UNIVERSIDADE FEDERAL DE ALAGOAS
INSTITUTO DE COMPUTACAO
PROGRAMA DE POS GRADUACAO EM INFORMATICA

FRANCISCO DALTON BARBOSA DIAS

E uma Excecio Testar Comportamento Excepcional? Uma Avaliacao Empirica

Utilizando Testes Automatizados em Java

Maceid-AL
Maio de 2020

FRANCISCO DALTON BARBOSA DIAS

E uma Exceciio Testar Comportamento Excepcional? Uma Avaliacio Empirica
Utilizando Testes Automatizados em Java

Dissertacdo apresentada como requisito parcial
para obtencao do grau de Mestre pelo Programa
de P6s-Graduacdo em Informatica do Instituto
de Computacdo da Universidade Federal de
Alagoas.

Supervisor: Marcio de Medeiros Ribeiro

Maceid-AL

Maio de 2020

Catalogagao na fonte
Universidade Federal de Alagoas
Biblioteca Central

Divisao de Tratamento Técnico
Bibliotecario: Marcelino de Carvalho Freitas Neto — CRB-4 - 1767

D541e Dias, Francisco Dalton Barbosa.
E uma excegdo testar comportamento excepcional? : uma
avaliacdo empirica utilizando testes automatizados em java / Francisco
Dalton Barbosa Dias. — 2020.
53 f. il

Orientador: Méarcio de Medeiros Ribeiro.
Dissertagao (mestrado em Informatica) - Universidade Federal de
Alagoas. Instituto de Computagdo. Maceio, 2020.

Texto em inglés.
Bibliografia: f. 43-46.
Apéndice: f. 48-53.

1. Java (Linguagem de programagao de computador) - Comportamento
excepcional. 2. Software - Testes. 1. Titulo.

CDU: 004.43

AGRADECIMENTOS

Assim como ja fiz no passado, comeco agradeco primeiramente a Deus por continuar a
me dar forcas para continuar andando, mesmo quando cancado, para alcancar meus objetivos e,

principalmente, por permitir que eu os alcance.

Mais uma vez agradego a Isadora Tenoério, que durante meu TCC era minha namorada
e hoje € minha esposa, pela compreensdo pelos inimeros dias em que eu fui completamente
ausente enquanto eu estudava ou trabalhava em minha pesquisa, por suportar ter de ir dormir
tarde e acordar cedo por causa dos meus hordrios malucos, por toda a forga, apoio, carinho e

amor que vem me dando hé tantos anos!

Agradeco (e muito!!) ao professor e meu orientador, Marcio Ribeiro, por ter aceitado
a me ter novamente como orientando e continuado a me ajudar, mesmo quando eu ndo estava
dando motivos para isso. Por ter sido de extrema importancia durante a minha passagem pela

graduagdo e mais ainda durante a do mestrado.

Agradeco aos membros da banca que foram de extrema importincia na evolucao do meu
trabalho de pesquisa e que se dispuseram a participar deste momento tao importante na minha

vida, mesmo no meio de uma pandemia.

Ap6s quase quatro anos desde que me tornei bacharel em Ciéncia da Computagdo, posso
repetir: agradeco aos professores do IC que, acima de tudo, mostraram que sdo educadores
preocupados com seus alunos e que passaram conhecimento e sabedoria muito além do habitual

da sala de aula.

Por fim, agradeco a todos os que fazem do Instituto de Computacdo da UFAL o que ele

Obrigado!

RESUMO

Executar testes de software é uma atividade crucial para avaliar a qualidade interna de um sistema.
Durante os testes, os desenvolveres geralmente criam testes para o comportamento esperado de
uma determinada funcionalidade (e.g., o arquivo foi corretamente enviado para a nuvem?). No
entanto, pouco € conhecido se os desenvolvedores também criam testes para comportamentos
excepcionais (e.g., 0 que acontece se a conexao de rede for interrompida enquanto o arquivo é
enviado?). Para minimizar essa lacuna de conhecimento, neste trabalho nés desenhamos e execu-
tamos um estudo de método misto para entender se e até que ponto 417 projetos Java de codigo
aberto estdo testando o comportamento excepcional usando os frameworks JUnit e TestNG, e a
biblioteca Assert]. Através de uma andlise estdtica, nds descobrimos que 254 (60,91%) projetos
possuem ao menos um método de teste dedicado ao comportamento excepcional. Também des-
cobrimos que o nimero de métodos de testes para o comportamento excepcional em relagio ao
total de testes estd entre 0% e 10% em 317 (76,02%) projetos. Além disso, 239 (57,31%) projetos
testam apenas até 10% das excegdes usadas no codigo do sistema em teste—System Under Test
(SUT)—. Quando avaliamos aplicativos para dispositivos méveis, ndés observamos que, em geral,
os desenvolveres dedicam menos atenc¢ao aos testes de comportamentos excepcionais quando
comparados aos desenvolvedores de aplicacdes para desktop/servidores e multi-plataforma. Em
geral, nds encontramos mais métodos de testes cobrindo excec¢oes customizadas (as que sdo cria-
das dentro do préprio projeto) do que as excecdes padrdes disponiveis no Java Development Kit
(JDK) ou em bibliotecas de terceiros. Além disso, nds também realizamos uma analise dinamica
em um subconjunto de 39 projetos, com dados de cobertura de linha publicamente disponiveis,
para investigar se e até que ponto as suites de testes excercitam os t hrow statements encontrados
no codigo do sistema testado. Os resultados da nossa andlise dinamica indicam que as suites de
testes ndo exercitam a maioria dos t hrow statements, mesmo em projetos onde parece haver
preocupagdes relacionadas a cobertura de codigo. Nos também enriquecemos o entendimento
sobre como os desenvolvedores escrevem seus testes de comportamentos excepcionais em termos
de construgdes do JUnit, TestNG, e do Assert]. Para triangular os resultados, nds conduzimos
uma pesquisa com 66 desenvolvedores dos projetos que estudamos. Em geral, os resultados da
pesquisa confirmaram nossas descobertas. Em particular, a maioria dos participantes concordam
que os desenvolvedores frequentemente negligenciam testes de comportamentos excepcionais.
Como implicacdes, nossos nimeros podem ser importantes para alertar os desenvolvedores de

que mais esforco deve ser feito na criacao de testes para comportamentos excepcionais.

Palavras-chaves: Excecoes, Comportamento Excepcional, Testes de Software.

ABSTRACT

Software testing is a crucial activity to check the internal quality of a software. During testing,
developers often create tests for the normal behavior of a particular functionality (e.g., was this
file properly uploaded to the cloud?). However, little is known whether developers also create
tests for the exceptional behavior (e.g., what happens if the network fails during the file upload?).
To minimize this knowledge gap, in this work we designed and performed a mixed-method
study to understand whether and to what extent 417 open source Java projects are testing the
exceptional behavior using the JUnit and TestNG frameworks, and the Assert] library. Through
static analysis, we found that 254 (60.91%) projects have at least one test method dedicated to
test the exceptional behavior. We also found that the number of test methods for exceptional
behavior with respect to the total number of test methods lies between 0% and 10% in 317
(76.02%) projects. Also, 239 (57.31%) projects test only up to 10% of the used exceptions
in the System Under Test (SUT). When it comes to mobile apps, we found that, in general,
developers pay less attention to exceptional behavior tests when compared to desktop/server and
multi-platform developers. In general, we found more test methods covering custom exceptions
(the ones created in the own project) when compared to standard exceptions available in the
Java Development Kit (JDK) or in third-party libraries. Moreover, we also performed a dynamic
analysis on a subset of 39 projects, with publicly available line coverage reports, to investigate
whether and to what extent the test suites exercises the throw statements found in the SUT. The
results of the dynamic analysis indicate that the test suites do not exercise the most of throw
statements, even in projects where there seem to have concerns about code coverage. We also
enriched the understanding of how developers write their exceptional behavior tests in terms of
constructs from JUnit, TestNG, and AssertJ. To triangulate the results, we conduct a survey with
66 developers from the projects we study. In general, the survey results confirm our findings.
In particular, the majority of the respondents agrees that developers often neglect exceptional
behavior tests. As implications, our numbers might be important to alert developers that more

effort should be placed on creating tests for the exceptional behavior.

Keywords: Exceptions, Exceptional Behavior, Software Testing.

LIST OF FIGURES

Figure 1 — Dataset distributions. The white dot represents the median. 20
Figure 2 — Coverage extraCtion ProCess. v v v v v v v v v v v e e 24
Figure 3 — Ratioof NEBTM/NTM. 26
Figure 4 — Ratioof NDTE/NDUE. 26
Figure 5 — Ratios of NDUCE/NDUE and NDUSTE/NDUE. 27
Figure 6 — Ratios of NDTCE/NDTE and NDTSTE/NDTE. 28
Figure 7 — Ratios of NDTCE/NDUCE and NDTSTE/NDUSTE. 29
Figure 8 — Linecoverage ratios. o v v v v i i e 30
Figure 9 — RxJava’s throw statementsdata. 31
Figure 10 — Caffeine’s throw statementsdata. 32
Figure 11 — Throw Statement Line Coverage (NCTS/NTS). 32
Figure 12 — Coverage Ratios. 33
Figure 13 — Ratios of NCTSCE/NTSCE and NCTSSTPE/NTSSTPE. 34
Figure 14 — Number of Exception-testing Constructs. 35

Figure 15 — Number of Exception-testing Constructs found in projects up to three years old. 36

Figure 16 — Survey AnSwers. oo 36

Figure 17 — Word Cloud presenting 8 categories of the comments. 37

Table 1
Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

LIST OF TABLES

Three metrics results from our code snippets. 23
Metrics to answer RQ1. NEBTM=Number of Exceptional Behavior Test
Methods; NTM=Number of Test Methods; NDUE=Number of Distinct Used
Exceptions;, NDTE=Number of Distinct Tested Exceptions. 48
Metrics to answer RQ2. NDUCE=Number of Distinct Used Custom Excep-
tions; NDUSTE=Number of Distinct Used Standard/Third-party Exceptions;
NDUE=Number of Distinct Used Exceptions. 49
Metrics to answer RQ2 (continued). NDTCE=Number of Distinct Tested
Custom Exceptions; NDTSTE=Number of Distinct Tested Standard/Third-
party Exceptions; NDTE=Number of Distinct Tested Exceptions. 50
Metrics to answer RQ2 (continued). NDUCE=Number of Distinct Used Cus-
tom Exceptions; NDUSTE=Number of Distinct Used Standard/Third-party
Exceptions; NDUE=Number of Distinct Used Exceptions; NDTCE=Number
of Distinct Tested Custom Exceptions; NDTSTE =Number of Distinct Tested
Standard/Third-party Exceptions;, NDTE=Number of Distinct Tested Exceptions. 51
Metrics to answer RQ3. NCTS=Number of Covered Throw Statement Lines;
NTS=Number of Throw Statement Lines. 52
Metrics to answer RQ4. NCTSCE=Number of Covered Throw Statement
Lines of Custom Exceptions; NTSCE=Number of Throw Statement Lines of
Custom Exceptions; NCTPSSTPE=Number of Covered Throw Statement
Lines of Standard/Third-party Exceptions;, NTSSTPE=Number of Throw
Statement Lines of Standard/Third-party Exceptions. 53

21
2.2
221
2.2.2
2.23

4.1
4.2
4.3
44
44.1
4.4.2
4.5

5.1
5.2
5.3
54

CONTENTS

INTRODUCTIONttt i et e ettt ee e e o s an 10
BACKGROUND ittt it e it i et e e an 13
Java Exceptional Behavior 13
Java Automated Testing Frameworks and Libraries 13
Exception-handling Constructs 15
Exception-testing Constructs 15
Code Coverage i 16
MOTIVATINGSCENARIO o i i i it i e e 17
EMPIRICAL STUDY i ittt it ittt et e e s an 18
Goal and Research Questions 18
Studied Projects 19
Collected Metrics 20
Tool Description and Usage Scenarios 21
Static Analysis 21
Dynamic Analysis 23
SurveyData 24
RESULTS AND DISCUSSION i it ittt ettt e et e o s as 25
Static Analysis 25
Dynamic Analysis L 30
Exception-testing Constructs Usage Statistics 34
Survey e e 35
THREATSTO VALIDITY i ittt i e i e e e e 38
RELATED WORK i it et et ettt e e e e s as 39
CONCLUDING REMARKS it 41
BIBLIOGRAPHY it ittt it i ee e an 43

APPENDIX A -TABLES 47

10

1 INTRODUCTION

Exception handling techniques are important in modern object-oriented software devel-
opment. With exceptions, it is possible to provide greater reliability in the systems’ execution
flow, as they allow abnormal behavior to be detected, reported, handled, and corrected, when
possible [2, 37, 6]. Hence, there are several studies that try to assess the quality of exception
handling code [6, 4], development patterns [28, 33, 26, 9], or best practices and usage scenar-
ios [5, 10, 29, 22]. These studies helped researchers and practitioners to better understand and

shape novel exception handling constructs, techniques, and tools.

In this context, exceptional behavior scenarios should be tested in order to guarantee that
an eventual anomalous behavior will be detected or handled accordingly. Unfortunately, previous
studies have provided initial evidences—based on a study with 10 projects—that software
developers tend to neglect exceptional behavior testing [16, 3]. This finding is particularly
worrying, since the absence of tests aimed to validate the launching and handling of exceptions
can compromise precisely their core feature: the reliability expected to be obtained from their
use [23, 10, 9]. In fact, studies provide evidences that the majority of crashes in Android Apps are
related to exceptions defined in the Android Framework [14]. Thus, it is possible that a software
system presents failures that could be otherwise avoided through more rigorous testing that
handle exceptional behavior [19, 3], an activity that we call throughout this work as “exceptional

behavior testing.”

Some natural questions that one may raise in this context are: How common is for devel-
opers to test the exceptional behavior? Are these tests more common in desktop/server projects
when compared to mobile projects? Do developers prioritize testing custom exceptions (the
ones created in the own project) or standard/third-party exceptions (from the Java development
kit and third-party libraries)? Unfortunately, despite the vast number of studies that dealt with
exception-handling constructs [5, 10, 28, 33, 29, 22], the literature is not particularly rich when
it comes to empirical studies that shed evidence on whether developers create tests for the

exceptional behavior of their software systems.

To better understand the landscape of exceptional behavior testing in practice, in this
work we present a mixed-method study consisting of: (1) an empirical investigation based on the
static analysis of 417 projects and dynamic analysis of 39 projects to understand whether and to
what extent developers actually test the exceptional behavior; and (2) a survey with 66 developers
from these projects to triangulate our quantitative results. We employed several criteria for
selecting our corpus of projects, such as the use of JUnit,' TestNG,? or Assert],> and the use of

exceptions. We sorted these projects by popularity, measured in terms of the number of stars (as

' https://junit.org/junit5/

2 nttps://testng.org/doc/
https://assertj.github.io/

11

of October 2019). For each project, we selected and downloaded the latest version available. We
categorized these projects using two dimensions: the platforms (i.e., desktop/server, mobile, or
multi-platform) and the domains (i.e., framework, library, or tool). We then created a tool that
collects metrics related to exception-handling constructs [11] (i.e., throw statements, throws
clauses, and cat ch blocks) in the System Under Test (SUT), and exceptions definitions (custom
or standard/third-party). Also, we collected metrics related to exception-testing constructs (e.g.,
the expected attribute of the @Test annotation, fail call right before a catch block) of

the JUnit and TestNG frameworks, and the Assert] library, among many other metrics.

The results of our static analysis [8] indicates that the majority of the studied projects—
254 out of 417 (60.91%)—has at least one test method to deal with the exceptional behavior.
However, we found that the number of test methods for exceptional behavior with respect to
the total number of test methods lies between 0% and 10% in 317 (76.02%) projects. Also, 239
(57.31%) projects test only up to 10% of the used exceptions in the SUT. Moreover, we found
that mobile developers tend to create less exceptional behavior test methods than developers of
the other two platforms. When considering the projects’ domains, libraries developers create
more exceptional behavior test methods than developers of the other domains. We also observed
that developers often create more exceptional behavior test methods that cover custom exceptions
in 68.12% of the projects than standard/third party exceptions. This is particularly the case of
desktop/server (70.23%) and multi-platform (73.91%) projects.

Furthermore, we carried out a dynamic analysis on a subset of 39 projects, from our
417 studied projects, with publicly available line coverage reports. To do so, our tool automati-
cally retrieved line coverage data publicly available on Coveralls* and Codecov® web services.
Unfortunately, the static analysis limited our results to understand only how many of the used
exceptions are tested (e.g., Does the test suite exercise the Runt imeException?), and did
not allowed us to identify whether and to what extent the throw statements spread throughout
the SUT are actually exercised by the tests (e.g., Does the test suite exercise every throw new
RuntimeException statement?). The results of our dynamic analysis showed that 29 out of
39 (74.36%) projects report Line Coverage ratios greater than or equal to 60%. Nevertheless, only
six (15.38%) projects achieve a coverage of throw statement lines greater than or equal to 60%.
Our dynamic analysis also provided additional evidence that the custom exceptions have better
coverage than the standard/third-party exceptions, reinforcing our static analysis results [8]. In
addition, we noticed that a larger percentage of multi-platform projects and libraries have higher
numbers to Throw Statement Line Coverage ratios. These results are also in accordance with our
static analysis results [8]. Last but not least, in this work we also enrich the understanding of
how developers write their exceptional behavior tests in terms of constructs from JUnit, TestNG,
and Assert]. We provide statistics regarding the usage of the constructs. We notice that the newer

constructs designed to test the exceptional behavior created over the last years should be better

4
5

https://coveralls.io/
https://codecov.io/

12

spread throughout the developers community so that developers can make the task of testing

exceptions less difficult and more efficient.

In this work, we have the following scope: we focus on Java automated tests written using
JUnit, TestNG, or Assert]; our tool collects metrics statically, and we retrieve publicly
available line coverage data from online tools to perform our dynamic analysis; we collect
all the exceptions used in the SUT (checked and unchecked). All projects we use in this

study are open source.

13

2 BACKGROUND

2.1 Java Exceptional Behavior

Exception handling techniques are important in modern object-oriented software de-
velopment. Actually, it is present in a large number of programming languages [18, 6]. With
exceptions, it is possible to provide greater reliability in the systems’ execution flow, as they allow

abnormal behavior to be detected, reported, handled, and corrected, when possible [2, 37, 6].

In Java, the whole exception handling mechanisms are designed to attend a class hierarchy
capable of representing different abnormal behaviors. Thus, all exceptions have the Throwable

superclass as an ancestor. This hierarchy allows the creation of three kinds of exceptions [18]:

* Unchecked Exceptions: These exceptions have the superclass Runt imeException
as an ancestor. As this type only occurs at runtime, they can not be checked at compilation

time. Moreover, the developers are not obligated to handle this kind of exception;

* Errors: Are used by the Java Virtual Machine (JVM) to represent serious errors that can
not be recovered. The class Error and all its subclasses are also classified as unchecked

exceptions;

* Checked Exceptions: These exceptions have neither Runt imeExceptionnor Error
class as an ancestor. This kind of exception is checked at compile time and the developers

must handle them.

It is also possible to classify exceptions by the place where they are defined [25].:

* Custom Exceptions The ones created in the own project;
» Standard Exceptions: Any exception defined in the Java Development Kit (JDK);

* Third-party Exceptions: Exceptions that belongs to neither the standard exceptions nor

the custom exceptions.

2.2 Java Automated Testing Frameworks and Libraries

Testing frameworks and libraries are designed mainly to simplify the testing tasks. They
usually provide mechanisms to quickly create and reproduce from unit tests to integration tests,
among other features. In this work, we investigate tests written in two frameworks (i.e., JUnit
and TestNG), and one library (i.e., AssertJ).

14

e JUnit:! It is the most well-known Java automated unit testing framework. With JUnit, it is

possible to perform from unit tests to integration tests, among other types of tests. JUnit

makes extensive use of annotations to facilitate the creation and specification of complex

tests. Also, it provides features such as:

JUnit is an open source framework, which is used for writing and running tests.
Provides annotations to identify test methods.

Provides assertions for testing expected results.

Provides test runners for running tests.

JUnit tests allow you to write codes faster, which increases quality.

JUnit is elegantly simple. It is less complex and takes less time.

JUnit tests can be run automatically and they check their own results and provide
immediate feedback. There’s no need to manually comb through a report of test

results.

JUnit tests can be organized into test suites containing test cases and even other test

suites.

JUnit shows test progress in a bar that is green if the test is running smoothly, and it

turns red when a test fails.

o TestNG:? It is designed to cover all categories of tests: unit, functional, end-to-end,

integration, etc. Also, it is similar to the JUnit framework, but it claims to have some

functionalities that make it more powerful and easier to use, such as:

Annotations.

Run your tests in arbitrarily big thread pools with various policies available (all

methods in their own thread, one thread per test class,

etc...).

Test that your code is multithread safe.

Flexible test configuration.

Support for data-driven testing (with @DataProvider).

Support for parameters.

Powerful execution model (no more TestSuite).

Supported by a variety of tools and plug-ins (Eclipse, IDEA, Maven, etc...).
Embeds BeanShell for further flexibility.

|
2

https://www.tutorialspoint.com/junit/junit_overview.htm
https://testng.org/doc/

15

— Default JDK functions for runtime and logging (no dependencies).

— Dependent methods for application server testing.

* Assert]J:? It can be used with both JUnit and TestNG. The focus of this library is not to
provide a testing infrastructure, but to provide a rich set of assertions, truly helpful error
messages, and improvements to test code readability. This library provides a rich set of

assertions to test the exceptional behavior and for some of the most used libraries, such as:

— A core module to provide assertions for JDK types (String, Iterable, Stream, Path,
File, Map...)

A Guava module to provide assertions for Guava types (Multimap, Optional. . .)

A Joda Time module to provide assertions for Joda Time types (DateTime, Local-
DateTime)

A Neo4J module to provide assertions for Neo4J types (Path, Node, Relationship. . .)

A DB module to provide assertions for relational database types (Table, Row, Col-

umn...)

— A Swing module provides a simple and intuitive API for functional testing of Swing

user interfaces

2.2.1 Exception-handling Constructs

The exception-handling constructs are responsible for changing the normal control flow
to an alternative flow when an exceptional event occurs. Then, they are also responsible for

returning the system to the normal flow after the event has been treated.

In Java, an exception is raised by the t hrow statement and handled by a cat ch block.
If it is not caught by any catch block, then the throws clause may propagate the exception
along the call chain until it is caught by a catch block or until it reaches the main method,

where the execution is abnormally terminated.

2.2.2 [Exception-testing Constructs

Since the exceptional behavior has some differences in comparison to the normal behavior,
the testing frameworks and libraries have specific constructs designed to test the exceptional
flow properly. For example, the JUnit have the expected attribute of the @Test annotation.
With this attribute, the developer specifies that an exception should be thrown somewhere in the

annotated test method.

3 nttps://assertj.github.io/doc/

16

2.2.3 Code Coverage

Code Coverage is a popular software engineering technique that allows developers to
track the quality of the test suite. This technique helps to determine how much of the System
Under Test (SUT) the test suite exercises [24, 17, 39, 20, 12]. For example, it is possible
to measure coverage by analyzing the number of exercised lines of code, methods, classes,
statements, branches, and so forth [39, 24, 12, 39, 20]. There is no consensus as to which metric
is the best one to use, but it is accepted that each one can provide different information with
different utilities. Also, there is no consensus about the ideal coverage ratio value [20, 24].
Nevertheless, the maintainers of the EMMA tool*—a free Java code coverage tool— suggest in
their FAQ that the “Practice shows that coverage percentages below, say, 60-70% correspond
to poorly tested software” [12]. Even though, there are suggestions that a piece of software
should only be released when it reaches at least 80% [12, 17] or 85% [36, 20] of code coverage.
Some web services provide ways to easily view the coverage of each of the classes in a project.
These web services present the entire file structure and the number of executions of each line. In
addition, they allow the developer to configure the use of different coverage metrics. Two of the

most important code coverage web services are: Coveralls® and Codecov.®

4
5
6

http://emma.sourceforge.net
https://coveralls.io/
https://codecov.io/

17

3 MOTIVATING SCENARIO

We refer to “exceptional behavior testing” as test methods that expect exceptions to be
raised. We illustrate an example in Listing 3.1. The test passes in case I1legalArgument—
Exception is raised.

1 @Test (expected = IllegalArgumentException.class)
public void negative_throws () {

2
3 new Takelterable<> (Interval.oneTo(5), -1);
4

}

Listing 3.1 — Exceptional behavior test method example.

Many studies on exceptions and error handling have been developed along the years [38,
3, 16]. In this context, although the goal of these works is not to analyze whether or how
developers test the exceptional behavior, they suggest that testing the exceptional behavior is not
quite common. For instance, Goffi et al. [16] claimed that developers “do not pay equal attention
to testing exceptional behavior.” Similarly, Bernardo et al. [3] claimed that “manually-written

test suites tend to neglect exceptional behavior.”

Listing 3.1 was extracted from the eclipse-collections project.! To evaluate the excep-
tional behavior, this particular test method relies on the expected attribute of the @Test
annotation (Line 1) provided by JUnit. This project has 1,726 out of 10,362 test methods
(16.66%) that evaluate the exceptional behavior. However, there are projects that place less effort
in evaluating the exceptional behavior. For example, despite the similar number of test methods,
the ghidra framework? (a software reverse engineering framework created and maintained by
the National Security Agency) has 348 out of 10,976 test methods (3.17%) aimed to evaluate
the exceptional behavior. Moreover, a single exception can be thrown from multiple lines in the

code, which makes us wonder how many of these lines are actually executed by the test suites.

Given this scenario, although existing works [3, 16] claim that developers neglect excep-
tional behavior testing, they did not provide an in-depth investigation on whether and to what
extent developers test the exceptional behavior. In this work, we perform both static and dynamic
analysis of the projects, we consider a much higher number of projects (417 versus 10 [16]). We
also identify differences among platforms and domains, correlate the results with repositories’

characteristics, and triangulate our results with a survey with 66 participants.

1
2

https://github.com/eclipse/eclipse—-collections
https://github.com/NationalSecurityAgency/ghidra

18

4 EMPIRICAL STUDY

In this chapter we present our empirical study. First, we introduce the research questions
(Section 4.1). Then we present the studied projects and the criteria used to select them (Sec-
tion 4.2). Afterwards, we detail the metrics we use to answer our research questions (Section 4.3).
Also, we describe our tool used to collect and analyze data (Section 4.4). Finally, we explain the

procedures we use to perform our survey (Section 4.5).

4.1 Goal and Research Questions

The goal of our study consists of statically and dynamically analyzing open source
projects for the purpose of assessing whether and to what extent developers test the exceptional

behavior from the point of view of software developers in the context of open source projects.

We intend to answer the following research questions:

* RQ1: To what extent do developers test the exceptional behavior with automated tests?

* RQ2: Do the test suites test more distinct custom exceptions or distinct standard/third-party

exceptions?
* RQ3: To what extent the test suites cover throw statement lines?

* RQ4: Do the test suites cover more throw statement lines of custom exceptions or

standard/third-party exceptions?

* RQS5: How do developers test the exceptional behavior in terms of exception-testing

constructs?

* RQ6: How do developers perceive the exceptional behavior testing?

Answering RQ1 is important to understand if developers intentionally create exceptional
behavior tests for the exceptions found in the SUT, and if it is possible to notice different results
when comparing distinct software platforms and domains. Answering RQ2 is important to verify
if developers pay equal attention to the exceptional behavior regardless of the source of the
exception (i.e., custom or standard/third-party). Answering RQ3 is important to complement
RQ1 and helps us to better understand if developers are concerned about testing the multiple
throw statements spread throughout the SUT. Answering RQ4 complements RQ2 in terms
of a dynamic analysis. Answering RQS and RQ6 is important to comprehend how developers
perceive the exceptional behavior testing and to raise developers’ practices, thoughts, and
opinions. This might help researchers and practitioners with developing processes and tools to

focus on exceptional behavior tests.

19

4.2 Studied Projects

To select the projects for our study, we used the GitHub API to query and find repositories.
We focused on frameworks, libraries, and tools written in Java. Then, we sorted the resulting list of
projects by the number of stars. As an example, to find libraries we executed the following query:
language: java sort: stars library. Asa stop criteria, we arbitrarily limited our
script to fetch 600 repositories. However, some of these projects do not exhibit the characteristics

we are interested. We then excluded repositories that do not meet the following criteria:

1. Has at least one custom, standard, or third-party exception being used in exception-
handling constructs (i.e., throws clauses, throw statements, or on catch blocks) in
the SUT;

2. Has at least one test method using JUnit, TestNG, or Assert].

Criterion (1) indicates that the project under evaluation makes use of exceptions and,
therefore, developers may have a reason to implement tests for exceptional behavior. Criterion
(2) was designed to eliminate projects that do not do any automated testing using JUnit, TestNG,
or Assert]. Criterion (1) excluded 162 projects while Criterion (2) excluded 21 more projects.

Thus, the empirical study we report in this article considers 417 projects.

In the next step, we classified each project considering the platform. In particular, we
focused on desktop/server (exclusively), mobile (exclusively), and multi-platform. To perform
this classification, we rely on the javalibs.com website. Given a project, this website
returns—based on maven dependencies—whether the project is used by mobile and non-mobile
projects. For example, when considering the RxJava' project, the website reports that 96% of the
projects that use RxJava are non-Android projects and 4% of the projects that use RxJava are
Android projects. Therefore, we classify RxJava as multi-platform. Afterwards, two researchers
manually analyzed each project to confirm the website classification. For the projects that are

not available in the website, we rely exclusively on our manual classification.

Some of the projects we use in our empirical study include dropwizard, antlr4, eclipse-
collections, docx4j, netty (classified as desktop/server); bento, hover, picasso, zxing-android-
embedded, joda-time-android, tinker (classified as mobile); and selenium, jacoco, guava, junit4,
google-cloud-java, google-maps-services-java, mockito, soot, spring-boot, spring-framework
(classified as multi-platform). In summary, our dataset has 202 (48.44%) desktop/server projects
(78 frameworks, 34 libraries, and 90 tools); 152 (36.45%) mobile projects (50 frameworks, 60
libraries, and 42 tools); and 63 (15.11%) multi-platform projects (22 frameworks, 35 libraries,
and six tools). Figure 1 illustrates distributions regarding the repositories ages, repository activity,

LOC, stars, and contributors of the projects.

' https://github.com/ReactiveX/RxJava

4.3

20

NOB
S o
w
S
S
)

)
=)
3 38
N
S
3
o

Age (months
-
o o
Activity (Jul to Sep)
5
o
log10(LOC)
w S

20 !
0

l i i l i i i i i
Desktop/ServerMobile Multi-platforn Desktop/ServerMobile Multi-platforn Desktop/Server Mobile Multi-platforn

(a) Ages. (b) Commits per month. (c) LOC.
40k 400
0K 300
& 20k g 200
S
10k 100 !
0 0
Desk(o;;/SewerMoLile Mulli-p‘laﬂom Desk(o;/sawerMo‘bile Mulli»p‘la(!orrv
(d) Stars. (e) Contributors.

Figure 1 — Dataset distributions. The white dot represents the median.

Collected Metrics

. Number of Distinct Used Exceptions (NDUE): Total number of distinct exceptions found

in throw statements, throws clauses, and cat ch blocks in the SUT;

. Number of Distinct Used Custom Exceptions (NDUCE): Total number of distinct custom

exceptions found in throw statements, throws clauses, and catch blocks in the SUT;

. Number of Distinct Used Standard/Third-party Exceptions (NDUSTE): Total number of

distinct standard/third-party exceptions found in throw statements, t hrows clauses, and
catch blocks in the SUT;

. Number of Test Methods (NTM): Total number of test methods;

. Number of Exceptional Behavior Test Methods (NEBTM): Total number of test methods

with exception-testing constructs;

. Number of Distinct Tested Exceptions (NDTE): Total number of distinct exceptions used

in at least one test method and in the SUT;

. Number of Distinct Tested Custom Exceptions (NDTCE): Total number of distinct custom

exceptions used in at least one test method and in the SUT;

. Number of Distinct Tested Standard/Third-party Exceptions (NDTSTE): Total number of

distinct standard/third-party exceptions used in at least one test method and in the SUT;

. Number of Throw Statement Lines (NTS): Total number of throw statements lines found

in the SUT;

21

10. Number of Throw Statement Lines of Custom Exceptions (NTSCE): Total number of

throw statement lines of custom exceptions found in the SUT;

11. Number of Throw Statement Lines of Standard/Third-party Exceptions (NTSSTPE): Total
number of throw statements lines of standard/third-party exceptions found in the SUT;

12. Number of Covered Throw Statement Lines (NCTS): Total number of throw statement

lines exercised at least once by the test suite;

13. Number of Covered Throw Statement Lines of Custom Exceptions (NCTSCE): Total
numbert hrow statement lines of custom exceptions exercised at least once by the test

suite;

14. Number of Covered Throw Statement Lines of Standard/Third-party Exceptions (NCTS-
STPE): Total number throw statement lines of standard/third-party exceptions exercised

at least once by the test suite;

15. Line Coverage: The ratio of lines of code covered by the test suite (retrieved from Coveralls

or Codecov web services);

16. Throw Statement Line Coverage: The ratio of the Number of Covered Throw Statement
Lines (NCTS) to the Number of Throw Statement Lines (NTS).

4.4 Tool Description and Usage Scenarios

We developed a tool [13] that analyzes Git repositories. For each repository, the tool
performs a static analysis on Java code, and tries to retrieve projects’ dynamic data from external
web services (Coveralls and Codecov). This tool was based on JavaParser,? a lightweight library

for supporting syntactic analysis in Java code, version 3.13.2.

4.4.1 Static Analysis

Our tool identifies exception-handling constructs [11] (i.e., throw, throws, and
catch) in the SUT. It also identifies exception-testing constructs from JUnit (i.e., assert—
Throws call, the expected attribute of the @Te st annotation, and the ExpectedExcep-
tion rule), from TestNG (i.e., the expectedExceptions attribute of the @Test annota-
tion), and from Assert] library calls (i.e., assert That ThrownBy, asserThatException-
OfType, assertThat IOException). Also, our tool identifies a fail call right before
a catch block, which is common in tests written in JUnit, TestNG, and Assert). During the
identification of the constructs, our tool collects the exceptions’ names being used in the source

code and in the test methods.

2 nttps://javaparser.org

O 0 9 QN N R W =

AN R W N

22

public <T> T convertIfNecessary(...) throws TypeMismatchException {
try {
return this.typeConverterDelegate...;
} catch (ConverterNotFoundException | IllegalStateException ex) {
throw new ConversionNotSupportedException (value, requiredType, ex);
} catch (ConversionException | IllegalArgumentException ex) {
throw new TypeMismatchException(value, requiredType, ex);

}

Listing 4.1 — Examples of exception-handling constructs.

To better explain how our tool works, consider the code snippet from the Spring-
Framework® project shown in Listing 4.1. If this code was analyzed by our tool, the exception
TypeMismatchException described in the throws clause (Line 1) would be collected.
Moreover, the exceptions ConvertedNotFoundException (Line 4), I1legalState-
Exception (Line4), ConversionException (Line6),and I1legalArgumentExcep—
tion (Line 6) would also be collected, because they are used inside catch blocks. Finally,
the exceptions ConversionNotSupportedException (Line 5) and TypeMismatch-

Exception (Line 7) would also be collected because they are used within a t hrow instruction.

Listing 4.2 shows a test method to test exceptional behavior. In this case, our tool would
collect the exception in the first parameter of the assert Throws method (Line 3), which in

this case is the I11legalStateException exception.

—_

@Test

void invalidExpressionEvaluationType () {

W N

IllegalStateException exception =

assertThrows (IllegalStateException.class, ...);

Listing 4.2 — assert Throws method call example.

Similarly, we can collect the exceptions used in the expected attribute of the @Test
annotations (see Listing 3.1, Line 1). Our tool can also collect the exceptions used with the
ExpectedException rule. Listing 4.3 illustrates an example. In this case, the tool would
collectthe T1legalArgumentException exception (Line 5).

@Rule
public ExpectedException expectedException = ExpectedException.none();
@Test

public void addPropertiesFilesToEnvironmentWithNullContext () {

expectedException.expect (IllegalArgumentException.class);

Listing 4.3 — ExpectedException rule example.

https://github.com/spring—-projects/spring—-framework

23

Table 1 — Three metrics results from our code snippets.

Metric | Custom | Standard or Third-Party
NDUE 4 2
NDTE I 2
NEBTM 1 2

Our tool also collects the exceptions being used in the cat ch blocks right after a call
to the fail method (Listing 4.4). To test the exceptional behavior, the developer expects the
TypeMismatchException (Line 5) to be thrown and thus the test execution would not

reach the £ail method call. In case the execution reaches the £fail method call, the test fails.

1| @Test

2| public void setEnumProperty () {

3 try |

4 fail ("Should have thrown TypeMismatchException");
5 } catch (TypeMismatchException ex) {

6 (...)

7 }

8 }

Listing 4.4 — £ai1 method call example.

The tool also labels each exception as custom (an exception created in the own project),
standard (readily available in the Java development kit), or third-party (available in third-party

libraries exceptions).

Table 1 shows the exceptions found in Listings 4.1-4.4. The IT1legalArgument-—
Exception, and I1legalStateException exceptions are labelled as standard/third-
party. The remaining ones are labelled as custom exceptions. In this case, we can see that our
tool would have found six distinct exceptions being used in the SUT and would have found tests

only for three exceptions. This tell us that 50% of the distinct used exceptions have been tested.

4.4.2 Dynamic Analysis

Additionally, our tool also checks if the project under analysis has line coverage data
publicly available on Coveralls or Codecov web services. When this is true, our tool extracts the
project’s line coverage ratio, and the coverage data for each line with a throw statement found
in the SUT.

Figure 2 illustrates the coverage extraction process. We follow the steps described below.
1. Given the source code of a project, our tool identifies the classes and lines where throw
statements are found;

2. In case the project has data available in Coveralls or Codecov, the tool retrieves the line

coverage ratio of the whole project and individual coverage reports for each class. This

24

data is specific to the project version under analysis;

3. Now, each class is evaluated. In case the class has coverage data, the tool creates a report

containing the number of times that the test suite exercised each line of the class.

'd
! 5262 public final T blockingSingle() { \}
| |5263 T v = singleElement.. :
B @I 5264 if (v == null) { @ !
I:‘J>l 5265] ____________throw new NoSuchElem..; __ E‘J> :
RxJava E 5266 } !
| 3267 BEELED: vy coveralls.io codecov.io|
\ |5268] } !

Figure 2 — Coverage extraction process.

In our illustrating example, the resulting report shows that a null value has been
assigned to line 5262. This happens when a line of code is not relevant to the coverage analysis.
On the other hand, the value two has been assigned to line 5265, where there is a throw

statement. Because this number is greater than zero, the test suite exercised such a line.

4.5 Survey Data

Our survey intends to cross-validate the findings observed in the mining study. The survey
has two main sections. The first focuses on developers background and general information
(i.e., Java experience, platforms, and domains in which they work with, and demographics
information). The second section asks participants (i) to rate the importance of exceptional
behavior testing, (ii) whether they prioritize custom or standard/third-party exceptions when
writing tests, and (ii1) to evaluate the following sentence: “Software developers neglect tests that

focus on exceptional behavior.”

The participants of our survey are developers of the projects we studied. We developed a
script that selects the contributors that made commits with the “test” keyword in the commit
message. We sent e-mails to 2,259 developers inviting them to participate in the survey. We
sent the actual questionnaire on October 8th, 2019. During the period of 14 days we received
66 responses (a 2.92% response ratio). The respondents are from North America (22.73%),
South America (3.03%), Europe (60.61%), Asia (6.06%), Eurasia (4.55%), Oceania (1.52%),
and undefined (1.52%). The majority of the participants (60.60%) has more than 10 years of
experience in Java. The respondents are knowledgeable (63.60%) and very knowledgeable
(33.40%) with Java Testing frameworks.

25

5 RESULTS AND DISCUSSION

In this chapter, we answer our research questions and discuss the results we obtained.
Firstly, we present the results of our static analysis (Section 5.1). Then, we discuss the results of
our dynamic analysis (Section 5.2). Also, we present the most widely used exception-testing
constructs (Section 5.3). Finally, we present and discuss the implications of our survey’s answers
(Section 5.4).

All data, scripts and the tool created in this study are also online available in our

companion website [13].

5.1 Static Analysis

In this section, we analyze exception-related data statically extracted by our tool from

417 projects. We use this data to answer our research questions RQ1 and RQ2.

RQ1 To what extent do developers test the exceptional behavior with automated tests?

We found that 254 out of 417 (60.91%) projects have at least one test method for
exceptional behavior (NEBTM > 0). When considering the platforms, we notice that 149 out of
202 (73.76%) projects of the desktop/server platform and 52 out of 63 (82.54%) multi-platform
projects have NEBTM above zero. The result is much lower when considering the mobile
platform: only 53 out of 152 (34.87%) projects have at least one test method for exceptional
behavior. Regarding the domain, libraries have the highest numbers in all platforms: 85.29%
(desktop/server), 41.67% (mobile), and 82.86% (multi-platform) of the libraries have at least one

test method for exceptional behavior.

However, the numbers we illustrated so far do not have a ratio related to the total number
of test methods of each project. To do so, for each project, we divided the number of exceptional
behavior test methods by the total number of test methods (NEBTM/NTM in Table 2). As
illustrated in Figure 3 (at the right-hand side, combining all domains), the great majority of
the projects—317 out of 417 (76.02%)—dedicate up to 10% of the test methods to exceptional
behavior. More specifically, the number of test methods for exceptional behavior with respect
to the total number of test methods lies between 0% and 10% in 76.24% of the desktop/server
projects; in 84.87% of the mobile projects; and in 53.97% of the multi-platform projects. The
medians for NEBTM/NTM in Table 2 are: 4.02% for desktop/server; 0% for mobile; and 9.38%
for multi-platform.

We also found strong Spearman [1] correlations in all platforms regarding NEBTM
and non-Exceptional Behavior Test Methods (NTM-NEBTM), i.e., 0.84 (p-value 2.61%) for
desktop/server, 0.76 (p-value 6.883°) for mobile, and 0.84 (p-value 1.727'%) for multi-platform.

26

This way, the lack of exceptional behavior test methods might be related to the absence of test

methods in general.

[Desktop/Server 1 Mobile B Multi-platform
100%

80%
60%
40%
S Lad il dla
0%

1
Frameworks Libraries Tools All

o~

Figure 3 — Ratio of NEBTM/NTM.

Furthermore, for each project we also calculate the ratio of the Number of Distinct
Tested Exceptions (NDTE) to the Number of Distinct Used Exceptions (NDUE) (see column
NDTE/NDUE in Table 2). Our intention is to understand whether each of the exceptions used in
throw instructions, throws clauses, and catch blocks has at least one corresponding test
method. Figure 4 illustrates the distribution of these ratios for all projects. We notice that 239
out of 417 (57.31%) projects test only up to 10% of the used exceptions. When considering
the platform, 52.97% (desktop/server), 73.03% (mobile), and 33.33% (multi-platform) of the
projects test up to 10% of the used exceptions. In terms of domain, 55.33% (frameworks), 42.64%
(libraries), and 73.19% (tools) of the projects test up to 10% of the used exceptions. We found
medium Spearman correlations in all platforms regarding NDTE/NDUE and the number of
contributors of the projects, i.e., 0.37 (p-value 4.7979) for desktop/server, 0.42 (p-value 4.2379)
for mobile, and 0.51 (p-value 1.837°) for multi-platform. This way, as the number of contributors
grows, there might be a better chance of also growing the number of test methods for exceptions
used in the SUT.

[Desktop/Server ~ [ZZ1 Mobile B Multi-platform
100%

80%
60%
40%
20%
0%

[[[

I
Frameworks Libraries Tools All

N X N

Figure 4 — Ratio of NDTE/NDUE.

We observed that libraries developers tend to write more exceptional behavior test
methods to a higher number of distinct exceptions than developers of the other two domains. In
contrast, developers of the mobile platform tend to write less exceptional behavior test methods
when compared to developers of the other two platforms. Previous work has reported a large study
with 2,486 open-source Android apps and found that the majority of the crashes in these apps

27

is related to exceptions defined in the Android framework [14]. Since the great majority of the
mobile projects studied are from the Android platform, an interesting hypothesis is to test whether
the lack of exceptional behavior tests is leading to the reported crashes. We can also check if the
maturity of the majority of the multi-platform projects (e.g., Spring-framework, jacoco, junit4,
mockito, RxJava, and selenium) is leading to better numbers than the desktop/server and mobile

platforms. However, testing these hypotheses is out of the scope of this article.

We also observed several projects (127 out of 417, i.e., 30.45%) creating test methods
for exceptions not used in the SUT. This means that there is, for example, a test method with
@Test (expected = E.class) and E is not used in the SUT. For example, the mockito

project has test methods for 53 exceptions, but only 36 of them are used in the SUT.

RQ2: Do the test suites test more distinct custom exceptions or distinct standard/third-

party exceptions?

Table 3 presents the summary of the Number of Distinct Used Custom Exceptions
(NDUCE) and the Number of Distinct Used Standard/Third-party Exceptions (NDUSTE) of all
projects. Column NDUE represents the Number of Distinct Used Exceptions and is calculated by
the sum of NDUCE and NDUSTE. Notice that the sum of both median ratios (NDUCE/NDUE +
NDUSTE/NDUE) is 100% (see the median values of NDUCE/NDUE and NDUSTE/NDUE in
Table 3, e.g., 10% and 90% in multi-platform libraries, respectively). According to the results,
developers tend to use more commonly standard/third-party exceptions than to create and use new
ones in their projects. Figure 5 presents the distributions of NDUCE/NDUE and NDUSTE/NDUE.
Notice that NDUSTE/NDUE has higher ratios. Also, notice that the NDUCE/NDUE ratio is
generally below 40%. The highest median ratio is achieved by the multi-platform frameworks
(23.53%). The opposite (NDUCE/NDUE > NDUSTE/NDUE) happens in only seven projects:
ghidra, XChange, j20bjc, cosbench, spring-framework, airline, and platform_frameworks_base.
In addition, the multi-platform tools are the only ones to use custom exceptions in all projects,
but the sampling of this group is very small (i.e., six projects), as presented in the row “count” in
Table 3.

[Desktop/Server [Mobile I Multi-platform

100%
80%
60%
40%
20% ‘

0%

I I
NDUCE/NDUE NDUSTE/NDUE

Figure 5 — Ratios of NDUCE/NDUE and NDUSTE/NDUE.

Table 4 presents the Number of Distinct Tested Custom Exceptions (NDTCE) and
the Number of Distinct Tested Standard/Third-party Exceptions (NDTSTE). To analyze the

28

distribution of these metrics related to the Number of Distinct Tested Exceptions (NDTE), for
all projects we also compute NDTCE/NDTE and NDTSTE/NDTE (again, the sum of both
ratios is 100%). However, we have projects where no exceptions have associated tests. Thus, we
removed these projects to avoid divisions by zero. Therefore, the row “count’” in Table 3 and in
Table 4 have different numbers (e.g.,., in the first row (desktop/server frameworks), the number of
projects dropped from 78 to 56 projects). Figure 6 shows the distribution of the NDTCE/NDTE
and NDTSTE/NDTE ratios. Notice that in the majority of the projects there are more distinct

standard/third-party exceptions with test methods when compared to distinct custom exceptions.

[Desktop/Server 1 Mobile I Multi-platform

100%
80%
60%
40%
20%

0%

I 1
NDTCE/NDTE NDTSTE/NDTE

Figure 6 — Ratios of NDTCE/NDTE and NDTSTE/NDTE.

Our results suggest that standard/third party exceptions are more used throughout the
SUT (i.e., ratios NDUCE/NDUE and NDUSTE/NDUE) and that there are more standard/third
party exceptions being tested (i.e., ratios NDTCE/NDTE and NDTSTE/NDTE). Notice that we
obtain the first two ratios by analyzing exclusively the SUT. Also, we obtain the other two ratios
by analyzing exclusively the test methods. Now our intention is to understand, given the distinct

used exceptions throughout the SUT, how many have associated test methods?

To do so, we take the Number of Distinct Tested Custom Exceptions (NDTCE) and
divide by the Number of Distinct Used Custom Exceptions (NDUCE). Likewise, we divide
the Number of Distinct Tested Standard/Third-party Exceptions (NDTSTE) by the Number
of Distinct Used Standard/Third-party Exceptions (NDUSTE). To better explain these ratios,
consider the ghidra project. This project has 138 distinct used custom exceptions (NDUCE)
and 114 distinct used standard/third-party exceptions (NDUSTE). Regarding the tests, we
have 33 tested custom exceptions (NDTCE) and 16 tested standard/third-party exceptions
(NDTSTE). This way, when calculating the ratios we achieve the following: 33/138 = 23.91%
and 16/114 = 14.03%. Notice that, despite the relatively close numbers of distinct used custom
exceptions (i.e., 138) and standard/third-party (i.e., 114), the test methods cover more custom
exceptions than standard/third-party ones. Once again, we discarded projects that lead to a
division by zero in columns NDTCE/NDUCE or NDTSTE/NDUSTE, and the final number
of projects in each platform and domain is presented at the row “count” in Table 5. Figure 7
illustrates the distribution of these ratios. According to our results, in 141 out of 207 (68.12%)
projects the tests cover more custom exceptions than standard/third-party ones. However, the

ratio in favor of custom exceptions is higher when considering the desktop/server (92 out of

29

131, i.e., 70.23%) and multi-platform projects (34 out of 46, i.e., 73.91%). A tie happens for the
mobile platform, where 15 out of 30 (50%) projects cover more custom exceptions. Only six
out of 207 (2.90%) projects (i.e., mockito, spring-batch, vavr, spring-data-redis, thumbnailator,
and RxJava) have test methods that cover more than 50% of both the distinct used custom and

standard/third-party exceptions.

[Desktop/Server [Mobile I Multi-platform

100%
80%
60%
40%
20%

0%

I I I I
Frameworks Libraries Tools All

(a) Custom Exceptions (NDTCE/NDUCE).

[Desktop/Server [Mobile I Multi-platform
100%

80%

- bl 4

i i i i
Frameworks Libraries Tools All

(b) Standard/Third-party Exceptions (NDTSTE/NDUSTE).

Figure 7 — Ratios of NDTCE/NDUCE and NDTSTE/NDUSTE.

Thus, our results suggest that, for the projects we analyzed, developers tend to create
more test methods for distinct custom exceptions than for distinct standard/third-party exceptions
in two platforms (i.e., desktop/server and multi-platform). We performed a statistical test to

check if this difference is statistically significant.

We used the ratios NDTCE/NDUCE and NDTSTE/NDUSTE as input. First, we applied
the Shapiro-Wilk test [31] to formally test for normality in each platform. After applying this
test, we verified that our data do not follow a normal distribution. Therefore we applied the
Mann-Whitney U Test [1]. We follow the convention of considering a factor as being significant
to the response variable when p-value < 0.05. For the desktop/server and multi-platform projects
we have significant differences (i.e., p-value 1.0773 and 1.307%, respectively) between the
cover ratios of custom and standard/third-party exceptions. However, the same result cannot be
observed in the mobile platform, in which no significant statistical differences was found (i.e.,

p-value 0.25).

30

5.2 Dynamic Analysis

In this section, we use the code coverage data from a subset of projects to answer the
research questions RQ3 and RQ4. Only 48 projects of our initial dataset have line coverage
publicly available in Coveralls or Codecov web services. However, we discarded nine projects
due to incorrect configuration of these tools. Thus, to answer RQ3 and RQ4, we restrict our
analysis to only 39 out of 417 (9.35%) projects. The new distribution of this dataset is: 26
(66.67%) desktop/server projects (11 frameworks, three libraries, and 12 tools); five (12.82%)
mobile projects (one framework, three libraries, and one tool); and eight (20.51%) multi-platform
projects (one framework, five libraries, and two tools). As can be observed in Figure 8, the
majority of the projects—29 out of 39 (74.36%)—report Line Coverage ratios greater than
or equal to 60%. We use this number as a reference because coverage tools [12] report that
percentages below 60-70% correspond to poorly tested software. It is important to emphasize
that we retrieve these ratios from Coveralls and Codecov web services.

[Desktop/Server [0 Mobile HEE Multi-platform
100%

oy

20%

0%
Frameworks Libraries Tools All

Figure 8 — Line coverage ratios.

RQ3: To what extent the test suites cover throw statement lines?

In our dataset, there are projects like RxJava, shown in Figure 9, that exercises almost
every throw statement line, regardless of the thrown exception. This might be an indica-
tor that the RxJava developers pay attention to writing exceptional behavior tests. However,
most projects have results like the ones found in the Caffeine! project (see Figure 10), where
the majority of the throw statements are not exercised by the test suite. For example, the
UnsupportedOperationException is identified in 65 throw statements, but only four
of these statements are exercised by the test suite. This scenario happens with many other

exceptions of the project.

To better understand whether and to what extent the test suites exercises each throw
statement lines, we calculate the ratio of the Number of Covered Throw Statement Lines (NCTS)
to the Number of Throw Statement Lines (NTS). We name this ratio as Throw Statement Line
Coverage (see Table 6). Figure 11 illustrates the distribution of these ratios for all projects. The

median values of each platform are 15.67% for desktop/server, 37.50% for mobile, and 30.16%

! https://github.com/ben-manes/caffeine

31

mmm Number of Throw Statement Lines Number of Covered Throw Statement Lines

lllegalStateException
UnsupportedOperationException
lllegalArgumentException
NoSuchElementException
IndexOutOfBoundsException
CancellationException
NullPointerException
ExecutionException
CompositeException
TimeoutException
RuntimeException

Error

ThreadDeath

LinkageError

InternalError

VirtualMachineError

Figure 9 — RxJava’s throw statements data.

for multi-platform. However, these numbers alone do not allow us to draw a parallel with the
quality of the test suite in general. Hence, we also calculate the ratio of projects that have the
Throw Statement Line Coverage ratio greater than or equal to 60% to enable comparison with

the Line Coverage metric results.

As can be observed in Figure 12, we found that six (i.e., two out of 26 (7.69%) desk-
top/server, one out of five (20%) mobile, and three out of eight (37.50%) multi-platform projects)
out of 39 (15.38%) have the Throw Statement Line Coverage ratio greater than or equal to
60%. This is the opposite of what is observed with the Line Coverage metric, in which 74.36%
of projects achieve at least 60% of Line Coverage. When considering the domain, 15.38% of
frameworks, 27.27% of libraries, and 6.67% of tools achieve the Throw Statement Line Coverage

ratio greater than or equal to 60%.

Moreover, if we raise the reference coverage ratio to at least 80%—considered a good
coverage to release a piece of software [12, 17]—, we still have 16 out of 39 (41.03%) projects
with a Line Coverage ratio greater than or equal to 80%. However, only four (10.26%) projects

achieve this coverage when considering the Throw Statement Line Coverage.

Among all projects, we notice in Figure 12 that only one (i.e., ReactiveNetwork) achieved

a higher Throw Statement Line Coverage than the Line Coverage of the project.

Notice that 29 out of 39 projects (74.36%) report Line Coverage ratios greater than or
equal to 60%. Nevertheless, only six projects achieve a coverage of throw statement lines

greater than or equal to 60%. Also, even though the mobile platform has a higher median value

32

mmm Number of Throw Statement Lines Number of Covered Throw Statement Lines

UnsupportedOperationException
lllegalStateException
lllegalArgumentException
RuntimeException
NoSuchElementException
CompletionException
InvalidObjectException
CacheloaderException
CacheException
NullPointerException
Error
InvalidCacheLoadException
UncheckedExecutionException
ExecutionError
UncheckedlOException
ExecutionException
ClassCastException
EntryProcessorException
CacheWriterException
CacheEntryListenerException
AssertionError

20 40 60

o -

Figure 10 — Caffeine’s throw statements data.

[Desktop/Server [Mobile I Multi-platform

100%
80%
60% —_—
40%
20%

0%

[[[[
Frameworks Libraries Tools All

Figure 11 — Throw Statement Line Coverage (NCTS/NTS).

than the other platforms, a larger percentage of multi-platform projects achieve at least 60% of
Throw Statement Line Coverage. The libraries showed better results than the other domains once
again. These results are in line with the results found and discussed in RQ1, and also indicate
that the test suites do not exercise the majority of the throw statements, even in projects where

there seem to have concerns about code coverage. This contributes to the claim that developers

tend to neglect the exceptional behavior testing.

RQ4: Do the test suites cover more throw statement lines of custom exceptions or stand-

ard/third-party exceptions?
To answer this question, we take the Number of Covered Throw Statement Lines of

Custom Exceptions (NCTSCE) and divide by the Number of Throw Statement Lines of Custom
Exceptions (NTSCE). Likewise, we divide the Number of Covered Throw Statement Lines of

33

mmm |ine Coverage Throw Statement Line Coverage

*kk

RxJava
AndroidMvc**
JSCover*

kK

vavr
caffeine™**
grpc-spring-boot-starter*
jetcache*
Android-ObservableScrollView**
mockito***

dropwizard*

teammates*
uber-adb-tools**
fluent-validator*
ffmpeg-cli-wrapper*
uber-apk-signer*
transmittable-thread-local*
zxing***
java-dns-cache-manipulator®
spock*

batfish*

ReactiveNetwork**

*kk

google-maps-services-java
distributed-redis-tool*
sofa-rpc*

SchemaCrawler*
density-converter **
sofa-boot*
BottomBar**
lavagna*
gumtree*

light-4j*
OpenRefine*
jvm-sandbox*
hsweb-framework*
hutool*

*kk

btrace
pippo*
webcam-capture®

* Desktop/Server
** Mobile
***Multi-platform

TelegramBots*

I I I I I
20% 40% 60% 80% 100%

L=
=S

Figure 12 — Coverage Ratios.

Standard/Third-party Exceptions (NCTSSTPE) by the Number of Throw Statement Lines of

34

Standard/Third-party Exceptions (NTSSTPE). In this case, we also discarded eight projects that
lead to a division by zero in columns NCTSCE/NTSCE or NCTSSTPE/NTSSTPE, and the final
number of projects in each platform and domain is presented at the row “count” in Table 7.

Figure 13 illustrates the distribution of these ratios.

According to our results, in 16 out of 31 (51.61%) projects the tests cover more throw
statements of custom exceptions than standard/third-party. Nevertheless, when analyzing by
platform, the results are in favor of custom exceptions only in the multi-platform projects (5
out of &, i.e., 62.50%). The opposite happens in the desktop/server platform (10 out of 21, i.e.,
47.62%), and, once again, we have a tie in the mobile platform (1 out of 2, i.e., 50%). Although
the difference identified in favor of custom exceptions is minimal, the results are still in line with
the RQ2’s results.

[Desktop/Server [Mobile HEE Multi-platform
100%

80%

60%

40%

20% G)
0%

1 1 1 1
Frameworks Libraries Tools All

(a) Custom Exceptions (NCTSCE/NTSCE).

[Desktop/Server [Mobile HEE Multi-platform
100%

80%
60%
40% — D
20% — m
0% . . —

I
Frameworks Libraries Tools All

(b) Standard/Third-party Exceptions (NCTSSTPE/NTSSTPE).

Figure 13 — Ratios of NCTSCE/NTSCE and NCTSSTPE/NTSSTPE.

5.3 Exception-testing Constructs Usage Statistics

In this section, we briefly discuss what are the most widely used constructions that we

found in the projects analyzed by our tool.
RQS5: How do developers test the exceptional behavior in terms of exception-testing con-
structs?

To answer this question, we take three JUnit exception-testing constructs into ac-

count: assertThrows call, the expected attribute of the @Test annotation, and the

35

ExpectedExcept ion rule; four Assert] exception-testing constructs: assert ThatExcep—
tionName, assertThatExceptionOfType,assertThat,andassertThatThrown-
By calls; one TestNG construct: expectedExceptions attribute; and one additional con-

struct common to JUnit, Asssert], and TestNG: a fail call right before a catch block.

As shown in Figure 14, the fail method call is the oldest and by far the most used
construct: we found 33,100 instances of this construct (56.10% of the overall constructs usage).
The fail method call is followed by the expected attribute (15.42%) of the JUnit Framework
and the assertThatExceptionOfType call (7.54%) of the Assert] Library. Notice that
the sum of each exception-testing construct is not necessarily equal to the total number of
exceptional behavior test methods of the project. This happens because one exceptional behavior
test method may have one or more exception-testing constructs even from different frameworks

and libraries.

I 0006 (15.42%)
440 (7.54%)
2935 (4.97%)
(AssertJ) assertThatExceptionName -2758 (4.67%)
(JUnit) assertThrows -2422 (4.10%)
(JUnit) expect .1516 (2.57%)
(TestNG) expectedExceptions Attribute .1431 (2.43%)

(JUnit/TestNG/AssertJ) fail
(JUnit) expected Attribute
(AssertJ) assertThatExceptionOfType

(AssertJ) assertThat

(AssertJ) assertThatThrownBy .1300 (2.20%)
1

1 1 1 1 1 1
0 5k 10 k 15k 20 k 25k 30 k

Figure 14 — Number of Exception-testing Constructs.

These numbers also indicate that developers are using generic constructs (i.e., fail
call) instead of constructs specifically designed to test the exceptional behavior. Moreover, even
when we only consider projects up to three years old, we notice that among 55 projects the fail
construct is still the most used, as shown in Figure 15. These results are important to show that
the newer constructs designed to test the exceptional behavior created over the last years should
be better spread throughout the developers community so that developers can make the task of

testing exceptions less difficult and more efficient.

5.4 Survey

In this section, we discuss the results of our survey with the developers of the analyzed

projects.

RQ6: How do developers perceive the exceptional behavior testing?

Overall, 66 developers completed our survey. Figure 16 summarizes the survey results.

The majority of the respondents (69.70%) considers exceptional behavior testing as important.

(JUnit/TestNG/AssertJ) fail

(JUnit) assertThrows

(JUnit) expected Attribute

(AssertJ) assertThatThrownBy

(JUnit) expect

(AssertJ) assertThat

(TestNG) expectedExceptions Attribute
(AssertJ) assertThatExceptionName

(AssertJ) assertThatExceptionOfType

0 500 1k

3699 (82.05%)
I 01 (15.55%)

J50 (1.31%)
|23 (0.51%)
14 (0.31%)
8 (0.18%)
4 (0.09%)
0 (0.00%)
0 (0.00%)

36

Figure 15 — Number of Exception-testing Constructs found in projects up to three years old.

Moreover, 37.90% of the participants prioritize custom exceptions over standard/third-party,
which is also in accordance to the findings of RQ2 and RQ4, in particular when considering

desktop/server and multi-platform projects.

o Very o,
> 10 years 40 (60.6%) imporan 19 (28.8%)
7-10 years 13 (19.7%) Important 27 (40.9%)
4-6 years 12 (18.2%) Important 19 (28.8%)

<1 year

Does not
matter

1 (1.5%)

1 1
10

1
20

30 40

(a) Java experience.

35 (53.0%)

Not o
Important 1(1.5%)
| | | |

10 20 30

(b) Exceptional tests importance.

B (10.6%)
28 (42.4%)

Strongly
agree

Agree

excorions T %)
P Neutral 25 (37.9%)
Standard/ .5 (76%)
Third-party Disagree 5 (7.6%)
None 1(1.5%) Strongly 4 (1.5%)
Disagree
| | | | | | | | |
0 10 20 30 40 0 10 20 30

(c) Prioritization. (d) “Developers tend to neglect.”

Figure 16 — Survey Answers.

Regarding the sentence “Software developers neglect tests that focus on exceptional
behavior,” the majority (53%) of the participants agrees with it. This way, the results are in sharp
agreement with the findings of RQ1 and RQ3. Also, some developers left some comments on
this sentence, and we noticed that some of these are similar. To better understand them, two
researchers independently read the comments. Then, they agreed that 34 out of 39 comments
fit into 8 categories. Comments with disagreements with respect to which category they belong
to were discarded. Figure 17 presents the comments according to these categories in terms of a

word cloud.

As can be observed, the majority of respondents stated that developers usually write tests

for the “Happy Paths.”

37

Developers neglect test in general

Minority of the tests
We do not neglect them

Rarely prioritized

Focus on Happy Path

Exceptions are harder to test
| cannot agree or disagree

Exceptions are obvious points for failure

Figure 17 — Word Cloud presenting 8 categories of the comments.

“It’s much easier to write tests that check the success case. Writing tests for failure
cases is a little harder.”
“Developers usually focus on the common or ‘good’ cases.”

“Most applications only do sunshine tests.”

Also, we found comments that highlight the low importance given by some developers

for the exceptional behavior testing.

“The least important of all tests.”
“Exceptional behavior testing is rarely prioritized.”

“It’s often ignored because of the assumption that it only applies to an edge case.”

On the other hand, we also found participants that mentioned that exceptional behavior

testing cannot be neglected.

“My team at least does not neglect them.”
“Exceptions are [...] some of the first things that I consider when writing unit tests.”

“In my team we pay attention to it.”

38

6 THREATS TO VALIDITY

The tool developed and applied in this study is not able to identify all the exceptions used
in the throw instructions, throws clauses, and cat ch blocks, as well as in JUnit, TestNG, and
Assert] exception-testing constructs. This is due to the fact that such instructions allow the use of
Superclasses (e.g., Exception or Runt imeException), and other object-oriented complex
features such as polymorphism, inheritance, reflection, or generic types. In addition, we observed
that both the source code and the test methods might be structured in different ways, which
hinder their parsability (e.g., a throw instruction in which the exception is wrapped in a method
call and a throws clause parameterized with a generic type). To sum up, our tool was not
able to properly identify the exceptions used in approximately 3.50% of the exception-handling
constructs, and in approximately 4.50% of test methods.

Also, our projects might have tests written using testing frameworks not covered by our
tool. Nevertheless, we focus on very common Java testing technologies (i.e., JUnit, TestNG, and

Assert]). Thus, we do not expect major differences in the results.

Our selection process lies in the use of the GitHub query API and in the number of
stars. The number of stars is a strong indicator on the number of developers interested in the
project [32]. However, if the number of stars of some projects has been inflated by, for instance,
the use of automated tools, projects with little relevance may have been included as objects of
this study. We mitigate this threat by employing a criterion to assess whether the selected project

has automated tests.

Our classification per platform and domain may represent a threat. Besides the use of a
website that relies on maven dependencies and of a GitHub query, two researchers checked the

classification independently, minimizing this threat.

In our dynamic analysis, the use of Coveralls and Codecov web services to retrieve
coverage data is a threat, since developers using these tools may be more concerned with code
coverage than those who do not. Also, we do not know what tools were used to calculate coverage
and not even if the whole project has coverage data. Moreover, the most used coverage tools
report inaccurate behaviors for code snippets related to exceptions. Finally, the segregation of
only 39 projects into platforms and domains leads us to draw conclusions from subsets with a

small number of projects.

Our survey relies on the “test” word to select potential participants. This way, we may
select developers not experienced in tests, since the word is too general and may not be related
to the scope of this article. However, the participants of our survey reported they have great

experience in Java and in Java testing frameworks.

39

7 RELATED WORK

Previous works aim to extend the coverage of testing for exception-handling constructs.
Goffi et al. [16] presented Toradocu, a tool that automatically generates tests from comments
extracted from Javadoc. Also, they conducted a study based on 10 open source Java libraries
and concluded that developers “do not pay equal attention to testing exceptional behavior.”
To conclude that, they used one metric, i.e., they computed the throw statement coverage in
comparison to other code instructions. They observed that the throw statement coverage is
usually significantly low. Bernardo et al. [3] proposed an agile approach to define exceptional
behavior of a system throughout the software development processes. They claim that “manually-
written test suites tend to neglect exceptional behavior.” Despite these claims, the objective of
both works [16, 3] is not to analyze whether and to what extent developers test the exceptional
behavior, i.e., they neither provided an in-depth investigation as we do nor a study to better
understand the developer’s thoughts. Differently, this is our main focus. So, we analyze 417
open source Java projects, use several metrics (collected based on parsing activities), and also
compare custom and standard/third-party exceptions. Also, our study investigates whether there
are differences in our numbers with respect to software platforms and domains. Finally, we also

conduct a survey to confirm our quantitative results.

Sinha et al. [34] used static analysis to detect occurrences of inappropriate coding patterns
for exception handling, such as unreachable catch handlers and ignored exceptions, the distance
between throw and catch, and imprecise throws declarations. The approach guides the testers
in computing test requirements for exception handling and generating test data to satisfy those
requirements. Romano et al. [27] use a genetic algorithm that evolves a population of test data
to cover paths between input parameters and code statements that throws potential null pointer

exceptions.

Other works also try to extend the coverage of exception code, but with support of
fault injection. Fu et al. [15] developed a compiler-directed fault injection static analysis to
support white-box coverage testing of exception handlers. They improve coverage of exception
handlers through compiler-generated code instrumentation, which can guide the fault injection
and record the code exercised by the tests. Martins et al. [21] presented VerifyEx, a testing tool
that uses a source code instrumentation technique to exercise exception handling constructs
to increase the coverage rate when testing exceptional behavior. Cornu et al. [7] proposed an
algorithm that injects exceptions during test suite execution to simulate unanticipated errors.
These works provide tools to automatically or semi-automatically improve the generation of
tests for exception handling constructs. We also provide a tool. However, the purpose is very
different: our tool is able to collect metrics regarding not only exception-handling constructs but
also exception-testing ones.

Shah et al. [30] conducted a study to understand how developers perceive exception han-

40

dling and what methods they adopt to deal with exception handling constructs. They interviewed
developers and found that they tend to use exception-handling constructs mostly for debugging
purposes, which means that the time invested in implementing code for proper handling of error
conditions is neglected. Despite not providing results from interviews, we conducted a survey

with 66 developers to understand how they perceive the exceptional behavior testing.

Osman et al. [25] performed an analysis on 90 Java projects divided into six domains
in different versions of each project. They evaluated how developers use the different types
of exceptions (standard, custom, and third-party) in throw statements and exception handlers.
They observed that applications have significantly more error handling code than libraries,
and applications increasingly rely on custom exceptions. Also, projects that belong to different
domains have different preferences of exception types. For instance, content management systems
rely more on custom exceptions than standard exceptions whereas the opposite is true in parsing
frameworks. We also study custom and standard/third-party exceptions, but our effort was on

checking whether the tests cover more custom exceptions or standard/third-party ones.

Dulaigh et al. [11] performed an empirical analysis regarding the evolution of twelve
Java projects from the Qualitas Corpus [35]. They measured the quantity and distribution of
exception-handling constructs (t hrow instructions, throws clause, and catch blocks) and
identified that 21.5% of the methods contain at least one exception-handling construct. Differently

from our work, they did not collect metrics related to the test of exceptions.

41

8 CONCLUDING REMARKS

In this work, we presented a mixed-method study consisting of: (1) an empirical inves-
tigation based on the static analysis of 417 projects and dynamic analysis of 39 projects to
understand whether and to what extent developers actually test the exceptional behavior; and (2)

a survey with 66 developers from these projects to triangulate our quantitative results.

In our static analysis [8], we found that 254 out of 417 (60.91%) projects have at least
one test method dedicated to exceptional behavior. To better analyze this scenario, we also
compute the ratio of the number of exceptional behavior test methods to the total number of
test methods. We found that this ratio lies between 0% and 10% in 317 (76.02%) projects.
Regarding used exceptions in the SUT, 239 (57.31%) projects test only up to 10% of them. We
found that mobile developers in general pay less attention to exceptional behavior tests when
compared to desktop/server and multi-platform developers. We also noticed that libraries have
more exceptional behavior test methods when compared to frameworks and tools. We found more
test methods covering custom exceptions over standard/third-party exceptions in desktop/server
and multi-platform projects. Our statistical tests showed that this difference is significant in both

platforms.

Also, we carried out a dynamic analysis on a subset of 39 projects, from our 417 studied
projects, with publicly available line coverage reports. The results of our dynamic analysis
showed that 29 out of 39 projects (74.36%) report Line Coverage ratios greater than or equal
to 60%. Nevertheless, only six (15.38%) projects achieve a coverage of throw statement lines
greater than or equal to 60%. We observed a similar result when we raised the reference ratio to
at least 80%. Thus, the test suites do not exercise the majority of the t hrow statements, even in
projects where there seem to have concerns about code coverage. We also observed that a larger
percentage of multi-platform projects and libraries have higher numbers to Throw Statement
Line Coverage ratios. Our dynamic analysis also provided additional evidence that the custom
exceptions have better coverage than the standard/third-party exceptions. Thus, these results are

also in accordance to our static analysis results [8].

We also noted that even in projects created over the last years the newer constructs
designed to test the exceptional behavior should be better spread throughout the developers

community.

Finally, we also conducted a survey to triangulate our results. In general, the collected

answers confirm our findings.

42

We conclude that exceptional behavior testing is rare and indeed might be considered an
exception. However, when considering multi-platform projects and libraries, the scenario is
a bit better and these tests might not be so rare. Since developers tend to neglect exceptional
behavior tests, one potential direction to improve this scenario is the reinforcement of the
importance of the exceptional behavior, the dissemination of good practices for creating

exceptional behavior tests, and the use of automatic test suite generation tools.

As future work, we intend to increase and deepen the analysis of projects with coverage
data publicly available to better understand the factors that lead to a piece of software with good
coverage of the exceptional behavior.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

43

BIBLIOGRAPHY

ANDERSON, T. W., AND FINN, J. D. The new statistical analysis of data. Springer, 1996.

ASADUZZAMAN, M., AHASANUZZAMAN, M., Roy, C. K., AND SCHNEIDER, K. A.

How developers use exception handling in Java? In Proceedings of the 13th International
Conference on Mining Software Repositories (2016), MSR *16, ACM Press, pp. 516-519.

BERNARDO, R. D., JR., R. S., CASTOR, F., COELHO, R., CACHO, N., AND SOARES, S.
Agile testing of exceptional behavior. In Proceedings of the 25th Brazilian Symposium on
Software Engineering (2011), SBES "11, pp. 204-213.

CABRAL, B., AND MARQUES, P. Exception handling: A field study in Java and .NET. In

Proceedings of the 21st European Conference on Object-Oriented Programming (2007),
ECOOP 07, Springer, pp. 151-175.

CASSEE, N., PINTO, G., CASTOR, F., AND SEREBRENIK, A. How Swift developers

handle errors. In Proceedings of the 15th International Conference on Mining Software
Repositories (2018), MSR *15, ACM Press, pp. 292-302.

CHANG, B.-M., AND CHOI, K. A review on exception analysis. Information and Software
Technology 77, C (sep 2016), 1-16.

CORNU, B., SEINTURIER, L., AND MONPERRUS, M. Exception handling analysis and
transformation using fault injection: Study of resilience against unanticipated exceptions.
Information and Software Technology 57 (2015), 66 — 76.

DALTON, F., RIBEIRO, M., PINTO, G., FERNANDES, L., GHEYI, R., AND FONSECA, B.
Is exceptional behavior testing an exception? an empirical assessment using Java automated

tests. In Proceedings of the 24th International Conference on Evaluation and Assessment
in Software Engineering (2020), EASE *20, ACM Press, p. 170-179.

DE PADUA, G. B., AND SHANG, W. Studying the prevalence of exception handling anti-

patterns. In Proceeedings of the 25th International Conference on Program Comprehension
(2017), ICPC *17, pp. 328-331.

DE PADUA, G. B., AND SHANG, W. Studying the relationship between exception handling
practices and post-release defects. In Proceedings of the 15th International Conference on
Mining Software Repositories (2018), MSR *18, ACM Press, pp. 564-575.

DULAIGH, K. O., POWER, J. F., AND CLARKE, P. J. Measurement of exception-handling

code: An exploratory study. In Proceedings of the 5th International Workshop on Exception
Handling (2012), WEH 12, IEEE Press, pp. 55-61.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

44

EMMA TEAM. What is code coverage and why should I care about it?, 2006. (Accessed
May 2020).

ENGINEERING AND SYSTEMS SOFTWARE RESEARCH GROUP (EASY). Research
replication package, 2020. (Accessed May 2020).

FaN, L., Su, T., CHEN, S., MENG, G., LIU, Y., XU, L., Pu, G., AND SuU, Z. Large-
scale analysis of framework-specific exceptions in Android apps. In Proceedings of the
40th International Conference on Software Engineering (2018), ICSE "18, ACM Press,
pp- 408—4109.

Fu, C., MILANOVA, A. L., G, B., RYDER, AND WONNACOTT, D. G. Robustness testing

of Java server applications. IEEE Transactions on Software Engineering 31, 4 (2005),
292-311.

GOFFI, A., GORLA, A., ERNST, M. D., AND PEZZE, M. Automatic generation of oracles

for exceptional behaviors. In Proceedings of the 25th International Symposium on Software
Testing and Analysis (2016), ISSTA 16, pp. 213-224.

GOPINATH, R., JENSEN, C., AND GROCE, A. Code coverage for suite evaluation by

developers. In Proceedings of the 36th International Conference on Software Engineering
(2014), ICSE’ 2014, ACM Press, pp. 72—-82.

JIANG, S., ZHANG, Y., YAN, D., AND JIANG, Y. An approach to automatic testing
exception handling. SIGPLAN Not. 40, 8 (Aug. 2005), 34—-39.

Mao, C.-Y., AND LU, Y.-S. Improving the robustness and reliability of object-oriented
programs through exception analysis and testing. In Proceedings of the 10th IEEE Inter-
national Conference on Engineering of Complex Computer Systems (2005), ICECCS ’05,
IEEE Press, pp. 432-439.

MARICK, B. How to misuse code coverage. In Proceedings of the 16th International
Conference on Testing Computer Software (1999).

MARTINS, A. L., HANAZUMI, S., AND DE MELO, A. C. Testing Java exceptions: An

instrumentation technique. In IEEE 38th International Computer Software and Applications
Conference Workshops (2014), COMPSACW ’ 14, pp. 626-631.

MELO, H., COELHO, R., AND TREUDE, C. Unveiling exception handling guidelines
adopted by Java developers. In Proceedings of the 26th International Conference on
Software Analysis, Evolution and Reengineering (2019), SANER 19, pp. 128-139.

MONTENEGRO, T., MELO, H., COELHO, R., AND BARBOSA, E. Improving developers

awareness of the exception handling policy. In Proceedings of the 25th International

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

45

Conference on Software Analysis, Evolution and Reengineering (2018), SANER ’18,
pp- 413-422.

MYERS, G. J., SANDLER, C., AND BADGETT, T. The Art of Software Testing, 3rd ed.
Wiley Publishing, 2011.

OSMAN, H., CHIS, A., CORRODI, C., GHAFARI, M., AND NIERSTRASZ, O. Exception
evolution in long-lived Java systems. In Proceedings of the 14th International Conference
on Mining Software Repositories (2017), MSR 17, IEEE Press, pp. 302-311.

REIMER, D., AND SRINIVASAN, H. Analyzing exception usage in large java applications.
In Workshop on Exception Handling in Object Oriented Systems (2003), EHOOS °03.

ROMANO, D., PENTA, M. D., AND ANTONIOL, G. An approach for search based testing
of null pointer exceptions. In Proceedings of the 4th International Conference on Software
Testing, Verification and Validation (2011), ICST *11, IEEE Press, pp. 160—169.

RYDER, B. G., SMITH, D., KREMER, U. J., GORDON, M. D., AND SHAH, N. A static
study of Java exceptions using JESP. In Proceedings of the 9th International Conference
on Compiler Construction (2000), CC *00, Springer, pp. 67-81.

SENA, D., COELHO, R., KULESZA, U., AND BONIFACIO, R. Understanding the exception
handling strategies of Java libraries: An empirical study. In Proceedings of the 13th Working
Conference on Mining Software Repositories (2016), MSR *16, ACM Press, pp. 212-222.

SHAH, H., GORG, C., AND HARROLD, M. J. Why do developers neglect exception
handling? In Proceedings of the 4th International Workshop on Exception Handling (WEH)
(2008), ACM, pp. 62-68.

SHAPIRO, S. S., AND MARTIN, B. W. An analysis of variance test for normality.
Biometrika 52 (1965), 591-611.

S1LVA, H., AND VALENTE, M. T. What’s in a GitHub star? understanding repository

starring practices in a social coding platform. Journal of Systems and Software 146 (2018),
112-129.

SINHA, S., AND HARROLD, M. J. Analysis and testing of programs with exception
handling constructs. IEEE Transactions on Software Engineering 26, 9 (2000), 849—-871.

SINHA, S., ORSO, A., AND HARROLD, M. J. Automated support for development,
maintenance, and testing in the presence of implicit flow control. In in Proceedings of the
26th International Conference on Software Engineering (ICSE) (2004).

TEMPERO, E., ANSLow, C., DIETRICH, J., HAN, T., L1, J., LUMPE, M., MELTON,
H., AND NOBLE, J. The qualitas corpus: A curated collection of Java code for empirical
studies. In in Proceedings of the Asia-Pacific Software Engineering Conference (ASPEC).

46

[36] WILLIAMS, T., MERCER, M., MUCHA, J., AND KAPUR, R. Code coverage, what does it
mean in terms of quality? pp. 420-424.

[37] WIRFS-BROCK, R. J. Toward exception-handling best practices and patterns. I[EEE Press
23,5 (2006), 11-13.

[38] ZHANG, P., AND ELBAUM, S. Amplifying tests to validate exception handling code: An

extended study in the mobile application domain. Transactions on Software Engineering
and Methodology 23, 4 (2014), 32:1-32:28.

[39] ZHU, H., HALL, P. A. V., AND MAY, J. H. R. Software unit test coverage and adequacy.
ACM Computing Surveys 29, 4 (Dec. 1997), 366—427.

APPENDIX A - TABLES

47

48

Table 2 — Metrics to answer RQ1. NEBTM=Number of Exceptional Behavior Test Meth-
ods; NTM=Number of Test Methods;, NDUE=Number of Distinct Used Exceptions;
NDTE=Number of Distinct Tested Exceptions.

NEBTM/ NDTE/
‘ NEBTM ‘ NTM ‘ NTM ‘ NDUE ‘ NDTE ‘ NDUE ‘
2 119.15 | 1,122.59 7.27% 50.92 10.64 | 18.44% | mean
g 33035 | 2,624.11 12.33% 46.68 16 | 19.49% | std
g 0 1 0% 3 0 0% | min
§ 9.50 256 4% 37 41 1213% | 50%
is 2,111 | 16,699 100% 252 77 | 73.91% | max
. 10747 | 1,119.50 10.31% 36.21 1338 | 2645% | mean
2 264.75 | 3,309.40 10.63% 78.92 2020 | 24.44% | std
5 £ 0 15 0% 1 0 0% | min
g = 21 362 8.42% 34.50 71 2094% | 50%
2 1,519 | 19,556 40% 460 104 100% | max
S 60.60 | 617.33 7.80% 3879 542 | 11.46% | mean
F = 241.42 | 1,814.61 14.12% 38.89 13.69 | 14.48% | std
o g 0 1 0% 3 0 0% | min
= 4 97 3.06% 27.50 2 5.38% | 50%
2,164 | 15,707 84.73% 257 118 | 66.67% | max
91.14 | 896.96 3.02% 7641 878 | 16.68% | mean
_ 282.64 | 2,440.73 12.89% 50.77 1606 | 19.13% | std
= 0 1 0% 1 0 0% | min
7 1 19450 4.02% 34 3| 1020% | 50%
2,164 | 19,556 100% 460 118 100% | max
2 39.70 | 655.10 2.89% 31.56 490 | 12.48% | mean
‘g 134.05 | 2,345.87 4.80% 55.89 1230 | 23.71% | std
2 0 1 0% 1 0 0% | min
§ 0 16.50 0% 12 0 0% | 50%
= 806 | 15,077 16.86% 337 65 100% | max
- 1122 | 134.98 4.29% 1418 202 | 12.68% | mean
8 28.24 | 330.57 7.02% 19.31 409 | 20.12% | std
§ 0 1 0% 1 0 0% | min
o = 0 22.50 0% 9 0 0% | 50%
= 144 1,922 26.26% 130 17 100% | max
2° 1.69 2426 430% 16.50 0.43 2.87% | mean
@ 5.09 50.13 11.12% 14.86 1.11 8.12% | std
S 0 1 0% 1 0 0% | min
= 0 4.50 0% 12 0 0% | 50%
28 276 48.15% 60 6 40% | max
1795 | 27548 3.84% 20.54 2353 9.90% | mean
_ 79.99 | 1,379.23 7.79% 35.78 7.69 | 19.43% | std
= 0 1 0% 1 0 0% | min
0 10 0% 10 0 0% | 50%
806 | 15,077 48.15% 337 65 100% | max
2 362.50 | 2,387.05 13.21% 68.18 2841 | 37.41% | mean
‘g 598.07 | 3,933.30 11.11% 78.92 4406 | 37.64% | std
[} 0 2 0% 4 0 0% min
g 79.50 1,163 11.04% 46 12 | 3420% | 50%
ia 2329 | 16,924 34.38% 374 194 | 160.53% | max
. 259.03 | 1,936.46 11.32% 33.43 1203 | 32.58% | mean
2 661.27 | 4,430.93 11.32% 28.30 1496 | 32.82% | std
£ £ 0 6 0% 2 0 0% | min
S = 35 391 9.65% 26 8 | 21.43% | 50%
= 3462 | 22,539 41% 122 70 125% | max
= 20.17 | 53733 3.67% 39 383 | 10.82% | mean
E P 41.16 | 614.41 3.75% 37.68 6.05 | 12.81% | std
p= S 0 39 0% 11 0 0% | min
= 4 235 2.86% 27.50 1.50 5.56% | 50%
104 1,333 7.97% 108 16 | 33.33% | max
27241 | 1,960.56 11.25% 76.10 1697 | 32.19% | mean
_ 608.46 | 4,037.08 10.96% 54.14 2933 | 33.73% | std
Z 0 2 0% 2 0 0% | min
40 409 9.38% 36 7 20% | 50%
3462 | 22,539 41% 374 194 | 160.53% | max

49

Table 3 — Metrics to answer RQ2. NDUCE=Number of Distinct Used Custom Excep-
tions;, NDUSTE=Number of Distinct Used Standard/Third-party Exceptions;
NDUE=Number of Distinct Used Exceptions.

NDUCE/ NDUSTE/
‘ NDUCE ‘ NDUSTE ‘ NDUE ‘ NDUE ‘ NDUE
F 78 78 78 78 78 count
= 15.36 35.56 50.92 22.12% 77.88% | mean
z 22.94 25.67 46.68 16.25% 16.25% | std
2 0 2 3 0% 33.33% | min
5 5 29 37 18.98% 81.02% | 50%
- 138 133 252 66.67% 100% | max
34 34 34 34 34 | count
4 14.65 41.56 56.21 17.91% 82.09% | mean
. ‘g 27.58 52.94 78.92 13.08% 13.08% | std
S B 0 1 1 0% 42.48% | min
5 3 4.50 30.50 34.50 17.03% 82.97% | 50%
2 143 317 460 57.52% 100% | max
) 90 90 90 90 90 [count
4 . 8.82 29.97 38.79 12.95% 87.05% | mean
A 2 25.64 22.92 38.89 14.82% 14.82% | std
el 0 3 3 0% 11.28% | min
2.50 26 27.50 8.86% 91.14% | 50%
228 135 257 88.72% 100% | max
202 202 202 202 202 | count
12.33 34.08 46.41 17.33% 82.67% | mean
= 25.05 31.03 50.77 15.62% 15.62% | std
< 0 1 1 0% 11.28% | min
4 27 34 14.82% 85.18% | 50%
228 317 460 88.72% 100% | max
F 50 50 50 50 50 | count
= 8.40 23.16 31.56 12.01% 87.99% | mean
3 28.57 30.19 55.89 14.33% 14.33% | std
g 0 1 1 0% 45.40% | min
5 1 11 12 6.70% 93.30% | 50%
- 184 153 337 54.60% 100% | max
60 60 60 60 60 | count
4 2.02 12.17 14.18 6.43% 93.57% | mean
g 5.87 13.86 19.31 9.11% 9.11% | std
B 0 1 1 0% 67.69% | min
° 3 0 8 9 0% 100% | 50%
Z 42 88 130 32.31% 100% | max
< 7 7 7 a7 47 | count
. 1.40 15.10 16.50 3.93% 96.07% | mean
2 3.31 12.32 14.86 7.30% 7.30% | std
el 0 1 1 0% 73.33% | min
0 12 12 0% 100% | 50%
16 51 60 26.67% 100% | max
132 132 132 152 152 | count
3.95 16.59 20.54 7.58% 92.42% | mean
= 17.06 20.85 35.78 11.15% 11.15% | std
< 0 1 1 0% 45.40% | min
0 9 10 0% 100% | 50%
184 153 337 54.60% 100% | max
F 22 22 22 22 22 | count
= 22.18 46 68.18 21.37% 78.63% | mean
= 42.68 39.17 78.92 15.19% 15.19% | std
g 0 4 4 0% 45.45% | min
g 11 35 46 23.53% 76.47% | 50%
= 204 170 374 54.55% 100% | max
35 35 35 35 35 count
4 6.86 26.57 33.43 12.23% 87.77% | mean
‘g 12.88 17.92 28.30 13.16% 13.16% | std
g B 0 2 2 0% 50% | min
g 3 2 24 26 10% 90% | 50%
= 61 78 122 50% 100% | max
A 6 6 6 6 6 | count
= . 8.33 30.67 39 19.88% 80.12% | mean
s 2 10.41 28.01 37.68 11.35% 11.35% | std
el 1 7 11 6.98% 63.64% | min
3.50 23.50 27.50 20.84% 79.16% | 50%
28 80 108 36.36% 93.02% | max
63 63 63 63 63 | count
12.35 33.75 46.10 16.15% 83.85% | mean
= 27.74 29.02 54.14 14.25% 14.25% | std
< 0 2 2 0% 45.45% | min
3 28 36 13.33% 86.67% | 50%
204 170 374 54.55% 100% | max

50

Table 4 — Metrics to answer RQ2 (continued). NDTCE=Number of Distinct Tested Custom
Exceptions; NDTSTE=Number of Distinct Tested Standard/Third-party Exceptions;
NDTE=Number of Distinct Tested Exceptions.

NDTCE/ NDTSTE/
‘ NDTCE ‘ NDTSTE ‘ NDTE ‘ NDTE ‘ NDTE ‘

v 78 78 78 78 78 | count
% 4.03 4.88 8.91 35.44% 64.56% | mean

g 7.53 7.03 13.94 27.98% 27.98% | std

£ 0 0 0 0% 0% | min

= 1 2 3 38.60% 61.40% | 50%

- 34 34 65 100% 100% | max
34 34 34 34 34 | count
] 4.18 6.35 10.53 26.88% 73.12% | mean

g g 9.68 7.16 15.79 22.24% 22.24% | std
o 5 0 0 0 0% 22.22% | min
o) | 1 4.50 5.50 27.27% 72.73% | 50%
@Q_ 56 30 86 77.78% 100% | max
i) 90 90 90 90 90 | count
= " 2.37 2.40 4.77 32.67% 67.33% | mean

A 3 11.25 3.58 12.53 36.29% 36.29% | std
= 0 0 0 0% 0% | min

0 1 1 26.79% 73.22% | 50%

104 17 109 100% 100% | max
202 202 202 145 145 count
3.31 4.02 7.34 32.58% 67.42% | mean

= 9.69 5.95 13.80 30.73% 30.73% | std

< 0 0 0 0% 0% | min

0 2 2 30.43% 69.57% | 50%

104 34 109 100% 100% | max
@ 50 50 50 17 17 | count
% 1.22 2.98 4.20 22.38% 77.62% | mean

g 3.82 7.25 10.61 28.90% 28.90% | std

g 0 0 0 0% 0% | min

= 0 0 0 10% 90% | 50%

- 22 36 58 100% 100% | max
60 60 60 24 24 | count
] 0.33 1.45 1.78 13.13% 86.87% | mean

5 1.07 2.75 3.52 23.68% 23.68% | std

5 0 0 0 0% 0% | min

° — 0 0 0 0% 100% | 50%
= 6 13 14 100% 100% | max
EO 42 42 42 7 7 | count
" 0.07 0.33 0.40 16.67% 83.33% | mean

3 0.26 0.93 1.11 23.57% 23.57% | std

= 0 0 0 0% 50% | min

0 0 0 0% 100% | 50%

1 5 6 50% 100% | max
152 152 152 48 48 | count
0.55 1.64 2.20 16.92% 83.08% | mean

= 2.33 4.62 6.63 25.45% 25.45% | std

< 0 0 0 0% 0% | min

0 0 0 0% 100% | 50%

22 36 58 100% 100% | max
P 22 22 22 18 18 | count
% 10.77 10.05 20.82 36.74% 63.26% | mean

g 25.19 11.81 35.35 30.59% 30.59% | std

< 0 0 0 0% 0% | min

s 2 7.50 9.50 34.52% 65.48% | 50%

- 116 44 160 100% 100% | max
35 35 35 29 29 | count
3 2.23 6.54 8.77 25.39% 74.61% | mean

5 3.39 6.80 9.36 24.95% 24.95% | std

g 5 0 0 0 0% 0% | min
£ — 1 5 7 18.18% 81.82% | 50%
= 14 29 41 100% 100% | max
&= 6 6 6 3 5 | count
= " 1.67 1.67 3.33 50.77% 49.23% | mean

= s 2.73 242 4.84 50.03% 50.03% | std
= 0 0 0 0% 0% | min

0.50 0.50 1.50 53.85% 46.15% | 50%

7 6 13 100% 100% | max
63 63 63 52 52 | count
5.16 7.30 12.46 31.76% 68.24% | mean

= 15.46 8.89 22.66 30.28% 30.28% | std

< 0 0 0 0% 0% | min

1 4 7 22.50% 77.50% 50%

116 44 160 100% 100% | max

51

Table 5 — Metrics to answer RQ2 (continued). NDUCE=Number of Distinct Used Custom
Exceptions; NDUSTE=Number of Distinct Used Standard/Third-party Exceptions;
NDUE=Number of Distinct Used Exceptions; NDTCE=Number of Distinct Tested
Custom Exceptions; NDTSTE=Number of Distinct Tested Standard/Third-party Ex-
ceptions; NDTE=Number of Distinct Tested Exceptions.

| NDTCE/NDUCE | NDTSTE/NDUSTE |

P 68 68 | count
5 26.18% 12.09% | mean
2 27.69% 13.17% | std
2 0% 0% | min
s 20.84% 7.90% | 50%
= 100% 53.12% | max
31 31 count
4 34.16% 17.31% | mean
o g 31.58% 15.32% | std
9] S 0% 0% | min
oy S| 33.33% 15.38% | 50%
2 100% 70% | max
IS 64 64 | count
= " 28.75% 8.14% | mean
A 3 36.93% 9.40% | std
= 0% 0% | min
11.80% 385% | 50%
100% 31.71% | max
163 163 | count
28.71% 11.53% | mean
= 32.26% 12.67% | std
< 0% 0% | min
20% 7.69% | 50%
100% 70% | max
P 30 30 | count
5 10.33% 9.35% | mean
2 20.57% 14.12% | std
2 0% 0% | min
s 0% 0% | 50%
= 66.67% 55.56% | max
24 24 | count
4 14.59% 12.20% | mean
g 26.20% 14.89% | std
S 0% 0% | min
o = 0% 9.09% | 50%
= 100% 53.33% | max
2° 12 12 | count
" 12.78% 3.52% | mean
3 29.47% 9.01% std
= 0% 0% | min
0% 0% | 50%
100% 31.25% | max
66 66 | count
12.33% 9.33% | mean
= 24.13% 13.80% | std
< 0% 0% | min
0% 0% | 50%
100% 55.56% | max
2 18 18 | count
5 42.36% 21.46% | mean
2 29.61% 16.37% | std
2 0% 0% | min
s 50% 2590% | 50%
. 100% 57.14% | max
26 26 | count
4 52.26% 26.53% | mean
g 34.22% 20.70% | std
g B 0% 0% | min
£ — 50% 19.44% | 50%
K= 100% 78.95% | max
,i“ 6 6 | count
= " 26.39% 3.82% | mean
p= 2 29.07% 6.49% | std
= 0% 0% | min
25% 1.25% | 50%
58.33% 16.67% | max
50 50 | count
45.59% 21.98% | mean
= 32.57% 19.17% | std
< 0% 0% | min
50% 17.80% | 50%
100% 78.95% | max

52

Table 6 — Metrics to answer RQ3. NCTS=Number of Covered Throw Statement Lines;
NTS=Number of Throw Statement Lines.

Throw Statement

. Line
NCTS NTS Line Coverage
(NCTS/NTS) Coverage
« 11 11 11 11 | count
5 26.55 | 144.09 19.30% 64.61% | mean
= 39.82 | 117.87 18.96% 23.78% | std
2 1 12 1.52% 21.68% | min
s 8 105 12.38% 72.12% | 50%
= 121 394 60.87% 91.61% | max
3 3 3 3 count
2 28.33 | 29233 16.09% 39.24% | mean
- ‘g 36.25 | 168.94 24.43% 40.46% | std
8 £ 4 158 1.69% 12.46% | min
5 a 11 237 2.28% 1947% | 50%
2 70 482 44.30% 85.78% | max
S 12 12 12 12 | count
% . 35.50 | 246.50 24.72% 69.57% | mean
A 4 57.07 | 376.86 23.52% 18.19% | std
e 1 4 0.94% 30.71% | min
8 51 16.48% 74.16% | 50%
184 1,179 86.67% 96.20% | max
26 26 26 26 count
30.88 | 208.46 21.43% 63.97% | mean
= 46.82 | 271.46 21.10% 2431% | std
< 1 4 0.94% 12.46% | min
8 | 131.50 15.67% 72.50% | 50%
184 1,179 86.67% 96.20% | max
» 1 1 1 1 count
5 37 63 58.73% 96.26% | mean
3 - - - - std
2 37 63 58.73% 96.26% | min
g 37 63 58.73% 96.26% | 50%
= 37 63 58.73% 96.26% | max
3 3 3 3 count
2 2.67 5 56.94% 75.71% | mean
‘g 1.53 2.65 37.35% 12.58% | std
£ 1 3 33.33% 63.39% | min
o S| 3 4 37.50% 75.20% | 50%
= 4 8 100% 88.53% | max
§ T T T T | count
. 2 18 11.11% 82.40% | mean
i} - - - - | std
e 2 18 11.11% 82.40% | min
2 18 11.11% 82.40% | 50%
2 18 11.11% 82.40% | max
5 5 5 5 count
9.40 19.20 48.13% 81.16% | mean
= 15.47 25.19 33.56% 12.60% | std
< 1 3 11.11% 63.39% | min
3 8 37.50% 82.40% | 50%
37 63 100% 96.26% | max
» 1 1 1 1 count
5 149 245 60.82% 86.58% | mean
£3 - - - - std
2 149 245 60.82% 86.58% | min
s 149 245 60.82% 86.58% | 50%
= 149 245 60.82% 86.58% | max
5 5 5 5 count
2 162 | 290.20 52.71% 87.96% | mean
‘g 124.17 | 140.28 39.14% 11.11% | std
g 8 11 80 13.75% 73.96% | min
£ a 118 286 35.31% 93.72% | 50%
k5] 305 472 96.49% 98.16% | max
,f‘ 2 2 2 2 | count
= . 3.50 | 104.50 9.89% 48.64% | mean
s 4 0.71 | 116.67 11.72% 26.69% | std
e 3 22 1.60% 29.77% | min
350 | 104.50 9.89% 48.64% | 50%
4 187 18.18% 67.52% | max
8 8 8 8 count
120.75 | 238.12 43.02% 77.96% | mean
= 118.61 | 142.25 36.34% 22.36% | std
< 3 22 1.60% 29.77% | min
109.50 265 30.16% 82.33% | 50%
305 472 96.49% 98.16% | max

53

Table 7 — Metrics to answer RQ4. NCTSCE=Number of Covered Throw Statement Lines of
Custom Exceptions; NTSCE=Number of Throw Statement Lines of Custom Exceptions;
NCTPSSTPE=Number of Covered Throw Statement Lines of Standard/Third-party
Exceptions; NTSSTPE=Number of Throw Statement Lines of Standard/Third-party

Exceptions.
NCTSCE/ NCTSSTPE/
‘ NCTSCE‘ NTSCE ‘ N ‘ NCTSSTPE ‘ NTSSTPE ‘ bt ‘

I 11 11 9 11 11 9 | count

5 9.82 63.82 15.46% 8.91 56.64 21.91% | mean

= 14.84 60.46 11.10% 11.55 43.83 31.85% | std

g 0 0 0.67% 0 9 0% | min

g 4 52 18.52% 4 44 1477% | 50%

= 43 169 36.44% 37 149 100% | max
3 3 3 3 3 3 count
2 6.67 | 18233 28.50% 16 96.33 1531% | mean

| & 577 | 24332 47.50% 23.43 69.83 20.02% | std
g| & 0 12 0% 1 20 2.55% | min
5| 3 10 74 2.17% 4 112 5% | 50%
@Q 10 461 83.33% 43 157 38.39% | max
5 2 2 9 2 12 9 | count
2| . 2125 | 144.92 37.66% 13.17 88.33 24.45% | mean
Al 2 4239 | 24851 39.68% 19.30 112.12 25.80% | std
e 0 0 0.56% 1 4 1.15% | min

2 12.50 18.18% 5 28.50 19.61% | 50%

112 761 100% 70 357 86.21% | max
26 26 21 26 26 2T [count
1473 | 114.92 26.84% 11.69 75.85 22.06% | mean

= 3034 | 188.41 31.87% 16.36 83.53 26.86% | std

< 0 0 0% 0 4 0% | min
3.50 44 18.18% 5 43.50 14.77% | 50%

112 761 100% 70 357 100% | max
I 1 1 1 1 1 1 count
E 29 34 85.29% 8 27 29.63% | mean

2 - - - - - - | std

g 29 34 85.29% 8 27 29.63% | min

g 29 34 85.29% 8 27 29.63% | 50%

. 29 34 85.29% 8 27 29.63% | max
3 3 1 3 3 I count
3 0 0.33 0% 2.67 4.67 42.86% | mean

‘g 0 0.58 - 1.53 2.08 - | std

£ 0 0 0% 1 3 42.86% | min

ol 3 0 0 0% 3 4 42.86% | 50%
F 0 1 0% 4 7 42.86% | max
§ T T 0 T T 0 | count
" 0 0 - 2 17 - mean

s} - - - - - - | std

= 0 0 - 2 17 - | min

0 0 - 2 17 - | 50%

0 0 - 2 17 - max
5 5 2 5 5 2 | count
5.80 7 42.64% 3.60 11.60 36.24% | mean

= 12.97 15.10 60.31% 2.70 10.24 9.36% | std

< 0 0 0% 1 3 29.63% | min

0 0 42.64% 3 7 36.24% | 50%

29 34 85.29% 8 27 42.86% | max
I 1 1 1 1 1 1 count
5 43 86 50% 7 49 14.29% | mean

3 - - - - - - | std

g 43 86 50% 7 49 14.29% | min

g 43 86 50% 7 49 14.29% | 50%

. 43 86 50% 7 49 14.29% | max
5 5 5 5 5 5 count
2 3.80 17.40 48.14% 93.40 178.80 47.16% | mean

‘g 3.42 28.45 48.94% 90.69 67.47 43.15% | std

gl 8 0 1 0% 10 72 7.60% | min
gl a 3 6 33.33% 66 179 26.83% | 50%
= 9 68 100% 204 246 97.21% | max
A)) Z) Z 2 | count
=] 2.50 5.50 47.22% 1 77 0.71% | mean
S| < 2.12 495 3.93% 1.41 90.51 1% | std
e 1 2 44.44% 0 13 0% | min
2.50 5.50 47.22% 1 77 0.71% | 50%

4 9 50% 2 141 1.42% | max
8 8 8 8 8 8 count
8.38 23 48.14% 59.50 137.12 31.44% | mean

= 14.26 33.81 37.03% 83.02 84.59 39.40% | std

< 0 1 0% 0 13 0% | min
3.50 7.50 47.22% 11.50 156 14.09% | 50%

43 86 100% 204 246 97.21% | max

