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RESUMO

Construir sistemas de Aprendizado de Máquina (AM) pode ser complexo, e as tecnologias de

AM são conhecidas por terem uma curva de aprendizado acentuada. Essas dificuldades

levaram à popularização dos serviços de AM. Embora muitos estudos recentes tenham

abordado a vulnerabilidade dos modelos de AM para ataques direcionados, pouca atenção

foi direcionada ao efeito de falhas de dados típicas na confiabilidade dos serviços de AM.

Tais falhas podem ter origem nas aplicações que dependem de serviços de AM, causadas por

falhas de hardware ou conexão, bugs ou comportamento indefinido. Consequentemente,

essas falhas podem ser refletidas nos dados produzidos por tais aplicações e enviados aos

serviços de AM. Buscando avaliar a confiabilidade desses serviços e com foco no domínio da

Visão Computacional, este trabalho apresenta um estudo empírico sobre a injeção de falhas

comuns de dados nos dados enviados aos serviços de visão computacional. Os resultados

de 11 serviços comerciais indicam que falhas de dados podem afetar significativamente

a confiabilidade dos serviços, conforme evidenciado por taxas de classificação incorreta

que variam de 14% a até 63%. Por outro lado, as falhas de dados não parecem ter o mesmo

impacto na equidade dos serviços, embora algumas configurações de falhas levem a impactos

significativos na equidade.

Palavras-chaves: Serviços em Nuvem. Confiabilidade. Injeção de Falhas. Aprendizado de

Máquina.



ABSTRACT

Building Machine Learning (ML) systems can be tricky, and ML technologies are known

to have a steep learning curve. Those difficulties led to the popularization of ML services.

Although many recent studies have addressed the vulnerability of ML models to target attacks,

not enough attention has been directed to the effect of typical data faults on the reliability of

ML services. Such faults may originate in the applications that rely on ML services, caused by

hardware or connection failures, bugs, or undefined behaviour. Consequently, those faults can

be reflected in the data produced by such applications and sent to the ML services. Seeking to

evaluate the reliability of these services and focusing on the Computer Vision (CV) domain,

this work presents an empirical study on the injection of common data faults into the data

sent to CV services. The results from 11 commercial CV services indicate that data faults

may significantly affect the reliability of the CV services, as evidenced by misclassification

rates ranging from 14% to up to 63%. On the other hand, data faults do not seem to have the

same impact on the fairness of CV services, even though some fault configurations lead to

significant fairness impacts.

Keywords: Cloud Services. Reliability. Fault Injection. Machine Learning.
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1 INTRODUCTION

In this Chapter, we summarize our research by first presenting the context and defining

the studied problem, leading to the objectives and contributions.

1.1 CONTEXT AND PROBLEM

The growing amount of public and private data generated from different data sources,

like websites, social networks, mobile devices, and news providers, has increased the interest

in technologies capable of extracting useful knowledge from large, usually unstructured,

data collections. Furthermore, the popularization of wireless sensors, mobile devices, and

wearable devices makes it possible to collect data in increasingly specific contexts (RIBEIRO;

GROLINGER; CAPRETZ, 2015). Machine Learning (ML) techniques have been successfully

employed to extract useful knowledge from such data by both academia and the software

industry. Time-consuming tasks, like image classification (GUO et al., 2017), object detec-

tion (WANG; SHEN; SHAO, 2017), product recommendation (KUMAR; THAKUR, 2018), and

forecasting based on past data (TEALAB, 2018), can be performed by machine learning

systems automatically in a matter of seconds.

However, building ML systems can be tricky since massive training data and expensive

computational resources are often required. Moreover, the widely used machine learning

frameworks, like Tensorflow,1 PyTorch,2 and scikit-learn,3 have a steep learning curve and

present several challenges when deployed in a production environment (JAHANGIROVA et

al., 2019). To make ML systems more accessible and affordable, many cloud providers (e.g.,

Amazon Web Services, Google Cloud, Microsoft Azure) offer machine learning tools as services.

Application developers can perform ML tasks through those services by simply sending their

data to a cloud provider over APIs (Application Programming Interfaces), reducing the effort

required to perform ML tasks (RIBEIRO; GROLINGER; CAPRETZ, 2015; SHOKRI et al., 2017).

Recent studies (HESAMIFARD et al., 2018; HUNT et al., 2018; KUMAR et al., 2020;

LI et al., 2017; PAPERNOT et al., 2017; SHOKRI et al., 2017; LI et al., 2019; WANG; GONG,

2018) analyzed different aspects of machine learning systems, like privacy (HESAMIFARD

et al., 2018; HUNT et al., 2018), scalability (LI et al., 2017), and security (KUMAR et al., 2020;

PAPERNOT et al., 2017; SHOKRI et al., 2017; LI et al., 2019; WANG; GONG, 2018). Regarding

security, several works have addressed the vulnerability of machine learning models, espe-

cially deep learning (GOODFELLOW et al., 2016) models, to adversarial examples (PAPERNOT

et al., 2016; GOODFELLOW; SHLENS; SZEGEDY, 2014) and inference attacks (SHOKRI et

1 <https://www.tensorflow.org>
2 <https://pytorch.org>
3 <https://scikit-learn.org>

https://www.tensorflow.org
https://pytorch.org
https://scikit-learn.org
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al., 2017; WANG; GONG, 2018; TRUEX et al., 2019). While adversarial examples consist of

malicious, carefully-constructed input data that causes machine learning models to yield

incorrect results (PAPERNOT et al., 2016; GOODFELLOW; SHLENS; SZEGEDY, 2014; LI et al.,

2019; NARODYTSKA; KASIVISWANATHAN, 2016), inference attacks aim at causing the leak

of the data or parameters used to train ML models (SHOKRI et al., 2017; TRUEX et al., 2019;

WANG; GONG, 2018).

Although the research on ML models security has indicated that these models are

commonly vulnerable to malicious adversaries, little research has addressed the effect

of typical data faults (i.e., faults whose impact can be checked in the input data of a

system) (NURMINEN et al., 2019) on the reliability (i.e., the ability of a system to properly

function under stated conditions for a period of time (BIROLINI, 2017)) of machine learning

services. Such faults may originate in the applications that rely on ML services, being caused

by hardware or connection failures, bugs, and undefined behavior (NURMINEN et al., 2019;

CECCARELLI; SECCI, 2022; JHA et al., 2019; JHA et al., 2018). Consequently, those faults can

be reflected on the data produced by such applications and sent to the machine learning

services (e.g., low image resolution, noise, and missing chunks of data).

Understanding how reliable ML services are when exposed to typical data faults

may help application developers and cloud providers. While application developers can

be better aware of what to expect from ML services in faulty scenarios (e.g., defective sensors,

connection problems), the cloud providers can improve their models to be more reliable

when exposed to specific faults. Moreover, the importance of a reliability assessment is even

more significant when critical applications, such as medical image analysis (LITJENS et al.,

2017) or violence detection (RAMZAN et al., 2019), use ML services.

1.2 OBJECTIVES

Seeking to evaluate the reliability of machine learning services, this work presents an

empirical study on the injection of common data faults into the input data passed to a set of

commercial ML services, specifically computer vision (CV) services. Performing the injection

of faults and then analyzing a system’s behaviour is a recognized practice to gather the desired

understanding of the reliability of the target system (ZIADE et al., 2004).

To achieve the objective aforementioned, we conducted fault injection campaigns

with 14 different image faults representing common issues on 11 computer vision services, in-

cluding general-purpose (e.g., object detection) and domain-specific (e.g., violence detection),

from three widely used cloud providers: Amazon Web Services, Google Cloud, and Microsoft

Azure. Moreover, we analyzed the impacts of data faults on the reliability of CV services both

in terms of misclassifications and fairness.
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1.3 CONTRIBUTIONS

We summarize the main contributions of our study below:

• The injected data faults are able to consistently impact the reliability of CV services, as

reflected by the obtained misclassification rates of up to 63%;

• Domain-specific services appear to be more reliable than general-purpose services, as

evidenced by consistently lower misclassification rates. Moreover, services with similar

capabilities but from different providers may differ significantly in their reliability;

• While the minimum obtained misclassification rate for a fault is 20%, the Zoom Blur,

Rain/snow, Salt and Pepper Noise, Contrast, and Gaussian Noise faults lead to a higher

impact on reliability, even at initial severity levels;

• Common data faults do not systematically affect the fairness of the studied services,

even though some fault configurations can lead to a significant impact. To the best of

our knowledge, this is the first work to assess the effect of data faults on the fairness of

CV services.

1.4 THESIS STRUCTURE

The remainder of this thesis is structured as follows:

• Chapter 2 introduces the base concepts required to proceed with the thesis.

• Chapter 3 introduces our research questions, details the computer vision services used

in our study, and presents the fault model and the data faults investigated.

• Chapter 4 defines our experiments, including the datasets used and the workflow of

the fault injection campaigns. Then, we present the experiments’ results.

• Chapter 5 further discusses the results of our experiments.

• Chapter 6 discusses the implications of our study.

• Chapter 7 details the limitations and threats to the validity of this study.

• Chapter 8 discusses the related work on black-box adversarial attacks, attacking ma-

chine learning services, faults in machine learning systems, and fairness. This Chapter

also compares our work with the mentioned related work in terms of contributions and

limitations.

• Finally, Chapter 9 concludes this thesis with our contributions and future work.
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2 BACKGROUND

This chapter contextualizes our work, presenting an overview of black-box computer

vision services and faults in computer vision systems, and introduces the concept of fairness.

2.1 BLACK-BOX COMPUTER VISION SERVICES

Due to the high cost involved in training machine learning models with massive

training data, which includes the necessity of expensive hardware, and the steep learning

curve of ML technologies (RIBEIRO; GROLINGER; CAPRETZ, 2015), many companies are

contributing to the trend initiated in recent years of migrating ML applications to the cloud.

Indeed, Kaggle’s State of Data Science and Machine Learning 2022 survey1 shows strong

growth in 2022 for all major cloud computing providers. Moreover, the 2021 edition2 of the

same survey shows that less than 20% of the respondents do not use cloud services. Since

the providers own both massive amounts of data and computing resources, they provide

services that perform complex ML tasks using pre-trained models for a fee. Fees vary across

services in a provider and across providers (e.g., 0.001 USD per image for Amazon Rekognition

image services),3 even though all providers have a free tier that also varies across services and

providers, but generally allow thousands of free queries.

Provided services belong to different machine learning domains, such as natural

language processing (NLP), computer vision, and fraud detection. From the computer

vision domain, the focus of our work, commonly provided services are face detection and

recognition, label detection, text detection, and inappropriate or offensive content detection.

Since pre-trained models power such services, and the cloud providers provide little to no

details on the internals of the models, the services are essentially black-box. Hence, developers

relying on those services do not have knowledge of the training data, the model architecture,

data augmentation steps, or the parameters used for training. The only data developers can

access are the input passed to the service and the outputted predictions.

Alternatively, cloud providers also provide Automated Machine Learning (AutoML)

services. With AutoML services, developers can leverage the pre-trained models from black-

box services to build custom models that perform a particular task (e.g., distinguishing healthy

and infected leaves). To accomplish that, developers must provide a few hundred labelled

images which will be used to re-train the black-box model, resulting in the custom one.

Although developers now have control over a portion of the training data when using AutoML

services, they still do not know the majority of the internals of the resulting model.

1 <https://www.kaggle.com/kaggle-survey-2022>
2 <https://www.kaggle.com/kaggle-survey-2021>
3 <https://aws.amazon.com/pt/rekognition/pricing>

https://www.kaggle.com/kaggle-survey-2022
https://www.kaggle.com/kaggle-survey-2021
https://aws.amazon.com/pt/rekognition/pricing
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2.2 FAULTS IN COMPUTER VISION SYSTEMS

Data-intensive systems, like machine learning applications, deeply rely on the quality

of their data and may be subjected to faults caused by hardware or connection failures, bugs,

or undefined behavior (CECCARELLI; SECCI, 2022; NURMINEN et al., 2019; JHA et al., 2019).

Those faults can then be reflected in the data produced by those systems and passed as input

to the machine learning systems powering them. For instance, a noisy image might be the

result of a faulty RGB camera. Such fault would then be propagated to the ML model as the

faulty input image is forwarded to the model to return a prediction. If the model returns a

prediction different from the one that would have been returned if the input image was not

faulty, then the fault present in the image successfully affected the model’s decision.

To assess the tolerance of ML-powered systems to faults, different studies (JHA et al.,

2018; JHA et al., 2019; CECCARELLI; SECCI, 2022) in the field of autonomous vehicles guided

by computer vision models have proposed the process of injecting faults into the input data

of ML models to simulate the occurrence of real-world faults. Similarly, other works (MA et al.,

2018) on the field of mutation testing have proposed injecting faults both at the input data of

ML models but also on the models themselves (i.e., removing a layer from a deep learning

model). However, in the case of mutation testing, the goal is to test the quality of the test suite

instead of the fault tolerance of the model.

For computer vision systems, commonly investigated faults are related to RGB cameras,

system bugs, or climate conditions. Previously investigated faults include different formats of

noise and blur, pixelated images due to bugs or network issues, or climate conditions that

outdoor cameras may easily be exposed to. Moreover, the severity of such faults can, in most

cases, be configured (e.g., the number of pixels in an image affected by noise) and the fault

tolerance at different levels of severity may lead to relevant insights.

2.3 FAIRNESS

The growth of machine learning in recent years has led to many decisions now being

taken by ML models trained over large sets of domain-specific data. Among those models are

the ones that perform critical decisions, such as defining if an individual will get a loan (WANG

et al., 2020) or be a target of predictive policing (ALIKHADEMI et al., 2021). Although one might

think that, since machine learning systems learn to uncover patterns from examples, they

would not include human bias in their decision-making process, many cases (BUOLAMWINI;

GEBRU, 2018; BAROCAS; HARDT; NARAYANAN, 2019) have shown that fairness issues (e.g.,

related race, gender, disabilities) may exist in accurate ML systems due to pre-existing biases

in the training data.

Assessing the fairness of machine learning systems before releasing them is a growing

concern, as doing so would reduce the harm caused by unfair decisions (BAROCAS; HARDT;
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NARAYANAN, 2019). To perform such an assessment, many different criteria of fairness

have been proposed (VERMA; RUBIN, 2018). Those criteria are based on the concept of

privileged and unprivileged groups of a sensitive feature (i.e., a feature that may be a target for

discrimination, such as gender, race, or marital status). Although many criteria of fairness

exist, some criteria may yield a positive result for bias while others may not since some of the

existing criteria are mathematically incompatible (VERMA; RUBIN, 2018).

An example of the application of a range of different fairness criteria can be observed

in the work of Verma and Rubin (VERMA; RUBIN, 2018). The authors presented an evaluation

of the fairness of a logistic regression classifier of credit scores. The classifier was trained

with data containing sensitive gender-related features from the German Credit Dataset (DUA;

GRAFF, 2017). While some criteria (e.g., equal opportunity (HARDT; PRICE; SREBRO, 2016))

deem the classifier as fair, other criteria (e.g., equalized odds (HARDT; PRICE; SREBRO, 2016))

deem the classifier as unfair for not satisfying its criteria of fairness. The study concludes that

there are indications of gender-related bias toward single males and that different fairness

criteria yield different fairness assessments.
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3 STUDY DESIGN

This chapter describes the proposed study design to assess the reliability of computer

vision cloud services through the injection of common data faults. To perform our study, three

research questions are defined:

RQ1. To what extent are computer vision services able to tolerate the effects of common

data faults?

Studies have shown that computer vision models can change their behaviour and

present misclassifications of the input data when exposed to adversarial attacks in both

white (PAPERNOT et al., 2016; GOODFELLOW; SHLENS; SZEGEDY, 2014; YUAN et al., 2019;

ZHANG; LI, 2019; MOOSAVI-DEZFOOLI; FAWZI; FROSSARD, 2016) and black-box (NARODYT-

SKA; KASIVISWANATHAN, 2016; PAPERNOT et al., 2017; ILYAS et al., 2018; MICHAELIS et al.,

2020; HENDRYCKS; DIETTERICH, 2019) settings. However, little research has addressed the

effect of typical data faults on the reliability of computer vision services. Understanding which

CV services can better tolerate the effects of data faults may help users that intend to use CV

services. For instance, developers building data-intensive CV applications may consider the

fault tolerance of computer vision services as a factor before making long-term commitments.

Hence, RQ1 aims to investigate if and to what extent CV services can tolerate data faults.

RQ2. Are there data faults, or groups of faults, that have a greater effect on computer

vision services?

Different data faults might impact computer vision models in different ways. Under-

standing which data faults may have a more significant impact on computer vision services

may help the developers of such services to prioritize efforts when targeting data faults. Thus,

RQ2 aims at investigating if there is a data fault or collection of data faults that are more

harmful to the CV services of cloud providers.

RQ3. Do common data faults affect the fairness of computer vision services?

Making sure that computer vision models are not only highly accurate but also fair is

a growing concern, as doing so will reduce the harm caused by unfair decisions (BAROCAS;

HARDT; NARAYANAN, 2019). Analyzing whether data faults can also affect the fairness of CV

models exposed as cloud services may help application developers and services providers

understand the effects that common data faults can cause in such an essential aspect of

modern computer vision applications.
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3.1 SELECTION OF COMPUTER VISION SERVICES

We select services from three major cloud providers for this study. The criteria we use

to choose these services are:

1. The services must be commercially available and widely used—this ensures that the

services are relevant, actively maintained, and validated by the industry;

2. The services must be ready-made—this ensures that the services are not highly

configurable and are simple to use;

3. The services must perform computer vision tasks—this ensures that the services

perform tasks from the studied domain.

After applying the criteria, the following set of computer vision services from the

following cloud providers was selected: (i) Amazon Rekognition from Amazon Web Services

(AWS);1 (ii) Vision AI from Google Cloud;2 and (iii) Vision Services from Microsoft Azure.3

Table 1 presents the list of selected services, their providers, category, and considered labels.

The list of considered labels for each service refers to the labels included in our analysis and

predictions that do not match these labels are discarded. We can see that different services

across providers belong to the same category as they perform the same or very similar tasks.

For instance, all providers provide an object detection service.

Table 1 – List of selected computer vision services

Provider Name Category Considered Labels

Celebrity Recognition Celebrity Detection All
Label Detection Object Detection All

Amazon Web Services
(AWS)

Moderation Labels Detection Violence Detection Violence, Visually Disturbing
Text Detection Text Detection –
Face Detection Face Detection –

Explicit Content Detection Violence Detection Violence

Google Cloud
Label Detection Object Detection All
Text Detection Text Detection –
Face Detection Face Detection –

Microsoft Azure
Tag Detection Object Detection All

Face Detection Face Detection –

Source: Produced by the authors

Moreover, all providers offer a service to detect improper content (e.g., violence, nudity,

substances use) with varying levels of granularity. For instance, while some services simply

1 <http://aws.amazon.com/machine-learning>
2 <https://cloud.google.com/products/ai>
3 <https://azure.microsoft.com/services/cognitive-services>

http://aws.amazon.com/machine-learning
https://cloud.google.com/products/ai
https://azure.microsoft.com/services/cognitive-services
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detect adult, racy, or violent content (e.g., Google Cloud, Microsoft Azure), others provide

second-level categories, like graphic nudity, swimwear/underwear, and weapons violence

(e.g., AWS). In this context, we consider in our study the violence detection services from

AWS and Google Cloud. Since Azure only supports the detection of adult content and gory

images (i.e., graphic violence), to standardize our analysis, we do not include Azure’s violence

detection service in our study. Moreover, due to ethical concerns regarding nudity detection

datasets, we will also not include in our study the adult content detection services made

available by the three providers.

All providers also provide a text detection service. Although Azure provides such a

service, due to a higher implementation complexity4 than other services, we do not consider

this service in our study. Moreover, only AWS provides a publicly accessible celebrity detection

service. Finally, the three selected providers also offer a face detection service. Since the study

of fairness in computer vision has been commonly linked to face detection and recognition

tasks (BUOLAMWINI; GEBRU, 2018; BAROCAS; HARDT; NARAYANAN, 2019), we use the face

detection services to answer RQ3. Moreover, we use all the remaining services in the scope of

RQ1 and RQ2 analyses.

Unlike all other selected services, Google Cloud’s explicit content detection service

returns all supported labels associated with a likelihood value instead of returning only

the detected labels with their associated confidence value. The following likelihood values

can be returned from the service: UNKNOWN, VERY_UNLIKELY, UNLIKELY, POSSIBLE, LIKELY,

VERY_LIKELY. In the next section, we explain how we applied the required treatment for this

particularity.

3.2 FAULT MODEL AND EVALUATION

This study assumes that the fault injection experiments have only black-box access to

the CV services. That means the only information accessible by the fault injector are the input

instances and the predictions returned by the CV services for each instance.

To evaluate the effect of data faults on the accuracy of the studied services (RQ1 and

RQ2), we make use of the top-k misclassification rate (NARODYTSKA; KASIVISWANATHAN,

2016). It refers to the percentage of k-misclassified instances in a set of predictions. A k-

misclassified instance means that a machine learning model ranked the true label of that

instance below at least k other labels. In our experiments, we calculate the rate of misclassified

instances in a fault injection experiment using k = 1, (i.e., a simple misclassification of the

highest ranked label). Although the misclassification of the highest ranked label is widely

used in the context of adversarial examples (LI et al., 2019; HENDRYCKS; DIETTERICH, 2019;

NARODYTSKA; KASIVISWANATHAN, 2016), it can be harsh since many applications relying

4 At the date of writing, text detection in Microsoft Azure is split into two APIs, requiring synchronization to be
manually implemented, thus no matching the second criteria.
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on CV models commonly use the first few predicted labels. Thus, we also present additional

analyses varying the value of k.

Due to the likelihood particularity described in the previous section and based on the

definition of top-k misclassification rate, a change in the prediction of the Violence label from

LIKELY to VERY_LIKELY, or VERY_UNLIKELY to UNLIKELY would yield a misclassification. To

handle such a scenario, we group the “unlikely” labels in a NEGATIVE label and the “likely”

labels in a POSITIVE label.

Regarding the effects of data faults on the fairness of CV services (RQ3), a well-known

fairness criterion is analyzed: equal opportunity (HARDT; PRICE; SREBRO, 2016). Its definition

states that the privileged and unprivileged groups of a sensitive feature (e.g., race, sex, religion)

should have equal true positive rates (TPR). To assess how similar the TPRs are for the

privileged and unprivileged groups, we will analyze their difference

T PR(pr i vi leg ed)−T PR(unpr i vi leg ed) (3.1)

where

T PR = T P/(T P +F N ) (3.2)

and where (i) TP refers to the number of true positives—a case when the predicted and actual

labels are both in the positive class; and (ii) FN refers to the number of false negatives—a case

when the predicted and actual labels are in different classes.

3.3 DATA FAULTS

In this section, we discuss the data faults investigated in our study. A total of 14 image

faults (CARLSON et al., 2018; CECCARELLI; SECCI, 2022; HENDRYCKS; DIETTERICH, 2019)

that can result from camera failures, network issues, or application bugs are used to target

the computer vision services. All these faults have been previously investigated and validated

by other works in the computer vision field (CARLSON et al., 2018; NURMINEN et al., 2019;

CECCARELLI; SECCI, 2022; HENDRYCKS; DIETTERICH, 2019; MICHAELIS et al., 2020). In the

following paragraphs, we present the definition of the image faults addressed in this work. The

faults were implemented using well-known data and image processing libraries, like numpy,5

skimage,6 Pillow,7 and an image corruption library, imagecorruptions.8 Figure 1 provides

examples of the effects of such faults.

5 <https://numpy.org>
6 <https://scikit-image.org>
7 <https://python-pillow.org>
8 <https://github.com/bethgelab/imagecorruptions>

https://numpy.org
https://scikit-image.org
https://python-pillow.org
https://github.com/bethgelab/imagecorruptions
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Figure 1 – Image faults applied to a sample image

(a) Original (b) GBLUR (c) MBLUR (d) ZBLUR

(e) BRI (f) CHR (g) COND (h) FOG

(i) FROST (j) SNOW (k) CONT (l) GRAY

(m) GNOISE (n) SNOISE (o) PIX

Source: Produced by the authors

Notes: Image faults applied to a randomly selected image (2a) from the COCO Object Detection Dataset (LIN et
al., 2014). Images 2b-2o present the effects of the studied faults

3.3.1 Blurring

Blurred images occur when the image captured by the lens of a camera is out of

focus (CARLSON et al., 2018; CHEONG et al., 2015). We blurring in an image by applying a

Gaussian filter (i.e., Gaussian blur (GBLUR) (CARLSON et al., 2018)). Moreover, two other

types of blurring faults are considered in our study, motion blur (MBLUR) and zoom blur

(ZBLUR). While the former appears when a camera moves quickly, the latter occurs when a

camera moves toward an object quickly (HENDRYCKS; DIETTERICH, 2019). To assess the

impact of the blurring faults, we use the parameters from Michaelis et al. (MICHAELIS et al.,

2020), mapped to 5 levels of severity s.
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3.3.2 Brightness (BRI)

This fault represents the brightness alteration on an image by a certain factor f. If

f > 1, the brightness of the image increases; similarly, the brightness decreases if f < 1.

Changes in the brightness of an image can happen with the malfunction of the lens of a

digital camera (CECCARELLI; SECCI, 2022) or because of daylight intensity (HENDRYCKS;

DIETTERICH, 2019). We follow Ceccarelli and Secci (CECCARELLI; SECCI, 2022) on the choice

of the f parameter and use the following values in our experiments: {0.3,0.6,1.5,3,4.5}.

3.3.3 Chromatic Aberration (CHR)

In this fault, an image presents colour distortions and a blurred appearance on the

edges that separate subjects in the image (CARLSON et al., 2018; CECCARELLI; SECCI,

2022) due to the convergence of different light wavelengths that passes through the optical

lens (KANG, 2007). We simulate such a fault by scaling the blue and green channels of

an RGB image by a factor f. In our experiments, we use f ∈ {1,2} as in Ceccarelli and

Secci (CECCARELLI; SECCI, 2022).

3.3.4 Climate Conditions

Adverse climate conditions are well-known challenges to computer vision tech-

niques (MICHAELIS et al., 2020; NURMINEN et al., 2019; CECCARELLI; SECCI, 2022). Since

applications that rely on CV services may be positioned outdoors (e.g., violence detection

based on external monitoring systems), poor climate conditions can play a major role in

the reliability of these applications. Thus, we include in our study five common climate

conditions, namely, condensation (COND), fog (FOG), frost (FROST) (i.e., lenses or windows

coated with ice crystals), and falling rain/snow (SNOW). We simulate those conditions by

using image masks (COND and FROST) (MICHAELIS et al., 2020; CECCARELLI; SECCI, 2022)

or image processing techniques (FOG and SNOW) (MICHAELIS et al., 2020). Furthermore,

for the FOG and SNOW faults we follow Michaelis et al. (MICHAELIS et al., 2020) and use 5

levels of severity s. As they rely on image masks, COND and FROST do not depend on any

parameter.

3.3.5 Contrast (CONT)

The contrast of an image can easily vary between low or high depending on lighting

conditions and the photographed object’s color (HENDRYCKS; DIETTERICH, 2019). To

emulate this fault, we change the contrast of an image by a severity factor s ∈ {0.4, .3, .2, .1, .05},

following Michaelis et al. (MICHAELIS et al., 2020).
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3.3.6 Grayscale (GRAY)

In this fault, a chromatically wrong (i.e., grayscaled) image is the result of malfunctions

that may happen in the Bayer filter of a digital camera (CECCARELLI; SECCI, 2022). We apply

a grayscale transformation to the input images to simulate this fault scenario. Like COND and

FROST, this fault does not depend on any parameter.

3.3.7 Noise

The occurrence of noise in images is common and different factors may be responsible

for its introduction (BONCELET, 2009; VERMA; ALI, 2013; HENDRYCKS; DIETTERICH, 2019).

The most frequently occurring noise is additive Gaussian noise (GNOISE) (BONCELET, 2009).

We simulate the occurrence of this fault by adding a random, Gaussian distributed noise value

to every pixel of an image. Another type of image noise, the salt and pepper noise (SNOISE)

is caused by sharp and sudden changes in the image signal (VERMA; ALI, 2013). This noise

results in the appearance of sprinkled black and white dots on an image (BONCELET, 2009),

and we simulate its occurrence by randomly changing a percentage p of the pixels of an

image either to black or white. Similar to other faults, we use the parameters from Michaelis

et al. (MICHAELIS et al., 2020), mapped to 5 levels of severity s, in our experiments.

3.3.8 Pixelation (PIX)

Pixelation could occur as an application defect by upsampling a low-resolution

image (HENDRYCKS; DIETTERICH, 2019). Once again, we follow Michaelis et al. (MICHAELIS

et al., 2020) and make use of 5 levels of severity s.
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4 EXPERIMENTS

To answer our research questions, we initially conduct two experiments. The first

addresses the effect of the common data faults on CV services (RQ1 and RQ2), while the

second addresses the effect of such faults on the fairness of those services (RQ3). More in

detail, each experiment is a set of fault injection campaigns we conduct to assess the reliability

of a target CV service when exposed to a particular fault. Each subject service is provided

input data from the same domain they were designed to operate on.

4.1 DATASETS

Computer vision services trained to perform specific tasks would only be fairly

assessed if they receive data that matches their domain. In our experiments, the selected

services from Table 1 are grouped into five categories based on the task they perform, namely:

Celebrity Detection, Object Detection, Violence Detection, Text Detection, and Face Detection.

For each category, we select a dataset according to the following criteria: (i) the datasets

must be publicly available — this ensures that our work is easily accessible and reproducible;

(ii) the datasets must have been previously used in CV research — this ensures the validity of

the dataset; and (iii) all instances in the datasets must be labelled — this ensures that we can

accurately compare the predicted label for an image with its ground truth. After applying the

criteria, we selected the following datasets to match our service categories:

• CelebA (LIU et al., 2015) (Celebrity Detection): a large-scale dataset with more than

200,000 celebrity images both in-the-wild, and aligned and cropped, each with 40

attribute annotations.

• COCO Object Detection Dataset (LIN et al., 2014) (Object Detection): a large-scale

object detection, segmentation, and captioning dataset, with 80 different object

categories. The selected portion of the dataset is the 2017 validation set,1 which is

composed of 5,000 instances.

• Human Rights UNderstanding Dataset (HRUN) (KALLIATAKIS et al., 2017) (Violence

Detection): a dataset with 400 images of four types of human rights violations: child

labour, child soldiers, police violence, and refugees. Only the child soldiers’ images

displaying weapons and police violence images are selected for our experiments since

violence detection services do not cover the other types of human rights violations.

1 <http://images.cocodataset.org/zips/val2017.zip>

http://images.cocodataset.org/zips/val2017.zip
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• KAIST Scene Text Database (LEE et al., 2010) (Text Detection): a scene text dataset

comprised of 3,000 images captured outdoors and indoors. The dataset includes scenes

in Korean, English, and mixed text. Only images containing English text are selected for

our experiments due to the limited support for other languages from the text detection

services.

• UTKFace (ZHANG; SONG; QI, 2017) (Face Detection): a large-scale face dataset with

over 20,000 images and long age span (0 to 116). The images are annotated for attributes

like age, gender, and ethnicity.

Given the overhead and cost of making API calls to the computer vision services, we

do not employ the complete datasets in our experiments. Instead, we randomly sample 100

instances from each of the selected datasets.

4.2 FAULT INJECTION CAMPAIGNS

To perform our study, fault injection campaigns are conducted on the selected

computer vision services. The workflow of these campaigns is as follows:

1. For every CV service, we select its matching dataset as specified on Table 1 and

Section 4.1;

2. For every instance in the matching dataset, we perform the associated CV task using

a service, saving its predictions. This process results in the clean predictions (i.e., the

predictions not influenced by any data fault) from the service;

3. Then, for each data fault, we inject it on all instances in the dataset using the set of

parameters defined in Section 3.3. This process results in the faulty datasets (i.e., the

datasets under the effects of the data faults);

4. For every instance in the faulty dataset, we employ the CV service a second time to

perform the same CV task, saving its predictions. This results in the faulty predictions

(i.e., the predictions under the effects of the data faults);

5. Finally, for each workflow configuration evaluated (i.e., the combinations of CV service,

data fault, and predefined parameters), we compute the proposed metrics (Section 3.2)

using the clean and faulty prediction logs.

To perform this workflow, we implemented a tool, mlaas-fi2. The tool runs the fault

injection workflow described in a configuration file, accepting any dataset of JPG/JPEG images

as input and allowing the user to choose from a set of implemented faults and ML services

2 <https://github.com/filipefalcaos/mlaas-fi>

https://github.com/filipefalcaos/mlaas-fi
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from three major providers. Moreover, any user should be able to easily extend the tool to add

support for new ML services or faults.

4.3 ASSESSING EFFECTS OF DATA FAULTS (RQ1 & RQ2)

To answer the RQ1 and RQ2 research questions, we execute the fault injection

campaigns as described in the previous section, using the datasets from Section 4.1 and

the nine CV services, presented in Table 1, from the categories Celebrity Detection, Object

Detection, Violence Detection, and Text Detection. For each service, a total of 55 fault

configurations are used. Since each dataset has 100 images, we execute 5,600 API calls per

service (5,500 for faulty and 100 for clean images). Thus, to complete all fault injection

campaigns necessary to answer the first two research questions, we performed a total of

50,400 API calls.

Table 2 presents the results that support RQ1 and RQ2. While the first column describes

the studied faults, the remaining columns describe the top-1 misclassification rate for a CV

service when subjected to a fault. To calculate this value, we divide all the misclassified

faulty predictions by the total faulty predictions while varying the fault parameters described

in Section 3.3. For instance, if a dataset has a hundred images, 500 faulty predictions

are performed for the Gaussian blur fault (GBLUR) since it has an intensity parameter

with five possible values. Moreover, while the last line of the table represents the average

misclassification rate for a service, the last column represents the average misclassification

rate for a fault when injected onto multiple services. Finally, cells in green highlight the faults

with the least effect over a service, while cells in red highlight the faults with the most effect.

We observe that all selected services are affected by the studied data faults, with a

minimum average misclassification rate of 14% observed on Google Cloud’s violence detection

service and a maximum of 63% observed on the text detection service from the same provider.

As our results highlight, 40 injected faults (36%) resulted in a misclassification rate above

50%. In fact, the GRAY and SNOISE faults in Google’s violence detection experiment are the

only faults with the highest effect on a service to result in a misclassification rate below 50%.

Moreover, although the average misclassification rates of the faults are mainly below the 50%

mark, these rates can considerably impact sensitive tasks (e.g., violence detection). These

results indicate that common faults can consistently affect the selected services and thus

should be considered when relying on CV services.

4.3.1 General-purpose Services

The object detection services of multiple providers presented some of the highest

misclassification rates observed in our experiments, with an average ranging from 39% on

Microsoft Azure to 57% on AWS. Similarly, the two text detection services analyzed also present
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Table 2 – The top-1 misclassification rate of the computer vision services when subjected to
the data faults

Fault
AWS Google Cloud Azure

Average
Celebrity Object Violence Text Object Violence Text Object

GBLUR 0.51 0.52 0.49 0.34 0.38 0.14 0.65 0.26 0.41
MBLUR 0.39 0.51 0.44 0.39 0.47 0.13 0.7 0.28 0.41
ZBLUR 0.31 0.71 0.67 0.81 0.73 0.15 0.85 0.61 0.6

BRI 0.12 0.42 0.23 0.21 0.32 0.12 0.55 0.22 0.27
CHR 0.02 0.55 0.56 0.34 0.53 0.14 0.56 0.5 0.4

COND 0.02 0.42 0.22 0.21 0.42 0.13 0.58 0.28 0.29
FOG 0.15 0.58 0.51 0.25 0.51 0.15 0.58 0.43 0.4

FROST 0.06 0.59 0.47 0.24 0.46 0.13 0.63 0.41 0.37
SNOW 0.25 0.7 0.68 0.43 0.63 0.15 0.75 0.52 0.51
CONT 0.22 0.69 0.65 0.31 0.63 0.14 0.64 0.49 0.47
GRAY 0.02 0.42 0.27 0.18 0.42 0.17 0.45 0.43 0.29

GNOISE 0.25 0.61 0.34 0.32 0.67 0.15 0.63 0.42 0.42
SNOISE 0.21 0.65 0.41 0.38 0.72 0.17 0.66 0.49 0.46

PIX 0.07 0.6 0.24 0.25 0.29 0.11 0.58 0.14 0.28

Average 0.19 0.57 0.44 0.33 0.51 0.14 0.63 0.39

Source: Produced by the authors

high misclassification rates: 33% on AWS and 63% on Google Cloud. That is possibly related

to the number of labels returned by the general-purpose services: an object detection service

can perhaps return dozens of labels, and a fault that causes the top-1 predicted label to be

moved down to third would already result in a misclassification (see Chapter 5).

4.3.2 Domain-specific Services

On the other hand, our experiments indicate a tendency towards a higher degree

of reliability from domain-specific services when subjected to common data faults. The

domain-specific services (i.e., celebrity detection and violence detection) on all three cloud

providers are more reliable than the general-purpose services. In fact, the two most reliable

services in our experiments are domain-specific: Google Cloud’s violence detection and AWS’s

celebrity detection. These two services present an average misclassification rate ranging

from 14% to 19%, and only a single fault going over the 50% mark. Moreover, except for

AWS’s violence detection service, which presents the fourth highest misclassification rate, the

remaining domain-specific services of a provider present lower misclassification rates than

the general-purpose services of the same provider.
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Figure 2 – The most impactful image faults

(a) Original (b) CONT (c) GNOISE

(d) SNOISE (e) ZBLUR

Source: Produced by the authors

Notes: The most impactful image faults applied to a randomly selected image of violence (3a) from the Human
Rights UNderstanding Dataset (HRUN) (KALLIATAKIS et al., 2017). All faults are injected with the severity

parameter s set to 3

4.3.3 Differences Across Cloud Providers

Moreover, within the same category of CV service, we can see significant differences

from one provider to another. Although the object detection service has similar misclassifi-

cation rates for AWS and Google Cloud, our results indicate that for most of the remaining

services, there is a considerable difference between these two providers. Google Cloud’s

misclassification rate for the violence detection service is close to 1/3 of AWS’s. On the other

hand, the misclassification rate of Google Cloud’s text detection service almost doubles

its AWS counterpart. Finally, Azure’s object detection service presents significantly better

misclassification rates than AWS and Google Cloud.

Summary for RQ1. Results indicate that common data faults consistently affect the

reliability of the CV services, with average misclassification rates ranging from 14% up to

63%. Domain-specific services, like celebrity detection, appear to be more reliable when

exposed to those faults. Moreover, services with the same capabilities but different providers

may differ significantly in their reliability, as evidenced by the text detection and violence

detection services.
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4.3.4 Effects of Data Faults

Regarding the injected data faults, we can notice that all faults are able to affect the

computer vision services to some degree. The BRI, PIX, COND, and GRAY faults had, on

average, the lowest effect across all experiments, being the only faults to show an average

misclassification rate in the 20% range. The low impact of the BRI fault is in line with results

reported in previous work (LI et al., 2019), where significant changes in the image brightness

are required to achieve a high misclassification rate. However, in two of our experiments, we

observed 42% and 55% misclassification rates for that fault. That indicates that although the

effect of this fault tends to be smaller, it can also lead to considerable impacts. It is worth

noting that these higher misclassification rates are found in experiments where all faults

reached rates higher than 40%. On the other hand, the COND fault has been previously linked

to high effects on model accuracy in autonomous driving applications (CECCARELLI; SECCI,

2022). That may indicate that this fault can impact other domain-specific applications more.

Moreover, the ZBLUR, SNOW, SNOISE, CONT, and GNOISE faults are the ones

that resulted in the most significant effect in our experiments, as shown by their average

misclassification rates of at least 42%. As depicted in Figure 2, these faults can significantly

modify images. To better understand the effects of these faults, we present in Figure 3 the

misclassification rates when varying the parameters of the most impactful faults identified

above. To include contrast in our analysis, we analyze both the three services with the highest

and lowest average misclassification rates.

We notice a clear upward trend in the misclassification rate on all faults as the severity

parameter increases in the services analyzed. The notable exception is Google Cloud’s violence

detection service, where no clear trend can be observed across faults. Moreover, we can see

that the ZBLUR, SNOW, SNOISE, CONT, and GNOISE faults resulted in misclassification

rates of at least 40% in the initial severity level, where perturbations to the image are less

perceptible. For instance, for SNOISE, s = 1 is mapped to a perturbation of only 3% of the

image pixels. We can also notice that, as the severity increases, misclassification rates quickly

reach elevated levels. That is evidenced by the linear and exponential behaviour dominant on

the plots in Figure 3.

Furthermore, we can see that the most impactful fault varies according to the service

analyzed. While ZBLUR affects Google Cloud’s text detection service the most, the object

detection services are mostly affected by the SNOISE and SNOW faults. However, the SNOISE

fault has constantly resulted in high misclassification rates obtained being the highest in

the three AWS services, especially when s = 5. Finally, at high perturbation levels, even the

more reliable services (i.e., the services with the lowest average misclassification rates) were

consistently affected by the studied faults.
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Figure 3 – The top-1 misclassification rates of ZBLUR, SNOW, SNOISE, CONT, and GNOISE
faults
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(a) Google Cloud’s Text Detection
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(b) AWS’s Object Detection
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(c) Google Cloud’s Object Detection
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(d) Google Cloud’s Violence Detection
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(e) AWS’s Celebrity Detection
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(f) AWS’s Text Detection

Source: Produced by the authors

Notes: The top-1 misclassification rates when varying their severity s parameter. The figures refer to the services
with the top-3 highest and lowest average misclassification rates
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Summary for RQ2. The BRI, PIX, COND, and GRAY faults resulted in the least impact in

our experiments; ZBLUR, SNOW, SNOISE, CONT, and GNOISE resulted in the most impact.

Some services can experience high misclassification rates even at initial severity levels,

where perturbations are less perceptible. Moreover, misclassification rates can quickly reach

elevated levels as severity increases. Finally, the most impactful faults vary across services.

4.4 ASSESSING EFFECTS ON FAIRNESS (RQ3)

To answer RQ3, we first define the sensitive attribute of our fairness assessment. In this

analysis, we use the sampled UTKFace dataset and the annotated sex as our sensitive attribute.

We choose this attribute due to its availability on the dataset and the history of CV models

that present gender bias (BUOLAMWINI; GEBRU, 2018; BAROCAS; HARDT; NARAYANAN,

2019). Also, based on such history, in our analysis, we refer to the male group as the privileged

one and the female group as the unprivileged one. We perform API calls to the face detection

services using the clean images from the sampled UTKFace dataset and calculate the true

positive rates (TPRs) of the privileged and unprivileged groups, which compose the equal

opportunity criteria defined in Section 3.2. Finally, we execute three fault injection campaigns,

targeting the face detection services and calculating the TPRs for each fault configuration.

Figure 4 – The true positive rate (TPR) of the privileged (male - M) and unprivileged (female -
F) groups for both clean and faulty images
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Source: Produced by the authors

Figure 4 presents the results of our fairness analysis. For each provider, the first two

bars represent the TPR of the privileged (male - M) and unprivileged (female - F) groups for

the clean images. The two remaining bars, represent the average TPR when considering all
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Table 3 – The top-5 faults with the highest difference in the true positive rate (TPR) for the
attribute sex

AWS Google Cloud Microsoft Azure

-0.22 (CONT, s = 5) -0.18 (SNOW, s = 4) -0.34 (GNOISE, s = 5)
-0.18 (SNOISE, s = 5) -0.1 (CONT, s = 4) -0.25 (FOG, s = 4)
-0.14 (GNOISE, s = 5) -0.1 (SNOW, s = 3) -0.23 (CONT, s = 3)

0.08 (FOG, s = 5) 0.08 (FOG, s = 4) -0.21 (SNOW, s = 3)
-0.06 (SNOW, s = 4) 0.06 (SNOW, s = 1) -0.19 (SNOISE, s = 5)

Source: Produced by the authors

fault configurations. We observe that for the clean images, the face detection service from

both AWS and Google Cloud returned equal TPRs of 100%, indicating fairness with respect to

the equal opportunity criteria. On the other hand, Azure’s face detection service present a

small difference of 3% in the TPRs, possibly indicating the presence of a small bias towards the

privileged group. We also note that, when exposed to faults, the three face detection services

presented a reduction on the TPRs of both groups. Moreover, the injection of faults resulted

in a small, 1-2% difference of TPRs for the face detection services. On all three cases, the

female group presented the better TPR, which means for Azure, the direction of the difference

changed groups due to the injected faults. Nevertheless, the TPR differences, both for the

clean and faulty images, are small and in the 1-3% range.

Although the fairness of the services does not seen to be affected by the studied

faults when analyzing the average TPRs, we notice in our experiments that some fault

configurations are able to cause an isolated impact on fairness. Table 3 presents the top-

5 fault configurations with the highest difference in the TPRs of privileged and unprivileged

groups for each face detection service. Each column of the table describes the TPR difference

for a fault configuration (e.g., SNOISE with s = 5) in a service.

We observe that a few particular fault configurations are able to cause an impact on

fairness, as measured by the TPR difference. The CONT, SNOW, and FOG faults appeared on

the top-5 for the three face detection services. When injected with the parameter s between 3

and 5, the CONT fault resulted on a TPR difference of -10% (Google Cloud) up to -34% (Azure).

Similarly, the SNOW fault resulted on a difference of 6% (Google Cloud), when s = 1, up to

-21% (Azure), when s = 3. The FOG fault resulted on the same TPR difference of 8% for AWS

and Google Cloud but at different values of the s parameter: 4 and 5, respectively. However,

the FOG fault resulted in a far higher TPR difference of -0.25% when s = 4 on Azure.

We also observe that the GNOISE and SNOISE faults appeared on the top-5 highest

TPR differences for AWS and Azure. For AWS, we observe a difference of -14% and -18% for

GNOISE and SNOISE when s = 5, respectively. For Azure, we see a similar TPR difference of

-19%, but a far higher difference for GNOISE: -34% when s = 5. In fact, we can notice that
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the TPR differences for Azure’s face detection service are significantly higher than the ones

observed for AWS and Google Cloud. Moreover, although the results in Table 3 show that

fairness can be affected in certain scenarios, it is worth noticing that these scenarios mostly

occur at higher perturbation levels, when s > 3. In fact, that condition accounts for 73% of the

top-5 highest TPR differences.

Summary for RQ3. The fairness, in terms of the equal opportunity criteria for the sex

attribute, of the face detection services is not systematically affected by data faults. However,

under certain fault configurations, significant impacts on fairness may be observed,

specially at higher fault parameter levels. Moreover, different face detection services may

experience higher or lower levels of fairness impact.
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5 DISCUSSION

In this chapter, we further discuss our experiments’ results. More in detail, we will

discuss (i) the effect of the studied data faults at their initial parameter levels; and (ii) the role

of the k parameter in our analyses.

5.1 EFFECT OF DATA FAULTS AT INITIAL PARAMETERS

Figure 3 indicates that even at initial parameter levels, some faults can result in high

misclassification rates. Aiming to better understand the impact of the studied faults at initial

parameter levels, we perform a complementary analysis on the misclassification rates of the

services studied for RQ1 and RQ2. Figure 5 presents the average misclassification rates of the

CV services when data faults are set at their initial parameter levels (i.e., f = 1 for BRI and

CHR, and s = 1 for the remaining faults).

Figure 5 – The average misclassification rates of the computer vision services when data faults
are set at their initial parameter levels
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Source: Produced by the authors

We observe that three services, AWS’s object detection and Google’s object and text

detection services, reached misclassification rates above 30% at initial parameter levels.

Google’s text detection service, the most extreme case, reached a 58% misclassification

rate. On the other hand, the domain-specific services are significantly less affected at initial

parameter levels. For instance, the three domain-specific services presented the three lowest

misclassification rates at initial parameter levels. It is worth noticing though that all services

are affected to some degree at initial parameter levels. In fact, 7 out of 8 services reached
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misclassification rates above 10%. These results indicate that, even when perturbations are

small, data faults can affect the reliability of the studied CV services.

5.2 THE ROLE OF K

Many works in the adversarial examples field have relied on the top-1 misclassification

to present their results (LI et al., 2019; HENDRYCKS; DIETTERICH, 2019; NARODYTSKA;

KASIVISWANATHAN, 2016). During our experiments, we encountered many cases where an

injected fault caused a reduction in the confidence level of the top prediction, moving it one

place down and thus resulting in misclassification. Although this shows that the fault indeed

caused an impact, this impact would be less severe if the top few labels were used by the

application relying on the affected service. That is the case of services that naturally return

many predicted labels, like the object and text detection services.

Figure 6 – The average misclassification rates of the object detection and text detection
services
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Notes: Misclassification rates obtained when k varies in the [1,10] interval

Aiming to analyze the role of k when assessing the reliability of a CV service, we

compute the average misclassification rate for a service, as presented in the last row of Table 2,

for the selected object detection and text detection services. In this analysis, we follow the

same methodology used to answer RQ1, but now we vary k in the [1,10] interval. Figure 6

presents the results of that analysis. We observe that, for the object detection services, the

average misclassification rate decreases as the value of k increases. We also notice that, even

at k = 10, the object detection services from AWS and Google Cloud were still consistently

affected by the faults, as evidenced by misclassification rates higher than 20%. Moreover,
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Azure’s object detection service presented the largest reduction in misclassification rate,

reaching 9% at k = 10.

On the other hand, the misclassification rates for the text detection services were not

affected by the value of k. By analyzing the predictions from these two services, we notice that

this occurs because the injected faults caused text to be incorrectly detected (i.e., a character

was recognized wrongly) or no longer detected at all, instead of pushing predictions down.

Unlike object detection services, the predictions of text detection services are not predefined.

Therefore, increasing the value of k does not affect these scenarios. These results on the role of

the k parameter suggest that for services that output multiple predefined labels per prediction

(e.g., object detection), relying on more than only the top predicted label might increase

reliability.
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6 IMPLICATIONS

We present the implications of our study, both in terms of the developers (i.e., the

clients of the cloud services) and the cloud providers, as follows.

6.1 TO DEVELOPERS

The obtained results indicate that the studied faults consistently impact the reliability

of computer vision cloud services from three major providers. Therefore, developers consid-

ering using these services to power computer vision applications should take into account

the reliability of such services when exposed to faults. However, it may be difficult for regular

developers to assess how likely it is for some of the studied faults to occur (e.g., Gaussian

blur (GBLUR), Chromatic Aberration (CHR)) in the environment their CV applications will be

deployed on. On the other hand, some of the studied faults can be easily mapped to different

deployment environments and, thus, should be considered by developers when choosing

which CV service to use. For instance, applications receiving image or video input from

outdoor cameras will likely be exposed to the climate condition faults studied and variations

in Brightness (BRI). Similarly, applications tracking moving targets may be exposed to Motion

Blur (MBLUR) or Zoom Blur (ZBLUR).

Moreover, our results indicate that significant differences in reliability exist across

services performing the same computer vision task (e.g., object detection, violence detection)

but from different providers. Such a finding indicates that the reliability of services can

be important in deciding which provider would power a CV application. Furthermore, the

obtained levels of reliability in our experiments indicate that general-purpose services (i.e.,

object detection, text detection) are less reliable than domain-specific services (i.e., celebrity

detection, violence detection). Such a result suggests that developers planning on building CV

applications that rely on general-purpose services should be more cautious about addressing

the effects of data faults on the reliability of their applications.

Additionally, some data faults (i.e., ZBLUR, SNOW, SNOISE, CONT, and GNOISE)

presented a higher effect on the reliability of the studied CV services, consistently affecting

even the more reliable services overall. Conversely, other faults (i.e., BRI, PIX, COND, and

GRAY) resulted in little effect on the reliability of such services. Therefore, developers may

decide to give more priority to reliability risks if they know high-effect faults are more likely

to occur on their applications. Finally, the fairness of the computer vision services does not

seem to be affected by data faults in our experiments. However, this result should not be

generalized, as it was obtained by evaluating a single sensitive attribute, sex, in face detection

services from three providers.
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6.2 TO CLOUD PROVIDERS

Since the obtained results indicate that the studied faults consistently impact the

reliability of the CV services, the providers of such services may use our results to assess and

possibly improve the reliability of their services. Remarkably, the differences in reliability

across providers may indicate that some providers could be less impacted by data faults than

how they currently are. Additionally, as our results suggest that the services can be significantly

impacted even at low perturbation levels, providers may want to improve their services to

be more reliable when facing small perturbations. Furthermore, our results on the faults

that pose the most and the most negligible impact on the studied services may provide the

development teams from the cloud providers with a direction on how to improve the overall

reliability of their services.

Finally, the indication that fairness does not seem to be affected by data faults in

our experiments should not be generalized, as the underlying analyses considered only a

single sensitive attribute. In this context, both the developers and the cloud providers would

undoubtedly benefit from more fine-grained analyses performed by the providers of the

effect of data faults on fairness, potentially improving the confidence in the fairness of the CV

services when exposed to data faults.



39

7 THREATS TO VALIDITY

We discuss the threats to the study validity (WOHLIN et al., 2012), with the respective

actions to mitigate them, as follows.

7.1 CONSTRUCT AND INTERNAL VALIDITY

The data faults employed in our study and their parameters may not fully represent

the faults that systems that rely on computer vision services can experience. To mitigate

this threat, we selected faults that can occur in real-life computer vision applications, like

autonomous driving (CECCARELLI; SECCI, 2022; CARLSON et al., 2018), and have been used

in related studies (HENDRYCKS; DIETTERICH, 2019; MICHAELIS et al., 2020; CECCARELLI;

SECCI, 2022; CARLSON et al., 2018).

Regarding the fairness analyses, we employed only a single sensitive feature, sex. Thus,

the results of our fairness analyses could differ for other sensitive features, like race. Moreover,

only a single fairness criterion, equal opportunity, was employed in our analyses. Therefore,

as shown in the work of Verma and Rubin (VERMA; RUBIN, 2018), other fairness criteria could

have deemed a cloud service as unfair rather than fair.

Furthermore, we did not employ a large number of images per dataset in our

experiments due to the overhead and cost related to using CV services. However, we sampled

a limited number of instances from carefully selected datasets previously used in computer

vision research (see Section 4.1).

7.2 CONCLUSION AND EXTERNAL VALIDITY

We carefully performed our descriptive and statistical analyses. All authors validated

every analysis in this paper, and both the code and the data from our study are publicly

available at <https://github.com/filipefalcaos/mlaas-fi>. Regarding the generality of our

findings, we only selected CV services for our fault injection experiments. Although we have

analyzed a wide range of computer vision services, our results might not hold for different

computer vision tasks (e.g., describing images with human-readable language (WANG;

ZHANG; YU, 2020)). They also might not hold for different input types for CV tasks (i.e.,

videos instead of images) or other ML domains (e.g., natural language processing, time series

analysis).

https://github.com/filipefalcaos/mlaas-fi
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8 RELATED WORK

Early works mainly studied machine learning applications’ security and robustness in

a white-box setting (PAPERNOT et al., 2016; GOODFELLOW; SHLENS; SZEGEDY, 2014; YUAN

et al., 2019; ZHANG; LI, 2019; MOOSAVI-DEZFOOLI; FAWZI; FROSSARD, 2016). However,

the number of studies working on a black-box setting, which includes ML services, has been

increasing, given the difficulty of performing a white-box attack in the real world.

8.1 BLACK-BOX ADVERSARIAL ATTACKS

In Narodytska and Kasiviswanathan (NARODYTSKA; KASIVISWANATHAN, 2016), the

authors propose a black-box elementary adversarial attack based on the idea of greedy local

search. Their results show that even simple attacks in a black-box setting can fool neural

networks. In Papernot et al. (PAPERNOT et al., 2017), the authors introduced a strategy

of training an adversary to replace a target Deep Neural Network (DNN), using inputs

crafted by the adversary and labelled by the target DNN. They tested their approach against

baseline models and models trained by the authors on AWS and Google Cloud, yielding high

misclassification rates. The work of Ilyas et al. (ILYAS et al., 2018) proposes new approaches to

overcome the challenge of limited queries and information on black-box attacks. The authors

show the effectiveness of their attacks by targeting Google Cloud’s Vision API. The works

of Michaelis et al. (MICHAELIS et al., 2020), and Hendrycks and Dietterich (HENDRYCKS;

DIETTERICH, 2019) show that common image perturbations, like the ones investigated in

our work, can affect the performance of computer vision models.

8.2 ATTACKING MACHINE LEARNING SERVICES

Other studies focus specifically on attacking machine learning services with adversarial

examples (LI et al., 2019; GOODMAN, 2020; TRAMÈR et al., 2016; WANG; GONG, 2018). Tramer

et al. (TRAMÈR et al., 2016) presented a model extraction attack that attempts to steal the

parameters of ML models deployed as services. Similarly, Wang and Gong (WANG; GONG,

2018) proposed an approach to stealing hyperparameters of models accessible as services.

They empirically demonstrated the ability of their attack to steal the target hyperparameters

with a small margin of error. Li et al. (LI et al., 2019) assessed the robustness of three types of

cloud-based detectors from five different providers with four black-box attack methods. The

proposed attacks leverage semantic segmentation, and the results of their experiments show

high attack success rates. Goodman (GOODMAN, 2020) proposed a novel attack method to

achieve a high bypass rate with a limited number of queries. The author also presents the
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results of an initial empirical study of the effectiveness of the proposed approach, which

achieved over 90% of success rate.

8.3 FAULTS IN MACHINE LEARNING SYSTEMS

Some previous studies focus on the role of data faults in machine learning sys-

tems (CECCARELLI; SECCI, 2022; JHA et al., 2018; JHA et al., 2019; NURMINEN et al., 2019;

MA et al., 2018). Ceccarelli and Secci (CECCARELLI; SECCI, 2022) assessed the effect of

RGB camera failures on the behaviour of AI/ML applications for autonomous driving. Their

results show that camera failures have a relevant impact on object detectors, and even faults

that cause small perturbations may alter the system’s decisions. Similarly, other works have

proposed fault injection frameworks for ML systems. Jha et al. (JHA et al., 2018; JHA et al.,

2019) presents fault injection frameworks to assess the reliability of autonomous vehicles.

Among the faults considered in their studies are noise models and weather conditions used

in our work. In Nurminen et al. (NURMINEN et al., 2019), the authors proposed a framework

for injecting data faults to test machine learning systems. DeepMutation (MA et al., 2018) also

applies a similar method by generating artificial faults, both in the data and in the model of a

deep learning system, then changing the original system (i.e., applying a mutation).

8.4 FAIRNESS

Issues regarding the fairness of machine learning systems have been gaining more

importance over the last few years (BAROCAS; HARDT; NARAYANAN, 2019). The work

of Buolamwini and Gebru (BUOLAMWINI; GEBRU, 2018) shows that commercial gender

classification tools presented a significant disparity in error rates of darker-skinned females

and lighter-skinned males. De Vries et al. (VRIES et al., 2019) found a considerable disparity

between countries in the accuracy of object detection models. Images from lower-income

countries experienced higher error rates because objects may look very different in different

countries. Concerning adversarial examples and fairness, Delobelle et al. (DELOBELLE et

al., 2021) and Zhang and Sang (ZHANG; SANG, 2020) have proposed the use of adversarial

examples to improve the fairness of machine learning models. Xu et al. (XU et al., 2021) show

in their work that adversarial training, a common defence against adversarial examples, can

introduce severe disparity between different data groups. The authors then proposed a new

framework to perform adversarial training while avoiding unfairness.

8.5 OUR CONTRIBUTIONS

Our study differs from prior work by considering the effects of common data faults

in CV services that may arise from applications that depend on these services instead

of proposing target attacks. Also, different from most studies that cover CV services, we
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perform our study on a more extensive set of services, covering both general-purpose

services (i.e., object detection and text detection) as well as domain-specific services (i.e.,

celebrity detection, violence detection). We also compare our results across services and cloud

providers. Moreover, we introduce a fairness analysis in face recognition services concerning

data faults. To the best of our knowledge, this is the first work to assess the effect of data faults

on the fairness of CV services.
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9 CONCLUSION

This work investigated the reliability of commercial computer vision services by

injecting common data faults into their input data. We extensively analyzed 11 computer

vision services provided by three major cloud providers and also implemented 14 image faults

that could arise from camera failures, network issues, or application bugs. First, we analyzed

to what extent CV services can tolerate common data faults. Then, we evaluated the effect of

specific faults, or groups of faults, in CV services. Finally, we introduced an extensive analysis

of the impact of data faults on the fairness of computer vision services.

Our results indicate that not only do the injected faults consistently impact the

reliability of CV services, but services with similar capabilities from different providers can

present different degrees of reliability. Results also indicate that general-purpose services,

like object detection and text detection, appear less reliable than domain-specific services,

as highlighted by their lower levels of reliability obtained in our experiments. Moreover, we

found that some faults tend to have a higher impact on the reliability of CV services. On the

other hand, results indicate that the fairness of those services is not consistently impacted.

In future work, we plan to work on mechanisms to mitigate the effects of data faults

on ML services. Developers relying on such services would likely benefit from having easily

accessible tools to reduce the reliability risks presented in this paper. Hopefully, our work will

help both application developers relying on CV services to make more informed decisions

and cloud providers designing more robust services.
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