(𝜌𝑚𝑖𝑛, 𝜌𝑞 −𝑚) , 𝑖𝑓 𝜌𝑞
𝑘𝐵𝑞

𝜂
≤ max(𝜌𝑚𝑖𝑛, 𝜌𝑞 −𝑚)          

𝜌𝑞
𝑘𝐵𝑞

𝜂
, 𝑖𝑓 max(𝜌𝑚𝑖𝑛, 𝜌𝑞 −𝑚) < 𝜌𝑞

𝑘𝐵𝑞
𝜂
< min(1, 𝜌𝑞 +𝑚)

min(1, 𝜌𝑞 +𝑚) , 𝑖𝑓 min(1, 𝜌𝑞 +𝑚) ≤ 𝜌𝑞
𝑘𝐵𝑞

𝜂
                        

, (3.4) 

where 𝑘 is the current iteration, 𝑚 is the move-limit, 𝜂 is the damping factor and 𝐵𝑞 is given 

by 

𝐵𝑞 = −

𝜕𝑐

𝜕𝜌𝑞

𝜆
𝜕𝑓

𝜕𝜌𝑞

, (3.5) 

where 𝜆 is the Lagrangian multiplier for the constrained volume, which is determined by a 

bisection method. 

 The damping factor can be used to regularize possible oscillations during the 

optimization, mainly when no filtering techniques are employed. The parameter 𝜂 is directly 

related to the method performance, once this affects the speed variation of 𝐵𝑞
𝜂
 (Montes, 2016). 

A high value for 𝜂 can accelerate the optimization convergence process, which may cause 

oscillations in the displacement field for the low-density regions (Ma et al., 1993). Also, the 

adoption of minor values of 𝜂 can prevent divergence in the topology optimization algorithm; 

however, this results in small changes in the design variables, which leads to a slower 
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convergence process (Ma et al., 1993). The value of 𝜂 that provides the faster convergence for 

the overall process is 1/2, so it is recommended to maintain the damping factor as close as 

possible of this value. 

3.4 Mesh-Independency Filter 

Figure 09 – Elements or subvolumes participating in filtering for one element or subvolume 

 

Font: Pedersen et al. (2006). 

 The problems related to mesh-dependency numerical issue can be solved by applying 

filtering techniques, as introduced by Sigmund (1994 and 1997). To avoid the occurrence of 

mesh dependency, it is suggested the modification of the elements’ sensitivities by the 

following expression: 

𝜕𝑐

𝜕𝜌𝑞
=

1

𝜌𝑞∑ �̂�𝑓
𝑁
𝑓=1

∑ �̂�𝑓𝜌𝑓
𝜕𝑐

𝜕𝜌𝑓

𝑁
𝑓=1 , (3.6) 

where �̂�𝑓 is the convolution operator (weighting function) given as 

�̂�𝑓 = 𝑅 − dist(𝑞, 𝑓)  for dist(𝑞, 𝑓) ≤ 𝑅 and �̂�𝑓 = 0 otherwise, (3.7) 

where dist(𝑞, 𝑓) is the distance between the element center of 𝑒 and the element center of 𝑓 

(SIGMUND, 2001). To consider the contribution only of the neighbor elements (with shared 

nodes), it is adopted a filter radius of 𝑅 = 1.01√(𝑙𝑞)
2
+ (ℎ𝑞)

2
, as illustrated by the filter 

radius 𝑅𝑖 represented in Figure 9. According to Sigmund (2007), the main idea, beyond the 
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mesh-independency filtering, is to base design updates on filtered sensitivities instead of the 

real values for sensitivities. As a result, this is a potential risk approach, especially in cases of 

line-search-based optimization schemes, since the sensitivity data may not represent a descent 

direction; therefore, the optimization may stop prematurely. On the other hand, several 

applications have shown that this method is robust and reliable for the most popular 

optimization tools (SIGMUND, 2007). 
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4 COMPLIANCE ESTIMATION FOR THE GENERALIZED FINITE-VOLUME 

THEORY 

 In general, the total strain energy of a deforming material and the work done by 

external loading are equivalent to a conservative internal force system in a quasi-static 

analysis. Therefore, in structural analysis, this principle is mostly observed on energy-based 

numerical methods, as the finite element method. However, in the finite-volume theory, this 

feature is observed only for the zeroth-order version of the generalized finite-volume theory, 

once the local equilibrium is established only in terms of the surface-averaged tractions. In the 

higher-order versions of the generalized finite-volume theory, there is a residual difference 

between the work done by external forces and the total strain energy, especially when the 

employed mesh is not sufficiently fine. This contribution addresses numerical approaches to 

compute the total strain energy and the work done by external loading of continuum elastic 

structures based on the generalized finite-volume theory, which assists in defining the 

compliance function for the proposed optimization problem. 

 The compliance function can be defined as twice the total strain energy produced by a 

displacement field 𝒖; thus, this function can be expressed as 

𝑐(𝒖,𝝆) = 2𝑈(𝒖, 𝝆) = ∭ 2�̅�(𝒖, 𝝆) 𝑑𝛺
𝛺

= ∭ 𝜎𝑖𝑗(𝒖, 𝝆)𝜀𝑖𝑗(𝒖) 𝑑𝛺𝛺
=

∭ 𝐶𝑖𝑗𝑘𝑙(𝝆)𝜀𝑘𝑙(𝒖)𝜀𝑖𝑗(𝒖)𝑑𝛺𝛺
, 

(4.1) 

where 𝑈(𝒖, 𝝆) is the total strain energy, �̅�(𝒖, 𝝆) is the specific strain energy, 𝜎𝑖𝑗(𝒖,𝝆) is the 

stress tensor, 𝜀𝑖𝑗(𝒖) is the strain tensor, and 𝐶𝑖𝑗𝑘𝑙(𝝆) is the stiffness tensor. 

 From the definition of work done by external surface loading in a solid domain, not 

considering the inertial and gravity effects, suitable for quasi-static analysis, the work done by 

external loading can be defined as 

𝑊 =
1

2
∬ 𝑡𝑖𝑢𝑖 𝑑𝑆𝑆𝜎

, (4.2) 

where 𝑆𝜎 is the external surface subjected to external loading, 𝑆𝑢 is the external surface with 

predicted displacements and 𝑆 = 𝑆𝑢 ∪ 𝑆𝜎. 

 Applying Cauchy’s law and the divergence theorem to Equation (4.2), it follows 

2𝑊 =∭
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
𝑢𝑖 𝑑𝛺𝛺

+∭ 𝜎𝑖𝑗𝜀𝑖𝑗 𝑑𝛺𝛺
+∭ 𝜎𝑗𝑖𝜔𝑖𝑗 𝑑𝛺𝛺

, (4.3) 



53 
 

where 𝜔𝑖𝑗 = 1 2⁄ (𝜕𝑢𝑖 𝜕𝑥𝑗⁄ − 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ ) is the asymmetric rotation tensor. Considering the 

symmetry of 𝜎𝑖𝑗, Equation (4.3) can be written as 

2𝑊 =∭
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
𝑢𝑖 𝑑𝛺𝛺

+ 2𝑈(𝒖). (4.4) 

Considering the equilibrium stress state, where 𝜕𝜎𝑗𝑖 𝜕𝑥𝑗⁄ = 0, the compliance can be 

estimated as 

𝑐(𝒖,𝝆) = 2𝑈(𝒖, 𝝆) = 2𝑊(𝒖, 𝝆) = ∬ 𝑡𝑖𝑢𝑖 𝑑𝑆𝑆
, (4.5) 

where 𝑡𝑖 represent the traction vector components. 

The previous assumption is valid for the formulation based on the zeroth-order finite-

volume theory once the equilibrium stablished in Equation (2.8) also satisfies the differential 

equilibrium equations. However, for consistency with the assumed displacement field, the 

strain energy and the external work must be evaluated considering the polynomial 

approximation inside the subvolumes, as shown in the next sections. As a result, there is no 

guarantee of equivalence between work done by external loading and total strain energy for 

the higher-order versions of the generalized finite-volume theory, since the equilibrium 

established in Equation (2.8) does not guarantee the satisfaction of the differential equilibrium 

equations, which is satisfied when a sufficiently fine mesh is employed. This contribution 

considered the absence of volume forces for simplification. However, the energy balance 

must also be satisfied when considering the volume forces once they also produce internal and 

external energy in a deforming material. 

The energy balance is always satisfied in the finite element method. The finite element 

formulation employed in this investigation can be developed from the virtual work principle 

for elastic systems subject to conservative forces or the minimum total potential energy 

principle. The application of these principles for quasi-static analysis results in the equality 

between the work done by external loading and the total strain energy, even in the finite-

element scenario, once kinematically admissible displacements are employed (SHAMES; 

DYM, 1986). For the employed finite element formulation, the following energy analysis can 

be done, starting with the definition of the total strain energy 

U =
1

2
∭ 𝝈𝑇𝜺 𝑑Ω

Ω
=

1

2
∭ 𝜺𝑇𝑪𝑇𝜺 𝑑Ω

Ω
=

1

2
∭ 𝜺𝑇𝑪𝜺𝑑Ω

Ω
, (4.6) 

where 𝝈 and 𝜺 are the vectors with the stress and strain components, respectively, and 𝑪 is the 

stiffness material matrix. 
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 Using the definition of the strain displacement matrix 𝑩 (SHAMES; DYM, 1986), it 

follows 

U =
1

2
𝒅𝑇∭ 𝑩𝑇𝑪𝑩𝑑Ω

Ω
𝒅 =

1

2
𝒅𝑇𝑲𝒅 =

1

2
𝒅𝑇𝑭, (4.7) 

where 𝒅 is the global displacement vector, 𝑲 is the global stiffness matrix, and 𝑭 is the global 

force vector. In the absence of body forces, the work done by external loading can be 

evaluated as follows 

W =
1

2
∬ 𝒖𝑇𝒕 𝑑𝑆
𝑆

=
1

2
𝒅𝑇∬ 𝑵𝑇𝒕 𝑑𝑆

𝑆
=

1

2
𝒅𝑇𝑭, (4.8) 

where 𝒖 is the displacement vector, 𝒕 is the surface stress vector, and 𝑵 is the matrix with the 

shape functions (SHAMES; DYM, 1986). This results in the equality between the total strain 

energy and the work done by external loading. 

 On the other hand, the local equilibrium in the element level is not guaranteed, only 

for the linear triangular finite element, where the stress field is constant, and the differential 

equilibrium equations are satisfied. The displacement finite element formulation explored in 

this investigation satisfies the local equilibrium only at the nodes and at the element level 

when a sufficiently refined mesh is employed. In the linear triangular finite element, the 

differential equilibrium equations' satisfaction results in the local satisfaction of equilibrium at 

the element level, and this can be demonstrated by applying Cauchy's stress formula and the 

divergence theorem. In the absence of body forces, the force resultant at the finite element can 

be evaluated as follows 

𝑅𝑖 = ∬ 𝑡𝑖 𝑑𝑆𝑒𝑆𝑒
= ∬ 𝜎𝑗𝑖𝑛𝑗 𝑑𝑆𝑒𝑆𝑒

=∭
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
𝑑Ω𝑒Ω𝑒

, (4.9) 

where 𝑛𝑗 is the outward normal vector to the finite element surface 𝑆𝑒. Thus, in the absence of 

body forces, the equilibrium can be satisfied, 𝑅𝑖 = 0, when the differential equilibrium 

equations are identically satisfied, 𝜕𝜎𝑗𝑖 𝜕𝑥𝑗⁄ = 0, which is the case for the linear triangular 

finite element. 

4.1 Strain Energy Evaluation by the Generalized Finite-Volume Theory 

 The total structural strain energy is a function of strains and stresses acting on a solid 

as follows 

𝑈 =∭
1

2
𝝈𝑇𝜺 𝑑Ω

𝛺
=∭

1

2
𝜺𝑇𝑪𝜺𝑑Ω

𝛺
, (4.10) 
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where 𝝈, 𝜺, and 𝑪 are the stress, strain, and stiffness tensor, respectively. Considering the 

local strain tensor obtained in Eq. (2.17) and constitutive relation for linear elastic materials in 

plane stress state, thus, the strain energy at the subvolume level can be evaluated as 

𝑈(𝑞) = ∫ ∫
1

2
𝜺(𝑞)

𝑇
𝑪(𝑞)𝜺(𝑞) 𝑑𝑥1

(𝑞)
𝑙𝑞

2

−
𝑙𝑞

2

𝑑𝑥2
(𝑞)

ℎ𝑞

2

−
ℎ𝑞

2

. (4.11) 

As the unknown coefficients of the displacement field are independents from the local 

coordinate system 𝑥1
(𝑞)

 and 𝑥2
(𝑞)

, the local strain energy can be expressed as 

𝑈(𝑞) =
1

2
(𝑾(𝑞)𝑫00

(𝑞)𝑾(𝑞) +𝑾(𝑞)𝑫01
(𝑞)𝑾𝛻

(𝑞) +𝑾𝛻
(𝑞)𝑫10

(𝑞)𝑾(𝑞) +𝑾𝛻
(𝑞)𝑫11

(𝑞)𝑾𝛻
(𝑞) +

𝑾
𝛻2
(𝑞)𝑫22

(𝑞)𝑾
𝛻2
(𝑞)), 

(4.12) 

where 𝑫𝑚𝑛
(𝑞) = ∫ ∫

1

2
𝑬𝑚
(𝑞)𝑇𝑪(𝑞)𝑬𝑛

(𝑞) 𝑑𝑥1
(𝑞)

𝑙𝑞

2

−
𝑙𝑞

2

𝑑𝑥2
(𝑞)

ℎ𝑞

2

−
ℎ𝑞

2

 and 𝑫02
(𝑞)

, 𝑫12
(𝑞)

, 𝑫20
(𝑞)

, and 𝑫21
(𝑞)

 are found 

to be null matrices. The non-zero matrices 𝑫𝑚𝑛
(𝑞)

 are shown in the Appendix B. 

 Thus, the total strain energy of a deforming structure can be obtained by summing the 

individual contribution of each subvolume as follows 

𝑈 =∭ �̅� 𝑑𝛺
𝛺

= ∑ 𝑈(𝑞)
𝑁𝑞
𝑞=1 . (4.13) 

The expression presented in Equation (4.12) is valid only for the second-order version of the 

generalized finite-volume theory. For the first-order version, the strain energy at the 

subvolume level can be obtained by making 𝑾
𝛻2
(𝑞) = 𝟎, and for the zeroth-order version, the 

strain energy at the subvolume level can be obtained by making 𝑾𝛻
(𝑞) = 𝟎 and 𝑾

𝛻2
(𝑞) = 𝟎. 

4.2 External Work Evaluation by the Generalized Finite-Volume Theory 

 The displacement and traction distributions must be assumed polynomial along the 

faces for the generalized finite-volume theory; different displacement or traction distributions 

will not produce the equivalence between external work and strain energy, even for the 

zeroth-order version; only surface-averaged compatibilities and boundary conditions are 

imposed on the faces of the subvolumes. For the work done by external loading, the 

horizontal displacement on the vertical face of a subvolume can be approximated by three 

Legendre polynomials, as illustrated in Figure 10, and following the same features presented 

in Equation (2.1). Therefore, the horizontal displacement is written as 
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𝑢1
(𝑞) (𝑥2

(𝑞)) = 𝜇1(0)
(𝑞) + 𝑥2

(𝑞)𝜇1(1)
(𝑞) +

1

2
(3𝑥2

(𝑞)2 −
ℎ𝑞
2

4
)𝜇1(2)

(𝑞)
, (4.14) 

where 𝜇1(𝑚)
(𝑞)

 are the unknown coefficients of the horizontal displacement on a vertical face. 

Additionally, the counterclockwise rotation and curvature associated with the vertical face are 

respectively given by 

𝜃12
(𝑞) (𝑥2

(𝑞)) = −
𝑑𝑢1

(𝑞)

𝑑𝑥2
(𝑞) (𝑥2

(𝑞)) = −𝜇1(1)
(𝑞) − 3𝑥2

(𝑞)𝜇1(2)
(𝑞)

𝜅12
(𝑞) (𝑥2

(𝑞)) = −
𝑑2𝑢1

(𝑞)

𝑑𝑥2
2(𝑞) (𝑥2

(𝑞)) = −3𝜇1(2)
(𝑞)                     

. (4.15) 

Figure 10 – Legendre polynomials representation employed for the estimative of horizontal 

displacement in the subvolume vertical faces 

 

Font: Araujo (2018). 

 Similarly, the normal traction acting on a vertical face can be estimated by Legendre 

polynomials' superposition presented in Figure 11. Thus, the normal traction on a subvolume 

vertical face is estimated as 

𝑡1
(𝑞) (𝑥2

(𝑞)) = 𝜏1(0)
(𝑞) + 𝑥2

(𝑞)𝜏1(1)
(𝑞) +

1

2
(3𝑥2

(𝑞)2 −
ℎ𝑞
2

4
) 𝜏1(2)

(𝑞)
, (4.16) 

where 𝜏1(𝑚)
(𝑞)

 are unknown coefficients associated with the normal tractions acting on the 

vertical subvolume face. Therefore, the first and second normal traction derivatives can be 

respectively evaluated as 

𝑡1 2⁄
(𝑞) (𝑥2

(𝑞)) = −
𝑑𝑡1

(𝑞)

𝑑𝑥2
(𝑞) (𝑥2

(𝑞)) = −𝜏1(1)
(𝑞) − 3𝑥2

(𝑞)𝜏1(2)
(𝑞)

𝑡1 22⁄
(𝑞) (𝑥2

(𝑞)) = −
𝑑2𝑡1

(𝑞)

𝑑𝑥2
2(𝑞) (𝑥2

(𝑞)) = −3𝜏1(2)
(𝑞)                   

. (4.17) 
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Figure 11 – Legendre polynomials representation employed for estimative of normal tractions in 

the subvolume vertical faces 

 

Font: Araujo (2018). 

 As a result, the surface-averaged kinematic and static quantities associated with the 

vertical faces of a generic subvolume 𝑞 can be estimated as 

�̅�1
(𝑞)
=

1

ℎ𝑞
∫ 𝑢1

(𝑞)
(𝑥2

(𝑞)
) 𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= 𝜇1(0)
(𝑞)

        

𝑡1̅
(𝑞) =

1

ℎ𝑞
∫ 𝑡1

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= 𝜏1(0)
(𝑞)           

�̅�12
(𝑞) =

1

ℎ𝑞
∫ 𝜃12

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= −𝜇1(1)
(𝑞)      

𝑡1̅ 2⁄
(𝑞) =

1

ℎ𝑞
∫ 𝑡1 2⁄

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= −𝜏1(1)
(𝑞)       

�̅�12
(𝑞) =

1

ℎ𝑞
∫ 𝜅12

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= −3𝜇1(2)
(𝑞)    

𝑡1̅ 22⁄
(𝑞) =

1

ℎ𝑞
∫ 𝑡1 22⁄

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= −3𝜏1(2)
(𝑞)

. (4.18) 

Replacing Equation (4.18) in Equations (4.14) and (4.16), the following expressions can be 

respectively obtained 

𝑢1
(𝑞) (𝑥2

(𝑞)) = �̅�1
(𝑞) − 𝑥2

(𝑞)�̅�12
(𝑞) −

1

6
(3𝑥2

(𝑞)2 −
ℎ𝑞
2

4
) �̅�12

(𝑞)

𝑡1
(𝑞) (𝑥2

(𝑞)) = 𝑡1̅
(𝑞) − 𝑥2

(𝑞)𝑡1̅ 2⁄
(𝑞) −

1

6
(3𝑥2

(𝑞)2 −
ℎ𝑞
2

4
) 𝑡1̅ 22⁄

(𝑞)
. (4.19) 

 From Equation (4.19), the resultant static quantities associated with the subvolume 

vertical face can be evaluated as 
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𝑅1
(𝑞) = ∫ 𝑡1

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= 𝑡1̅
(𝑞)ℎ𝑞                                 

𝑅2
(𝑞) = ∫ 𝑡2

(𝑞) (𝑥2
(𝑞))𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= 𝑡2̅
(𝑞)ℎ𝑞                                 

𝑀𝑅
(𝑞) = −∫ 𝑡1

(𝑞) (𝑥2
(𝑞)) 𝑥2

(𝑞) 𝑑𝑥2
(𝑞)

ℎ𝑞

2

−
ℎ𝑞

2

= 𝑡1̅ 2⁄
(𝑞) ℎ𝑞

3

12
                   

𝑆𝑅
(𝑞) = ∫ 𝑡1

(𝑞) (𝑥2
(𝑞))

1

6
(3𝑥2

(𝑞)2 −
ℎ𝑞
2

4
)𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

= 𝑡1̅ 22⁄
(𝑞) ℎ𝑞

5

720

, (4.20) 

where 𝑅𝑖
(𝑞)

 is the resultant force along the 𝑥𝑖 direction acting on a subvolume vertical face, 

𝑀𝑅
(𝑞)

 is the resultant bending moment acting on a subvolume vertical face and 𝑆𝑅
(𝑞)

 is the 

second-order bending moment acting on a subvolume vertical face. Thus, the work done on a 

subvolume vertical face can be evaluated as 

�̃�(𝑞) =
1

2
∫ 𝑡1

(𝑞)
(𝑥2

(𝑞)
) 𝑢1

(𝑞)
(𝑥2

(𝑞)
)𝑑𝑥2

(𝑞)
ℎ𝑞

2

−
ℎ𝑞

2

=
1

2
(�̅�1

(𝑞)
𝑅1
(𝑞)
+ �̅�2

(𝑞)
𝑅2
(𝑞)
+

�̅�12
(𝑞)
𝑀𝑅
(𝑞)
+ �̅�12

(𝑞)
𝑆𝑅
(𝑞)
). 

(4.21) 

 By applying the same procedure to the other faces of the same subvolume, the 

following equation can be obtained 

𝑊(𝑞) =
1

2
(𝑹(𝑞)�̅�(𝑞) +𝑴𝑹

(𝑞)�̅�(𝑞) + 𝑺𝑹
(𝑞)�̅�(𝑞)), (4.22) 

where 𝑹(𝑞) is the local resultant force vector, 𝑴𝑹
(𝑞)

 is the local resultant bending moment 

vector and 𝑺𝑹
(𝑞)

 is the local resultant second-order bending moment vector acting on the faces 

of a generic subvolume 𝑞. The global work done by external forces can be obtained by 

summing the individual contribution of each subvolume, thus, 

𝑊 = ∑ 𝑊(𝑞)𝑁𝑞
𝑞=1 . (4.23) 

 The work done on the subvolume 𝑞, presented in Equation (4.22), is valid for the 

second-order version of the generalized finite-volume theory. For the first-order version, this 

expression can be updated by uncoupling the surface-averaged curvatures, and for the zeroth-

order version, besides the curvatures, the surface-averaged rotations must also be uncoupled. 
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4.3 Sensitivity Analysis for the Compliance Function by the Generalized Finite-Volume 

Theory 

 For the OC method implementation, it is necessary to compute the objective’s function 

gradient, which can be defined as twice the external work done or total strain energy. As a 

result, its sensitivity can be defined by considering a modified local system of equations: 

[

𝑹(𝑞)

𝑴𝑹
(𝑞)

𝑺𝑹
(𝑞)

] =

[
 
 
 
 �̂�(0)
(𝑞) 𝟎 𝟎

𝟎 �̂�(1)
(𝑞) 𝟎

𝟎 𝟎 �̂�(2)
(𝑞)
]
 
 
 
 

[

�̅�(𝑞)

�̅�𝛻
(𝑞)

�̅�
𝛻2
(𝑞)

] = �̂�(𝑞) [
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
], (4.24) 

where �̂�(𝑞) =

[
 
 
 
 �̂�(0)
(𝑞) 𝟎 𝟎

𝟎 �̂�(1)
(𝑞) 𝟎

𝟎 𝟎 �̂�(2)
(𝑞)
]
 
 
 
 

𝑲(16×16)
(𝑞)

 is the modified local stiffness matrix, and �̂�(i)
(𝑞)

 are 

matrices that depend on the subvolume geometric features, which can be written as follows 

�̂�(0)
(𝑞) =

[
 
 
 
 
 �̂�(0)
(𝑞,1)

𝟎 𝟎 𝟎

𝟎 �̂�(0)
(𝑞,2) 𝟎 𝟎

𝟎 𝟎 �̂�(0)
(𝑞,3) 𝟎

𝟎 𝟎 𝟎 �̂�(0)
(𝑞,4)

]
 
 
 
 
 

 for �̂�(0)
(𝑞,𝑝) = [

𝐿𝑝
(𝑞) 0

0 𝐿𝑝
(𝑞)
], 

�̂�(1)
(𝑞)
=

[
 
 
 
 
 �̂�(1)
(𝑞,1) 0 0 0

0 �̂�(1)
(𝑞,2)

0 0

0 0 �̂�(1)
(𝑞,3) 0

0 0 0 �̂�(1)
(𝑞,4)

]
 
 
 
 
 

 for �̂�(1)
(𝑞,𝑝)

= (𝐿𝑝
(𝑞)
)
3

12⁄ , 

�̂�(2)
(𝑞) =

[
 
 
 
 
 �̂�(2)
(𝑞,1) 0 0 0

0 �̂�(2)
(𝑞,2)

0 0

0 0 �̂�(2)
(𝑞,3)

0

0 0 0 �̂�(2)
(𝑞,4)

]
 
 
 
 
 

 for �̂�(2)
(𝑞,𝑝) = (𝐿𝑝

(𝑞))
5

720⁄ . 

(4.25) 

 Thereafter, the modified global system of equations can be established as 

[
𝑹
𝑴𝑹

𝑺𝑹

] = �̂� [
�̅�
�̅�
�̅�
], (4.26) 

where 𝑹 is the global resultant force vector, 𝑴𝑹 is the global resultant bending moment 

vector, 𝑺𝑹 is the global resultant second-order bending moment vector acting on the 
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subvolume faces, and �̂� = ∑ 𝐋(𝑞)
𝑇
�̂�(𝑞)𝐋(𝑞)

𝑁𝑞
𝑞=1  is the modified global stiffness matrix. 

Therefore, the compliance function for the proposed topology optimization problem can be 

established as 

𝐶(𝝆) = ∑ [

𝑹(𝑞)

𝑴𝑹
(𝑞)

𝑺𝑹
(𝑞)

]

𝑇

[
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
] =

𝑁𝑞
𝑞=1

∑ [
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
]

𝑇

�̂�(𝑞)
𝑇
[
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
]

𝑁𝑞
𝑞=1 . (4.27) 

Employing the chain rule, the objective’s function gradient can be determined by 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= ∑ (

𝜕

𝜕𝜌𝑟
([
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
]

𝑇

�̂�(𝑞)
𝑇
) [
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
] + [

�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
]

𝑇

�̂�(𝑞)
𝑇 𝜕

𝜕𝜌𝑟
[
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
])

𝑁𝑞
𝑞=1 . (4.28) 

Equation (4.28) can be written as 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= [

�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

𝜕�̂�(𝑟)
𝑇

𝜕𝜌𝑟
[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
] +

𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]

𝑇

∑ [𝐋(𝑞)
𝑇
�̂�(𝑞)

𝑇
𝐋(𝑞)]

𝑁𝑞
𝑞=1

[
�̅�
�̅�
�̅�
] +

[
�̅�
�̅�
�̅�
]

𝑇

∑ [𝐋(𝑞)
𝑇
�̂�(𝑞)

𝑇
𝐋(𝑞)]

𝑁𝑞
𝑞=1

𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]. 

(4.29) 

Considering �̂�𝑇 = ∑ 𝐋(𝑞)
𝑇
�̂�(𝑞)

𝑇
𝐋(𝑞)

𝑁𝑞
𝑞=1 , it follows: 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= [

�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

𝜕�̂�(𝑟)
𝑇

𝜕𝜌𝑟
[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
] +

𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇 [
�̅�
�̅�
�̅�
] + [

�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇
𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]. (4.30) 

 Differentiating Equation (4.26) in relation to 𝜌𝑟, it follows: 

𝟎 = 𝐋(𝑟)
𝑇 𝜕�̂�(𝑟)

𝜕𝜌𝑟
𝐋(𝑟) [

�̅�
�̅�
�̅�
] + �̂�

𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
], (4.31) 

by simplifying, the following sentence can be obtained: 

𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇 = −[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

𝜕�̂�(𝑟)
𝑇

𝜕𝜌𝑟
𝐋(𝑟) (4.32) 

once [
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

= 𝐋(𝑟) [
�̅�
�̅�
�̅�
] from kinematic incidence of each subvolume in the global kinematic 

vector. Substituting Equation (4.32) in Equation (4.30), we have 
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𝜕𝐶(𝝆)

𝜕𝜌𝑟
= [

�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

𝜕�̂�(𝑟)
𝑇

𝜕𝜌𝑟
[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
] − [

�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

𝜕�̂�(𝑟)
𝑇

𝜕𝜌𝑟
𝐋(𝑟) [

�̅�
�̅�
�̅�
] + [

�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇
𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
], (4.33) 

which can be simplified to 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= [

�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇
𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]. (4.34) 

 The compliance function can be also written as 

𝐶(𝝆) = ∑ [
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
]

𝑇

�̂�(𝑞)
𝑇
[
�̅�(𝑞)

�̅�(𝑞)

�̅�(𝑞)
]

𝑁𝑞
𝑞=1 = [

�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇 [
�̅�
�̅�
�̅�
] = [

𝑹
𝑴𝑹

𝑺𝑹

]

𝑇

[
�̅�
�̅�
�̅�
], (4.35) 

which provides the following relation 

𝐶(𝝆) = [
�̅�
�̅�
�̅�
]

𝑇

[
𝑹
𝑴𝑹

𝑺𝑹

] = [
�̅�
�̅�
�̅�
]

𝑇

�̂� [
�̅�
�̅�
�̅�
] ∴ [

𝑹
𝑴𝑹

𝑺𝑹

]

𝑇

= [
�̅�
�̅�
�̅�
]

𝑇

�̂�𝑇 = [
�̅�
�̅�
�̅�
]

𝑇

�̂�. (4.36) 

Substituting Equation (4.36) in Equation (4.34), we have 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= [

�̅�
�̅�
�̅�
]

𝑇

�̂�
𝜕

𝜕𝜌𝑟
[
�̅�
�̅�
�̅�
]. (4.37) 

Substituting the transpose of Equation (4.32) in Equation (4.37), we have 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= −[

�̅�
�̅�
�̅�
]

𝑇

𝐋(𝑟)
𝑇 𝜕�̂�(𝑟)

𝜕𝜌𝑟
[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
] = −[

�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

𝜕�̂�(𝑟)

𝜕𝜌𝑟
[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
] =

−𝑝𝜌𝑟
𝑝−1 [

�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
]

𝑇

�̂�(𝑟)(1) [
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
], 

(4.38) 

where �̂�(𝑟)(1) is modified local stiffness matrix considering a unitary relative density and 𝑝 

represents the penalty factor. Thus, Equation (4.38) can be simplified to 

𝜕𝐶(𝝆)

𝜕𝜌𝑟
= −𝑝𝜌𝑟

𝑝−1 [

𝑹(𝑟)

𝑴𝑹
(𝑟)

𝑺𝑹
(𝑟)

]

𝑇

[
�̅�(𝑟)

�̅�(𝑟)

�̅�(𝑟)
] = −2𝑝𝜌𝑟

𝑝−1𝑊(𝑟) ≈ −2𝑝𝜌𝑟
𝑝−1𝑈(𝑟), (4.39) 

where 𝑊(𝑟) is the external work done in the subvolume 𝑟, computed as described in Equation 

(4.22), and 𝑈(𝑟) is the local strain energy in the subvolume 𝑟, computed as presented in 

Equation (4.12). As previously discussed, the approximation in Equation (4.39) emerges from 
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the fact that the external work done and total strain energy in a quasi-static analysis of 

structures are approximately equivalent for the higher-order versions of the generalized finite-

volume theory, especially when a not sufficiently fine is employed. The presented formulation 

corresponds to the objective’s function gradient for the second-order version of the 

generalized finite-volume theory. Therefore, the gradient for the first-order version of the 

theory can be obtained by uncoupling the curvatures in the presented formulation, and for 

zeroth-order version in addition to the curvatures, the rotations must be uncoupled. 

4.4 Compliance Function and Sensitivity for Elastoplastic Analysis based on the 

Standard Finite-Volume Theory 

 Although a structural material is often modeled considering only its elastic properties, 

the consideration of the plastic material behavior when the acting stress is over the material 

yield stress can produce more realistic optimized topologies. Figure 12 shows the 

interpretation of the strain energy minimization problem considering linear elastic and 

elastoplastic structures. Therefore, to ensure that the load reaches the prescribed value of 𝑷, it 

can be assumed an elastoplastic behavior with linear hardening for the structural material, 

assuming a determined value for the hardening parameter 𝐻𝑝. In this case, 𝜃2 represents the 

mean slope of the curve of load versus displacement when the structure is out of the elastic 

regime. On the other hand, assuming a perfectly plastic elastic behavior, there is no guarantee 

that the applied load reaches the predefined value of 𝑷. 

 Following the previous sensitivity deductions, the modified local tangent stiffness 

matrix can be defined as 

∆𝑹𝑘
(𝑞)
= �̂�(0)

(𝑞)
∆�̅�𝑘

(𝑞)
= �̂�𝑘

(𝑞)
∆�̅�𝑘

(𝑞)
, (4.40) 

where �̂�𝑘
(𝑞)
= �̂�(0)

(𝑞)𝑲𝑘
(𝑞)

 and �̂�(0)
(𝑞) =

[
 
 
 
 
 �̂�(0)
(𝑞,1) 𝟎 𝟎 𝟎

𝟎 �̂�(0)
(𝑞,2) 𝟎 𝟎

𝟎 𝟎 �̂�(0)
(𝑞,3) 𝟎

𝟎 𝟎 𝟎 �̂�(0)
(𝑞,4)

]
 
 
 
 
 

 for �̂�(0)
(𝑞,𝑝) = [

𝐿𝑝
(𝑞) 0

0 𝐿𝑝
(𝑞)
]. 

Additionally, the modified global tangent stiffness matrix can be written as 

∆𝑹𝑘 = �̂�𝑘∆�̅�𝑘, (4.41) 

where ∆𝑹𝑘 = ∑ 𝐋(𝑞)
𝑇
∆𝑹𝑘

(𝑞)𝑁𝑞
𝑞=1  and �̂�𝑘 = ∑ 𝐋(𝑞)

𝑇
�̂�𝑘
(𝑞)
𝐋(𝑞)

𝑁𝑞
𝑞=1  for  ∆�̅�𝑘

(𝑞)
= 𝐋(𝑞)∆�̅�𝑘. 
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Figure 12 – Interpretation of the compliance minimization problem considering the linear elastic 

and elastoplastic behavior 

 

Font: Author (2022). 

 From Figure 12, the total strain energy can be evaluated as the area above the graphic 

for the elastoplastic behavior, which can be assessed by the sum of each trapeze discretized 

along the displacement axis., as follows 

𝑈(𝝆) = ∑ ∫ 𝑹(𝑞)
𝑇
(�̅�′(𝑞))𝑑�̅�′(𝑞)

�̅�(𝑞)

0

𝑁𝑞
𝑞=1 ≅ ∑ ∑ 𝑹𝑘−1

(𝑞) 𝑇
∆�̅�𝑘

(𝑞)𝑁𝑘
𝑘=2

𝑁𝑞
𝑞=1 +

1

2
∑ ∑ ∆𝑹𝑘

(𝑞)𝑇
∆�̅�𝑘

(𝑞)𝑁𝑘
𝑘=1

𝑁𝑞
𝑞=1 , 

(4.42) 

which can be rewritten by 

𝑈(𝝆) ≅ ∑ ∑ ∑ ∆𝑹
𝑘′
(𝑞)𝑇𝑘−1

𝑘′=1 ∆�̅�𝑘
(𝑞)𝑁𝑘

𝑘=2

𝑁𝑞
𝑞=1 +

1

2
∑ ∑ ∆�̅�𝑘

(𝑞)𝑇�̂�𝑘
(𝑞)𝑇∆�̅�𝑘

(𝑞)𝑁𝑘
𝑘=1

𝑁𝑞
𝑞=1 =

∑ ∑ ∑ ∆�̅�𝑘′
(𝑞)𝑇

�̂�𝑘′
(𝑞)𝑇𝑘−1

𝑘′=1 ∆�̅�𝑘
(𝑞)𝑁𝑘

𝑘=2

𝑁𝑞
𝑞=1 +

1

2
∑ ∑ ∆�̅�𝑘

(𝑞)𝑇
�̂�𝑘
(𝑞)𝑇

∆�̅�𝑘
(𝑞)𝑁𝑘

𝑘=1

𝑁𝑞
𝑞=1 . 

(4.43) 

Considering the global system of equations assemblage, Eq. (4.43) is rewritten as 

𝑈(𝝆) ≅ ∑ ∑ ∆�̅�𝑘′
𝑇 ∑ (𝐋(𝑞)

𝑇
�̂�
𝑘′
(𝑞)𝑇𝐋(𝑞))

𝑁𝑞
𝑞=1 ∆�̅�𝑘

𝑘−1
𝑘′=1

𝑁𝑘
𝑘=2 +

1

2
∑ ∆�̅�𝑘

𝑇∑ (𝐋(𝑞)
𝑇
�̂�𝑘
(𝑞)𝑇𝐋(𝑞))

𝑁𝑞
𝑞=1 ∆�̅�𝑘

𝑁𝑘
𝑘=1 = ∑ ∑ ∆�̅�𝑘′

𝑇 �̂�𝑘′
𝑇 ∆�̅�𝑘

𝑘−1
𝑘′=1

𝑁𝑘
𝑘=2 +

1

2
∑ ∆�̅�𝑘

𝑇�̂�𝑘
𝑇∆�̅�𝑘

𝑁𝑘
𝑘=1 . 

(4.44) 



64 
 

Assuming ∆𝑹𝑘′
𝑇 ∆�̅�𝑘 = ∆𝑹𝑘

𝑇∆�̅�𝑘 or ∆𝑅𝑖(𝑘′) = ∆𝑅𝑖(𝑘) for the free degrees of freedom and 

∆�̅�𝑖(𝑘) = 0 for the prescribed degrees of freedom, Eq. (4.44) can be updated to 

𝑈(𝝆) ≅ ∑ (𝑘 − 1)∆𝑹𝑘
𝑇∆�̅�𝑘

𝑁𝑘
𝑘=2 +

1

2
∑ ∆𝑹𝑘

𝑇∆�̅�𝑘
𝑁𝑘
𝑘=1 = ∑ (𝑘 −

1

2
)∆�̅�𝑘

𝑇�̂�𝑘
𝑇∆�̅�𝑘

𝑁𝑘
𝑘=1 . (4.45) 

As ∆𝑹𝑘
𝑇∆�̅�𝑘 = ∆�̅�𝑘

𝑇∆𝑹𝑘, the compliance function based on total strain energy can be 

estimated by 

𝑈(𝝆) ≅ ∑ (𝑘 −
1

2
)∆�̅�𝑘

𝑇∆𝑹𝑘
𝑁𝑘
𝑘=1 = ∑ (𝑘 −

1

2
)∆�̅�𝑘

𝑇�̂�𝑘∆�̅�𝑘
𝑁𝑘
𝑘=1 . (4.46) 

 Thereafter, the objective function’s gradient is given by 

𝜕𝑈(𝝆)

𝜕𝜌𝑟
≅ ∑ (𝑘 −

1

2
) [

𝜕

𝜕𝜌𝑟
(∆�̅�𝑘

𝑇�̂�𝑘)∆�̅�𝑘 + ∆�̅�𝑘
𝑇�̂�𝑘

𝜕∆�̅�𝑘

𝜕𝜌𝑟
]𝑁𝑘

𝑘=1 = ∑ (𝑘 −
𝑁𝑘
𝑘=1

1

2
) (

𝜕∆�̅�𝑘
𝑇

𝜕𝜌𝑟
�̂�𝑘∆�̅�𝑘 + ∆�̅�𝑘

𝑇 𝜕�̂�𝑘

𝜕𝜌𝑟
∆�̅�𝑘 + ∆�̅�𝑘

𝑇�̂�𝑘
𝜕∆�̅�𝑘

𝜕𝜌𝑟
). 

(4.47) 

By differentiating ∆𝑹𝑘 = �̂�𝑘∆�̅�𝑘 in relation to 𝜌𝑟, follows 

𝟎 = 𝐋(𝑟)
𝑇 𝜕�̂�𝑘

(𝑟)

𝜕𝜌𝑟
𝐋(𝑟)∆�̅�𝑘 + �̂�𝑘

𝜕∆�̅�𝑘

𝜕𝜌𝑟
, (4.48) 

which can lead to 

�̂�𝑘
𝜕∆�̅�𝑘

𝜕𝜌𝑟
= −𝐋(𝑟)

𝑇 𝜕�̂�𝑘
(𝑟)

𝜕𝜌𝑟
𝐋(𝑟)∆�̅�𝑘. (4.49) 

Thus, Eq. (4.47) can be rewritten as 

𝜕𝑈(𝝆)

𝜕𝜌𝑟
≅ ∑ (𝑘 −

1

2
)∆�̅�𝑘

(𝑟)𝑇 𝜕�̂�𝑘
(𝑟)

𝜕𝜌𝑟
∆�̅�𝑘

(𝑟)𝑁𝑘
𝑘=1 − ∑ (𝑘 −

1

2
)∆�̅�𝑘

(𝑟)𝑇 𝜕�̂�𝑘
(𝑟)

𝜕𝜌𝑟
∆�̅�𝑘

(𝑟)𝑁𝑘
𝑘=1 +

∑ (𝑘 −
1

2
) (∆�̅�𝑘

𝑇�̂�𝑘
𝑇 𝜕∆�̅�𝑘

𝜕𝜌𝑟
)

𝑁𝑘
𝑘=1 , 

(4.50) 

which can be simplified by 

𝜕𝑈(𝝆)

𝜕𝜌𝑟
≅ ∑ (𝑘 −

1

2
) (∆�̅�𝑘

𝑇�̂�𝑘
𝑇 𝜕∆�̅�𝑘

𝜕𝜌𝑟
)

𝑁𝑘
𝑘=1 . (4.51) 

Considering the following relation ∆�̅�𝑘
𝑇�̂�𝑘

𝑇 = ∆�̅�𝑘
𝑇�̂�𝑘, the topology optimization sensitivity 

can be evaluated as 

𝜕𝑈(𝝆)

𝜕𝜌𝑟
≅ ∑ (𝑘 −

1

2
) (∆�̅�𝑘

𝑇�̂�𝑘
𝜕∆�̅�𝑘

𝜕𝜌𝑟
)

𝑁𝑘
𝑘=1 = −∑ (𝑘 −

1

2
)∆�̅�𝑘

(𝑟)𝑇 𝜕�̂�𝑘
(𝑟)

𝜕𝜌𝑟
∆�̅�𝑘

(𝑟)𝑁𝑘
𝑘=1 . (4.52) 
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5 NUMERICAL IMPLEMENTATIONS 

5.1 Topology Optimization Algorithm 

 The employment of topology optimization algorithms to design efficient components 

for the industry is growing fast. Since the pioneering work of Bendsøe and Kikuchi (1988) in 

the homogenization method, several algorithms have been developed to design optimized 

components in structural analysis. Most of those algorithms employ a finite element-based 

strategy, which advantages and disadvantages are well-known. The topology optimization 

algorithm proposed in this contribution can solve compliance minimization problems based 

on the generalized finite-volume theory, where the relative density is considered constant in 

the subvolume, and the continued penalization scheme is adopted. Figure 13 presents a 

flowchart of the proposed algorithm implemented in MatLab language. 

 The algorithm is based on a two-step procedure: 1) data initialization and finite-

volume theory analysis pre-processing, and 2) topology optimization looping. The proposed 

MatLab code is initialized by setting the material, geometric and topological properties, such 

as structure dimensions and discretization, prescribed loads, Young modulus, penalty factors, 

etc. Furthermore, the boundary value problem is also designated during the data initialization 

process in terms of essential and natural boundary conditions. The pre-processing step is 

characterized by mesh-generation, memory allocation for global static and kinematic vectors, 

insertion of prescribed forces and displacements, prescribing initial relative densities based on 

the prescribed volume fraction, plotting the initial structural topology, and calculation of the 

local stiffness matrix considering unitary relative densities. After that, the mesh-independent 

filter based on the gradient modification is then initialized by memory allocation and 

definition of the weight function quantities. 

 In the second algorithm part, the topology optimization procedure is performed, 

starting with the looping initialization, where the convergence criterium is established as 1% 

for the maximum change of relative densities between successive steps. The finite-volume 

theory analysis can be performed by the global stiffness matrix assemblage, which takes 

under consideration the constitutive relation proposed by the SIMP approach in Equation 

(3.2). For each step, the global system of equations, proposed in Equation (2.14), is solved, 

obtaining the surface-averaged kinematic variables used to compute the objective function 

and the subvolume sensitivities. After that, the gradient filter is called to regularize the 

topology optimization method by modifying the subvolume sensitivities as expressed in 
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Equations (3.6) and (3.7). Then, the design variables are updated by the OC method, as 

expressed in Equations (3.4) and (3.5). If the tolerance is fulfilled, the topology optimization 

algorithm assumes as converged, and the optimized topology is plotted. The post-processing 

consists of printing the algorithm performance information as the computational cost, the total 

number of iterations, the evolution of objective function along the optimization process, and 

the relative compliance calculated by considering the compliance of the Q8 finite-element 

result as the reference value. 

Figure 13 – Flowchart of the topology optimization algorithm based on the finite-volume theory 

implemented in MatLab language 

 

Font: Author (2022). 
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 For the topology optimization algorithm in the absence of filtering technique, steps 

related to the gradient filter can be omitted, which permits the evaluation of the checkerboard-

free property of the finite-volume theory and obtaining optimized topologies with thin bars for 

the Michell structure, as demonstrated by the analytical solution obtained by Michell (1904). 

5.2 Energy Computation Algorithm for the Finite-Volume Theory 

The second performed algorithm is implemented in MatLab language to compute 

mechanical energy by employing the generalized finite-volume theory. In this case, the 

mechanical energy can be computed as total strain energy in a deforming material or work 

done by external loading, used to verify the equivalence between those different mechanical 

energy calculations. The convergence to the response obtained by the analytical solution can 

be verified, checking if the mechanical energy presents a monotonic convergence with the 

mesh refinement. The flowchart of the algorithm performed to calculate the total strain energy 

or work done by external loading in a structure is illustrated in Figure 14. 

 Similarly, the proposed algorithm is divided into 1) data initialization and finite-

volume theory analysis, and 2) mechanical energy estimations. The algorithm initially 

receives the data initialization composed of geometric and material parameters, the intensity 

of the applied loads, the number of horizontal and vertical subvolumes, and boundary 

conditions. The second step is to pre-process this data by performing mesh-generation, 

memory allocation for global force and displacement vectors, and insertion of prescribed 

displacements and forces. The next step refers to the finite-volume theory analysis, where the 

local stiffness matrix is obtained, and the global stiffness matrix is assembled. Then, the 

global system of equations is solved by obtaining the global surface-averaged kinematic 

vector, which is directly used to compute the structural strain energy, or the work done by 

external loading as defined in Equations (4.14) and (4.24). 

The post-processing step consists of plotting the stress distribution and subvolume 

deformation, constructing graphs comparing the convergence of each approach, and error 

estimations based on the results obtained by analytical solutions. For the finite-element 

approaches, the discretization of the reference domain and the finite-volume theory analysis 

are substituted for mesh-generations, boundary conditions, and stress analyzes based on the 

assumptions of the finite-element method. 
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Figure 14 – Flowchart of the mechanical energy computation algorithm based on the finite-

volume theory implemented in MatLab language 

 

Font: Author (2022). 
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6 RESULTS AND DISCUSSIONS 

6.1 Energy Evaluation for the Generalized Finite-Volume Theory 

 To verify the generalized finite-volume theory's mechanical energy properties, it is 

proposed to analyze two different examples. Numerical solutions based on the Q4 and Q8 

elements of the finite element method and analytical solutions are provided as comparison and 

verification sources. Through these examples, the equivalence between the work done by 

external loading and total strain energy is verified for the zeroth order finite-volume theory. 

While the difference between those mechanical energy approaches has been also verified for 

the higher order versions of the generalized finite-volume theory. The plane stress state 

assumption was adopted for all the performed numerical analyzes. The employed 

computational environment, in terms of programming language and computer, can be 

described as MatLab R2016a (64-bits)/Intel® CoreTM i7 CPU 2.93 GHz/16.0 GB RAM/64-

bits. The codes were developed in-house to evaluate the global stiffness matrix and the global 

force vector for all the approaches, and the MatLab linear solver was employed to solve the 

global systems of equations. 

 6.1.1 Example 1: Cantilever beam 

 The first example considers a cantilever beam, whose domain of analysis and 

numerical boundary conditions are presented in Figure 15. The employed geometric 

parameters for this beam are taken as ℎ = 1 m, 𝑙 = 4 m, and 𝑃 = 1,000 kN (resultant force of 

the parabolic distributed loading at the ends), while the adopted material properties are 𝐸 =

200 GPa (elastic moduli) and 𝜈 = 0.32 (Poisson’s ratio). The analytical solution for this 

problem is well-known and can be found in Timoshenko and Goodier (1951), the expressions 

for the stress components are given by 

𝜎11(𝑥1, 𝑥2) =
12𝑃

ℎ3
𝑥2(𝑙 − 𝑥1)

𝜎22(𝑥1, 𝑥2) = 0                       

𝜎12(𝑥1, 𝑥2) =
6𝑃

ℎ3
(𝑥2

2 −
ℎ2

4
)    

, (6.1) 

and the strain components can be expressed as 
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𝜀11(𝑥1, 𝑥2) = −
12𝑃𝑥1𝑥2

ℎ3𝐸
                 

𝜀22(𝑥1, 𝑥2) =
12𝜈𝑃𝑥1𝑥2

ℎ3𝐸
                   

𝜀12(𝑥1, 𝑥2) =
12𝑃(1+𝜈)

ℎ3𝐸
(𝑥2

2 −
ℎ2

4
)

. (6.2) 

As a result, the total strain energy for the analytical solution can be computed as 

𝑈 =
1

2
∫ ∫ (𝜎11𝜀11 + 𝜎22𝜀22 + 𝜎12𝜀12) 𝑑𝑥2

ℎ

2

−
ℎ

2

𝑑𝑥1
𝑙

0
=

1

2
∫ ∫ [

12𝑃𝑥1𝑥2
2

ℎ6𝐸
(𝑥1 − 𝑙) +

ℎ

2

−
ℎ

2

𝑙

0

72𝑃(1+𝜈)

ℎ3𝐸
(𝑥2

2 −
ℎ2

4
)
2

] 𝑑𝑥2 𝑑𝑥1 = 671.68 J. 

(6.3) 

The employed boundary conditions in the numerical approaches must reflect the 

boundary conditions considered in the analytical solution to ensure the correctness 

verification of the proposed formulations. 

 The finite-volume theory and finite element analysis are performed using the same 

discretizations with rectangular subvolumes or elements. As the work done by external 

loading and the total strain energy are equals for energy-based numerical approaches, only the 

work done by external loading is evaluated for the finite element analyzes. 

Figure 15 – Cantilever beam 

 

Font: Author (2022). 

 Table 01 presents the investigated numerical aspects for the total strain energy and the 

work done by external loading, employing the different numerical approaches based on the 

finite element method and finite-volume theory, and considering different mesh refinements. 

As expected, the total strain energy and the external work, employing the zeroth-order finite-

volume theory (FVT0th) approach, are similar for all evaluated meshes. At the same time, for 

the first and second-order versions of the generalized finite-volume theory (FVT1st and 

FVT2nd, respectively), there is a difference between the employed energy evaluation 

approaches. However, for the most refined mesh, this difference corresponds to 
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approximately 0.02%, for the higher-order versions of the generalized finite-volume theory. 

The Q8 element seems to converge to a slightly different solution relative to the analytical 

approach due to the boundary conditions' differences at the fixed end. 

 In terms of computational cost, the Q4 element approach is the fastest solution, 

followed by the zeroth-order finite-volume theory. On the other hand, the second-order finite-

volume theory has presented the highest processing time, followed by the Q8 element 

approach and the first-order finite-volume theory, respectively. The number of degrees of 

freedom partially explains these differences in computational cost since it defines the size of 

the global system of equations. 

 The error is evaluated relative to the analytical solution as follows 

Error =
𝑈|𝑊𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙−𝑈𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝑈𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
, (6.4) 

where 𝑈|𝑊𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 is the total strain energy or work done by external loading, depending on 

the studied approach, and 𝑈𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 corresponds to the total strain energy obtained for the 

analyzed structure employing the numerical integration of the strain energy density from the 

analytical solution. 

Table 01 – Mechanical energy analysis for the cantilever beam 

Analysis Mesh 𝑛𝑑𝑜𝑓 

Strain Energy External Work 

Processing 

Time (s) 

Value 

(J) 

Error 

(%) 

Processing 

Time (s) 

Value 

(J) 

Error 

(%) 

FVT0th 

20x5 450 0.030 698.65 4.015 0.027 698.65 4.015 

100x25 10250 3.796 672.63 0.142 3.775 672.63 0.142 

200x50 40500 36.727 671.85 0.026 36.342 671.85 0.026 

FVT1st 

20x5 675 0.595 697.60 3.859 0.149 684.31 1.880 

100x25 15375 10.530 672.60 0.138 4.969 672.09 0.061 

200x50 60750 71.142 671.85 0.025 60.356 671.72 0.006 

FVT2nd 

20x5 900 0.211 698.28 3.960 0.121 684.63 1.927 

100x25 20500 7.892 672.64 0.142 6.301 672.11 0.064 

200x50 81000 86.946 671.85 0.026 85.096 671.72 0.006 

Q4 

20x5 252 - - - 0.035 606.32 -9.732 

100x25 5252 - - - 0.887 668.89 -0.416 

200x50 20502 - - - 14.019 670.92 -0.114 

Q8 

20x5 702 - - - 0.075 671.58 -0.015 

100x25 15502 - - - 6.400 671.59 -0.013 

200x50 61002 - - - 77.126 671.59 -0.013 

Analytical - - - 671.68 - - 671.68 - 

Font: Author (2022). 
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 Figure 16 presents the overall convergence for the different evaluated approaches 

relative to the analytical solution. As expected, the Q8 element approach has presented the 

fastest convergence to the analytical result, while the Q4 element approach has presented the 

lowest convergence to the same result. For the higher-order versions of the generalized finite-

volume theory, it is observed that the work done by external loading presents a faster 

convergence and tends to give a stiffer response to the analyzed structure in comparison to the 

total strain energy approach. As expected, the finite element method tends to present a stiffer 

response due to the displacement representation restrictions. Once the Q4 element has a 

poorer displacement representation relative to the Q8 element, this results in a stiffer 

response. In both cases, full numerical integration was adopted to evaluate the local stiffness 

matrices. Although the generalized finite-volume theory presents a more compliance response 

for this example, it does not have a defined trend as the finite element method once it is an 

equilibrium-based formulation. 

Figure 16 – Convergence analysis for the cantilever beam 

 

Font: Author (2022). 

 Figure 17 shows the convergence rate analysis for the evaluated approaches relative to 

the analytical solution, where m is the angular coefficient (slope) of the linear regression 

adjustments (least-squares method) for the log-log graph. The Q8 element approach has 

presented the lowest convergence rate once the result with the coarsest mesh already shows an 
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excellent agreement with the analytical solution due to the linear and quadratic variation of 

the normal and shear stress components for this problem. The Q4 element approach presents 

the worst convergence rate among the other techniques and the worst results for all the 

analyzed meshes. The finite-volume theory has presented higher convergence rates in 

comparison to the finite element method for this example. In general, the approach based on 

the External Work (E.W.) has obtained higher convergence rates relative to the same 

approach based on the Strain Energy (S.E.) for the first and second-order versions of the 

generalized finite-volume theory. Additionally, the above convergence rates are in line with 

the expected values for the angular coefficient for this problem, where they are expected to be 

from 1 to 2 for linear or quadratic numerical approaches. For the Q8 element, the agreement 

with the analytical solution is achieved when one element is employed in the vertical direction 

once cross coefficients appear in the stress field, which explains the low value obtained for 

the convergence rate. 

Figure 17 – Convergence rate analysis for the cantilever beam 

 

Font: Author (2022). 

 6.1.2 Example 2: Rectangular beam subjected to concentrated loads 

 The other proposed structural problem is a rectangular beam under concentrated loads 

at the top and bottom beam surfaces, intending to examine these approaches' behavior in a 

problem with stress concentration. The domain of analysis and numerical boundary conditions 

can be checked in Figure 18, where ℎ = 1 m, 𝑙 = 3 m, 𝑒 = 0.2 m, 𝑃 = 1,000 kN, 𝜈 = 0.33 
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and 𝐸 = 68.9 GPa. Analytical solutions for this problem can be found in Cavalcante and 

Pindera (2012b) and Timoshenko and Goodier (1951). 

Figure 18 – Rectangular beam under concentrated and uniform normal tractions 

 

Font: Author (2022). 

A stress-based formulation can solve this problem, with the solution technique 

employing the Fourier transform. Considering the geometric and boundary conditions 

symmetries, the expressions for the stress components are given by 

𝜎11(𝑥1, 𝑥2) =
2𝑃

𝜋
∫

2

𝑒𝑠
sin (

𝑒𝑠

2
)

cos(𝑠𝑥1)

𝑠ℎ+sinh(𝑠ℎ)
{[
𝑠ℎ

2
cosh (

𝑠ℎ

2
) − sinh (

𝑠ℎ

2
)] cosh(𝑠𝑥2) −

∞

0

𝑠𝑥2 sinh (
𝑠ℎ

2
) sinh(𝑠𝑥2)} 𝑑𝑠  

(6.5) 

𝜎22(𝑥1, 𝑥2) = −
2𝑃

𝜋
∫

2

𝑒𝑠
sin (

𝑒𝑠

2
)

cos(𝑠𝑥1)

𝑠ℎ+sinh(𝑠ℎ)
{[
𝑠ℎ

2
cosh (

𝑠ℎ

2
) +

∞

0

sinh (
𝑠ℎ

2
)] cosh(𝑠𝑥2) − 𝑠𝑥2 sinh (

𝑠ℎ

2
) sinh(𝑠𝑥2)} 𝑑𝑠  

𝜎12(𝑥1, 𝑥2) =
2𝑃

𝜋
∫

2

𝑒𝑠
sin (

𝑒𝑠

2
)

sin(𝑠𝑥1)

𝑠ℎ+sinh(𝑠ℎ)
[
𝑠ℎ

2
cosh (

𝑠ℎ

2
) ∙ sinh(𝑠𝑥2) −

∞

0

𝑠𝑥2 sinh (
𝑠ℎ

2
) cosh(𝑠𝑥2)] 𝑑𝑠  

which are numerically evaluated employing the Simpson’s rule with 650 subintervals and 𝑠 =

700 for the upper integrand limit. For plane stress state, the strain components can be 

obtained by 

[

𝜀11
𝜀22
𝜀12
] = [

𝑆11 𝑆12 0
𝑆12 𝑆11 0
0 0 𝑆44

] [

𝜎11
𝜎22
𝜎12
], (6.6) 

where 𝑆11 = 1 𝐸⁄ , 𝑆12 = −𝜈 𝐸⁄  and 𝑆44 = (1 + 𝜈) 𝐸⁄ . Thus, the analytical strain energy is 

given by 
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𝑈 =
1

2
∫ ∫ (𝜎11𝜀11 + 𝜎22𝜀22 + 𝜎12𝜀12) 𝑑𝑥2

ℎ

2

−
ℎ

2

𝑑𝑥1

𝑙

2

−
𝑙

2

= 19.186 J. (6.7) 

The analytical solution assumes stress-free boundary conditions at the lateral borders. 

Although the numerical solutions assume displacement restrictions at the lateral borders, the 

self-equilibrium concentrated loadings do not generate stresses at these borders due to Saint-

Venant's principle. 

 Table 02 presents the investigated numerical aspects, such as the computational cost, 

energy values, and relative errors, for each simulation. Additionally, the result obtained for 

the analytical solution is also presented. As in the first example, the total strain energy and the 

work done by external loading evaluated using the zeroth-order finite-volume theory are equal 

for all performed simulations. While for the first and second-order versions of the theory, 

there is a difference of approximately 0.056% and 0.005%, respectively, between the total 

strain energy and the work done by external loading for the most refined mesh, which 

indicates a convergence between those different energy approaches when the adopted mesh is 

sufficiently fine. 

Table 02 – Mechanical energy analysis for the rectangular beam under concentrated loads 

Analysis Mesh 𝑛𝑑𝑜𝑓 

Strain Energy External Work 

Processing 

Time (s) 

Value 

(J) 

Error 

(%) 

Processing 

Time (s) 

Value 

(J) 

Error 

(%) 

FVT0th 

15x5 340 0.026 16.551 -13.73 0.026 16.551 -13.73 

75x25 7700 0.164 18.993 -1.010 0.157 18.993 -1.010 

150x50 30400 10.390 19.133 -0.277 10.388 19.133 -0.277 

FVT1st 

15x5 510 0.123 15.970 -16.76 0.030 15.684 -18.26 

75x25 11550 0.668 18.917 -1.404 0.652 18.877 -1.611 

150x50 45600 21.860 19.109 -0.402 22.097 19.098 -0.463 

FVT2nd 

15x5 680 0.057 16.047 -16.36 0.035 15.347 -20.01 

75x25 15400 1.664 18.841 -1.803 1.649 18.826 -1.879 

150x50 60800 33.717 19.083 -0.540 33.743 19.082 -0.547 

Q4 

15x5 192    0.024 11.479 -40.17 

75x25 3952    0.087 18.313 -4.555 

150x50 15402    4.197 18.929 -1.342 

Q8 

15x5 532    0.032 17.541 -8.575 

75x25 11652    1.669 19.160 -0.137 

150x50 45802    34.209 19.186 -0.002 

Analytical - - - 19.186 - - 19.186 - 

Font: Author (2022). 

 In terms of computational cost, the Q4 element approach is the fastest numerical 

solution, while the Q8 element is the slowest approach. Additionally, for the most refined 
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mesh, the zeroth-order finite-volume theory is approximately 2.48 times slower than the Q4 

element approach, and the first and second-order finite-volume theories are 1.55 and 1.01 

faster than the same approach based on the Q8 finite element. The number of degrees of 

freedom partially explains these differences in processing time. 

 The convergence study for each analyzed approach is shown in Figure 19. The Q8 

element approach has presented the fastest convergence to the analytical solution, while the 

Q4 element has presented the slowest convergence. Also, all proposed approaches have 

provided a monotonic convergence to the analytical solution. For the higher-order versions of 

the generalized finite-volume theory, the analyzes based on the work done by external loading 

have presented a slower convergence and a stiffer response when compared to the same 

analyzes employing the total strain energy evaluation. 

Figure 19 – Convergence analysis for the rectangular beam under concentrated loads 

 

Font: Author (2022). 

Figure 20 shows the convergence rate analysis for the rectangular beam under 

concentrated loads employing the analytical solution, where m is the angular coefficient 

(slope) of the linear regression adjustments (least-squares method) for the analyzed 

approaches considering a log-log value distribution in both axis. The Q8 element approach 

has the highest convergence rate and the best results, while the Q4 element approach presents 
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the worst convergence rate and the worst results for all the analyzed meshes. The zeroth-order 

finite-volume theory has the highest convergence rate and the best results among the finite-

volume theory versions for this example. In general, the obtained convergence rates are in line 

with the expected values for the performed approaches, as the expectative is to obtain a value 

higher than 2 for the Q8 finite-element and values between 1 and 2 for the other approaches. 

Figure 20 – Convergence rate analysis for the rectangular beam under concentrated loads 
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6.2 Compliance Minimization Problem based on the Generalized Finite-Volume Theory 

for Elastic Analysis 

On this section, two different examples are analyzed, employing the three versions of 

the generalized finite-volume theory and Q4 and Q8 elements of the finite element method. 

The studied examples are a cantilever beam subjected to a concentrated load and a 

Messerschmitt-Bölkow-Blohm (MBB) beam. To confirm the checkerboard-free property of 

the approaches based on the finite-volume theory, the examples are firstly analyzed without 

employing filtering or image processing techniques. After that, the same examples are 

analyzed employing a filter that modifies the elements or subvolumes sensitivities, as 

presented in Equation (3.6), for mesh-independency. 

Some numerical aspects are investigated during the analysis, such as the number of 

iterations, processing time, convergence, and relative compliance. The continued penalization 
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scheme is adopted, where the penalty factor increases gradually (∆𝑝 = 0.5) from 1 to 4, as 

suggested by Talischi et al. (2012). As a convergence criterion, the tolerance for the 

maximum change between relative densities of successive steps is assumed to be 1%. In the 

absence of filtering techniques, each approach's damping factor is adjusted to avoid any 

divergence during the optimization process. The damping factor is set up as close as possible 

to 1/2, since no oscillation in the displacement field is verified when the algorithm is 

performed. The adopted damping factor for each simulation is shown in the following Tables 

and was obtained by varying increments of 0.1 as follows: 1/2, 1/2.1, 1/2.2, …, until its 

findings convergence in the optimization process. 

6.2.1 Example 1: Cantilever beam 

A classical problem in the topology optimization of bidimensional structures is the 

cantilever beam, whose analysis domain and boundary conditions are presented in Figure 21. 

The proposed optimization problem consists of minimizing the structural compliance 

function, defined from the total strain energy, with a volume constraint of 40% of the total 

volume. The computational environment, in terms of programming language and machine, 

can be described as MatLab R2016a (64-bits)/Intel® CoreTM i7 CPU 2.93 GHz/16.0 GB 

RAM/64-bits. Consistent units are employed for the physical and geometrical parameters. 

Figure 21 – Cantilever beam 

 

Font: Author (2022). 

Figure 22 shows the optimized topologies obtained for each studied mesh size and 

employing the zeroth, first and second-order finite-volume theory (FVT0th, FVT1st, and 

FVT2nd, respectively) and the Q4 and Q8 elements. The optimized topologies obtained 

employing the finite-volume theory approaches have shown to be checkerboard-free. 

However, the approaches based on the finite element method have generated optimized 

topologies with the checkerboard pattern issue. For the Q4 element, the checkerboard emerges 
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in the overall structure, while for the Q8 element, the checkerboard appears only locally. 

Figure 23 shows the optimized topologies for the finite-element approaches and zeroth-order 

finite-volume theory; even for a mesh of 20402 Q8 elements, the checkerboard pattern 

continues to appear very locally. According to Díaz and Sigmund (1995), when the adopted 

penalty factor is higher than 2.29 in a Q8 finite element-based strategy, the obtained 

optimized topologies can present the formation of checkerboard regions. Thus, higher-order 

finite elements can produce checkerboard-free optimized topologies only when a sufficiently 

refined mesh is employed, which increases the computational cost. On the other hand, no 

checkerboard pattern has appeared when the finite-volume theory is employed, as shown in 

Figure 23. 

Figure 22 – Optimized topologies for the cantilever beam analysis evaluating the compliance 

using the strain energy (No filtering) 

 Mesh 42x21 Mesh 82x41 Mesh 162x81 

Q4 

   

Q8 

   

FVT0th 

   

FVT1st 

   

FVT2nd 
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The checkerboard pattern problem in optimized topologies is directly related to the 

displacement assumptions of the finite element method, leading to structures artificially rigid 

(DÍAZ; SIGMUND, 1995). These anomalies are directly related to spurious modes in finite-
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element solutions. In these cases, the topology optimization problem's weak formulations 

induce a variational form that involves independent displacement and density fields, so some 

combinations of density and displacement interpolation functions can generate designs free of 

checkerboard regions (JOG et al., 1993 and 1994). According to Jog and Haber (1996), the 

theory of variational problems for the finite-element method provides an excellent framework 

to understand the causes of checkerboard patterns. However, the analysis of mixed finite-

element models for topology optimizations is complicated due to their non-linear nature. 

Although Jog and Haber (1996) have pointed out that the Q8 element is stable for 

checkerboard pattern problem, due to the numerical and computational approaches employed 

in the topological optimization techniques based on the finite element analysis, the local 

formation of checkerboard regions can be observed, as illustrated in Figure 23. 

Figure 23 – Optimized topologies for the cantilever beam analysis with a mesh size of 202x101 

(No filtering) 

Q4 

 

Q8 

 

FVT0th 
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One of the purposes of this dissertation is to provide a more straightforward idea to 

solve numerical issues associated with the checkerboard pattern problem once these 

anomalies are related to the numerical technique usually employed in topology design 

problems. Since the finite-element method's equilibrium equations and compatibility 

conditions are established in nodes, nodal connections between adjacent elements are 

expected in the optimized topologies. As a result, the obtained structure is formed by plates 
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connected by pins, providing an optimized structure artificially rigid. On the other hand, the 

satisfaction of equilibrium equations and continuity conditions through the faces of adjacent 

subvolumes guarantees the checkerboard-free property for the different versions of the finite-

volume theory, even when no filtering technique is employed. These features of the finite-

volume theory ensure connections between edges of adjacent subvolumes, providing 

optimized structures more compatible with continuum mechanics assumptions. In addition, 

for the finite-volume theory, the checkerboard problem would be characterized by regions 

with disconnected subvolumes, while in the finite-element method, the checkerboard regions 

are characterized by elements connected by nodes. 

 However, the optimized topologies obtained for the finite-volume theory approaches, 

presented in Figure 22, have shown the presence of more subvolumes with the intermediate 

values of relative density compared to the finite-element approaches. This condition comes 

from the finite-volume approach to avoid the formation of checkerboard regions with 

disconnected subregions, inserting some intermediate values of relative density in these 

neighboring regions. Thus, it is common to observe the presence of more gray regions in the 

optimized topologies obtained by the finite-volume theory approaches. 

Figure 24 – Objective function history along the optimization process for the Q4 finite-element 

(No filtering) 

Mesh 162x81 
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Figures 24 to 28 present the objective function evolution during the iteration process 

for the Q4 and Q8 finite-elements, zeroth, first and second-order finite-volume theories, 

considering the finest employed mesh. In this case, the objective function is considered as the 

structural strain energy for the finite-volume theory approaches. The presented objective 

function histories have shown a monotonic convergence with different levels of energy, which 
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are directly associated with the change in the penalty factor once the continued penalization 

scheme is adopted. Additionally, with the mesh refinement, the levels of the objective 

function evolution become well-established, mainly when the last value for penalty factors is 

achieved. As a result, it is not observed any unusual behavior in the performed analyzes by 

analyzing the objective function evolution along the iterative process. 

Figure 25 – Objective function history along the optimization process for the Q8 finite-element 

(No filtering) 

Mesh 162x81 
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Figure 26 – Objective function history along the optimization process for the zeroth-order finite-

volume theory (No filtering) 

Mesh 162x81 
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Figure 27 – Objective function history along the optimization process for the first-order finite-

volume theory and compliance defined from the total strain energy (No filtering) 

Mesh 162x81 

 

Font: Author (2022). 

Figure 28 – Objective function history along the optimization process for the second-order 

finite-volume theory and compliance defined from the total strain energy (No filtering) 

Mesh 162x81 
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Table 03 presents the total number of iterations, the processing time, the number of 

degrees of freedom, the relative compliance, and the adopted damping factor, set up to avoid 

divergence in the optimization process. In general, the number of iterations has varied from 

one approach to another, presenting higher values when the first-order finite-volume theory 

and Q4 approaches are employed, and the lowest value was obtained for the second-order 

finite-volume theory followed by the Q8 and FVT0th approaches. The zeroth-order finite-

volume theory has been approximately 1.08 times slower than the Q4 approach for the finest 

mesh in terms of computational cost. The Q8 approach has presented the highest 

computational cost: 1.20 times slower than the first-order finite-volume theory and 1.04 times 

slower than the second-order finite-volume theory, for the finest mesh. The number of degrees 
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of freedom explains these differences in the computational cost partially since it defines the 

size of the global system of equations. 

Table 03 – Convergence analysis for the cantilever beam evaluating the compliance using the 

strain energy (No filtering) 

Analysis Mesh NDOF 
Number of 

Iterations 
Processing Time 

Damping 

factor 

Relative 

Compliance 

Q4 

42x21 1892 270 37 s 1/2.5 1.11808 

82x41 6972 360 10 min 35 s 1/2.5 1.19271 

162x81 26732 710 5 h 24 min 56 s 1/2.6 1.17733 

Q8 

42x21 5546 266 2 min 37 s 1/2.3 1.00000 

82x41 20666 397 52 min 18 s 1/2.4 1.00000 

162x81 79706 485 15 h 6 min 16 s 1/2.6 1.00000 

FVT0th 

42x21 3654 252 51 s 1/2.6 1.10259 

82x41 13694 306 12 min 44 s 1/2.6 0.99889 

162x81 52974 488 5 h 52 min 13 s 1/2.6 1.02000 

FVT1st 

42x21 5481 394 2 min 22 s 1/2.8 1.02697 

82x41 20541 376 25 min 1 s 1/2.8 0.99319 

162x81 79461 599 12 h 33 min 28 s 1/3.6 0.99652 

FVT2nd 

42x21 7308 287 1 min 25 s 1/3.0 1.06936 

82x41 27388 326 48 min 54 s 1/3.0 1.00437 

162x81 105948 453 14 h 32 min 8 s 1/3.2 0.99906 

Font: Author (2022). 

For a fair and transparent comparison, the compliance of each optimized topology 

obtained by different approaches is recalculated by employing the Q8 finite-element approach 

and then divided by the compliance of the optimized topology obtained by the Q8 approach. 

These relative compliance estimations are presented in Table 03 for the approaches performed 

in the absence of filtering techniques, with the compliance considered as the strain energy. 

Thus, the first-order version of the finite-volume theory approach has generally presented the 

stiffest optimized structures for the performed approaches. In contrast, the Q4 finite-element 

approach has obtained more flexible optimized structures since the relative compliance values 

are higher when compared to the other performed approaches. 

Similarly, the proposed optimization problem can also be solved by defining the 

structural compliance as twice the work done by external loading. The obtained optimized 

topologies are shown in Figure 29 for the first and second-order finite-volume theory since 

the total strain energy and the work done by external forces are equivalent to the approaches 

based on the finite element method and the zeroth-order finite-volume theory. The numerical 

aspects investigated for convergence analysis can be found in Table 04, and the objective 

function evolution with a monotonic convergence for different discretization levels along the 
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iteration process can be seen in Figures 30 and 31 for the first and second-order finite-volume 

theories when the compliance function is defined from the work done by external loading. In 

the these analyzes it is not observed any anomalies in the objective function evolution graphs, 

as expected. 

Figure 29 – Optimized topologies for the cantilever beam analysis evaluating the compliance 

using the work done by external loading (No filtering) 

 Mesh 42x21 Mesh 82x41 Mesh 162x81 

FVT1st 

   

FVT2nd 
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Figure 30 – Objective function history along the optimization process for the first-order finite-

volume theory and compliance defined as twice the external work (No filtering) 

Mesh 162x81 
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Figure 31 – Objective function history along the optimization process for the second-order 

finite-volume theory and compliance defined as twice the external work (No filtering) 

Mesh 162x81 
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Table 04 – Convergence analysis for the cantilever beam evaluating the compliance using the 

work done by external loading (No filtering) 

Analysis 
Mesh 

NDOF 
Number of 

Iterations 
Processing Time 

Damping 

factor 

Relative 

Compliance 

FVT1st 

42x21 5481 374 1 min 5 s 1/6.2 0.99497 

82x41 20541 401 21 min 37 s 1/8.0 1.01117 

162x81 79461 696 13 h 48 min 11 s 1/10.0 1.01764 

FVT2nd 

42x21 7308 287 1 min 25 s 1/3.0 1.06935 

82x41 27388 514 56 min 54 s 1/8.3 1.00375 

162x81 105948 641 20 h 11 min 14 s 1/10.2 1.00405 

Font: Author (2022). 

When the compliance function is estimated using the external work done by external 

loading, the optimized topologies tend to show more bars and length scale issues, as 

illustrated on the optimized topologies presented in Figure 29. The damping factors for these 

approaches have shown to be much lower when compared to the same approaches employing 

the strain energy, which turns the convergence process slower and increases the 

computational cost. The number of iterations tends to be higher, making the approaches 

employing the external work done by external loading more computational costly, as shown 

in Table 04. Additionally, the compliance function values for the optimized topologies are 

higher when the compliance is defined from the work done by external loading. In fact, for 

the current example, the objective function is better estimated when the compliance function 

is defined as the strain energy of a deforming material, which guarantees minimum values for 

the objective function and reduces the oscillatory phenomenon providing faster convergence 

to the optimization process. 
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As shown in Figures 22 and 29, although the checkerboard pattern issue can be 

overcome by the topology optimization approach based on the finite-volume theory, the mesh 

dependence between successive meshes persists. Therefore, the mesh-independency filter, 

presented in section 3.4, is employed to avoid mesh dependence, in the approaches based on 

the finite-volume theory, and checkerboard pattern and mesh dependence, in the approaches 

based on the finite element method. The optimized topologies for the same problem 

employing the sensitivity filtering are presented in Figure 30. In this case, the compliance 

function is evaluated as twice the structural strain energy, and the damping factor is adjusted 

as 1/2 for all investigated approaches. 

Figure 32 – Optimized topologies for the cantilever beam analysis evaluating the compliance 

using the strain energy (filtering) 

 Mesh 70x35 Mesh 150x75 Mesh 230x115 
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The optimized topologies presented in Figure 32 are checkerboard-free, and the mesh 

dependence is better controlled in this scenario. There are some differences between the 

optimized topologies obtained by the finite-volume theory and the approaches based on the 

finite element method. In general, the filter radius of 𝑅 = 1.01√(𝑙𝑒)2 + (ℎ𝑒)2 is sufficient to 
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solve the checkerboard instability in the employed finite element-based strategies, which does 

not guarantee the absence of mesh dependence. Usually, this filter radius must be constant for 

all performed approaches for mesh-independency, independently of the adopted mesh. This 

varying filter radius is adopted to test which of the analyzed approaches presents more 

sensitivity with the mesh-refinement by obtaining optimized topologies with more slender 

bars. For a varying filter radius which only guarantees the absence of checkerboard regions, 

the optimized topologies obtained by the zeroth-order finite-volume theory have reduced the 

mesh dependence between successive meshes, providing topologies with fewer bars and 

reducing the length scale issue, when compared to the other performed approaches. 

Figure 33 – Objective function history along the optimization process for the Q4 finite-element 

(filtering) 

Mesh 230x115 
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The most critical topologies are obtained for the Q4 element approach, in this case, the 

optimized topologies present slender bars with length scale issues, undesirable features for 

manufacturing. The approaches based on the Q8 element, first and second-order finite-volume 

theories have presented similar optimized topologies with more bars when compared to the 

zeroth-order finite-volume theory approach, and fewer bars and length scale issues when 

compared to the Q4 element approach. In general, the optimized topologies obtained by the 

zeroth-order finite-volume theory approach are well behaved and more indicated for the 

design of optimized structures. However, a different dependence can be observed in the 

optimized topologies since sub-parametric subvolumes, or elements are employed. As a 

result, the connection between subvolumes or elements occurs in a stair format, which differs 

from the analytical solution obtained by Michell (1904). This feature is better observed in the 

obtained optimized topologies for the coarsest mesh in Figure 32. Figures 33 to 37 show the 

evolution of the objective function during the optimization process, where it is observed a 
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tendency of increasing in the compliance function for the higher values of the penalty factor, 

including the results obtained for the finest mesh. These graphs do not present any anomalies 

that should be matter of concerns. 

Figure 34 – Objective function history along the optimization process for the Q8 finite-element 

(filtering) 

Mesh 230x115 
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Figure 35 – Objective function history along the optimization process for the zeroth-order finite-

volume theory (filtering) 

Mesh 230x115 
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Figure 36 – Objective function history along the optimization process for the first-order finite-

volume theory (filtering) 

Mesh 230x115 
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Figure 37 – Objective function history along the optimization process for the second-order 

finite-volume theory (filtering) 

Mesh 230x115 
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Table 05 presents the results obtained for the overall convergence of the different 

topology optimization approaches, considering the application of a mesh independent filter 

that regularizes the element or subvolume sensitivities. In general, the number of iterations 

has changed from one approach to another, where the minimum values are observed for the 

second-order finite-volume theory and the Q4 approaches. In terms of computational cost, the 

Q8 approach has presented the highest processing time, while the Q4 approach has presented 

the lowest computational cost. The approach based on the zeroth-order finite-volume theory is 

1.8 times slower than the same approach based on the Q4 element, for the finest mesh. The 

number of degrees of freedom explains the computational efficiency of the Q4 approach 

partially since it defines the size of the global system of equations. 
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Table 05 – Convergence analysis for the cantilever beam evaluating the compliance using the 

strain energy (filtering) 

Analysis Mesh NDOF Number of Iterations Processing Time 
Relative 

compliance 

Q4 

70x35 5112 230 5 min 6 s 1.00053 

150x75 22952 293 1 h 27 min 50 s 1.00056 

230x115 53592 485 14 h 30 min 55 s 1.00364 

Q8 

70x35 15122 153 10 min 46 s 1.00000 

150x75 68402 320 7 h 9 min 4 s 1.00000 

230x115 160082 543 69 h 3 min 55 s 1.00000 

FVT0th 

70x35 10010 156 3 min 15 s 1.01019 

150x75 45450 329 2 h 19 min 2 s 0.99068 

230x115 106490 630 26 h 6 min 54 s 0.99536 

FVT1st 

70x35 15015 156 6 min 43 s 0.99833 

150x75 68175 285 4 h 16 min 41 s 0.99952 

230x115 159735 526 43 h 24 min 51 s 0.99731 

FVT2nd 

70x35 20020 152 11 min 7 s 1.00309 

150x75 90900 254 5 h 36 min 59 s 1.00419 

230x115 212980 441 55 h 22 min 29 s 1.00246 

Font: Author (2022). 

In Table 05, it is presented a numerical parameter, denoted as relative compliance, 

permitting the comparison between the different approaches in terms of the lowest compliant 

structure. This value is obtained by recalculating each optimized topology's structural 

compliance employing a Q8 element; after that, this result is divided by the compliance 

obtained for the Q8 optimized topologies for the same mesh sizes. The relative compliance 

values show that the stiffest structures are obtained when the zeroth-order finite-volume 

theory is employed, especially for the finest mesh, while the approaches based on the Q4 

element and the second-order finite-volume theory result in more flexible structures. 

6.2.2 Example 2: Messerschmitt-Bölkow-Blom (MBB) beam 

Another classical problem in topology optimization is known as Messerschmitt-

Bölkow-Blom (MBB) beam, whose analysis domain and boundary conditions are shown in 

Figure 38. The optimization problem consists of finding the stiffest structure with a given 

volume fraction of 50%. Taking advantage of the structure symmetry, only half of the 

structure is analyzed, employing boundary conditions that reflect this symmetry. Additionally, 

in the model conception, consistent units for the physical and geometric parameters are 

employed. The computational environment for this example, in terms of programming 
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language and machine, can be described as MatLab R2018a (64-bits)/Intel® CoreTM i7-

8550U CPU @ 1.80 GHz 1.99 GHz/16.0 GB RAM/64-bits. 

Figure 38 – Messerschmitt-Bölkow-Blom (MBB) beam 
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Figure 39 – Optimized topologies for the MBB beam analysis evaluating the compliance using 

the strain energy (No filtering) 
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Figure 39 shows the optimized topologies for the approaches based on the finite-

volume theory and Q4 and Q8 elements in the absence of filtering or image processing 

techniques, where the compliance function is evaluated as the strain energy. As presented in 

the previous example, the checkerboard pattern is an issue for the finite element-based 

approaches, mainly when the Q4 element is employed. Even for the finest mesh of the Q8 

element, the checkerboard pattern appears locally, which is an undesired issue since the 

obtained optimized topologies are artificially rigid. Figure 40 presents the optimized 

topologies obtained for the approaches based on the zeroth-order finite-volume theory and 

finite-element strategies. Thus, these results evidence the presence of checkerboard regions 

for the finite-element analysis, especially for the Q4 element. Even for a mesh of 38400 Q8 

elements, the checkerboard pattern continues to appear. Although Jog and Haber (1996) have 

proved the stability of the Q8 element for topology optimization problems, it is observed the 

occurrence of checkerboard regions for the performed analyzes. Additionally, Díaz and 
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Sigmund (1995) have explained that this stability is only guaranteed when the penalty factor 

is lower than 2.29. 

Figure 40 – Optimized topologies for the MBB beam analysis and a mesh of 480x80 (No filtering) 
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The checkerboard pattern numerical issue is directly related to the assumptions of the 

finite-element method once the modeling is based on nodal equilibrium and compatibilization, 

which allows nodal connections between neighboring elements. On the other hand, in the 

three versions of the generalized finite-volume theory, the presence of checkerboard regions is 

not verified, which ratifies the finite-volume theory feature of connections through edges. The 

optimized topologies presented in Figure 39 for the coarsest meshes and employing the finite-

volume theory approaches present more gray regions, which come from the fact that these 

approaches avoid the formation of checkerboard regions, tending to generate intermediate 

values of density, allowing checkerboard-free optimized topologies, even when very coarse 

meshes are employed. 

In topology optimization based on the finite-volume theory, the checkerboard is 

characterized by a set of disconnected regions once the satisfaction of equilibrium and 

continuity conditions ensures connections through the faces of adjacent subvolumes. On the 

other hand, in topology optimization algorithms based on the finite-element method, the 

physical anomaly caused by the checkerboard numerical issue is characterized by the 

formation of regions connected by nodes. As a result, this numerical problem emerges from 

the physical modeling promoted by the finite-element strategy, which designs the 

optimization problem by considering different regions connected by pins, so the checkerboard 

surges because of the physical assumptions of the employed method. The damping factor for 

each simulation was adjusted to avoid any divergence during the optimization process. The 

adopted damping factors are shown in Table 06. Figures 41 to 45 show the objective function 

evolution for the obtained optimized topologies in the absence of filtering techniques and 

consider the objective function as the structural strain energy in the finite-volume theory 
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approaches. The presented curves show a monotonic convergence in different discretization 

levels, where the energy shows a convergence with mesh refinement and increasing the 

penalty factor, and it is not observed any kind of unusual behavior in those analyzes. 

Figure 41 – Objective function history along the optimization process for the Q4 finite-element 

(No filtering) 

Mesh 360x60 
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Figure 42 – Objective function history along the optimization process for the Q8 finite-element 

(No filtering) 

Mesh 360x60 
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Figure 43 – Objective function history along the optimization process for the zeroth-order finite-

volume theory (No filtering) 

Mesh 360x60 
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Figure 44 – Objective function history along the optimization process for the first-order finite-

volume theory and compliance defined from the total strain energy (No filtering) 

Mesh 360x60 
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Figure 45 – Objective function history along the optimization process for the second-order 

finite-volume theory and compliance defined from the total strain energy (No filtering) 

Mesh 360x60 
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Table 06 presents the obtained results for the overall convergence analysis employing 

the three versions of the generalized finite-volume theory, and Q4 and Q8 elements of the 

finite element method, where the structural compliance is defined as the strain energy. The 

number of iterations has varied from one approach to another, mainly when the Q4 element is 

employed. The adopted damping factor explains the high number of iterations partially for the 

finite-volume theory approaches since it provides a slow convergence for the optimization 

process. In terms of computational cost, the second-order finite-volume theory has presented 

the highest processing time, while the Q4 approach has presented the lowest computational 

cost. As a result, the zeroth-order finite-volume theory is 1.15 slower than the Q4 approach 

and 2.93 times faster than the Q8 approach. The second-order finite-volume theory is 1.06 

times slower than the Q8 approach and 3.56 slower than the Q4 approach. The first-order 

finite-volume theory is 2.65 times slower than Q4 approach and 1.27 times faster than the Q8 

approach.  

Table 06 – Convergence analysis for the MBB beam evaluating the compliance using the strain 

energy (No filtering) 

Analysis 
Mesh 

NDOF 
Number of 

Iterations 
Processing Time 

Damping 

factor 

Relative 

Compliance 

Q4 

45x15 1472 248 10 s 1/2.5 1.08597 

90x30 5642 717 7 min 9 s 1/2.5 1.13654 

180x60 22082 763 3 h 25 min 6 s 1/2.6 1.12027 

Q8 

45x15 4292 322 43 s 1/2.5 1.00000 

90x30 16682 422 31 min 29 s 1/2.5 1.00000 

180x60 65762 545 11 h 28 min 33 s 1/2.5 1.00000 

FVT0th 

45x15 2820 253 13 s 1/2.6 1.07075 

90x30 11040 422 5 min 16 s 1/2.6 1.02507 

180x60 43680 584 3 h 55 min 11 s 1/2.6 1.00608 

FVT1st 

45x15 4230 401 48 s 1/3.2 1.04746 

90x30 16560 458 18 min 37 s 1/3.0 1.00459 

180x60 65520 665 9 h 2 min 31 s 1/2.7 0.99587 

FVT2nd 

45x15 5640 285 40 s 1/3.0 1.06244 

90x30 22080 362 20 min 20 s 1/3.0 1.01955 

180x60 87360 606 12 h 11 min 1/3.4 0.99845 

Font: Author (2022). 

The relative compliance values are obtained considering the Q8 element approach as 

the reference. From the values presented in Table 06, the higher-order versions of the 

generalized finite-volume theory have obtained the stiffest optimized topologies for the finest 

mesh. In contrast, the Q4 element approach has obtained more flexible optimized topologies 

compared to the other performed approaches.  
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Figure 46 – Optimized topologies for the MBB beam analysis evaluating the compliance using 

the work done by external loading (No filtering) 

 Mesh 90x15 Mesh 180x30 Mesh 360x60 

FVT1st 

   

FVT2nd 
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As mentioned before, the objective function can also be defined from the work done 

by external loading, since the external work is equivalent to the strain energy for a 

conservative mechanical system. However, for the first and second-order versions of the 

finite-volume theory, there is a residual difference when a not sufficiently refined mesh is 

employed. Figure 46 shows the optimized topologies obtained when the structural compliance 

function is defined from the work done by external loading. Table 07 presents the investigated 

numerical aspects during the optimization process, including the adopted damping factors for 

the performed analyzes. Figures 47 and 48 show the objective function evolution for the finest 

mesh with a monotonic convergence in different discretization levels along the optimization 

process, where it is observed an energy convergence along the iteration process and with the 

increasing in the penalty factor. Additionally, any unusual behavior is detected in the 

performed analyzes. 

Table 07 – Convergence analysis for the MBB beam evaluating the compliance using the work 

done by external loading (No filtering) 

Analysis 
Mesh 

NDOF 
Number of 

Iterations 
Processing Time 

Damping 

factor 

Relative 

Compliance 

FVT1st 

45x15 4230 368 54 s 1/9.8 1.16198 

90x30 16560 643 23 min 13 s 1/8.9 1.05287 

180x60 65520 795 11 h 36 min 8 s 1/11.8 1.03563 

FVT2nd 

45x15 5640 404 1 min 43 s 1/9.6 1.12843 

90x30 22080 571 45 min 47 s 1/9.8 1.05469 

180x60 87360 1077 24 h 24 min 54 s 1/10.9 1.04439 

Font: Author (2022). 
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Figure 47 – Objective function history along the optimization process for the first-order finite-

volume theory and compliance defined as twice the external work (No filtering) 

Mesh 360x60 

 

Font: Author (2022). 

The obtained optimized topologies are similar from one approach to another, although 

the obtained numerical aspects are worst when the external work is employed, presenting an 

increase in the number of iterations occasioned by a reduction in the damping factor. 

Consequently, it is also registered an increase in the computational cost. In addition, the 

external work has provided more flexible optimized topologies, which is observed by the 

obtained relative compliance values in Table 07. Since the objective of the topology 

optimization problem is to provide less flexible or more rigid optimized structures, thus the 

objective function is better estimated when the structural compliance function is defined as 

the strain energy, which would also enhance the overall convergence of the optimization 

problem. 

Figure 48 – Objective function history along the optimization process for the second-order 

finite-volume theory and compliance defined as twice the external work (No filtering) 

Mesh 360x60 
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Figure 49 – Optimized topologies for the MBB beam analysis by evaluating the compliance using 

the strain energy (filtering) 
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The topology optimization algorithm is also performed, employing a sensitivity filter 

for mesh-independency. Figure 49 shows the obtained optimized topologies when the filtering 

technique is employed, which better controls the mesh dependence, in the case of the finite-

volume theory approaches, and the checkerboard effect and mesh dependence, in the case of 

the finite element approaches. In addition, the optimized topologies presented in Figure 45 are 

practically the same for all different employed approaches. The employed filter generally 

guarantees only the absence of checkerboard regions in the optimized topologies. In this 

contribution, the filter radius is set as 𝑅 = 1.01√(𝑙𝑞)
2
+ (ℎ𝑞)

2
 to verify which approaches 

present more sensibility with the mesh refinement. Thus, Figure 50 provides optimized 

topologies obtained by the zeroth-order finite-volume theory, Q4 and Q8 finite-elements 

considering a mesh size of 480x80, where the topology obtained by the approach based on the 

finite-volume theory has presented fewer bars and most with lower slenderness when 

compared with the topologies obtained by the approaches based on the Q4 and Q8 elements, 

showing less mesh sensitivity. 

Figure 50 – Optimized topologies for the MBB beam analysis and a mesh of 480x80 (filtering) 
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Q8 
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Font: Author (2022). 
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Figures 51 to 55 present the objective function evolution along the iteration process 

for the finest mesh, where it is observed convergence for each employed penalty factor and 

some increase in the compliance function for the final values of the penalty factor. In addition, 

the obtained curves are in line with the expected behavior for the performed analyzes. 

Figure 51 – Objective function history along the optimization process for the Q4 finite-element 

(filtering) 

Mesh 540x90 
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Figure 52 – Objective function history along the optimization process for the Q8 finite-element 

(filtering) 

Mesh 540x90 
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Figure 53 – Objective function history along the optimization process for the zeroth-order finite-

volume theory (filtering) 

Mesh 540x90 

 

Font: Author (2022). 

Figure 54 – Objective function history along the optimization process for the first-order finite-

volume theory (filtering) 

Mesh 540x90 

 

Font: Author (2022). 

Figure 55 – Objective function history along the optimization process for the second-order 

finite-volume theory (filtering) 

Mesh 540x90 

 

Font: Author (2022). 
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Table 08 – Convergence analysis for the MBB beam by evaluating the compliance using the 

strain energy (filtering) 

Analysis Mesh NDOF 
Number of 

Iterations 
Processing Time 

Relative compliance 

Q4 

90x30 5642 603 6 min 4 s 1.00082 

180x60 22082 367 1 h 25 min 9 s 1.00068 

270x90 49322 590 15 h 25 min 25 s 1.00057 

Q8 

90x30 16682 447 35 min 45 s 1.00000 

180x60 65762 650 14 h 26 min 13 s 1.00000 

270x90 147242 745 90 h 14 min 39 s 1.00000 

FVT0th 

90x30 11040 482 12 min 27 s 1.00333 

180x60 43680 664 5 h 30 min 48 s 1.00089 

270x90 97920 761 30 h 34 min 20 s 1.00063 

FVT1st 

90x30 16560 472 21 min 19 s 1.00252 

180x60 65520 684 8 h 38 min 1 s 1.00051 

270x90 146880 754 56 h 17 min 48 s 1.00033 

FVT2nd 

90x30 22080 428 41 min 4 s 1.00459 

180x60 87360 672 15 h 42 min 53 s 1.00262 

270x90 195840 711 79 h 38 min 34 s 1.00175 

Font: Author (2022). 

Table 08 presents the numerical results obtained for the convergence analysis of the 

different employed approaches, considering the application of the mesh-independency filter. 

In general, the numbers of iterations are similar for the different approaches, with the Q4 

approach showing more substantial differences in comparison to the other ones. In terms of 

computational cost, the Q8 approach has presented the highest processing time, followed by 

the second-order finite-volume theory. The Q4 approach has presented the lowest 

computational cost, followed by the zeroth-order finite-volume theory. For the current 

example, the stiffest structure was obtained for the Q8 approach, presenting the smallest 

compliance, where the values shown in Table 06 are relative to the optimized topology 

obtained by the Q8 element approach. In the relative compliance calculation, the compliance 

is evaluated employing the Q8 finite element for the optimized topologies obtained by the 

different approaches, for a fair comparison. 

6.3 Compliance Minimization Problem based on the Standard Finite-Volume Theory for 

Elastoplastic Analysis 

In this section, the cantilever beam example shown in Figure 21 is analyzed for 

topology optimization of compliance minimization problem based on the standard finite-

volume theory considering an elastoplastic material behavior. Additionally, some numerical 
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aspects are investigated during the analysis, such as the number of iterations, processing time 

and convergence. The continued penalization scheme is also adopted with gradual increments 

of 0.25 and the convergence criteria is set as 1% for the maximum relative material density 

variation between successive steps. The analysis is also performed employing a filter that 

modifies the subvolumes sensitivities as presented in Equation (3.6) for mesh-independency.  

Figure 56 – Penalization effect at the equivalent uniaxial stress-strain diagram 

p = 1 p = 2 

  

p = 3 p = 4 

  

Font: Author (2022). 

The proposed optimization problem consists of minimizing the structural compliance, 

considering elastoplastic material behavior employing an incremental formulation, with a 

volume constraint of 60% of the total volume, a mesh discretization of 42x21 subvolumes in 

the horizontal and vertical directions, respectively, and 200 increments. In the absence of 

filtering techniques, the damping factor is adjusted to 1/2.6 to avoid the oscillatory 

phenomena. The physical and geometrical parameters are set as: 𝐿 = 8 m (length), 𝐻 = 4 m 

(height), 𝑃 = 81,000 kN (vertical applied force), 𝐸 = 200 GPa (elastic moduli), 𝜈 = 0.32 

(Poisson’s ratio), 𝜎𝑦0 = 250 MPa (initial yield stress), and 𝐻𝑝 = 20 GPa (hardening 
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coefficient). The computational environment, in terms of programming language and 

machine, can be described as MatLab R2016a (64-bits)/Intel® CoreTM i7 CPU 2.93 

GHz/16.0 GB RAM/64-bits. Figure 56 shows the penalization effect at the equivalent uniaxial 

stress-strain diagram for the elastoplastic analysis. The subvolume relative density elevated to 

the penalization factor multiplies the elastic modulus, the hardening coefficient, and the initial 

yield stress, as shown in section 2.2.4. 

The sensitivity expression for the elastoplastic formulation presented in section 4.4 is 

verified in Figure 57, employing the finite difference method for the first derivative numerical 

calculation. The graph shows the sensitivity along the iteration process for the subvolume 

where the vertical force is applied, which presents the most pronounced plastic strain. As a 

result, the numerical values for the objective function gradient are like the values obtained by 

using the expression Eq. (4.52) obtained in section 4.4. 

Figure 57 – Sensitivity verification along the optimization process for the elastoplastic approach 

(No filtering) 

 

Font: Author (2022). 

Figure 58 presents the optimized topologies and the relative density histograms for the 

elastoplastic approach in comparison with the elastic approach in the absence of filtering 

techniques, employing the standard finite-volume theory. The optimized topology obtained 

through the elastic analysis presents more subvolumes with intermediate values for the 

relative material density in comparison to the optimized topology obtained employing the 

elastoplastic approach. On the order hand, the optimized topology obtained through the 

elastoplastic analysis presents more bars. As expected, the obtained optimized topologies are 

checkerboard-free for both investigated approaches, once the finite-volume theory is free 
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from the checkerboard numerical issue. The objective function evolution of the performed 

approaches can be seen in Figure 59, which show different stages as the penalty factor 

changes from 1 to 4, and the elastoplastic approach presents higher values for structural 

compliance once the applied load is higher in comparison with the elastic approach and it also 

computes the plastic strain in the strain energy estimation. 

Figure 58 – Optimized topologies and relative density histograms (No filtering) 

Elastic Analysis Elastoplastic Analysis 

  

  

Font: Author (2022). 

Figure 59 – Objective function history along the optimization process (No filtering) 

Elastic Analysis Elastoplastic Analysis 

  

Font: Author (2022). 
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Table 09 – Performance analysis for the cantilever beam (No filtering) 

Analysis Mesh NDOF 
Number of 

Iterations 
Processing Time 

Damping 

factor 

Elastoplastic 42x21 3654 345 7 hr 01 min 12 s 1/2.6 

Elastic 42x21 3654 297 1 min 32 s 1/2.6 

Font: Author (2022). 

Table 09 presents the investigated numerical aspects, such as number of iterations and 

computational cost. The computational cost has highly increased when the elastoplastic 

approach is employed once an incremental formulation with 200 steps has been employed. 

The following elastoplastic analysis considered the obtained optimized topologies without a 

filter technique and the imposition of a prescribed vertical displacement at the free edge of 80 

mm. Figure 60 shows the von Mises stress field for the optimized topologies, where it is 

observed a reduction in stress concentration for the optimized topology obtained from the 

elastoplastic formulation. Figure 61 presents the effective plastic strain for the optimized 

topologies, indicating how much the plastic strain has interfered in the optimized topology, 

especially for the elastoplastic approach. For the generation of these plastic strain and stress 

fields, it was adopted a cut-off of 0.85, where for relative density values lower than 0.85 their 

subvolumes stresses or strains are printed as white. 

Figure 60 – Von Mises stress (MPa) field for the optimized topologies (No filtering) 

Elastic Analysis Elastoplastic Analysis 
  

Font: Author (2022). 
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Figure 61 – Effective plastic strain for the optimized topologies (No filtering) 

Elastic Analysis Elastoplastic Analysis 
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Figure 62 – Optimized topologies and relative density histograms (Filtering) 

Elastic Analysis Elastoplastic Analysis 
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Similarly, the proposed optimization problem can also be solved by employing a filter 

that changes the subvolume sensitivity, as previously described. In this case, the damping 

factor is adjusted to 1/2, as it provides a faster convergence during the optimization process. 

Therefore, Figure 62 shows the optimized topologies and the relative density histograms 

obtained by the approaches employing the mesh-independent filter, presenting similar 

topologies for the elastoplastic and elastic analyzes. Both optimized topologies present a 

larger number of subvolumes with intermediate relative density values in comparison with the 

optimized topologies obtained without a filter technique. Figure 63 shows the objective 
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function evolution for the elastoplastic and elastic approaches, which also demonstrates the 

gradual convergence during the optimization process provided by the continued penalization 

scheme. The difference in the values for the objective function between the elastoplastic and 

elastic approaches occurs due to the increments of plastic strain in the total strain energy 

computation. 

Figure 63 – Objective function history along the optimization process (Filtering) 

Elastic Analysis Elastoplastic Analysis 
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The following elastoplastic analysis considered the obtained optimized topologies 

employing a filter technique and the imposition of a prescribed vertical displacement at the 

free edge of 80 mm. Figure 64 shows the effective plastic strain for the optimized topologies, 

where it is observed a low level of plastic strain for the optimized topology obtained from the 

elastoplastic approach in comparison to that obtained from the elastic approach. Therefore, it 

is observed that the plastic strain is concentrated in some subvolumes in the elastic approach, 

while in the elastoplastic is more spread out in the obtained optimized topology, which is in 

accordance with the topology optimization objective to reduce the concentration in strain and 

stress by promoting the depletion of more subvolumes in the optimized structure. Figure 65 

shows the von Mises stress fields for the obtained optimized topologies, observing a better 

stress distribution for the topologies obtained from the approach based on the elastoplastic 

formulation of the standard finite-volume theory. Additionally, for these graphs it was 

adopted a cut-off of 0.85 as previously discussed for Figures 60 and 61. 
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Figure 64 – Effective plastic strain for the optimized topologies (Filtering) 

Elastic Analysis Elastoplastic Analysis 
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Figure 65 – Von Mises stress field (MPa) for the optimized topologies (Filtering) 

Elastic Analysis Elastoplastic Analysis 
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Table 10 presents the investigated numerical aspects for the cantilever beam example 

considering the elastoplastic and elastic analyzes and employing a mesh-independent filter. 

The total number of iterations have not varied so much from one approach to another, while 

the computational cost has highly increased for the elastoplastic formulation. However, it is 

observed a reduction in the number of iterations and processing time when the sensitivity 

filter is employed. For instance, the elastoplastic approach with filter is 1.56 times faster than 

the same approach in the absence of filtering techniques. This can be partially explained by 

the number of iterations reduction in the optimization process. Figure 66 presents the force 

versus displacement curves for the optimized topologies. It can be observed that the optimized 

topologies obtained from the elastoplastic approaches reduce the displacement for the same 

applied force. The optimized topologies obtained employing the sensitivity filter technique 

show a better load capacity due to the larger number of subvolumes with intermediate 

relativity density values compared with the optimized topologies obtained without a filter 

technique. 
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Table 10 – Performance analysis for the cantilever beam (Filtering) 

Analysis Mesh NDOF 
Number of 

Iterations 
Processing Time 

Damping 

factor 

Elastoplastic 42x21 3654 218 4 h 30 min 25 s 1/2 

Elastic 42x21 3654 182 1 min 15 s 1/2 

Font: Author (2022). 

Figure 66 – Force versus displacement curves for the optimized topologies 
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CONCLUSIONS 

 This work's first contribution is to propose two different methods for structural 

compliance estimation based on the generalized finite-volume theory. Usually, the 

compliance function can be defined from the work done by external loading when the finite 

element method is employed, although the structural compliance can also be evaluated as the 

strain energy. As the finite element method, the zeroth-order finite-volume theory satisfies the 

energy balance, i.e., the equality between work done by external loading and total strain 

energy. However, for the higher-order versions of the generalized finite-volume theory, the 

work done by external loading tends to give a stiffer response compared to the results given 

by the total strain energy, based on the analyzed examples in section 5.1. In these cases, the 

energy balance is observed only when a sufficiently fine mesh is employed. The higher-order 

versions of the generalized finite-volume theory presented a stiffer response than the zeroth-

order version for the analyzed examples. 

 In the finite-volume theory, the equilibrium of forces is imposed at the subvolume 

level, which distinguishes it from the finite element method, whose equilibrium of forces is 

not generally satisfied at the element level. However, the energy balance is not imposed for 

the finite-volume theory, which does not ensure the equality between work done by external 

loading and total strain energy, as observed in the finite element method, unless the pointwise 

differential equilibrium equations are satisfied, as occur in the zeroth-order version of the 

finite-volume theory. 

 For the analyzed examples in section 6.1, the simulations with the finite-volume 

theory have always presented a monotonic energy convergence to the analytical solution. The 

Q4 element approach has presented the fastest solution in terms of computational cost, 

followed by the zeroth-order finite-volume theory approaches. At the same time, the second-

order finite volume theory and Q8 element approaches have presented the highest processing 

time, which can be partially explained by the number of degrees of freedom. However, when 

the processing time of the total strain energy approaches is compared with those obtained by 

the same approaches based on the work done by external loading, it is not observed any 

substantial difference. 

 The formulations proposed in section 4 can be employed in the mechanical energy 

estimation in solid mechanics, especially for compliance evaluation in structural optimization 

problems based on the generalized finite-volume theory and elastoplastic formulation of the 



112 
 

standard finite-volume theory. To explore the most different aspects of the finite-volume 

theory, it is justified the continuation of this investigation by employing the different 

formulations of the finite-volume theory, especially in the case of heterogeneous materials 

and structures, where the finite-volume theory has been successfully employed. 

 The topology optimization for compliance minimization algorithms based on the three 

versions of the generalized finite-volume theory has shown to be efficient, especially in the 

absence of filtering technique, where checkerboard-free property is demonstrated. This 

property has its origins in the satisfaction of continuity conditions in a surface-averaged sense 

between adjacent subvolumes, which provides interfacial connections among the subvolumes. 

In the case of the higher-order versions of the finite-volume theory, the evaluation of the 

compliance function using the strain energy shows to be more efficient than using the work 

done by external loading by enhancing the employed numerical parameters and minimizing 

the final compliance function. Although the efficiency of the proposed technique in avoiding 

the formation of checkerboard regions, this work does not support the substitution of finite-

element strategies in topology optimization problems, since several topology optimization 

techniques based on the finite-element method provide checkerboard-free optimized 

topologies, such as Poulsen (2002), Jang et al. (2003), Bruggi (2008), Pereira et al. (2010), 

and Balogh and Lógó (2017). Here, the finite-element method is employed as a source of 

reference results that can validate the results obtained by the finite-volume theory approaches 

and allow a comparison analysis of computational performance within the same 

computational environment.  

 The continued penalization scheme is adopted during the optimization, guaranteeing a 

gradual convergence for the overall process. In the absence of filtering techniques, the OC 

method's damping factor is adjusted to avoid divergence during the optimization process, 

since a non-maximum number of iterations is established. The damping factor was set up to 

be as close as possible to the value of 1/2 and avoid the oscillatory phenomenon during the 

optimization process. For the approaches that employ the mesh-independency filter, the 

damping factor was set up as 1/2, providing a faster convergence. 

 The sensitivity filter is employed to solve the mesh dependence and length scale 

problems. In the case of the finite element method, this filtering technique is employed to 

avoid the formation of checkerboard regions additionally. The employed filter radius is 

usually applied for checkerboard-free design in finite element-based strategies. Therefore, this 

filter can solve the checkerboard pattern for the finite-element approaches, while for the 
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zeroth-order finite-volume theory, this filter could also reduce the observed mesh dependence 

instability. For the Q8 element, first and second-order finite-volume theories, the optimized 

topologies employing this filter radius are very similar. In terms of processing time, the 

approach based on the Q4 element is the fastest, while the approach based on the Q8 element 

is usually the slowest, with the finite-volume theory exhibiting the intermediates values, with 

higher processing times for the higher-order versions. The elastoplastic formulation of the 

standard finite-volume theory is employed to obtain optimized topologies with more realistic 

physical data. As a result, this approach can provide optimized topologies with a better stress 

field distribution and a bigger loading capacity. 

 It is adopted a unique expression to evaluate the filter radius for all analyzes, 

considering only the neighbor elements/subvolumes (with shared nodes). Different values for 

the filter radius can affect the obtained topologies, but this investigation can be conducted in 

future works. 

Further Works 

 Based on the obtained results, the continuation of this investigation is justified by 

exploring the different aspects that evolve the finite-volume theory, especially in the case of 

heterogeneous materials with periodic microstructure, where the finite-volume theory has 

shown to be even more efficient. In addition, these aspects can be explored in problems of 

interaction between structures and fluids. Although the finite-volume methods encounter large 

applications in fluid mechanics analyzes, the finite-volume theory has its origin in the higher-

order theory for functionally graded materials in solid mechanics analysis. Therefore, 

excellent compatibility between the finite-volume theory and interaction problems between 

structures and fluids is expected. This numerical technique carries the basic properties of the 

finite-volume techniques and was developed for stress analysis in solid structures. 

 The divulgation of educational codes implemented in MatLab language is suggested 

for topology optimization of linear elastic structures based on compliance minimization 

problems to popularize the finite-volume theory in topology optimization problems. This 

initiative is essential to promote the application of the finite-volume theory in solid 

mechanics, especially for research beginners, once this numerical technique is easy to follow 

and can be implemented by undergraduate students of engineering programs. In addition, the 

divulgation of these MatLab implementations can help disseminate this dissertation's 

achievements and maximize the impact of the proposed investigations. 
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 Compliance evaluation has played an essential role in topology optimization 

algorithms in structural analysis. Since the pioneering work of Michell (1904), who derived 

the optimality criteria (OC) method, and the reconstruction proposed by Bendsøe and Kikuchi 

(1988), a significant part of the advances in topology optimization has been achieved by 

employing methodologies based on the structural compliance minimization problems. 

However, this is not the main objective of most high-performance structural problems. A 

more realistic option would be to optimize the stress distribution inside the design domain by 

reducing the local stress concentration in the optimized structure. Thus, stress-based topology 

optimization is proposed by applying the zeroth-order finite-volume theory to control the 

local stress concentration in the optimized topologies and avoid the formation of regions with 

thin bars in those topologies. 

 Once the energy balance is not satisfied for the higher-order versions of the 

generalized finite-volume theory for coarse meshes, another suggestion to further work would 

be to reconstruct these numerical techniques by imposing this energy balance for the first and 

second-order versions of the generalized finite-volume theory. The equivalence between 

external work done and total strain energy in a deforming structure for quasi-static analysis 

can be achieved for these theories by adding unknown coefficients to the displacement field 

approximation. This reconstruction can also help to obtain more efficient optimized 

topologies in compliance minimization problems. In addition, 3D and parametric formulations 

for the generalized version of the finite-volume theory can be developed for elastic stress 

analyzes in continuum mechanics. 
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APPENDIX A 

Auxiliary matrices employed in the Finite-Volume Theory: 
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=
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1 0
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𝑩(8×8)
(𝑞) = [

𝑵(1) 𝟎 𝟎 𝟎
𝟎 𝑵(2) 𝟎 𝟎
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𝟎 𝟎 𝟎 𝑵(4)

] [

𝑪(𝑞) 𝟎 𝟎 𝟎
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where:  
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],   

and 𝑪(𝑞) is the tangent material stiffness matrix of the subvolume q. 
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APPENDIX B 

The matrices 𝑬𝑚
(𝑞) (𝑥1

(𝑞), 𝑥2
(𝑞)) can be expressed as: 

𝑬0
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, 
(B.3) 

The non-zero matrices 𝑫𝑚𝑛
(𝑞)

 were found to be as follows: 
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where 𝐶𝑖𝑗 are the elements of the stiffness tensor, considering the plane stress state. 


