UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

AVALIAÇÃO ENERGÉTICA DE UMA UNIDADE DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO BROMETO DE LÍTIO-ÁGUA (LiBr-H₂O)

Jaqueline Silva Albuquerque da Guia

Maceió 2010 UNIVERSIDADE FEDERAL DE ALAGOAS JAQUELINE SILVA ALBUQUERQUE DA GUIA

AVALIAÇÃO ENERGÉTICA DE UMA UNIDADE DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO BROMETO DE LÍTIO-ÁGUA (LiBr-H₂O)

Maceió 2010 Jaqueline Silva Albuquerque da Guia

AVALIAÇÃO ENERGÉTICA DE UMA UNIDADE DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO BROMETO DE LÍTIO-ÁGUA (LiBr-H₂O)

Dissertação apresentada à Universidade Federal de Alagoas, como requisito para a obtenção do Título de Mestre em Engenharia Química

Orientadora: Prof^a. Dr^a. Karla Miranda Barcellos

Maceió 2010

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico

Bibliotecária Responsável: Maria Auxiliadora Gonçalves da Cunha

 G943a Guia, Jaqueline Silva Albuquerque da. Avaliação energética de uma unidade de refrigeração por absorção utilizando brometo de lítio-água (LiBr-H₂O⁾ / Jaqueline Silva Albuquerque da Guia, 2010. 157 f. : il. grafs. e tabs.

> Orientador: Karla Miranda Barcellos. Dissertação (mestrado em Engenharia Química) – Universidade Federal de Alagoas. Centro de Tecnologia, 2010.

Bibliografia: f. 114-117. Anexos: f. 118-157.

1. Energia solar - Simulação. 2. LiBr-H2O. 3. Software TRNSYS. I. Título.

CDU: 66.045

Jaqueline Silva Albuquerque da Guia

AVALIAÇÃO ENERGÉTICA DE UMA UNIDADE DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO BROMETO DE LÍTIO-ÁGUA (LiBr/H₂O)

Dissertação apresentada à Universidade Federal de Alagoas, como requisito para a obtenção do Título de Mestre em Engenharia Química

Aprovada em: Maceió, 10 de Setembro de 2010.

BANCA EXAMINADORA:

Prof^a. Dr^a. Karla Miranda Barcellos - Orientadora (Universidade Federal de Alagoas)

> Prof^a. Dr^a. Cristiane Holanda Sodré (Universidade Federal de Alagoas)

> Prof. Dr. Gabriel Francisco da Silva (Universidade Federal de Sergipe)

Dedico este trabalho aos meus pais João Batista e Maria José Albuquerque e familiares, a Guilherme, meu esposo e à minha filha, Mariana.

Agradecimentos

A Deus, primeiramente, por ter dado-me forças e persistência para a realização deste trabalho. A Ele seja todo o louvor que possa ser direcionado a mim, todas as ações de graça de minha parte, porque sem Ele, nada eu poderia ter feito.

Aos meus pais como forma de agradecimento por todo o amor, esforço e renúncia dedicados em toda a minha vida, estruturando-me na pessoa que sou.

A Guilherme, meu esposo, pelo carinho, incentivo e compreensão nos momentos difíceis, sem tal ajuda, acredito, não seria possível a concretização deste trabalho.

À minha filha, Mariana, como demonstração de superação de desafios e perseverança.

À minha orientadora Karla Miranda Barcellos, pela paciência dedicada a mim e orientação na construção deste trabalho.

À professora Cristiane Holanda Sodré e ao membro externo, o professor Gabriel Francisco da Silva por apontar as devidas sugestões para o bom desempenho desta pesquisa no exame de qualificação.

À CAPES e a FAPEAL pelo indispensável apoio financeiro.

"O homem que tenta diminuir a glória de Deus, recusando-se a adorá-lO, é como um lunático que deseja apagar o sol, escrevendo a palavra 'escuridão' nas paredes de sua cela."

C.S.Lewis.

Resumo

Grande parte do consumo de energia industrial e residencial está associado à necessidade de refrigeração, e indiretamente, ao condicionamento de ar. Em prédios não industriais, o custo por climatização pode chegar a 80% dos custos de energia elétrica, enquanto que na indústria, esse valor pode atingir até 40%, por exemplo, a indústria têxtil. No Brasil, o setor residencial é o segundo maior consumidor de energia elétrica, sendo maior parte desta energia usada para refrigeração. Isto motiva o estudo de ciclos de refrigeração por absorção que podem usar como fonte de energia, a energia solar que é disponível em abundância principalmente na região do Nordeste brasileiro. Embora o sistema de refrigeração e climatização mais utilizado seja o de compressão de vapor, o qual utiliza energia elétrica para produzir o frio, o primeiro sistema de refrigeração foi o ciclo de absorção (térmico). O estudo e desenvolvimento dos compressores a vapor deram-se pela facilidade de instalação do equipamento e a disponibilidade de energia elétrica, favorecendo assim, o aumento do desempenho dos compressores e a popularização do mesmo. Seja pela utilização residencial e industrial ou por questões ambientais, uma maior utilização dos ciclos térmicos de refrigeração é essencial nos próximos anos. A utilização racional dos recursos energéticos para a produção do frio requer que outras formas de energia, além da energia elétrica, sejam prontamente utilizadas. Com base nessa realidade, o presente trabalho teve como objetivo: estudar, dimensionar e simular o sistema termo solar acoplado ao sistema de refrigeração por absorção utilizando como absorvente, a solução aquosa de, LiBr-H₂O (Brometo de Lítio-Água). Através do pacote computacional TRNSYS (Transient System Simulation), versão 14.2, foi possível simular e analisar a temperatura e a área da sala refrigerada, a área de coleta da energia solar, o volume do Tangue reservatório de água quente e o ciclo de refrigeração por absorção em função dos principais parâmetros termofluidodinâmicos: a taxa de refrigeração, o aquecimento auxiliar no gerador e o coeficiente de performance (COP) do ciclo. O sistema de coleta de energia é composto por um coletor solar, um Tanque reservatório, bomba e um fluido térmico portador de energia, neste caso a água. O sistema de refrigeração possui 5(cinco) componentes: evaporador, absorvedor e trocador de calor localizados no lado de baixa pressão do sistema, e gerador e condensador localizados no lado de alta pressão do sistema. Para a simulação, foram considerados dados de temperatura ambiente, umidade relativa e radiação solar em Maceió no período compreendido de Outubro a Dezembro de 2007. Os resultados gráficos mostraram que há influência da quantidade de toneladas de refrigeração sobre o COP. A variação do tamanho da sala influenciou na temperatura ambiente do local refrigerado para uma área de coletor solar de 30m², volume do Tanque reservatório igual a 5m³ e a temperatura inicial de geração de vapor de 40°C.

Palavras-chave: Energia solar. Solução aquosa de LiBr-H₂O. TRNSYS.

Abstract

Great part of the consumption of industrial and residential energy is associated with the refrigeration necessity, and indirectly, to the air conditioning. In building not industrials, the cost for climatization can arrive 80% of the costs of electric energy, whereas in the industry, this value can reach up to 40%, for example, the textile industry. The residential sector In Brazil, is the second largest consumer of electricity, due to home cooling system. This motivates the study of refrigeration absorption cycles using the source of solar energy. Although the system of refrigeration and used climatization more is of vapor compression, which uses electric energy to produce the cold, the first system of refrigeration was the absorption cycle (thermal). The study and development of vapor compressors occurred by the easiness of installation of the equipment and the availability of electric energy, thus favoring, the increase of the performance of the cycle of vapor compression and the popularizing of the same. Either for the residential and industrial use or ambient guestions, a bigger use of the thermal cycles of refrigeration is essential in the next years. The rational use of the energy resources for the production of the cold requires that other forms of energy, beyond the electric energy, readily are used. This present work aimed to study, design, modeling and simulate the thermo solar system coupled with the absorption refrigeration system using a pair of fluid H₂O-LiBr (lithium bromide-water). Through the computer software TRNSYS (Transient System Simulation), version 14.1, it was possible to design and simulate the size of the room to be cooled, the collector area of solar energy, the volume of the tank and the refrigeration absorption cycle as a function of the main termofluid-dynamic parameters. The collector solar energy system has a solar collector, a storage tank, pump and thermal fluid energy carrier, in this case water. The cooling system has five (5) components: evaporator, absorber and heat exchanger located on the low-pressure system, power source and condenser located on the high pressure system. Experimental data as temperature, relative humidity and solar radiation were collected during the period between October and December 2007 at Federal University of Alagoas in Maceió, Brazil. Graphical results show the profiles of average temperature of the environment to be refrigerated with respect to various parameters such as room size, tank volume, solar energy collector area, cooling capacity and minimum temperature refrigeration. The results showed COP variation with time, the auxiliary heat required to absorption cycle as a function of the hot water collector system, among others.

Keywords: Solar energy. Working pair LiBr-H₂O. TRNSYS.

Lista de figuras

Figura 1 – Matriz energética brasileira 4
Figura 2 – Consumo de energia elétrica por classe no Brasil em 2010
Figura 3 – Consumo residencial brasileiro em 21/01/20085
Figura 4 – Mercado de aquecimento solar no Brasil5
Figura 5 - Estrutura do Sol
Figura 6– (a) Ângulo Zênite, inclinação, ângulo Azimute de superfície e ângulo Azimute solar para uma superfície inclinada; (b) Vista plana mostrando o ângulo Azimute solar
Figura 7– Partes importantes de um coletor plano 10
Figura 8 – Estrutura de um sistema solar simples com coletores planos e reservatório térmico - sem adição de energia elétrica
Figura 9 – Razão entre a absorbância solar e a absorbância solar na incidência normal para uma superfície negra
Figura 10 – Transmitância (considerando absorção e reflexão) de 1, 2, 3 e 4 coberturas para 3 tipos de vidro (K é o coeficiente de extinção [unidade comprimento-1] e L é a espessura da cobertura de vidro [unidade de espessura
Figura 11 – Esquema de um Coletor tipo CPC 14
Figura 12 – Coletores CPC 15
Figura 13 - Sistema de Absorção básico 16
Figura 14 - Representação esquemática do sistema de refrigeração por absorção de simples efeito 17
Figura 15 – Ciclo de refrigeração operado a calor como uma combinação de um ciclo de potência e um de refrigeração
Figura 16 – Ciclo de Absorção utilizando dois pares de solução: LiBr-H ₂ O e NH ₃ -H ₂ O 24
Figura 17 – Diagrama de Temperatura-Pressão-Concentração de Soluções Saturadas de LiBr-H $_2$ O.25
Figura 18 – Diagrama de fase para o sistema LiBr-H ₂ O 26
Figura 19 – Esquema de uma unidade de refrigeração por absorção de LiBr e água, de simples efeito.
Figura 20 – Volume de controle no gerador do sistema
Figura 21 – Volume de controle no absorvedor do sistema 31
Figura 22 – Volume de controle no condensador do sistema
Figura 23 – Volume de controle no Evaporador do sistema

Figura 24 – Volume de controle no Trocador de calor do sistema
Figura 25 – Sistema de refrigeração simulado 35
Figura 26 – Entalpia de LiBr-H ₂ O 46
Figura 27 – Janela do II SiBat Window 49
Figura 28 – Pirâmide invertida onde mostra o nível de acessibilidade dos usuários ROOT, CONCEPTOR e ANALYST
Figura 29 – Janela do library manager 52
Figura 30 – Exemplo de uma Livraria Modelo do tipo Utility 54
Figura 31 – Exemplo de uma livraria de projeto 55
Figura 32 – a) Esquema do Sistema de Refrigeração por Absorção da Solução LiBr-Água a ser simulado; b) Esquema do Sistema de Refrigeração por Absorção da Solução LiBr-Água da BROAD.
Figura 33 – Sistema Termo-Solar
Figura 34 – Sistema Termo-Solar de Refrigeração por Absorção (SITSORA).
Figura 35 – Função Controle
Figura 36 – Conexões do sistema termo-solar por absorção 80
Figura 37 – Volume de controle no evaporador do sistema 89
Figura 38 – Volume de controle no condensador
Figura 39 – Volume de controle do trocador de calor91
Figura 40 – Volume de controle no absorvedor
Figura 41 – Volume de controle no gerador do sistema95
Figura 42 – Perfil de temperatura da água que sai do coletor solar para diferentes áreas de coleta em função do tempo para o SISTERMOSOLAR (sem a conexão com o ciclo de refrigeração)
Figura 43 – Perfil de temperatura da água que sai do coletor solar para diferentes áreas de coleta em função do tempo para o sistema termo-solar por absorção (com conexão com o ciclo de refrigeração) de 2 TR
Figura 44 – Perfil de temperatura da água que sai do coletor solar para diferentes áreas de coleta em função do tempo para o sistema termo-solar por absorção (com conexão com o ciclo de refrigeração) de 5 TR
Figura 45 – Perfil da temperatura do tanque em função do tempo, variando a área do coletor solar para 2 TR
Figura 46 – Perfil da temperatura do tanque em função do tempo, variando a área do coletor solar para 5 TR

Figura 47 – Perfil da temperatura ambiente do local refrigerado em função do tempo, variando a área do coletor solar considerando para 2 TR
Figura 48 – Perfil da temperatura ambiente do local refrigerado em função do tempo, variando a área do coletor solar considerando para 5 TR
Figura 49 – Perfil de temperatura da água de saída do reservatório ao longo do tempo para os diferentes volumes do reservatório de armazenamento de água para CNR=2 TR
Figura 50 – Perfil de temperatura da água de saída do reservatório ao longo do tempo para os diferentes volumes do reservatório de armazenamento de água para CNR=5 TR
Figura 51 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=1TR; AC=30m2; A=63m2 e V=5m3)
Figura 52 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=2TR; AC=30m2; A=63m2 e V=5m3)
Figura 53 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=3TR; AC=30m2; A=63m2 e V=5m3)
Figura 54 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=4TR; AC=30m2; A=63m2 e V=5m3)
Figura 55 – Perfil de temperatura e coeficiente de performance no tempo. (Condições: CNR=5TR; AC=30m2; A=63m2 e V=5m3)
Figura 56 – Perfil de temperatura ambiente do local refrigerado em função do tempo com variação da área do local (Condições: CNR=2TR, AC=30m2, Tg=60°C e V=5m3)
Figura 57 – Perfil de temperatura ambiente do local refrigerado em função do tempo com variação da área do local (Condições: CNR=5TR, AC=30m2, Tg=60°C e V=5m3)
Figura 58 – Perfil de temperatura do local refrigerado em função do tempo com variação da temperatura inicial de geração de vapor (Condições: CNR=2TR, AC=30m2, A=63m3 e V=5m3) 107
Figura 59 – Perfil de temperatura do local refrigerado em função do tempo com variação da temperatura inicial de geração de vapor (Condições: CNR=5TR, AC=30m2, A=63m3 e V=5m3) 107
Figura 60 – Perfil de temperatura da água que retorna do ciclo de refrigeração para o tanque reservatório em função do tempo variando a temperatura inicial de geração de vapor (Condições: CNR=2TR, AC=30m2, A=63m3 e V=5m3)
Figura 61 – Perfil de temperatura da água que retorna do ciclo de refrigeração para o tanque reservatório em função do tempo variando a temperatura inicial de geração de vapor (Condições: CNR=5TR, AC=30m2, A=63m3 e V=5m3)
Figura 62 - Cooficiente de Performance (COP) o perfil das temperaturas: de égue que reterne de

Figura 62 – Coeficiente de Performance (COP) e perfil das temperaturas: da água que retorna do ciclo ao tanque reservatório (Tg), do ambiente (Tamb), da água quente que sai do coletor solar (Tcs), da ambiente do local refrigerado (Tmlocal) e da água quente que sai do tanque reservatório (Ttank)

em função do tempo (Condições: CNR=5TR, AC=60m ² , A=63m ² e V=2m ³) 109
Figura 63 - Coeficiente de Performance (COP) e perfil das temperaturas: da água que retorna do
ciclo ao tanque reservatório (Tg), do ambiente (Tamb), da água quente que sai do coletor solar (Tcs),
da ambiente do local refrigerado (Tmlocal) e da água quente que sai do tanque reservatório (Ttank)
em função do tempo (Condições: CNR=5TR, AC=60m ² , A=350m ² e V=2m ³) 110
Figura 64 – Radiação média solar de 12 a 21 de Novembro de 2007, para Maceió 110
Figura 65 – Comportamento da taxa de calor no gerador em função do tempo 111
Figura 66 – Comportamento da taxa de refrigeração em função do tempo 111
Figura 67 – Janela do II SiBat 155
Figura 68 – Janela Library Manager

Lista de tabelas

Tabela 1 – Lista de terminologia usada em ciclos de absorção	. 18
Tabela 2 – Fluidos de trabalho e condição em cada ponto do sistema da Figura 19	. 28
Tabela 3 – Coeficientes da Equação (71)	. 39
Tabela 4 – Coeficientes da Equação (73)	. 40
Tabela 5 – Coeficientes para determinação da temperatura de orvalho da Equação 94	. 43
Tabela 6 – Coeficientes da Equação (103)	. 45
Tabela 7 – Coeficientes da Equação (104)	. 47
Tabela 8 – Fluidos de trabalho e condição em cada ponto do sistema na Figura 32	. 61
Tabela 9 – Discriminação de cada ponto do Sistema de Refrigeração por Absorção da BROAD Figura 32b	da . 62
Tabela 10 – Considerações iniciais para um Sistema de Refrigeração por Absorção utilizando Ág LiBr	jua- . 63
Tabela 11 – Parâmetros, dados de entrada e saída do Coletor Solar (Type 1d)	. 66
Tabela 12 – Parâmetros, dados de entrada e saída do Controlador ON/OFF (Type 2b)	. 69
Tabela 13 – Parâmetros, dados de entrada e saída das Bomba (Type 3)	. 71
Tabela 14 – Parâmetros, dados de entrada e saída do tanque reservatório (Type 4a)	. 72
Tabela 15 – Parâmetros, dados de entrada e saída do Ciclo de Absorção (Type 7a)	. 73
Tabela 16 – Parâmetros, dados de entrada e saída do local a ser refrigerado (Type 12)	. 75
Tabela 17 – Parâmetros, dados de entrada e saída do Processador de Radiação Solar (Type16)	. 77
Tabela 18 – Parâmetros, dados de entrada e saída do conversor de propriedades psicrométri (Type33)	cas . 79
Tabela 19 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo refrigeração por absorção para a capacidade nominal de refrigeração de 1TR	de . 82
Tabela 20 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo refrigeração por absorção para a capacidade nominal de refrigeração de 2TR	de . 83
Tabela 21 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo refrigeração por absorção para a capacidade nominal de refrigeração de 3TR	de . 84
Tabela 22 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo refrigeração por absorção para a capacidade nominal de refrigeração de 4TR	de . 85
Tabela 23 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo	de

refrigeração por absorção para a capacidade nominal de refrigeração de 5TR	86
Tabela 24 – Calor em cada componentes do ciclo de refrigeração para a CRN=1TR	87
Tabela 25 – Calor em cada componentes do ciclo de refrigeração para a CRN=2TR	87
Tabela 26 – Calor em cada componentes do ciclo de refrigeração para a CRN=3TR	87
Tabela 27 – Calor em cada componentes do ciclo de refrigeração para a CRN=4TR	87
Tabela 28 – Calor em cada componentes do ciclo de refrigeração para a CRN=5TR	88
Tabela 29 – Temperatura e entalpia da solução no ponto 5	92
Tabela 30 - Temperatura da solução de LiBr-H $_2$ O e de orvalho no ponto 6	92
Tabela 31 – Pressão no ponto 6	92
Tabela 32 - Parâmetros mantidos constantes durante a simulação do sistema de ref	rigeração por
absorção acoplado ao sistema termo solar	102
Tabela 33 – Valores das variáveis do sistema SISTERMOSOLAR por Absorção	que geraram
melhores resultados	109

Simbologia

2MP	-	2 Metil-1 pentanol
CAP	-	Capacitância efetiva
C _{min}	-	Taxa de capacitância mínima da carga do trocador de calor
C _p	-	Calor específico da corrente de fluxo
CCl_2F_2	-	Diclorodifluorometano
CCl₃F	-	Triclorofluorometano
CDE	-	Coeficiente de Eficácia de Absorção
CFC	-	Cloro-Fluor-Carbono
CF_3CH_2F	-	Tetrafluoroetano
$CHCl_2CF_3$	-	Diclorotrifluoroetano
CHF_2CF_3	-	Pentafluoroetano
COP	-	Coeficiente de Performance
CRN	-	Capacidade nominal de refrigeração
DMF	-	Dimetilformamida
3	-	Efetividade
E181	-	Dimetil-éter de Tetraetilenoglicol
Н	-	Entalpia
H ₂ O	-	Água
HO(CH ₂) ₃ OH	-	1,3- propanediol
LHR	-	Razão entre a carga latente e a carga total
LiBr	-	Brometo de Lítio
LiO ₂	-	Dióxido de Lítio
m	-	Vazão mássica de água no absorvedor
NaSCN	-	Tiocianato de sódio
NH ₃	-	Amônia
NMP	-	n-metil-2-pyrrolidone
NUT	-	Número de Unidades de Transferência
Q	-	Fluxo de Calor

Qa	-	Calor do Absorvedor
q _c	-	Calor do Condensador
q _e	-	Calor do Evaporador
q _g	-	Calor do Gerador
R23	-	Trifluorometano
R32	-	Difluorometano
R134a	-	Tetrafluoroetano
SRA	-	Sistema de Refrigeração por Absorção
T _a	-	Temparatura de absorção
TCS	-	Trocador de Calor tipo Solução
Tcs		Temperatura da água que sai do Coletor Solar
TCR	-	Trocador de Calor tipo Refrigerante
TFE	-	2,2,2-Trifluoroetanol
TFE/PYR	-	2-Pyrrolidone
TL	-	Temperatura mais baixa de entrada
T _{MAX}	-	Temperatura máxima de entrada ou limite superior de corte na
		temperatura
TR	-	Toneladas de Refrigeração
T _{RI}	-	Temperatura ambiente inicial
Tr	-	Temperatura de Refrigeração
T _s	-	Temperatura Absoluta
U	-	Coeficiente global de transferência de calor
UA	-	Constante contendo unidades de energia/temperatura-tempo
W	-	Trabalho
X	-	Concentração da solução
ΔTm_t	-	Média Logarítmica das Diferenças de Temperatura
ΔT_{H}	-	Diferença de temperatura da banda inferior
ΔT_L	-	Diferença de temperatura da banda inferior
γ_i	-	Entrada da função controle

 γ_o - Saída da função controle

W - Trabalho

SUMÁRIO

1 INTRODUÇÃO	1
2 OBJETIVOS	3
2.1 OBJETIVO GERAL	3
2.2 OBJETIVOS ESPECÍFICOS	
3 FUNDAMENTAÇÃO TEÓRICA	4
3.1 CENÁRIO ENERGÉTICO BRASILEIRO	4
3.2 ENERGIA SOLAR	
3.2.1 O sol	6
3.2.2 A constante solar	7
3.2.3 Radiação solar horizontal	7
3.2.4 Mudança do ângulo horário no tempo solar	8
3.3 COLETOR SOLAR	9
3.3.1 Coletor plano	9
3.3.2 Coletor CPC (Compound Parabolic Concentrators)ou Winston	14
3.4 CICLO DE ABSORÇAO	15
3.5 COEFICIENTE DE EFICACIA OU DE PERFORMANCE DE UM CICLO DE ABSORÇÃO IDEAL	19
3.6 A ESCULHA DUS REFRIGERANTES	20
3.7 PROPRIEDADES DA SOLUÇÃO DE BROIVIETO DE LITIO-AGUA (LIBR- H_2O)	24
 3.8 ANALISE ENERGETICA DO SISTEIVIA DE ADSORÇÃO PARA A SOLUÇÃO AQUOSA DE LIDR-1720	20 20
3.8.1.1 Absorvedor	
3.8.1.2 Gerador	
3.8.1.3 Trocador de calor	36
3.8.1.4 Condensador	37
3.8.1.5 Evaporador	
3.8.2 Modelo baseado nas correlações especificas para a solução aquosa de brometo de litio e agua	۵۵ مد
3.8.2.2 Capacidades caloríficas para a água e solução de LiBr- H_2O	
3.8.2.3 Entalpias para a água e solução de LiBr- H ₂ O	
3.9 O SIMULADOR COMERCIAL TRNSYS	48
3.9.1 Barra de título	50
3.9.2 Barra para mover e deslizar a janela	50
3.9.3 Botões	50
3.9.3.1 Quit button	50
3.9.3.2 Save button	50
3.9.4 Ícones da ianela principal do II SiBat	
3.9.4.1 Accont manager	
4 METODOLOGIA	59
4.1 METODOLOGIA DE ANÁLISE ENERGÉTICA DO SISTEMA DE ABSORCÃO PARA A SOLUÇÃO AQUOSA DE	LIBR-
ÁGUA	
4.2 METODOLOGIA DE SIMULAÇÃO ATRAVÉS DO TRNSYS	63
4.2.1 Escolha do sistema solar	64
4.2.2 Coleta de dados meteorológicos	64
4.2.3 Criação do arquivo de dados	65
4.2.9 Escolha dos componentes ou "types"	65
4.3 CONEXÕES DAS ENTRADAS E SAÍDAS DE CADA COMPONENTE	79
5 RESULTADOS E DISCUSSÕES	81
5.1 DIMENSIONAMENTO DO SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO	81
5.1.1 Dimensionamento do Evaporador	88

5.1.2	Dimensionamento do Condensador	89
5.1.3	Dimensionamento do Trocador de Calor	91
5.1.4	Dimensionamento do Absorvedor	93
5.1.5	Dimensionamento do Gerador	94
5.2 R	ESULTADOS DA SIMULAÇÃO DO SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO ACOPLADO AO SISTEM/	4
TERM	O SOLAR ATRAVÉS DO TRNSYS	96
5.2.1	Influência do tamanho da área do coletor solar	96
5.2.2	Influência do volume do tanque	. 100
5.2.3	Influência da capacidade nominal de refrigeração	. 102
5.2.4	Influência do tamanho da sala	105
5.2.5	Influência da temperatura inicial de geração de vapor	. 106
5.2.6	Radiação média solar	110
5.2.7	Taxa de calor cedido ao gerador e de refrigeração	. 111
6. CC	NCLUSÕES	112
I	REFERÊNCIAS BIBLIOGRÁFICAS	114
	ANEXOS	118

1 INTRODUÇÃO

Questões ambientais e energéticas atuais demandam inovações em projetos de refrigeração, que tenham como pontos principais o baixo consumo energético e menor impacto ao meio ambiente. Recentemente maior importância tem sido dada ao estudo dos sistemas de refrigeração por absorção, devido às peculiaridades desses sistemas em relação aos ciclos por compressão de vapor. Porém os sistemas de absorção passaram por muitos altos e baixos. Foi predecessor do sistema de compressão de vapor no Século XIX e os sistemas água-amônia tinham grande aplicação em refrigeradores domésticos e grandes instalações industriais, como indústrias guímicas e de processos. O sistema LiBr-água foi comercializado nos anos 40 e 50 como resfriadores de água para ar condicionado de grandes edifícios. Eles eram energizados por vapor ou água quente gerados em caldeiras a óleo ou gás natural. Nos anos 70, a substituição de combustão direta de óleo e gás natural afetou a aplicação das unidades de absorção, mas ao mesmo tempo, abriu outras oportunidades, como a utilização de calor derivado de coletores solares para energizar unidades de absorção. Também em função do aumento crescente do custo da energia, o calor de baixo nível de temperatura (na faixa de 90 a 110°C), que era anteriormente rejeitado para a atmosfera em instalações químicas e de processo, é agora fregüentemente usado para operar sistemas de absorção que fornece refrigeração necessária em algum outro ponto da fábrica. A combinação de sistema de absorção com sistemas de compressão de vapor é uma outra aplicação de unidades de absorção que permanece atrativa.

Uma máquina de refrigeração por absorção é um sistema termoquímico, por isso não possui componentes móveis (com exceção das bombas necessárias) o que a torna menos susceptível à manutenção e com vida útil longa, além disso, o consumo de energia elétrica é menor, tipicamente cerca de 10 % do consumo de um equivalente sistema por compressão de vapor. Os sistemas por absorção são também chamados de termo ativados por necessitarem de alguma fonte de calor para seu acionamento, podendo assim aproveitar fontes de calor como: energia solar, calor residual proveniente de processos industriais e queima de combustíveis fósseis. Essa característica em especial, os torna utilizáveis em sistemas de co-geração, que por mais eficiente que seja um gerador termelétrico, a maior parte da energia do combustível usado para seu acionamento, cerca de 60%, é transformado em calor e rejeitado ao meio-ambiente. Trata-se de uma limitação física que independe do tipo de combustível (diesel, gás natural, carvão, etc). Por esta razão, no máximo 40% da energia dos combustíveis fósseis usados em um gerador podem ser transformados em energia elétrica. Assim na co-geração pode-se economizar o combustível que seria necessário para geração de efeito refrigerante (em condicionadores de ar, refrigeradores, etc), elevando-se a eficiência energética global em até 85%. Outra vantagem relacionada aos sistemas por absorção está ligada à conservação do meio ambiente já que estas máquinas não empregam os CFC's (Cloro-Flúor-Carbonos) ou outros fluidos refrigerantes sintéticos, que contribuam para a depleção da camada de ozônio ou para o aquecimento global. Os sistemas por absorção analisados no presente trabalho

utilizam água como refrigerante e o sal brometo de lítio (LiBr) como absorvente, estes são elementos que não apresentam riscos ao meio ambiente. No entanto existem três grandes desvantagens dos sistemas por absorção frente aos sistemas de compressão de vapor, que residem no seu coeficiente de performance (COP) relativamente reduzido (podendo alcançar o valor de 1,1, isso nos equipamentos mais sofisticados de duplo efeito, enquanto nos equipamentos que utilizam o ciclo por compressão de vapor o valor do COP pode atingir até 6,0), no seu custo, que são 67% mais caras que as máquinas de refrigeração por compressão de vapor e por operar no vácuo, no caso de LiBr-H₂O. Amplamente difundida em países asiáticos, Europa e Estados Unidos, a refrigeração por absorção movida a gás natural tem sua utilização crescente nos últimos anos no Brasil. O aumento na utilização desse sistema ocorre em função do acréscimo na oferta de gás natural pelas concessionárias, em virtude das políticas de incentivo ao uso deste energético e à necessidade de diversificação da matriz energética brasileira. A aplicação de gás natural em refrigeração no Brasil, ainda se concentra nos grandes centros: São Paulo e Rio de Janeiro, especialmente no Rio de Janeiro onde existem atualmente cerca de 28 mil toneladas de Refrigeração (TR) em sistemas de refrigeração por absorção movidos a gás natural instalados, o que corresponde a cerca de 35% do potencial instalado, essa participação deverá crescer, segundo especialistas na área, à medida que sejam reduzidos subsídios que tornam artificialmente mais barata a energia elétrica no País em relação ao gás natural (CARVALHO et al., 2006).

Em virtude da já citada necessidade de diversificação da matriz energética brasileira, a energia solar ganha papel importante por ser uma fonte renovável, de grande disponibilidade e abundância. Acredita-se que o País investirá mais recursos no desenvolvimento de pesquisas em energia fotovoltaica e na utilização desta por toda a população, uma vez que já se verificou a sua aplicabilidade e economia. O que torna a utilização da energia solar restrita é o seu custo inicial com os equipamentos de capactação solar e sua instalação, que é relativamente elevado para uma família de baixa renda, por exemplo, o que inicialmente, teria que ser subsidiada pelo Governo ou por seus patrocinadores.

2 OBJETIVOS

2.1 OBJETIVO GERAL

O principal objetivo deste trabalho consiste no estudo, dimensionamento e simulação de um sistema de refrigeração por absorção tanto para câmaras frigorificas quanto para ar condicionado, tecnológica e economicamente viável, utilizando como fonte alternativa de energia, a energia solar, em substituição aos equipamentos de refrigeração por compressão de vapor, que utilizam energia elétrica.

2.2 OBJETIVOS ESPECÍFICOS

- Levantamento de equações de estado para a solução aquosa de LiBr-H₂O que dará subsídio para a modelagem do sistema de refrigeração a climatização de uma sala;
- Modelar um Sistema de Refrigeração por Absorção de capacidades nominais de 1, 2, 3, 4 e 5 Toneladas de Refrigeração;
- Simular o Sistema de refrigeração no programa computacional de sistemas transientes, denominado TRNSYS ('Transient System Program') de vasto uso em sistema energético utilizando como fonte térmica, a energia solar.

3 FUNDAMENTAÇÃO TEÓRICA

3.1 CENÁRIO ENERGÉTICO BRASILEIRO

A matriz energética brasileira, de acordo com o Balanço Energético Nacional em 2006, é ainda muito dependente do petróleo, em primeiro lugar e de energia gerada nas hidroelétricas, em segundo, como mostra a Figura 1.

Figura 1 – Matriz energética brasileira.

De acordo com números apresentados pela Celesc Distribuição S.A observou, o consumo de energia elétrica aumentou 10,2% no consumo de energia no primeiro trimestre (janeiro a março) de 2010 em relação ao mesmo período de 2009. Segundo o diretor comercial Dílson Oliveira Luiz, este fato foi devido à redução do IPI sob os eletrodomésticos, à ascensão social e à reação positiva da economia catarinense frente à crise econômica mundial. No dia 4 de fevereiro deste ano (2010), a Celesc registrou a demanda máxima de potência no sistema elétrico, que atingiu um recorde de 3652MW, 16% a mais que em 2009.

Figura 2 – Consumo de energia elétrica por classe no Brasil em 2010. Fonte: CELESC (2010).

O setor residencial é o segundo maior consumidor de energia elétrica devido a utilização de eletrodomésticos, tais como: chuveiro, geladeira e ar condicionado, como mostra a Figura 3. Com a melhoria do padrão de vida da população, a tendência é a compra cada vez maior do ar condicionado para refrigeração de ambientes, já que chuveiro e geladeira, são eletrodomésticos bastantes encontrados até mesmo em residências de baixa renda. E é neste cenário que as energias renováveis aparecem para dar suporte à matriz energética brasileira ainda tão dependente do petróleo e das hidroelétricas. A exemplo da energia solar que é bastante utilizada no aquecimento de águas de banho, pode também ser captada como fonte energética de sistemas de refrigeração absortivos.

Figura 3 – Consumo residencial brasileiro em 21/01/2008.

O mercado de aquecimento solar no Brasil teve um crescimento de 15% a 20% ao ano nos últimos 5 anos, como mostra a Figura 4

Figura 4 – Mercado de aquecimento solar no Brasil. Fo

3.2 ENERGIA SOLAR

Por ser uma energia acessível e abundante na natureza, a energia solar está sendo cada vez mais sendo utilizada em todo o mundo para complementar ou mesmo suprir, inteiramente, a demanda energética das indústrias, *shoppings centers*, hotéis e residências.

3.2.1 O sol

O sol é uma esfera de uma matéria gasosa intensamente quente com um diâmetro de 1,39x10⁹m e está, em média, 1,5x10¹¹m afastado da Terra. Visto da Terra, o sol rotaciona em seu eixo cerca de uma vez a cada 4 meses. Entretanto, ele não rotaciona como um corpo sólido; o Equador toma aproximadamente 27 dias e as regiões polares tomam aproximadamente 30 dias em cada rotação (DUFFIE E BECKMAN, 1991). O sol tem uma temperatura de corpo negro efetiva de 5777K¹. A temperatura na região interna central é variavelmente estimada de 8x10⁶ a 40x10⁶K e a densidade é estimada para ser 100 vezes que a da água. O sol é, efetivamente, um reator de fusão contínuo com seus gases constitutivos. Algo muito importante a ser considerado é o processo de formação do sol, no qual hidrogênio (isto é, quatro prótons) combina-se para formar hélio (isto é, um núcleo de hélio); a massa do núcleo de hélio é menor que aquela dos quatro prótons, massa esta que foi perdida na reação e convertida em energia. A energia produzida no interior da esfera solar em temperaturas de muitos milhões de graus deve ser transferida para fora da superfície e então ser irradiada no espaco. A sucessão de processos radiativos e convectivos ocorre com sucessiva emissão, absorção e reradiação; a radiação no núcleo do sol está em partes de raio-X e raio-gama do espectro, com o comprimento da onda da radiação aumentando como gotas de temperatura em distâncias radiais maiores (DUFFIE E BECKMAN, 1991). Um desenho esquemático é mostrado na Figura 5. Estima-se que 90% da energia é gerada na região de 0 (zero) a 23R (onde R é o raio do sol), o gual contém 40% da massa do sol. A uma distância 0,7R do centro, a temperatura está cerca de 130000K e a densidade é de 70 kg/m³; agui, processos de convecção comecam a tornar-se importantes, e a zona de 0,7 a 1R é conhecida como zona convectiva. Dentro desta zona, a temperatura chega a 5000K e a densidade é de 10⁻⁵ kg/m³.

¹ A temperatura de corpo negro efetiva de 5777K é a temperatura de um corpo negro irradiando a mesma quantidade de energia que o sol. Outras temperaturas efetivas podem ser definidas, por exemplo, correspondendo à temperatura do corpo negro dando o mesmo comprimento de onda da máxima radiação como radiação solar (cerca de 6300K).

Figura 5 - Estrutura do Sol. Fonte:www.astroimagem.com/teoria1.htm.

3.2.2 A constante solar

A constante solar, G_{sc} , é a energia do sol por unidade de tempo recebida em uma área de superfície perpendicular à direção da propagação da radiação, na distancia média entre a terra e o sol, fora da atmosfera.

Antes dos foguetes e naves espaciais, estimativas da constante solar tinham sido feitas a partir de medidas baseadas na terra da radiação solar após esta ter sido transmitida através da atmosfera e assim, em parte absorvido e dispersado pelos componentes da atmosfera. Estudos pioneiros foram feitos por C. G. Abbot e seus colegas da Instituição Smithsonian. Esses estudos e medidas antigas de foguetes foram sumarizados por Johnson (1954); o valor da constante solar de Abbot de 1322 W/m² foi revisado por Johnson para 1395 W/m² (4871 kJ/m²h) com uma estimativa de erro de \pm 1,5% (DUFFIE E BECKMAN, 1991).

3.2.3 Radiação solar horizontal

Existem diversos métodos para se determinar a radiação solar. Uma forma razoavelmente simples é interpolar linearmente dados horários para obter estimativas de radiação em curtos intervalos de tempo.

Os modelos de estimativa são uma alternativa de grande importância, pois podem ser utilizados em projetos de simulação da radiação solar em outros locais de características climáticas similares. Os modelos de estimativa podem ser de 2 tipos: estatísticos e paramétricos. Os modelos do primeiro tipo são mais simples, pois a radiação ou a variável meteorológica (normalmente a radiação global ou número de horas de brilho solar) é medida de rotina em redes meteorológicas distribuídas nos países que fazem previsão de tempo. Já os modelos paramétricos necessitam de informações a respeito de diversos parâmetros atmosféricos de menor disponibilidade na rede solarimétrica mundial, como é o caso da concentração de ozônio, aerossóis, gases, etc. Um dos modelos estatísticos mais conhecidos é o que segue a metodologia inicialmente proposta por LIU E JORDAN (1960), e que vem sendo ostensivamente empregado nas estimativas da radiação direta na horizontal e difusa. A vantagem da proposta de LIU E JORDAN (1960) é eliminar a dependência da localidade. O modelo de LIU E JORDAN (1960) também pode relacionar a fração da radiação direta na incidência (K_b) com o índice de claridade (K_t) (GOMES et al., 2007).

3.2.4 Mudança do ângulo horário no tempo solar

Desde muitos dos cálculos feitos na insolação de transformação na superfície horizontal depende do tempo do dia. A posição do Sol no céu pode ser especificada pelo aumento dos ângulos solar Zênite e Azimute. O ângulo Zênite (θ_z) é o ângulo entre a vertical e a linha de vista do Sol, isto é, o ângulo de incidência da radiação do feixe na superfície horizontal. O ângulo solar Azimute (γ_s) é o ângulo entre o meridiano local e a projeção da linha da vista do sol no plano horizontal. O zero do Azimute solar está revestindo o Equador, ocidente é positivo enquanto o oriente é negativo, como pode ser visto na Figura 6.

Figura 6– (a) Ângulo Zênite, inclinação, ângulo Azimute de superfície e ângulo Azimute solar para uma superfície inclinada; (b) Vista plana mostrando o ângulo Azimute solar. Fonte: DUFFIE E BECKMAN, 1991.

Ambos, Zênite e os ângulos solares podem ser encontrados das relações trigonométricas do Capítulo 2 de "*Solar Engineering of Thermal Process*" de DUFFIE E BECKMAN (1991).

A declinação é a posição angular do sol no meio-dia solar (isto é, quando o sol está no meridiano local) com respeito ao plano do Equador, norte positivo; -23,45° $\leq \delta \leq$ 23,45°. A declinação δ pode ser encontrada da Equação de COOPER (1969):

$$\delta = 23,45 \sin\left(360 \frac{284 + n}{365}\right), \text{ onde n \acute{e} o dia do ano} \tag{1}$$

3.3 COLETOR SOLAR

Um coletor solar é um importante trocador de calor que transforma energia solar radiante em calor. Um coletor solar difere em muitos aspectos de muitos trocadores de calor convencionais. Estes realizam usualmente uma troca fluido a fluido com elevadas taxas de transferência de calor e radiação como um fator irrelevante. No coletor solar, a transferência de energia é advinda da fonte de energia radiante (do sol) para o fluido. O fluxo de radiação incidente é aproximadamente 1100W/m² (sem concentração ótica), e é variável. A faixa do comprimento de onda é de 0.3 a 3 µm, o qual é considerado pequeno comparado à radiação emitida de superfícies de absorção de maior energia. Assim, a análise dos coletores solar apresenta problemas únicos de fluxos de energia baixos e variáveis e uma relativamente grande importância de radiação.

Coletores planos podem ser designados para aplicações que exigem a distribuição de energia em temperaturas moderadas de até 100°C acima da temperatura ambiente. Eles usam ambas as radiações solares: difusa e direta, não acompanham o sol e exigem pouca manutenção. Eles são matematicamente mais simples do que os coletores de concentração. As maiores aplicações dessas unidades são no aquecimento solar de água, aquecimento de edificações, condicionamento de ar e calor de processo industrial. Possivelmente, edificações aquecidas podem ser visualizadas como casos especiais de coletores planos sendo a sala ou a parede de estocagem como um absorvedor. A importância de coletores planos no processo térmico é tal que seu desempenho térmico é tratado em detalhe considerável. Isto é feito para desenvolver um entendimento de como o componente funciona. Em muitos casos práticos de cálculos de projeto, as equações para a performance do coletor são reduzidos para a forma relativamente simples (DUFFIE E BECKMAN, 1991).

3.3.1 Coletor plano

O coletor solar plano é composto por uma cobertura de vidro para provocar efeito estufa e reduzir as perdas térmicas, uma superfície negra de absorção de energia solar (logo abaixo da de vidro) e transforma a energia em calor para transmitir ao fluido (neste trabalho, a água) que passa por tubos que estão fixados e isolados abaixo da superfície negra, e uma caixa que dá suporte para todo o isolamento, que reduz as perdas de calor, como mostra a Figura 7. A Figura 8 mostra como o coletor

solar plano está disposto em um sistema de coleta solar. Além do coletor solar plano, o sistema possui um reservatório térmico (*Boiler*) e uma caixa d'água. O coletor solar é um dispositivo onde pode-se verificar a <u>transmissão do calor</u> através dos três processos: <u>condução</u>, <u>convecção</u> e <u>radiação</u>. A energia solar que incide por radiação é absorvida pelas placas coletoras (veja a figura abaixo). Estas transmitem a parcela absorvida desta energia para a água (que circula no interior de suas tubulações de cobre), sendo que uma pequena parte é refletida para o ar que envolve a chapa. A eficiência do coletor é dada pela proporção dessas três parcelas de energia (absorvida, transmitida e refletida) em relação à quantidade total de energia incidente. Dessa forma, o coletor será mais eficiente quanto maior for a quantidade de energia transmitida para a água. O reservatório térmico, ou Boiler, é um recipiente termicamente isolado onde a água aquecida que será consumida posteriormente é armazenada.

Figura 7– Partes importantes de um coletor plano. Fonte:http://objetoseducacionais2.mec.gov.br/bitstream/handle/mec/12259 /Coletor%20solar%20termico.swf?sequence=1, 2010).

Figura 8 – Estrutura de um sistema solar simples com coletores planos e reservatório térmico - sem adição de energia elétrica. Fonte: http://penta3.ufrgs.br/CESTA/fisica/calor/coletorsolar.html

Este reservatório é mantido sempre cheio, sendo alimentado por uma caixa de água fria. Em sistemas convencionais, a água circula entre os coletores e o reservatório térmico através de um sistema natural chamado termo sifão ou circulação natural. Nesse sistema, a água dos coletores fica mais quente e, portanto, menos densa que a água no reservatório. Dessa forma, por convecção, é realizada a circulação da água. A circulação da água também pode ser feita através de moto bombas em um processo chamado de circulação forçada ou bombeado, e são normalmente utilizados em piscinas e sistemas de grandes volumes. Em sistemas convencionais, a água circula entre os coletores e o reservatório térmico através de um sistema natural chamado termos sifão ou circulação natural. Nesse sistema, a água dos coletores fica mais quente e, portanto, menos densa que a água no reservatório. Dessa forma, por convecção, é realizada a circulação da água. A circulação de um sistema natural chamado termos sifão ou circulação natural. Nesse sistema, a água dos coletores fica mais quente e, portanto, menos densa que a água no reservatório. Dessa forma, por convecção, é realizada a circulação da água. A circulação da água também pode ser feita através de moto bombas em um processo chamado de circulação da água também pode ser feita através de moto bombas em um processo chamado de circulação da água também pode ser feita através de moto bombas em um processo chamado de circulação forçada ou bombeado, e são normalmente utilizados em piscinas e sistemas de grandes volumes.

Segundo DUFFIE E BECKMAN (1991), a performance de um coletor solar, no estado estacionário, é descrito pelo balanço de energia que indica a distribuição da energia solar incidente em um ganho energético útil, perdas térmicas e perdas óticas. A radiação solar absorvida por um coletor por unidade de área de um absorvedor S é igual à diferença entre as perdas de radiação solar incidente e ótica, conforme mostra a Equação 2.

$$S = I_b R_b (\tau \alpha)_b + I_d (\tau \alpha)_d \left(\frac{1 + \cos \beta}{2}\right) + \rho_g (I_b + I_d) (\tau \alpha)_g \left(\frac{1 - \cos \beta}{2}\right)$$
(2)

Onde:

I é a incidência solar, e os subscritos *b*, *d* e *g* representam direta, difusa e terra, respectivamente.

 $\left(\frac{1+\cos\beta}{2}\right)$ e $\left(\frac{1-\cos\beta}{2}\right)$ são os fatores de vista do coletor para o céu e do coletor para a terra,

respectivamente.

 $lpha\,$ pode ser dado utilizando a Figura 9

 β é o ângulo de inclinação do coletor

au pode ser obtido utilizando a Figura 10

 $ho_{
m g}$ é a refletância da terra

 R_b é a razão entre a radiação difusa no plano inclinado e a radiação no plano medido (usualmente na horizontal).

Figura 9 – Razão entre a absorbância solar e a absorbância solar na incidência normal para uma superfície negra. Fonte: DUFFIE E BECKMAN (1991).

Figura 10 – Transmitância (considerando absorção e reflexão) de 1, 2, 3 e 4 coberturas para 3 tipos de vidro (K é o coeficiente de extinção [unidade comprimento-1] e L é a espessura da cobertura de vidro [unidade de espessura]). Fonte: DUFFIE E BECKMAN (1991).

A perda de energia térmica do coletor para circunvizinhanças por condução, convecção e radiação infravermelho pode ser representada como o produto do coeficiente de calor U_L e a diferença entre a temperatura no prato absorvedor principal T_{pm} e a temperatura ambiente T_a . No estado estacionário, a saída de energia útil de um coletor de área A_c é a diferença entre a radiação solar absorvida e a perda térmica dada pela Equação 3.

$$Q_{u} = A_{c} [S - U_{l} (T_{pm} - T_{a})]$$
(3)

3.3.2 Coletor CPC (Compound Parabolic Concentrators) ou Winston

O desenvolvimento da óptica permitiu muito recentemente a descoberta de um novo tipo de concentradores (chamados CPC ou Winston) que combinam as propriedades dos coletores planos (também podem ser montados em estruturas fixas e têm um grande ângulo de visão o que também permite a captação da radiação difusa) com a capacidade de produzirem temperaturas mais elevadas (>70°C), como os concentradores convencionais do tipo de lentes. O coletor CPC possui uma cobertura de vidro, um absorvedor, constituído por aletas com um tubo no meio, espelho (normalmente de alumínio) onde os raios são refletidos acabando por incidir na parte inferior das aletas, isolamento e caixa, como mostra a Figura 11.

Figura 11 – Esquema de um Coletor tipo CPC. Fonte:<u>http://objetoseducacionais2.mec.gov.br/bitstream/hand</u> e/mec/12259/Coletor%20solar%20termico.swf?sequence=1.

As vantagens dos CPCs são que eles podem funcionar sem movimento contínuo do coletor em função do sol e ainda consegue muita concentração. Desta forma, eles devem ser propriamente orientados para maximizar a radiação absorvida quando a saída do coletor é necessária. Para determinar a operação em algum tempo (o qual é um passo para encontrar a melhor orientação), fazse necessário calcular a radiação absorvida. Uma questão crítica é se a radiação total será absorvida (DUFFIE E BECKMAN, 1991). A Figura 12 mostra coletores CPCs instalados em paralelo no topo de um edifício.

Figura 12 – Coletores CPC Fonte:<u>http://portuguese.alibaba.com/product-free-img/solar-energy-steam-</u> collector-276466632.html.

A radiação absorvida por unidade de área de abertura descoberta pode ser escrita como na Equação 4.

$$S = I_{b} \rho(\gamma \tau \alpha)_{n} K_{\gamma \tau \alpha}$$
(4)

Os termos desta equação têm implicações que são diferentes daquelas para coletores planos, e o tratamento deles dependem da geometria do coletor. A radiação incidente efetiva medida no plano de abertura I_b inclui apenas radiação direta para todos os concentradores, exceto aqueles de muito baixa razão de concentração, isto é, talvez 10 ou abaixo. Geralmente p é a reflectância especular do concentrador. Para refletores difusos usados com absorvedores cilíndricos,p será será a reflectância difusa. Se o concentrador é um refrator,p será a transmitância do refrator. Os próximos três fatores, γ , τ , α são funções do ângulo de incidência da radiação na abertura.

3.4 CICLO DE ABSORÇÃO

Sistemas de Refrigeração por Absorção (SRA) tem se tornado popular, primeiramente, devido à operação com fluidos ambientalmente menos agressivos conforme os Protocolos de Montreal e Kyoto. Em segundo, estes sistemas operam com fontes de energia alternativa baratas, como geotérmica, biomassa, energia solar ou uma fonte de calor de subproduto indesejável (KILIC; KAYNAKLI, 2007).

Sendo o ciclo de compressão de vapor comercialmente mais utilizado, vale a pena comparar este ciclo com o ciclo de absorção. O ciclo de absorção é similar em certos aspectos ao ciclo de compressão de vapor. Um ciclo de refrigeração opera com o condensador, a válvula de expansão e o evaporador. O vapor de baixa pressão do evaporador é transformado em vapor de alta pressão e entregue ao condensador. No sistema de compressão de vapor usa um compressor para esta tarefa.
Já no sistema de absorção, um líquido absorvente primeiro absorve vapor de baixa pressão ocorrendo assim a conversão de vapor em líquido, que é similar à condensação, o calor é rejeitado durante o processo, e no passo seguinte, eleva a pressão do líquido com uma bomba, e finalmente, o vapor é liberado do líquido absorvente por adição de calor.

O ciclo de compressão de vapor é descrito como um ciclo operando a trabalho porque a elevação da pressão do refrigerante é conseguida por um compressor que requer trabalho. O ciclo de absorção, por outro lado, é referido como ciclo operando a calor porque a maior parte do custo de operação é associada com o fornecimento de calor que libera o vapor do líquido de alta pressão. Na verdade, existe a necessidade de algum trabalho para acionar a bomba no ciclo de absorção, mas quantidade de trabalho para acionar a bomba no ciclo de absorção, dada a quantidade de refrigeração é mínima, comparada com aquela que seria necessária no ciclo de compressão de vapor. O ciclo de absorção básico é mostrado na Figura 13 (STOCKER E JONES, 1985).

Figura 13 - Sistema de Absorção básico

O vapor de baixa pressão do evaporador é absorvido por uma solução líquida no absorvedor. Se esse processo de absorção fosse executado adiabaticamente, a temperatura da solução iria subir e eventualmente a absorção de vapor poderia cessar. Para garantir o processo de absorção, o absorvedor é resfriado por água ou ar, que finalmente rejeita esse calor para a atmosfera. A bomba recebe o líquido de baixa pressão do absorvedor, eleva a pressão, e o entrega ao gerador. No gerador, o calor de uma fonte de alta temperatura expulsa o vapor que tinha sido absorvido pela solução. A solução líquida retorna para o absorvedor por válvula redutora de pressão cujo propósito é promover a queda para manter as diferenças de pressão entre o gerador e o absorvedor.

Os fluxos de calor para os quatro trocadores de calor componentes do ciclo de absorção ocorrem da seguinte forma: o calor de uma fonte de alta temperatura entra no gerador, enquanto que o calor a baixa temperatura da substância que está sendo refrigerada entra no evaporador. A rejeição de calor do ciclo ocorre no absorvedor e condensador à temperaturas tais que calor possa ser rejeitado para a atmosfera (STOCKER E JONES, 1985).

Coeficientes de performance do sistema (COP) e razão de eficiência (η) são comparados nas várias temperaturas do gerador, absorvedor, condensador e evaporador. A influência da eficiência do trocador de calor nas trocas térmicas dos componentes, solução e temperaturas dos refrigerantes e parâmetros de performance são também investigados.

De acordo com fabricantes, as unidades resfriadoras de líquido por absorção têm uma grande aplicação em: reaproveitamento de calor rejeitado em indústrias, onde se pode utilizar vapor à alta ou baixa pressão e água quente para promover efeito de refrigeração a baixo custo; e no resfriamento de ar na entrada de turbinas à gás ou compressores, para se ter um aumento na eficiência destes equipamentos, sendo assim evidenciada a importância de se estudar o sistema de simples efeito. Um sistema de refrigeração por absorção de simples efeito é mostrado esquematicamente na Figura 14.

Figura 14 - Representação esquemática do sistema de refrigeração por absorção de simples efeito

O sistema consiste, basicamente, de: gerador, absorvedor, condensador, evaporador, bomba, válvulas de expansão, trocador de calor do tipo solução (TCS) e trocador de calor do tipo refrigerante (TCR, pré-resfriador). A eficiência do ciclo e as condições de operação de um SRA dependem dos fluidos de trabalho, temperaturas e eficiência dos trocadores de calor. A solução fria do trocador (TCS) proveniente do absorvedor, caminha para o gerador e resfria a solução, que retorna do gerador para o absorvedor. Assim, a carga de calor diminui no gerador, e o coeficiente de performance do sistema aumenta. No TCR, o qual está em refrigeração próximo ao ciclo, o fluido refrigerante deixando o condensador é resfriado pelo vapor oriundo do evaporador, e a entalpia do líquido é diminuída. Desde de que a capacidade de resfriamento aumenta, o valor do COP aumenta (KAYNAKLI E KILIC, 2007).

Algumas terminologias e categorias dos ciclos de absorção são mencionadas por KANG et al. (2000). Os ciclos de absorção podem ser caracterizados através de termonologias mostradas na Tabela 1. O número dos efeitos, número de estágios e número de pares de solução são claramente definidos em seu estudo. No modelo operacional de um resfriador, o número de efeitos é igual ao número do coeficiente de performance ideal (COP). O número de estágios é igual ao número de absorvedores do ciclo. Por exemplo, um ciclo com um evaporador e dois absorvedores, os quais têm dois circuitos de solução é chamado de ciclo de duplo estágio. Para descrever concentrações em sistemas de absorção, os termos "rico" e "pobre" são às vezes utilizados, porém deve-se tomar cuidado para observar os componentes que se referem. Os termos similares são "concentrado" e "diluído". Em seu trabalho, KANG et al. (2000), usam os termos "concentrado" e "diluído" para a medida de concentração. A solução concentrada refere-se a solução rica em refrigerante como está definido na Tabela 1. Conseqüentemente, a solução diluída significa uma baixa fração mássica de LiBr nos ciclos LiBr/H₂O, e uma alta fração de NH₃ nos ciclos de NH₃-H₂O.

Terminologia	Definição			
Número de efeitos	Número de processos para geração de refrigerante			
Número de estácios	Número de circuitos de solução para um			
Numero de estagios	evaporador/absorvedor			
Niúmoro do poros do solução	Número de diferentes pares de solução que não se			
	misturam			
Ciclo básico	Definição Número de processos para geração de refrigerante Número de circuitos de solução para um evaporador/absorvedor Número de diferentes pares de solução que não se misturam Ciclo de estágio simples Trocador de calor e transferência de massa com troca de fase Rico em refrigerante Diferença entre temperatura de rejeição de calor e temperatura de evaporação Ciclo combinado onde o refrigerante gerado de um gerador a baixa temperatura é diretamente absorvido em um absorvedor a elevada temperatura sem que haja o processo de condensação Conjunto de ciclos acoplados de apenas um trocador de calor Um ciclo combinado com processos de absorção e			
Linidado do troca	Trocador de calor e transferência de massa com troca			
	de fase			
Solução concentrada	Rico em refrigerante			
Solução diluída	Pobre em refrigerante			
Gradiente de temperatura	Diferença entre temperatura de rejeição de calor e			
Gradiente de temperatura	temperatura de evaporação			
	Ciclo combinado onde o refrigerante gerado de um			
	gerador a baixa temperatura é diretamente absorvido			
Ressorção	em um absorvedor a elevada temperatura sem que			
	haja o processo de condensação			
Cascata	Conjunto de ciclos acoplados de apenas um trocador			
Cuscula	de calor			
Híbrido	Um ciclo combinado com processos de absorção e			
Thomas -	compressão			

Tabela 1 – Lista de terminologia usada em ciclos de absorção

Fonte: KANG et al., 2000.

KANG et al. (2000) propuseram e avaliaram ciclos de absorção avançados para a otimização do Coeficiente de Performance (COP) e as aplicações do efeito do gradiente de temperatura. As caracerísticas de cada ciclo são avaliados em termos do COP para ciclo ideal e suas aplicações. Os ciclos avançados para a otimização do COP são classificados de acordo com seu método de recuperação de calor: recuperação do calor de condensação, recuperação de calor de absorção e recuperação do calor de condensação/ absorção. Em sistemas de LiBr-H₂O, o número de efeitos e o número de estágios podem ser melhorados adicionando um terceiro ou quarto componente aos pares de solução. O desempenho dos sistemas de NH₃-H₂O pode ser melhorado através da recuperação interna do calor devido a suas características térmicas tais como a temperatura que oscila. Os ciclos de NH₃-H₂O podem ser combinados com ciclos de absorção e ciclos de geração de energia para utilização do calor residual, aumentar a performance, aquecimentodo de painéis e para aplicações de baixa temperatura. O ciclo LiBr-H₂O é melhor do ponto de vista de elevado COP para a temperatura de 0°C, enquanto que o ciclo NH₃-H₂O é melhor para aplicações a baixas temperaturas. Neste estudo, KANG et al. (2000) sugestionaram que a performance do ciclo será significativamente aumentada pela combinação dos ciclos avançados de LiBr-H₂O e NH₃-H₂O.

Sistemas de LiBr-H₂O têm sido adotados principalmente para aplicações de refrigeração comercial, como *chillers* e bombas de calor. O número dos efeitos e os números do estágios são para ser melhorado pela adição de um terceiro ou quarto componente à solução de LiBr-H₂O. Contudo, o ciclo de multi-efeito é limitado pela temperatura crítica da solução utilizada. O ciclo de sete efeitos é o maior número de efeitos desenvolvidos em ciclos de absorção avançados.

3.5 COEFICIENTE DE EFICÁCIA OU DE PERFORMANCE DE UM CICLO DE ABSORÇÃO IDEAL

O coeficiente de eficácia do ciclo de absorção CDE é definido como:

$$CDE = \frac{Taxa \ de \ refrigeração}{Taxa \ de \ adição \ de \ calor \ ao \ gerador}$$
(5)

Em certos aspectos, a aplicação do termo *CDE* para sistemas de absorção não é feliz porque o seu valor é apreciavelmente menor que os dos ciclos de compressão de vapor (0,6 versus 3, por exemplo). O valor comparativamente baixo do *CDE* não deve ser considerado prejudicial para os ciclos de absorção, porque os *CDE* dos dois ciclos são definidos diferentemente. O *CDE* do ciclo de compressão de vapor é a relação da taxa de refrigeração pela potência na forma de trabalho fornecida para operar o ciclo. Energia na forma de trabalho é normalmente muito mais valiosa e cara que energia na forma de calor.

Uma compreensão adicional da distinção das eficácias dos ciclos de absorção e compressão de vapor pode ser oferecida pelo exercício de determinar o *CDE* do ciclo de absorção ideal. A Figura 15 sugere como realizar esta análise, porque os processos nos blocos da esquerda consistem de um ciclo de potência que desenvolve o trabalho necessário para realizar a compressão do vapor do evaporador para o condensador no ciclo de refrigeração. Estes dois ciclos são mostrados esquematicamente na Figura 15 (STOCKER E JONES, 1985).

Figura 15 – Ciclo de refrigeração operado a calor como uma combinação de um ciclo de potência e um de refrigeração. Fonte: Elaboração própria.

O ciclo de potência recebe energia na forma de calor q_g a uma temperatura absoluta T_s , entrega alguma energia na forma de trabalho para o ciclo de refrigeração e rejeita uma quantidade de energia q_a na forma de calor à temperatura T_a . O ciclo de refrigeração recebe o trabalho (*W*) e com ele transfere calor q_e à temperatura de refrigeração de T_r para a temperatura T_a , onde a quantidade q_c é rejeitada (STOCKER E JONES, 1985).

O ciclo ideal operando com processos termodinamicamente reversíveis entre duas temperaturas é um ciclo de Carnot, que aparece como um retângulo no diagrama temperatura-entropia. Para o ciclo de potência do lado esquerdo da Figura 15, temos:

$$\frac{q_g}{W} = \frac{T_s}{T_s - T_a}$$
(6)

Para o ciclo de refrigeração do lado direito da Figura 15:

$$\frac{q_e}{W} = \frac{T_r}{T_a - T_r}$$
(7)

A taxa de refrigeração na Equação (5) é q_e , e a taxa de calor adicionado ao gerador é q_g . Usando as expressões para $q_g e q_e$ das Equações (6) e (7), respectivamente, o *CDE* é:

$$CDE = \frac{q_e}{q_g} = \frac{T_r \cdot (T_s - T_a)}{T_s \cdot (T_a - T_r)}$$
(8)

3.6 A ESCOLHA DOS REFRIGERANTES

A eficiência de uma máquina de calor de Carnot é independente do fluido de trabalho utilizado na máquina. Analogamente, o coeficiente de desempenho de um refrigerador de Carnot é independente

do refrigerante. Entretanto, as irreversibilidades inerentes ao ciclo com compressão de vapor causam um certo grau de dependência do coeficiente de desempenho de refrigeradores reais em relação ao refrigerante. No entanto, propriedades como a sua toxidade, inflamabilidade, custo, propriedades de corrosão e variação da pressão de vapor em relação à temperatura são de grande importância na escolha do refrigerante. A pressão de vapor do refrigerante na temperatura do evaporador é maior que a pressão atmosférica, uma vez que o ar não penetra no sistema de refirgeração. Por outro lado, a pressão de vapor na temperatura do condensador não deve ser excessivamente alta, em função do custo inicial e dos gastos operacionais de equipamentos de alta pressão. Estas duas exigências limitam a escolha do refrigerante a relativamente poucos fluidos. A seleção final depende então das outras propriedades já mencionadas.

Amônia, cloreto de metila, dióxido de carbono, propando e outros hidrocarbonetos podem ser como refrigerantes. A utilização de hidrocarbonetos halogenados como refrigerantes tornou-se comum na década de 1930. Os mais utilizados foram o clorofluorometano totalmente halogenados, CCl₃F (triclorofluorometano ou CFC-11) e CCl₂F₂ (diclorodifluorometano ou CFC-12). Estas moléculas são muito estáveis, e permanecem na atmosfera por centenas de anos, causando uma grave diminuição na quantidade de ozônio. Atualmente, sua produção foi interrompida. Eles foram substituídos por certos hidroclorofluorocarbonetos, hidrocarbonetos não totalmente halogenados que causam danos relativamente menores ao ozônio, e por hidrofluorocarbonetos, que não possuem cloro e não causam diminuição da quantidade de ozônio. São exemplos o CHCl₂CF₃ (diclorotrifluoroetano ou HFC-123), o CF₃CH₂F (tetrafluoroetano ou HFC-134a) e o CHF₂CF₃ (pentafluoroetano ou HFC-125) (SMITH et al., 2000).

Nos recentes anos, pesquisas foram realizadas para o desenvolvimento dos Sistemas de Refrigeração por Absorção (SRA). Refrigeradores de compressão de vapor mecânicos requerem alta quantidade de energia para a sua operação. Diante disso, recentes estudos têm mostrado que os fluidos de trabalho convencionais de sistemas de compressão de vapor estão causando a destruição da camada de ozônio e efeito estufa. Entretanto, SRA utilizam fontes de calor reativamente baratas, como: solar, biomassa ou fontes de energia geotérmica, das quais, o custo de suprimento é desprezível em muitos casos. Além disso, os fluidos de trabalho desses sistemas são ambientalmente limpos. O desenvolvimento total do ciclo de absorção em termos do efeito de refrigeração por unidade de energia de entrada é geralmente pobre; entretanto, as fontes de calor como aquela rejeitada de uma planta pode ser fregüentemente usada para conseguir melhor utilização da energia total. Sistemas amônia/água (NH₃-H₂O) são extremamente usados onde baixas temperaturas são requeridas. Porém, sistemas água/brometo de lítio (LiBr-H₂O) são também muito utilizados onde temperaturas moderadas são necessárias (por exemplo, condicionamento de ar) e são mais eficientes do que o sistema amônia/água. Vários estudos têm sido executados para a escolha do melhor fluido de trabalho. As variações de performance dos vários parâmetros foram comparados com combinações de fluido de trabalho à base água. Nos estudos de SUN (1997a), as propriedades termodinâmica da amônia à base de misturas binárias (NH3-H2O, NH3-LiO2, NH3-NaSCN) são

consideradas, e as performances dos ciclos são comparadas. YOON E KWON (1999) apresentaram as características de performance de uma nova solução aquosa(LiBr/H₂O + HO(CH₂)₃OH), uma alternativa para LiBr-H₂O, e uma simulação do ciclo foi conduzida para investigar o perfil ótimo e as condições de operação do sistema de absorção do ar gelado.

KAYNAKLI E YAMANKARADENIZ (2003) investigaram o efeito dos trocadores de calor que são usados para recuperar a energia quente nos SRA nos coeficientes de performance (COP). Uma solução amônia/água foi tomada como um par absorvente-refrigerante. Análises termodinâmicas dos sistemas foram realizadas, e as propriedades termodinâmicas da solução amônia e amônia-água foram apresentadas. MOSTAFAVI E AGNEW (1996) examinaram o efeito da temperatura ambiente na unidade de absorção no qual a solução aquosa de LiBr-H₂O foi usado. Os efeitos da água gelada, água quente e temperaturas de entrada de água fria sobre a área superficial do absorvedor e características absorventes foram investigadas por ATMACA et al. (2002). Em seu trabalho, KAYNAKLI (2007) realizou uma análise termodinâmica paramétrica de um ciclo de refrigeração por absorção de simples efeito com solução e trocadores de calor refrigerante. Uma solução de LiBr-H₂O é extremamente usada em sistemas de refrigeração por absorção e é chamada como o par refrigerante-absorvente.

Segundo HE E CHEN. (2007), o ciclo de refrigeração por absorção em cascata dirigido a calor pode ser usado à baixas temperaturas, e um novo sistema de refrigeração por absorção em cascata é proposto para ganhar melhor performances com uma temperatura de refrigeração tão menor que -50°C. Este novo sistema é composto de duas circulações diferentes: circulação-solução e circulaçãorefrigeração e usa uma mistura de R23+R32+R134a/DMF como fluido de trabalho. A circulaçãosolução é similar ao do sistema de refrigeração por absorção e a circulação-refrigeração é concisamente introduzida aí. Tem-se obtido com sucesso uma temperatura de refrigeração de -47,2 °C abaixo da temperatura de geração de 163°C. Esta temperatura de refrigeração é tão menor quanto o sistema de refrigeração tradicional com o mesmo fluido de trabalho, e este, por sua vez, é tão menor quanto o sistema de refrigeração por absorção em cascata usando R32+R134a/DMF, como o fluido de trabalho. A partir dos resultados, é claramente visto que o novo sistema mostra uma rápida taxa de decaimento da temperatura de refrigeração comparado com um sistema de refrigeração por absorção usando R23+R134a/DMF, como o fluido de trabalho. Os resultados das análises experimentais implicam que este novo sistema de refrigeração por absorção pode ser usado em congelamento profundo tão baixo quanto -50°C por utilização da menor energia térmica potencial. Este potencial de aplicação industrial poderá ser melhor do que um sistema de refrigeração por absorção em cascata usando R23+R134a/DMF como sendo o fluido de trabalho no futuro.

TALBI E AGNEW (2000) realizaram uma análise de exergia em um ciclo de refrigeração por absorção simples efeito utilizando a solução aquosa de brometo de lítio-água como fluido de trabalho. Um esquema de procedimento foi aplicado a um ciclo de absorção brometo de lítio e um procedimento de otimização que consiste na determinação da entalpia, entropia, temperatura, taxa de fluxo mássico, taxa de calor em cada componente, e coeficiente de performance também foi praticado.

ARUN, et al. (2001) realizaram estudo da performance de um sistema por absorção de duplo efeito com LiBr. Os estudos mostraram que o sistema a duplo efeito contribui para melhorar a performance do ciclo e superar a questão de inabilitação dos ciclo de simples efeito em fazer uso de fontes de alta temperatura. O artigo faz ainda uma comparação entre os sistemas de duplo efeito com fluxo em série e em paralelo, e revela que o COP para fluxo em paralelo é maior que o para o sistema em série. Comparado ao sistema com fluxo em série, o coeficiente de performance do sistema com fluxo em paralelo se mostrou mais sensível à variação de temperatura no evaporador e menos sensível à variação de temperatura no condensador e absorvedor.

GLEBOV E SETTERWALL (2002) desenvolveram um estudo sobre a influência do aditivo para transferência de calor 2-metil-1pentanol (2MP) no desempenho do efeito refrigeração de um pequeno *chiller* por absorção. Os pesquisadores realizaram duas séries experimentais, em uma das quais o aditivo foi injetado na solução de LiBr-Água. A taxa de melhora da capacidade de refrigeração para um nível ótimo de concentração de aditivo foi de 20%. Na segunda série experimental o aditivo foi injetado no refrigerante, a taxa de melhora tornou-se 32%, que é substancialmente melhor. Este novo aditivo tem sido usado para aumentar a capacidade de *chillers* de absorção comercial. A capacidade tem sido aumentada por um fator de 30-35% que está em muito bom acordo com os dados do experimento.

MARTÍNEZ E PINAZO (2002) desenvolveram um método estatístico que foi empregado com a disposição de melhorar o projeto de um *chiller* utilizando água-brometo de lítio a simples efeito. Projetos experimentais e diferentes análises foram usadas para medir os efeitos da variação das áreas dos trocadores de calor na performance de uma máquina de absorção, as conclusões extraídas deste estudo permitiram uma redistribuição da transferência total de calor entre os trocadores de calor, que possibilitariam uma melhora no COP em quase 10%, sem variar a capacidade nominal do sistema nem a área total de transferência de calor.

PARK, et al. (2004) analisaram o desempenho característico de um sistema de refrigeração por absorção com capacidade de 210 TR, em operação com carga parcial e calcularam o consumo médio de energia. O efeito da variação da vazão e temperatura da água de arrefecimento do absorvedor e condensador, na performance e economia de energia foram quantificados durante a operação com carga parcial. Concluíram que o desempenho de um sistema por absorção é mais sensível às mudanças de temperatura que a variação da vazão da água de arrefecimento do absorvedor e condensador. Se a vazão de água for reduzida de 60% do valor padrão, a capacidade de resfriamento é recuperada, reduzindo-se a temperatura da água em 2 °C.

MEHRABIAN E SHAHBEIK (2004) desenvolveram um programa computacional para projeto e análise termodinâmica de um *chiller* por absorção de simples efeito, utilizando a solução aquosa de LiBr-H₂O

como fluido de trabalho. Os resultados calculados pelo programa foram usados no estudo do efeito dos parâmetros de entrada na geometria, no desempenho do ciclo e na eficiência de acordo com a segunda lei da Termodinâmica. Aumentando-se a temperatura no evaporador e gerador ou reduzindo-se as temperaturas no condensador e gerador pode-se melhorar a eficiência do ciclo de acordo com a Segunda lei da Termodinâmica.

A Figura 16 mostra dois ciclos de simples efeito de dois pares de solução: LiBr-H₂O (G1, C2, E1 e A1) e NH₃-H₂O (G2, C2, E2 e A2). O gradiente de temperatura pode ser realçado para uma dada temperatura do gerador, ou a temperatura do gerador pode ser rebaixada para um dado gradiente de temperatura. A diferença entre a G1 e C1 pode ser minimizada pela adição uma solução ao circuito. Desde que E2 é a fonte de temperatura baixa, e C1 e A1 são as saídas rejeitadas do ciclo, os gradientes de temperatura tornam-se tão alta quanto 70°C. Este ciclo pode também ser aplicado à refrigeração tão bem quanto às bombas de calor (KANG et al., 2000).

Figura 16 – Ciclo de Absorção utilizando dois pares de solução: LiBr-H_2O e NH_3-H_2O

3.7 PROPRIEDADES DA SOLUÇÃO DE BROMETO DE LÍTIO-ÁGUA (LIBR-H₂O)

O brometo de lítio é um sal sólido cristalino, o qual na presença de vapor d'água absorve o vapor e torna-se líquido (STOCKER E JONES, 1985). A solução de brometo de lítio é um forte absorvente de água e pode absorver vapor de água do meio e manter uma baixa condição de pressão no evaporador. A solução líquida exerce uma pressão de vapor de água que é uma função da temperatura e da concentração da solução. Quando há dois vasos interconectados, um contendo solução de brometo de lítio a certa concentração em base mássica e outro contendo água pura,

existe um estado de equilíbrio ocasionado pela pressão de vapor d'água que será a mesma para os dois vasos. Essa pressão é função da temperatura e da concentração, portanto conhecendo-se a concentração e a temperatura da água saturada do vaso que contém somente água, por exemplo, pode-se determinar a temperatura da solução que estará contida no outro vaso.

A Figura 17 é um diagrama temperatura-pressão-concentração para soluções de LiBr-H₂O. Esta carta aplica-se a condições saturadas onde a solução está em equilíbrio com o vapor de água. (STOCKER E JONES, 1985).

Figura 17 – Diagrama de Temperatura-Pressão-Concentração de Soluções Saturadas de LiBr-H2O.

Em equilíbrio com solução saturada, a fase sólida do sistema álcali *halide*-água como LiBr-H₂O é formada por gelo à baixa concentração, por hidratos com 5, 3, 2 e 1 molécula de água à medida que a concentração do sal aumenta, e por sais anidros a elevadas concentrações como é mostrado no diagrama de fase sólido-líquido do sistema LiBr-H₂O, representado pela Figura 18.

Figura 18 – Diagrama de fase para o sistema LiBi H_2O . Fonte: PÁTEK E KLOMFAR, 2006.

De acordo com YIN et al. (2000) em seus estudos sobre as análises de performance de um transformador de calor por absorção utilizando diferentes combinações de fluidos de trabalho como LiBr-H₂O, TFE/NMP, TFE/E181 e TFE/PYR. As principais vantagens da solução aquosa de LiBr-H₂O são: elevada entalpia de evaporação, alta transferência de calor e massa, atoxicidade, não necessita de aparatos de retificação, etc; e as principais desvantagens: corrosividade e cristalização a elevadas temperaturas. Os pares TFE/NMP, TFE/E181 e TFE/PYR possuem como principais vantagens, a alta estabilidade térmica, alta saída de temperatura de calor, curva de pressão de vapor e forte derivação negativa da Lei de Raoult. As principais desvantagens: são tóxicos como a amônia.

3.8 ANÁLISE ENERGÉTICA DO SISTEMA DE ABSORÇÃO PARA O PAR LIBRH2O

VARANI (2001) aplicou das equações de conservação de massa e de energia, (Primeira Lei da Termodinâmica) para o cálculo da eficiência energética, para os componentes (gerador, absorvedor, evaporador, condensador e trocador de calor da solução) do sistema de refrigeração por absorção de simples efeito, com brometo de lítio e água. Foi desenvolvido um modelo de análise energética usando correlações matemáticas empíricas em vez de ábacos para as propriedades da solução, com a finalidade de produzir parâmetros de interesse prático de engenharia que possam, posteriormente, serem estendidos a diferentes situações reais. Esse modelo, além da obtenção das propriedades térmicas nos pontos de entrada e saída de cada componente do ciclo, estima também as áreas de troca de calor nos necessários dispositivos de transferências. O código computacional construído durante a etapa de desenvolvimento utilizou dois modelos, com base nas diferenças de temperatura estabelecidas primeiramente para a saída do gerador e depois na condensação, tendo ambos, no entanto, o fato comum de ter a disponibilidade energética no gerador como dado principal de entrada,

sendo aplicado este último para o dimensionamento dos componentes do ciclo. A análise energética para o ciclo de refrigeração por absorção de LiBr-H₂O é feita com a aplicação da Primeira Lei da Termodinâmica em cada componente do ciclo, onde o volume de controle para cada um inclui o reservatório externo (VARANI, 2001). Apresenta-se na Figura 19 o esquema do ciclo de refrigeração por absorção, de simples efeito, para análise dos processos que ocorrem em cada componente do mesmo, com seus respectivos pontos de entrada e saída.

Figura 19 – Esquema de uma unidade de refrigeração por absorção de LiBr e água, de simples efeito.

Na Tabela 2 encontram-se discriminados quais os fluidos que circulam no sistema, referentes a cada ponto mostrado na Figura 19, bem como as condições em cada um deles.

Pontos do	Condiaão
Sistema	Condição
1	solução diluída – líquido saturado
2	solução diluída - líquido comprimido
3	solução diluída - líquido comprimido
4	solução concentrada - líquido saturado
5	solução concentrada - líquido comprimido
6	solução concentrada - mistura bifásica
7	refrigerante (água) - vapor d´água superaquecido
8	refrigerante - líquido saturado
9	refrigerante - mistura bifásica
10	refrigerante - vapor saturado
11	água gelada - líquido comprimido
12	água gelada - líquido comprimido
13	água de resfriamento - líquido comprimido
14	água de resfriamento - líquido comprimido
15	água de resfriamento - líquido comprimido
16	água de resfriamento - líquido comprimido
17	água de aquecimento
18	água de aquecimento

Tabela 2 - Fluidos de trabalho e condição em cada ponto do sistema da Figura 19

Fonte: VARANI, 2001

A **Conservação da Massa** para o volume de controle (vc), também chamada de **Equação da Continuidade** (WYLEN et al., 1995), é dada por:

$$\frac{\mathrm{d}m_{\mathrm{VC}}}{\mathrm{d}t} + \sum \dot{m}_{\mathrm{sa}} - \sum \dot{m}_{\mathrm{e}} = 0 \tag{9}$$

onde: $\dot{m} = vaz\tilde{a}o$, t = tempo, e = condição de entrada, sa = condição de saída.

Analisando o problema sob regime permanente, tem-se:

$$\frac{dm_{VC}}{dt} = 0$$
 (10)

Logo:

$$\sum \dot{m}_{sa} = \sum \dot{m}_{e}$$
(11)

A Conservação de Energia no volume de controle, também conhecida como a Primeira Lei da Termodinâmica, é dada por (WYLEN et al., 1995):

$$\dot{Q}_{VC} + \sum \dot{m}_{e} \left[h_{e} + \frac{V_{e}^{2}}{2} + gZ_{e} \right] = \frac{dE_{VC}}{dt} + \sum \dot{m}_{sa} \left[h_{sa} + \frac{V_{sa}^{2}}{2} + gZ_{sa} \right] + \dot{W}_{VC}$$
(12)

Onde: \dot{Q}_{VC} = calor no volume de controle, *h* = entalpia, *V* = velocidade, W_{VC} = trabalho no volume de controle, E_{VC} = Energia interna no volume de controle, *g* = aceleração da gravidade, *Z* = altura.

Para regime permanente e para a caixa de mistura, apenas:

$$\frac{dE_{VC}}{dt} = 0$$
 (13)

$$\dot{W}_{VC} = 0 \tag{14}$$

A Equação (12) torna-se então:

$$\dot{Q}_{VC} = \sum \dot{m}_{sa} \left[h_{sa} + \frac{V_{sa}^2}{2} + gZ_{sa} \right] - \sum \dot{m}_{e} \left[h_{e} + \frac{V_{e}^2}{2} + gZ_{e} \right]$$
(15)

A **Eficiência Energética** (η), pode ser obtida segundo a Primeira Lei como a relação entre a energia desejada e a energia gasta (consumida) para obter o desejado (BEJAN, 1988).

$$\eta = \frac{\text{energia desejada}}{\text{energia consumida p / obter o desejado}}$$
 (16)

3.8.1 Aplicação das leis de conservação em cada componente do ciclo de refrigeração por absorção

Para a aplicação das leis de conservação de massa e energia em cada componente do ciclo de refrigeração por absorção, de simples efeito, foi estabelecido um volume de controle para cada um deles, considerando suas funções específicas, de modo a facilitar a abordagem das diferentes definições, incluindo as de eficiência pela primeira lei. Considerou-se que todos os componentes do sistema operam em regime permanente, e que as contribuições de energia oriundas das variações de energia cinética e potencial são consideradas desprezíveis.

Para o Gerador:

Figura 20 – Volume de controle no gerador do sistema.

Conservação da Massa para o volume de controle. Da equação (9), vem:

$$\dot{m}_3 = \dot{m}_4 + \dot{m}_7$$
 (17)

Balanço parcial para a solução de LiBr-H₂O:

$$\dot{m}_3 X_3 = \dot{m}_4 X_4$$
 (18)

Conservação de Energia no volume de controle:

$$\dot{Q}_{g} + \dot{m}_{3} \left[h_{3} + \frac{V_{3}^{2}}{2} + gZ_{3} \right] = \dot{m}_{7} \left[h_{7} + \frac{V_{7}^{2}}{2} + gZ_{7} \right] + \dot{m}_{4} \left[h_{4} + \frac{V_{4}^{2}}{2} + gZ_{4} \right]$$
(19)

Assim:

$$\dot{Q}_{g} = \dot{m}_{7} h_{7} + \dot{m}_{4} h_{4} - \dot{m}_{3} h_{3} = \dot{Q}_{pc} = \dot{m}_{1} (h_{17} - h_{18})$$
 (20)

Eficiência Energética para o gerador:

$$\eta_{g} = \frac{\left|\dot{m}_{3}h_{3} - \dot{m}_{4}h_{4} - \dot{m}_{7}h_{7}\right|}{\left|\dot{m}_{1} \frac{1}{4}h_{17} - h_{18}\right|}$$
(21)

Absorvedor:

Figura 21 – Volume de controle no absorvedor do sistema

Analogamente como feito para o gerador, a Conservação de Massa para o volume de controle no absorvedor é:

$$\dot{m}_1 = \dot{m}_6 + \dot{m}_{10}$$
 (22)

Balanço parcial para LiBr-H₂O

$$\dot{m}_1 x_1 = \dot{m}_6 x_6$$
 (23)

Conservação de Energia no volume de controle:

$$\dot{Q}_{ab} = \dot{m}_1 h_1 - \dot{m}_{10} h_{10} - \dot{m}_6 h_6$$
 (24)

$$\dot{Q}_{ab} = \dot{m}_{13}(h_{14} - h_{13})$$
 (25)

Eficiência Energética para o absorvedor:

$$\eta_{ab} = \frac{\left|\dot{m}_{6}h_{6} + \dot{m}_{10}h_{10} - \dot{m}_{1}h_{1}\right|}{\left|\dot{m}_{14}h_{14} - h_{13}\right|}$$
(26)

Condensador:

Figura 22 – Volume de controle no condensador do sistema.

Conservação da Massa para o volume de controle no condensador:

$$\dot{m}_7 = \dot{m}_8$$
 (27)

Conservação de Energia no volume de controle:

$$\dot{Q}_{c} = \dot{m}_{1}(h_{7} - h_{8})$$
 (28)

$$\dot{Q}_{c} = \dot{m}_{15}(h_{16} - h_{15})$$
 (29)

Eficiência Energética para o condensador:

$$\eta_{c} = \frac{\left|\dot{m}_{1}(h_{7} - h_{8})\right|}{\left|\dot{m}_{1}(h_{16} - h_{15})\right|}$$
(30)

Evaporador:

Figura 23 – Volume de controle no Evaporador do sistema

Conservação da Massa para o volume de controle no evaporador:

$$\dot{m}_9 = \dot{m}_{10}$$
 (31)

Conservação de Energia no volume de controle:

$$\dot{Q}_{ev} = \dot{m}_{g}(h_{g} - h_{10})$$
 (32)

$$\dot{Q}_{ev} = \dot{m}_{11}\overline{C}_{p}(T_{11} - T_{12})$$
 (33)

Eficiência Energética para o condensador:

$$\eta_{ev} = \frac{\left| \dot{m}_{1} \left(h_{11} - h_{12} \right) \right|}{\left| \dot{m}_{1} \left(h_{10} - h_{9} \right) \right|}$$
(34)

Figura 24 – Volume de controle no Trocador de calor do sistema.

Conservação da Massa para o volume de controle, no trocador de calor:

$$\dot{m}_2 + \dot{m}_4 = \dot{m}_3 + \dot{m}_5$$
 (35)

$$\dot{m}_2 = \dot{m}_3$$
 (36)

$$\dot{m}_4 = \dot{m}_5$$
 (37)

Conservação de Energia no volume de controle:

$$\dot{Q}_{tc} = \dot{m} Cp \Delta T$$
 (38)

$$\dot{Q}_{tc} = \dot{m}_2 h_2 + \dot{m}_4 h_4 = \dot{m}_3 h_3 + \dot{m}_5 h_5$$
 (39)

Eficiência Energética para o trocador de calor:

$$\eta_{tc} = \frac{\left|\dot{m}_{s}(h_{3} - h_{2})\right|}{\left|\dot{m}_{4}(h_{4} - h_{5})\right|}$$
(40)

<u>Sistema:</u>

Para o sistema a Eficiência Energética é:

$$\eta_{s} = \frac{\left|\dot{m}_{1}\left(h_{11} - h_{12}\right)\right|}{\left|\dot{m}_{1}t_{1}h_{17} - h_{18}\right|}$$
(41)

A taxa de transferência de calor do absorvedor, que é rejeitado para a atmosfera através da torre de resfriamento, pode ser calculada pela Equação (42) ou a partir do balanço global de energia:

$$\dot{\mathbf{Q}}_{ab} = \dot{\mathbf{Q}}_{g} + \dot{\mathbf{Q}}_{ev} - \dot{\mathbf{Q}}_{c} \quad (kW)$$
(42)

CARVALHO et al. (2006) também modelou matematicamente e simulou o ciclo por absorção, mostrado na Figura 25, algumas hipóteses simplificadoras foram assumidas

Figura 25 – Sistema de refrigeração simulado.

Fonte: CARVALHO et al. (2006)

- O estado regular do refrigerante corresponde ao da água pura;
- Não há variação de pressão, exceto nos dispositivos de expansão e na bomba;
- Nos pontos 8,2 e 4 da Figura 25, há somente líquido saturado;
- No ponto 6 da Figura 25 há somente vapor saturado;
- Os dispositivos de expansão são adiabáticos;
- Não há troca de calor nas superfícies e tubulações, exceto nos trocadores de calor.

3.8.1.1 ABSORVEDOR

No absorvedor ocorrem basicamente dois processos a transferência de calor e a transferência de massa. Para a modelagem matemática desses dois fenômenos, simplificaremos o processo utilizando-se o princípio da superposição de efeitos para tal dividiremos o processo em dois distintos, a saber: a absorção (mistura adiabática de dois fluxos) de vapor pela solução e a troca de calor. Utilizando-se os princípios da conservação de massa e energia, aplicados ao absorvedor, sabendo-se que \dot{m}_1 é a vazão mássica de solução no ponto (1), m_a é a vazão mássica de água no absorvedor, *h* é a entalpia, *X* a concentração da solução e *Q* é o fluxo de calor em cada componente do sistema,

tem-se (CARVALHO et al., 2006):

$$\dot{\mathbf{m}}_1 \cdot \mathbf{X}_1 = \dot{\mathbf{m}}_2 \cdot \mathbf{X}_2 \tag{43}$$

$$\dot{\mathbf{m}}_3 \cdot \mathbf{h}_6 + \dot{\mathbf{m}}_2 \cdot \mathbf{h}_8 = \dot{\mathbf{m}}_1 \cdot \mathbf{h}_a + \dot{\mathbf{Q}}_{abs}$$
(44)

$$\dot{\mathbf{m}}_{\mathbf{a}} \cdot \mathbf{h}_{\mathbf{a}1} + \dot{\mathbf{Q}}_{\mathbf{a}bs} = \dot{\mathbf{m}}_{\mathbf{a}} \cdot \mathbf{h}_{\mathbf{a}2} \tag{45}$$

3.8.1.2 GERADOR

No gerador ocorre a absorção de calor que pode ser por fonte direta ou indireta (no caso de aproveitamento de calor residual). Este calor é transferido à solução de LiBr/Água, fazendo com que parte da água desta solução passe para o estado de vapor que flui ao condensador. A outra parte da solução a uma alta concentração de LiBr escoa para o absorvedor. Neste caso tem-se um processo de transferência de massa que ocorre na vaporização da água (considerada pura) e a transferência de calor que ocorre no trocador. Na Figura 25 tem-se uma representação esquemática do gerador, onde: h1 é a entalpia no ponto (1), T1 é a temperatura no ponto (1) e P_{alta} é a pressão no gerador.

Utilizando-se os princípios de conservação de massa e energia no gerador (Figura 25), vem:

$$\dot{m}_1 \cdot h_1 + \dot{Q}_g = \dot{m}_2 \cdot h_2 + \dot{m}_3 \cdot h_3$$
 (46)

$$\dot{m}_{g} \cdot h_{g1} = \dot{m}_{g} \cdot h_{g2} + \dot{Q}_{g}$$
(47)

e, com o método da média logarítmica das diferenças de temperatura para o gerador, temos:

$$\dot{Q}_{g} = U_{g} \cdot A_{g} \cdot \Delta Tm_{g}$$
(48)

$$\Delta Tm_{g} = \frac{\Delta T_{1} - \Delta T_{2}}{Ln\left(\frac{\Delta T_{1}}{\Delta T_{2}}\right)}$$
(49)

$$\Delta T_1 = T_{g1} - T_2 \tag{50}$$

$$\Delta \mathsf{T}_2 = \mathsf{T}_{g2} - \mathsf{T}_1 \tag{51}$$

3.8.1.3 TROCADOR DE CALOR

Pode-se ainda fazer uso de um trocador de calor entre o gerador e absorvedor com o objetivo de melhorar o coeficiente de performance do ciclo por absorção. A transferência de calor ocorre entre o fluido quente que sai do gerador e o fluido frio que sai do absorvedor para o gerador (Figura 25).

$$\dot{\mathbf{m}}_2 \cdot \mathbf{h}_2 = \dot{\mathbf{m}}_2 \cdot \mathbf{h}_7 + \dot{\mathbf{Q}}_t \tag{52}$$

$$\dot{m}_1 \cdot h_{10} + \dot{Q}_1 = \dot{m}_1 \cdot h_1$$
 (53)

$$\dot{Q}_t = U_t \cdot A_t \cdot \Delta Tm_t$$
 (54)

Mais uma vez faz-se um balanço utilizando-se a conservação de massa e energia e a média logarítmica das diferenças de temperatura, considerando o trocador de calor em escoamento contra corrente, onde, ΔTm_t é a já citada média logarítmica das diferenças de temperatura, *U* é o coeficiente global de transferência de calor no trocador.

Dados experimentais mostram que a região do ciclo onde existe o maior risco de acontecer o problema da cristalização, é na tubulação de saída do trocador de calor ponto (7) da Figura 25, isso ocorre devido a alta concentração da solução nesta região. Para se evitar a cristalização e uma conseqüente interrupção no ciclo, deve-se calcular uma entalpia mínima no ponto (7) para que não ocorra a cristalização. Para tanto utiliza-se a relação abaixo (ASHRAE, 1993):

$$h_{min} = -1397 + 24 \cdot X$$
 (55)

Onde X é a concentração da solução de LiBr-H₂O.

.

3.8.1.4 CONDENSADOR

No condensador o vapor de água proveniente do gerador a alta pressão, perde calor no trocador, sendo então condensado. O vapor que adentra o condensador sai na forma de líquido saturado ponto (4) da Figura 25. Fazendo-se um balanço de energia no condensador têm-se:

$$\dot{m}_3 \cdot h_3 = \dot{m}_3 \cdot h_4 + Q_{cd}$$
 (56)

$$\dot{\mathbf{m}}_{cd} \cdot \mathbf{h}_{cd1} + \dot{\mathbf{Q}}_{cd} = \dot{\mathbf{m}}_{cd} \cdot \mathbf{h}_{cd2}$$
(57)

Para uma análise da troca de calor no condensador emprega-se o método da Efetividade-NUT. A efetividade (ϵ) é obtida por equação apropriada (INCROPERA E DEWITT, 1998), a partir das dimensões do trocador de calor, das vazões, do valor de número de unidades de transferência (NUT) e ainda de C_r ($C_r = C_{min} / C_{max}$). Abaixo temos a representação das equações envolvidas na análise:

$$\varepsilon_{cd} = 1 - e^{\left(-NUT_{cd}\right)}$$
(58)

$$C\min_{cd} = \dot{m}_{cd} \cdot C_{p,a}$$
(59)

$$NUT_{cd} = \frac{U_{cd}A_{cd}}{C\min_{cd}}$$
(60)

$$\dot{Q}\max_{cd} = C\min_{cd}(T_4 - T_{cd1})$$
(61)

A utilidade real da efetividade é que, conhecido T₄, T_{cd1} e ϵ_{cd} podemos calcular a taxa real de

transferência de calor, através da expressão:

$$\dot{Q}_{cd} = \varepsilon_c \cdot \dot{Q} \max_{cd}$$
 (62)

3.8.1.5 EVAPORADOR

O fluido refrigerante (água) após ser expandido no dispositivo de expansão onde, após uma abrupta queda de pressão, se dirige para o evaporador parte na forma de vapor e parte na forma de água líquida. No evaporador ocorrerá troca de calor com um agente refrigerante, saindo a água no estado de vapor saturado para o absorvedor ponto (5). Fazendo-se um balanço de energia no evaporador:

$$\dot{\mathbf{m}}_3 \cdot \mathbf{h}_5 + \dot{\mathbf{Q}}_{ev} = \dot{\mathbf{m}}_3 \cdot \mathbf{h}_6 \tag{63}$$

$$\dot{\mathbf{m}}_{ev} \cdot \mathbf{h}_{ev1} = \dot{\mathbf{m}}_{ev} \cdot \mathbf{h}_{ev2} + \dot{\mathbf{Q}}_{ev}$$
(64)

Mais uma vez para uma análise do desempenho da troca de calor no evaporador, utiliza-se o método Efetividade-NUT, e equações similares as já utilizadas no caso do condensador.

$\varepsilon_{ov} = 1 - e^{(-NUT_{ev})}$	(65)
Sev : C	(••)

$$C\min_{ev} = \dot{m}_{ev} \cdot C_{p,a}$$
(66)

$$NUT_{ev} = \frac{U_{ev} - A_{ev}}{C \min_{ev}}$$
(67)

$$\dot{Q}_{max_{ev}} = Cmin_{ev}(T_{ev1} - T_5)$$
 (68)

$$\dot{Q}_{ev} = \varepsilon_{ev} \cdot \dot{Q} \max_{ev}$$
 (69)

3.8.2 Modelo baseado nas correlações específicas para a solução aquosa de brometo de lítio e água

As propriedades termodinâmicas para a solução LiBr-H₂O são: pressão, temperatura, concentração, entalpia e densidade, as quais são interdependentes e necessárias para a simulação computacional de sistemas de refrigeração por absorção.

3.8.2.1 PRESSÃO E TEMPERATURA DE SATURAÇÃO PARA A ÁGUA E PARA A SOLUÇÃO DE LIBR-H₂O

Como a pressão de saturação é uma propriedade termodinâmica dependente da temperatura, os valores das pressões nas regiões de baixa e de alta do sistema, são obtidos através do equilíbrio das pressões existentes nos vasos que contém água saturada (condensador e evaporador) e os vasos que contém solução de brometo de lítio (gerador e absorvedor). Isto, porque a pressão no evaporador será a mesma que o vapor d'água exercerá no absorvedor, e pelo mesmo fato, a pressão no

condensador será a mesma que o vapor d'água exercerá no gerador. Portanto, as pressões do sistema de absorção são fixadas a partir da temperatura da água saturada no evaporador e no condensador, respectivamente. A equação que relaciona a pressão com a temperatura de saturação da água é dada por Antoine citada em FELDER E ROUSSEAU (2005)

$$Log_{10}P = A - \frac{B}{T + C}$$
(70)

Onde: *P* está em mmHg, *T* de 0 a 60 °C: *A* = 8,10765, *B* = 1750,286 e *C* = 235; *T* de 60 a 150 °C: A=7,96681, B = 1668,210 e C = 228 (FELDER E ROUSSEAU, 2005).

Outra correlação para a determinação da pressão de saturação da água é mostrada em SUN (1997b):

$$F(T) = \exp\left(-\frac{3968,06}{T-39,5735} + \sum_{i=0}^{9} a_i T^i\right)$$
(71)

Ou

$$T(P) = 42,6776 - \frac{3892,7}{Lr(P) - 9,48654}$$
 para P<12,33 MPa (72a)

$$(P) = -387,592 - \frac{12587,5}{Lr(P) - 15,2578}$$
 para P≥12,33 MPa (72b)

Onde: T (K) é a temperatura de saturação da água e P (MPa) pressão de saturação da água. Os coeficientes da Equação (71) podem ser vistos na Tabela 3.

Tabela 3 – Coeficientes da Equação (71)						
1	ai	i	a _i			
0	1,04592 E1	5	8,6531 E-13			
1	-4,04897 E-03	6	9,03668 E-16			
2	-4,1752 E-05	7	-1,9969 E-18			
3	3,6851 E-07	8	7,79287 E-22			
4	-1,0152 E-05	9	1,91482 E-25			

Fonte: SUN, 1997b

Segundo SUN (1997b), a temperatura de saturação da água é igual à temperatura de saturação da solução de LiBr-H₂O. Assim, ele propôs a seguinte correlação:

$$T_{d}(T,X_{a}) = \sum_{i=0}^{5} \sum_{j=0}^{2} a_{ij}X_{a}^{i}T^{j}$$
(73)

Onde: T_d (°F) é a temperatura de saturação da solução à pressão de saturação, X_a (%) é a concentração de LiBr e T(°F) é a temperatura da solução.

Tabela 4 – Coeficientes	da Equação (73)
-------------------------	-----------------

Ι	J	a _{ij}		J	a _{ij}	i	j	a _{ij}
0	0	-1,313448 E-01	0	1	9,967944 E-01	0	2	1,978788 E-05
1	0	1,820914 E-01	1	1	1,778069 E-03	1	2	-1,779481 E-05
2	0	-5,177356 E-02	2	1	-2,215597 E-04	2	2	2,002427 E-06
3	0	2,827426 E-03	3	1	5,913618 E-06	3	2	-7,667546 E-08
4	0	-6,380541 E-05	4	1	-7,308556 E-08	4	2	1,201525 E-09
5	0	4,340498 E-07	5	1	2,788472 E-10	5	2	-6,64171 E-12

Fonte: SUN, 1997b

A Equação de Gomez-Thodos (REID, PRAUSNITZ AND POLING,1987) também estima pressões de vapor através da Equação (74). Esta equação é satisfeita no ponto crítico.

$$\operatorname{Ln} \mathsf{P}_{\mathsf{VPr}} = \beta \left(\frac{1}{\mathsf{Tr}^{\mathsf{m}}} - 1 \right) + \gamma \left(\mathsf{Tr}^{\mathsf{7}} - 1 \right)$$
(74)

Onde: Tr é a temperatura de referência, que igual a razão entre a temperatura num ponto qualquer (*T*) e a temperatura no estado crítico (*Tc*).

O ponto de ebulição normal fornece uma equação adicional, a qual relaciona as constante \mathfrak{S} , $\Upsilon e m$. Isto conduz a:

$$\gamma = \mathbf{a}\mathbf{h} + \mathbf{b}\boldsymbol{\beta} \tag{75}$$

Onde:

$$a = \frac{1 - 1/T_{br}}{T_{br}^{7} - 1} \qquad e \qquad b = \frac{1 - 1/T_{br}^{m}}{T_{br}^{7} - 1}$$
(3.76, 77)

É comum a prática de utilizar ambos os pontos de ebulição normal e crítico para obter constantes generalizadas, como é o caso de *Tbr*. Logo, *Tbr* é obtido através da relação entre a temperatura de ebulição normal (*Tb*) e o temperatura no ponto crítico (*Tc*).

h é dado por:

$$h = T_{br} \frac{ln(Pc/1,01325)}{1 - T_{br}}$$
(78)

Componentes são divididos em três classes: apolar, polar e componentes com ponte de hidrogênio. O procedimento para determinar β , Υ e *m* é diferente em cada caso. Para componentes apolares (ambos, orgânico e inorgânico):

$$\beta = -4,26700 - \frac{221,79}{h^{2,5} \exp 0,0384h^{2,5}} + \frac{3,8126}{\exp(2272,44/h^3)} + \Delta^*$$
(79)

$$m = -4,26700 - \frac{221,79}{h^{2,5} \exp 0,0384h^{2,5}} + \frac{3,8126}{\exp(2272,44/h^3)} + \Delta^*$$
(80)

Onde $\Delta^* = 0$ exceto para He ($\Delta^* = 0,41815$), H2 ($\Delta^* = 0,19904$) e Ne ($\Delta^* = 0,02319$).

 $^{\gamma}$ é obtido da Equação 75.

Para componentes polares exceto água e alcoóis

$$m = 0,466 T c^{0,166}$$
 (81)

 $\gamma = 0,08594 \exp(7,462 \cdot 10^{-4} \,\mathrm{Tc})$ (82)

Para água e alcoóis

$$m = 0,0052M^{0,29}Tc^{0,72}$$

$$\gamma = \frac{2,464}{M} \exp(9,8 \cdot 10^{-6} \text{MTc})$$
(84)

Para estas duas últimas categorias de componentes, β é obtido da Equação 85, isto é:

$$\beta = \frac{\gamma}{b} - \frac{ah}{b}$$
(85)

A temperatura do vapor de água superaquecido que sai do gerador (T_7) é calculada, a partir das duas funções (TfuncX3 e TfuncX4) (Varani, 2001), representadas pelas Equações, (86) e (87), respectivamente.

TfuncX3=
$$(124,937*X3-3,85825*(X3)^{2}+50,762E-3*(X3)^{3}-198,7725E-6*(X3)^{4})+$$

T8* $(-2,00755*X3+84,88E-3*(X3)^{2}-1,044454E-3*(X3)^{3}+4,9417E-6*(X3)^{4})$ (86)

TfuncX4=
$$(124,937*X3-3,85825*(X4)^{2}+50,762E-3*(X4)^{3}-198,7725E-6*(X4)^{4})+$$

T8* $(-2,00755*X3+84,88E-3*(X4)^{2}-1,044454E-3*(X4)^{3}+4,9417E-6*(X4)^{4})$ (87)

$$T_7 = (TfuncX4-TfuncX3)/(X_4-X_3)$$
 (88)

De acordo com Varani (2001) as temperaturas da solução de LiBr-H₂O:que sai do absorvedor (T₁), que entra ao gerador (T₃) e que sai do mesmo em direção ao trocador de calor (T₄) podem ser determinadas pela Equações (89), (90) e (91), respectivamente:

T₁
$$\neq$$
 -BETA3 + $\sqrt{$ BETA3)² - 4 · ALFA3(GAMA3 - (710)) /(2 · ALFA3) (89)

(83)

Onde: ALFA3, BETA3 e GAMA3 são determinados pela Subroutine Tempsol (X, ALFA, BETA, GAMA), localizada no ANEXO B.

$$T_3 \neq -AH3 + \sqrt{AH3}^2 - 4.0,5.BH3(DH3 - h_3))/(2.0,5.BH3)$$
 (90)

Onde: AH=3,462023-2,679895E-2X BH=1,3499E-3-6,55E-6X DH=162,81-6,0418(X)-4,5348E-3(X²)+1,2053E-3(X³)

A temperatura da solução rica em brometo de lítio que sai do gerador

$$T_4 \neq -BETA4 + \sqrt{BETA4}^2 - 4 \cdot ALFA4(GAMA4 - 7(8))) / (2 \cdot ALFA4)$$
(91)

Onde: ALFA4, BETA4 e GAMA4 são determinados pela Subroutine Tempsol (X, ALFA, BETA, GAMA), localizada no ANEXO B.

Segundo Aphornratana e Eames (1995), citado por Varani (2001), a temperatura da solução LiBr-H₂O na saída do trocador de calor em direção à válvula de redutora de pressão (ponto 5) é estimada e pode variar entre a temperatura de cristalização no ponto 5 (Tcrist₅) mais 10,5°C, até a temperatura no ponto 4 (T₄) menos 5°C (Tcrist₅ +10,5°C<T₅<T₄-5°C). Com T₅ determina-se h₅. A temperatura de cristalização no ponto 5 pode ser calculada pela Equação (92):

$$T_{CRIST5} \neq -AH4 + \sqrt{AH4}^2 - 4(0,5) \cdot BH4(DH4 - h_{crist5}) / (2(0,5) \cdot BH4)$$
(92)

Onde:

$$h_{crist5} = 21,57010989 \cdot X4 - 1232,130549$$
 (93)

De acordo com Varani (2001, p.53), a temperatura da solução concentrada em LiBr na saída da válvula redutora de pressão em direção ao absorvedor (ponto 6) é calculada em função da temperatura de equilíbrio da água saturada no ponto 10, na saída do evaporador em direção ao absorvedor (vapor d'água, T₁₀), desta forma faz-se necessário verificar se a solução no ponto 6 está na região bifásica ou comprimida através da Equação (94) temperatura de orvalho.

$$TD = \sum_{i=0}^{2} \sum_{j=0}^{3} A_{j} (X - 40)^{j} T^{i} (C)$$
(94)

Onde: TD é a temperatura de orvalho (temperatura de saturação da água: T_a), T é a temperatura da solução e X é a concentração da solução. A faixa de validade para esta equação é $20 \le T \le 210^{\circ}$ C e $40 \le X \le 65^{\circ}$ C. Os coeficientes são dados na Tabela 5.

U 1			
J	A _{0j}	A _{1j}	A _{2j}
0	-9,13E+00	9,44E-01	-7,32E-05
1	-4,76E-01	-2,88E-03	-1,56E-05
2	-5,64E-02	-1,35E-04	1,99E-06
3	1,11E-03	5,85E-07	-3,92E-08

Tabela 5 – Coeficientes para determinação da temperatura de orvalho da Equação 94

Fonte: VARANI, 2001

A pressão no ponto 6 pode ser determinada pela Equação (95):

$$Log_{10}P6 = C + \left(\frac{D}{TD6 + 273,15}\right) + \left(\frac{E}{(TD6 + 273,15)^2}\right)$$
(95)

Onde: C=10,04999, D=-1603,54, E=-104096 e TD6 (temperatura de orvalho no ponto 6 da solução concentrada de LiBr-H₂O), é determinada pela subrotina TEMPORV, localizada no Anexo B.

Se a pressão no ponto 6 for maior que a pressão de evaporação, pode-se considerar que a temperatura da solução no ponto 6 é igual a no ponto 5 ($T_6=T_5$). Em caso contrário, outra correlação para determinar a temperatura no ponto 6, é dada pela Equação (96):

$$T_6 \neq -BETAo + \sqrt{BETAo}^2 - 4 \cdot ALFAo(GAMAo - 7(10)) / (2 \cdot ALFAo)$$
(96)

Onde: ALFAo, BETAo e GAMAo são determinados pela Subroutine Tempsol (X, ALFA, BETA, GAMA), localizada no ANEXO B.

A temperatura de cristalização no ponto 6 é calculada pela Equação (97)

$$T_{CRIST6} \neq (-AH4 + \sqrt{AH4})^2 - 4(0,5) \cdot BH4(DH4 - h_{crist6})) / (2(0,5) \cdot BH4)$$
(97)

3.8.2.2 CAPACIDADES CALORÍFICAS PARA A ÁGUA E SOLUÇÃO DE LIBR- H₂O

As equações usadas para a determinação das capacidades caloríficas da água na forma líquida e vapor saturado foram encontradas em SMITH, et al. (2000):

Capacidade calorífica para água na forma de líquido saturado:

$$Cp_{LSAT} = \frac{R}{PM_a} (A + BT + CT^2) (kJ/KgK)$$
(98)

Onde: R= 8,314 J/mol K; PM_a (Peso Molecular da Água) = 18 kg/kmol; A = 8,712; B = 1,25E-3; C=0,18E-6; T pode variar entre 273,15 até 373,15 K.

Capacidade calorífica para vapor de água saturado e superaquecido:

$$Cp_{VSAT} = Cp_{VSUP} = \frac{R}{PM_a} (A + BT + DT^{-2}) (kJ/KgK)$$
(99)

Onde: R= 8,314 J/mol K; PM_a (Peso Molecular da Água) = 18 kg/kmol; A = 3,47; B = 1,45E-3; D = 0,121E+5; T pode variar entre 298 até 2000 K.

A equação usada para a determinação da capacidade calorífica da solução de brometo de lítio é encontrada em KAITA (2001):

$$Cp_{LiBr} = (A_0 + A_1X) + (B_0 + B_1X)T (kJ/KgK)$$
(100)

Onde: $A_0 = 3,462023$; $A_1 = -2,679895E-2$; $B_0 = 1,3499E-3 e B_1 = -6,55E-6$; *T* pode variar de 0 até 200°C e X é a fração molar do LiBr-H₂O.

3.8.2.3 ENTALPIAS PARA A ÁGUA E SOLUÇÃO DE LIBR- H₂O

Para realizar os cálculos térmicos sobre um ciclo de refrigeração por absorção, dados de entalpia precisam ser disponíveis para a substância de trabalho em todas as posições cruciais do ciclo. As entalpias da água nas formas líquida ou vapor, que escoam para o condensador e evaporador, como também da solução de LiBr-H₂O existente no gerador e absorvedor, podem ser determinadas através de tabelas de propriedades da água, gráficos ou ainda de correlações empíricas em função da temperatura e concentração da solução.

3.8.2.3.1 Água

Como as faixas de temperatura utilizadas são relativamente pequenas em relação à temperatura de referência, pode-se utilizar com razoável precisão a equação da definição de entalpia, com calor específico (C_p) constante:

$$h - h_0 = Cp(T - T_0) (kJ/Kg)$$
 (101)

Considerando que a água que sai do condensador é saturada, tem-se a entalpia de referência $h_0 = 0$ kJ/kg a temperatura de referência $T_0 = 0^{\circ}$ C e $C_p = 4,1868$ kJ/kgK. Considerando que se tem vapor saturado na saída do evaporador, então $h_0 = 2.468,69$ kJ/kg com $T_0 = -17,78^{\circ}$ C e $C_p = 1,80769$ kJ/kgK. Portanto, a entalpia do refrigerante na saída do condensador e a entalpia do vapor d'água na saída do evaporador são calculados em função de T_0 e h_{ev} para líquido e para vapor.

O vapor de água que sai do gerador para o condensador é superaquecido, pois está submetido a uma temperatura maior do que a temperatura de saturação à pressão do gerador. Assim a entalpia desse vapor é calculada pela entalpia de saturação, acrescida da parcela de superaquecimento e é dada pela equação (WYLEN et al., 1995):

$$h_{VSUP} = h_{sat} + \int_{T_{sat}}^{I} Cp_{VSUR}(T) dT (kJ/Kg)$$
(102)

Onde: h_{sat} é a entalpia do vapor d'água saturado à temperatura do gerador e Cp_{VSUP} é o calor específico do vapor d'água superaquecido determinado pela Equação (99), T_{sat} é a temperatura de saturação e T a temperatura no ponto considerado.

3.8.2.3.2 LiBr-H₂O

O refrigerante do sistema LiBr-H₂O é água, desta forma, as correlações entre a temperatura de saturação T (K) e entalpias (kJ/Kg) são mostrados como segue e os coeficientes são listados na Tabela 3.6 (SUN, 1997b):

$$T_{\rm R} = \frac{647,3-{\rm T}}{647,3} \tag{103a}$$

Para água na forma de líquido saturado

h(T)=2099,3
$$\left(a_1 + \sum_{i=2}^{8} a_i T_R^{i-1}\right)$$
 (103b)

Para vapor de água saturado

h(T)=2099,3
$$\left(1+b_1T_R^{1/3}+b_2T_R^{5/6}+B_3T_R^{7/8}+\sum_{i=4}^8b_iT_R^{i-3}\right)$$
 (103c)

i	a _i (Eq. 103b)	b _i (Eq. 103c)
1	8,839230108 E-01	4,57874342 E-1
2	-2,67172935	5,08441288
3	6,22640035	-1,48513244
4	-1,31789573 E1	-4,81351884
5	-1,91322436	2,69411792
6	6,87937653 E1	-7,39064542
7	-1,24819906 E2	1,04961689 E1
8	7,21435404 E1	-5,46840036

Fonte: SUN, 1997b

A Figura 26 apresenta dados de entalpia para soluções de LiBr-H₂O. Os dados são aplicáveis para soluções saturadas ou subresfriadas e são baseados em entalpia nula para a água líquida a 0°C e LiBr sólido a 25°C.

Figura 26 – Entalpia de LiBr-H₂O. Fonte: STOCKER E JONES, 1985.

Segundo SUN (1997b) a entalpia da solução de LiBr-H₂O pode ser obtida através da Equação (104):

$$h(T, X_a) = \sum_{i=0}^{5} \sum_{i=0}^{2} a_{ij} X_a^{i} T^{j}$$
(104)

Onde os seus coeficientes estão dispostos na Tabela 7, como segue:

i	j	a _{ij}	i	j	a _{ij}	I	j	a _{ij}
0	0	1,134125	0	1	4,124891	0	2	5,743693 E-04
1	0	-4,80045 E-01	1	1	-7,643903 E-02	1	2	5,870921 E-05
2	0	-2,161438 E-03	2	1	2,589577 E-03	2	2	-7,375319 E-06
3	0	2,336235 E-04	3	1	-9,500522 E-05	3	2	3,277592 E-07
4	0	-1,188679 E-05	4	1	1,708026 E-06	4	2	-6,062304 E-09
5	0	2,291532 E-07	5	1	-1,102363 E-08	5	2	3,901897 E-11

Tabela 7 – Coeficientes da Equação (104)

Fonte: SUN, 1997b

De acordo com KAITA (2001), a entalpia da solução na saída do Gerador, onde a solução de LiBr-H₂O (ponto 4) é calculada em função da concentração mássica (*X* em %) e da temperatura da solução (*T* em °C). Ela foi determinada considerando o valor de entalpia igual a zero como referência a T = 0 °C e 50% de brometo de lítio na solução. É dada por:

$$h=(A_0 + A_1X)T + (B_0 + B_1X)T^2 + (D_0 + D_1X + D_2X^2 + D_3X^3) (kJ/Kg)$$
(105)

Os coeficientes A₀, A₁, B₀, B₁ são os mesmos da Equação (100), bem como a faixa de validade, com: D₀ = 162,81, D₁ = - 6,0418, D₂ = - 4,5348E-3 e D₃ = 1,2053E-3.

A entalpia da solução diluída de brometo de lítio e água que sai do absorvedor e do gerador em direção ao trocador de calor é obtida pela Equação (106) (VARANI, 2001):

$$h1 = AH3 ((7, 1)) + (0,5 * BH3) ((7, 1))^2 + DH3$$
 (10(2))

$$h_4 = AH4 ((74)) + (0,5*BH4) ((74)^2) + DH4$$
 (107)

Onde:

AH=3,462023-2,679895E-2(X) BH=1,3499E-3-6,55E-6(X) DH= 162,81- 6,0418(X)-4,5348E-3(X²)+1,2053E-3(X³)

A entalpia no ponto 6 pode ser obtida através da soma das Equações (108) e (109):

hosol = AH4
$$(T6) + (0.5 * BH4) (T6)^2 + DH4$$
 (108)

A entalpia de cristalização no ponto 6 pode ser obtida através da Equação (110):

Segundo CARVALHO, et al. (2006), para evitar a cristalização da solução de LiBr-H₂O e uma conseqüente interrupção do ciclo, faz-se importante determinar uma entalpia mínima no ponto (5) da Figura 3.13, através da Equação (111):

$$h_5 = -1397 + 24X$$
 (kJ/Kg) (111)

Onde: X é a concentração da solução de LiBr-H₂O.

O Coeficiente de Desempenho real (também chamado de Coeficiente de Eficácia) é a relação entre a energia pretendida e a energia gasta:

$$COP = \frac{Q_{ev}}{Q_g}$$
(112)

O Coeficiente de Desempenho ideal (*COP_{ideal}*), estabelecido por CARNOT (1960), também é calculado para comparação com o Coeficiente de Desempenho real. É determinado em função das temperaturas absolutas (em Kelvin) dos trocadores de calor do sistema:

$$COP_{ideal} = \frac{(T_{ev} + 273, 15) \cdot (T_g - T_{ab})}{(T_g + 273, 15) \cdot (T_c - T_{ev})}$$
(113)

A eficiência global do ciclo é dada, então, por (BEJAN, 1988):

$$\eta_{ciclo} = \frac{COP}{COP_{ideal}}$$
(114)

3.9 O SIMULADOR COMERCIAL TRNSYS

O simulador comercial TRNSYS (*Transient System Simulation Program*) é usado largamente para simular sistemas transientes, como é o caso daqueles que envolvem dados de tempo meteorológicos.

A linguagem de programação utilizada pelo TRNSYS, versão 14.2 é o Fortran 99, porém este pacote computacional tem como principal novidade, o programa IISiBat (*Intelligent Interface for the Simulation of Building*) um programa que possibilita a modelagem e simulação de sistemas térmicos em ambiente *Windows*, com conexões gráficas para *plotar* listas de dados e apresentar resultados na tela. Esta é a primeira janela a aparecer no programa IISiBat, conforme mostra a Figura 27. Nesta

janela, os ícones iniciam as aplicações do programa. A disponibilidade da aplicação e a exibição dos ícones dependem do nível do usuário registrado no programa.

🔟 II SiBat V2.3r	4 - Login : jaque						
?							
. 		ſ	∿®ln⊗ J <mark>dx f</mark> ⊗				
accounts	libman	standard	codes				
trnsys14							
			<u>, (</u>	문권			æ.
spread	prebid	bid	prep	trnsed	make	editor	print

Figura 27 – Janela do II SiBat Window.

No IISiBat, os usuários são divididos em três grupos distintos com diferentes funções ou campo de atuação dentro do programa TRNSYS: *ROOT, CONCEPTORS* e *ANALYSTS*, como mostra a Figura 28.

O usuário ROOT é o usuário do nível mais alto e pode realizar todas as tarefas atribuídas ao usuário ANALYST e CONCEPTOR, e ainda adentra a todas as partes internas do programa IISiBat e TRNSYS, sendo realizadas por ele, todo e qualquer tipo de manutenção que o sistema possa

O usuário CONCEPTOR é o usuário de nível médio, capaz de criar modelos de componentes, livrarias de projetos e agrupamentos de componentes (simulações e projetos). Possui todos os

requerer. Este usuário pode realizar modificações irreversíveis.

direitos do usuário *ANALYST* e pode ainda utilizar e copiar modelos e projetos de outras livrarias, sem, contudo, poder alterar internamente tais modelos arquivados nas livrarias.

O usuário ANALYST é o usuário de nível mais inferior admitido pelo programa IISibat. Não possui acesso às livrarias de modelos de componentes criados pelo CONCEPTOR ou usuário ROOT. Entretanto, pode ver os agrupamentos de componentes apresentados nos projetos, nos painés de simulação, podendo realizar simulações e observar os resultados. Pode também manipular os projetos que estão em outras livrarias padrões ou livrarias de outros usuários, porém não pode modificar o modelo de componentes nem observar as conexões bloqueadas pelo criador do projeto.

Toda janela do II SiBat tem algumas das propriedades comuns. Estas propriedades comuns serão explanadas primeiro, antes da apresentação de cada janela. Destas, destacam-se as seguintes ferramentas:

3.9.1 Barra de título

Cada janela do II SiBat tem um título no qual uma importante informação do sistema é dada. Na Figura 27, mostra a barra de título que é parte da janela, contendo o texto "II SiBat V2.3r4 - Login : jaque", que mostra o número da versão do programa como também o nome do usuário.

3.9.2 Barra para mover e deslizar a janela

Para mover a janela ativa para diferentes locações na tela, posicione o cursor sobre a barra de título da janela e então pressione o botão do *mouse* e arraste para a nova locação. Para visualizar a janela ativa, posicione o cursor na margem inferior para deslizar a janela para a direita ou para a esquerda e na margem à direita para deslizar a janela para cima ou para baixo.

3.9.3 Botões

3.9.3.1 **QUIT BUTTON**

Pressionando com o botão direito do *mouse* este quadrado branco, posicionado no canto superior esquerdo da janela, logo abaixo da barra de título da Figura 27, a janela do IISiBat será fechada sem salvar a modificações realizadas.

3.9.3.2 AVE BUTTON

Pressionando com o botão direito do *mouse* este quadrado com um tipo de caneta desenhada posicionada canto superior esquerdo da janela, ao lado do botão *quit button,* as mudanças feitas na janela serão salvas. Este botão não fecha a janela corrente, para isto é necessário, fechá-la utilizando a ferramenta *quit button.*

3.9.3.3 PHELP BUTTON

Pressionando com o botão direito do *mouse* este quadrado com um ponto de interrogação desenhado, posicionado ao lado do botão *Save Button*, conforme mostrado na Figura 27, obter-se-á informações sobre a janela corrente do IISiBat.

3.9.4 Ícones da janela principal do II SiBat

3.9.4.1 accounts ACCONT MANAGER

Este é o primeiro ícone da primeira linha da Figura 27. Este aplicativo é composto por duas colunas de nomes, uma delas formada pelo usuário CONCEPTOR e outra por usuários ANALYSTS.

3.9.4.1.1 Ferramentas do account manager

Permite ao usuário acessar informações sobre outros usuários. Para acessar esta janela de informação, clica-se nesta ferramenta e logo após o nome do usuário designado. Informações sobre o usuário selecionado aparecerão na janela do Windows, podendo então alterá-las. O nome do usuário e o registro do mesmo são requisitados pelo Programa IISiBat, onde é preciso uma senha. O usuário não pode mudar seu próprio nível de manipulação nem as propriedades registradas corretamente dentro do programa, contudo pode alterar sua senha.

Aqui o usuário pode apagar a existência de um usuário selecionado do seu mesmo nível de manipulação, bastando para isto, clicar nesta ferramenta e logo após o nome do usuário selecionado. Aqui há necessidade de cautela, pois uma vez deletado o usuário, também deletará tudo aquilo realizado9 por esse usuário.

Permite ao usuário desfazer uma operação prévia, onde por exemplo, pode desfazer algo criado, ou refazer algo deletado, bastando para isso, clicar logo após o ato nesta ferramenta.

Permite ao usuário abrir um gerenciador de bibliotecas de outros usuários, para visualizar na ordem, modelos e projetos ou para copiar (depende do nível do usuário) alguns dos modelos ou projetos e passar depois para a sua própria biblioteca.

Nesta última ferramenta, o usuáriuo pode criar uma conta para um novo usuário, bastando para isso, clicá-la e logo após ao aparecimento de uma caixa de diálogo do Windows no programa, o usuário opta pelo seu nível se ANALYSTS ou CONCEPTORS (não é permitida a opção ROOT, só na instalação do programa), além de ter que escolher seu nome de usuário, ambos solicitados obrigatoriamente pelo programa. Na escolha do nome do usuário só poderá ser digitado letras com no máximo 8 caracteres.

Aqui há gerenciamento das livrarias de modelos e projetos de todo o usuário do IISiBat. Localizado na primeira linha, é o segundo ícone da Figura 27. Quando se clica sobre o ícone Libman, abre-se a janela Library Manager:jaque, conforme mostra a Figura 29.

Figura 29 – Janela do library manager

- 3.9.4.1.2 Ferramentas do library manager
 -) 🚺 Select tool

Esta ferramenta que é a primeira da segunda coluna de ícones do lado esquerdo, conforme é mostrado na Figura 29, permite ao usuário executar diversas tarefas, entre elas: renomear e mover os ícones existentes nas livrarias de modelos e projetos. Para usá-la, basta clicar nela e em seguida no ícone ou, no caso de renomear, no ícone para realizar tais tarefas.

A segunda ferramenta da primeira coluna do lado esquerdo da Figura 29, permite ao usuário deletar os modelos ou projetos que pertencem a sua livraria. Para usá-la, é suficiente selecioná-la e em seguida, clicar no ícone (modelo ou projeto) que deseja excluir de sua livraria.

Com esta ferramenta que é a segunda da segunda coluna de ícones do lado esquerdo, conforme é mostrado na Figura 29, é possível desfazer uma operação prévia. Por exemplo, o usuário pode recuperar um modelo que por engano foi deletado, bastando para isso, clicar nesta ferramenta logo após o ato executado.

A primeira ferramenta da primeira coluna do lado esquerdo da Figura 29 possibilita a abertura de uma livraria modelo ou uma livraria de projeto, entre outras funções, bastando para isto, clicar nesta ferramenta e logo após na livraria a ser aberta.

A terceira ferramenta da primeira coluna do lado esquerdo da Figura 29 permite ao usuário criar uma nova livraria de modelos de componentes. Selecionando este ícone automaticamente será criada uma nova livraria com o nome provisório de 'noname', que pode ser trocado usando a ferramenta *select tool* e logo após clicar 'enter'.

A terceira ferramenta da segunda coluna do lado esquerdo da Figura 29 permite ao usuário criar uma nova livraria de modelo de projeto, bastando para isto, selecionar esta ferramenta onde será adicionado o nome provisório de 'noname', que pode ser trocado usando a ferramenta **select tool** e logo após clicar 'enter'.

Alguns ícones são importantes serem explicados para a melhor compreensão e andamento do trabalho:

Nesta livraria que é representada pela figura acima, contém modelos de componentes que o usuário pode copiar e/ou adicionar na livraria ou no projeto dele.

Clicando, por exemplo, na livraria de modelo *Utility*, esta é apresentada na forma de uma árvore com dois tipos de ramificações: *Folders* (Pastas) e *Models* (Modelos), conforme mostra a Figura 30. Os *folders* são apresentados na estrutura da ramificação como uma linha de texto, são usados somente para organizar as informações em uma livraria modelo. Os modelos de componentes são apresentados por ícones na estrutura da árvore, eles mantêm as propriedades dos modelos; se um novo modelo é associado a um modelo já existente na estrutura da árvore, o novo modelo herdará todos os itens do modelo de origem (parâmetros, entradas, saídas, derivativas, etc).

Figura 30 - Exemplo de uma Livraria Modelo do tipo Utility.

Aqui, o usuário pode estocar os modelos de componentes, pode criar, copiar, colar, deletar e manipular os modelos de componentes descritos por ele.

Nesta livraria que é representada pela figura acima, há modelos de projetos que todo usuário pode copiar e adicionar em sua própria livraria.

Aqui, o usuário pode estocar os modelos de projetos, pode copiar, copiar, colar, deletar e manipular os projetos descritos por ele.

OBS: A diferença entre as livrarias padrões e as do usuário, é simbolizada pela letra 'S' de standard que é usada nas figuras que representam as livrarias padrões.

Clicando, por exemplo, na livraria de projeto **Projaque**, esta livraria é apresentada também na forma de *Folders* e *Projects*. Folders são apresentados na estrutura da árvore como uma linha de texto e são usados somente para organizar a informação de uma livraria de projeto. Os *projects* são apresentados por ícones similares na estrutura da árvore, eles não mantêm as propriedades do projeto modelo, pois *projects* podem ser ligados a folders e não a outros projetos. Um exemplo desta livraria é mostrado a seguir na Figura 31.

Figura 31 – Exemplo de uma livraria de projeto

Como podemos observar através das Figuras 30 e 31, estas livrarias (de modelos e de projetos) possuem algumas ferramentas comuns, que já foram descritas anteriormente, como *select tool*, *erase tool*, *undo tool* e *zoom tool*, cujas funções podem estar relacionadas a um modelo de componente ou a um projeto, isto dependerá da livraria em que o usuário se encontra, ou livraria de projeto ou de modelos. Outras ferramentas são inéditas e serão descritas a seguir:

A Terceira ferramenta, localizada na primeira coluna à esquerda da Figura 31, possibilita o arranjo dos folders, dos projetos e modelos de componentes selecionados na livraria, tal que, os nomes e os ícones dos folders, dos modelos e dos projetos não interfiram com outro. Selecionando esta ferramenta e clicando no folder, no modelo ou no projeto da livraria, será rearranjado o item selecionado e todos os seus ramos pertencentes à árvore.

A Terceira ferramenta, localizada na segunda coluna à esquerda da Figura 31, permite ao usuário criar uma nova pasta na livraria em questão (de modelo ou de projeto). Selecionando esta ferramenta e clicando em um folder existente na livraria será aberta uma janela em que o usuário pode entrar com o nome do novo folder.

Esta ferramenta, a quarta da primeira coluna de ícones da Figura 31, permite ao usuário copiar um item de uma livraria modelo ou de uma livraria projeto. Selecionando este ícone e clicando em um folder, modelo ou projeto, dependendo da livraria em questão, será copiado o item selecionado e todos os seus ramos, podendo ser colada em outra livraria através da ferramenta *iv.4*, a seguir.

Esta ferramenta, quarta da segunda coluna de ícones da Figura 31, permite que cole os itens armazenados através do último comando *Copy*. Selecionando esta ferramenta e clicando no folder desta livraria, será colada a última informação copiada.

New model or project tool

A quinta ferramenta da primeira coluna de ferramentas da Figura 31, permite ao usuário criar um modelo de componente ou projeto a ser feito (projeto vazio). Selecionando esta ferramenta e clicando em um folder será aberta a janela em que o usuário especifica o nome do novo modelo ou o nome do novo projeto. O nome dado ao novo modelo ou projeto deve possuir a convenção DOS, ou seja, oito caracteres.

A quinta ferramenta da segunda coluna de ferramentas da Figura 31, permite acessar os detalhes de um projeto ou de um modelo de componente localizado na livraria. Selecionando esta ferramenta e clicando no projeto ou no modelo de componente da livraria, abre-se uma janela denominada de *Proforma* do projeto ou modelo selecionado, onde esta janela do *Proforma* para um projeto e para um modelo de componentes é diferente.

ASSILZADEH *et al.* (2005) estudaram o uso de coletores solares em tubos evacuados para coletar a radiação solar e o uso destes como fonte de energia de um sistema de refrigeração por absorção utilizando a solução aquosa de LiBr-H₂O. A análise e a otimização do sistema de componentes, com respeito ao coeficiente de performance (COP), foram realizadas no *software* TRNSYS. O TRNSYS foi utilizado para modelar e simular um sistema de refrigeração solar por absorção com parâmetros de tempo para a Malásia. Os resultados apresentados mostraram que o sistema está em fase com o tempo, isto é, a demanda de refrigeração é maior durante os períodos em que a radiação solar é alta. A fim de conseguir a operação contínua e o aumento da confiabilidade do sistema, 0,8 m³ de água quente no tanque de estocagem foram essenciais. O melhor sistema para o clima da Malásia para um sistema de 35 kW (1 Tonelada de Refrigeração) consistiu de um área de coletor solar em tubos evacuados de 35 m² com inclinação de 20°.

Segundo ASSILZADEH *et al.* (2005), em muitas aplicações, como em tecnologias de energia solar, uma base de dados climática exata faz-se necessário. Nestas aplicações a acurárcia da radiação solar e da temperatura do ar ambiente são cruciais. A base de dados climáticos no conceito de um ano típico para Kuala Lumpur tem sido usada em seu trabalho. Os pesquisadores verificaram a variação da temperatura média de bulbo seco durante 1 ano e observaram que a temperatura máxima de bulbo seco ocorreu em Março e a temperatura foi entre 26 e 28°C em torno de um ano. Eles também variaram radiação total na superfície do coletor, a radiação solar normal direta e a radiação solar horizontal global. A radiação solar média na superfície horizontal esteve em torno de 700 W/m² no ano. ASSILZADEH *et al.* (2005) analisaram o ganho de calor solar do sistema para vários ângulos de inclinação do coletor e constataram que o ângulo ótimo no ambiente da Malásia esteve em torno de 20° para coletor solar com tubo evacuado. Em seus estudos, os pesquisadores observaram a variação da fração solar e verificaram que a fração solar aumentou dramaticamente pelo aumento da taxa de fluxo na bomba e diminuiu para valores menores que 0,25 kg/s. Logo, este parâmetro teve o melhor efeito na fração solar quando este permaneceu em 0,25 kg/s.

O termostato do *boiler* foi usado para controlar a operação do *boiler*, permitindo ao *boiler* operar apenas quando a temperatura do fluido entregue à carga está abaixo de um valor ótimo, o qual minimiza a entrada de calor requerido. O melhor valor esteve entorno de 91°C. O tamanho do tanque de estocagem também contribuiu para a otimização do sistema. O calor requerido do *boiler* pelo sistema para diferentes volumes de tanque e concluíram que o tamanho ótimo para o tanque de estocagem foi de 0.8 m³. O efeito da área do coletor foi avaliado de acordo com o calor requerido pelo *boiler*. Como esperado, quanto maior a área de coletor, menos calor do *boiler* é exigido e mais calor é coletado. Conseqüentemente, o valor ótimo para a área do coletor precisou ser decido através de uma análise econômica.

ASSILZADEH et al. (2005) construíram uma unidade de ar condicionado por absorção utilizando a solução aquosa de LiBr-H₂O de simples efeito, baseado no modelo Arkla WF-36. Sua capacidade nominal foi de 12660 kJ/h (1 TR), assumindo que não possuía aquecedor auxiliar. A comparação destas duas taxas de calor forneceu uma estimativa do coeficiente de performance para a unidade de absorção. Os fluxos de energia do sistema durante um dia típico foram observados e constataram que A carga de refrigeração da construção alcançou um valor máximo mensal de 7150 MJ (em Fevereiro). O calor requerido do boiler convencional atingiu um valor máximo de 7432 MJ e ocorreu durante o mês de Junho, onde a energia fornecida do coletor solar é mínima (3315 MJ). O calor máximo mensal fornecido do sistema solar foi entorno de 5500 MJ e ocorreu em Fevereiro. Por fim, ASSILZADEH et al. (2005) concluíram que a maior vantagem do ar condicionado movido à energia solar guando comparado com outras fontes de energia é que o sistema fica em fase com a radiação solar diária, isto é, quanto maior a radiação solar, maior a carga de refrigeração e consegüentemente, maior será o efeito de refrigeração conseguido pelo sistema de refrigeração solar. A fim de conseguir operação contínua do gerador e aumento da confiabilidade do sistema, um tanque de estocagem de água quente fez-se essencial para aumentar a qualidade de performance do sistema. Como isto provado neste trabalho devido à alta eficiência para elevada temperatura, o tipo de coletor solar de tubo evacuado pôde ser escolhido para prover boa performance em temperatura elevada requerida pelo sistema de absorção. Embora todos os resultados acima refiram-se a uma aplicação particular na Malásia, os autores acreditam que resultados similares possam ser obtidos em países com elevada incidência solar. Entretanto, antes de qualquer decisão ser tomada, qual tipo de sistema a ser instalado, o sistema necessita ser otimizado com o procedimento sugerido neste artigo. Finalmente, levando em consideração o problema da poluição do planeta devido à queima de combustíveis fósseis, a adoção de energia solar para refrigeradores de absorção, com benefícios econômicos marginais, não deve ser subestimada.

4 METODOLOGIA

A metodologia aplicada a este trabalho consistiu da analise energética para o ciclo de refrigeração por absorção para a solução aquosa de Brometo de Lítio-Água (LiBr-H₂O) aplicando a Primeira Lei da Termodinâmica e as correlações empíricas para a solução aquosa LiBr-H₂O em cada componente do ciclo (gerador, absorvedor, evaporador, condensador e trocador de calor da solução) e da modelagem e simulação do Sistema de Refrigeração por Absorção através do programa computacional TRNSYS (*Transient System Simulation Program'*).

4.1 METODOLOGIA DE ANÁLISE ENERGÉTICA DO SISTEMA DE ABSORÇÃO PARA A SOLUÇÃO AQUOSA DE LIBR-ÁGUA

A efeito de análise, dimensionou-se um ciclo de refrigeração por absorção da solução aquosa de LiBr-Água de 5 toneladas de refrigeração (TR). O Sistema de Refrigeração por Absorção (SRA) simplificado mostrado na Figura 32a foi simulado a partir de dados de projeto de um chiller de absorção comercial conforme mostrado na Figura 32b. Assim, foi feita com a aplicação da Primeira Lei da Termodinâmica em cada componente do ciclo (gerador, absorvedor, evaporador, condensador e trocador de calor da solução). Segundo dados de um chiller de absorção comercial da BROAD -BCT, mostrado na Figura 32b, a água gelada a 12°C entra nos tubos de cobre do evaporador e água refrigerante a 4°C é borrifada no lado de fora dos tubos (sob vácuo). A água refrigerante absorve calor da água gelada e evapora (torna-se vapor), assim a temperatura da água gelada é reduzida para 7°C. A solução de brometo de lítio concentrada dentro do absorvedor absorve o vapor de refrigerante, tornando-se diluída e então transfere o calor do vapor para água de resfriamento. O calor da água de resfriamento é liberado para o ambiente através da torre de resfriamento. A solução de brometo de lítio diluída é bombeada para o gerador de alta temperatura onde é reaquecida e o refrigerante evapora tornando a solução de brometo de lítio concentrada. A solução concentrada vai repetir o processo de absorção e o refrigerante no estado vapor vai para o condensador onde é condensado e retorna para o evaporador para recomeçar o processo novamente.

Figura 32 – a) Esquema do Sistema de Refrigeração por Absorção da Solução LiBr-Água a ser simulado; b) Esquema do Sistema de Refrigeração por Absorção da Solução LiBr-Água da BROAD.

Na Tabela 8 encontram-se discriminados os fluidos que circulam no sistema a ser simulado, referentes a cada ponto mostrado na Figura 32a, bem como as condições em cada um deles.

Pontos do	Condiaão		
Sistema	Condição		
1	solução diluída – líquido saturado		
2	solução diluída - líquido comprimido		
3	solução diluída - líquido comprimido		
4	solução concentrada - líquido saturado		
5	solução concentrada - líquido comprimido		
6	solução concentrada - mistura bifásica		
7	refrigerante (água) - vapor d´água superaquecido		
8	refrigerante - líquido comprimido		
9	refrigerante - líquido saturado		
10	refrigerante - vapor saturado		
11	água gelada - líquido comprimido		
12	água gelada - líquido comprimido		
13	água de resfriamento - líquido comprimido		
14	água de resfriamento - líquido comprimido		
15	água de resfriamento - líquido comprimido		
16	água de resfriamento - líquido comprimido		
17	produtos de combustão - ar à pressão atmosférica		
18	produtos de combustão - ar à pressão atmosférica		

Tabela 8 – Fluidos de trabalho e condição em cada ponto do sistema na Figura 32

Na Tabela 9 encontram-se descriminados os componentes, os fluidos referentes a cada ponto mostrado bem como as condições em cada um deles do sistema de refrigeração comercial da BROAD como mostrado na Figura 32b.

Pontos do Sistema Componente	
1	Gerador à elevada temperatura (HTG)
2	Gerador à baixa temperatura (LTG)
3	Condensador
4	Evaporador
5	Absorvedor
6	Trocador de Calor à elevada temperatura
7	Trocador de Calor à baixa temperatura
8	Bomba de solução
9	Bomba de refrigerante
10	Queimador
11	Válvula de gás
12	Bomba de água de aquecimento/resfriada
13	Bomba de água gelada
14	Ventilador de resfriamento
15	Torre de resfriamento
16	Bóia de descarga (temporizada)
17	Bóia flutuante de água
19	Válvula de "by-pass" de água gelada (abre
10	quando a Temperatura ambiente é baixa)
19	Válvula que estabiliza a qualidade da água
20	Anti-séptico
21	Bactericida
22	Válvula à motor de água (aberta)
23	Válvula à motor de refrigerante (fechada)
24	Válvula à motor de refrigeração/aquecimento
25	Válvula principal de combustível
26	Bomba de água quente
27	Aquecedor de água

Tabela 9 – Discriminação de cada ponto do Sistema de Refrigeração por Absorção da BROAD da Figura 32b

Para determinar, analiticamente, o fluxo mássico de água quente necessária ao gerador de calor do sistema de refrigeração por absorção para o resfriamento de 5 toneladas de refrigeração (TR), foi necessário inicialmente, fazer algumas considerações conforme mostrado na Tabela 9, objetivando o dimensionamento de cada componente do sistema. Temos que: 1 TR = 12.000 BTU/h = 3,5169 kW, logo, 5 TR é igual a 60000 BTU/h = 17,5845 kW = 63304,2 kJ/h.

Q _{ev}	63304,2	kJ/h
Temperatura de água gelada que entrada na serpentina de refrigeração no evaporador (T ₁₁)	12	°C
Temperatura de água gelada que sai da serpentina de refrigeração do evaporador (T ₁₂)	7	°C
Temperatura no evaporador (Tev)	5	°C
Temperatura no condensador (Tc)	37	°C
Temperatura no gerador (Tg)	100	°C
Temperatura no Absorvedor (Tab)	25	°C
Temperatura de entrada dos produtos de combustão (T17)	300	°C
Temperatura de saída dos produtos de combustão (T18)	200	°C
Temperatura de entrada da água resfriamento no absorvedor (T13)	29,5	°C
Temperatura de entrada da água resfriamento condensador (T15)	35	°C
Temperatura de entrada da água resfriamento condensador (T16)	37	°C
Concentração da solução (LiBr-água) diluída (X ₃ min)	50	%
Concentração da solução (LiBr-água) concentrada (X₄min)	66,4	%
Pressão de Alta	7,38	kPa
Pressão de Baixa	1,23	kPa

Tabela 10 – Considerações iniciais para um Sistema de Refrigeração por Absorção utilizando Água-LiBr

4.2 METODOLOGIA DE SIMULAÇÃO ATRAVÉS DO TRNSYS

Antes mesmo da adição dos parâmetros iniciais e da simulação do Sistema de Refrigeração por Absorção (SRA), no programa computacional TRNSYS *('Transient System Simulation Program')* versão 14.2, foi necessário realizar algumas ações de inicialização no TRNSYS, conforme está descrito no Anexo D. Após inicializar no TRNSYS, os passos seguintes foram: escolher os componentes do sistema solar, coletar os dados metereológicos, criar o arquivo de dados e escolher os componentes do sistema de refrigeração por absorção.

4.2.1 Escolha do sistema solar

O sistema de captação de energia solar é composto por um coletor solar do tipo plano de eficiência quadrática e propriedades de absortividade e cobertura (*Coletor*), de um Tanque reservatório de água quente (*Tanque*), duas bombas (*Bombas-1 e 2*), um processador de radiação solar (*ProcMet*), o qual calcula a radiação total, difusa e direta a partir da incidência solar e um fluido térmico portador de energia, sendo neste caso a água, uma entrada de dados meterológicos (*DadosMet*) e uma saída de resultados (*Saída*) conforme mostra a Figura 33.

Figura 33 – Sistema Termo-Solar.

4.2.2 Coleta de dados meteorológicos

Os dados meteorológicos de temperatura do ar ambiente, umidade relativa e radiação solar foram coletados a cada 10 segundos e as médias registradas a cada 10 minutos em um sistema de aquisição automática "DATALLOGER" (CR–10 Campbel Scientific, USA) alimentado por um painel fotovoltaico, no período compreendido entre o dia 12 a 21 de Novembro do ano de 2007. Os sensores meteorológicos utilizados foram, a saber: temperatura e umidade relativa do ar (HMP35C, Campbell Scientific, Inc. USA); Radiação Global (Piranômetro de termopilha de filme fino, tipo estrela - UNESP, Botucatu, Brasil); velocidade do vento (RMYong 03101-5, Campbell Scientific, Inc. USA).

4.2.3 Criação do arquivo de dados

Os dados meteorológicos: temperatura do ar ambiente, umidade relativa e radiação solar obtidos para Maceió foram armazenados em planilha do Microsoft Excel XP[®] e em seguida, convertidos em arquivo do tipo: *Formatted Text (Space delimited)* cuja terminação é ".prn", ambos dentro da máquina virtual VMWare aonde contém também o pacote computacional TRNSYS, os quais podem ser vistos do Anexo A.

4.2.9 Escolha dos componentes ou "types"

Quando se clicou com a ferramenta **Zoom Tool** no projeto SRA, o painel do **Assembly** foi aberto conforme mostrado na Figura 34. Em seguida, foram selecionadas 14 (quatorze) Subrotinas em linguagem computacional FORTRAN, chamados de modelos de componentes, ou componentes ou ainda *Types*, que são: o ciclo por absorção (*SRA*), o leitor de dados modificado (*DadosMet*), o controlador ON/OFF (*Control*), um conversor de unidades psicométricas (*Converso*), o local a ser refrigerado (*Local*), um coletor solar (*Coletor*), 2 (duas) bombas (*Bomba-1,2*), um Tanque reservatório de água (*Tanque*), um processador de radiação solar (*ProcDMet*) e 2 (duas) saídas de resultados (*Saida-1,2*).

Figura 34 – Sistema Termo-Solar de Refrigeração por Absorção (SITSORA).

a) Coletor – Coletor Solar (*Type 1*)

Este componente modela a performance térmica de um coletor solar plano. O arranjo do coletor solar pode consistir de coletores conectados em série e em paralelo. A performance térmica do arranjo do coletor é determinada pelo número de módulos em série e pelas características de cada módulo. Existem 4 possíveis modos de coletores. Nos modelos 1 e 2, o usuário deve fornecer resultados de testes padrão da eficiência do coletor versus a razão entre a temperatura do fluido menos a temperatura ambiente dividido pela radiação incidente (DT/IT). A temperatura do fluido deve ser a temperatura de entrada, média ou a de saída. O Type 1d foi escolhido por ter propriedades de absortividade e cobertura e ainda por ser um coletor plano. O coletor simulado possui uma cobertura de vidro e absorve a radiação solar incidente. O modelo 1 (o escolhido neste trabalho) assume que a eficiência versus DT/IT pode ser modelada como uma função quadrática. Correlações são aplicadas para os parâmetros de intercepção, inclinação e curvatura para explicar a presença do trocador de calor, coletores idênticos em série e taxas de fluxo, exceto aquelas nas condições de teste. No Modo 2, o usuário pode entrar com um mapa de performance de eficiência do coletor como uma função de DT/IT, radiação e velocidade do vento. Este modo é amplamente usado para coletores com relações não lineares da eficiência versus DT/IT e coletores de concentração onde o desempenho é elevado, acima do nível de radiação ou coletores sem cobertura que são sensíveis à velocidade do vento. Se os coletores usassem apenas radiação direta (são considerados no modos 1 e 2), então a radiação direta pode ser provida como uma entrada nesse componente. Existem 4 (quatro) possibilidades nos modos 1 e 2 para considerar os efeitos da não incidência solar normal. Modos 1 e 2 ópticos requerem dados de teste para modificadores de ângulo de incidência axial. Modo 3 óptico determina modificadores de propriedades de cobertura. No quarto modo óptico, o usuário deve entrar com o dado modificado de ângulo de incidência biaxial. Este é usado quando se considera coletores simétricos não opticamente, tal como tubos evacuados, etc. Se o modo óptico é ajustado a 0 (zero), não são considerados os efeitos de não incidência solar normal. Modos 3 e 4 são utilizados para as análises teóricas do coletor plano e concentradores de componente parabólico (CPC). O modelo em estado estacionário Hottel-Whillier é usado para a avaliação da performance térmica. A Tabela 11 consta dos parâmetros, das entradas e das saídas do Type 1d.

Parâmetros		Valores	s - unidade
1-	Modelo do Coletor	1	-
2-	Número em série	1	-
3-	Área do coletor	30	m²
4-	Calor específico do fluido	4,190	kJ/kgK
5-	Modelo de eficiência	1	-
6-	Taxa de fluxo testada	50	kg/h.m ²
7-	Intercepto de eficiência	0,7	-
8-	Inclinação de eficiência	15	kJ/h.m ² .K
9-	Curvatura de eficiência	0	kJ/h.m ² .K ²

Tabela 11 – Parâmetros, dados de entrada e saída do Coletor Solar (Type 1d)

10-	Não usado (Ef)	-1	-
11-	Não usado (Cp)	1	kJ/kgK
12-	Modelo 3 óptico	3	-
13-	Prato de absorbância	0,7	-
14-	Nº de coberturas idênticas	1	-
15-	Índice de refração	1,526	-
16-	Extinção	0,0026	-
Entra	adas	Valores	s – unidade
1-	Temperatura de entrada	50	°C
2-	Fluxo mássico de entrada	100	kg/h
3-	Não usado	100	kg/h
4-	Temperatura ambiente	25	°C
5-	Radiação incidente	400	W/m ²
6-	Radiação horizontal total	0	W/m ²
7-	Radiação difusa horizontal	0	W/m ²
8-	Refletância da terra	0,2	-
9-	Ângulo incidente	20	0
10-	Ângulo do coletor	20	0
Saíd	Saídas		s – unidade
1-	Temperatura de saída		
2-	Fluxo mássico de saída	Res	sultados
3-	Ganho energético útil		

Continuação da Tabela 11 – Parâmetros, dados de entrada e saída do Coletor Solar (Type 1d)

b) Control- Controlador do tipo ON/OFF (Type 2)

O Controlador, **TYPE 2b**, é um controlador diferencial liga/desliga e gera uma função controle γ_o o qual assume valores 0 ou 1. O valor de γ_o é escolhido como uma função da diferença entre as temperaturas mais altas e mais baixas, T_H e T_L, comparado com duas diferenças de temperatura da banda, $\Delta T_H e \Delta T_L$. O novo valor de γ_o é dependente no tempo $\gamma_i = 0$ ou 1. O controlador é normalmente usado com γ_o conectado ao γ_i dando um efeito histerese. Define-se histerese de controle de temperatura como sendo a diferença de temperatura entre a energização e desenergização da saída de controle. Dispositivos Controladores controlam a vazão mássica do fluido aquecido que alimenta o Gerador do Ciclo de Refrigeração, tendo como referência a temperatura de geração de vapor do refrigerante. Existem dois métodos básicos para o controle da taxa de energia e Controle do nível de temperatura. O controle utilizado nesta simulação, foi o *TYPE 2*, o qual é mais freqüentemente usado para controlar o fluxo de fluido através do circuito do coletor solar baseado nas entradas de duas temperaturas. Entretanto, qualquer sistema empregando controladores diferenciais com histerese pode usar o *TYPE 2*. Para maior seguração, um limite maior de corte é incluído ao

controlador *TYPE 2*. De qualquer forma das condições de banda, a função controle será ajustada para zero, se a condição do limite superior está excedida. Note que o controlador não está restrito às medições de temperatura, mesmo que a notação de temperatura seja usada.

Nomenclatura: ΔT_H – Diferença de temperatura da banda superior

 ΔT_L – Diferença de temperatura da banda inferior

 T_H – Temperatura mais alta de entrada

 T_{IN} – Temperatura para monitoramento do limite de corte

T_L – Temperatura mais baixa de entrada

T_{MAX} – Temperatura máxima de entrada ou limite superior de corte na temperatura

 γ_i - Entrada da função controle

 γ_{o} - Saída da função controle

Com autorização do Programa TRNSYS versão 14.1, parâmetros adicionais têm sido adicionados ao controlador *TYPE 2* para a verificação do limite superior e um novo algoritmo do controlador. Devido a estas adições, arquivos de entrada escritas para TRNSYS versão 13.1 e mais recentemente chamada sub-rotina *TYPE 2* terá que ser modificada.

Descrição Matemática

Matematicamente, a função controle é expressa como:

Se
$$\gamma_i = 1 e \Delta T_L \le (T_H - T_L), \gamma_o = 1$$

Se $\gamma_i = 1 e \Delta T_L > (T_H - T_L), \gamma_o = 0$
Se $\gamma_i = 0 e \Delta T_H \le (T_H - T_L), \gamma_o = 1$
Se $\gamma_i = 0 e \Delta T_H > (T_H - T_L), \gamma_o = 0$

Entretanto, a função controle é ajustada para zero, em quaisquer condições das bandas, maior e menor, se $T_{IN} > T_{MAX}$. Esta situação é freqüentemente encontrada em sistemas domésticos de água quente onde a bomba não é permitida ser utilizada se a temperatura do tanque é acima de algum limite prescrito.

Figura 35 - Função Controle.

Na estratégia de controle pré-existente, quando (T_H - T_L) se aproxima da banda maior ou menor no modo normal de operação, γ_a pode às vezes oscilar entre 1 e 0 para sucessivas iterações em um dado intervalo de tempo. Isto acontece porque T_H e T_L mudam suavemente em cada iteração, alternativamente satisfazendo e não satisfazendo as condições para o controlador. O valor do parâmetro 1, NSRK, é o número de oscilações permitidas dentro de um intervalo de tempo antes da função controle, γ_{a} , cessar de variar. Em geral, é recomendado que NSTK seja ajustado à um número ímpar, tipicamente 5. Com permissão do TRNSYS versão 14.2, uma nova estratégia de controle foi desenvolvida para eliminar a solução NSTK. A nova estratégia de controle é mais robusta que a pré-existente, resolvendo sistema de equações não permitindo que a variável de controle mude durante o processo iterativo. Após a convergência, o estado do controlador é comparado ao estado do controlador desejado na solução convergida e nos cálculos repetidos, se necessário. Para a maioria das simulações, o uso de duas estratégias de controle renderá resultados similares. Entretanto, em simulações em curto prazo com comportamento de controle instável, a "velha" estratégia de controle com um valor ímpar de NSTK pode obter resultados um pouco diferentes da nova estratégia de controle. A Tabela 12 consta dos parâmetros, das entradas e das saídas do Type 2b.

Parâmetros		Valore	s – unidade
1-	Modelo do Coletor	1	-
2-	Número em série	1	-
3-	Área do coletor	30	m²
4-	Calor específico do fluido	4,190	kJ/kgK
5-	Modelo de eficiência	1	-
6-	Taxa de fluxo testada	50	kg/h.m ²
7-	Intercepto de eficiência	0,7	-

Tabela 12 – Parâmetros, dados de entrada e saída do Controlador ON/OFF (Type 2b)

8-	Inclinação de eficiência	15	kJ/h.m2.K
9-	Curvatura de eficiência	0	kJ/h.m2.K2
10-	Não usado (Ef)	-1	-
11-	Não usado (Cp)	1	kJ/kgK
12-	Modelo 3 óptico	3	-
13-	Prato de absorbância	0,7	-
14-	Nº de coberturas idênticas	1	-
15-	Índice de refração	1,526	-
16-	Extinção	0,0026	-
Entra	das	Valore	s – unidade
1-	Temperatura de entrada	50	°C
2-	Fluxo mássico de entrada	100	kg/h
3-	Não usado	100	kg/h
4-	Temperatura ambiente	25	°C
5-	Radiação incidente	400	W/m2
6-	Dadiaaão harizantal tatal		_
	Radiação nonzontal total	0	W/m ²
7-	Radiação difusa horizontal	0	W/m ² W/m ²
7- 8-	Radiação difusa horizontal Refletância da terra	0 0 0,2	W/m ² W/m ² -
7- 8- 9-	Radiação difusa horizontal Refletância da terra Ângulo incidente	0 0 0,2 20	W/m ² W/m ² - °
7- 8- 9- 10-	Radiação difusa horizontal Refletância da terra Ângulo incidente Ângulo do coletor	0 0,2 20 20	W/m ² W/m ² - °
7- 8- 9- 10- Saída	Radiação difusa horizontal Radiação difusa horizontal Refletância da terra Ângulo incidente Ângulo do coletor	0 0,2 20 20 Valore	W/m ² W/m ² - ° °
7- 8- 9- 10- Saída 1-	Radiação difusa horizontal Refletância da terra Ângulo incidente Ângulo do coletor IS Temperatura de saída	0 0,2 20 20 Valore	W/m ² W/m ² - ° °
7- 8- 9- 10- Saída 1- 2-	Radiação difusa horizontal Radiação difusa horizontal Refletância da terra Ângulo incidente Ângulo do coletor IS Temperatura de saída Fluxo mássico de saída	0 0,2 20 20 Valore Re	W/m ² W/m ² - • • • • • • • • • • • • • • • • • •

Continuação da Tabela 12 – Parâmetros, dados de entrada e saída do Controlador ON/OFF (Type 2b)

c) Bomba – Bomba (Type 3b)

O modelo da bomba computa o fluxo mássico usando uma função de controle variável, a qual pode ser entre 0 (zero) e 1, e uma capacidade de fluxo máximo fixa (especificada pelo usuário). A potência da bomba pode ser também calculada por uma função linear da taxa de fluxo mássico ou pela relação definida pelo usuário entre a taxa de fluxo mássico e a potência. Na versão 14 do TRNSYS, a fração da potência da bomba especificada pelo usuário é convertida em energia térmica do fluido. Em muitos sistemas, não existe modulação do fluido e uma função de controle ora é 0 (zero) ou 1. Neste caso, a taxa de fluxo de saída e a potência usada são ambas ora 0 (zero) ou ambas seus valores máximos. A Tabela 13 consta dos parâmetros, das entradas e das saídas do *Type 3*.

Parâmetros das Bombas 1 e 2			Valore	es s
		B1	B2	Unid
1-	Taxa de fluxo mássico	2000	4000	Kg/h
2-	Calor específico do fluido	4,19	4,19	kJ/kgK
3-	Potência máxima	1000	1000	kJ/h
4-	Coeficiente de conversão	0,1	0,1	-
5-	Coeficiente de potência -1	0,5	0,5	-
Entra	adas das Bombas 1 e 2		Valore	s
		B1	B2	Unid
1-	Temperatura de entrada	50	50	°C
2-	Taxa de fluxo de entrada	100	100	Kg/h
3-	Sinal de controle	1	1	-
Saída	as das Bombas 1 e 2		Valore	es
		B1	B2	unid
1-	Temperatura de saída			
2-	Taxa de fluxo de saída		Resulta	dos
3-	Potência consumida pela bomba			

Tabela 13 – Parâmetros, dados de entrada e saída das Bomba (Type 3)

d) Tanque – Tanque reservatório (Type 4a)

A performance térmica de um Tanque reservatório cheio de fluido, sujeito a estratificação térmica pode ser modelado assumindo que o tanque consiste de N (1415) segmentos de volume igualmente completamente misturados. O Grau de estratificação é determinado pelo valor de N. Se N for igual a 1, o tanque de estocagem é modelado como um tanque completamente misturado e os efeitos da não estratificação são possíveis. Opções de entrada fixas ou variáveis, nós de tamanho iguais, temperatura de tempo morto nos termostatos, coeficientes de perda e perdas para o duto de gás do aquecedor auxiliar são avaliados. Existem 3 modelos de Tanque reservatório. No modelo 1 (utilizado neste trabalho), as correntes de fluxo entram no tanque em posições fixas. O fluxo de massa fria entra na base do tanque e o fluxo de massa quente entra logo abaixo do aquecedor auxiliar, se presente, ou no topo do tanque se o auxiliar não for especificado. No final de cada intervalo de tempo algumas inversões de temperatura que existem são eliminadas pela mistura total dos nós adjacentes apropriados. No modelo 2, a corrente de fluxo entra no nó que está o mais próximo da temperatura. Com nós suficientes, isto permite o grau máximo de estratificação. No modelo 3, o usuário deve especificar os nós contendo as locações dos fluxos de massa frio e da fonte quente. A Tabela 14 consta dos parâmetros, das entradas e das saídas do *Type 4a*.

Para	metros	Valores ·	
1_	Posições de entrada fiva	1	
' 2-	Volume do tanque	5	m ³
2_ 3_		4 19	k l/kab
<u>م</u>	Densidade do fluido	1000	k l/m ³
	Coeficiente de perda do tanque	3	$k l/h m^2 K$
5- 6		0.05	NJ/11.111 IX
0- 7		0,05	N/
0	Madela da aguasadar auviliar	0,05	IVI
0-			-
9- 10	No contendo aquecimento 1	1	-
10-			-
11-	Pende merte pere erussimente 1	55	
12-	Banda mona para aquecimento 1	5	
13-	Taxa de aquecimento maximo p/1	16200	KJ/N
14-	No contendo aquecimento 2		-
15-	No contendo termostato 2	1	-
16-	l'emperatura de set point do el. 2	55	Ú.
17-	Banda morta para aquecimento 2	5	delta °C
18-	Taxa de aquecimento máximo p/2	16200	kJ/h
19-	Não usado	0	W/K
20-	Não usado	20	°C
21-	Ponto de bolha	100	°C
Entra	adas	Valores -	- unidade
1-	Temperatura de entrada do lado quente	90	°C
2-	Fluxo mássico de entrada do lado quente	100	kg/h
			°C
3-	Temperatura de entrada do lado frio	40	C
3- 4-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio	40 100	kg/h
3- 4- 5-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente	40 100 25	kg/h °C
3- 4- 5- 6-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1	40 100 25 0	kg/h °C
3- 4- 5- 6- Saíd	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd 1- 2-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd 1- 2- 3-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd 1- 2- 3- 4-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd 1- 2- 3- 4- 5-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd 1- 2- 3- 4- 5- 6-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- Saíd 1- 2- 3- 4- 5- 6- 7-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga	40 100 25 0 Valores -	kg/h °C - unidade
3- 4- 5- 6- 2- 3- 4- 5- 6- 7- 8-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga Troca de energia interna	40 100 25 0 Valores - Resu	kg/h °C - unidade
3- 4- 5- 6- 2- 3- 4- 5- 6- 7- 8- 9-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga Troca de energia interna Taxa de aquecimento auxiliar	40 100 25 0 Valores - Resu	kg/h °C - unidade
3- 4- 5- 6- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga Troca de energia interna Taxa de aquecimento auxiliar Potência do elemento 1	40 100 25 0 Valores - Resu	kg/h °C - unidade
3- 4- 5- 6- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga Troca de energia interna Taxa de aquecimento auxiliar Potência do elemento 1 Potência do elemento 2	40 100 25 0 Valores - Resu	kg/h °C - unidade
3- 4- 5- 6- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga Troca de energia interna Taxa de aquecimento auxiliar Potência do elemento 1 Potência do elemento 2 Taxa de energia da fonte quente	40 100 25 0 Valores - Resu	kg/h °C - unidade
3- 4- 5- 6- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13-	Temperatura de entrada do lado frio Fluxo mássico de entrada do lado frio Temperatura ambiente Sinal de controle para o elemento 1 as Temperatura de saída da fonte quente Fluxo mássico para a fonte quente Ganho energético útil Temperatura para a carga Fluxo mássico para a carga Perdas térmicas Taxa de energia para a carga Troca de energia interna Taxa de aquecimento auxiliar Potência do elemento 1 Potência do elemento 2 Taxa de energia da fonte quente Temperatura média do tanque	40 100 25 0 Valores - Resu	c kg/h °C • unidade

Tabela 14 – Parâmetros, dados de entrada e saída do tanque reservatório (Type 4a)

e) SRA- Sistema ou Ciclo de Refrigeração por Absorção (Type 7a)

O Ciclo de Refrigeração por Absorção foi projetado para operar com temperaturas moderadas (60-100°C) e utilizou-se o modelo "Arkla model WF-36", modelo representado pela sub-rotina Type 7a, cujo objetivo é controlar o nível de temperatura. A água de aquecimento troca calor com a solução de LiBr-H₂O, favorecendo a evaporação de parte da água contida na solução, ficando esta, mais rica em LiBr. A água evaporada (fluido refrigerante), na forma de vapor de água superaquecido entra ao Condensador, onde sai na forma de líquido comprido. Em seguida, o fluido refrigerante passa por um Dispositivo de Expansão, onde sofre um abaixamento de pressão e temperatura, tornando-se uma mistura bifásica, adentrando ao Evaporador, onde sofre outro abaixamento de pressão e temperatura, onde troca calor com água gelada, a qual é encaminhada às tubulações internas do local a ser refrigerado, onde refrigera o mesmo. Após o fluido refrigerante sair do Evaporador, ele entra em contato com a solução de LiBr-H₂O concentrada e menos aquecida e pressurizada advinda do gerador, após ter passado por um Dispositivo de Expansão. Assim, a solução de LiBr-H₂O torna-se mais uma vez diluída, sendo bombeada ao Gerador, porém antes, passa por um Trocador de Calor, onde troca de calor com a solução de LiBr-H₂O mais concentrada e mais aquecida que sai do Gerador, formando assim o ciclo de refrigeração por absorção. A Tabela 15 consta dos parâmetros, das entradas e das saídas do Type 7a.

Darê	Tabela 15 – Parametros, dados de entrada e salda do Cicio de Absorção (Type /a)			
Para	Imetros	valores –	unidade	
1-	Modelo do Ciclo	1	-	
2-	Modelo do aquecedor auxiliar	-3	-	
3-	Capacidade nominal	63304,20	kJ/h	
4-	Constante de tempo de início	0,133	Н	
5-	Constante de tempo de abaixamento do frio	1,05	Н	
6-	Temperatura inicial do gerador	40	°C	
7-	Temperatura primária mínima para o resfriamento	76,5	°C	
8-	Banda morta do controlador	5	delta °C	
9-	Temperatura do calor auxiliar	85	°C	
10-	Aproximação da torre de resfriamento	8	°C	
11-	Temperatura de cruzamento para o auxiliar	80	°C	
Entr	adas	Valores –	unidade	
1-	Temperatura da fonte quente	70	°C	
2-	Fluxo mássico de água quente	100	kg/h	
3-	Temperatura de bulbo úmido	18	°C	
4-	Temperatura ambiente	25	°C	
5-	Sinal de controle	1	-	
6-	Segundo estágio do sinal de controle	0	-	
Saíd	Saídas Valores – unida		unidade	
1- Temperatura de retorno da água quente		tados		
2-	Fluxo mássico de água quente	Resul	1005	

Continuação da Tabela 15 – Parâmetros, dados de entrada e saída do Ciclo de Absorção (Type 7a)

3-	Taxa de refrigeração	
4-	Fluxo de Calor no Gerador	
5-	Energia auxiliar requerida	

f) Type 9bm – Leitor de Dados Meteorológicos

Segundo MOREJÓN (1997), os dados meteorológicos podem ser alimentados em forma de dados horários locais reais e/ou em forma de uma função. A escolha de se trabalhar com dados meteorológicos reais deu-se pelo fato de se ter instalado em Maceió um sistema de captação dos dados reais através de sensores meteorológicos, anteriormente citados. O Leitor de Dados representado pela sub-rotina Type 9bm é o Type 9b modificado. O Type a ser explicado será o Type9b que é o modelo padrão, pois quando mostrar as modificações feitas nele, ter-se-á entendido o Type 9m. O Type 9b possui dois modelos de leitura de dados TMY (Typical Meterorologial Year) e Padrão. O modelo de Leitura Padrão ainda se subdivide em formatado e sem formato. No modelo sem formato, o qual foi utilizado neste trabalho, as linhas de dados não precisam ser exatamente idênticas em formato, entretanto cada valor deve ser separado do outro por um espaço em branco ou vírgula. Segundo MOREJÓN (1997), os dados meteorológicos podem ser alimentados em forma de dados horários locais reais e/ou em forma de função. A escolha de se escolher trabalhar com dados reais deve-se ao fato do Laboratório de Fluidodinâmica da Universidade Federal de Alagoas possuir um coletor solar e um processador de radiação solar gerando dados a cada 6 minutos. O arquivo dos dados gerado pelo processador fornece uma gama de dados, o que para esta simulação, foi necessário apenas os dados de tempo (de hora em hora), de temperatura do ar ambiente, da umidade relativa e da radiação solar para o período entre 12 de Novembro a 22 de Dezembro de 2007, os quais estão dispostos no Anexo A.

g) Type 12 – Local a ser Refrigerado

O Local a ser Refrigerado representado pela sub-rotina **Type 12** compreende o volume onde é entregue a carga de refrigeração gerada no ciclo de absorção, de modo a resfriá-lo. São consideradas características da sala, como: Os coeficientes globais de transferência de energia, o tamanho e o material da sala. Existem quatro modelos de operação no **Type 12**, no qual fornece flexibilidade no controle e na estratégia auxiliar. Os Modelos 1, 2 e 3 são compatíveis com o controle de taxa de energia. Os Modelos 1 e 2 modelam uma estrutura de capacitância zero, mantida na temperatura constante para aquecimento. O Modelo 3 permite a temperatura do local flutuar entre uns "set-points" para aquecimento e refrigeração, $T_{min} e T_{max}$. Uma única capacitância é usada nesta análise. Se a temperatura do local elevasse acima de T_{max} ou abaixasse além de T_{min} , então a energia requerida para manter cada limite é a saída como exigência de refrigeração ou aquecimento. O Modelo 4 modela uma casa com uma única capacitância considerada compatível com o controle de

nível de temperatura. Normalmente, o equipamento de aquecimento e/ou de refrigeração e um controlador são usados em conjunto neste modelo.

Nomenclatura:

CAP – Capacitância efetiva. Para a estabilidade computacional, este número deve se selecionado de modo que o balanço máximo da temperatura ambiente em um intervalo de tempo está na ordem das faixas de bandas do controlador;

 C_{min} – Taxa de capacitância mínima da carga do trocador de calor. Se uma carga do trocador de calor não é requerida (em sistemas de ar), ε deve ser 1 (um) e C_{min} é igual a m₁C_p. Em um sistema de água, C_{min} é geralmente a taxa de capacitância de ar no trocador de calor de fluxo transversal ar-água;

C_p – Calor específico da corrente de fluxo

LHR – Razão entre a carga latente e a carga total

UA – Uma constante contendo unidades de energia/temperatura-tempo), o qual caracteriza o calor requerido de uma estrutura especificada;

 \mathbf{T}_{RI} – Temperatura ambiente inicial

- γ_i Entrada da função controle
- γ_o Saída da função controle

A Tabela 16 consta dos parâmetros, das entradas e das saídas do Type 12.

Parâmetros		Valores -	unidade
1-	Controle de nível de temperatura	4	-
2-	Condutância global do local	523,42	kJ/hK
3-	Capacidade térmica do local	10000	-
4-	Temperatura inicial do local	35	°C
5-	Calor específico do fluido da fonte quente	1	kJ/kgK
6-	Produto (Cmin x Efetividade)	200	kJ/kgK
7-	Razão do calor latente	0,23	-
Entr	Entradas		unidade
1-	Temperatura de entrada	35	°C
2-	Fluxo mássico de entrada	174	kg/h
4-	Temperatura ambiente	25	°C
5-	Ganhos internos	776,4505	kJ/h
6-	Entrada de calor auxiliar	0	kJ/h
7-	Entrada de Refrigeração	0	kJ/h
Saíd	as	Valores -	unidade
1-	Temperatura para a fonte quente		
2-	Fluxo mássico de saída para a fonte quente	Resul	tados
3-	Carga de aquecimento		
4-	Temperatura ambiente do local		

Tabela 16 – Parâmetros	, dados de entrada	e saída do loca	l a ser refrigerado	(Type 12)
------------------------	--------------------	-----------------	---------------------	-----------

Continuação da	Tabela	16 –	Parâmetros,	dados	de	entrada	е	saída	do	local	а	ser	refrig	gerado
(Type 12)														

5-	Taxa de transferência de calor do Trocador de Calor	
6-	Taxa do auxiliar requerida	
7-	Calor sensível	
8-	Calor latente	

h) Type 16 – Processador de Radiação Solar

Dados de insolação são geralmente coletados de hora em hora na superfície horizontal. Este componente interpola dados de radiação, calcula diversas quantidades relacionadas à posição do sol, e estima a insolação para mais de quatro superfícies de orientação: fixa ou variável. Existem diversos métodos de interpolação de dados de radiação. Uma forma razoavelmente simples é interpolar, linearmente, dados horários para obter estimativas de radiação em pequenos intervalos de tempo. Esta aproximação, a qual foi usada no primeiro TRNSYS, versão 10.1, tem sido muito inconveniente. O problema aparente é que os valores de radiação positiva são produzidos antes do nascer do sol e após o pôr de sol. Se o nascer do sol é às 06:30h, então um arquivo de radiação horária pode ter um valor de 40 W/m² às 07:00h. A interpolação linear terá um valor de 10 W/m² às 06:15h, 15 minutos antes do nascer do sol. O problema é composto pelo fato de que a razão entre o feixe de radiação na superfície inclinada e a horizontal pode tornar-se muito maior perto do nascer do sol e do pôr do sol. Se a estimativa de radiação na horizontal é muito maior no nascer do sol, a radiação calculada na superfície inclinada será imensa. Assim, o processador de radiação, em uso neste trabalho, utiliza a curva para a radiação extraterrestrial para interpolar dados de radiação. Isto parece aliviar os problemas encontrados com a interpolação linear. A Radiação total na superfície inclinada é usualmente requerida mais para energia solar e simulações de edificações. Os modelos usados neste componente para estimar a radiação total na superfície inclinada requerem conhecimento da divisão da radiação total na horizontal em seus componentes: feixe e difusa. Se somente a radiação horizontal total for avaliada, correlações são usadas para providenciar estimativas de radiação do feixe e difusa na superfície horizontal. Componentes da horizontal são projetadas na superfície inclinada. Este componente tem 8 (oito) métodos para o cálculo das componentes da radiação horizontal tão bons quanto para a estimativa da radiação total na superfície. Na prática, muitos dados são atualmente integrados de medidas instantâneas. O leitor de dados interpola dados linearmente, e isto não é apropriado para radiação solar, conseqüentemente, os dados não devem ser usados para interpolar valores de radiação de arquivos externos, isto é o trabalho deste componente.

Os modelos de 1 a 3 têm sido retidos por razões de compatibilidade anteriores. Se apenas a radiação total horizontal é avaliada, o modelo 4 de radiação horizontal é recomendado. Se dados de radiação total na horizontal, temperatura ambiente e umidade relativa são avaliados, o modelo 5 é recomendado. Quando medidas de radiação direta e difusa não são avaliadas modelos de 1 a 5 devem ser usados. O modelo 6 pode ser usado com dados TMY desde que valores de radiação

normal direta tenham sido estimadas por este dado usando um algoritmo desenvolvido por Randall e Whitson, citado por KLEIN (1980). Se medidas da radiação global horizontal direta ou difusa são avaliadas, então modelos de radiação horizontal 6, 7 ou 8 devem ser usadas. A Tabela 17 consta dos parâmetros, das entradas e das saídas do *Type 33*.

Parâ	imetros	Valores	– unidade
1-	Modelo de radiação solar	4	-
2-	Modelo de acompanhamento do sol	1	-
3-	Modelo da superfície inclinada	1	-
4-	Dia de início	315	-
5-	Latitude	-9,4	Graus
6-	Constante solar	4871	kJ/h.m ²
7-	Deslocamento no tempo solar	7,5	Graus
8-	Não usado	2	-
9-	Tempo solar	1	-
Entr	adas	Valores	– unidade
1-	Radiação na horizontal	1000	W/m ²
2-	Último dado lido no tempo	0	Н
3-	Próximo dado lido no tempo	0	н
4-	Reflectância da Terra	0	-
5-	Inclinação da superfície-1	20	Graus
6-	Azimute na superfície solar-1	0	Graus
Saíd	las	Valores	– unidade
1-	Extraterrestrial na horizontal		
2-	Ângulo solar Zênite		
3-	Ângulo solar Azimute		
4-	Radiação total na horizontal		
5-	Radiação difusa da horizontal		
6-	Radiação total na superfície-1		
7-	Radiação direta na superfície-1		
8-	Radiação incidente difusa na superfície-1		
9-	Ângulo de incidência para a superfície-1		
10-	Ângulo de superfície-1	Resu	ıltados
11-	Radiação total na superfície-2		
12-	Radiação direta na superfície-2		
13-	Ângulo de incidência na superfície-2		
14-	Radiação total na superfície-3		
15-	Radiação direta na superfície-3		
16-	Ângulo de incidência na superfície-3		
17-	Radiação total na superfície-4		
18-	Radiação direta na superfície-4		
19-	Ângulo de incidência na superfície-4		

Tabela 17 – Parâmetros, dados de entrada e saída do Processador de Radiação Solar (Type16)

i) Type 25 – Impressora

O componente de impressora, representada pelo *Type 25*, é usada para exportar (ou imprimir) variáveis do sistema selecionado nos intervalos de tempo especificado.

Considerações especiais:

Os pontos seguintes devem ser notados cuidadosamente porque o componente Type 25 difere de mais outros tipos de componentes em diversas maneiras:

i) São permitidos no máximo, quatro impressoras em cada simulação;

ii) O componente *Type 25* pode ter entre 1 e 10 entradas de dados;

iii) O segundo cartão de dados seguindo o cartão de controle de entradas deve conter um nome de identificação para cada entrada menor que os valores iniciais assim como pra outros componentes (As entradas são impressas abaixo de seus nomes de identificação). Cada nome possui 6 caracteres. Os nomes devem ser separados por vírgula ou um ou mais espaços em branco;

iv) Se o 5º parâmetro for especificado como 2 (como neste modelo), as unidades do TRNSYS para as entradas são impressas abaixo dos nomes de identificação.

j) Type 33 – Conversor de propriedades psicrométricas

O componente escolhido foi o Type 33e que utiliza duas propriedades conhecidas e calcula uma terceira desconhecida. Neste caso, teve como entradas: a temperatura de bulbo seco e umidade relativa e como saída, a temperatura de bulbo úmido. Este componente também chama-se de Subrotina Psicro e tem como entradas: temperatura de bulbo seco e uma outra propriedade dependendo do modelo, temperatura de bulbo úmido, umidade relativa, temperatura de bulbo seco, razão de umidade, ou entalpia e saídas: razão de umidade, temperatura de bulbo seco, entalpia, densidade da mistura ar-água, densidade do ar seco, umidade relativa (em percentual), temperatura de bulbo úmido, temperatura do ponto de condensação. O primeiro parâmetro do Type 33e é o modelo psicrométrico, que já possui em seu default o valor 2. O segundo parâmetro é a pressão total do sistema (Pressu). O terceiro parâmetro é o modo de temperatura de bulbo úmido, que pode ser calculado como uma saída se este não for considerado como uma das entradas. Se este parâmetro for 0(zero), a temperatura de bulbo úmido não será calculada, porém se este for 1(um), a temperatura de bulbo úmido será determinada. Nesta simulação, este parâmetro foi igual a 1 (um). O quarto e último parâmetro é o modo erro que indica o procedimento de manipulação do erro para qualquer rotina psicrométrica. Se este for 1(um), apenas uma condição de perigo será impressa durante toda a simulação. Se este parâmetro for igual a 2 (dois), alertas de perigo serão impressas em toda etapa que uma situação de perigo ocorrer. A Tabela 18 consta dos parâmetros, das entradas e das saídas do *Type* 33.

Pará	àmetros	Valores -	· unidade	
1-	Modelo psicrométrico	2	-	
2-	Pressão	1	atm	
3-	Modelo de bulbo úmido	1	-	
4-	Modo de erro	2	-	
Entr	radas	Valores -	unidade	
1-	Temperatura de bulbo seco	22	°C	
2-	Umidade relativa em percentagem	60	-	
Saíd	Saídas Valores –		unidade	
1-	Razão de umidade			
2-	Temperatura de bulbo úmido			
3-	Entalpia			
4-	Densidade da mistura			
5-	5- Densidade do ar seco Resultados			
6-	6- Umidade relativa em percentagem			
7-	Temperatura de bulbo seco			
8-	Temperatura de condensação			
9-	Status			

Tabela 18 – Parâmetros, dados de entrada e saída do conversor de propriedades psicrométricas (Type33)

4.3 CONEXÕES DAS ENTRADAS E SAÍDAS DE CADA COMPONENTE

As conexões das entradas e saídas de cada componente do sistema termo-solar por absorção foram representadas nos diagramas de blocos que podem ser visualizados na Figura 36.

Figura 36 - Conexões do sistema termo-solar por absorção.

5 RESULTADOS E DISCUSSÕES

Neste capítulo constam os resultados obtidos do dimensionamento de cada componente do Ciclo de Refrigeração por Absorção utilizando como absorvente, a solução aquosa LiBr-H₂O, de forma analítica e a simulação do Sistema Termo-Solar de Refrigeração por Absorção no programa computacional de sistemas transientes, *TRNSYS*.

5.1 DIMENSIONAMENTO DO SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO

O dimensionamento do Sistema de Refrigeração por Absorção utilizando a solução aquosa de LiBr-H₂O foi feito para diferentes capacidades nominais de refrigeração: 1, 2, 3, 4 e 5TR, conforme mostram as Tabelas de 19 a 23. Os cálculos são apresentados para a capacidade nominal de 5TR. Para as outras capacidades nominais, os resultados são apresentados nas Tabelas de 25 a 30.

As Tabelas de 19 a 23 mostram os valores de vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 1, 2, 3, 4 e 5 toneladas de refrigeração.

Ponto do Ciclo	Vazão mássica (kg/h)	Temperatura (°C)	Pressão (kPa)	Entalpia (k.l/kg)
			(((4)	
1	107,610	29,3	1,23	62,575
2	107,610	29,3	7,38	62,575
3	107,610	94,4	7,38	205,024
4	81,032	96,7	7,38	261,413
5	81,032	72,2	7,38	218,435
6	81,032	57,3	1,23	2800,997
7	26,578	78,3	7,38	2668,842
8	5,376	37,0	7,38	155,360
9	5,376	5,0	1,23	155,360
10	5,376	5,0	1,23	2510,480
11	602,437	12,0	101,33	50,293
12	602,437	7,0	101,33	29,392
13	1602,628	29,5	101,33	123,930
14	1602,628	35,0	101,33	147,101
15	1602,628	35,0	101,33	147,101
16	1602,628	37,0	101,33	155,532
17	1611,616	90,0	101,33	1533,252
18	1611,616	80,0	101,33	1489,784

Tabela 19 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 1TR

			Pressão	
Ponto do Ciclo	Vazão mássica (kg/h)	Temperatura (°C)	(kPa)	Entalpia (kJ/kg)
1	107,610	29,3	1,23	62,575
2	107,610	29,3	7,38	62,575
3	107,610	94,4	7,38	205,024
4	81,032	96,7	7,38	261,413
5	81,032	72,2	7,38	218,435
6	81,032	57,3	1,23	2800,997
7	26,578	78,3	7,38	2668,842
8	10,752	37,0	7,38	155,360
9	10,752	5,0	1,23	155,360
10	10,752	5,0	1,23	2510,480
11	1204,874	12,0	101,33	50,293
12	1204,874	7,0	101,33	29,392
13	3205,256	29,5	101,33	123,930
14	3205,256	35,0	101,33	147,101
15	3205,256	35,0	101,33	147,101
16	3205,256	37,0	101,33	155,532
17	1611,616	90,0	101,33	1533,252
18	1611,616	80,0	101,33	1489,784

Tabela 20 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 2TR

Ponto do Ciclo	Vazão mássica (kg/h)	Temperatura (°C)	Pressão (kPa)	Entalpia (kJ/kg)
1	107,610	29,3	1,23	62,575
2	107,610	29,3	7,38	62,575
3	107,610	94,4	7,38	205,024
4	81,032	96,7	7,38	261,413
5	81,032	72,2	7,38	218,435
6	81,032	57,3	1,23	2800,997
7	26,578	78,3	7,38	2668,842
8	16,128	37,0	7,38	155,360
9	16,128	5,0	1,23	155,360
10	16,128	5,0	1,23	2510,480
11	1807,312	12,0	101,33	50,293
12	1807,312	7,0	101,33	29,392
13	4807,884	29,5	101,33	123,930
14	4807,884	35,0	101,33	147,101
15	4807,884	35,0	101,33	147,101
16	4807,884	37,0	101,33	155,532
17	1611,616	90,0	101,33	1533,252
18	1611,616	80,0	101,33	1489,784

Tabela 21 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 3TR

Ponto do Ciclo	Vazão mássica (kg/h)	Temperatura (°C)	Pressão (kPa)	Entalpia (kJ/kg)
1	107,610	29,3	1,23	62,575
2	107,610	29,3	7,38	62,575
3	107,610	94,4	7,38	205,024
4	81,032	96,7	7,38	261,413
5	81,032	72,2	7,38	218,435
6	81,032	57,3	1,23	2800,997
7	26,578	78,3	7,38	2668,842
8	21,504	37,0	7,38	155,360
9	21,504	5,0	1,23	155,360
10	21,504	5,0	1,23	2510,480
11	2409,749	12,0	101,33	50,293
12	2409,749	7,0	101,33	29,392
13	6410,512	29,5	101,33	123,930
14	6410,512	35,0	101,33	147,101
15	6410,512	35,0	101,33	147,101
16	6410,512	37,0	101,33	155,532
17	1611,616	90,0	101,33	1533,252
18	1611,616	80,0	101,33	1489,784

Tabela 22 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 4TR

Ponto do Ciclo	Vazão mássica (kg/h)	Temperatura (°C)	Pressão (kPa)	Entalpia (kJ/kg)
1	107,610	29,3	1,23	62,575
2	107,610	29,3	7,38	62,575
3	107,610	94,4	7,38	205,024
4	81,032	96,7	7,38	261,413
5	81,032	72,2	7,38	218,435
6	81,032	57,3	1,23	2800,997
7	26,578	78,3	7,38	2668,842
8	26,879	37,0	7,38	155,360
9	26,879	5,0	1,23	155,360
10	26,879	5,0	1,23	2510,480
11	3012,186	12,0	101,33	50,293
12	3012,186	7,0	101,33	29,392
13	8013,140	29,5	101,33	123,930
14	8013,140	35,0	101,33	147,101
15	8013,140	35,0	101,33	147,101
16	8013,140	37,0	101,33	155,532
17	1611,616	90,0	101,33	1533,252
18	1611,616	80,0	101,33	1489,784

Tabela 23 – Vazão mássica, temperatura, pressão e entalpia referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 5TR

As Tabelas de 24 a 28 mostram os valores de calor referentes aos pontos do ciclo de refrigeração por absorção para a capacidade nominal de refrigeração de 1, 2, 3, 4 e 5 toneladas de refrigeração. Os resultados mostraram que o calor recebido no gerador é igual para todas as toneladas de refrigeração avaliadas e que o calor recebido no evaporador é a própria capacidade nominal do ciclo. O aumento do calor cedido no absorvedor e no condensador é proporcional ao aumento das toneladas de refrigeração. Pela equação 5 e pelos resultados obtidos, tem-se que o COP aumenta com o aumento das toneladas de refrigeração que adentra ao ciclo.

Tabela 24 – Calor em cada componentes do ciclo de refrigeração para a CRN=1TR

Componentes	Calor (kJ/h)
Gerador	70053,81
Condensador	13512,18
Evaporador	12660,84
Absorvedor	37135,55

Tabela 25 – Calor em cada componentes do ciclo de refrigeração para a CRN=2TR

Componentes	Calor (kJ/h)
Gerador	70053,81
Condensador	27024,35
Evaporador	25321,68
Absorvedor	74271,09

Tabela 26 – Calor em cada componentes do ciclo de refrigeração para a CRN=3TR

Componentes	Calor (kJ/h)
Gerador	70053,81
Condensador	40536,53
Evaporador	37982,52
Absorvedor	111406,64

Tabela 27 – Calor em cada componentes do ciclo de refrigeração para a CRN=4TR

Componentes	Calor (kJ/h)
Gerador	70053,81
Condensador	54048,70
Evaporador	50643,36
Absorvedor	148542,18
Tabela 28 – Calor em cada componentes do ciclo de refrigeração para a CRN=5TR

Componentes	Calor (kJ/h)
Gerador	70053,81
Condensador	67560,88
Evaporador	63304,20
Absorvedor	185677,73

5.1.1 Dimensionamento do Evaporador

As equações para a determinação do calor no evaporador são apresentadas a seguir:

$$\dot{Q}_{ev} = \dot{m}_{11}\overline{C}_{p}(T_{11} - T_{12})$$
 (115)

$$Q_{ev} = \dot{m}_{g}(h_{9} - h_{10})$$
 (116)

O calor específico (\overline{C}_p) da água a P = 1 atm foi determinado pela Equação (98), pois se trata de água gelada. Aplicando os dados anteriores na Equação (115), temos que a vazão mássica de água gelada que entra na serpentina de resfriamento do evaporador de 5TR e que sai é igual a:

$$\dot{m}_{11} = \frac{Q_{ev}}{C_{p}(T_{11} - T_{12})} = \frac{63304,2 \text{ kJ/h}}{(4,203 \text{ kJ/kg K}).(12 + 273,15)-(7 + 273,15)]K} = 3012,19 \text{ kg/h}$$

Sendo:

 $\dot{m}_{12} = \dot{m}_{11} = 3012,19 \text{ kg/h}$

O fluido refrigerante (água) sai do condensador e passa por uma válvula de expansão causando uma diminuição na pressão do sistema de forma isoentálpica, significando que na entrada do evaporador, ponto (9), o fluido refrigerante é uma mistura de líquido e vapor, com entalpia igual a de líquido saturado à pressão de condensação. dizer que $h_8 = h_9$. A partir da Equação (101), determinou-se as entalpias nas saídas do condensador e evaporador, ou seja, $h_9 = 155,36$ kJ/kg e $h_{10} = 2510,48$ kJ/kg. Assim, obteve-se a vazão mássica do refrigerante que atravessa o evaporador, para 5TR.

$$\dot{m}_9 = \frac{\dot{Q}_{ev}}{(h_{10} - h_9)} = \frac{63304.2 \text{ kJ/h}}{(2510.48 - 155.36) \text{kJ/kg}} = 26.879 \text{ kg/h}$$

 $\dot{m}_{10} = \dot{m}_9 = 26.879 \text{ kg/h}$

A Figura 37 é novamente mostrada para melhor visualização das entradas e saídas em cada ponto do Evaporador. As considerações iniciais da Tabela 10 são aplicadas nestes cálculos.

Figura 37 – Volume de controle no evaporador do sistema

5.1.2 Dimensionamento do Condensador

m₁₆, t₁₆, h₁₆ m₁₅, t₁₅, h₁₅ 16 Água que vai para Água que vem a Torre de do absorvedor Resfriamento Q_c 7 m₇, t₇, h₇ Vapor d'água Condensador superaquecido Refrigerante (Água líquida 8 saturada)

A Figura 38 mostra os pontos de entrada e saída do condensador.

Figura 38 - Volume de controle no condensador

Pela conservação da massa, a vazão mássica que atravessa o evaporador é igual á vazão que atravessa o condensador.

 $\dot{m}_7 = \dot{m}_8 = \dot{m}_9 = 26,879 \text{ kg/h}$

O vapor d'água superaquecido sai do gerador à temperatura de 100°C e pressão de 7,38 KPa. Antes de determinarmos a entalpia de vapor superaquecido mostrado pela Equação (102), calculamos a temperatura de saturação para água a pressão supracitada através da Equação de Antoine (70), cujos parâmetros são citados em FELDER E ROUSSEAU (2005):

$$Log_{10}P = A - \frac{B}{T^{sat} + C}$$

Onde: A = 8,10765; B = 1750,286; C = 235; P em mmHg e T em °C (FELDER E ROUSSEAU, 2005)

A pressão de 7,38 KPa é igual a 55,355 mmHg. Realizando a substituição e algumas manipulações matemáticas simples, obtivemos que:

Calculamos com isto, o $\overline{C}p_{VS}$, a partir da média entre as capacidades caloríficas à temperatura de saturação (T^{sat}) e de referência (T_o) através da Equação (99) para vapor saturado.

$$C\overline{p}_{VS} = \frac{Cp_{sat} + Cp_0}{2} = \frac{1,869 + 1,808}{2} = 1,839 \text{ kJ/kg K}$$

Utilizando a Equação (101) e o estado de referência para vapor saturado: h_0 '= 2468,69 kJ/kg e T₀ = - 17,78 °C +273,15 = 255,37 K, chegamos à:

$$h_{V_{sat}} = C\overline{p}_{VS}(T - T_0) + h_0 = 1,839 \frac{kJ}{kgK} [313,15 - 255,37]K + 2468,69 = 2574,94 kJ/kg$$

Desta forma, determinamos Cp_{VSUP} e h_{VSUP} pelas Equações (99) e (102), respectivamente, admitindo que a temperatura de saída do vapor d'água superaquecido do gerador foi 100°C.

$$h_{VS} = h_7 = 2668,84 \text{ kJ/kg}$$

Através dos dados obtidos e da Equação (28), sabendo que $\dot{m}_7 = \dot{m}_8$ e $h_8 = h_9$, determinamos o calor no condensador:

$$\dot{Q}_{c} = \dot{m}_{f} h_{7} - h_{8} = \dot{m}_{g} h_{7} - h_{8} = 67560,88 \text{ kJ/h}$$

Os cálculos das entalpias dos pontos 15 e 16 deram-se pelas Equações (98) e (101). Assim, determinamos a vazão mássica que entra no absorvedor:

$$\dot{m}_{15} = \frac{\dot{Q}_c}{(h_{16} - h_{15})} = 8013,14 \text{ kg/h}$$

Considerou-se que a vazão de água, que resfria o condensador, seja a mesma que passa no

absorvedor ($\dot{m}_{15} = \dot{m}_{14} = \dot{m}_{13}$). Assim, foi suposto que a temperatura da água que sai do absorvedor é a mesma temperatura da água que entra no condensador ($T_{14} = T_{15}$). Foi considerada a temperatura de 29,5°C para a entrada da água no absorvedor (que é igual à temperatura de saída da água da torre).

5.1.3 Dimensionamento do Trocador de Calor

O trocador de calor intermediário conforme Figura 39, é dimensionado a seguir:

Figura 39 – Volume de controle do trocador de calor

Através da Equação (91), determinamos a temperatura da solução no ponto 4 (T₄):

 $T4 = 96,66^{\circ}C$

Em seguida, a entalpia no ponto 4, através da Equação (101):

 $h_4 = 261,41$ (kJ/Kg)

Segundo APHORNRATANA E EAMES (1995), citados por VARANI (2001), a temperatura de cristalização no ponto 5 (T_5) pode ser calculada pela Equação (92).

Tcrist5= 61,74 °C

E a entalpia de cristalização no ponto 5, a partir da Equação (93):

hcrist5= 200,12 kJ/kg

Conhecendo a temperatura de cristalização no ponto 5 e a temperatura no ponto 4 (T_4), fez-se variar a temperatura no ponto 5 entre (Tcrist5+10,5°C) e (T4-5°C), conforme é mostra a Tabela 29.

Ponto	T_5	h ₅
1	72,24	218,435
2	76,12	225,234
3	80,01	232,047
4	83,89	238,874
5	87,78	245,715
6	91,66	252,569

Tabela 29 – Temperatura e entalpia da solução no ponto 5

Para verificar se a solução no ponto 6 está na região bifásica ou comprimida, supôs-se inicialmente que a temperatura da solução no ponto 6 é igual a no ponto 5 (T6sol=T5), ou seja, a solução está comprimida. Assim, pôde-se obter a temperatura de orvalho a partir da temperatura de T6sol e da Subrotina para o cálculo da temperatura de orvalho da solução de brometo de lítio e água, Anexo B, como mostra a Tabela 30:

Ponto	T6sol (°C)	TD6 (°C)
1	72,24	17,08
2	76,12	20,23
3	80,01	23,39
4	83,89	26,56
5	87,78	29,73
6	91,66	32,90

Tabela 30 - Temperatura da solução de LiBr-H₂O e de orvalho no ponto 6

A pressão no ponto 6 foi calculada através da Equação (95) e dos resultados de temperatura de orvalho da Tabela 30, como mostra a Tabela 31.

Tabela no pon	31 – Pressão to 6
Ponto	P6 (kPa)
1	1,95
2	2,37
3	2,88
4	3,47
5	4,18
6	5,00

A pressão de evaporação da solução de LiBr-H₂O é igual a 0,87 kPa, valor este calculado na seção 5.1.4, dimensionamento do absorvedor. Como a pressão no ponto 6 é maior que a pressão de evaporação, a solução é uma mistura bifásica e temperatura nesse ponto é calculado pela

Equação (96). Assim, T6 é:

T6= 57,301 °C

A entalpia da mistura bifásica é a soma das entalpias de líquido e vapor da solução de LiBr-H₂O, dadas pelas Equações (108) e (109):

 $h6 = 2801 \, kJ/h$

A entalpia de cristalização no ponto 6 foi obtida pela Equação (110):

hcrist6 = 200,12 kJ/h

Com a entalpia de cristalização no ponto 6, pode-se calcular a Tcrist6, pela Equação (97):

Tcrist6=61,74 °C

A carga térmica do trocador de calor foi determinada pela Equação (39)

 $\dot{Q}_{tc} = \dot{m}_{\lambda} h_3 - h_2 = 27916,56 \text{ kJ/h}$

5.1.4 Dimensionamento do Absorvedor

Apresentamos outra vez a Figura 40, onde mostra os pontos de entrada e saída no Absorvedor para melhor visualização.

Figura 40 - Volume de controle no absorvedor

Substituindo o valor da vazão mássica do ponto 10 na Equação (22), obtivemos a relação:

$$\dot{m}_1 = \dot{m}_6 + \dot{m}_{10} = \dot{m}_6 + 26,58 \text{ kg/k}$$
 (117)

Fazendo um balanço parcial em relação LiBr, tivemos a seguinte Equação:

94

$$\dot{m}_1 X_1 = \dot{m}_6 X_6$$
 (118)

Relacionando a Equação (117) com a (118), encontramos a vazão mássica no ponto 6.

$$\dot{m}_6 = 81,032 \text{ kg/h}$$

Assim, $\dot{m}_1 = \dot{m}_6 + \dot{m}_{10} = (81,032 + 26,58) = 107,61 \text{ kg/h}$

Para continuar os cálculos, tivemos que dimensionar o trocador de calor intermediário do sistema e assumimos que:

$$\dot{m}_2 = \dot{m}_3 = \dot{m}_1 = 107,61 \text{ kg/h}$$

 $\dot{m}_4 = \dot{m}_5 = \dot{m}_6 = 81,032 \text{ kg/h}$

A temperatura no ponto (1) foi obtida pela Equação (89): T1=29,26°C

A temperatura de orvalho da solução de LiBr-H₂O no ponto 1 foi calculado pela Subrotina para o cálculo da temperatura de orvalho da solução de brometo de lítio e água, Anexo B:

TD1=5°C

Com TD1 e a Equação (95), pôde-se determinar a pressão de evaporação da solução no ponto (1): PEVAP=0,87

A entalpia no ponto 1 pode ser calculada pela Equação (106), onde T₁=29,26°C

 $h_1 = 62,58 = h_2$ (kJ/Kg)

Mas para calcularmos Q_{ab} através da Equação (25), determinaremos h_{13} e h_{14} pela Equação (101):

Assim, $Q_{ab} = \dot{m}_{13}(h_{14} - h_{13}) = 8013,14 \text{ Kg/l}(147,10 - 123,93) \text{kJ/Kg}$

 $Q_{ab} = 185677,73 \text{ kJ/h}$

5.1.5 Dimensionamento do Gerador

A seguir é mostrado a Figura 41 onde são visualizadas as entradas e saídas no Gerador

Figura 41 – Volume de controle no gerador do sistema.

Pelos balanços global e parcial para LiBr, Equações (17) e (18), respectivamente, calculamos as vazões mássicas nos pontos 2, 3 e 4:

m3=m2= 107,61 kg/h

m4= 81,03 kg/h

Com estas vazões, determinamos a vazão mássica no ponto (7): m7= 26,58 kg/h

Através da Equação (39), calculamos a entalpia no ponto (3):

h3= 205,02 kJ/kg Assim determinamos a temperatura no ponto (3), através da Equação (90): T3=94,44°C

Podemos determinar a quantidade de calor requerida pelo gerador a partir da Equação (20)

 $Q_{g} = \dot{m}_{7} h_{7} + \dot{m}_{4} h_{4} - \dot{m}_{3} h_{3} = [26,58] (2668,84)] + [81,03] (261,41)] - [107,61(205,02)]$

 $\dot{Q}_{a} = 70053,81 \text{ kJ/h}$

Para calcular T7 usou-se as Equações (86) e (87), resultando em T7=78,25°C. As entalpias nos pontos 17 e 18 foram calculadas a partir da equação (101): h17=1533,25 kJ/kg h18=1489,78 kJ/kg

Pela equação (20), determinou-se as vazões mássicas em (17) e (18):

 $\dot{m}_{17} = 1611,62 \text{ kg}/\text{h} = \dot{m}_{18}$

Os Coeficientes de Desempenho real e ideal (também chamados de Coeficiente de Eficácia) puderam ser determinados pelas Equações (111) e (112), respectivamente:

$$COP = \frac{Q_{ev}}{Q_g} = \frac{63304,2 \text{ kcal/h}}{70053,81 \text{ kcal/h}} = 0,90$$
$$COP_{ideal} = \frac{(T_{ev} + 273,15)(T_g - T_{ab})}{(T_g + 273,15)(T_c - T_{ev})} = \frac{(10 + 273,15)(100 - 30)}{(100 + 273,15)(40 - 10)} = 1,40$$

A eficiência global do ciclo é dada, então, por (BEJAN, 1988):

- - -

$$\eta_{\text{ciclo}} = \frac{\text{COP}}{\text{COP}_{\text{ideal}}} = \frac{0,90}{1,40} = 0,64$$

- - -

5.2 RESULTADOS DA SIMULAÇÃO DO SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO ACOPLADO AO SISTEMA TERMO SOLAR ATRAVÉS DO TRNSYS

Os resultados do sistema de refrigeração acoplado ao sistema termo solar foram analisados para o período compreendido entre os dias 12 a 21 de Novembro de 2007, durante 225 horas. A análise da importância da capacidade nominal do ciclo, da área do local refrigerado, da área do coletor solar, do volume de água no tanque reservatório e da temperatura inicial de geração sobre o funcionamento dos sistemas: termosolar e por absorção acoplado ao termosolar são a seguir apresentados.

5.2.1 Influência do tamanho da área do coletor solar

Antes mesmo de se verificar a influência de todas as variáveis já mencionadas, fez-se necessário escolher o tamanho da área do coletor solar considerando o custo, pois quanto maior for a área do coletor mais oneroso será, porém maior será a temperatura da água na saída do coletor solar. A Figura 42 mostra o perfil de temperatura da água na saída do coletor solar (CS) do sistema termo-solar (SISTERMOSOLAR) em função do tempo para diferentes áreas de coleta. O SISTERMOSOLAR é composto de um coletor solar, um tanque reservatório de água e uma bomba. Observou-se que com o incremento da área de coleta solar, houve um aumento da temperatura da água na saída do coletor solar. Este evento era esperado, pois houve um aumento na captação solar devido o incremento da área do coletor, para o aquecimento de uma mesma massa de água circulante. Entretanto, um aumento de 400% na área do coletor solar acarretou um aumento de 10°C na temperatura da água, o que corresponde a apenas 20% de acréscimo na temperatura.

Figura 42 – Perfil de temperatura da água que sai do coletor solar para diferentes áreas de coleta em função do tempo para o SISTERMOSOLAR (sem a conexão com o ciclo de refrigeração).

As Figuras 43 e 44 elencam os perfis de temperatura da água que sai do coletor solar no tempo com o ciclo de refrigeração por absorção acoplado ao sistema termo-solar para as capacidades nominais de refrigeração de 2 e 5TR, respectivamente. O comportamento das curvas de temperatura da água que sai do coletor foi avaliado pela variação da área do coletor solar para 15, 30, 45 e 60m². Os resultados mostraram que com o acoplamento do ciclo de refrigeração ao sistema termo-solar, tanto para o ciclo de 2TR como para o de 5TR, os níveis de temperatura da água na saída do coletor solar mostraram-se maiores, que se justifica pela recirculação da água que é utilizada para geração de vapor no gerador. A água que chega ao gerador de vapor a partir do tanque reservatório de água quente pode ser aquecida por um aquecedor auxiliar do sistema de refrigeração caso não atinja a temperatura mínima necessária à geração de vapor. Essa água após ceder energia à solução de brometo de lítio-água, retorna ao coletor solar. Observou-se também que após 92 horas de simulação, o nível de temperatura da água quente que sai do coletor para uma área de 45m² e capacidade nominal de 2TR, desconsiderando os momentos de pico, foi superior até mesmo à curva de temperatura da água aquecida no coletor de 60m² de área. Isto ocorreu porque a temperatura da água para o coletor de 60m² de área atingiu um valor de pico de 70°C após 86 horas de simulação, valor este, superior à temperatura da água para geração de vapor do ciclo (60°C), resultando no desligamento do aquecedor auxiliar, o que causou, logo em seguida, a queda na temperatura da água de retorno, abaixo da obtida no coletor de área 45m². O aguecedor auxiliar do ciclo se manteve mais tempo ligado quando se simulou com a área do coletor de 45m², mantendo níveis de temperatura da água de retorno ao coletor superior aos obtidos para a área de 60 m². Com respeito às outras áreas, as temperaturas da água de retorno ao coletor solar estiveram sempre inferiores às áreas de 45 e 60 m². Em relação à capacidade de ciclo de 5TR, mostrada na Figura 46, este efeito na temperatura para a área de 45m² não foi observado, devido ao acionamento mais freqüente do aquecedor auxiliar para suprir a uma maior demanda de refrigeração, não permitindo à temperatura da água que sai do coletor de 60m² ficar abaixo da temperatura da água que sai do coletor de 45m².

Figura 43 – Perfil de temperatura da água que sai do coletor solar para diferentes áreas de coleta em função do tempo para o sistema termo-solar por absorção (com conexão com o ciclo de refrigeração) de 2 TR.

Figura 44 – Perfil de temperatura da água que sai do coletor solar para diferentes áreas de coleta em função do tempo para o sistema termo-solar por absorção (com conexão com o ciclo de refrigeração) de 5 TR.

As Figuras 45 e 46 mostram os perfis de temperatura de água quente do tanque reservatório, que é enviada ao ciclo, em função do tempo, variando novamente a área do coletor solar e CNR de 2 e 5 TR, respectivamente. Observou-se que a temperatura da água no tanque elevou-se à medida que se aumentou a área de coleta solar, tendendo a permanecer constante após 100h de funcionamento. Observou-se também que quanto menor a área, mais rapidamente a temperatura ficou constante, sendo que, para a área de 45m² a temperatura foi mais elevada, em torno de 55°C, quando a CNR foi de 2TR. Para CNR de 5TR , as temperaturas foram aproximadamente iguais independente da área, em torno de 48°C, com exceção da área de 60 m², que obteve a temperatura da água ligeiramente

mais alta, em torno de 52°C .

Figura 45 – Perfil da temperatura do tanque em função do tempo, variando a área do coletor solar para 2 TR.

No início da simulação, a temperatura da água do tanque reservatório era de 25°C e logo após, a temperatura da água elevou-se. Este aumento ocorreu mais rapidamente para a capacidade nominal de 5 TR do que para 2 TR.

Figura 46 – Perfil da temperatura do tanque em função do tempo, variando a área do coletor solar para 5 TR.

Os perfis da temperatura ambiente do local refrigerado para 2 e 5 toneladas de refrigeração foram avaliados variando-se novamente a área do coletor solar, conforme mostram as Figuras 47 e 48, respectivamente. A partir destas pode-se observar que a variação da área do coletor solar não influenciou na temperatura ambiente do local refrigerado tanto para 2TR como para 5 TR, ocorrendo

uma sobreposição de curvas. Isto pode ser explicado pelo fato de que o aquecedor auxiliar do ciclo de absorção ajusta a temperatura da água de entrada, advinda do tanque reservatório, ainda que esta esteja abaixo da temperatura inicial de geração. A temperatura ambiente do local refrigerado oscilou mais vezes em um mesmo período de tempo para a capacidade nominal maior, 5TR, atingindo uma temperatura mínima de 14°C. A mínima da temperatura atingida, para 2 TR, foi de 16°C, para todas as áreas avaliadas.

Figura 47 – Perfil da temperatura ambiente do local refrigerado em função do tempo, variando a área do coletor solar considerando para 2 TR.

Figura 48 – Perfil da temperatura ambiente do local refrigerado em função do tempo, variando a área do coletor solar considerando para 5 TR.

5.2.2 Influência do volume do tanque

Após a análise da influência da área do coletor solar sobre as temperaturas: ambiente do local refrigerado, da água na saída do coletor solar e da água do tanque, a próxima etapa foi verificar a

influência do volume do tanque reservatório de água quente. As Figuras 49 e 50 mostram a influência do volume do tanque sobre o perfil de temperatura da água do reservatório ao longo do tempo, para a capacidade nominal de 2 e 5TR, respectivamente, área do coletor solar de 30m², temperatura inicial de geração igual a 60°C e área do local refrigerado de 63m², variando o volume do tanque em 2, 4, 5 e 8m³.

Figura 49 – Perfil de temperatura da água de saída do reservatório ao longo do tempo para os diferentes volumes do reservatório de armazenamento de água para CNR=2 TR.

Ao analisar o comportamento das curvas das Figuras 49 e 50, observou-se que quanto menor foi o volume de água no tanque reservatório mais rapidamente elevou-se a temperatura da água. Para a capacidade nominal de refrigeração de 2TR, Figura 49, o volume que atingiu a temperatura mais elevada, foi o de 4m³, da ordem de 53,1°C. Para a capacidade nominal de refrigeração de 5TR, Figura 50, o comportamento da curva de temperatura de água foi semelhante ao de 2TR quanto a elevação de temperatura, porém o volume de água no tanque que obteve maiores níveis de temperatura, para 5TR, na ordem de 55,6°C, foi o de 2m³. Desta forma, pode-se concluir que o aumento do volume é inversamente proporcional ao aumento da temperatura da água no tanque reservatório.

Figura 50 – Perfil de temperatura da água de saída do reservatório ao longo do tempo para os diferentes volumes do reservatório de armazenamento de água para CNR=5 TR.

5.2.3 Influência da capacidade nominal de refrigeração

O coeficiente de performance (COP) e as temperaturas: ambiente (Tamb), da água quente no tanque reservatório (Ttank), da água de saída do gerador que retorna ao tanque reservatório (Tg) e ambiente do local refrigerado (Tmlocal) foram analisados para diferentes capacidades nominais de refrigeração (CNR) (de 1 a 5 TR).

Para este estudo foram mantidos alguns parâmetros constantes como: a área do coletor (AC), a área da sala (A) e o volume do Tanque reservatório (V). Na Tabela 32 é apresentado os valores para estes parâmetros.

SISTELLIA TELLIO SOLAI	
Parâmetros	Valor (unidade)
Área do coletor solar (AC)	30 (m ²)
Área da sala (A)	63 (m²)
Volume do tanque reservatório (V)	5 (m ³)

Tabela 32 – Parâmetros mantidos constantes durante a simulação do sistema de refrigeração por absorção acoplado ao sistema termo solar

Os resultados obtidos da simulação no *TRNSYS* são apresentados nas Figuras 51 a 55. Na análise do coeficiente de performance do ciclo (COP), observou-se que à medida que a capacidade nominal de refrigeração aumentou, o tempo em que o ciclo de refrigeração ficou desligado foi maior. Isto porque quanto mais toneladas de refrigeração para uma área constante do local, menos vezes serão necessárias acionar o ciclo de refrigeração por absorção. Outro resultado obtido foi que a temperatura de água na saída do gerador e que retorna ao Tanque reservatório (Tg) atinge mais rapidamente a temperatura de 49°C com o incremento da capacidade nominal de refrigeração. Para CNR igual a 1TR, Figura 51, a temperatura não ultrapassou a 24°C. Os níveis mais baixos de temperatura ambiente da sala deram-se para as capacidades nominais maiores. Após 85 horas de

simulação, a curva de temperatura de água no tanque reservatório para CNR=2TR alcançou a temperatura máxima de 49°C, permanecendo constante até o fim da simulação.

Figura 51 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=1TR; AC=30m2; A=63m2 e V=5m3).

Figura 52 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=2TR; AC=30m2; A=63m2 e V=5m3).

Figura 53 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=3TR; AC=30m2; A=63m2 e V=5m3).

Figura 54 – Perfil de temperatura e Coeficiente de Performance no tempo. (Condições: CNR=4TR; AC=30m2; A=63m2 e V=5m3).

Figura 55 – Perfil de temperatura e coeficiente de performance no tempo. (Condições: CNR=5TR; AC=30m2; A=63m2 e V=5m3).

5.2.4 Influência do tamanho da sala

As Figuras 56 e 57 exibem os perfis de temperatura ambiente do local refrigerado em função do tempo, variando a área do local, para CNR igual a 2 e 5 TR, respectivamente. Constatou-se que a variação do tamanho da sala influenciou na temperatura ambiente do local refrigerado para as duas capacidades nominais observadas. À medida que se elevou a área do local, a temperatura ambiente do local refrigerado elevou-se e ao passo que aumentou a capacidade nominal de refrigeração, a temperatura ambiente do local refrigerado atingiu níveis mais baixos, para a área de 63m², a temperatura atingiu seu valor mínimo de 16°C quando 2TR e de 14°C quando 5TR.

Figura 56 – Perfil de temperatura ambiente do local refrigerado em função do tempo com variação da área do local (Condições: CNR=2TR, AC=30m2, Tg=60°C e V=5m3).

Figura 57 – Perfil de temperatura ambiente do local refrigerado em função do tempo com variação da área do local (Condições: CNR=5TR, AC=30m2, Tg=60°C e V=5m3).

5.2.5 Influência da temperatura inicial de geração de vapor

A temperatura inicial de geração de vapor é a temperatura de vaporização da solução de LiBr-H₂O necessária para que o ciclo de absorção entre em funcionamento. Para menores temperaturas de geração de vapor, o ciclo de absorção se mantém mais tempo em funcionamento e as temperaturas na sala refrigerada atinge valores mais baixos. As Figuras 58 e 59 mostram o perfil de temperatura ambiente do local refrigerado em função do tempo, variando a temperatura inicial de geração de vapor para as capacidades nominais de 2 e 5TR, respectivamente. Segundo os resultados para a capacidade nominal de 2TR, pode-se dizer que a temperatura do local oscilou entre 16 e 24°C, para todas as temperaturas de geração de vapor avaliadas. Analisando as curvas de temperatura ambiente do local para a capacidade nominal de refrigeração de 5TR, observou-se que a temperatura ambiente do local refrigerado variou entre 13 e 24°C, para todas as temperaturas de geração.

Figura 58 – Perfil de temperatura do local refrigerado em função do tempo com variação da temperatura inicial de geração de vapor (Condições: CNR=2TR, AC=30m2, A=63m3 e V=5m3).

Figura 59 – Perfil de temperatura do local refrigerado em função do tempo com variação da temperatura inicial de geração de vapor (Condições: CNR=5TR, AC=30m2, A=63m3 e V=5m3).

As Figuras 60 e 61 exibem os perfis de temperatura da água quente que retorna do ciclo de refrigeração para o tanque reservatório em função do tempo, variando a temperatura inicial de geração de vapor (Tig), para as capacidades nominais de 2 e 5 TR, respectivamente. A primeira análise, observou-se que a temperatura da água que retorna do ciclo ao tanque atinge a temperatura de 45°C mais rapidamente para 5TR do que para 2TR. Observou-se ainda que à menores capacidades nominais de refrigeração atinge-se níveis mais elevados de temperatura da água de retorno do ciclo ao tanque e que a temperatura inicial de geração de vapor que obteve melhores resultados foi a de 60°C.

Figura 60 – Perfil de temperatura da água que retorna do ciclo de refrigeração para o tanque reservatório em função do tempo variando a temperatura inicial de geração de vapor (Condições: CNR=2TR, AC=30m2, A=63m3 e V=5m3).

Figura 61 – Perfil de temperatura da água que retorna do ciclo de refrigeração para o tanque reservatório em função do tempo variando a temperatura inicial de geração de vapor (Condições: CNR=5TR, AC=30m2, A=63m3 e V=5m3).

A Tabela 33 mostra os valores das variáveis que geraram os melhores resultados em relação aos níveis de temperatura analisados.

Variável do sistema SISTERMOSOLAR por Absorção	Valores
Capacidade nominal	5 TR
Área do local refrigerado	63 m ²
Área do coletor solar	60 m ²
Temperatura inicial de geração de vapor	0° C
Volume do tanque reservatório	2 m ³

Tabela 33 – Valores das variáveis do sistema SISTERMOSOLAR por Absorção que geraram melhores resultados

Fonte: Elaboração própria, 2010

As Figuras 62 e 63 mostram a variação do COP e das temperaturas: da água que retorna do ciclo ao tanque reservatório (Tg), ambiente (Tamb), da água quente que sai do coletor solar (Tcs) e ambiente do local refrigerado (Tmlocal) em graus Celsius, utilizando as variáveis ótimas do sistema para uma sala de 63m² e outra sala de 350m². Para uma sala de área maior, a frequência com que o ciclo é ligado e desligado, aumentou. O nível de temperatura da água que sai do coletor solar foi maior e o nível de temperatura da água que retorna do ciclo para o tanque reservatório foi menor quando elevou-se a área do local refrigerado.

Figura 62 – Coeficiente de Performance (COP) e perfil das temperaturas: da água que retorna do ciclo ao tanque reservatório (Tg), do ambiente (Tamb), da água quente que sai do coletor solar (Tcs), da ambiente do local refrigerado (Tmlocal) e da água quente que sai do tanque reservatório (Ttank) em função do tempo (Condições: CNR=5TR, AC=60m², A=63m² e V=2m³).

Figura 63 – Coeficiente de Performance (COP) e perfil das temperaturas: da água que retorna do ciclo ao tanque reservatório (Tg), do ambiente (Tamb), da água quente que sai do coletor solar (Tcs), da ambiente do local refrigerado (Tmlocal) e da água quente que sai do tanque reservatório (Ttank) em função do tempo (Condições: CNR=5TR, AC=60m², A=350m² e V=2m³).

5.2.6 Radiação média solar

A seguir, tem-se a Figura 64, onde apresenta a radiação média solar no período entre 12 e 21 de Novembro de 2007, da cidade de Maceió, Alagoas, Brasil. A radiação máxima atingiu valores próximos a 1000 W/m2. Os dados de radiação, temperatura ambiente, umidade do ar foram obtidos num sistema termosolar montado para testes no laboratório de termofluidodinâmica da Universidade Federal de Alagoas (UFAL), a partir do "DATALLOGER" (CR–10 Campbel Scientific, USA).

Figura 64 – Radiação média solar de 12 a 21 de Novembro de 2007, para Maceió.

5.2.7 Taxa de calor cedido ao gerador e de refrigeração

As Figuras 65 e 66 mostram o comportamento das taxa de calor no gerador para 2 e 5TR e da taxa de refrigeração para 2 e 5TR em função do tempo, respectivamente. Obviamente, a quantidade de calor requerida no gerador (Qg) foi maior do que a quantidade de calor retirada no evaporador, taxa de refrigeração (Qev), o qual gera a refrigeração do local. A taxa de refrigeração máxima e mínima foram 25800 e 13300kJ/h, para 2TR e 64300 e 30600 5 TR, respectivamente, e a quantidade de calor média cedida ao gerador para 2 e 5 TR foi 27400 e 66400kJ/h, respectivamente no período de tempo analisado e condições operacionais: AC=30m², A=63m², V=5m³ e Tig=60°C.

Figura 65 – Comportamento da taxa de calor no gerador em função do tempo.

Figura 66 – Comportamento da taxa de refrigeração em função do tempo.

6. CONCLUSÕES

Mediante as leis de conservação da massa e energia como também dos modelos empíricos das propriedades termodinâmicas do LiBr-H₂O, realizou-se os cálculos para o dimensionamento do gerador, condensador, absorvedor, evaporador e trocador de calor do Sistema de Refrigeração por Absorção (SRA) para as capacidades nominais de 1, 2, 3, 4 e 5 toneladas de refrigeração (TR).

Os cálculos analíticos mostraram que com o aumento da capacidade nominal do ciclo, o coeficiente de performance do ciclo (COP) aumentou. Para as capacidades nominais de 1, 2, 3, 4 e 5 TR, o COP foi da ordem de 18, 36, 54, 72 e 90%, respectivamente. A eficiência global do ciclo foi de 64%.

A eficiência global do ciclo para 1, 2, 3, 4 e 5 TR foi, respectivamente, 13, 26, 39, 52 e 65%.

A temperatura da água de saída do coletor solar aumenta em função do tamanho da área de captação solar. Ao aumentar a área do coletor solar em 400%, a água teve um acréscimo de temperatura de 20%. Além disso, a temperatura da água que sai do tanque reservatório fica constante mais rapidamente para uma capacidade nominal do ciclo maior.

O acoplamento do ciclo de refrigeração de 2TR ao sistema termo solar, resultou num acréscimo de 6 e 10% na temperatura da água na saída do coletor solar de 45 e 60m², respectivamente. Para o acoplamento do ciclo de 5TR, esse aumento na temperatura da água na saída do coletor solar foi menor que 1% e de 6% para as áreas de 45 e 60m², respectivamente.

Quando a temperatura da água que sai do tanque reservatório em direção ao gerador do ciclo de refrigeração está abaixo da temperatura mínima necessária à geração de vapor de água a partir da solução de LiBr-H₂O, o aquecedor auxiliar do ciclo é acionado, elevando assim, a temperatura da água que adentra ao gerador do ciclo e retorna mais elevada ao coletor, o que com o passar do tempo, tende a permanecer constante.

A temperatura da água no tanque reservatório aumenta em função do aumento da área do coletor solar. E aquela torna-se constante mais rapidamente com o aumento da capacidade nominal de refrigeração do ciclo.

A influência da variação da área do coletor solar não foi observada na temperatura ambiente do local refrigerado tanto para 2TR quanto para 5 TR, devido à sobreposição das curvas.

O aumento da temperatura da água no tanque reservatório é inversamente proporcional ao aumento do volume de água no tanque reservatório. Quanto menor este volume, mais rápido é a elevação da temperatura da água no tanque reservatório.

Com o aumento da capacidade nominal de refrigeração do ciclo, o intervalo de acionamento do ciclo

também aumenta e a temperatura da água na saída do gerador e que retorna ao tanque reservatório atinge níveis mais elevados de temperatura e em menor tempo.

O aumento da temperatura ambiente do local refrigerado deu-se em função do aumento da área do local refrigerado e ao passo que elevou-se a capacidade nominal do ciclo, a temperatura ambiente do local refrigerado atingiu níveis mais baixos, chegando a valores mínimos de 16°C para 2TR e 14°C para 5TR.

Menores temperaturas de geração de vapor fazem com que o ciclo de refrigeração permaneça mais tempo em funcionamento e o local refrigerado atinja níveis mais baixos de temperatura.

Os melhores resultados forma obtidos com: a capacidade nominal de refrigeração de 5TR, a área do local refrigerado de 63m², a área do coletor solar de 60m², a temperatura inicial de geração de vapor de 60°C e o volume de água no tanque reservatório de 2m³.

Os níveis de temperatura da água que sai do coletor solar e da água que retorna do ciclo ao tanque mostraram-se maiores quando elevou-se a área do local refrigerado de 63 para 350m².

A radiação solar máxima atingiu valores próximos a 1000 W/m² no período compreendido entre 12 de a 21 de Novembro de 2007.

A taxa de refrigeração máxima e mínima foi de 25800 e 13300kJ/h para 2TR, respectivamente e de 64300 e 30600 para 5 TR, respectivamente.

A quantidade de calor média cedida ao gerador do ciclo de absorção foi de 27400 kJ/h para 2 TR e de 66400 kJ/h para 5TR no período de 12 a 21 de Novembro de 2007.

REFERÊNCIAS BIBLIOGRÁFICAS

A estrutura do Sol. Disponível em: <u>http://www.astroimagem.com/teoria1.htm</u>. Acessado em 17 de Dezembro de 2009.

ARUN, M. B.; MAIYA, M. P.; MURTHY, S. S.; Performance comparison of double-effect parallelflow and series flow water-lithium bromide absortion systems, **Applied Thermal Engineering**, vol. 21, p. 1273–1279, 2001.

ASHRAE Handbook, 1993.

ASSILZADEH, F.; KALOGIROU, S. A.; ALI, Y.; SOPIAN, K., Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors, **Renewable Energy**, vol. 30, p.1143–1159, 2005.

ATMACA I, YIGIT A, KILIC M. The effect of input temperatures on the absorber parameters. **Int. Comm. Heat Mass Transfer**; vol. 29(8),p.1177–86, 2002. BEJAN, A., Advanced Engineering Thermodynamics, **Jonh-Wiley & Sons**, N. Y., 1988.

CARNOT, N.S., Reflections on the Motive Power of Fire, **Doven Publications**, 1960.

CARVALHO, E. N. DE; PIMENTA, J. M. D.; ALMEIDA, G.S. De; FONSECA Jr., J. A.; Modelagem e Simulação de Chillers por Absorção H_2O -LiBr em um edifício, **16° POMEC (Simpósio de Pós-Graduação em Engenharia Mecânica)**, p.1-11, 2006.

CELESC DISTRIBUIÇÃO S.A.; Consumo de energia elétrica por classe no Brasil em 2010. 2010.

Coletores CPC. Disponível em: <u>http://portuguese.alibaba.com/product-free-img/solar-energy-steam-collector-276466632.html</u>. Acessado em: 15 de Abril de 2010.

COOPER, P. I., The Absorption of Solar Radiation in Solar Stills, **Solar Energy**, 12, p.3, 1969.

DUFFIE, J. A.; BECKMAN, W. A., **Solar Engineering of Thermal Processes**, 2^a ed., United States of America, John Wiley & Sons, Inc, 1991.

Estrutura de um sistema solar simples com coletores planos e reservatório térmico - sem adição de energia elétrica. Disponível em: <u>http://penta3.ufrgs.br/CESTA/fisica/calor/coletorsolar.html</u>. Acessado em 15 de Abril de 2010.

GLEBOV, D.; SETTERWALL, F.; Experimental study of heat transfer additive infuence on the absorption chiller performance, **International Journal of Refrigeration**, vol. 25, p. 538–545, 2002.

GOMES, E. N.; ESCOBEDO, J. F.; OLIVEIRA, A. P. DE; SOARES, J., Estimativa da Radiação Direta na Incidência Horária, Diária e Mensal em Função do índice de Claridade (KT), I CBENS (I Congresso Brasileiro de Energia Solar), Fortaleza, 2007.

FELDER, R. M.; ROUSSEAU, R.W., **Princípios Elementares dos Processos Químicos**, 3ª Ed., Rio de Janeiro:LTC, 2005.

HE, Y.; CHEN, G. Experimental study on an absorption refrigeration system at low temperatures, **International Journal of Thermal Sciences**, 46, p. 294–299, 2007.

INCROPERA, F. P.; DEWITT, D. P. Fundamentos de Transferência de Calor e de Massa, 4. ed. Rio de Janeiro: LTC, 1998.

KAITA, Y., Thermodynamic properties of lithium bromide-water solutions at high temperatures, **International Journal Refrigeration**, 24, p. 374–390, 2001.

KANG, Y. T., KUNUGI, Y., KASHIWAGI, T.; Review of advanced absorption cycles: performance improvement and temperature lift enhancement, **International Journal of Refrigeration**, 23, p.388-401, 2000.

KAYNAKLI, O; KILIC, M.; Theoretical study on the effect of operating conditions on performance of absorption refrigeration system, **Energy Conversion and Management**, vol.48, p. 599–607, 2007.

KAYNAKLI, O.; YAMANKARADENIZ, R. ; Effect of the heat exchangers used in absorption refrigeration systems on performance of the cycle, **University of Uludag. J Fac Eng Arch**; vol. 8(1):p.111–20 [in Turkish], 2003.

KILIC, M.; KAYNAKLI, O; Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system, **Energy**, vol.32, p.1505–1512, 2007.

KLEIN, S. A., **TRNSYS**. A Transient System Simulation Program, Engineering Experimental Station, Report 38-13, Solar Engineering of Thermal Processes, Wiley Interscience, New York, 1980.

LIU, B. Y. H., JORDAN, R. C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. **Solar Energy**, v.3, n.4, p.1-19, 1960.

MARTÍNEZ, P. J.; PINAZO, J. M.; A method for design analysis of absorption machines, **International Journal of Refrigeration**, vol. 25, p. 634–639, 2002.

BEN, Matriz energética brasileira. 2008.

MEHRABIAN, M. A.; SHABEIK, A. E. Thermodynamic modelling of a single-effect LiBr-H₂O absorption refrigeration cycle, **Proquest Science Journals**, p.261-273, 2004.

HELIOTEK, Mercado de aquecimento solar no Brasil. Acessado em: 13 de Setembro de 2010.

MOREJÓN, C. F. M. Simulação de Sistemas Termo-Solares Acoplados a Ciclos de Refrigeração por Absorção, **Tese de M. SC**., Universidade Federal do Rio de Janeiro, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 1997.

MOREJÓN, C. F. M.; HACKENBERG, C. M. Simulação de Sistemas Termo-Solares de Refrigeração por Absorção, **VII ENCIT**, Rio de Janeiro, 1998.

MOSTAFAVI, M.; AGNEW, B. The impact of ambient temparature on lithium bromide-water absorption machine performance, **Applied Thermal Engineering**; vol.16(6):p. 515–22, 1996.

PARK, C.W.; JEONG, J. H.; KANG, Y. T. Energy consumption characteristics of an absorption chiller during the partial load operation, **International Journal of Refrigeration**, vol. 27, p. 948–954, 2004.

Partes importantes de um coletor plano. Disponível em: <u>http://.objetos</u> <u>educacionais2.mec.gov.br/bitstream/handle/mec/12259/Coletor%20solar%20termico.swf?sequence=1</u> . Acessado em 15 de Abril de 2010.

PÁTEK, J.; KLOMFAR, J. Solid–liquid phase equilibrium in the systems of LiBr–H₂O and LiCl–H₂O, **Fluid Phase Equilibria**, vol. 250: p.138–149, 2006.

REID, R. C.; PRAUSNITZ, J. M.; POLING, B. E.; **The Properties of Gases & Liquids**, 4^a ed., United States of America: McGraw-Hill, 1987.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química. 5^a. ed., Rio de Janeiro: LTC, 2000.

SUN, D. W. Comparison of the performance of NH3–H₂O, NH3–LiNO3 and NH3–NaSCN absorption refrigeration systems. **Energy Conversion and Management**; vol. 39(5/6): p.357–68,1997a.

SUN, D. W. Thermodynamic design data and optimum design maps for absorption refrigeration systems. **Applied Thermal Engineering**, vol. 17(3): p.211-221, 1997b.

STOCKER, W. F.; JONES, J. W.; **Refrigeração e ar condicionado**, Tradução de José M. Saiz Jabardo, São Paulo: MCGraw-Hill do Brasil, p. 361-383, 1985.

TALBI, M. M., AGNEW, B., Exergy Analysis: An Absorption Refrigerator using Lithium Bromide and Water as the Working Fluids, **Applied Thermal Engineering**, Vol. 20, p.619-630, 2000.

VARANI, C. M. R.; Avaliação Energética e Exergética de uma Unidade de Refrigeração por Absorção Água/Brometo de Lítio Utilizando Gás Natural, **Tese de Doutorado pela Universidade Federal da Paraíba**, 2001.

YIN, J.; SHI, L.; ZHU, M-S; HAN, L-Z; Performance analysis of an absorption heat transformer with di.erent working fuid combinations, **Applied Energy**; vol. 67: p.281-292, 2000.

YOON, J-I; KWON, O-K; Cycle analysis of air-cooled absorption chiller using a new working solution.

Energy; vol.24: p.795-809,1999.

WYLEN, G. VAN; SONTANG, R.; BORGNAKE, C., **Fundamentos de Termodinâmica Clássica**, Editora Edgard Blücher Ltda, 1995.

ANEXOS

ANEXO A: Arquivo de dados meteorológicos

Tabela A: Dados de temperatura ambiente, umidade relativa e radiação total do período de 12 de

Novembro a 22 de Dezembro de 2007 da cidade de Maceió.

Tempo(h)	Ta (⁰C)	UR (%)	RadTot(W/m ²)	Tempo(h)	Ta (⁰C)	UR (%)	RadTot(W/m ²)
1	24,202	34,186	0,019	47	25,665	32,495	0,013
2	23,695	34,279	0,020	48	25,608	31,908	0,012
3	23,405	34,248	0,015	49	25,487	32,290	0,014
4	23,088	34,178	0,016	50	25,418	32,419	0,013
5	22,766	34,231	0,011	51	25,025	31,677	0,013
6	22,584	34,171	0,688	52	24,903	32,259	0,012
7	23,055	34,163	77,036	53	24,912	32,300	0,009
8	25,055	33,867	288,873	54	24,153	32,160	0,407
9	27,196	33,341	466,636	55	23,782	32,387	18,534
10	28,757	32,879	592,791	56	25,229	32,395	204,445
11	29,585	32,576	646,064	57	27,334	32,082	501,191
12	30,931	32,130	974,182	58	28,170	31,625	624,927
13	31,304	31,962	987,000	59	29,108	31,279	896,545
14	31,197	31,886	941,364	60	29,402	31,081	911,036
15	30,595	31,934	822,545	61	29,575	30,998	864,973
16	30,483	31,955	643,518	62	29,887	30,841	894,545
17	30,755	31,954	425,373	63	29,786	30,817	818,009
18	28,722	31,890	192,555	64	29,635	30,760	614,473
19	26,700	32,733	19,616	65	29,730	30,785	360,927
20	25,978	32,987	0,016	66	28,457	30,653	180,976
21	25,824	33,071	0,017	67	26,535	31,006	15,510
22	25,660	33,041	0,014	68	26,045	31,177	0,018
23	25,619	33,042	0,014	69	25,683	31,350	0,013
24	25,801	33,033	0,015	70	25,473	31,365	0,012
25	25,525	33,075	0,017	71	25,288	31,388	0,017
26	25,535	33,114	0,018	72	25,339	31,445	0,015
27	25,245	33,049	0,014	73	25,260	31,443	0,012
28	24,399	33,065	0,013	74	25,047	31,501	0,014
29	24,144	33,145	0,012	75	24,935	31,506	0,013
30 24	24,558	33,207	0,384	76 77	24,684	31,501	0,013
31	25,112	33,235	42,287	77	23,899	31,550	0,012
32 22	20,000	33,000 20,762	194,909	70	23,790	31,092	0,309
33 24	21,419	32,703	444,004 674 319	79	24,200	31,043	203 000
34 25	20,420	32,475	783 436	80 81	25,390	31,570	203,000
30	29,111	32,030	705,450	01 82	23,090	31,449	503 801
30	29,204	31 902	003 636	83	28 598	30 907	759 545
38	29,075	31,802	956,545	81	20,550	30,307	773 / 18
30	29,900	31,049	674 827	85	28,000	30,704	633 864
40	20,000	32 001	525 955	86	20,044	30 495	861 918
40 41	29,815	31 845	402 555	87	28,639	30 349	629 091
47	28,000	31 740	165 682	88	28,581	30 423	601 682
4.3	26 545	32 241	16 873	89	28 410	30 289	290 118
44	26.045	32 495	0 017	90	27 776	30,313	170,770
45	25,832	32.556	0.015	91	26,485	30,506	15.988
46	25,714	32,605	0.012	92	26.072	30,464	0.016
	-,	,••••	-,- · -		,	,	-,

93	25,772	30,545	0,015	147	24,851	29,363	0,005
94	25,622	30,636	0,015	148	24,533	29,267	0,007
95	25,474	30,797	0,012	149	24,397	29,224	0,575
96	25,244	30,920	0,010	150	24,758	29,463	54,131
97	25,104	30,813	0,011	151	25,705	29,767	210,891
98	24,997	30,745	0,007	152	26,723	29,711	382,800
99	24,779	30,628	0,010	153	27,700	29,398	657,691
100	24,737	30,671	0,011	154	29,206	29,003	774,573
101	24,777	30,799	0,010	155	29,993	28,418	575,836
102	25,056	30,927	0,478	156	28,736	28,579	458,284
103	25,307	30,790	43,290	157	26,511	29,254	283,163
104	26,397	30,475	231,355	158	26,225	30,480	0,007
105	27,608	30,275	488,273	159	26,242	30,689	0,007
106	28,705	30,109	692,445	160	26,040	30,909	0,005
107	28,522	29,828	666,300	161	25,540	30,892	0,009
108	29,177	29,838	946,382	162	24,883	30,737	0,012
109	28,687	29,732	621,500	163	24,485	30,456	0,035
110	29,145	29,697	680,800	164	24,279	30,070	0,051
111	29,072	29,652	582,673	165	24,114	30,262	0,048
112	28,046	29,680	246,691	166	24,246	30,468	0,459
113	27,207	29,724	75,145	167	24,352	30,584	30,274
114	26,715	30,148	9,431	168	25,457	31,053	129,000
115	26,386	30,665	0,015	169	26,615	31,574	231,491
116	26,276	30,361	0,013	170	27,547	31,525	267,018
117	26,102	30,226	0,013	171	27,538	31,632	225,209
118	26,063	30,163	0,015	172	28,107	31,869	373,709
119	25,888	30,192	0,014	173	28,856	32,246	656,791
120	25,586	30,212	0,015	174	28,945	32,215	809,936
121	25,341	30,199	0,013	175	28,807	32,181	711,955
122	25,178	30,237	0,011	176	28,630	32,396	552,900
123	24,879	30,189	0,018	1//	28,315	32,410	401,145
124	24,859	30,233	0,026	178	27,365	32,089	164,831
125	25,548	30,226	0,273	179	26,628	31,546	25,189
126	25,839	30,199	86,188	180	26,207	31,263	0,018
12/	26,230	30,141	200,073	181	26,119	31,076	0,011
128	26,412	30,090	208,827	182	26,089	31,075	0,009
129	26,301	29,912	299,327	183	25,933	31,043	0,008
130	20,940	29,876	510,418	184	25,742	31,247	0,010
131	27,701	29,029	607,000 692,255	100	25,401	31,115	0,012
132	27,349	29,077	003,300 526 464	100	20,190	30,935	0,005
133	20,420	29,733	330,404 435 245	107	24,979	30,973	0,000
134	24,921	29,707	315 000	100	24,452	30,709	0,010
135	25,120	29,703	154 954	109	24,255	30,558	0,029
130	25,795	29,093	87 300	101	24,001	31 685	63 151
137	25,400	29,505	9 267	197	25 218	31 779	128 035
130	23,224	20,010	0.014	102	27/68	32 131	460 764
140	23,733	29,483	0.012	195 10 <i>1</i>	28 295	32 572	668 100
141	23,300	29,754	0.009	195	20,200	33 042	538 700
142	24,017	30,368	0.007	196	28 775	32 420	835 436
143	25 117	29 721	0 004	107	29.060	32 787	883 418
144	25,097	29 564	0 004	198	28,000	32 530	793 600
145	25,007	29,504	0.005	199	28,312	32 618	646 800
146	24 942	29,000	0.005	200	28 144	32 784	506 573
	,0	_0,0	0,000	200	,,	02,101	000,070

201	27 710	32 769	340 664	255	25 373	34 007	0.006
207	27,710	32 520	157 255	256	25,074	34 024	0,000
202	26 170	31 770	23 346	250	20,074	34 017	0,000
203	20,179	31,770	23,340	257	24,013	34,017	0,009
204	25,595	31,000	0,010	250	24,333	34,220	0,011
205	25,541	21 959	0,014	259	23,713	34 34 2	0,010
200	23,033	32,000	0,010	200	23,337	34,342	0,023
207	24,940	32,100	0,013	201	23,294	34,474	0,020
200	24,795	32,090	0,010	202	23,074	34,541	25 764
209	24,011	31,900	0,000	203	25,520	35 645	177 068
210	24,223	31,901	0,004	204	25,434	36 088	387.055
211	24,231	32 045	0,007	205	27,103	36 204	110 136
212	24,213	32,040	0,000	200	27,014	36 179	336 600
213	24,237	32,211	0,002	207	28,071	36 4 2 5	811 545
214	24,404	32,290	32 824	200	20,270	36,420	517 201
215	25 380	33 165	133 205	209	27,300	36 315	287 100
210	25,509	33,103	100,290	270	27,133	36 544	260 245
211	20,009	33,833	423,300	271	27,432	36 307	278 182
210	20,241	33,000	837 400	272	26,213	36 306	150 601
219	20,092	34 245	037,400	275	20,013	36,282	05 654
220	29,323	34,240	919,102	274	20,307	36 074	10 770
221	23,424	33 772	940,909 808 273	275	20,112	35,881	0.011
222	29,713	33,772	706 192	270	25,717	35,001	0,011
223	29,000	33,007	631 827	277	25,555	35,001	0,002
224	20,000	33 305	426 755	270	23,211	35,909	0,002
225	20,113	32 950	201 855	279	24,994	36,006	0,003
220	26 352	32,018	26 01/	200	20,047	35 981	0,007
228	25,332	31 533	0 004	207	24,000	35 902	0,007
220	25,730	31,661	0,004	202	23,001	35 709	0,003
220	25,310	31 920	0,002	203	23,320	35 639	0,000
230	25,400	31 941	0,002	285	23,004	35 564	0,011
237	25,542	32 096	0,002	286	22,002	35 4 35	0,000
232	20,170	32,000	0,002	200	22,011	35 894	77 248
234	24,870	32 273	0.002	288	25,000	36 754	271 918
235	24,007	32 145	0,000	289	26,802	36 790	290 173
236	23 685	31 835	0,005	290	28 168	36 874	558 045
237	22,547	31,586	0,000	200	28,802	36 892	810 027
238	22 515	31 814	0,515	292	28,984	36 985	931 182
239	22,919	32 4 1 9	36 231	293	29 248	36 913	940 364
240	23,809	32,980	161,195	294	29,178	36,783	904.273
241	25.695	33.931	301.400	295	29.019	36.812	813.273
242	27.386	34.931	575.000	296	28.822	36.704	648.882
243	27,105	35,106	553,373	297	27,995	36,588	398.064
244	27.152	34.898	642.655	298	27.366	36,495	200.136
245	28,392	34,355	823,118	299	26,378	35,691	30,616
246	28,623	32,943	873,000	300	25,963	35,454	0,023
247	28,389	33,589	750,000	301	25.818	35,442	0.003
248	27,580	34,376	387,491	302	25,766	35,446	0,005
249	26,968	34,454	230,773	303	25,799	35,528	0,006
250	26,600	34,397	97,215	304	25,655	35,595	0,010
251	26,305	34,333	16,457	305	25,584	35,693	0,018
252	25,925	34,223	0,006	306	25,122	35,652	0,017
253	25,645	34,128	0,007	307	24,593	35,597	0,008
254	25,511	34,094	0,010	308	24,263	35,589	0,012

200	24 002	25 642	0 000	262	20 117	27 100	E24 400
309	24,092	35,042	0,000	303	29,117	37,109	004,409
310	24,111	35,022	0,330	304	29,712	37,233	000,030
311	24,415	35,838	54,926	305	29,768	37,170	928,182
312	26,059	36,475	214,427	300	29,916	37,089	885,182
313	27,083	36,625	295,618	307	29,464	37,106	771,945
314	28,636	36,818	617,755	368	28,954	37,173	607,218
315	29,148	36,753	819,373	369	28,247	37,032	408,236
316	29,081	36,711	882,773	370	27,717	36,817	194,200
317	29,321	36,666	890,091	371	26,633	35,914	29,667
318	29,365	36,626	850,618	372	26,175	35,660	0,036
319	28,867	36,656	727,182	3/3	26,125	35,690	0,011
320	28,386	36,466	469,618	374	25,883	35,644	0,005
321	27,787	36,275	239,718	375	25,680	35,685	0,010
322	27,254	36,092	108,389	376	25,353	35,626	0,008
323	26,797	35,766	21,973	377	24,861	35,595	0,010
324	26,571	35,578	0,022	378	24,151	35,426	0,028
325	26,317	35,430	0,019	379	23,772	35,336	0,044
326	26,191	35,401	0,022	380	23,664	35,307	0,046
327	25,926	35,351	0,016	381	23,683	35,198	0,038
328	25,661	35,174	0,013	382	23,693	35,236	0,427
329	25,098	35,459	0,006	383	24,047	35,551	57,652
330	24,563	37,405	0,021	384	25,894	36,605	260,355
331	24,441	37,605	0,031	385	27,688	37,068	479,200
332	24,100	37,258	0,046	386	29,095	37,387	594,527
333	24,090	36,990	0,058	387	29,660	37,399	580,327
334	24,084	36,515	0,271	388	30,503	37,475	861,936
335	24,321	36,448	43,644	389	30,565	37,381	936,364
336	26,235	37,053	249,727	390	24,937	28,005	0,003
337	27,405	37,038	374,527	391	24,739	28,300	0,004
338	28,510	37,093	633,018	392	24,122	28,355	0,009
339	29,193	36,982	817,336	393	23,906	28,701	0,020
340	29,048	36,737	868,455	394	23,489	28,599	0,017
341	29,105	36,796	890,364	395	23,350	28,727	0,032
342	28,943	36,824	792,964	390	23,185	28,971	0,318
343	28,525	36,969	662,218	397	23,336	29,545	52,030
344	28,273	36,822	594,827	398	25,348	30,934	245,264
345	28,211	36,785	422,318	399	26,895	31,821	418,909
340	27,328	36,378	184,073	400	21,215	32,309	318,891
347	20,003	35,695	29,837	401	28,545	33,213	640,909
348	26,242	35,549	0,022	402	28,800	33,480	844,818
349	26,051	35,568	0,008	403	20,020	33,984	942,909
350	25,880	35,582	0,015	404	28,839	34,211	844,000
351	25,850	35,580	0,019	405	28,516	34,777	000,000
302	25,030	34,203	0,010	400	20,090	34,727	419,900
303	25,390	33,433	0,013	407	27,303	34,340	255,200
304 255	25,304	34,181	0,010	408	27,318	34,478	102,018
355	24,778	34,215	0,007	409	20,048	33,384	22,754
330 257	24,100	34,308 24 664	0,000	410	20,357 26.050	32,822 22 400	0,094
33/ 250	23,901 22 705	34,00 I	0,022	411	20,009	JZ,489 22.420	0,000
330 250	20,100 22 077	34,920 25 460	0,040	412	20,020 05 407	JZ,4JU 20 477	0,017
339	23,811 25,700	30,108	31,U34 240.755	413	20,127	32,477	0,008
30U 264	25,762	30,333	240,755	414	∠0,∠5U	32,075	0,010
307 262	27,305	30,945	385,473	415	25,103	JZ,499	0,011
30Z	∠8,300	30,755	453,818	410	∠4,575	32,201	0,026

417	24,200	32,058	0,045	471	27,672	38,127	438,209
418	23,882	31,888	0,047	472	29,608	39,399	734,191
419	23,685	31,858	0,048	473	30,035	40,106	551,245
420	23,645	31,623	0,403	474	30,205	40,506	639,818
421	23,965	32,104	52,689	475	30,521	41,022	915,309
422	25,789	33,684	239,427	476	30,492	41,111	889,455
423	26,934	34,660	320,018	477	30,464	41,725	762,364
424	27,570	34,978	369,827	478	30,152	42,174	605,845
425	28,606	35,589	670,891	479	29,145	42,568	408,755
426	29,266	35,894	784,909	480	28,107	44,842	189,827
427	29,431	36,165	842,545	481	26,994	42,569	24,887
428	29,289	36,379	742,055	482	26,581	41,077	0,042
429	29,188	36,698	846,545	483	26,275	40,170	0,005
430	28,817	37,116	609,536	484	25,992	39,790	0,012
431	28,207	36,979	363,491	485	25,867	39,556	0,017
432	27,546	36,095	165,176	486	25,720	39,558	0,017
433	26,734	34,726	25,424	487	25,467	39,441	0,006
434	26,386	33,815	0,078	488	25,334	39,645	0,012
435	26,251	33,833	0,006	489	24,974	39,387	0,008
436	26,131	34,675	0,006	490	24,451	39,145	0,010
437	25,825	35,296	0,011	491	24,107	39,212	0,039
438	25,607	34,958	0,020	492	23,745	39,143	0,292
439	25,303	34,570	0,014	493	23,953	39,484	36,570
440	24,700	34,247	0,009	494	25,076	40,205	145,828
441	24,198	33,872	0,004	495	26,129	41,145	210,900
442	23,930	33,709	0,010	496	27,000	41,662	294,200
443	23,837	33,557	0,015	497	28,417	42,785	482,409
444	23,799	33,58Z	0,228	498	29,433	43,847	/51,3/3
440	24,000	33,875	39,130	499	29,749	44,350	011 102
440	23,700	35,179	243,327	500	20,007	44,007	911,102
441 118	27,100	36 706	452,427	507	29,001	44,990	647 527
440 AAQ	20,047	37 685	668 355	502	28,542	46,170	118 536
450	30 305	37,005	687 118	503	20,743	46 656	229 200
451	30 569	38 122	934 000	505	26 778	44 546	44 965
452	30,521	38 156	883 818	506	26,299	43 261	0.060
453	30 125	38 355	783 545	507	26 214	43 046	0.017
454	29.892	38.911	631.845	508	26.084	42.918	0.008
455	29.383	39.173	425.227	509	25.787	42.794	0.005
456	28,223	38,273	202,800	510	25,639	42,550	0,007
457	27,105	36,531	28,851	511	25,435	42,405	0,007
458	26,658	35,661	0,032	512	25,250	42,296	0,008
459	26,453	35,601	0,006	513	25,168	42,663	0,010
460	26,166	35,397	0,004	514	24,868	42,830	0,007
461	25,870	35,380	0,003	515	24,332	42,255	0,015
462	25,285	35,071	0,003	516	23,576	41,805	0,172
463	25,012	34,875	0,008	517	23,609	41,889	20,494
464	24,753	34,865	0,011	518	24,677	42,683	97,734
465	24,528	34,907	0,006	519	26,988	44,400	322,155
466	24,530	35,035	0,006	520	28,085	45,468	582,500
467	24,358	34,982	0,005	521	28,657	45,930	757,055
468	24,120	34,723	0,107	522	29,260	46,115	927,545
469	24,307	35,201	38,946	523	29,609	46,445	961,909
470	26,056	36,720	213,773	524	29,387	46,895	917,545
525	28,957	47,103	772,755	579	25,974	46,071	0,010
-----	--------	--------	---------	-----	--------	--------	---------
526	28,611	47,390	587,509	580	25,816	45,894	0,008
527	27,958	46,645	365,427	581	25,963	46,021	0,008
528	27,400	46,282	205,109	582	25,863	46,034	0,007
529	26,653	45,354	44,867	583	25,656	45,973	0,009
530	26,004	44,328	0,121	584	25,595	45,818	0,013
531	25,885	44,068	0,017	585	25,388	45,604	0,009
532	25,655	43,875	0,009	586	25,255	45,474	0,010
533	25,434	43,763	0,008	587	25,179	45,167	0,006
534	25,298	43,595	0,009	588	24,983	45,038	0,261
535	24,994	43,461	0,008	589	24,810	45,278	35,706
536	24,045	43,043	0,015	590	25,677	46,175	136,768
537	23,623	42,525	0,041	591	27,538	47,872	504,027
538	23,423	42,120	0,050	592	28,035	48,412	625,427
539	23,406	42,289	0,048	593	28,470	48,675	745,927
540	23,071	42,171	0,182	594	28,694	48,747	848,273
541	23,455	42,428	45,007	595	28,345	48,629	761,573
542	25,590	44,858	231,518	596	28,025	47,915	636,545
543	26,692	45,937	306,400	597	28,241	48,022	643,273
544	26,994	45,916	202,618	598	28,125	48,328	516,082
545	28,624	46,762	636,027	599	27,458	47,995	276,155
546	29,241	47,280	929,636	600	26,931	47,015	120,175
547	29,463	47.619	950,909	601	26.351	45,753	19.595
548	29,189	47.865	910.818	602	26.015	45.042	0.162
549	28,938	50,453	813.773	603	25.897	44.691	0.009
550	28,728	51,572	657,618	604	25,775	44,780	0,008
551	28,447	53,768	455,482	605	25,717	44,681	0,011
552	27,665	51,537	235,209	606	25,652	44,715	0,013
553	26,680	49,019	46,408	607	25,352	43,870	0,008
554	25,911	47,298	0,126	608	25,258	43,838	0,010
555	25,660	46,743	0,011	609	25,138	43,896	0,008
556	25,565	46,193	0,004	610	24,933	43,554	0,004
557	25,501	45,725	0,006	611	25,155	43,695	0,007
558	25,421	45,635	0,009	612	25,159	43,525	0,458
559	25,394	45,870	0,012	613	25,395	43,949	47,239
560	24,986	45,498	0,011	614	26,219	45,045	196,250
561	24,595	45,232	0,016	615	26,969	46,252	414,909
562	24,076	44,905	0,064	616	27,830	47,295	687,345
563	23,779	44,726	0,283	617	27,787	47,664	660,136
564	23,545	44,291	0,675				·
565	23,725	44,654	42,271				
566	25,490	46,162	241,836				
567	26,720	46,673	272,936				
568	27,984	47,330	465,927				
569	29,035	48,091	845,764				
570	29,499	48,362	937,091				
571	29,843	48,658	961,182				
572	29,712	48,855	936,364				
573	29,400	49,035	857,273				
574	28,265	49,285	602,373				
575	27,565	48,884	355,536				
576	27,294	48,756	240,405				
577	26,451	46,715	40,033				
578	26,160	46,375	0,498				

ANEXO B: Programas em linguagem *Fortran* utilizado na análise energética do ciclo de refrigeração por absorção

Subrotina para o cálculo dos coeficientes para a temperatura da solução de brometo de lítio e água, em função da temperatura de saturação

SUBROUTINE TEMPSOL (X, ALFA, BETA, GAMA)

IMPLICIT NONE DOUBLE PRECISION, DIMENSION (3,4)::A REAL, INTENT(IN)::X DOUBLE PRECISION, INTENT(OUT)::ALFA, BETA, GAMA **REAL Sumj** INTEGER j A(0,0)= -9,133128E+00 A(0,1)= -4,749724E-01 A(0,2)= -5,638171E-02 A(0,3)= 1,108418E-03 A(1,0)= 9,439697E-01 A(1,1)= -2,882015E-03 A(1,2)= -1,345453E-04 A(1,3)= 5,852133E-07 A(2,0)= -7,324352E-05 A(2,1)= -1,556533E-05 A(2,2)= 1,992657E-06 A(2,3)= -3,924205E-08 Sumj=0.D0 DO j=0,3 Sumj=Sumj+A(2,j)*(X-40)**j END DO ALFA=Sumj Sumj=0.D0 DO j=0,3 Sumj=Sumj + A(1,j)*(X-40)**j END DO BETA=Sumj Sumj=0.D0 DO i=0.3 Sumj=Sumj+A(0,j)*(X-40)**j END DO GAMA=Sumj RETURN END

Subrotina para o cálculo da temperatura de orvalho da solução de brometo de lítio e água

SUBROUTINE TEMPORV (X, ALFA, BETA, GAMA)

IMPLICIT NONE DOUBLE PRECISION, DIMENSION (3,4)::A REAL, INTENT(IN)::X, t DOUBLE PRECISION, INTENT(OUT)::TD REAL Sumi,Sumj INTEGER i,j

 $\begin{array}{l} A(0,0)=-9,133128E+00\\ A(0,1)=-4,749724E-01\\ A(0,2)=-5,638171E-02\\ A(0,3)=1,108418E-03\\ A(1,0)=9,439697E-01\\ A(1,1)=-2,882015E-03\\ A(1,2)=-1,345453E-04\\ A(1,3)=5,852133E-07\\ A(2,0)=-7,324352E-05\\ A(2,1)=-1,556533E-05\\ A(2,2)=1,992657E-06\\ A(2,3)=-3,924205E-08 \end{array}$

Sumi=0.D0

DO i=0,2

Sumj=0.D0

DO j=0,3

Sumj=Sumj+A(i,j)*(X-40)**j

END DO

Sumi=Sumi + Sumj*t*i

END DO

TD=Sumi

RETURN

END

ANEXO C: Cálculo do dimensionamento dos componentes do ciclo de refrigeração por absorção em planilha Microsoft Office Excel 2007®

Simbologia

Qev -	Calor no Evaporador	m -	Vazão mássica
Qab -	Calor no Absorvedor	ALFA -	Constante da Equação 17
Qc -	Calor no Condensador	BETA -	Constante da Equação 17
Qg -	Calor no Gerador	GAMA -	Constante da Equação 17
Qtc -	Calor no Trocador de Calor	PEVAP -	Pressão de evaporação
Cp -	Calor específico	Tcrist -	Temperatura de cristalização
CpLSAT -	Calor específico do líquido saturado	X -	Fração molar da Solução de Brometo de Lítio e Água
CpVSAT -	Calor específico do vapor saturado	AH -	Constante da Equação 18
Cpvsup -	Calor específico do vapor superaquecido	BH -	Constante da Equação 18
Cpmédio -	Média entre os calores específicos	DH -	Constante da Equação 18
R -	Constante universal dos gases	PMa -	Peso molecular

h - Entalpia

- A, B, C Coeficientes da Equação 3
- hcrist Entalpia de cristalização
- ho Entalpia de referência
- hVSUP Entalpia do vapor suparaquecido
- hsat Entalpia do vapor saturado
- T Temperatura
- To Temperatura de referência
- TD Temperatura de orvalho
- Tsat Temperatura de saturação

Dados iniciais

Pressão nos pontos 6 e 9	1,23	KPa
Temperatura no ponto 11	12	°C
· · ·		
Temperatura no ponto 12	7	°C
Tomporatura no ponto 12	20.5	٥C
	29,5	C
Temperatura no ponto 8	37	°C
Temperatura no ponto 9	5	°C
Temperatura no ponto 10	5	°C
Temperatura no ponto 15	35	°C
Temperatura no ponto 16	37	°C
Temperatura no ponto 17	90	°C
Temperatura no ponto 18	80	°C

Dimensionamento do Evaporador

Equação da carga térmica

$$\dot{Q}_{ev} = \dot{m}_{11} \overline{C}_{p} (T_{11} - T_{12})$$
 (1)

$$\dot{Q}_{ev} = \dot{m}_9 (h_{10} - h_9)$$
 (2)

Calor específico da água líquida a P=1 atm foi determinada pela Equação

$$Cp_{LSAT}^{3} = \frac{R}{PM_{a}} (A + BT + CT^{2}) \quad (kJ / Kg K) \quad (3)$$

Substituindo esses dados na equação (3), teremos:

Na saída da válvula de expansão isentálpica (ponto 9), tem-se uma mistura de água e vapor, o que segundo a Lei de Raoult, pode ser calculada através da Equação: yi.P=xi.Psati. Como y1=1 e x1=1, por se tratar de apenas uma espécie (água), P=Psat da água. Logo, pode-se calcular a capacidade calorífica da mistura como se fosse líquido saturado.

Cplsat9 = 4,191 kJ/kgK

Valores de Referência

h0 (kJ/Kg)	T0 (°C)	Cp (kJ/KgK)	
0,000	0,000	4,187	líquido saturado
2468,690	-17,780	1,808	vapor saturado

Cpmédio(9) =Média dos Cplsat9 e Cp de referência do liq. saturado

Cpmédio(9) =	4,189	kJ/kgK
Cpmédio(8) =	4,199	kJ/kgK

Calor específico do vapor de água saturado na saída do evaporador foi determinada pela Equação 4:

$$Cp_{VSAT} = \frac{R}{PM_{\alpha}}(A + BT + DT^{-2}) \quad (kJ / KgK) \quad (4)$$

Obtenção das entalpias para água líquida e vapor de água saturado a partir da equação (5)

$$h - h_0 = Cp(T - T_0)$$
 (kJ/Kg) (5)

Valores de Referência

	h0 (kJ/Kg)	T0 (°C)	Cp (kJ/KgK)		
	0,000	0,000	4,187	líquido saturado	
	2468,690	-17,780	1,808	vapor saturado	
_			_		
	h9=	155,360	kJ/kg	h8= 155,3	60 kJ/kg
	h10-ho=Cpmédi	io(10 e referên	cia).(T10-To)	h11-ho=Cpmédio(11 e	referência).(T11-To)
	h10=	2510,480	kJ/kg	h11= 50,2	93 kJ/kg

h12-ho=Cpmédio(12 e referência).(T12-To) h12= 29,392 kJ/kg

Substituindo esses dados na equação (2), podemos achar a vazão mássica na entrada do evaporador:

	m9= 26,879	kg/h	m10=	26,879	kg/h
--	------------	------	------	--------	------

154,9116

Dimensionamento do Absorvedor

Balanço global no Absorvedor:

$$m_{10} + \dot{m}_6 = m_1$$
 (12)

Balanço parcial no Absorvedor para LiBr:

$$m_1 x_1 = m_6 x_6$$
 (13)

Equação da carga térmica no Absorvedor:

$$\dot{Q}_{ab} = \dot{m}_{13}(h_{14} - h_{13})$$
 (14)

Onde m10= 26,8794005 kg/h x1= 50 x6= 66,4Sabe-se que m13=m14=m15= 8013 kg/h T14=T15= 35 °C Calor específico da água líquida a P=1 atm foi determinada pela Equação 3

Substituindo esses dados na equação (3), teremos:

Cplsat13 = 4,215	kJ/kgK	Valores de Referência	
Cplsat14= 4,219	kJ/kgK	h0 (kJ/Kg) T0 (°C) Cp ((kJ/KgK)
· · ·		0,000 0,000 4	1,187

líquido saturado

vapor saturado

-17,780

1,808

2468,690

$T_1 = (-BETA3 + \sqrt{BETA3}^2 - 4 \cdot ALFA3(GAMA3 - (10))) / (2 \cdot ALFA3) (17)$

Onde:	ALFA3=	-4,08951E-05	T1=	29,26	°C
	BETA3=	0,891022245			
	GAMA3=	-21,03641674	Temp. de Or	valho da soluç	ção no ponto 1
			TD1 =	5	°C
	C=	10,04999			
	D=	-1603,540556			
	E=	-104095,5123			
PEVAP=	0,86996055	kPa			
h1=A	λH3 *(ͳ(1))+(0,5 * BH3) *(T(1) ^	2)+DH3 (1	8)	
ŀ	AH=3,462023-2,679	895E-2*X	BH=1	3499E-3-6,55	iE-6*X

A(i,j)	Valores
A(0,0)	-9,133128E+00
A(0,1)	-4,749724E-01
A(0,2)	-5,638171E-02
A(0,3)	1,108418E-03
A(1,0)	9,439697E-01
A(1,1)	-2,882015E-03
A(1,2)	-1,345453E-04
A(1,3)	5,852133E-07
A(2,0)	-7,324352E-05
A(2,1)	-1,556533E-05
A(2,2)	1,992657E-06
A(2,3)	-3,924205E-08

AH3= 2,1220755

BH3= 0,001

DH= 162,81- 6,0418 *X - 4,5348E-3*(X^2) + 1,2053E-3*(X^3)

DH3=	0,0455	h1=	62,58	kJ/kg
		h2=	62,58	kJ/kg

Dimensionamento do Condensador

Equação da carga térmica no condensador

$$\dot{Q}_{c} = \dot{m}_{7}(h_{7} - h_{8})$$
 (6)
 $\dot{Q}_{c} = \dot{m}_{15}(h_{16} - h_{15})$ (7)

Pela conservação da massa, temos que:

m7=m8=m9=

```
26,879 kg/h
```

Calor específico da água líquida a P=1 atm foi determinada pela Equação 3

Substituindo esses dados na equação (3), teremos:

Cplsat15 =	4,219	kJ/kgK	Valores	de Referê	ncia	
Cplsat16=	4,220	kJ/kgK	h0 (kJ/Kg)	T0 (°C)	Cp (kJ/KgK)	
			0,000	0,000	4,187	líquido saturado
			2468,690	-17,780	1,808	vapor saturado

Cpmédio(15) =Média dos Cplsat15 e Cp de referência do liq. saturado

Cpmédio(15) =	4,203	kJ/kgK	h(15) =	147,101	kJ/kg		
Cpmédio(16) =Média dos Cplsat16 e Cp de referência do liq. saturado							
Cpmédio(16) =	4,204	kJ/kgK	h(16) =	155,532	kJ/kg		

No condensador ocorre uma variação no estado físico da água. Na entrada do condensador (ponto 7) ela está superaquecida e na saída do condensador (ponto 8), ela está na forma de líquido saturado.

Obtenção das entalpias para vapor de água superaquecida a partir da equação (8)

$$h_{VSUP} = h_{sat} + \int_{T_{sat}}^{T} Cp_{VSUP}(T) dT \quad (kJ/Kg) \quad (8)$$

onde:
$$\int_{T_{sat}}^{T} C p_{VSAT} = \int_{T_{sat}}^{T} C p_{VSUP} = \int_{T_{sat}}^{T} \frac{R}{PM_{a}} [A + BT + DT^{-2}] \quad (kJ/KgK) \quad (9)$$

T=Tsat varia entre 298 e 2000 K

Resolvendo a integral, temos:

Na entrada (ponto 7) e saída (ponto 8) do condensador a pressão é de alta, igual a P=7,38 kPa, assim, para calcular a entalpia no ponto 7, teremos que determinar a Tsat da água pela equação (11).

$$Log_{10} P = A - \frac{B}{T^{sa^{\dagger}} + C}$$
 (11)

onde:

		_				_			
A=	8,10765			B=	1750,286		C=	235	
Pressão=	7,38	kPa	=	55,355	mmHg	T [=] °C	е		Psat [=] mmHg
Tsat=	40,008	°C							

Pela equação (10), Cpvsat pode ser calculado:

Val	_		
h0 (kJ/Kg)	T0 (°C)	Cp (kJ/KgK)	
0,000	0,000	4,187	líquido saturado
2468,690	-17,780	1,808	vapor saturado

Cpvsat = 1,869 kJ/kgK

Cpmédio(Cpvsat e Cp vsat referência) = 1,839 kJ/kgK

Logo, hsat é calculado pela equação (4) e Cpmédio.

hsat=		2574,94	kJ/kg		assim	hvsup=	2668,842	kJ/kg
	h7=	hvsup=	2668,842	kJ/kg				
F	Pela equa	ção (6), ach	amos Qc:	Qc=	67560,8807	kJ/h		

Desta forma, podemos calcular a vazão mássica de água (m15=m16) que atravessa as serpentinas de resfriamento pela equação (7):

m15=m16= 8013,140 kg/h

Dimensionamento do Trocador de Calor

				Q _{TC} =	m ₂ h ₂ +	$\dot{m}_4h_4 =$	$\dot{m}_3h_3+\dot{m}_5h$	₅ (19)
	Equação da carga	térmica no TC:						
T ₄ = (-BETA 4 + 1	(BETA 4) ² – 4 · A	LFA4(GAMA4	(2·/	ALFA4)	(20)	Temperat	tura da solução LiE	3r-H2O
Onde:	ALFA4=	0,000183	T4=	96,6	614 °C			
	BETA4= GAMA4=	0,78488 -40,5736				A(i,j)	Valores	
h, = AH4 *(T 4)) +(0.5 * BH4) *(⁻	(7 4) ^2)+DH4	(21)			A(0,0)	- 9,133128E+00	
	/ (0,0 2111 / (() _) _)	(= .)			A(0,1)	-4,749724E-01	
						A(0,2)	-5,638171E-02	
						A(0,3)	1,108418E-03	
AH=3,462023-2	2,679895E-2*X		BH=1,3499E-3-6	-6,55E-6*X		A(1,0)	9,439697E-01	
						A(1,1)	-2,882015E-03	
AH4=	1,68257272	В	H4= 0,00091			A(1,2)	-1,345453E-04	
						A(1,3)	5,852133E-07	
D	H= 162,81- 6,0418 *X	K - 4,5348E-3*(X^2	2) + 1,2053E-3*(X^3	5)		A(2,0)	-7,324352E-05	
						A(2,1)	-1,556533E-05	
	DH4=	94,49826				A(2,2)	1,992657E-06	
						A(2,3)	-3,924205E-08	
h4=	261,4126419	kJ/kg						

Segundo Aphornratana & Eames (1995), citado por Varani (2001), a temperatura de cristalização pode ser calculada pela equação (22):

$T_{CRIST5} = (-AH4 + \sqrt{AH4})^2 - 4(0)$	9,5)·BH4(DH4−h _{cri}	_{sб}))/(2(0,5)·В⊦	H4) (22)				
$Ondeh_{cris\delta} = 2157010989x4 - 1232130549(23)$							
hcrist5=	200,12	kJ/kg					
Tcrist5=	61,74	°C					
A temperatura no ponto 5 deve esta	r: Tcrist5+10,5 <t5<<sup>-</t5<<sup>	Г4-5					
Temperaturas no ponto 5 (T5)			Entalpia n	o ponto 5 (h5) kJ/kg			
1	72,24		1	218,435			
2	76,12		2	225,234			
3	80,01		3	232,047			
4	83,89		4	238,874			
5	87,78		5	245,715			
6	91,66		6	252,569			

Teste para verificar se a solução no ponto 6 está na região bifásica ou comprimida

•

Supondo a temperatura da solução no ponto 6 igual a no ponto 5 (T6sol=T5), teremos:

$$T_6 \neq -BETAO + \sqrt{BETAO}^2 - 4 \cdot ALFAO (GAMAO - (10)))/(2 \cdot ALFAO) (24)$$

- -

	T6 (°C)	
1	72,24	
2	76,12	
3	80,01	T6= 57,3006 °C
4	83,89	Calculado, caso a P6>PEVAP
5	87,78	
6	91,66	

Cálculo da temperatura de orvalho para a solução LiBr-H2O para calcular a PRESSÃO6

°С

	TD6 (°C)		
1	17,08	C=	10,04999
2	20,23	D=	-1603,541
3	23,39	E=	-104095,5
4	26,56		
5	29,73		
6	32,90		
P6	kPa		
1	1,95		
2	2,37	T6=	57,301
3	2,88		
4	3,47		
5	4,18		

6

5,00

Cálculo da entalpia da solução LiBr-H2O:

1) Cálculo dos coeficientes:

hosol=	192,4128091	kJ/kg
hsolsup=	2608,584008	kJ/kg

h6= 2800,996817 kJ/kg Entalpia da mistura bifásica

hcrist6= (21,57010989*X6)-1232,130549 (25)

hcrist6= 200,12

 $T_{CRIST6} = (-AH4 + \sqrt{(AH4)^2 - 4 \cdot (0,5) \cdot BH4 \cdot (DH4 - h_{crist6})}) / (2 \cdot (0,5) \cdot BH4)$ (26)

Tcrist6= 61,74 °C

Cálculo de Q_{TC} pela equação (19), 1ª igualdade:

Q_{TC}= 27916,56 kJ/h

Dimensionamento do Gerador						
	Balanço global	no Gerador:	$m_3 = \dot{m}_4 + m_7$ (27)			
	Balanço paro	cial no Gerador para LiB	$m_3 x_3 = m_4 x_4$ (28)			
Equação da carga térmica no Gerador: $Q_g = \dot{m}_7 h_7 + \dot{m}_4 h_4 - \dot{m}_3 h_3 = \dot{m}_{17} (h_{17} - h_{18})$ (29)						
m3=m2=	107,61	kg/h				
m4=	81,03	kg/h	m7= 26,58 kg/h pela equação (27)			
	Pela equação (19), podemos calcular a en	ntalpia em (3):			
h3=	205,02	kJ/kg				
AH=3,462023-2,679895E-2*X			BH=1,3499E-3-6,55E-6*X			
AH3=	2,12208		BH3= 0,001022			
	DH= 162,81- 6,0	0418 *X - 4,5348E-3*(X	X^2) + 1,2053E-3*(X^3)			

DH3= 0,0455

$T_{3} = (-AH3 + \sqrt{(AH3)^{2} - 4 \cdot 0.5 \cdot BH3 \cdot (DH3 - h(3))}) / (2 \cdot 0.5 \cdot BH3)$ (30)

- T3= 94,4448 °C
- Qg= 70053,81 kJ/h
- Para calcularmos T7 usaremos as equações 31 e 32
- TfuncX3= $(124,937*X3-3,85825*(X3^2)+50,762E-3*(X3^3)-198,7725E-6*(X3^4))+T8*(-2,00755*X3+84,88E-3*(X3^2)-1,044454E-3*(X3^3)+4,9417E-6*(X3^4))$ (31)
- TfuncX3= 2153,74775
- TfuncX4= $(124,937*X4-3,85825*(X4^2)+50,762E-3*(X4^3)-198,7725E-6*(X4^4))+T8*(-2,00755*X4)+84,88E-3*(X4^2)-1,044454E-3*(X4^3)+4,9417E-6*(X4^4))$ (32)
- TfuncX4 3437,117899
 - T7= 78,2543 °C

Assim, calculamos a entalpia nos pontos 17 e 18:

Calor específico da água líquida a P=1 atm foi determinada pela Equação 3

$$C_{PLSAT} = \frac{R}{PM_{\alpha}} (A + BT + CT^{2}) \quad (kJ / KgK) \qquad (3)$$

Substituindo esses dados na equação (3), teremos:

Cplsat17 =	4,257	kJ/kgK
Cplsat18=	4,250	kJ/kgK

Va	_		
h0 (kJ/Kg)	T0 (°C)	Cp (kJ/KgK)	
0,000	0,000	4,187	líquido saturado
2468,690	-17,780	1,808	vapor saturado

Cpmédio(17) =Média dos Cplsat17 e Cp de referência do liq. saturado

Cpmédio(17) = 4,222 kJ/kgK

Pela eq. (5), teremos:

h(17) =	1533,252	kJ/kg

Cpmédio(18) =Média dos Cplsat18 e Cp de referência do liq. saturado

Cpmédio(18) =	4,219	kJ/kgK
h(18) =	1489,784	kJ/kg

Pela equação (29), 2ª igualdade, podemos calcular a vazão mássica em (17) e (18):

m17=	1611,616	kg/h	m18=	1612 kg/h
------	----------	------	------	-----------

ANEXO D: Metodologia de Iniciação no TRNSYS ('Transient System Simulation Program')

D.1 Classificação do usuário

Inicialmente, foi necessário classificar o usuário dentro do programa. Essa classificação foi realizada pela orientadora Karla Miranda Barcellos, que escolheu o tipo de usuário *conceptor*, para que o usuário iniciante não mudasse ou mesmo apagasse alguma informação ou projeto essencial ao TRNSYS, devido ao grau de familiaridade com o programa, que era nenhum. Essa é uma preocupação que se deve ter ao se dar acesso a um usuário inexperiente com o TRNSYS.

D.2 Abertura da janela principal do IISiBat

Clicando duas vezes com o botão direito do *mouse* sobre o ícone do programa *TRNSYS 14.2 with IISiBat*, abriu-se uma janela pedindo o nome do usuário e a senha. Após ter colocado ambos, clicouse em *load*. Em seguida, abriu-se a janela principal do *IISiBat*, denominada "IISiBat V2.3r4 – Login: nome do usuário", que neste caso foi "jaque", mas que dependerá do nome colocado pelo usuário em uso, conforme visualizado pela Figura 67.

Figura 67 - Janela do II SiBat

D.3 Abertura da janela Library Manager

Clicou-se duas vezes com o botão direito do *mouse* sobre o segundo ícone da janela principal do IISiBat, denominado "libman", local onde é armazenado toda a livraria de modelos e de projetos, e em

seguida, abriu-se a janela *Library Manager*, conforme mostra a Figura 68. O passo seguinte para a modelagem e simulação do SRA, foi criar uma livraria de modelos, chamada a critério do usuário de "Models" e uma de projeto, chamada "Projaque".

Figura 68 - Janela Library Manager

D.4 Criação de uma livraria de modelos e a modificação de algum modelo

A criação de uma nova livraria de modelos fez-se necessário, para se modificar um modelo já existente, no caso, o *Type* 9. O *Type* 9bmod é um caso de modelo modificado e, o nome deste, foi criado pelo próprio usuário, podendo ser chamado de qualquer outro nome, a critério do usuário. A motivação para a criação do Type 9bmod, originário do Type 9b, foi pelo fato de seu segundo parâmetro permitir ler apenas dois dados meteorológicos do arquivo de dados do usuário com terminação ".prn" e não adicionar os parâmetros de interpolação, fator de multiplicação e fator de adição para as quatro entradas. O Type 9bmod é o Type 9b, modificado, o qual lê os quatro dados meteorológicos de entrada, que são: tempo, temperatura ambiente, umidade relativa e radiação solar e ainda contém os parâmetros de interpolação, fator de multiplicação para as quatro entradas.

Para fazer a modificação no Type 9b, seguiu-se os passos a seguir:

- 1) Abriu-se a janela IISiBat V2.3r4 Login : jaque;
- 2) Clicou-se em Libman, o que foi aberta a janela Library Manager: jaque
- 3) Clicou-se com a ferramenta P na livraria Utility, abriu-se a janela trnsys14 Model Library: Utility;
- 4) Com a ferramenta copiar 🤽, clicou-se sobre o modelo desejado, no caso Type 9b, retornando à janela da livraria;
- 5) Com a ferramenta 🏸 selecionou-se a livraria de modelos já criada e nesta janela,

escolheu-se a ferramenta colar

- 6) Clicou-se no local onde se quis armazenar esse arguivo, assim foi criado então, um modelo que pode ser modificado;
- 7) Com a ferramenta informação **1**, clicou-se sobre o modelo e foi aberto o '**Proforma**', que teve o título de Chapter1-Model:Typ9mod-Type:9 para este caso, então, fizeram-se as modificações que se queria;
- Clicou-se em D para mudar parâmetros, entradas saídas e etc; 8)
- O modelo modificado foi colocado na janela Assembly, selecioando na livraria de modelos a 9)

🚺 e indo para a janela Assembly que deveria estar aberta e com a ferramenta ferramenta K

selecionada;

10) Clicou-se em qualquer local e o modelo com as modificações foi acrescentado.

D.5 Criação de uma livraria de projetos

Para a criação de uma livraria de projetos foi necessário seguir os passos descritos a seguir:

- 1) Clicou-se em Libman e abriu-se a janela Library Manager: jaque;
- Com a ferramenta P clicou-se sobre a ferramenta para criar uma nova livraria; 2)
- 3) Para dar ou mudar de nome usou-se a ferramenta 🚺 e clicou-se sobre o nome e fez-se a mudança. Em seguida, pressionou-se a tecla 'enter' do teclado do computador;
- 4) Com a ferramenta 🔑 escolheu-se a livraria de projeto para trabalhar ou criou-se um novo projeto. OBS: Se seu projeto já foi criado, ir para o item 6;
- 5) Criou-se um novo projeto com a ferramenta nome da pasta principal (Projaque), abriu-se uma janela em que o usuário nomeou o novo projeto;
- 6) Para criar uma nova pasta, escolheu-se a ferramenta e clicou-se em uma pasta existente na livraria, que abriu-se uma janela para o usuário renomear a nova pasta;
- 7) Com a ferramenta 🕍 clicou-se sobre o projeto. Foi aberta uma janela no Assembly que permitiu trabalhar sobre o projeto.

A modelagem do Sistema de Refrigeração por Absorção no painel do Assembly iniciou com a escolha dos Types, de acordo com os seus parâmetros.